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ABSTRACT

In the assessment of industrial chemicals, cosmetic ingredients, and active substances in 
pesticides and biocides, metabolites and degradates are rarely tested for their toxicologcal 
effects in mammals. In the interests of animal welfare and cost-effectiveness, alternatives to 
animal testing are needed in the evaluation of these types of chemicals. In this report we 
review the current status of various types of in silico estimation methods for Absorption, 
Distribution, Metabolism and Excretion (ADME) properties, which are often important in 
discriminating between the toxicological profiles of parent compounds and their 
metabolites/degradation products. The review was performed in a broad sense, with emphasis 
on QSARs and rule-based approaches and their applicability to estimation of oral 
bioavailability, human intestinal absorption, blood-brain barrier penetration, plasma protein 
binding, metabolism and. This revealed a vast and rapidly growing literature and a range of 
software tools. 

While it is difficult to give firm conclusions on the applicability of such tools, it is clear that 
many have been developed with pharmaceutical applications in mind, and as such may not be 
applicable to other types of chemicals (this would require further research investigation). On 
the other hand, a range of predictive methodologies have been explored and found promising, 
so there is merit in pursuing their applicability in the assessment of other types of chemicals 
and products. Many of the software tools are not transparent in terms of their predictive 
algorithms or underlying datasets. However, the literature identifies a set of commonly used 
descriptors that have been found useful in ADME prediction, so further research and model 
development activities could be based on such studies.
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1. Introduction

The term ADME refers to Absorption, Distribution, Metabolism and Excretion, the four 
processes related to the toxicokinetic (pharmacokinetic) profile of the chemicals interacting 
with living organisms. Collectively, these processes determine the fate of the substance inside 
the body. The term ADMET is sometimes also used, especially in the pharmacological area, 
the express the overall profiling of ADME properties and Toxicological effects of a 
substance.

The development of methods for determining ADME properties, including in silico methods, 
is a large and rapidly evolving field. This report provides an introduction to the background 
biology, then reviews of the current status of available databases, software tools and literature 
models relevant to ADME prediction. The in silico methods cover a range of approaches, 
including, but not limited to, (Q)SAR models.

2. Biological background of ADME processes

Absorption is a complicated process governed by a wide variety of factors, including not 
only the intrinsic properties of the substance (molecular size, solubility (logSaq), ionization 
constant (pKa) and octanol/water partition coefficient (logP) values), but also physiological 
conditions inside the organism (local pH, absorptive surface area), and activities of enzymes, 
transporters and carriers along the gastrointestinal (GI) tract. Absorption in the upper GI tract 
(in mouth and stomach) is minimal and occurs as a result of passive diffusion. Substances 
absorbed in mouth (despite enzymatic degradation processes) enter directly the systemic 
circulation; substances absorbed in the stomach (despite hydrolysis and biotransformation 
processes) go to the liver first and their actual bioavailability is usually limited by first-pass 
metabolism. The most intensive absorption takes place in the lower GI tract, especially via 
large mucous surface of small intestine. The predominant absorption mechanism there is 
passive diffusion, although large molecules may be taken up by pinocytosis. In the large 
intestine absorption is less efficient and occurs by passive diffusion or active transport (in 
case of electrolytes). The activity of gut microflora, enzymatic degradation processes and 
hepatic first-pass metabolism usually diminish the amount of parent molecule that enters 
systemic circulation. 
Human intestinal absorption (HIA) is usually measured as the percentage of the dose that 
reaches the portal vein after passing the intestinal wall (%HIA) and is a basis of most in silico
absorption models. The percentage of the dose that remains after absorption and first-pass 
hepatic metabolism is defined as the oral bioavailability (F) of the compound. In other words, 
bioavailability describes the passage of a substance from the site of absorption into the 
systemic circulation and is usually not equivalent to the amount of a substance absorbed. 

Once a compound enters the systemic circulation, it is distributed inside the body. This 
distribution process is governed by two main factors, namely the permeability of a substance 
between blood and particular tissues and the affinity of a substance to bind with tissues and 
plasma proteins. 

One of the most important tissue/blood partitioning coefficients is blood/brain (BB) partition 
coefficient, usually expressed as logBB and defined as the ratio of substance concentration in 
blood to its concentration in brain. The passage of compounds across the blood/brain barrier 
(BBB), an important determinant of neurotoxicity, is based mainly on passive diffusion across 
the BBB membrane. However active transport also may be important. For nutrients and 
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endogenous compounds, such as amino acids, monocarboxylic acids, amines, hexoses, 
thyroid hormones, purine bases and nucleosides, several transport systems regulating the 
entry of the respective compound classes into the brain have been identified. In addition, there 
is evidence that active efflux pumps like the multidrug transporter P-glycoprotein (P-gp) on 
the luminal membrane of the brain capillary endothelial cells serve to impede the entry of 
hydrophobic compounds into the brain. 
Compounds in the blood may exist in bound or unbound form. The protein binding of a 
substance influences the half-life inside the body and the bound fraction often serves as a 
reservoir from which the substance is slowly released to the unbound form. Unbound 
substances cross membrane barriers more readily, and may be metabolised and/or excreted. 
Hence the percentage of plasma protein binding (%PPB) is one of the key determinants in 
distribution. The most abundant protein in blood plasma is human serum albumin (HSA) 
accounting for about 60% of the total plasma protein. Since HSA is capable of binding 
diverse molecules, it significantly affects the overall %PPB. 
Metabolism (biotransformation) is one of the main factors influencing the fate and toxicity 
of a chemical. Metabolism includes a set of chemical reactions (so-called metabolic 
pathways) inside the organism, which generally convert xenobiotics into more polar and more 
easily excreted (i.e. less toxic) forms. However, in some cases metabolism may lead to the 
formation of toxic metabolites or/and intermediates. Traditionally biotransformation is 
divided into two main phases - phase I and phase II. Phase I, the so-called functionalisation 
phase, has a major impact on lipophilic molecules, rendering them more polar and more 
readily excretable. In phase II, often referred to as detoxification, such functionalised moieties 
are subsequently conjugated with highly polar molecules before they are excreted. Both 
phases are catalysed by specific enzymes which are either membrane-bound (microsomal 
proteins) or present in the cytosol (cytosolic or soluble enzymes). The superfamily of 
cytochrome P450 (CYP450; also termed heme-thiolate protein P450) enzymes, including 
more than 70 families of proteins, catalyses the oxidative (and sometimes reductive) phase I 
metabolic reactions of diverse compounds. Phase II metabolism is governed by various 
enzymes acting on different types of molecules. The most significant among them are 
glutathione S-transferase (GST), methyltransferase (MT), N-acetyltransferase (NAT), 
sulfotransferase (SULT) and UDP-glucuronosyltransferase (UGT). Besides phase I and phase 
II metabolism, the liver causes specific pre-systemic (first-pass) effects, especially following 
the oral intake. In addition, phase III metabolism refers to the excretion of metabolites from 
cells with efflux transporters. 
Excretion is the process of eliminating waste metabolic products, the major route of which is 
renal (urinary) excretion via the kidneys. The major non-metabolic routes of clearance (CLtot) 
include bile and urinary elimination of unchanged compounds. The excretion with sweat, 
faeces and expired air as well as the ability of compounds to be excreted into breast milk and 
transferred to neonates may also be significant.

3. Literature reviews on the modelling of ADME properties

A detailed investigation of ADME properties is important during the drug discovery process, 
where it is used to optimize the bioavailability of drug candidates. However, toxicokinetic
studies are also useful in toxicological investigations. Despite several difficulties in the 
modelling of ADME (e.g. low availability and/or quality of experimental data, complexity of 
physiological mechanisms inside the organisms), a large number of computational techniques 
have been developed. It is impossible to present here a comprehensive review of the literature 
on the modelling of ADME and ADME-related properties. As an illustration of the vastness 
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of the ADME literature, Table 1 lists the major reviews and expert opinions on in silico 
ADME prediction tools that have been published only during the last five years (2005-2010).

4. Databases and literature datasets

Although a wide range of diverse molecules have been screened in terms of their ADME 
properties, mainly to satisfy the needs of the pharmaceutical industry, relatively few data are 
publicly available. The majority of information on drug candidates are proprietary. 
Furthermore, ADME data for other types of chemicals (e.g. food additives, environmental 
pollutants, industrial chemicals, pesticides, etc.) are scarce. Thus, for the purpose of 
developing new ADME models, limited information is available. It is also unclear whether 
models developed for pharmaceuticals are applicable to a broader range of compounds, since 
pharmaceuticals are designed to be bioavailable and bioactive. 
A list of available databases suitable for the development of QSARs for ADME properties is 
given in Table 2. One of them is WOMBAT-PK 2009, the clinical pharmacokinetics 
database of top selling drugs, provided by Sunset Molecular 
(http://www.sunsetmolecular.com/). It includes information about over 13 000 clinical 
pharmacokinetic measurements for 1230 molecules (1230 unique SMILES) and is being 
constantly expanded (over 100 drugs are planned to be added in 2010). All WOMBAT-PK 
2009 drugs are represented (if possible) in neutral species. The searchable categories of 
WOMBAT-PK 2009 database include, among others, percentage oral bioavailability (for 818 
drugs), percentage plasma protein binding (for 1006 drugs), percentage urinary excretion (for 
811), qualitative blood brain barrier permeability (for 519 drugs) and phase I metabolizing 
enzymes (for 511 drugs). The Metabolism & Transport Drug Interaction Database 
(DIDB) has been developed by the University of Washington scientists 
(http://www.druginteractioninfo.org/). It contains in vitro and in vivo information on drug 
interactions in humans and provides pharmacokinetic profiles of drugs. The MetaboliteTM

Database provided by Symyx (http://www.symyx.com/) indexes paths and schemes of 
biotransformation for xenobiotics and medicinal drugs and collects experimental data from in 
vivo and in vitro studies. ADME DB, a database provided by Fujitsu (http://www.fqs.pl/), 
contains data on interactions of substances with drug metabolizing enzymes and drug 
transporters. It includes information on ADME properties (e.g. CYP and other phase I and 
phase II enzymes) as well as interactions between drugs.

Among freely available databases, two are of importance (Table 2). The ADME-AP database
developed by Bio Info & Drug Design (http://xin.cz3.nus.edu.sg/group/admeap/admeap.asp/) 
(Sun et al., 2002), provides data on diverse ADME-associated proteins including 
physiological function of each protein, pharmacokinetic effects, ADME classification, 
direction and driving force of disposition, location and tissue distribution, substrates, 
synonyms, gene name and protein availability in other species. The PK/DB database
(http://www.pkdb.ifsc.usp.br/) includes 1203 compounds with respect to 2973 
pharmacokinetic measurements (Moda et al., 2008). This database also includes five models 
for in silico ADME prediction (human intestinal absorption, human oral bioavailability, 
plasma protein binding, blood/brain barrier permeability and water solubility).

Numerous datasets published recently in the literature are also of importance as far as the 
modeling of ADME properties is concerned. They can be used for a wide range of predictive 
purposes, e.g. for human intestinal absorption, human oral bioavailability, plasma protein 
binding, blood brain barrier permeation and metabolic pathways modeling (Table 3).
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5. Software

Tables 4 and 5 indicate the extensive range of software tools for the purpose of ADME and 
ADME-related predictions. The vast majority of available software tools are commercial. The 
tools differ greatly in terms of their capabilities and applications. 
Some software, e.g. ACD/PhysChem Suite, ASTER, EPISUITE, ClogP (Table 4) were 
designed to perform the predictions of basic physicochemical properties (e.g. ionization
constant pKa, octanol/water partition coefficient logP, distribution coefficient logD or 
aqueous solubility logSaq). The best accuracy attained in physicochemical property prediction 
is close to that of measured data. The only approach that promises to improve the predictive 
accuracy of such models seems to be consensus modelling, in which the results of multiple 
models are combined. 
The importance of physicochemical property prediction is that the estimated data often serve 
as inputs to models of key ADME properties, such as gastrointestinal absorption, BBB 
permeability, oral bioavailability and plasma protein binding. Software tools such as Know-it-
All, ADME Boxes, and ADMET Predictor (Table 5) generate physicochemical property 
predictions and use them in further ADME modeling. 

In addition to structure-based models, there is a trend towards developing more sophisticated, 
mathematical PBPK models (Table 5). In these tools, in vitro and/or in vivo ADME data are 
integrated with the results of QSAR/QSPR models (e.g. for percentage plasma protein binding 
or blood/brain barrier penetration) for organism-based ADME modelling. Examples of such 
software tools include GastroPlus and Cloe which mimic the processes inside living 
organisms. 

