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Summary 

Molecular Similarity and Xenobiotic Metabolism Samuel Edward Adams 

MetaPrint2D, a new software tool implementing a data-mining approach for predicting sites 

of xenobiotic metabolism has been developed.  The algorithm is based on a statistical 

analysis of the occurrences of atom centred circular fingerprints in both substrates and 

metabolites.  This approach has undergone extensive evaluation and been shown to be of 

comparable accuracy to current best-in-class tools, but is able to make much faster 

predictions, for the first time enabling chemists to explore the effects of structural 

modifications on a compound’s metabolism in a highly responsive and interactive manner. 

MetaPrint2D is able to assign a confidence score to the predictions it generates, based on 

the availability of relevant data and the degree to which a compound is modelled by the 

algorithm. 

In the course of the evaluation of MetaPrint2D a novel metric for assessing the performance 

of site of metabolism predictions has been introduced.  This overcomes the bias introduced 

by molecule size and the number of sites of metabolism inherent to the most commonly 

reported metrics used to evaluate site of metabolism predictions. 

This data mining approach to site of metabolism prediction has been augmented by a set of 

reaction type definitions to produce MetaPrint2D-React, enabling prediction of the types of 

transformations a compound is likely to undergo and the metabolites that are formed.  This 

approach has been evaluated against both historical data and metabolic schemes reported 

in a number of recently published studies.  Results suggest that the ability of this method to 

predict metabolic transformations is highly dependent on the relevance of the training set 

data to the query compounds. 

MetaPrint2D has been released as an open source software library, and both MetaPrint2D 

and MetaPrint2D-React are available for chemists to use through the Unilever Centre for 

Molecular Science Informatics’ website.  
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1. Introduction 

This thesis is concerned with the in silico prediction of xenobiotic metabolism – the 

metabolism of compounds such as drugs and environmental chemicals which would not 

normally be produced by an organism or form part of a normal diet.  The first two chapters 

provide an introduction to the thesis.  This chapter introduces current in silico molecular 

similarity and virtual screening techniques, which form the basis of the modelling 

approaches used later in this work.  Chapter two discusses the importance of understanding 

and predicting xenobiotic metabolism, and reviews current work in this field.  Chapters 

three and four report the development and evaluation of MetaPrint2D – a tool for the 

prediction of sites of phase I metabolism.  Chapter five extends these predictions beyond 

the identification of sites of metabolism, to prediction of types of transformation and the 

likely metabolites formed.  Finally, the performance of these predictions is assessed in a 

retrospective analysis of recently published metabolic schemes, reported in chapter six. 

The search for substances with the potential to cure sickness and disease has been ongoing 

since prehistoric times.  For thousands of years both organic and inorganic materials such as 

plants, herbal preparations, animal products, metals and clays have been administered to 

sick humans and animals (1).  With the development and application of scientific 

methodology, mainly since the late 19th century, medication has become far safer and more 

effective than in earlier times.  Ever increasing demand for better medicinal drugs has led to 

the formation of a $600 billion dollar global pharmaceutical industry (2) whose future is 

dependent on the continual discovery of safe and effective medicines. 

Over the past twenty years the pharmaceutical industry has been revolutionized through 

the introduction of high-throughput screening (HTS) and combinatorial chemistry 

techniques.  Despite these changes, and the far higher speeds of synthesis and screening 

that they have made possible, the rate of introduction of new drugs to the market place 

does not seem to be showing any corresponding increase (3).  Indeed, the rate of attrition of 

compounds entering the development process shows no improvement from that of the 

1970s and 80s (4), currently estimated by the Pharmaceutical Research and Manufacturers 

of America (PhRMA) to stand at around 90% (5).  The length of time it takes to successfully 
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develop a new drug is also increasing.  Various estimates place the average from 8½ (6,7) to 

over 14 years (8) – up to 75% longer than during the 1960s (9).  Due, in part,  to the 

lengthening of the development process, there has been a spiralling in the costs associated 

with the development of a novel drug; the average investment required to bring a new drug 

to market is now thought to stand at between US$800 million (10) and US$1.7 billion (11). 

In an attempt to combat the growing costs and timescales involved in drug discovery 

pharmaceutical research is increasingly turning to computational techniques.  It is hoped 

that decision support tools can help to accelerate selection of the most suitable candidate 

compounds, and elimination of the least suitable.  Computational tools are also needed in 

order to manage and exploit the increasingly large amounts of data that are now being 

acquired, particularly from the use of high-throughput methods taking advantage of 

robotics to perform in vitro screens of large compound libraries. 

An additional factor is the use of virtual screening techniques in the safety assessment of 

chemical substances required under recently introduced legislation such as the European 

Union’s Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) 

regulation (12).  The potential costs of this testing, combined with the public opposition to, 

and legal restrictions upon, animal testing, have made computational prediction of a 

number of key biological properties of molecules, such as toxicity and metabolism, an 

attractive alternative. 

This chapter provides a brief overview of the modern drug discovery process, and describes 

the roles played by computational methods.  The different approaches to computational 

modelling are described, with particular focus on molecular similarity and Quantitative 

Structure Activity Relationship (QSAR) techniques.  Finally, some of the recent 

developments and current challenges in virtual screening are reviewed. 

1.1 The drug discovery process 

The road from the initial decision to discover and develop a new drug to its finally reaching 

the market place is a long one.  The process can be broadly broken down into three phases, 

shown in Figure 1; the central phase, lead discovery and development, is perhaps the most 

challenging, involving as it does an exploration of the ‘sea of chemical space’ in search of an 
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‘island of activity’, followed by the detailed exploration of this island in order to identify a 

candidate drug compound (13) – a process known as lead identification and optimisation.  

