603 research outputs found

    Review of QSAR Models and Software Tools for predicting Biokinetic Properties

    Get PDF
    In the assessment of industrial chemicals, cosmetic ingredients, and active substances in pesticides and biocides, metabolites and degradates are rarely tested for their toxicologcal effects in mammals. In the interests of animal welfare and cost-effectiveness, alternatives to animal testing are needed in the evaluation of these types of chemicals. In this report we review the current status of various types of in silico estimation methods for Absorption, Distribution, Metabolism and Excretion (ADME) properties, which are often important in discriminating between the toxicological profiles of parent compounds and their metabolites/degradation products. The review was performed in a broad sense, with emphasis on QSARs and rule-based approaches and their applicability to estimation of oral bioavailability, human intestinal absorption, blood-brain barrier penetration, plasma protein binding, metabolism and. This revealed a vast and rapidly growing literature and a range of software tools. While it is difficult to give firm conclusions on the applicability of such tools, it is clear that many have been developed with pharmaceutical applications in mind, and as such may not be applicable to other types of chemicals (this would require further research investigation). On the other hand, a range of predictive methodologies have been explored and found promising, so there is merit in pursuing their applicability in the assessment of other types of chemicals and products. Many of the software tools are not transparent in terms of their predictive algorithms or underlying datasets. However, the literature identifies a set of commonly used descriptors that have been found useful in ADME prediction, so further research and model development activities could be based on such studies.JRC.DG.I.6-Systems toxicolog

    Cytochromes P450 and species differences in xenobiotic metabolism and activation of carcinogen.

    Get PDF
    The importance of cytochrome P450 isoforms to species differences in the metabolism of foreign compounds and activation of procarcinogens has been identified. The possible range of P450 isozymes in significant variations in toxicity exhibited by experimental rodent species may have a relevance to chemical risk assessment, especially as human P450s are likely to show changes in the way they metabolize xenobiotics. Consequently, in the safety evaluation of chemicals, we should be cautious in extrapolating results from experimental animal models to humans. This paper focuses on examples in which species differences in P450s lead to significant alterations in carcinogenic response, and includes a discussion of the current procedures for toxicity screening, with an emphasis on short-term tests

    Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms.

    Get PDF
    Metabolism of xenobiotics remains a central challenge for the discovery and development of drugs, cosmetics, nutritional supplements, and agrochemicals. Metabolic transformations are frequently related to the incidence of toxic effects that may result from the emergence of reactive species, the systemic accumulation of metabolites, or by induction of metabolic pathways. Experimental investigation of the metabolism of small organic molecules is particularly resource demanding; hence, computational methods are of considerable interest to complement experimental approaches. This review provides a broad overview of structure- and ligand-based computational methods for the prediction of xenobiotic metabolism. Current computational approaches to address xenobiotic metabolism are discussed from three major perspectives: (i) prediction of sites of metabolism (SOMs), (ii) elucidation of potential metabolites and their chemical structures, and (iii) prediction of direct and indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics metabolizing enzymes. For each of these domains, a variety of approaches and their applications are systematically reviewed, including expert systems, data mining approaches, quantitative structure-activity relationships (QSARs), and machine learning-based methods, pharmacophore-based algorithms, shape-focused techniques, molecular interaction fields (MIFs), reactivity-focused techniques, protein-ligand docking, molecular dynamics (MD) simulations, and combinations of methods. Predictive metabolism is a developing area, and there is still enormous potential for improvement. However, it is clear that the combination of rapidly increasing amounts of available ligand- and structure-related experimental data (in particular, quantitative data) with novel and diverse simulation and modeling approaches is accelerating the development of effective tools for prediction of in vivo metabolism, which is reflected by the diverse and comprehensive data sources and methods for metabolism prediction reviewed here. This review attempts to survey the range and scope of computational methods applied to metabolism prediction and also to compare and contrast their applicability and performance.JK, MJW, JT, PJB, AB and RCG thank Unilever for funding

    The Use of Computational Methods in the Toxicological Assessment of Chemicals in Food: Current Status and Future Prospects