Simcyp (http://www.simcyp.com/) is a proprietary PBPK simulator that provides a platform 
for modelling the ADME properties of drugs and their metabolites, as well as drug-drug 
interactions, in virtual patient populations (Jamei et al, 2009). By predicting inter-individual 
variability, it can be used to identify people at the extreme risks arising from both oral and 
non-parenteral routes (lungs and skin) of drug administration/exposure. The populations 
included are: Healthy Volunteers, North European Caucasians, Japanese, Cirrhotic (different 
degree), Renal Impairment (different degrees), Obese (different levels), and all paediatric age 
groups. A Bayesian based parameter estimation module can be used to predict individual as 
well as population parameters. Various QSAR-based predictors are included to predict 
ADME parameters if measured data are not available. Simcyp is based on and includes a 
database of demographic, physiological, genomic and in vitro biochemical data. It has been 
developed by a consortium of pharmaceutical companies, academic institutes and regulatory 
authorities. In addition, as a module to the Simcyp Population-based ADME Simulator, 
Simcyp Rat is a ‘virtual animal’ for predicting drug kinetics in rats. Simcyp is a unique and 
comprehensive tool, and although is has been developed to support the safety assessment of 
drugs and their metabolites, it would be worth investigating for its applicability in dietary risk 
assessment.

6. Types of in silico modelling approaches identified in the literature

Literally thousands of ADME models have been published in the scientific literature during 
the last ten years. These models can be divided into a few categories of modelling approaches. 
The selection of the most useful approach depends on the aims of investigation and is usually 
driven by the availability of necessary input data, as well as by the level of information 
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needed as an output (e.g. high-throughput screening of numerous compounds or detailed 
analysis of particular metabolic reaction). 
The simplest approach is based on rules-of-thumb and structural alerts. Their main
advantages, i.e. simplicity and transparent interpretability, make them very useful for fast 
screening of large datasets. As far as ADME-related endpoints are concerned, several rules-
of-thumb have been developed (Table 6), especially for assessing the likelihood of human 
intestinal absorption, blood/brain barrier penetration and plasma protein binding. Structural 
alerts have been identified mainly for metabolism-related issues, but also for human intestinal 
absorption (Raevsky et al., 2002). Models in this category are suitable for routine assessments 
by non-specialists, especially when rough approximations are sufficient.
Another approach to ADME modelling is data-based modelling. This includes conventional 
QSAR/QSPR and the application of different statistical algorithms, from relatively simple 
linear multivariate methods, such as Multiple Linear Regression (MLR), Partial Least Squares 
(PLS) and Linear Discriminant Analysis (LDA) to sophisticated nonlinear ones, such as 
Artificial Neural Networks (ANN). They are usually combined with learning methods such as 
Genetic Algorithms (GAs), Support Vector Machines (SVMs), Inductive Logic Programming 
(ILP), Bayesian Modelling (BM) and Self-Organizing Maps (SOMs). In addition, the 
approach of Hologram Quantitative Structure-Property Relationship (HQSAR) has been 
applied to ADME modelling. This technique is based on the arrangement of molecular 
fragments in a molecular hologram which allows three-dimensional information to be 
obtained from two-dimensional input structures (Wang et al., 2006; Moda et al., 2007a). 
Models in this category may be suitable for routine assessments by non-specialists, provided 
that a software implementation of the model is available. 

QSARs for ADME properties tend to be local models, i.e. are based on small, homogenous 
data sets, with reliable predictions being obtained for the compounds falling within the 
model’s applicability domain. Relatively few models have been developed on structurally 
diverse datasets containing more than 100 compounds. However, the accuracy of predictions 
across structurally diverse datasets can be improved by the application of consensus 
modelling, which transfers the strengths of multiple single models to a final consensus one. 
This approach has been demonstrated, for example in the modelling of blood/brain barrier 
penetration (Zhang et al., 2008a) and total clearance (Yap et al., 2006). 

To obtain detailed information on the mechanisms of interaction between molecules,
similarity-based molecular modelling may be useful. The methods within this category are 
used mainly in metabolism-related studies, especially for assessing the role of cytochrome 
P450 or identifying reaction sites (atoms) on particular enzyme substrates. Such methods 
include 3D-QSAR (e.g. Comparative Molecular Field Analysis, CoMFA); quantitative 
molecular similarity analysis (QMSA), based on experimental data or computed molecular 
descriptors; pharmacophore modelling and docking. Models in this category tend to require 
highly specialised modelling expertise, and as such are not suitable for routine assessments by 
non-specialists.
This review of literature-based ADME models given focuses on the conventional 
QSAR/QSPR approach (data-based modelling category), which could be useful for dietary 
risk assessment purposes. Given the large number of QSAR studies published and the wide 
variety of ADME properties (see Tables 7-12 for summary), the description is limited to a few 
illustrative examples, focusing on key ADME properties: human intestinal absorption 
(predicted as percentage fractional absorption, [%FA] or percentage human intestinal 
absorption [%HSA]), oral bioavailability (classification models), blood/brain barrier 
permeability (logBB and classification models), plasma protein binding (human serum 
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albumin [HSA] binding or percentage plasma protein binding [%PPB]) and excretion (total 
renal clearance [CLtot]). Since conventional QSARs for metabolism prediction are highly 
limited in terms of their applicability, Table 11 also includes other types of literature 
biotransformation models (e.g. 3D-QSAR, pharmacophore modelling, docking).

6.1. Literature models for human intestinal absorption
Literature models for human intestinal absorption are summarised in Table 7.
Recently, an extensive dataset (Table 3) for human intestinal absorption was reported by Hou 
et al. (2007c). The authors proposed a classification Support Vector Machine (SVM) model of 
categorising compounds into high (%FA > 30%) or low fractional absorption (%FA < 30%) 
classes. The input data set of 578 structural diverse drug-like molecules, was split into 
training and test sets, including 480 and 98 molecules, respectively. Ten SVM classification 
models were generated by the LIBSVM software developed by Chang and Lin (freely 
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/). The best model obtained gave 
satisfactory predictions for the training set (97.8% for the poor-absorption class and 94.5% for 
the good-absorption class). When the model was validated against an external test set, 100% 
of the poor-absorption class and 97.8% of the good-absorption class compounds were 
correctly classified. In the construction of classification models the authors considered 10 
molecular descriptors, namely: the topological polar surface area (TPSA), the octanol/water 
partition coefficient (logP), the apparent partition coefficient at pH 6.5 (logD6.5), the number 
of violations of the four Rule-of-Five rules developed by Lipinski (Nrule-of-5), the number of 
hydrogen bond donors (nHBD), the number of hydrogen bond acceptors (nHBA), the intrinsic 
solubility (logS), the number of rotatable bonds (nrot), the molar volume (MV), and the 
molecular weight (MW). TPSA was calculated using the parameters originally proposed by 
Ertl et al. (2000). LogD was estimated based on the predicted logP and pKa calculated by 
ACDLABS 9.0. The remaining molecular descriptors were calculated using ACDLABS 9.0 
(http://www.acdlabs.com/). The comparison of the models which were based on individual 
molecular descriptors showed that two of them (TPSA and logD6.5) are the most significant 
for the prediction of intestinal absorption. However, the best SVM model included seven 
descriptors, namely nHBD, logD6.5, MW, MV, TPSA, Nrule-of-5, and N+. The authors 
concluded that the size of the training set and its unbalanced nature have a great importance 
for predictivity of SVM classification models. A large data set is necessary for the model's 
stability and the ratio of poor-absorption class and good-absorption class compounds should 
be balanced to avoid model bias. Although the study of Hou et al. (2007c) was based on drug-
like molecules, it indicates a modelling approach that might be useful for further research 
aimed at developing classification models of HIA for large sets of other types of compounds. 
Moreover, all data (%FA values and molecular descriptors) on the 578 studied compounds are 
available in the supporting materials provided with the paper and can be utilized by other 
scientists.
Another classification-based approach for human intestinal absorption modelling was 
proposed by Sun (2004). The authors used atom types as generic molecular descriptors, which 
allowed them to avoid making prior assumptions about which properties possibly related to 
the predicted endpoint. In total, 218 atom types were identified, including 88 types of C, 7 
types of H, 55 types of N, 31 types of O, 8 types of halides, 23 types of S, and 6 types of P. In 
order to establish a qualitative model for HIA, the authors applied PLS-Discriminant Analysis 
(PLS-DA) to 169 drug molecules originally collected by Zhao et al. (2001) and classified 
them as "good” (absorption > 80%) “medium” (80% • absorption > 20%) or “poor” 
(absorption • 20%), according to the percentage human intestinal absorption (%HIA). A five-
component PLS-DA model separated very well all 169 compounds. The goodness-of-fit was 
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expressed by regression coefficient (R2) value of 0.92, and the model's predictivity by cross-
validated regression coefficient (Q2) of 0.79. In case only poorly absorbed compounds need to 
be identified, a three-component PLS-DA model would be sufficient, as it separated the 
compounds of less than 20% absorption with R2 of 0.94 and Q2 of 0.86. Although very often 
it is desirable to precisely predict, in many cases is sufficient, especially when fast recognition 
of the well/poorly absorbed molecules in large and diverse datasets is needed. The approach 
of Sun (2004) could be particularly useful in cases when it is sufficient to obtain a qualitative 
classification, rather than a precise estimate of the %HIA. 
Using the Multicase approach, Klopman et al. (2002) compiled one of the largest datasets of 
467 drug molecules for human intestinal absorption using various sources. The data were split 
into training and external prediction sets consisting of 417 and 50 molecules, respectively. In 
order to determine the molecular descriptors, both promoting and preventing HIA, the authors 
utilized the CASE program (http://www.multicase.com/). The occurrence of each structural 
fragment identified by CASE was subsequently used in a multiparameter linear equation of 
human intestinal absorption (HIA = c0 + •ciGi, where c0 is a constant, ci are the correlation 
coefficients and Gi is the presence (1) or absence (0) of a certain structural fragment). The 
final QSAR model was based on 37 descriptors: 36 statistically significant structural 
descriptors identified by CASE analysis and one important physicochemical parameter – the 
number of hydrogen bond donors (Hdonors). The QSAR model was validated both internally 
(by multiple cross-validations) and externally (on the independent set of 50 drugs not 
included in the procedure of building the model). The final model displayed good statistics 
(correlation coefficient R2 = 0.79, standard deviation error = 12.34%) and good predictive 
power (cross-validated R2 for the external test set = 0.79). This study is useful in that it points 
to explicit substructures with negative (e.g. quaternary nitrogens, SO2 groups connected to an 
aromatic ring) and positive impact for HIA, although is should be noted that that the training 
set was biased towards high absorption values. For the practical application of this model, it 
would first be necessary to rebuild it by using the using the Multicase software. The dataset 
would also need to be requested from Multicase (Klopman, 2002).
Abraham and collaborators (Zhao et al., 2001) proposed Linear Free Energy Relationship 
approach, based on the Abraham General Solvation Equation, to model human intestinal 
absorption. The authors created a %HIA dataset including 169 compounds. The model 
equation (%HIA = 92 + 2.94E + 4.10S + 10.6V – 21.7A – 21.1B), derived by stepwise MLR, 
was based on a set of five molecular descriptors, called Abraham descriptors, namely: excess 
molar refraction (E), solute polarity/polarizability (S), the McGowan characteristic volume 
(V), solute overall acidity (A) and basicity (B). The Abraham descriptors can be calculated by 
AbSolv program (previously available via ADME Boxes, Pharma Algorithms; now via
ACD/ADME Suite, ACD Labs, http://www.acdlabs.com/). The model yielded the following 
statistics: correlation coefficient R2 = 0.74, standard deviation error s = 14. The model 
indicated that the most significant descriptors in HIA prediction are hydrogen bond acidity 
and basicity as well as the McGowan volume – increasing the volume and decreasing the 
polarity of the molecule should enhance HIA. The ionisation state of acids or bases had no 
statistically significant impact on %HIA. The Abraham and Zhao approach was useful in 
identification of significant properties influencing the absorption processes and could be 
applied in further research aimed at the development of QSARs for quantitative prediction of 
HIA.

Another approach to human intestinal absorption predictions is based on the VolSurf 
methodology developed by Cruciani and co-workers (2000a,b). The VolSurf procedure allows 
to automatically convert the relevant information present in 3D molecular fields into few 
quantitative numerical molecular descriptors, which are more easily used and interpreted. The 
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VolSurf methodology is simple to apply as it is fast and fully automated. The descriptors are 
calculated using the GRID program (Molecular Discovery, 
http://www.moldiscovery.com/soft_grid.php/). In a study by Cruciani et al. (2000b), the 
VolSurf descriptors were used to model human absorption prediction. The authors defined a 
descriptor called “integy moment”, analogous to the dipole moment, which discriminates 
between polar and non-polar parts of a molecule. High integy moments as well as 
hydrophobicity were found to be positively correlated with HIA. Conversely, a detrimental 
effect on absorption was correlated with polarity and a high concentration of polar interaction 
sites on the molecular surface. 