 

Figure 1: An outline of the drug development process 

The first steps in the process of the development of a new drug are target identification and 

validation (14).  Once a decision has been made as to the clinical needs of the new drug, the 

discovery process commences with a thorough investigation of the mechanism of the 

disease.  Differences between the functioning of the body in both the diseased and healthy 

states are explored.  With the rapid advances in understanding of genetics over the past 

decade, due in part to programmes such as the Human Genome Project, increasingly the 

genetic basis of a disease is investigated.  The aim in all of this is to pinpoint a mechanism 

(perhaps involving an enzyme, transport system or receptor) that is the cause of the disease, 

so that drugs can be designed to target it, whilst minimizing their effects on the rest of the 

body.  Once a target has been identified it is then validated, to confirm its function and 

effects, and ensure that it is essential to the disease process and is safe to target.  At the 

same time assays to determine whether a molecule binds to the target, and the effect this 

has on the target, may be developed.  Throughout this process bioinformatics and other 

computational tools are widely used, however these are beyond the scope of this review. 

The Human Genome Project has reported that there are in the region of 20000–25000 

protein coding genes within in the human genome (15).  Through alternative splicing, 

whereby one gene can code for a number of related proteins, the human proteome is larger 

still, but in spite of this large number of potential drug targets, to date only 500 or so 

proteins have been targeted by pharmaceuticals (3). 
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Once a target has been successfully identified and validated the search for one or more lead 

compounds begins.  Lead compounds are molecules that exhibit some of the desired 

pharmacological activity against the target, and form the base from which a drug is 

developed.  Traditionally the search for lead compounds started with collections of natural 

products (14); wide ranges of natural materials such as plants, roots, bark and marine 

organisms were collected, with as great a biodiversity as possible, and as many chemical 

compounds extracted as possible.  These compounds were then screened against the 

identified targeted, searching for any that showed some level of activity.  More recently 

pharmaceutical companies have developed in-house screening libraries, typically containing 

a million or more compounds (16).  These may be purchased from external suppliers, 

produced through combinatorial chemistry programmes or synthesised within the company. 

Although lead compounds show some useful pharmaceutical activity against the drug 

target, they themselves are not usually suitable for therapeutic use.  Once their molecular 

structure has been confirmed, lead compounds undergo cycles of structural modification, or 

‘optimization’, in order to improve their potency and other properties such as solubility and 

membrane permeability. 

Knowledge of the 3-dimensional structure of a drug target enables an alternative approach, 

whereby molecules are designed to best complement the target’s binding site – so called 

‘rational’ drug design.  These two approaches are often employed in parallel.  Screening can 

be guided by knowledge of the receptor, and the results of screening can then form the 

basis for the application of rational techniques to the optimization of the molecule’s 

structure. 

Once a candidate compound has been developed, but before it can be tested in humans, it 

undergoes a series of pre-clinical tests, in order to determine its safety profile (14).  This 

testing is carried out through a mixture of in vitro (test-tube) and in vivo (animal) studies.  

The candidate’s pharmacodynamic (what the drug does to the body) and pharmacokinetic 

(what the body does to the drug) profiles are investigated, with the primary aim being to 

ensure that the candidate compound is safe to test in humans, and determine at what 

dosage initial testing should take place. 
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A long series of clinical trials in human volunteers are then carried out to ensure the safety 

of the candidate drug, and to determine the optimum protocol for its administration.  

Phase  I clinical trials are performed on a small group of normally healthy volunteers, with 

the primary purpose being to ensure the safety of the drug, since this is the first time that 

the drug will have been tested on a human body.  Volunteers are initially administered very 

low doses of the drug, and closely monitored for any adverse effects.  As the trial proceeds, 

the doses are increased towards expected therapeutic levels, and further information 

evaluating the properties of the drug may be obtained. 

Once the drug has been demonstrated to be safe in humans, a larger trial is held to 

determine its safety and effectiveness within its target population.  Phase II trials typically 

involve several hundred patients, one group of whom are administered the new drug, and 

another group given either the standard treatment or a placebo.  The aim of the Phase II 

trial is to determine the most effective administration regime, varying factors such as 

dosage, frequency of administration and length of treatment.  In order to eliminate any bias, 

it is common practice to perform a so-called ‘double blind’ trial, where neither the patients 

nor clinicians know who is receiving the new treatment, and who is receiving the old 

treatment or placebo.  Phase III trials are then performed in a larger and more diverse group 

of patients, in order to confirm the drug’s effectiveness and detect any less common side-

effects, and to compare the effectiveness of the NCE (New Chemical Entity) to currently 

available therapeutics. 

 Throughout this process there is a high rate of attrition of candidate compounds.  Five years 

ago the acting commissioner of the US Food and Drug Administration (FDA) reported 

estimates that just 8% of candidate drugs entering Phase I trials will go on to receive FDA 

approval, and that only one half of the drug candidates reaching Phase III trials show the 

necessary safety and effectiveness for approval (11).  A more recent study examining cancer 

trials found that only 25-50% of the new treatments reaching Phase III randomized clinical 

trials proved successful (17). 

Once released, monitoring of a drug’s efficacy and side effects continues.  Rare adverse 

reactions may only become apparent once a large population is using the drug, as was the 

case in the recent widely publicised discovery of an association between an increased risk of 
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heart attacks amongst patients taking the painkiller Vioxx (18,19) and other cyclooxygenase-

2 (COX2) inhibitors; a discovery that led to the withdrawal of a number of high-value 

products and left Merck defending itself against over 30,000 lawsuits (20) at an estimated 

cost of US$4.85 billion (21), due to allegations that it was aware of the risks, but failed to 

alert users to the possible dangers. 