    Get PDF
    A wide range of chemicals are intentionally added to, or unintentially found in, food products, often in very small amounts. Depending on the situation, the experimental data needed to complete a dietary risk assessment, which is the scientific basis for protecting human health, may not be available or obtainable, for reasons of cost, time and animal welfare. For example, toxicity data are often lacking for the metabolites and degradation products of pesticide active ingredients. There is therefore an interest in the development and application of efficient and effective non-animal methods for assessing chemical toxicity, including Quantitative Structure-Activity Relationship (QSAR) models and related computational methods. This report gives an overview of how computational methods are currently used in the field of food safety by national regulatory bodies, international advisory organisations and the food industry. On the basis of an international survey, a comprehensive literature review and a detailed QSAR analysis, a range of recommendations are made with the long-term aim of promoting the judicious use of suitable QSAR methods. The current status of QSAR methods is reviewed not only for toxicological endpoints relevant to dietary risk assessment, but also for Absorption, Distribution, Metabolism and Excretion (ADME) properties, which are often important in discriminating between the toxicological profiles of parent compounds and their reaction products. By referring to the concept of the Threshold of Toxicological Concern (TTC), the risk assessment context in which QSAR methods can be expected to be used is also discussed. This Joint Research Centre (JRC) Reference Report provides a summary and update of the findings obtained in a study carried out by the JRC under the terms of a contract awarded by the European Food Safety Authority (EFSA).JRC.DG.I.6-Systems toxicolog

    Molecular Similarity and Xenobiotic Metabolism

    Get PDF
    MetaPrint2D, a new software tool implementing a data-mining approach for predicting sites of xenobiotic metabolism has been developed. The algorithm is based on a statistical analysis of the occurrences of atom centred circular fingerprints in both substrates and metabolites. This approach has undergone extensive evaluation and been shown to be of comparable accuracy to current best-in-class tools, but is able to make much faster predictions, for the first time enabling chemists to explore the effects of structural modifications on a compound’s metabolism in a highly responsive and interactive manner.MetaPrint2D is able to assign a confidence score to the predictions it generates, based on the availability of relevant data and the degree to which a compound is modelled by the algorithm.In the course of the evaluation of MetaPrint2D a novel metric for assessing the performance of site of metabolism predictions has been introduced. This overcomes the bias introduced by molecule size and the number of sites of metabolism inherent to the most commonly reported metrics used to evaluate site of metabolism predictions.This data mining approach to site of metabolism prediction has been augmented by a set of reaction type definitions to produce MetaPrint2D-React, enabling prediction of the types of transformations a compound is likely to undergo and the metabolites that are formed. This approach has been evaluated against both historical data and metabolic schemes reported in a number of recently published studies. Results suggest that the ability of this method to predict metabolic transformations is highly dependent on the relevance of the training set data to the query compounds.MetaPrint2D has been released as an open source software library, and both MetaPrint2D and MetaPrint2D-React are available for chemists to use through the Unilever Centre for Molecular Science Informatics website.----Boehringer-Ingelhie

    Prediction of drug-drug interaction potential using machine learning approaches

    Get PDF
    Drug discovery is a long, expensive, and complex, yet crucial process for the benefit of society. Selecting potential drug candidates requires an understanding of how well a compound will perform at its task, and more importantly, how safe the compound will act in patients. A key safety insight is understanding a molecule\u27s potential for drug-drug interactions. The metabolism of many drugs is mediated by members of the cytochrome P450 superfamily, notably, the CYP3A4 enzyme. Inhibition of these enzymes can alter the bioavailability of other drugs, potentially increasing their levels to toxic amounts. Four models were developed to predict CYP3A4 inhibition: logistic regression, random forests, support vector machine, and neural network. Two novel convolutional approaches were explored for data featurization: SMILES string auto-extraction and 2D structure auto-extraction. The logistic regression model achieved an accuracy of 83.2%, the random forests model, 83.4%, the support vector machine model, 81.9%, and the neural network model, 82.3%. Additionally, the model built with SMILE string auto-extraction had an accuracy of 82.3%, and the model with 2D structure auto-extraction, 76.4%. The advantages of the novel featurization methods are their ability to learn relevant features from compound SMILE strings, eliminating feature engineering. The developed methodologies can be extended towards predicting any structure-activity relationship and fitted for other areas of drug discovery and development

    A computational study of the substrate conversion and selective inhibition of aldosterone synthase