The Jurs Research Group (Pennsylvania State University) has developed a wide range of 
diverse molecular descriptors which can be applied in predicting human intestinal absorption. 
For the purpose of such predictions, Wessel et al. (1998) identified the six most significant 
variables, namely: the cube root of gravitational index (connected with the size of molecule), 
the normalised 2D projection of the molecule on the YZ plane (SHDW-6, connected with the 
shape), the number of single bonds (NSB, connected with the flexibility), the charge on 
donatable hydrogen atoms (CHDH-1, connected with the hydrogen-bonding properties), the 
surface area multiplied by the charge of hydrogen bond acceptor atoms (SCAA-s, connected 
with the hydrogen-bonding properties) and the surface area of hydrogen bond acceptor atoms 
(SAAA-2, connected with the hydrogen-bonding properties). The authors used a set of 86 
drugs with measured values of %HIA and applied a Genetic Algorithm with a Neural 
Network (GA-NN) technique to develop the model. The calculated %HIA model achieved 
good statistics with Root Mean Square Errors (RMSE) of 9.4%HIA units for the training set, 
19.7%HIA units for the cross-validation (CV) set, and 16.0%HIA units for the external 
prediction set. All descriptors identified by Wessel et al. (amongst others) have been 
implemented in the ADAPT (Automated Data Analysis and Pattern Recognition Toolkit) 
software (available at http://research.chem.psu.edu/pcjgroup/adapt.html/). This is thus a 
useful research tool for the development of other QSAR models for human intestinal 
absorption.

6.2. Literature models for human oral bioavailability
Literature models for human oral bioavailability are summarised in Table 8.
A  Support Vector Machine (SVM) approach for modelling human oral bioavailability has 
been proposed by Ma et al. (2008). The model was trained on 690 molecules by using a 
Support Vector Machine (SVM) method combined with Genetic Algorithm (GA) for feature 
selection and Conjugate Gradient (CG) for parameter optimization (GA-CG-SVM). All 
calculations were carried out by the LIBSVM freely available software 
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/). A total of 951 molecular descriptors in 13 
different categories (e.g. constitutional, topological, geometrical, atom-centred fragments, 
connectivity indices, functional group counts, etc) were generated using the online program 
PCLIENT (http://www.vcclab.org/lab/pclient/). In the final GA–CG–SVM model, 25 
structural descriptors were included. Five-fold cross-validation as well as independent 
external validation set including 76 compounds were used to validate the predictions. The 
obtained prediction accuracy confirmed by 5-fold cross-validation for the training set was 
80% and for the independent test set was 86%, which is better than or comparable to the 
performances of other classification models in literature. The average cross-validated 
prediction accuracy for the positive (i.e. high bioavailability) compounds reached 99%, but 
the average accuracy for negative (i.e. low bioavailability) compounds was only 25%, 
indicating that that these could not be identified correctly. This result is consistent with other 
classification bioavailability models. For the independent validation set the cross-validated 
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accuracy of 97% for positive and 44% for negative compounds was reached. Although the 
modelling algorithm proposed by Ma et al. seems to be too complex to be transparent and 
easily reproducible, it is based on a rationale approach – bioavailability is determined by 
multiple factors and since GA–CG–SVM models cover a large range of molecular properties, 
they allow as many significant variables as possible to be captured. This study was performed 
for the largest and most diverse dataset to date. Thus, the proposed approach could be widely 
applicable to a broad range of compounds falling within various chemical classes.

The use of the Hologram Quantitative-Structure Property Relationship (HQSAR) approach to 
model human oral bioavailability was illustrated by Moda et al. (2007a). The authors 
compiled a large and diverse dataset of 302 compounds, falling within numerous chemical 
classes (enzyme inhibitors, receptor agonists and antagonists, antibiotics, analgesics, 
antivirals, anticancers, antibacterials, antifungals, antidepressants, antiepileptics, 
antihypertensives, anti-inflammatories, antiparasitics, anxiolytics, antipsychotics and 
antispasmodics). Groups of low (• 40%, 74 compounds), intermediate (41–80%, 127 
compounds) and high (> 80%, 101 compounds) bioavailability compounds were distinguished 
according to the bioavailability values. A total of 250 training compounds and 52 test 
compounds were selected. HQSAR modeling was carried out using SYBYL 7.2. The most 
significant HQSAR model, based on molecular “fragment distinctions” (atoms (A), bonds 
(B), connections (C), hydrogen atoms (H), chirality (Ch), and donor and acceptor atoms 
(DA)) yielded the good statistics (cross-validated correlation coefficient q2 = 0.70 and non 
cross-validated correlation coefficient r2 = 0.93). The use of an external test set containing 52 
molecules revealed a good predictive ability for compounds not included in the training set 
(r2 = 0.85). Although the authors acknowledged some shortcomings of their approach (the 
model would not work well for the molecules which do not follow Lipinski’s Rule of 5 or 
either are poorly soluble or not orally bioavailable), the predictive performance of the model 
was satisfactory both in terms of the coverage of chemical diversity and number of 
investigated compounds are concerned. Hence, it might be useful for human oral 
bioavailability estimation for structurally-diverse classes of chemicals.
A so-called Quantitative Structure-Bioavailability Relationship model, proposed by Andrews 
et al. (2000), led to some useful general conclusions about the effects of molecular 
substructures on bioavailability. The model was developed from a data set comprising 591 
compounds from Glaxo Wellcome's internal database. For model development, the stepwise 
MLR procedure was applied to simple one-dimensional descriptors (including 608 
substructure counts). The final MLR model, based on 85 descriptors, was internally validated 
by leave-one-out and leave-many-out cross validation (the regression coefficients were equal 
0.63 and 0.58, respectively). The results suggested that some substructures (e.g. hydrogen 
bond donors, tetrazole, 4-aminopyridine, benzoquinone, dihydropyran, cyclohexanone, 
interior amino acid residues, aromatic and aliphatic ketones) are indicators of reduced 
bioavailability, whereas other substructures (hydrogen bond acceptors, halogens, N-terminal 
amino acid residues, aromatic and aliphatic esters) are indicators of increased bioavailability. 
Yoshida and Topliss (2000) applied the Fuzzy Adaptive Least Squares FALS approach and 
the simplex technique (ORMUCS) to categorize a data set of 272 drugs. All (232) compounds 
in the training set were divided into four bioavailability classes (• 20%, 20-49%, 50-79% and 
• 80%). On the basis of physicochemical and structural factors, discriminant functions were 
developed to separate particular classes. Lipophilicity, expressed as the distribution
coefficient at pH 6.5, was found to be a significant factor influencing bioavailability. The 
observation that acids generally had better bioavailability characteristics than bases (with 
neutral compounds between), led to the formulation of a new parameter, •log D (log D6.5-log 
D7.4), which proved to be an important contributor in improving the classification results. The 
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addition of 15 structural descriptors relating primarily to well-known metabolic processes 
yielded a QSAR equation which had a correct overall classification rate of 71% (97% within 
one class) and a Spearman rank correlation coefficient (Rs) of 0.85. Nevertheless, the more 
accurate predictions were found for the compounds falling within higher bioavailability 
classes. The predictions for low bioavailability compounds were poor, probably due to their 
extensive enzymatic metabolism, which is difficult to model. The predictive power of the 
model was evaluated using a separate test set of 40 compounds, of which 60% (95% within 
one class) were correctly classified. The relationship formulated in this study identified 
significant factors influencing bioavailability and assigned them quantitative values 
expressing their contribution. This study may be potentially useful for further development of 
human oral bioavailability models as it identifies the set of significant descriptors. 

One of the earliest studies on human oral bioavailability was performed by Hirono et al. 
(1994) and also was based on Fuzzy Adaptive Least Squares (FALS) methodology. The
authors built a model on the basis of 188 drug molecules and classified all the compounds into 
three structure groups: A (having no aromatic ring), B (having aromatic hydrocarbon rings but 
no heteroaromatic rings) and C (having heteroaromatic rings). A separate model was built for 
each group on the basis of logP, MW and a range of discrete indicator variables relating to the 
presence of specific functional groups. The models were validated by leave-one-out cross 
validation. The results gave some insights about the effects of specific substructures. For 
example, for compounds in group A, •,•-saturated oxygen atoms contributed to the 
enhancement of bioavailability, whereas hydroxyl groups (liable to biotransformation in the 
gut wall and liver) reduced it. The study of Hirono et al. (1994) still might be potentially 
useful since it identifies structural features that could be used to develop human oral 
bioavailability models for a wider range of compounds.

6.3. Literature models for blood/brain barrier permeability
Literature models for blood/brain barrier permeability are summarised in Table 9.
A recent study by Obrezanova et al. (2008) illustrates a machine learning approach for 
building non-linear QSARs for logBB prediction. They applied a methodology called 
"Gaussian Processes", which is based on a Bayesian probabilistic approach and implemented 
in the BioFocus DPI's AutoModelerTM software (http://www.biofocus.com/). Their model, 
based on 292 diverse compounds and 167 2D descriptors had a good predictive performance 
(r2 = 0.74 for the validation set and 0.73 for the test set, and the overall Root Mean Squared 
Error RMSE = 0.34). The approach is presented by the authors as an automatic model 
building process for non-specialists. A potential disadvantage however is that the method 
generates models which are difficult to interpret and it is difficult to extract the contribution 
of each descriptor to the observed activity or property.
The Linear Free Energy Relationship approach (also used to model human intestinal 
absorption) has also been applied to blood/brain permeability prediction by Platts et al. 
(2001). By applying Multivariate Linear Regression (MLR) to a dataset of 148 diverse 
compounds (mainly drugs), they obtained a transparent QSAR incorporating 5 Abraham 
descriptors and an indicator variable (equal 1 for carboxylic acids and 0 for other 
compounds). The model was reported to show good statistics (R2 = 0.74, standard deviation 
error, s = 0.34, and cross-validated correlation coefficient, RCV

2 = 0.71). The study of Platts et 
al. (2001) is useful since the model algorithm is transparent and the coefficients in the model 
equation indicate the trends among descriptors significant for BBB permeation. The 
increasing size of molecules strongly enhances brain uptake, while increasing 
polarity/polarisability, hydrogen-bond acidity, basicity and the presence of carboxylic acid 
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groups have a detrimental influence. Moreover, the computation of logBB using Platts’ 
method of determining descriptors (fragmentation scheme) is very fast and has been 
implemented in the commercially available ADME Boxes software (previously Pharma 
Algorithms; now ACD Labs, http://www.acdlabs.com/). 
The use of the VolSurf technique, which is based on molecular interaction fields, has been 
used for blood/brain partitioning modelling, as demonstrated by Crivori et al. (2000). They 
built a binary decision model suitable for organic compounds on the basis of 230 diverse 
compounds and more than 70 VolSurf descriptors. The model was reported to have a 
prediction accuracy (assessed against an external test set) of 90% for BBB permeable 
molecules, and of 60% for non-permeable ones. Although a shortcoming of this approach is 
that it does not provide a transparent physical interpretation, due to the large number of 
descriptors, the computational procedure is fully automated and fast. Moreover, VolSurf 
approach-based models reach high levels of predictive accuracy. Hence, the methodology 
proposed by Cruciani et al. (2000a) is a valuable tool for the virtual screening of large 
datasets of diverse molecules.

6.4. Literature models for plasma protein binding
Literature models for plasma protein binding are summarised in Table 10.

Among the models proposed for human serum albumin (HSA) binding, the one that was 
based on the largest dataset of diverse molecules was proposed by Hajduk et al. (2003). By 
applying the group contribution methodology to an experimental dataset of dissociation 
constants for 889 compounds, they built a model for predicting the logarithm of the 
dissociation constant on the bias of 74 chemical groups (logK=•wixi, where wi is the 
weighting coefficient of structural descriptor representing a particular chemical group and xi is 
the number of times it appears in the molecule). The model showed good agreement with the 
experimental data (R2 = 0.94, average error = 0.11). The good predictivity of model was 
confirmed by leave-group-out cross validation and randomization tests (Q2 = 0.90). The 
analysis of structural descriptors and their weighting coefficients allowed the authors to find 
some general trends regarding the affinity of diverse molecules to HSA binding. Positively 
charged groups (e.g. cyclic and acyclic amines) having positive wi values decreased HSA 
binding. Conversely, negatively charged groups (e.g. carboxylic and sulfonic acids), five- and 
six- membered rings as well as chlorine and fluorine substituents improved binding. The 
authors highlighted the general tendency of hydrophobic chemical substructures to enhance 
the process of HSA binding. The model reported by Hajduk et al. (2003) is of practical value 
in that it can be used for fast recognition of structural features making a molecule prone to 
HSA binding in large sets of diverse compounds. The disadvantage of the proposed model is 
that it cannot predict the dissociation constants for compounds possessing groups not 
represented among 74 used descriptors. 