1.2 The role of computational methods 

Computational methods, often referred to as in silico methods or virtual screening methods, 

are increasingly being seen as an attractive technique that can be used to complement both 

traditional and high-throughput screening (HTS) and optimisation strategies (22).  As 

computers have increased in power and decreased in price it has become feasible to carry 

out computational screening of ever larger databases, using algorithms of increasing 

sophistication.  It is fairly trivial to screen, in silico, compound libraries that (while nowhere 

close to being fully representative of all potential drug-like molecules) are several orders of 

magnitude larger than even the biggest HTS experiments can handle (23).  In order to 

identify a novel lead molecule with an activity of 1μM, a pharmaceutical company will 

typically have to screen in the order of ten thousand compounds (24), and anything that can 

be done to reduce this number can significantly increase productivity. 

High-throughput screening experiments typically have high rates of false negative and false 

positive results (25)  – active molecules that are missed, or inactive molecules that appear to 

be active.  False positive results cause less of a problem since they are identified during the 

more reliable secondary or follow-up screens.  False negative results, on the other hand, are 

more serious, since they cause potentially useful hits to be missed. 

Virtual screening programmes can be used to help overcome this problem (26).  In silico 

screens may be run in parallel to HTS programmes, and the hits from both combined to be 

used for secondary screening, or alternatively compounds thought to be inactive but similar 

to active compounds can be added to the HTS hits (27) for further testing. 

Not all protein targets are amenable to high-throughput screening.  In such cases, possibly 

resulting from the high cost of an assay, smaller scale iterative screening may be carried out 

(28).  Rather than screening an entire compound collection in one go, a much smaller initial 
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screen is performed, and its results used to construct a model which is in turn used to select 

compounds for the next round of screening.  This can be repeated until a sufficient number 

of active compounds have been identified. 

Besides virtually screening compounds against a single target, predictions of activity can be 

made against a large panel of targets in order to identify likely off-target hits, the 

occurrence of which can lead to toxic side effects, or to suggest novel uses for a compound 

(29).  In silico models are also used to predict physicochemical properties such as solubility 

(30), logP, the octanol/water partition coefficient (31), and pKa (32), and there is growing 

use of computational models to make predictions of more complex behaviour of molecules, 

such as prediction of the metabolic fate of drug molecules (33), of skin penetration (34) and 

the identification of toxicophores (35,36,37,38) – structural features of molecules indicating 

likely toxicity. 

It has already been mentioned that there is a high rate of attrition of candidate compounds 

over the course of the drug development process.  Figure 2 shows that around two thirds of 

the failures of drugs reaching clinical development are due to pharmacokinetic problems, 

animal toxicity and adverse effects in man (39).  Historically these issues are often not 

discovered until late in the development process, by which time significant resources and 

expense have been incurred.  It is hoped that in silico tools will enable much earlier 

identification of potential problems, and reduce the number of lead compound with 

liabilities that are not discovered until after significant investment has been made in the 

compound’s development, hence reducing overall drug development costs. 
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Figure 2: The reasons for the failure of 198 NCEs after reaching clinical development 

(39).  Pharmacokinetic problems, animal toxicity and adverse effects in man together 

account for almost two thirds of the failures. 

1.3 Virtual screening methods 

Virtual screening efforts can be broadly divided into two complementary groups of 

approaches – target- and ligand- based methods.  Target-based virtual screening methods 

generally involve modelling the interactions between the receptor or enzyme active site 

under investigation and each of the candidate molecules under consideration.  This requires 

a model of the 3-dimensional structure of this target.  Ligand-based methods, on the other 

hand, do not require a model of the target structure; instead they draw on information 

about molecules with known properties and activities.  In ligand-based virtual screening 

predictions are made on the basis of similarity to known molecules, or on the basis of 

models constructed around patterns identified in series of compounds.  While both 

approaches have their stories of success and failure, it is ligand similarity based approaches 

that are the most widely applied, due both to their orders of magnitude greater speed and 

the far greater availability of suitable data. 

Alternatively, de novo design techniques, such as SPROUT (40) can be used to design 

molecules meeting the constraints imposed by the receptor model in situ. 
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1.3.1 Ligand-based virtual screening methods 

The concept behind ligand-based virtual screening can be summarised by the ‘similar 

property principle’ (41): similar molecules are likely to exhibit similar biological activities and 

properties.  Whilst this is a straightforward enough concept, actually deciding how similarity 

should be measured is a complex matter, and highly dependent on the properties that are 

under investigation (42). 

There are two classes of ligand based virtual screening – molecular similarity searching, 

which usually has as its aim the identification of potentially active molecules from large 

databases, and Quantitative Structural Activity/Property Relationships (QSAR/QSPR), which 

are mainly used in the lead optimisation phase of drug discovery and development, as they 

are more suited to the detailed analysis of compounds that belong to fairly congeneric 

chemical series.  Both approaches rely on the representation of a molecule through some 

form of descriptors. 

Molecular descriptors 

There are many possible representations of a molecule; chemists variously consider a 

molecule to consist of a collection of atoms and bonds, regions of high and low electron 

density, or an ensemble of wave-functions, depending on the task at hand.  Similarly, there 

are many ways in which molecules can be represented in a computer.  Computers often 

store molecules as ‘coloured-graphs’ – lists of atoms (nodes) and the bonds (edges) 

between them, or as a list of atoms together with their coordinates.  These representations 

are not very well suited to mathematical analysis.  In order to make comparisons between 

molecules, descriptors are employed to capture the various properties and features that are 

thought to be important for modelling molecular interactions, and represent them in a 

manner that can be understood and manipulated by a computer.  Without any clear answer 

as to how to construct a descriptor that best represents a molecule, an enormous number 

of different descriptors have been investigated. 