    Get PDF
    When a functional or structural impairment of cardiac output has occurred, the cardiovascular system will attempt to compensate for the reduced blood flow. Unfortunately, many of the resulting processes, such as the renin angiotensin aldosterone system, will progressively weaken the heart, resulting in the condition called heart failure. The renin angiotensin aldosterone regulatory system is currently targeted with medicine for heart failure. Many successes for the prolongation of patient age have been achieved by inhibition of angiotensin II synthesis and action. It has become apparent that this approach is suboptimal. Antagonists of aldosterone have provided better treatment options, however, side-effects are still observed. In the search for an alternative therapeutic application, we have studied a novel treatment involving the selective inhibition of aldosterone biosynthesis. The scope of this study has involved the in silico design and prediction of novel inhibitors, the synthesis of these inhibitors and analogues, and finally the in vitro measurement of their potency. The biosynthesis of aldosterone is performed by two cytochrome p450 enzymes, 11B1 and 11B2, denoted as CYP11B1 and CYP11B2, respectively. From these two family members, only CYP11B2 can perform the final synthesis step that converts 18-hydroxycorticosterone into aldosterone. CYP11B1 performs the synthesis of glucocorticoids that are responsible for metabolic, immunologic and homeostatic functions. Because these glucocorticoid actions should not be inhibited, the newly designed medicine must be CYP11B2 selective. Since CYP11B1 is highly homologous to CYP11B2, we have performed an in silico study that allows us to model the interactions of substrates and inhibitors in both the active sites of CYP11B1 and CYP11B2. Using comparative modelling, we have constructed models for the three dimensional architecture of both proteins. These models have been validated by investigating the torsional properties of the protein backbone and residue side chains, the overall protein packing and the dynamic behaviour of the protein models. Subsequently, the models have been used to evaluate the binding mechanisms and conversion mechanisms for the natural steroidal ligands of CYP11B1 and CYP11B2. A hypothetical binding mode has been proposed for 18-hydroxycorticosterone in CYP11B2, featuring the presence of stabilising hydrogen bonding interactions required for its conversion. Quantum mechanical analyses on the conversion of the steroids involved have shown a favourable conversion for this conformation, thereby supporting our hypothesis. In addition, the quantum mechanical analyses have provided insights on steroid conformations in the active sites during conversion. The suitability of the protein models for inhibitor design has been tested by subjecting the models to a case study with four known inhibitors of CYP11B1 and CYP11B2. Using molecular dynamics and molecular docking, the inhibitor potencies for CYP11B1 and CYP11B2 have been predicted, and their interactions with the proteins have been evaluated. The trends in inhibitor potency found by these computational methods have been confirmed by in vitro inhibition measurements. As a next step, the molecular docking study has been expanded to improve the confidence in the predictive power of the models. Using the protein states evaluated by the molecular dynamics study, the molecular docking results of inhibitor analogues have been investigated and the predictive power of the models has been qualitatively improved. In a final approach, we have performed a ligand-based investigation of the inhibitor analogues to determine which ligand characteristics are important for the potency for CYP11B1 and CYP11B2. To this end, we have conducted decision tree analyses on the physico-chemical properties of inhibitor substituents, resulting in a collection of descriptors that can be used for the prediction and design of novel inhibitors. We have shown that a combination of synthesis, molecular modelling and experimental measurements form a promising approach towards the design of potentially new inhibitors

    Développement de modèles prédictifs de la toxicocinétique de substances organiques