Several models have been proposed for predicting the whole plasma protein binding, usually 
expressed as percentage of PPB. A global model of human serum protein binding (% bound) 
was developed by Votano et al. (2006) on the basis of 1008 experimental values (808 training 
molecules and 200 test molecules) of human serum protein binding selected from publicly 
available sources. Using an initial set of 181 descriptors, four modelling techniques were
applied to produce models: Multiple Linear Regression (MLR), Artificial Neural Networks 
(ANN), k-Nearest Neighbours (kNN), and Support Vector Machines (SVM). With the 
exception of the MLR model, the ANN, kNN, and SVM QSARs were ensemble models. The 
final models included from 29 (kNN), 30 (MLR) and 33 (ANN) to 61 (SVM) descriptors. 
Training set correlation coefficients and mean absolute errors ranged from R2 = 0.90 and 
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MAE = 7.6 for ANN to R2 = 0.61 and MAE = 16.2 for MLR. Prediction results from the 
validation set yielded cross-validated (leave-one-out/10-fold cross validation) correlation 
coefficients and mean absolute errors which ranged from R2 = 0.70 and MAE = 14.1 for ANN 
to R2 = 0.59 and MAE = 18.3 for the SVM model. The authors performed a ranking of the 
descriptors and selected the 20 most significant ones. They concluded that, as far as human 
PPB modelling is concerned, the best results may be obtained by combining topological 
descriptors with logP. Moreover, on the basis of ANN and MLR models, they investigated the 
impact of structural features on protein binding processes. This analysis revealed that 
hydrophilicity, aromaticity, the presence of a ring structure, and the presence and bonding 
state of amines play important stereochemical roles in serum plasma protein binding of the 
compounds. Although ANN modelling requires some expertise and provides complex and 
difficult-to-interpret models, it does allow non-linear relationships between variables to be 
modelled, which may be particularly useful for heterogeneous datasets This study is valuable 
for further research in that it identifies interpretable descriptors and structural features 
relevant to logBB prediction, and the dataset on human serum protein binding compiled by 
the authors is available for further investigations.

6.5. Literature models for metabolism
A number of QSARs have been proposed in the literature for the modelling of metabolism 
(Table 4.11). These have generally been developed for phase I metabolism, and can be 
grouped into a number of categories according to the nature of their prediction: CYP substrate 
specificity, and CYP inhibition, and CYP regioselectivity.

In relation to QSAR models for CYP450 substrate recognition, Terfloth et al. (2007) 
investigated the application of several model-building techniques, namely: k-Nearest 
Neighbours (k-NN), C4.5/J48 decision tree, Multilayer Perceptron Neural Networks (MLP-
NN), Radial Basis Function Neural Networks (RBF-NN), Logistic Regression (LR) and 
Support Vector Machine (SVM), to predict the isoform specificity for CYP450 3A4, 2D6 and 
2C9 substrates. The authors used a dataset originally compiled by Manga et al. (2005), 
containing drugs which are predominately metabolised by CYP3A4, CYP2D6 or CYP2C9. 
The dataset to build and internally validate the model consisted of 146 (96 + 50) compounds 
(80 CYP3A4 substrates, 45 CYP2D6 substrates and 21 CYP2C9 substrates). For external 
validation purposes the authors selected 233 compounds (144 CYP3A4 substrates, 69 
CYP2D6 substrates and 20 CYP2C9 substrates) from the Metabolite Database 
(http://www.symyx.com/). The applied descriptors included simple molecular properties and 
functional group accounts, topological descriptors, descriptors related to the shape of 
molecules or the distribution of interatomic distances considering the 3D structures of the 
molecules. The developed models were internally checked by the means of cross-validation. 
The (9-descriptor) model with the best results was established by combining automatic 
variable selection with the SVM technique. In leave-one-out cross-validation, 89% of all 
compounds in the training set were correctly classified. The achieved predictivity for an 
external data set of 233 compounds was equal 83%, a substantial improvement compared with 
the value achieved by Manga et al. (2005). Promising results were also obtained for the 
decision tree based model, which used three descriptors only and gave the values of 88% in 
LOO-CV and about 80% for the external data set. As this model consists of a simple decision 
tree having six branches and four leaves for the training set, it can be easily interpreted and 
used. It has been implemented in an on-line service to predict the isoform specificity 
(http://www.molecular-networks.com/online_demos/cyp450/).
An example of a model for CYP inhibition was proposed by Burton et al. (2006), who 
constructed classification models for human CYP1A2 and CYP2D6 inhibition using binary 
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decision trees. The modelling was based on 498 and 306 inhibition measures (IC50 and Ki 
values) for CYP1A2 and CYP2D6, respectively, collected from the Aureus Pharma 
(http://www.aureus-pharma.com/). To assess the performance of models, two external test 
sets of 34 and 58 molecules related to the CYP2D6 and CYP1A2 were used. The most 
predictive models were developed on the basis of Ki values. The decision tree for CYP2D6 
had a goodness-of-fit to the training set of 90% (sensitivity 88%, specificity 92% and positive 
predictivity 90%). The external validation also was successful, as only two false negatives 
and two false positives were identified. The classification parameters were close to those 
obtained with the training set, namely the accuracy was 89%, sensitivity 91%, specificity 92% 
and precision 90%. For CYP1A2, the Ki-based model was characterised by the following 
goodness-of-fit statistics: accuracy = 89%, sensitivity = 95%, specificity = 83% and precision 
= 85%. The test set was significantly dissimilar to the training set, but the obtained statistics 
still were reasonable, i.e. 81% for accuracy, 76% for sensitivity, 86% for specificity and 85% 
for precision. The study of Burton et al. reveals several findings useful for further research. 
The authors demonstrated significant differences with models built with Ki or IC50 and 
concluded that the Ki values, defining the affinity of the inhibitor for the enzyme 
independently from the type/concentration of substrate and incubation conditions, are 
preferable to IC50 values or percentage of inhibition. The authors also identified a range of 
useful descriptors. The use of van der Waals surface area (VSA) descriptors was particularly 
efficient and allowed to develop models reaching 95% correct classification. 3D descriptors 
also provided promising results. An advantage of this approach is that the resulting decision 
tree models are easy and rapid to implement, as well as transparent and readily transferable.
In general models for regio-selectively, i.e. for predicting sites of metabolism on the substrate, 
have been based on mechanistic information relating to the substrate-enzyme interaction. An 
alternative approach, entirely QSAR-based and not simulating specific mechanisms and/or 
using explicit models of active sites, was proposed by Sheridan et al. (2007) for predicting 
CYP450 (3A4, 2D6, 2C9) sites of the metabolism The model was based on a dataset 
consisting of 532 diverse molecules (316 for CYP3A4, 124 for CYP2D6, and 92 for 
CYP2C9), collected mainly from the literature, but including also some proprietary in-house 
data. An external test set of 25 compounds was also used. In order to identify the most 
commonly observed potential sites of oxidation (sp3 carbons, sp2 carbons, sulphurs, etc.), the 
authors applied Random Forest (RF) technique to the dataset, using descriptors that describe 
the environment around each non-hydrogen atom in each molecule. In order to internally 
validate the model, both cross validation and external validation procedures were used. The 
predictions were compared with those obtained with earlier mechanistic model of Singh et al. 
(2003) and results using MetaSite software (Molecular Discovery) of Cruciani et al. (2005). 
As far as CYP3A4 was concerned, for the same set of 316 compounds, the oxidation site was 
in the top two atoms in 77%, 51% and 62% of the molecules for the QSAR model developed 
by Sheridan et al., the model of Singh et al. and MetaSite, respectively. This indicated that the 
final model proposed by Sheridan et al. for CYP3A4 was better than the other two. For 
CYP2D6 and CYP2C9 the predictions of Sheridan’s model were only slightly better. This 
study is novel in that it shows that an empirical model for predicting regio-selectivity, 
developed on the basis of descriptors intrinsic to the candidate substrates and including no 
information about the active sites of the CYPs, can (in some cases) give results at least as 
good or better than the mechanism-based methods which simulate the chemical steps involved 
in the oxidation reaction. Furthermore, the authors identified several descriptors positively 
and negatively related to the oxidation sites of molecules, which is useful for further research 
and model development. Nevertheless, mechanistic approaches such as MetaSite still have 
significant advantages. MetaSite makes predictions based on the lability of hydrogens and 
orientation effects derived from the 3D structure of a CYP active site, independently of the 
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availability of pre-existing data. MetaSite can handle 3A4, 2D6, 2C9, 1A2, 2C9, and 2C19 
and can be extended to any CYP for which a homology model can be generated. It is 
advantageous for enzymes such as CYP1A2 and CYP2C19, where there are not currently 
enough data in the literature to generate a QSAR model. Moreover, the MetaSite 
methodology is easy to use, fast and fully automated.

6.6. Literature models for excretion
Literature models for excretion are summarised in Table 12.

A series of so-called Quantitative Structure-Pharmacokinetic Relationship (QSPkR) models 
for the prediction of total (biliary and renal) clearance, CLtot, were reported by Yap et al. 
(2006). The authors applied three statistical learning methods to a dataset of 503 various 
drugs, namely General Regression Neural Networks (GRNN), Support Vector Regression 
(SVR) and k-Nearest Neighbour (KNN), to explore their usefulness for building a global 
QSPkR model. Six different sets of molecular descriptors were evaluated for their usefulness 
in prediction. 
The developed GRNN, SVR and KNN models were compared with a PLS linear model. The 
best performance was observed for SVR and GRNN models, which were characterised by 
74.3% and 69.5% of compounds with the predicted CLtot within two-fold error of the actual 
CLtot, respectively. The best prediction accuracies were obtained for models which were 
based on a combination of different types of structural descriptors (constitutional, 
geometrical, topological and electrotopological ones). The authors also performed consensus 
modelling by combining the SVR and GRNN models into a single cQSPkR model, which 
slightly improved the modelling results. The study of Yap et al. indicates that statistical 
learning methods such as GRNN and SVR are able to capture a variety of multiple and 
interacting mechanisms involved in determining CLtot better than linear models. Another 
useful conclusion is that a collection of various types of descriptors is more relevant for 
modeling the total clearance than individual specialised sets of descriptors, which are likely to 
neglect some important features. The most significant molecular properties found to influence 
the clearance of a compound were charge, molecular solvation, molecular size and flexibility. 
This study provides a useful basis for further research. However, the models would only be of 
practical value to the non-specialised user if encoded into a software tool.
For the prediction of human renal clearance, Doddareddy et al. (2006) developed models on 
the basis of 150 diverse CNS and non-CNS drugs, divided into training and test sets of 130 
and 20 compounds, respectively. The authors utilized the VolSurf approach to explore the 
effect of VolSurf descriptors on renal clearance. For comparative purpose they also examined 
the usefulness of Molconn-Z topological descriptors. The authors performed Partial Least 
Squares (PLS) to develop renal clearance models on the basis of both VolSurf and Molconn-Z 
descriptors. The use of VolSurf descriptors resulted in a four-component model with the 
following statistics: cross-validated correlation coefficient r2 = 0.77, standard deviation of 
error of predictions SDEP = 13.43 and standard deviation of error of calculations SDEC = 
11.02. The use of Molconn-Z descriptors resulted in a PLS model with worse statistics (r2 = 
0.53, SDEP = 19.47, SDEC = 15.05). The authors also used two classification methods to 
divide the compounds into of low- and high-clearance groups. This led to the conclusion that 
both PLS models (VolSurf and Molconn-Z) were able to correctly predict the training set 
compounds in their respective groups of low (< 20%) and high (> 20%) renal clearance (80%-
88% of the training compounds were predicted correctly, depending on the classification 
method). In the case of the test set compounds, one classification method (SIMCA) showed 
that the predictivity was better when Molconn-Z descriptors were used (85% of compounds 
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were predicted correctly) than when VolSurf descriptors were used (65% correct predictions). 
The other classification method (recursive partitioning) showed that about 70% of test 
compounds were correctly predicted by both models. The study of Doddareddy et al. is useful 
as it identifies an efficient approach for the quantitative and qualitative prediction of renal 
clearance. It also indicates that the Volsurf descriptors, which are based on 3D molecular 
fields, are more useful predictors of renal clearance than 2D topological descriptors. However, 
the most significant VolSurf descriptors were associated mainly with
hydrophobicity/liphophilicity and the most important descriptor seemed to be the 
octanol/water partition coefficient logP, which is inversely proportional to the percentage 
renal clearance.

7. Conclusions

The progress made in the development of models for specific ADME properties, their 
potential usefulness and their shortcomings has been discussed in the subchapters above and 
summarised below. Overall, it can be concluded that a large number of QSARs and software 
tools have been developed, especially for the prediction of certain ADME properties (e.g. 
blood/brain barrier permeability, human intestinal absorption). However, their applicability in 
the dietary risk assessment of chemicals other than drugs is either poor or not established. 
This is a consequence of the fact that ADME models have been developed mainly for 
pharmaceutical purposes, and the available data sets are skewed toward drug molecules. If 
these models are applied to other classes of chemicals, the predictions may be unreliable, and 
in many cases the user will not be able to judge on this, since the applicability domains have 
not been explicitly defined and in many cases the training sets are confidential. Furthermore, 
in the case of software models, details of the predictive algorithm are not usually transparent. 
On the other hand, published studies have revealed a range of promising methodologies that 
can be used for further model development, and a number of easily-interpreted structural and 
physicochemical descriptors have been identified as useful predictors of ADME properties.