Todeschini & Consonni’s Handbook of Molecular Descriptors (43) contains definitions for 

over 1800 different descriptors, many of which have a number of different 

implementations.  Many software packages, such as Mold2 (44), MOE (45) and SYBYL® (46), 
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each provide methods for calculating hundreds of descriptors.  Despite this huge apparent 

variety, most descriptors can be assigned to one of three common categories: 

 macroscopic physicochemical properties (most often calculated, but sometimes 

measured) such as the octanol/water partition coefficient (logP) and molecular 

weight 

 substructural fingerprints and feature counts 

 shapes and surface properties such as distributions of electrostatic potential 

These classifications broadly correspond to the various levels of molecular representation 

from which the descriptors can be calculated: so-called ‘1D’ descriptors depend only on the 

formula of the molecule; ‘2D’ descriptors depend on the molecule’s connection table – the 

atoms and the bonds between them; ‘3D’ descriptors depend on the stereochemistry and 

geometry of the molecule.  There are also ‘4D’ descriptors (47) which take into account the 

wide variety of 3D conformations a molecule can take, and higher dimensionalities 

accounting for flexibility in protein structures and the induced fit of ligands have also been 

suggested (48,49). 

Examples of the different representations of molecules (1D, 2D, 3D, 4D), and a selection of 

the descriptors calculable from each are shown in Figure 3. 
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Representation Descriptors 

1D (Formula) 

C10H12N2O 

Molecular weight 

Heavy atom count 

Atom counts: carbon, nitrogen, sulphur... 

Experimental properties (logP, affinities) 

2D (Connection Table) 

 

Hydrogen bond donor/acceptors 

Number of rotatable bonds 

Graph invariants 

Atom additive QSPR (logP, molar refractivity) 

Substructural fingerprints 

3D (Coordinates/Surface) 

 

Shape 

Solvent accessible surface area 

HOMO and LUMO energies 

Polar volume 

Dipole moment 

Pharmacophore fingerprint 

4D (Ensemble of Conformations) 

 

As 3D descriptors, but sampled for different ligand 
conformations 

Figure 3: 1D, 2D, 3D and 4D representations of molecular structure, illustrated with 

Serotonin, and examples of the descriptors calculable from each representation. 
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Molecular properties 

Molecular properties such as logP and molecular weight are probably the descriptors to 

have been most widely utilised to express similarity between molecules, and these are still 

commonly used (50) today.  Lipinski’s Rule of Five (51), for example, uses four whole 

molecule properties (molecular weight, logP, and counts of the numbers of hydrogen-bond 

donors and acceptors) as an indicator of a compound’s aqueous solubility, and hence oral 

bio-availability.  Lipinski’s Rule states that poor absorption or permeation are likely when a 

compound violates more than one for the following constraints: 

 There are more than 5 hydrogen-bond donors. 

 The molecular weight is over 500. 

 The logP is over 5. 

 There are more than 10 hydrogen-bond acceptors. 

This rule of thumb is used throughout the pharmaceutical industry to aid with the selection 

of compounds for inclusion in screening libraries (although properties required for screening 

are sometimes at odds to those required for oral bioavailability). 

Molecular weight, atom counts and numbers of hydrogen-bond donors/acceptors and 

rotatable bonds are obvious examples of descriptors for which precise values can be 

obtained.  Values of many more complex descriptors can often be approximated using 

simple representations of a molecule.  Properties such as logP and molar refractivity (MR) 

can be reliably estimated through atom contribution models, such as XLOGP (52), where 

each atom is assumed to make an independent contribution to the total logP value, the size 

of which depends on its local topological environment.  An example of such a calculation is 

given in Figure 4.  Surface and volume properties, such as van der Waals areas, which 

require a 3-dimensional model for a rigorous treatment, can be approximated using 

analogous methods.  Alongside these fairly simple calculations, the results of more complex 

calculations of molecular properties, such as dipole moments, HOMO and LUMO energies, 

heats of formation and ionisation potentials derived from quantum mechanical calculations 

are also often used as descriptors. 
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Atomic Grouping 

1 x C3 (2° heteroatom) 

1 x C10 (2° aromatic) 

1 x C13 (aromatic heteroatom) 

4 x C18 (aromatic) 

2 x C19 (aromatic bridgehead) 

1 x C21 (4° aromatic) 

1 x N1 (1° amine)  

1 x N10 (aromatic) 

1 x O2 (alcohol) 

8 x H1 (hydrocarbon)  

1 x H2 (alcohol) 

3 x H3 (amine) 

Contribution 

-0.2035 

-0.0516 

-0.5443 

0.1581 

0.2955 

0.1360 

-0.3239 

-0.2893 

-1.0190 

0.1230 

-0.2677 

0.2142 

LogP 0.287 

Figure 4: Illustration of logP calculation using an atomic contribution model (31). 

Substructural descriptors 

The descriptors most widely used in molecular similarity searching are substructural 

descriptors.  These consist of sets of atoms and/or bonds describing regions of a molecule.  

Substructural descriptors originally used dictionaries of predefined structural fragments, 

such as Symyx® MACCS keys (53), to identify the features contained in a molecule.  This has 

the drawback that fragments not considered important by the designers of the dictionary 

are ignored, when in fact they could prove vital to a particular interaction.  This makes the 

techniques highly dependent on the quality and appropriateness of the particular dictionary 

that they employ. 

Various techniques for automatically identifying fragments have been used to overcome this 

limitation.  Initially these tended to produce fairly small, simple fragments (e.g. augmented 

atoms, formed from a central atom and its immediate neighbours) (54), but as computer 

power has increased so have the fragment sizes and complexities that can reasonably be 

handled. 

Descriptors of this type include Daylight’s fingerprints (55) which consist of an exhaustive list 

of all the paths of atoms and bonds that can be traced through the molecular graph, 
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generally up to a maximum length of seven atoms, and Tripos’ UNITY fingerprints (56) which 

combines paths  calculated in a similar fashion to those of Daylight’s fingerprints with added 

counts of certain chemical elements and of additional features such as ring systems. 

Molecular fingerprints encode the presence or absence of each substructural feature with a 

1 or 0 at a position in a binary bit-string.  In the case of key-based systems each feature can 

be assigned to a specific position in the fingerprint, but this is not possible when the feature 

set is dynamically generated.  Instead, a hashing function is applied to each feature to 

determine which position in the bit-string to set.  This has the disadvantage of reducing the 

interpretability of the generated fingerprints; many different features may hash to the same 

fingerprint position, so it is no longer possible to identify the specific features present from 

the fingerprint’s bit-string. 