    Full text link
    Les modèles pharmacocinétiques à base physiologique (PBPK) permettent de simuler la dose interne de substances chimiques sur la base de paramètres spécifiques à l’espèce et à la substance. Les modèles de relation quantitative structure-propriété (QSPR) existants permettent d’estimer les paramètres spécifiques au produit (coefficients de partage (PC) et constantes de métabolisme) mais leur domaine d’application est limité par leur manque de considération de la variabilité de leurs paramètres d’entrée ainsi que par leur domaine d’application restreint (c. à d., substances contenant CH3, CH2, CH, C, C=C, H, Cl, F, Br, cycle benzénique et H sur le cycle benzénique). L’objectif de cette étude est de développer de nouvelles connaissances et des outils afin d’élargir le domaine d’application des modèles QSPR-PBPK pour prédire la toxicocinétique de substances organiques inhalées chez l’humain. D’abord, un algorithme mécaniste unifié a été développé à partir de modèles existants pour prédire les PC de 142 médicaments et polluants environnementaux aux niveaux macro (tissu et sang) et micro (cellule et fluides biologiques) à partir de la composition du tissu et du sang et de propriétés physicochimiques. L’algorithme résultant a été appliqué pour prédire les PC tissu:sang, tissu:plasma et tissu:air du muscle (n = 174), du foie (n = 139) et du tissu adipeux (n = 141) du rat pour des médicaments acides, basiques et neutres ainsi que pour des cétones, esters d’acétate, éthers, alcools, hydrocarbures aliphatiques et aromatiques. Un modèle de relation quantitative propriété-propriété (QPPR) a été développé pour la clairance intrinsèque (CLint) in vivo (calculée comme le ratio du Vmax (μmol/h/kg poids de rat) sur le Km (μM)), de substrats du CYP2E1 (n = 26) en fonction du PC n octanol:eau, du PC sang:eau et du potentiel d’ionisation). Les prédictions du QPPR, représentées par les limites inférieures et supérieures de l’intervalle de confiance à 95% à la moyenne, furent ensuite intégrées dans un modèle PBPK humain. Subséquemment, l’algorithme de PC et le QPPR pour la CLint furent intégrés avec des modèles QSPR pour les PC hémoglobine:eau et huile:air pour simuler la pharmacocinétique et la dosimétrie cellulaire d’inhalation de composés organiques volatiles (COV) (benzène, 1,2-dichloroéthane, dichlorométhane, m-xylène, toluène, styrène, 1,1,1 trichloroéthane et 1,2,4 trimethylbenzène) avec un modèle PBPK chez le rat. Finalement, la variabilité de paramètres de composition des tissus et du sang de l’algorithme pour les PC tissu:air chez le rat et sang:air chez l’humain a été caractérisée par des simulations Monte Carlo par chaîne de Markov (MCMC). Les distributions résultantes ont été utilisées pour conduire des simulations Monte Carlo pour prédire des PC tissu:sang et sang:air. Les distributions de PC, avec celles des paramètres physiologiques et du contenu en cytochrome P450 CYP2E1, ont été incorporées dans un modèle PBPK pour caractériser la variabilité de la toxicocinétique sanguine de quatre COV (benzène, chloroforme, styrène et trichloroéthylène) par simulation Monte Carlo. Globalement, les approches quantitatives mises en œuvre pour les PC et la CLint dans cette étude ont permis l’utilisation de descripteurs moléculaires génériques plutôt que de fragments moléculaires spécifiques pour prédire la pharmacocinétique de substances organiques chez l’humain. La présente étude a, pour la première fois, caractérisé la variabilité des paramètres biologiques des algorithmes de PC pour étendre l’aptitude des modèles PBPK à prédire les distributions, pour la population, de doses internes de substances organiques avant de faire des tests chez l’animal ou l’humain.Physiologically-based pharmacokinetic (PBPK) models simulate the internal dose metrics of chemicals based on species-specific and chemical-specific parameters. The existing quantitative structure-property relationships (QSPRs) allow to estimate the chemical-specific parameters (partition coefficients (PCs) and metabolic constants) but their applicability is limited by their lack of consideration of variability in input parameters and their restricted application domain (i.e., substances containing CH3, CH2, CH, C, C=C, H, Cl, F, Br, benzene ring and H in benzene ring). The objective of this study was to develop new knowledge and tools to increase the applicability domain of QSPR-PBPK models for predicting the inhalation toxicokinetics of organic compounds in humans. First, a unified mechanistic algorithm was developed from existing models to predict macro (tissue and blood) and micro (cell and biological fluid) level PCs of 142 drugs and environmental pollutants on the basis of tissue and blood composition along with physicochemical properties. The resulting algorithm was applied to compute the tissue:blood, tissue:plasma and tissue:air PCs in rat muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, ethers, aliphatic and aromatic hydrocarbons. Then, a quantitative property-property relationship (QPPR) model was developed for the in vivo rat intrinsic clearance (CLint) (calculated as the ratio of the in vivo Vmax (μmol/h/kg bw rat) to the Km (μM)) of CYP2E1 substrates (n = 26) as a function of n-octanol:water PC, blood:water PC, and ionization potential). The predictions of the QPPR as lower and upper bounds of the 95% mean confidence intervals were then integrated within a human PBPK model. Subsequently, the PC algorithm and QPPR for CLint were integrated along with a QSPR model for the hemoglobin:water and oil:air PCs to simulate the inhalation pharmacokinetics and cellular dosimetry of volatile organic compounds (VOCs) (benzene, 1,2-dichloroethane, dichloromethane, m-xylene, toluene, styrene, 1,1,1-trichloroethane and 1,2,4 trimethylbenzene) using a PBPK model for rats. Finally, the variability in the tissue and blood composition parameters of the PC algorithm for rat tissue:air and human blood:air PCs was characterized by performing Markov chain Monte Carlo (MCMC) simulations. The resulting distributions were used for conducting Monte Carlo simulations to predict tissue:blood and blood:air PCs for VOCs. The distributions of PCs, along with distributions of physiological parameters and CYP2E1 content, were then incorporated within a PBPK model, to characterize the human variability of the blood toxicokinetics of four VOCs (benzene, chloroform, styrene and trichloroethylene) using Monte Carlo simulations. Overall, the quantitative approaches for PCs and CLint implemented in this study allow the use of generic molecular descriptors rather than specific molecular fragments to predict the pharmacokinetics of organic substances in humans. In this process, the current study has, for the first time, characterized the variability of the biological input parameters of the PC algorithms to expand the ability of PBPK models to predict the population distributions of the internal dose metrics of organic substances prior to testing in animals or humans
    corecore