To promote the wider use of in silico models for ADME properties in the risk assessment of 
chemicals other than drugs, various significant research initiatives would need to be 
undertaken: a) it will be necessary to generate high-quality experimental datasets for classes 
of chemicals other than drugs (e.g. industrial chemicals, pollutants, food additives, 
pesticides); and b) the applicability of each model would have to be determined, on a case-by-
case basis, by comparing its predictions with experimental data for chemical inventories of 
interest. 

7.1. Conclusions regarding human intestinal absorption models
The majority of published models for human intestinal absorption have been developed using 
datasets including drugs and drug-like molecules, what creates a significant shortcoming as 
far as their applicability to different classes of chemicals is concerned. Furthermore, the 
published models are at the research stage, and not yet implemented into software suitable for 
the routine assessment of chemicals.
Nevertheless, some general findings have been identified that may be useful in further studies. 
The most significant descriptors for HIA are related to hydrogen bonding, molecular size, 
lipophilicity and surface polarity. Moreover, some generic functional groups which have 
detrimental impact on HIA have been identified, e.g. quaternary nitrogens and 
biphosphonates. The datasets used in modelling procedures should include, if possible, 
chemicals covering the whole range of %HIA values in order to avoid biases towards 
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poorly/highly absorbed compounds. Some compounds (usually those actively transported, 
insoluble or acting as P-glycoprotein substrates) appear as outliers or rule contradictors in 
HIA models – in such cases a set of preliminary models for active transport/solubility/P-gp 
binding could be developed before HIA prediction in order to identify the outliers and avoid 
final prediction errors. In addition, future research efforts should investigate ways of 
incorporating metabolic effects into QSAR models. 

7.2. Conclusions regarding bioavailability models
Bioavailability is a very challenging property to model, due to the diversity of the underlying 
determinants, some of which (e.g. first-pass metabolism) are very difficult to model. One of 
the handicaps in bioavailability modelling is the paucity of data publicly available to the 
scientific community and the fact that the majority of the data available concerns mainly
drugs and drug-like molecules. 
Despite these difficulties, several attempts have been made to model human oral 
bioavailability, generally in categorical terms (e.g. high vs low bioavailability). These studies, 
summarised in Table 8, have resulted in a reasonable or good ability to identify high 
bioavailability compounds, but a relatively poor ability to identify low bioavailability 
compounds. Available studies also show that modelling strategies based on whole-molecule 
descriptors of diverse structures is not sufficient, as it does not allow to effectively 
characterise the first-pass metabolism. The more successful models employ well-defined 
substructures, which are probably related to different metabolism pathways.

7.3. Conclusions regarding Blood Brain Barrier models
There is a wealth of BBB permeability information published in the literature and available 
databases, which could potentially be applied by researchers to develop in silico models of 
brain penetration. However, the major shortcoming of existing data sets is that they tend to be 
relatively small (less than 100 compounds), they come from a variety of sources and may not 
be sufficiently consistent for modelling purposes. Other datasets were compiled specifically 
for drugs. Very few models have been proposed for determination of logBB for pollutants. 
Hence, one of the most urgent needs is the generation of larger and more diverse datasets with 
accurate measurements of logBB values. Nevertheless, the majority of recently developed 
QSAR models based on logBB data represent good predictivity as determined by both 
internal validation against the training set and external validation against test sets. There are a 
number of in silico models yielding logBB predictions of around 0.35-0.45 log units that 
could be used for screening purposes. By examining the wide variety of potentially useful 
molecular descriptors that have been reported, some important generalisations for further 
modelling studies can be made. Generally it is possible to distinguish two categories of 
descriptors. The first includes descriptors of size (i.e. molar refraction, connectivity and 
topological indices, molecular mass, surface area) while the second includes descriptors of 
polarity (i.e. polar surface area, partial charges, functions of hydrogen bond acid or hydrogen 
bond base groups). The descriptors from the first class are important predictors for the 
partitioning of non-polar compounds in the brain, whereas the descriptors from the second 
category express the features of polar molecules which are determine their tendency to 
partition in the blood. 

7.4. Conclusions regarding models for plasma protein binding
The relatively small number of studies performed for plasma protein binding is a result of 
complexity of factors influencing the binding process on the one hand and the paucity of PPB 
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human data on the other. Large differences between data obtained from various species put 
into question the utility of models developed on non-human plasma proteins to predict human 
plasma protein binding. The majority of available human PPB models are based on data for 
drug molecules and tend to have a local character with applicability domains limited to small 
sets of structurally similar molecules. Although such models are relatively simple (they are 
based on relatively small number of descriptors, with lipophilicity being the most significant 
one) and probably easily reproducible and transferable, they cannot be applied to sets of 
structurally diverse compounds. However, a few investigations (discussed above) were based 
on broader datasets. Based on these studies, it can be concluded that lipophilicity alone is 
important but not sufficient to model PPB processes, especially in the case of large and 
diverse datasets concerned. It is necessary to use additional descriptors of various types (e.g. 
structural, topological, quantum mechanical) to obtain more complex and reliable human PPB 
models, and the use of non-linear modelling techniques may also be necessary. However, this 
is usually connected with a decreased transparency and reproducibility of the models.

7.5. Conclusions regarding models for metabolism
The utility of conventional QSARs predicting the metabolic fate of chemicals is highly 
limited. However, computer-based expert systems (COMPACT, META, MetabolExpert, 
METEOR, TIMES; see Table 5) have a much broader applicability. 
A few QSAR models in the literature have provided some promising results for further 
research studies (discussed above). Most of these were designed to predict the phase I 
metabolism, with CYP450 isoforms playing a predominant role in the biotransformation of 
human drugs and xenobiotics. The modelling of phase II metabolism has not received as 
much attention; in most cases, these models have been developed for GST-catalyzed 
biotransformation.
Although progress is being made in the development of QSARs for metabolism, currently 
available models are typically derived from small data sets (only few of them are based on 
more than 100 compounds) and thus show poor predictivity for heterogenous sets of 
compounds. Most of the available QSARs have been developed for the purposes of drugs 
discovery and development. Furthermore, the model-building methodology, underlying 
training sets and model algorithms are often not transparent, which is an impediment to 
interpretation and reproducibility. A major bottleneck is the paucity of high quality and 
relevant experimental (in vitro or in vivo) data for use in model building and validation. Thus, 
it is difficult to make clear recommendations about which currently available literature 
models could be used in the dietary risk assessment of chemicals other than drugs. To make 
progress in this respect, more transparent descriptions of the applied approaches and training 
datasets are needed.
As far as modelling of CYP inhibition is concerned, literature QSARs are at an early stage of 
development as they usually give poor predictions when tested on the external sets of 
compounds. Much better results can be obtained from the models predicting the site of the 
metabolism (predictivity of 80% or more). The most challenging task seems to be modelling 
the rates of metabolism. 

Significant improvement could probably be obtained by combining multiple in silico models 
for metabolism prediction (consensus modelling) along with physiologically based 
pharmacokinetic (PBPK) modelling utilising the data from different sources (in silico, in vivo
and in vitro). However, this represents a long-term research effort.
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7.6. Conclusions regarding excretion (clearance) models
The complexity of excretion processes and paucity of experimental data have hindered the 
development of models for excretion. Some efforts to model human total, urinary and (to a 
lesser extent) biliary clearance have been made only recently. These studies have identified 
some important trends governing the clearance processes, which form a useful basis for 
further research and model development. Most of the models are based on non-linear 
relationships and utilize large numbers of molecular descriptors in order to capture the 
multiple features affecting the clearance process. These models tend to be less transparently 
documented and thus of low reproducibility. However, if encoded into software tools, they 
could be practically useful. From the available literature, it seems that the software-based 
VolSurf approach, shown to be successful for modelling human intestinal absorption, oral 
bioavailability and blood/brain barrier penetration modelling, also works well for renal 
clearance prediction. Given the emphasis of published studies on drugs, the applicability of 
these approaches to other types of chemicals would require further investigation.
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TABLES

Table 1. Recent (2005-2010) reviews/expert opinions concerning in silico studies in 
ADME and ADME-related endpoints

Year Reference
2010 Madden (2010). In silico approaches for predicting ADME properties
2010 Veselovsky et al. (2010). Computer-based substrate specificity prediction for cytochrome P450
2010 Wang & Skolnik (2010). Mitigating permeability-mediated risks in drug discovery
2010 Kortagere & Ekins (2010). Troubleshooting computational methods in drug discovery
2010 Cross & Cruciani (2010). Molecular fields in drug discovery: getting old or reaching maturity?
2010 Cruciani et al. (2010). ChemInform abstract: In silico pKa prediction and ADME profiling
2010 Sprous et al. (2010). QSAR in the pharmaceutical research setting: QSAR models for broad, large 

problems
2010 Kharkar (2010). Two-Dimensional (2D) in silico models for Absorption, Distribution, Metabolism, 

Excretion and Toxicity (ADME/T) in drug discovery
2010 Ekins (2010). Precompetitive preclinical ADME/Tox data: set it free on the web to facilitate 

computational model building and assist drug development
2009 Franklin (2009). In silico studies in ADME/Tox: caveat emptor
2009 Livingstone & van de Waterbeemd (2009). In silico prediction of human bioavailability
2009 Vastag & Keserü (2009). Current in vitro and in silico models of BBB penetration: a practical view
2008 Chohan et al. (2008). Advancements in predictive in silico models for ADME
2008 Hou & Wang (2008). Structure – ADME relationship: still a long way to go?
2008 Jacobs et al. (2008). The use of metabolising systems for in vitro testing of endocrine disruptors
2008 Li et al. (2008). Considerations and recent advances in QSAR models for cytochrome P450-mediated 

drug metabolism prediction
2007 Clark (2007). In silico ADMET tools: a dawn of a new generation?
2007 Dearden & Worth (2007). In silico prediction of physicochemical properties
2007 Dearden (2007). In silico prediction of ADMET properties: how far have we come?
2007 Khan & Sylte (2007). Predictive QSAR modeling for the successful predictions of the ADMET 

properties of candidate drug molecules
2007 Mohan et al. (2007). Computer-assisted methods in chemical toxicity prediction
2007 Al-Fahemi et al. (2007). Investigating the utility of momentum-space descriptors for predicting BBB 

penetration
2007 Ekins et al. (2007a). In silico pharmacology for drug discovery: methods for virtual ligand screening 

and profiling
2007 Ekins et al. (2007b). In silico pharmacology for drug discovery: applications to targets and beyond
2007 Ekins et al. (2007c). Novel applications of kernel-PLS to modeling a comprehensive array of 

properties for drug discovery
2007 Trainor (2007). The importance of plasma protein binding in drug discovery
2006 Hou et al. (2006). Recent advances in computational prediction of drug bbsorption and permeability 

in drug discovery
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Year Reference
2006 Chohan et al. (2006). Quantitative Structure Activity Relationships in drug metabolism
2006 Crivori & Pogessi (2006). Computational approaches for predicting CYP-related metabolism 

properties in the screening of new drugs
2006 Fox & Kriegl (2006). Machine learning techniques for in silico modeling of drug metabolism
2006 Norinder & Bergström (2006). Prediction of ADMET properties
2006 Gola et al. (2006). ADMET property prediction: The state of the art and current challenges 
2006 Schuster et al. (2006). Predicting drug metabolism induction in silico
2006 Tetko et al. (2006). Can we estimate the accuracy of ADME-Tox predictions?
2006 Wang & Ulander (2006). High-throughput pKa screening and prediction amenable for ADME 

profiling
2006 Segall et al. (2006). Focus on success: using a probabilistic approach to achieve an optimal balance 

of compound properties in drug discovery
2006 Hyland et al. (2006). Utility of human/human-derived reagents in drug discovery and development: 

An industrial perspective
2006 Luco & Marchevsky (2006). QSAR studies on blood-brain barrier permeation
2006 Allen & Geldenhuys (2006). Molecular modeling of blood–brain barrier nutrient transporters: In 

silico basis for evaluation of potential drug delivery to the central nervous system
2006 Cianchetta et al. (2006). Molecular Interaction Fields in ADME and safety
2005 Colmenarejo (2005). In silico ADME prediction: Data sets and models
2005 De Graaf et al. (2005). Cytochrome P450 in silico: an integrative modeling approach
2005 Delisle et al. (2005). Computational ADME/Tox modeling: aiding understanding and enhancing 

decision making in drug design
2005 Goodwin & Clark (2005). In silico predictions of BBB penetration: considerations to “keep in mind”
2005 Ekins et al. (2005). Computational prediction of human drug metabolism
2005 Ekins et al. (2005). Techniques: Application of systems biology to absorption, distribution, 

metabolism, excretion and toxicity
2005 Kaznessis (2005). A review of methods for computational prediction of BB partitioning
2005 Otagiri (2005). A molecular functional study on the interactions of drugs with plasma proteins
2005 Testa et al. (2005b). Musings on ADME predictions and structure-activity relations
2005 Votano ( 2005). Recent uses of topological indices in the development of in silico ADMET models
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Table 2. Databases for ADME