Atom-centred hierarchical fragments of molecules, illustrated in Figure 5 below, form a 

further class of substructural descriptor.  Hierarchically ordered spherical environment 

(HOSE) and hierarchically ordered ring description (HORD) codes (57) were originally 

proposed in 1978 for use in the prediction of 13C NMR chemical shifts and indexing files of 

molecular structures.  A more modern description of hierarchical fragment-type descriptors 

are the Signature Molecular Descriptors of Faulon (58,59).  

 

 

C(C(C C) C(N)) 

Figure 5: Illustration of the hierarchical structure of fragments and circular atom 

environments.  This specific example is of the generation of a Signature (58,59) -like 

atom environment fragment description.  The region of the molecule on which the 

fragment is centred is shown, along with the tree structure of the fragment and the 

descriptor generated. 
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Most recently, circular atom environments have been introduced, with the aim of encoding 

the electronic environment surrounding each atom in a molecule, rather than the exact 

connectivity of a substructural fragment.  Their use was proposed by Xing et al. (32,60) for 

the prediction of physicochemical properties such as pKa and logP through partial-least-

squares regression models based on contributions from the occurrences of SYBYL® (46) 

atom types at successive topological distances from a central atom, as illustrated in Figure 6 

below.  This descriptor, combined with a Naive Bayesian classifier and Information Gain 

based feature selection, forms the basis of Bender et al.’s MOLPRINT-2D molecular similarity 

searching technique (61,62). 

 A similar concept has been used by SciTegic in the development of their Extended 

Connectivity and Functional Class Fingerprints (ECFP/FCFP) (63,64), where each atom is 

assigned a numeric description representing its class, and this classification is augmented 

with the classes of atoms’ neighbours using a series of iterations in a procedure similar to 

that of the Morgan algorithm (65).  R-Group descriptors (66) are generated through the 

same Morgan-like approach, but are based upon the values of a number of atomic 

properties including atomic weight, hydrophobicity, molar refractivity and polar surface 

area, rather than the elemental or pharmacophoric descriptions (pharmacophores are 

described on page 18) used by SciTegic. 

 
 

(  C.ar  ;  C.ar [x2], C.sp2  ;  C.ar [x2] , O.sp2 , O.sp3  ) 

Figure 6: Illustration of the calculation of a circular atom environment fingerprint, 

using SYBYL® atom types.  To the left is a molecule with the fingerprinted region 

identified, and to the right is the fingerprinted region, showing the SYBYL® atom types.  

The fingerprint consists of the count of each atom type at each hierarchical depth 

from the central atom.  In this representation layers in the fingerprint are separated 

by semicolons.  ‘C.ar’ represents an aromatic carbon atom, and ‘X.sp2’/’X.sp3’ 

represent atoms of the specified element and hybridization. 
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A number of descriptors representing longer range features than are usually captured by 

substructure fragments have also been proposed.  Carhart et al. introduced atom pairs (67) 

in 1985.  These consist of a pharmacophore-based representation of each pair of atoms in 

the molecule, along with the length of the shortest path between them.  A similar concept, 

named REX, was developed by Judson (68), where the length of every path was included, 

not just the shortest.  Melville and Hirst (69) have reported the use of partial charges, molar 

refractivity, logP and logS in the calculation of topological autocorrelation descriptors, which 

capture the distribution of these physicochemical properties through pair-wise 

combinations of atoms, and the shortest path between them.  Young et al. (70) proposed 

the use of augmented atom pairs – a combination of atom pair and environment 

approaches, where each end of an atom pair is described in terms of its chemical 

environment, and a range-based, rather than exact, measure of the distance between the 

atoms is used in model generation.  Nigsch and Mitchell (71) introduced Molecular 

Orthogonal Sparse Bigrams, which have the potential to described correlation between 

different regions of a molecule through the pairing of selected atoms’ circular fingerprint 

descriptors, but do not capture the distance between the features. 

Fingerprints may be constructed from the combination of several types of feature.  As 

mentioned above, Tripos’ UNITY (56) fingerprints are the result of the concatenation of a 

hashed path fingerprint and a fingerprint representing the counts of certain chemical 

elements and features such as ring systems.  Other fingerprints have combined 

substructural descriptors with non-structural properties, for instance having bits indicating 

whether the molecule has a logP value within a particular range. 

Certain types of descriptors are better suited to particular applications.  Originally the major 

use of descriptors was in database searching and chemical registration (72), where 

fingerprints based on a descriptor are used to quickly identify and rank similar molecules, or 

refine queries by reducing the number of molecules for which it is necessary to carry out 

computationally much more expensive graph matching against the query compound.  Only 

certain types of descriptor, such as path fingerprints and certain structural keys can be used 

to refine database searches.  Hierarchical fragments and circular atom environments are not 

suitable for this task, but have shown better performance than path-based descriptors when 

used to predict biological activities (73,74).  
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Example calculations of a number of common classes of substructural descriptor are 

illustrated in Figure 7. 

Molecule 

 

 

Structural Keys 

   
  

 

1 0 1 0 0 1 

 

Paths 

 

 
Hashing 

 
404,251,677,79,145,469,833,10,350,775,720,448,968,805,367,408,401... 

To fingerprint 

 
00000000010000001000010011000000000000111100000000010000100... 

 

Fragments 

  
 

  
  

 

Circular Fingerprints 

(N;3C)(N;3C;2C)(N;3C;2C;2C)(C;2C,N)(C;3C)(C;3C;2C,2O)(C;3C;2C,2O;2C) 

The circular fingerprints correspond to the fragments above.  In this notation each 

layer of the fingerprint contains the counts of each type of atom in that layer, and 

layers are separated by a semicolon. (C;3C;2C,2O) means the central atom is a 

carbon atom, the first neighbours are 3 carbon atoms and the second neighbours 

are two carbon atoms and two oxygen atoms: 

 

central atom 1st neighbours 2nd neighbours 

   
 

Figure 7: Example calculation of structural keys and path, fragment and circular atom 

environment substructural fingerprints. 
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Pharmacophores 

Pharmacophores are descriptions of the spatial arrangement of molecular features that are 

believed to be necessary for biological activity (75) (similar to the ‘lock and key’ hypothesis).  

Generally there are six feature types from which pharmacophore models are built – 

hydrogen-bond donors, hydrogen-bond acceptors, basic groups, acidic groups, aromatic 

groups and hydrophobic groups.  Pharmacophoric features can be identified through the 

use of simple rules, such as ‘primary and secondary amines, and hydroxyl groups are 

hydrogen-bond donors’ (75).  Pharmacophores can be constructed from the features 

common to a number of molecules that are known to bind to a target, or through manual 

inspection of likely modes of binding. 

 

Figure 8: An example pharmacophore model superimposed on the template structure 

from which it was generated.  The yellow spheres represent aromatic regions, the blue 

sphere a hydrogen–bond acceptor and the red sphere a hydrogen–bond donor and 

cation. 

Pharmacophore fingerprints are an extension of the pharmacophore approach to the 

generation of 3D fingerprints.  The fingerprints are based on combinations of all the 

potential pharmacophore points identified in the molecule, together with the distances 

between them (76).  Two to four point pharmacophores are constructed from the potential 

pharmacophore points, and the pharmacophore types together with the distances between 

the points are hashed into a position in the fingerprint bit string. 

As well as pharmacophore fingerprints based on 3-dimensional geometric fingerprints, 

topological pharmacophores, similar to the atom-pair descriptors mentioned on page 16, 
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can be constructed.  Schneider et al. (77) suggested that pharmacophore models generated 

using topological distances rather than geometric ones, a technique they named Chemically 

Advanced Template Search (CATS), could overcome one of the main limitations of screening 

with substructure-based descriptors – the tendency models have to ‘learn’ the core 

scaffolds that they have been trained on.  Unfortunately models constructed with this 

approach have been found to perform poorly (74). 

Shape and surface descriptors 

Whilst a large number of descriptors rely on the comparison of the structural framework of 

molecules it is well known that molecules with different core scaffolds can interact with the 

same biological site in similar ways.  This is because molecules interact via their electronic 

properties, with the point atoms and rigid bonds picture that chemists typically employ 

being merely a convenient representation of the structure.  Substructure based descriptors 

have been found to exhibit a tendency to ‘learn’ these core scaffolds, restricting their use 

for scaffold-hopping between chemotypes.  3D descriptors aim to surmount this short-

coming by describing the shape and surface properties of molecules independently of their 

connection tables. 

As has already been mentioned, approximations to various surfaces can be calculated quite 

simply; however more precise surfaces can be calculated from a 3D representation of the 

molecule.  Commonly observed surface descriptors include the solvent accessible surface 

area of the molecule, the van der Waals surface area, and the proportions of these areas 

that are acidic, basic, hydrophobic, polar, or hydrogen-bond accepting (45).  

Molecular shapes have been described in terms of assemblies of standard geometrical 

objects, or using mathematical functions.  Morris et al. (78) have proposed the use of 

spherical harmonics to describe the shapes of molecules, which presents a straightforward 

method of comparison through use of the spherical harmonic expansion coefficients; and 

Ballester and Richards (79) have proposed representing molecular shapes through the 

moments of the distribution of atom’s distances from key points in the molecule. 

Other common molecular shape and surface related approaches include molecular 

interaction field (80) based descriptors, where molecules are first aligned and then various 

probes, measuring steric and electrostatic interactions, are moved over the surfaces of the 
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molecules, or through regularly spaced grids containing the molecules.  Most commonly 

force field based methods, such as GRID (81) and CoMFA (82) (Comparative Molecular Field 

Analysis) are used to score these interactions, though Quantum Similarity (83) approaches 

making use of electron probability density functions are also found, however the latter can 

be very time consuming to calculate. 

Typically, once interaction fields have been determined for a number of known active 

molecules (training set) they are overlaid and common regions detected.  In CoMFA 

searches this is carried out through partial least squares (PLS) regression between the 

interaction energy at each grid point and the molecules’ activity.  These conserved features 

are assumed to be responsible for the interactions involved in binding to the target.  Test-

set molecules are examined to see whether they possess the same features.  These types of 

techniques are particularly suited to data sets consisting of relatively rigid structures, since 

these make it much easier to generate good alignments. 

 

Figure 9: Example of a CoMFA model constructed from a set of steroid molecules, 

overlaid on the most active molecule from the training set.  The green and yellow 

regions indicate areas that are favourable or unfavourable with respect to steric 

effects, and the red and blue regions indicate where positive and negative charges are 

favourable.  
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Cheeseright et al. (84) have developed an alternative analysis of field approaches, based 

around the idea of electrostatic, steric and hydrophobic field extrema.  They propose that 

previous efforts in modelling what is ‘seen’ during molecular interactions have failed due to 

inadequate definition of charge distribution, and the large quantity of data required to 

describe surface properties.  To resolve this they have developed an improved molecular 

mechanics charge model – the eXtended Electron Distribution (XED) force field, which 

moves away from the conventional atom centred charge monopole towards a more 

distributed model.  To surmount the second hurdle they have proposed using a 

pharmacophore point like model, working only with points at the local extrema of the fields, 

as opposed to trying to process the whole surface or grid, though these models are not 

restricted to the three or four points generally used in pharmacophore models. 