Database
(developer and availability)

Database size/
chemical classes

Provided
properties

Details

ADME INDEXTM DATABASE
Bio-Rad Laboratories 
http://www.bio-rad.com/
(commercial; hosted by Bio-Rad Lab KnowItAll)

FDA-approved drugs,
non-approved compounds

ADME Experimental in vitro ADME data generated 
by Lighthouse Data Solutions Labs (LDS) 

ADME DB
Fujitsu
http://www.fqs.pl/
(commercial, available online)

Drugs Drug metabolizing 
enzymes,
kinetic metabolism,
transporters

Protein information about enzymes and 
transporters, metabolic reactions, types of 
drug-drug interactions, structures of drugs 
and metabolites, kinetic information

ADME-associated proteins (ADME-AP) DB 
Bio Info & Drug Design (Sun et al., 2002) 
http://xin.cz3.nus.edu.sg/group/admeap/admeap.asp/
(freely available online)

321 proteins, 
964 substrates

ADME Drug ADME-associated proteins, functions, 
similarities, substrates/ ligands, and tissue 
distributions

AurSCOPE® ADME/DDI
Aureus Pharma
http://www.aureus-pharma.com/
(commercial)

7000 compounds ADME,
Drug-drug interactions

Biological and chemical information on 
metabolic properties of drugs

BioPath Database
Molecular Networks
http://www.molecular-networks.com/
(trial version freely available online, commercial full version)

Endogenous compounds,
1175 chemicals in free 
version,
2074 chemicals in 
commercial version

1545 biochemical 
transformations (in free 
version),
2881 biochemical 
transformations (in 
commercial version)

Biochemical pathways (metabolic 
transformations and cellular regulations) for 
prokaryotes, plants, yeasts and animals; 
subcellular localisation of pathways 
including: cytosol, chloroplasts, 
mitochondria, endoplasmatic reticulum, 
peroxysomes, endothelium of blood vessels, 
vascular muscle cell, animal extracellular 
matrix, nucleus, animal cell membrane, plant 
cell wall
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Database
(developer and availability)

Database size/
chemical classes

Provided
properties

Details

BioPrint®
CEREP
http://www.cerep.fr/
(commercial)

2500 compounds Pharmacology and 
ADME database

Chemical descriptors (structures, 2D and 
3D); in vitro profiles; in vivo effects; 
enzyme/ solubility/ absorption assays 

KEGG Database
Kanehisa Laboratories, Kyoto University & University of Tokyo
http://www.genome.jp/kegg/
(free for academic use; for other purposes available commercially 
under license agreement with Pathway Solutions Inc.)
http://www.pathway.jp/licensing/commercial.html) 

16 databases,
344 metabolic pathway 
maps, 
9150 drugs, 
1231 organisms, 
16083 metabolites,
8064 biochemical reactions 

Metabolism KEGG metabolism information includes 
(among others) the following aspects: 
carbohydrate/ energy/ lipid/ nucleotide/ 
amino acid/ metabolism; biosynthesis of 
secondary metabolites; xenobiotic 
biodegradation and metabolism

Metabolism Database
Accelrys
http://accelrys.com/
(commercial)

69 241 records 
(drugs, agrochemicals, 
food additives, industrial 
& environmental chemicals)

Metabolism Metabolism data for vertebrates, 
invertebrates and plants; data on pathways 
and related compounds

Metabolism & Transport Drug Interaction Database (DIDB)
University of Washington
http://www.druginteractioninfo.org/
(commercial)

Drugs Pharmacokinetic data,
Enzyme/transporter
interactions

Drug interactions in humans;
pharmacokinetic profiles of drugs

MetaboliteTM

Symyx
http://www.symyx.com/
(commercial)

Xenobiotics and drugs Metabolism Metabolic paths and schemes; experimental 
data 

PharmGKB Database
Stanford University
http://www.pharmgkb.org/
(freely available for research purposes)

Drugs, genes, pathways, 
diseases, information about 
people who have participated 
in pharmcogenomics 
research studies

Pharmacokinetic data Clinical and basic pharmacokinetic and 
pharmacogenomic research in the 
cardiovascular, pulmonary, cancer, 
pathways, metabolic and transporter domains
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Database
(developer and availability)

Database size/
chemical classes

Provided
properties

Details

PharmaPendiumTM Database
Elsevier
https://www.pharmapendium.com/
(commercial)

Data from the FDA freedom 
of information documents 
and EMEA EPAR
approval documents 
(structure/substructure 
searchable)

Pharmacokinetic data Data on efficacy, indications and dosage, 
safety, pharmacokinetics, pharmacology and 
mode of action, preclinical and clinical 
toxicity (extracted from documents), adverse 
effects (extracted from documents), general 
product information

PK/DB Database
Moda et al., 2008
http://www.pkdb.ifsc.usp.br/
(freely available online)

1203 compounds Pharmacokinetic data Human intestinal absorption, human oral 
bioavailability, plasma protein binding, 
blood/brain barrier penetration

Prous Ensemble ® Database
Prous Science
http://www.prous.com/
(commercial)

127 000 bioactive 
compounds,
275 000 references

Pharmacokinetic and 
metabolism data

Drug monographs containing information on 
the synthesis, pharmacological actions, 
pharmacokinetics and metabolism, toxicity, 
clinical studies, manufacturers and 
references

Symcyp
http://www.simcyp.com/
(commercial)

47 drugs – experimental data 
from in vitro enzyme and 
cellular systems, 
physicochemical properties 
and dosage forms

ADME,
pharmacokinetic 
profiles, 
drug-drug interactions

Population-based PBPK simulator for 
modelling ADME and drug-drug interactions 
in virtual patient populations. 

WOMBAT-PK 2009
Sunset Molecular
http://www.sunsetmolecular.com/
(commercial)

1230 drugs Pharmacokinetic data Percentage oral bioavailability, percentage 
plasma protein binding, qualitative 
blood/brain barrier permeability, phase 1 
metabolizing enzymes
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Table 3. Literature datasets for ADME

Dataset
(reference)

Dataset size/
chemical classes

ADME and related 
properties provided

Information
available

Hou et al. (2007b) 648 compounds Human intestinal 
absorption 

HIA

Hou et al. (2007a) 768 compounds
Moda et al. (2007a) 302 drugs
Sietsema et al. (1989) Dataset & 550 

references

Oral bioavailability 
Oral bioavailability

Konovalov et al. (2007) 328 compounds LogBB 
Zhao et al. (2007) 1593 compounds Binary classification 

(BBB+/BBB-)
Abraham et al. (2006) 328 drugs and 

organic compounds 
Blood/plasma/serum to 
rat brain distribution 
coefficients 

Li et al. (2005) 415 compounds

Blood/brain barrier 
penetration

Binary classification 
(BBB+/BBB-)

Hollósy et al. (2006) 179 drugs Percentage PPB, urinary 
excretion and other 
ADME data

Votano et al. (2006) 1008 compounds Percentage human 
plasma protein binding

Turner et al. (2004b) 62 drugs Human plasma protein 
binding; total and renal 
clearance

Thummel & Shen (2001) 320 drugs

Plasma protein binding

Percentage PPB, urinary 
excretion and other 
ADME data

Kalgutkar et al. (2005) 464 references Metabolic pathways Structural alerts 
Manga et al. (2005) 147 drugs

CYP metabolism
CYP isoforms 
predominantly 
responsible for their 
metabolism 
(CYP3A4/2D6/2C9)

Yap et al. (2006) 503 compounds Clearance (CLtot) Total clearance in 
humans
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Table 4. Software tools for predicting physicochemical properties useful as input data 
for ADME modelling

PROPERTY

SOFTWARE (COMPANY) AVAILABILITY
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ACD/PhysChem Suite/Batch (ACD Labs)
http://www.acdlabs.com/

Commercial • • • •

ASTER (U.S. EPA)
http://www.epa.gov/med/Prods_Pubs/aster.htm/

Not publicly available • • •

ChemOffice (CambridgeSoft)
http://www.cambridgesoft.com/

Commercial •

ChemProp 
(Helmholtz Centre for Environmental Research, UFZ)
http://www.ufz.de/

Commercial
• •

ClogP (DAYLIGHT)
http://www.daylight.com/

Commercial •

EPISUITE (U.S. EPA)
http://www.epa.gov/oppt/exposure/pubs/episuite.htm/

Freely downloadable • •

JAGUAR (Schrödinger)
http://www.schrodinger.com/

Commercial •

Molecular Modeling Pro (ChemSW)
http://www.chemsw.com/molecularmodeling.htm/

Commercial • •

MoKa (Molecular Discovery)
http://www.moldiscovery.com/

Commercial •

Pipeline Pilot (Accelrys Scitegic)
http://accelrys.com/

Commercial • • •

SPARC (U.S. EPA)
http://ibmlc2.chem.uga.edu/sparc/

Free on-line application • • •

TSAR (Accelrys)
http://accelrys.com/

Commercial •

VCCLAB (Virtual Computational Chemistry Lab)
http://www.vcclab.org/

Free on-line application • • •
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Table 5. Software tools for physicochemical-based and organism-based (*) ADME predictions
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SOFTWARE (COMPANY)
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ACD/ADME Suite with AbSolv module (ACD Labs)
http://www.acdlabs.com/

Commercial • • • • • • • • • • •

Accord for Excel with ADME/Tox Add-on (Accelrys)
http://accelrys.com/

Commercial • • • • • • • •

ADME Batches1 (Pharma Algorithms) – now included in 
ACD/ADME Suite

Commercial • •

ADME Boxes1 (Pharma Algorithms) – now included in 
ACD/ADME Suite

Commercial • • • • • • • • •

DISCOVERY STUDIO including Cerius2 (Accelrys)
http://accelrys.com/

Commercial • • • • • •

ADMENSA1 (Inpharmatica) Commercial • • • • • •
ADMET Predictor (Simulations Plus Inc.)
http://www.simulations-plus.com/

Commercial • • • • • • • •

ADMETox/Pallas including MetabolExpert, MEXAlert, 
pKalc, PrologD, TPSA, RetroMEX, RuleOf5, PrologP, 
ToxAlert, Cytotoxicity
(CompuDrug)
http://www.compudrug.com/

Commercial • • • • • •
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ADMEWORKS including Predictor and ModelBuilder 
(Fujitsu)
http://www.fqs.pl/

Commercial • • • • • •

BioFrontier/P450 (Fujitsu)
http://www.fqs.pl/

Commercial •

ChemDBsoft with MOLPRO Package including SLIPPER 
(ChemDBsoft)
http://www.chemdbsoft.com/

Commercial • • • • •

ChemSilico Predictors, i.e. CS LogWS/D/P, CS BBB/PB/HIA 
(ChemSilico) 
http://chemsilico.com/

Commercial • • • • • •

Cloe® including Cloe PK, Cloe PredictHIA (Cyprotex)*
http://www.cyprotex.com/

Commercial • • •

COMPACT (Computer-Optimised Molecular Parametric 
Analysis of Chemical Toxicity) 
University of Surrey, Guildford, UK 
Lewis et al. (1996, 2001)

In-house software, 
neither commercial 
nor public

•

GastroPlus (Simulations Plus Inc.)*
http://www.simulations-plus.com/

Commercial • • • •

iDEA ADME1 (Lion Biosciences) Commercial • • • • • •
iDEA PKexpress1 (Lion Biosciences) Commercial • •
Jchem with Calculator Plugins (ChemAxon)
http://www.chemaxon.com/

Commercial • • • •
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KnowItAll ADME/Tox (Bio-Rad Laboratories)
http://www.bio-rad.com/

Commercial • • • • • • • • •

META/METAPC/ MCASE ADME Module
(MultiCASE)
Klopman et al. (1994, 1997, 1999), Talafous et al. (1994)
http://www.multicase.com/

Commercial • • • •

MetaDrugTM (Genego)
http://www.genego.com/

Commercial • • • • • • • •

MetaSite (Molecular Discovery)
Cruciani et al., 2005
http://www.moldiscovery.com/

Commercial •

METEOR (Lhasa Ltd.)
Testa et al., 2005a
http://www.lhasalimited.org/

Commercial •

MolCode ToolBox (MolCode)
http://www.molcode.com/

Commercial • • • •

NorayMet ADME (Noray Bioinformatics)
http://www.noraybio.com/

Commercial • • • • • • • • •

OraSpotter1

(ZyxBio)
Commercial • • •

PK SiM (Bayer Technology Services)
http://www.systems-biology.com/

Commercial • • • •
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ProPred (CAPEC)
http://www.capec.kt.dtu.dk/