Cheeseright et al. (84) have shown that ‘molecular field overlays’ generated using this 

approach can identify experimentally observed conformations of the ligands without 

requiring knowledge of the active site.  This was achieved by generating a number of 

conformations of each of two or three active site substrates, and detecting consistent 

molecular field overlays between the different molecules.  A consistent molecular field 

overlay is a set of field extrema which are conserved between two or more ligands; all 

combinations of molecular field extrema generated from the different conformations of 

each pair of ligands (each conformation of a ligand produces a different molecular field) is 

examined to determine the best matches.  When a consistent molecular field overlay can be 

found for the set of known ligands, it is assumed that this reflects the required features for 

binding to the active site. 

The main problem with many 3D techniques is their high dependence on the conformation 

and alignment of the molecules.  In order to make analysis as fast as possible, 

conformations are usually generated using a rule based system, such as CORINA (85) or 

CONCORD (86).  Coordinates may subsequently be optimised using a force field calculation, 

but there is no guarantee that the biologically active conformation is close to that found 

through optimisation in a vacuum.  When molecules have a high degree of flexibility or are 

substantially different it can be very difficult to generate an alignment (87). 
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In order to increase the speed and improve the accuracy of these methods, attempts have 

been made to remove the need to align molecules before performing grid and field based 

analysis.  GRid-INdependent Descriptors (GRIND) (88) select a small, representative subset 

of the tens or hundreds of thousands of grid points generated in a typical analysis of a drug-

sized molecule, based on the strength of interaction and distance from other representative 

points.  These representative points are encoded on the basis of their pair-wise distances 

and energies, giving a representation independent of the molecule’s alignment in space. 

Bender et al. proposed the MOLPRINT-3D (89) technique, where the results from GRID 

probes are assembled into surface patches a few Ångströms in diameter, and the 

distribution of scores at increasing distances from the centre of the patch binned and 

recorded, in a manner analogous to the generation of 2D atom environments.  These 

descriptors were found to perform at a mid range level when compared to a variety of 

standard substructural techniques, though they did detect actives with a wider variety of 

chemotypes. 

Unfortunately such methods take far longer to calculate, so are currently less feasible for 

use in large scale screening as 2D fingerprinting techniques. 

Other descriptors 

Many other descriptors have been tried, and only a few of them will briefly be mentioned 

here.  Many topological and other graph based indices have been proposed, examples of 

which are described in Todeschini & Consonni’s Handbook of Molecular Descriptors (43).  A 

range of molecular spectra (90) – X-ray, electron diffraction, infra-red and NMR (91) have 

also been used, with mixed reports of success (92,93).   

Rather than generating fingerprints on the basis of the occurrence of structural features in a 

molecule, they can be constructed based on the binding affinities when screened against a 

panel of uncorrelated reference targets.  Use of these fingerprints is based on the 

hypothesis that compounds binding to the reference proteins in a similar manner are likely 

to bind in a target protein in a similar manner too.  Both in vitro (using experimentally 

determining binding affinities) (94) and in silico (based on docking experiments) (27,95) 

affinity fingerprints have been investigated.  Compounds are screened against the reference 

panel, and their activity profiles, representing the response of each target to the compound, 
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generated.  For novel targets, a subset of the profiled compounds is screened, and then 

models constructed using the compounds’ activity profiles. 

Molecular similarity searching 

Molecular similarity searching has developed out of tools originally created to enable the 

searching of databases of chemical structures.  Initially these relied on the matching of a 

single query structure against the database contents, with presence of the query structure 

in a database molecule resulted in the entry being flagged for retrieval (96).  This was 

subsequently developed into searches for molecules containing a number of substructural 

fragments.  As searches became more complex it became desirable for them to return 

results matching some but not all of the substructural features specified, and these results 

needed ranking depending on how many of the substructural features they contained.  This 

led on to search systems where an entire query molecule could be entered, and all the 

nearest-neighbour matches identified through a similarity measure based on substructures 

common to the query compound and the database molecules. 

In order to perform a basic similarity search, a query molecule – such as a known binder to 

the target under investigation – is specified, and substructural fingerprints generated.  This 

fingerprint is compared with the fingerprint of each of the compounds in the database, and 

the similarity determined using some metric, the best known of which is the Tanimoto (97) 

coefficient (also known as Jaccard’s “coefficient of community” (98,99)), which scores 

similarity as the ratio of the number of features the two molecules have in common to the 

total number of distinct features found between them.  There are a wide variety of such 

similarity metrics available (96) and since their scores are generally highly correlated (100) 

the results are quite insensitive to the choice of metric. 

𝑡 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑐𝑜𝑚𝑚𝑜𝑛 𝑡𝑜 𝑏𝑜𝑡𝑕 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑒𝑖𝑡𝑕𝑒𝑟 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
 

Figure 10: Calculation of the Tanimoto coefficient. 

Various modifications to the basic bit-string approach can also be made, such as setting 

multiple bit positions to represent different numbers of occurrences of a feature, rather 

than simply recording its presence or absence (101,102).  Binary fingerprints have also been 

extended to produce feature count vectors, known as Molecular Holograms (103).  A study 
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by Fetchner et al. (104) found that models constructed using holographic fingerprints rarely 

yielded significantly higher enrichment factors than models constructed using their binary 

equivalents.  It is however interesting to note that the lists of individual molecules returned 

by the holographic and binary fingerprints did differ considerably, so there could be 

advantages found in amalgamating lists of actives produced through both methods, in order 

to increase the molecular diversity of the compounds retrieved. 

The use of bit-string based similarity can cause a number of problems; in particular there 

can be a bias towards larger molecules, which will tend to have more bits set, and there is 

quite a large ‘twilight zone’ (105) in which it can be difficult to know whether the similarity 

score calculated indicates that the molecules are really similar, or not.  This can be 

overcome by deciding up front how many molecules the search should return, and picking 

enough of the top scoring results to fit this. 