Commercial • •

PreADME (Bioinformatics and Molecular Design Research 
Centre), PreADMET web-based application (BMDRC) 
http://www.bmdrc.org/

Commercial • • • • • • •

q-ADME (Quantum Lead)
http://www.q-lead.com/

• • •

QikProp (Schrödinger)
http://www.schrodinger.com/

Commercial • • • • • •

QMPRPlus1 (Simulations Plus Inc.)
http://www.simulations-plus.com/

Commercial • • • • •

StarDrop (BioFocus DPI)
http://www.scientific-computing.com/

Commercial • • • • • • • • • •

Simcyp® (SimCYP)*
http://www.simcyp.com/

Commercial • •

OASIS-TIMES (Laboratory of Mathematical Chemistry, 
Bourgas University)
http://www.oasis-lmc.org/

Commercial •

TruPK1 (Strand Genomics), now a part of KnowItAll platform 
from Bio-Rad Labs

Commercial • • •

VolSurf/VolSurf+  (Molecular Discovery & Tripos)
http://www.moldiscovery.com/

Commercial • • • • • • • •

1 Former software, not commercially available now, but often cited and still possibly in use
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Table 6. Rules-of-thumb developed for ADME

Reference ADME property Rules-of-thumb details
Gleeson 
(2008)

Solubility
Bioavailability
PPB
Brain/tissue binding
CYP1A2/2C9/2C1/2D6/3A4 
inhibition

The influence of molecular weight (MW), ionization state (pKa) and calculated octanol/water partition 
coefficient (ClogP) on various ADME properties was discussed, e.g:
• Solubility increases as: MW decreases and ClogP decreases. In terms of pKa: zwitterionic molecules 
containing both an acidic and basic functional group are the most highly soluble, while neutral 
molecules are the least soluble; acidic molecules are more soluble than basic molecules;
• Bioavailability increases as MW decreases; ClogP does not have a significant influence. In terms of 
pKa: bioavailabilities for neutral, basic and zwitterionic molecules are quite similar;
• Plasma protein binding increases as: MW increases and ClogP increases. In terms of pKa, PPB 
follows the trend: acids > neutrals > zwitterions > bases;
• Brain/tissue binding increases as MW increases and ClogP increases. In terms of pKa, no significant 
relationships have been observed

Lobell et al. 
(2006)

GI absorption Good GI absorption is characteristic for reasonably soluble, not too liphophilic, large, polar or flexible 
compounds. The combined calculated values of physicochemical properties determining these factors, 
i.e. aqueous solubility (logSaq), octanol/water partition coefficient (ClogP), molecular weight (MW), 
polar surface area (PSA) and the number of rotatable bonds (RotB) give a “traffic light” (TL) scheme 
for absorption, as follows:

• Green: logSaq • 50; ClogP • 3; MW • 400; PSA • 120; RotB • 7;

• Yellow: logSaq: 10-50; ClogP: 3-5; MW: 400-500; PSA: 120-140 RotB: 8-10;

• Red: logSaq < 10; ClogP > 5; MW > 500; PSA > 140; RotB • 11

Zmuidinavicius et al. 
(2003)

Human intestinal absorption • Compounds with quaternary nitrogens or biphosphonate moieties are poorly absorbed;
• Compounds with molecular weight < 255 have good absorption; 
• Compounds with molecular weight between 255 and 580, polar surface area < 154 Å2 and one of two 
following conditions hold: logP > 0 or hydrogen bond acidity < 1.3 display good absorption;
• Compounds with molecular weight > 580, polar surface area < 291 Å2 and logP > 0 are well absorbed

Norinder & Haberlein 
(2002)

BBB penetration • The molecule has a high chance of entering the brain if the number of nitrogen and oxygen atoms
(N+O) atoms is • 5;
• LogBB is positive if [logP-(N+O)] is positive
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Reference ADME property Rules-of-thumb details
Veber et al. 
(2002)

Oral bioavailability High probability of good oral bioavailability for compounds with:
• • 10 rotatable bonds;
• Polar surface area • 140 A2 or
• The sum of hydrogen bond donors and acceptors • 12

Kelder et al. 
(1999)

BBB penetration • The upper limit for the polar surface area (PSA) for a molecule that has a high chance of entering the 
brain is < 60-70 Å

Van der Waterbeemd et al. 
(1998)

BBB penetration • The upper limit for the polar surface area (PSA) for a molecule that has a high chance of entering the 
brain is around 90 Å
• The molecular weight (MW) of such molecule should be not larger than 450 g/mol

Lipinski et al. 
(1997)

Absorption “Rule of 5”, indicating that a molecule is prone to poor absorption if:
• Molecular weight > 500;
• Sum of OH and NH hydrogen bond donors > 5;
• Sum of O and N hydrogen bond donors > 10;
• ClogP > 5
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Table 7. Literature models for human intestinal absorption (HIA)

Reference Class(es) studied Dataset1 size
El-Deeb et al. (2010) Cyclic arylsulfonylureas 13
Hou et al. (2007b) Drugs and diverse drug-like molecules 553
Hou et al. (2007c) Drugs and diverse drug-like molecules 578
Jung et al. (2007) Oligopeptides (heptapeptide sequences) 852 
Verma et al. (2007) Drugs 57
Subramanian & Kitchen (2006) Drugs 30
Deconinck et al. (2005) Drug-like molecules 141+27
Jones et al. (2005) Drugs 38+131
Liu et al. (2005) Diverse drugs 113+56
Polley et al. (2005) Drug-like compounds NA
Bai et al. (2004) Diverse drugs 1260
Perez et al. (2004) Drugs 82+127 & 109
Sun (2004) Drugs 169
Wegner et al. (2004) Drugs and drug-like compounds 172+24
Xue et al. (2004b) P-gp substrates and non-substrates 196
Niwa (2003) Drugs and drug-like compounds 76+10
Wolohan & Clark (2003) Drugs and drug-like molecules 86
Zmuidinavicius et al. (2003) Drug-like compounds over 1000
Abraham et al. (2002) Drugs 127
Deretey et al. (2002) Passively transported drugs 93+31
Klopman et al. (2002) Drugs 417+50
Raevsky et al. (2002) Drugs 100
Zhao et al. (2002) Drugs 238
Agatonovic-Kustrin et al. (2001) Drugs 76+10
Norinder & Österberg (2001) Drugs 13+7
Zhao et al. (2001) Drugs 38+131
Egan et al. (2000) Drugs and drug-like molecules 234
Ertl et al. (2000) Drugs 20
Österberg & Norinder (2000) Drugs 20
Raevsky et al. (2000) Passively transported drugs 32
Clark (1999a) Diverse drugs 20+74
Ghuloum et al. (1999) Diverse molecules 20
Norinder et al. (1999) Diverse drug-like compounds 13+7
Oprea & Gottfries (1999) Drugs NA
Sugawara et al. (1998) Drugs NA
Wessel et al. (1998) Drugs and drug-like compounds 76+10
Palm et al. (1997) Drugs 20

1 Training & Test Set (+ Prediction Set, if applicable); NA – information not available
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Table 8. Literature models for human oral bioavailability (F)

Reference Class(es) studied Dataset1 size
El-Deeb et al. (2010) Cyclic arylsulfonylureas 13
Ma et al. (2008) Structurally diverse drugs 690+76
Moda et al. (2007a) Structurally diverse molecules 302
Wang et al. (2006) Structurally diverse drugs 367
Stoner et al. (2004) Structurally diverse molecules (neutral, basic, acidic) 140
Turner et al. (2004a) Structurally diverse drugs 152+15
Pintore et al. (2003) Drugs/Diverse molecules 272/235
Turner et al. (2003a) Drugs 169
Wolohan & Clark (2003) Structurally diverse molecules including drugs 198/408
Veber et al. (2002)* Drug candidates (* Study for rat) over 1100
Andrews et al. (2000) Drugs 591
Yoshida & Topliss (2000) Structurally diverse drugs 232
Hirono et al (1994) Drugs 188
1 Training & Test Set (+ Prediction Set, if applicable); NA – information not available
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Table 9. Literature models for blood/brain barrier penetration (logBB)

Reference Class(es) studied Dataset1 size
Vilar et al. (2010) Diverse compounds (* Data for rat mainly) 

For external validation: CNS active and inactive chemicals 
307+1457

Geldenhuys et al. (2010) Semi-rigid cyclic and acyclic bis-quaternary ammonium 
analogs

4/5

El-Deeb et al. (2010) Cyclic arylsulfonylureas 13
Tintori et al. (2009) Various pyrrolo-pyrimidine c-Src inhibitors 80
Karelson et al. (2008) Structurally diverse molecules, mainly drugs 60
Konovalov et al. (2008) Volatile and non-volatile organic compounds and drugs 289
Obrezanova et al. (2008) Diverse compounds 151+143/292
Van Damme et al. (2008) Diverse compounds 82
Zhang et al. (2008a) Drugs and diverse organic compounds 159+99 & 267
Zhang et al. (2008b) Drugs, small structure-simple molecules, carboxylic acids, 

alkaloids
160

Al-Fahemi et al. (2007) Diverse compounds 42
Deconinck et al. (2007) Drugs 244
Dureja & Madan (2007) Diverse compounds 62
Konovalov et al. (2007) Volatile and non-volatile organic compounds and drugs 291
Obrezanova et al. (2007) Diverse drugs and other small molecules 106
Wichmann et al. (2007) Diverse neutral molecules 103
Zhao et al. (2007) BBB crossing and non-crossing drugs, P-gp substrates 1593
Abraham et al. (2006) Drugs, volatile and non-volatile organic compounds 207/302
Deconinck et al., (2006) Drugs 147
Dureja & Madan (2006) Diverse compounds 28
Garg & Verma (2006) Diverse compounds 191
Gerebtzoff & Seelig (2006) Diverse compounds 55+43
Katritzky et al. (2006) Diverse drugs 113
Klon et al. (2006) Diverse compounds 178
Zhang (2006) Diverse compounds 80
Li et al. (2005) Diverse compounds 415
Ma et al. (2005) Diverse compounds 45
Narayanan & Gunturi (2005) Diverse compounds 88
Yap & Chen (2005a) Drugs 155
Zhang (2005) Neutral and ionized compounds 265
Abraham (2004) Neutral compounds 30
Cabrera et al. (2004) Diverse compounds 119+33
Dorronsoro et al. (2004) Structurally diverse drugs 35
Fu et al. (2004) Drugs 61
Pan et al. (2004) Structurally diverse compounds 150
Stanton et al. (2004) Diverse drugs 47/56
Sun (2004) Structurally diverse compounds 57
Winkler & Burden (2004) Diverse drugs and other small molecules 106
Zhang (2004) Diverse neutral compounds 215
Adenot & Lahana (2004) BBB crossing and non-crossing drugs, P-gp substrates 1686
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Reference Class(es) studied Dataset1 size
Hou & Xu (2003) Diverse organic compounds 115+37
Hutter (2003) Diverse compounds 90
Lobell et al. (2003) Diverse compounds 65
Subramanian & Kitchen
(2003)

Structurally diverse compounds 281+181

Wolohan & Clark (2003) Drugs 55
Atkinson et al. (2002) Drugs NA
Doniger et al. (2002) Diverse classes of molecules, including drugs 324
Hou & Xu (2002) Structurally diverse compounds 96
Iyer et al. (2002) Structurally diverse compounds 63
Ooms et al. (2002) Diverse compounds 79
Rose et al. (2002) Structurally diverse compounds, including drugs and drug-

like molecules
106+28 & 20039

Kaznessis et al (2001) Drugs 80
Keserü & Molnár (2001) Diverse compounds 60/85
Klamt et al. (2001) Diverse compounds 65?
Liu et al. (2001) Diverse compounds 66
Norinder & Österberg (2001) Drugs 58
Platts et al. (2001) Diverse compounds, mainly drugs 148
Crivori et al. (2000) Diverse compounds, mainly drugs 230
Ertl et al. (2000) Drugs 45
Feher et al. (2000) Structurally diverse compounds 75/86
Österberg & Norinder, (2000 Drugs 45/70
Ajay et al. (1999) Diverse, CNS active and inactive molecules 275
Clark (1999b) Diverse organic compounds 60/70
Kelder et al. (1999) Drug molecules 45
Luco (1999) Structurally diverse compounds 95
Norinder et al. (1998) Structurally diverse compounds 63
Abraham et al. (1997) Zwitterionic and  non-zwitterionic ampholytes (nitrazepam, 

albendazole sulfoxide, and sulfadimidine, morphine, 
difloxacin, and niflumic acid)

6

Salminen et al. (1997) Drugs 23
Brewster et al. (1996) Solutes and drugs 60
Kaliszan & Markuszewski 
(1996)

Diverse compounds 20

Lombardo et al. (1996) Structurally diverse compounds, from simple solutes to 
histamine H2 antagonists

61

Abraham et al. (1995)  Structurally diverse compounds 57
Abraham et al. (1994) Structurally diverse compounds 57
Calder & Ganellin (1994) Structure-diverse histamine H2 receptor antagonists
van de Waterbeemd & Kansy
(1992)

Structure-diverse histamine H2 receptor antagonists 20

Young et al. (1988) Structure-diverse histamine H2 receptor antagonists 6/20
1 Training & Test Set (+ Prediction Set, if applicable)
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Table 10. Literature models for plasma protein binding

Reference Class(es) studied Dataset1 size
El-Deeb et al. (2010) Cyclic arylsulfonylureas 13
Luan et al. (2009) Commercially available cephalosporins 28
Karelson et al. (2008) Drugs 85
Ma et al. (2008) Structurally diverse drugs 692+161
Weaver & Gleeson (2008) Diverse molecules 897
Deeb & Hemmateenejad (2007) Drugs 94
Fu et al. (2007) Cephalosporins 23
Gleeson (2007) Diverse molecules 897
Moda et al. (2007b) Diverse molecules 62
Rodgers et al. (2007b) Diverse molecules 13-25
Rodgers et al. (2007a) Diverse molecules 11-84
Estrada et al. (2006) Drugs 88
Gunturi et al. (2006) Diverse drugs 94
Hall et al. (2006) Drugs 200
Wang et al. (2006) Structurally diverse drugs 266
Votano et al. (2006) Diverse molecules 1008
Yap & Chen (2005a) Drugs 75+18
Turner et al. (2004b) Structurally diverse drug-like compounds 62
Xue et al. (2004a) Diverse, heterogeneous group of commercially 

available drugs
94

Yamazaki & Kanaoka (2004) Diverse pharmaceutical compounds 302+20
Hajduk et al. (2003) Chemically diverse compounds 889
Hall et al. (2003) Beta-lactams 115
Lobell & Sivarajah (2003) Diverse molecules 320
Turner et al. (2003b) Cephalosporins 20
Valko et al. (2003) Drugs 52+68
Kratochwil et al. (2002) Drugs 138
Colmenarejo et al. (2001) Diverse molecules 95
Saiakhov et al. (2000) Drugs 154
1 Training & Test Set (+ Prediction Set, if applicable)
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Table 11. Diverse types of literature models for metabolism

Reference Class(es) studied Dataset1 size Approach2

CYP REGIOSELECTIVITY
Hasegawa et al. 
(2010)

CYP 3A4 substrates (drug candidates) 61 ML

Sheridan et al. (2007) Diverse compounds 316/124/92+25 RF
Zhou et al. (2006) CYP3A4 substrates 227 MetaSite/MD (GLUE)
Lewis et al. (2004) Drugs NA MD/HM
Singh et al. (2003) Drugs 50 TVM
Zamora et al. (2003) Drugs NA GRID HM
de Groot et al. (2002) Drugs 16 MD/HM/P/MO
Jones et al. (2002) Organic compounds 20 QM
Lewis (2002) Drugs 10 MD/HM
Kuhn et al. (2001) Drugs (sirolimus (rapamycin) and 

everolimus)
2 MD/HM/QM

Lewis et al. (2000) Drugs 12 MD/HM
de Groot et al. 
(1999a)

Drugs 40 MD/HM/P/MO

de Groot et al. 
(1999b)

Drugs 40 MD/HM/P/MO

Lewis et al. (1997) Drugs NA MD/HM
de Groot et al. (1996) Drugs 4 MD/HM
Lewis & Lake (1996) Drugs 16 MD/HM
Lewis et al. (1996a) Drugs NA MD/HM
Modi et al. (1996) Drugs NA MD/HM
Koymans et al. 
(1992)

Drugs NA MD/HM

Korzekwa et al. 
(1990)

Organic compounds NA QM

CYP SUBSTRATE SPECIFICITY
Vasanthanathan et al. 
(2010)

CYP 1A2 substrates 8 LIE

Terfloth et al. (2007) Drugs and drug analogs 379 SVM
De Graaf et al. 
(2006)

CYP2D6 substrates 65 MD

Manga et al. (2005) Drugs 96 FIRM
Yap & Chen (2005b) CYP3A4, CYP2D6 and CYP2C9 

substrates
368/198/144 SVM

Balakin et al. (2004a) Drug-like molecules 491 KL
Locuson et al. (2004) Benzbromarone analogs NA CoMSIA
Haji-Momenian et al. 
(2003)

Drugs 24+15 CoMFA

Korolev et al. (2003) CYP substrates and non-substrates 1008 KL
Lewis et al. (2002) Drugs 11/6/10/8/8/10/10/10 MLR
Snyder et al. (2002) Drugs 24 CoMFA/HM
Wang & Halpert 
(2002)

Drugs 16 P/HM
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Reference Class(es) studied Dataset1 size Approach2

De Rienzo et al. 
(2000)

Drugs 50 HM

Ekins et al. (1999a) Drugs 38+12 P/PLS
Ekins et al. (1999c) Drugs 16 P/PLS

RATE AND EXTENT OF METABOLISM
Hu et al. (2010) Drug candidates (* Study for mouse, rat 

and human)
2021 (+ 433) for 
mouse, 19195 (+ 
4886) for rat and 
5233 (+ 1193) for 
human

Classification models 
(Naïve Bayesian 
classifier)

Embrechts & Ekins 
(2007)

MetaDrug Database compounds 317 k-PLS

Balakin et al. 
(2004b)

MetaDrug Database compounds 83 NN

Crivori et al. (2004) Pharmacia collection compounds 1800 PLS
Jensen et al. (2003)* Calcitriol analogs (* Study for rat) 87 PLS
Shen et al. (2003) Diverse chemicals proprietary to 

GlaxoSmithKline
631 k-NN

Ekins & Obach, 
(2000)

Drugs 26/18 P/QSAR

CYP INHIBITION
Ewing & Feher 
(2010)

CYP 2D6 and CYP 3A4 inhibitors 6216 (CYP 2D6), 
7679 (CYP 3A4)

Various models (e.g. PLS 
QSAR)

Vasanthanathan et al. 
(2010)

CYP 1A2 inhibitors 13 LIE

Sushko et al. (2010) CYP 1A2 inhibitors and non-inhibitors 3621 ASNN
Zhou et al. (2007) CYP 3A4 inhibitors and non-inhibitors 1699 SVM
Burton et al. (2006) Diverse compounds 498/306+34/58 RP
Arimoto et al. (2005) Proprietary compounds 4470 RP/BNN/LR/k-NN/ 

SVM
Chohan et al. (2005) Diverse compounds 112 PLS/MLR/CART/BNN
Crivori & Pogessi 
(2005)

CYP2D6 inhibitors 47 GRIND

Iori et al. (2005) Flavonoids NA MO QSAR
Korhonen et al. 
(2005)

Diverse compounds including 
naphthalene, lactone and quinoline 
derivatives

52 3D-QSAR 
(CoMFA/GRID/GOLPE)

Kriegl et al. (2005) Diverse drug-like molecules 780 SVM/PLS-DA
O'Brien & de Groot 
(2005)

CYP2D6 inhibitors and non-inhibitors 600 ANN/BNN

Vaz et al. (2005) Aryloxypropanolamines 36 CoMSIA
Yap & Chen (2005b) CYP3A4, CYP2D6 and CYP2C9 

inhibitors
241/180/167 SVM

Afzelius et al. (2004) Diverse CYP2C9 inhibitors 22 GRID/PLS
Kemp et al. (2004) National Cancer Institute Database 

compounds
33 HM/MD (GOLD)

Merkwirth et al. 
(2004)

Diverse compounds 410 k-NN/SVM/RRM

Asikainen et al. 
(2003)

Diverse molecules, including 
naphthalenes

42 CoMFA
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Reference Class(es) studied Dataset1 size Approach2

Ekins et al. (2003) Diverse molecules 1756+98 RP
Susnow & Dixon 
(2003)

Diverse compounds 100 RP

Wanchana et al. 
(2003)

Drugs 53 GA-PLS

Afzelius et al. (2002) Diverse CYP2C9 inhibitors and non-
inhibitors

42 GRIND/PLS-DA

Molnar & Keseru 
(2002)

Genetest Database compoundds 290 ANN

Zuegge et al. (2002) Diverse molecules 311 PLS/ANN
Afzelius et al. (2001) Competitive CYP2C9 inhibitors 21+8 3D-QSAR (GRID)/HM
Poso et al. (2001) CYP2A5 and CYP2A6 inhibitors 28 CoMFA
Ekins et al. (2000a) Competitive CYP2C9 inhibitors 9/29/13 P(Catalyst)/PLS
Moon et al. (2000) Flavonoid derivatives 19 MLR/ANN
Rao et al. (2000) Diverse drugs 14 CoMFA
Ekins et al. (1999b) Competitive CYP3A4 inhibitors 14/32/22 P(Catalyst)/PLS
Lewis & Lake (1998) Omeprazole 1 MM/QSAR
Jones et al. (1996b) CYP2C9 inhibitors 14 CoMFA
Strobl et al. (1993) CYP2D6 inhibitors 6 CoMFA

PHASE II METABOLISM
Sorich et al. (2004) UGT substrates and non substrates 50÷250 SVM/PLS-DA
Smith et al. (2003) Diverse UGT1A4 substrates 24 (18+6) P/UFS-PLS/SOMFA
Sorich et al. (2003) UGT substrates and non substrates 50÷250 PLS-DA/BRANN/SVM
Ethell et al. (2002) Simple phenols 24/10 QSAR
Sorich et al. (2002 Diverse UGT 1A1 substrates 23 (18+5) P/2D QSAR/3D QSAR
Cupid et al. (1999)* Substituted benzoic acids (* Study for 

rat)
22 QSMR

Cupid et al. (1996)* Substituted benzoic acids (* Study for 
rabbit)

24 QSMR

Soffers et al. (1996) Fluoronitrobenzenes NA MO QSAR
Holmes et al. 
(1995)*

Substituted phenols (* Study for rat) 15 QSMR

Ghauri et al. (1992)* Substituted benzoic acids (* Study for 
rat)

14 QSMR

Kim (1991) Drugs NA QSAR
1 Training and/or Test Set (+ Prediction Set, if applicable); NA – information not available;
2 ASNN – associative Neural Networks; BNN – Bayesian Neural Networks; BRANN – Bayesian Regularized 
Artificial Neural Network; CART - Classification And Regression Trees; CoMFA - Comparative Molecular 
Field Analysis; CoMSIA - Comparative Molecular Similarity Index Analysis; FIRM - Formal Inference-Based 
Recursive Modelling; HM – Homology Modelling; KL – Kohonen Learning; k-NN – k-Nearest Neighbour; k-
PLS - kernel-Partial Least Squares; LIE – Linear Interaction Energy; LR – Logistic Regression; MD – Molecular 
Docking; ML – Machine Learning; MLR – Multiple Linear Regression; MM – Molecular Modelling; MO –
Molecular Orbital calculations; NN – Neural Networks; P – Pharmacophore; PLS – Partial Least Squares; PLS-
DA – Partial Least Squares Discriminant Analysis; QM – Semi-Empirical Quantum-Mechanical calculations; 
QSMR – Quantitative Structure-Metabolism Relationship; RF – Random Forest; RRM - Ridge Regression 
Modelling; SOMFA – Self-Organizing Molecular Field Analysis; SVM – Support Vector Machine; TVM –
Trend Vector Model; UFS - Unsupervised Forward Selection; 
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Table 12. Literature models for excretion

Reference Class(es) studied Dataset1 size
Paixäo et al. (2010) Diverse drugs (In vitro human hepatic clearance data) 89+112
Doddareddy et al. (2006) Diverse compounds containing CNS and non-CNS drugs 150
Wang et al. (2006) Structurally diverse drugs 224
Yap et al. (2006) Structurally diverse compounds, mainly drugs 503
Ng et al. (2004) Antimicrobial agents 44
Turner et al. (2004b) Structurally diverse drug-like compounds 62
Karalis et al. (2003) Cephalosporins 23
Manga et al. (2003) Drugs 160
Turner et al. (2003b) Cephalosporins 20
Agatonovic-Kustrin et al. 
(2002)

Drugs 123

Cantelli Forti et al. (2002) Nitroheterocyclic compounds 26
Karalis et al. (2002) Structurally unrelated drugs 272
Cupid et al. (1996) Substituted benzoic acids 24
Holmes et al. (1995) Substituted phenols and their sulphate and glucoronide 

metabolites
15

Anderson et al. (1992) Structural analogs of peptide formyl-met-leu-phe 24
Meskin et al. (1985) Diverse basic and acidic drugs NA
1 Training & Test Set (+ Prediction Set, if applicable); NA – information not available
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