Tanimoto coefficient based similarity searches are still used, but there is also a wide range 

of machine learning and regression techniques that are often applied.  Recent similarity 

techniques such as MOLPRINT-2D and SciTegic’s fingerprints make use of machine learning 

techniques such as Naïve Bayesian classifiers to compare molecules.  These offer a number 

of advantages over the older similarity metrics, most noticeably the ability to train models 

on a large number of both active and inactive molecules, selecting the relevant descriptors 

from each, and also producing a more meaningful output than similarity coefficients 

generally do – the relative likelihood of the molecule under investigation being active or 

inactive, given that it contains the features that it does, rather than a more abstract 

‘similarity score’. 



25 

 

Figure 11: Outline of molecular similarity techniques.  Molecules are represented to 

computers in a numerical or binary form.  Models are constructed from these 

descriptors using similarity metrics or machine learning methods. 

Toolkits such as the Weka Machine Learning Workbench (106), RapidMiner (formerly YALE) 

(107) and the R Project for Statistical Computing (108) provide straightforward access to 

large numbers of machine learning and statistical methods. 

By no means all similarity searching is carried out using substructural features – any 

descriptors can be used.  Many machine learning methods can take real-valued descriptors 

as inputs, but if not, these can either be binned, to form binary bit-strings, or vectors of 

values can be used along with distance measures such as the Euclidian distance (length of 

the line whose ends are at the points represented by the two vectors of descriptors). 

QSAR/QSPR modelling 

Once a lead series has been identified, interest often moves away from basic molecular 

similarity measures to the construction of more quantitative models of  the activity and 

properties of molecules in that chemical series.  The original QSAR and QSPR models were 

pioneered by Hansch (109,110) and by Free and Wilson (111) in the 1960s, using linear-

regression models based on a small number of molecular property-type descriptors with 

clear physicochemical meaning (112) to predict activities and properties for specific 

chemical series. 

Similar techniques are still employed today, particularly for the prediction of 

physicochemical and pharmacokinetic properties such as solubility, with a continuing stream 

of new publications in the area; one study reports the identification of over 18,800 QSAR 

and QSPR models (113).  Modern models tend to use a much greater range of descriptors, 
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often including far less clearly interpretable descriptors than the earlier models did.  In 

tandem, newer statistical techniques such as partial least squares and principal component 

analysis regression, or machine learning methods such as neural networks and support 

vector machines, are being employed.  These methods have the advantage that they can 

better model the non-linear relationships that are often found to occur between descriptors 

and activities or properties, but this can come at the cost of a loss of interpretability. 

When generating models from a large number of descriptors, particularly when the quantity 

of training data is relatively small, the selection of relevant descriptors and features is 

essential (114) if over-fitting of the model to the training data is to be avoided.  This 

selection process can also enable the model to run faster, and produce models that do not 

contain more complexity than is necessary, making them more clearly understandable 

(115). 

Descriptors that are relevant in one circumstance may be useless in another – one study 

reported finding that logP (one of the most widely used descriptors in QSAR modelling) was 

no more useful than random numbers when predicting the biological activity of certain 

chemical series (13).  The cost of calculating descriptors may also be borne in mind – often a 

complex descriptor may be strongly correlated to a much simpler one (112,116), leaving the 

time spent calculating advanced descriptors wasted.   

Descriptor and feature selection can be an integral component to a machine learning 

method, as is the case with Random Forests, or can be applied as a filter prior to the 

model’s generation, as with the Naïve Bayesian classifier/Information Gain (117) filter 

employed by MOLPRINT-2D. 

1.3.2 Target-based virtual screening methods 

Docking 

The most commonly used form of target-based virtual screening is docking, which is the 

subject of many reviews, examples being those by Kitchen et al. (118) and Mohan et al. 

(119).  Docking experiments investigate how a candidate ligand could potentially bind to the 

active site of an enzyme or receptor.  The possible conformations and orientations of a small 

molecule are sampled, and each is placed into the binding pocket of a biological target.  The 



27 

fit for each docking pose is measured using a scoring function typically based on the 

interactions between the ligand and its target.  The highest scoring poses are taken to have 

the strongest interactions between the ligand and receptor, and postulated to be the 

biologically relevant fit. 

Attempts have been made to correlate docking scores to experimentally determined 

binding affinities, though this has proven to be challenging (120), likely due to the complex 

nature underlying the thermodynamics associated with the weak non-covalent interactions 

involved in protein-ligand binding, particularly entropic and solvent effects.  Errors are also 

likely to be, at least in part, due to deficiencies in the receptor model.  As will be discussed 

later, there is no guarantee that the 3-dimensional structure used for docking is in the 

biologically relevant conformation.  This is compounded by the little or no flexibility 

afforded to the protein structure, unlike the ligand, due to the high computational cost that 

would be involved. 

A range of docking programs such as GOLD (121), FlexX (122,123) and Glide (124,125) are 

regularly used in drug discovery processes.  These are most successful when consensus 

methods, combining the results of a number of different scoring functions for each pose, are 

used.  This has been found to reduce the occurrence of false-positives (126), though 

obviously at a cost of increasing the computational effort required, which reduce the 

technique’s through-put. 

Receptor-based pharmacophores 

Pharmacophores, which were discussed in more detail on page 18, are arrangements of 

generalised molecular features representing the main interactions required for the binding 

of a ligand to a protein.  Pharmacophore models are usually constructed from known 

ligands, however Meagher and Carlson have reported (127) the development of 

pharmacophore models through analysis of the flexibility found in a collection of un-

liganded protein structures.  This technique was found to be able to discriminate between 

known inhibitors of HIV protease and drug-like non-inhibitors, and offers the promise of 

providing more flexible models than traditional pharmacophore techniques where only a 

single structure is considered. 



28 

Structures 

As has already been mentioned, in order to carry out target-based virtual screening a 3-

dimensional model of the target’s structure is required.  The most common sources of these 

are X-ray crystallographic models, followed by NMR and homology modelling and 

simulation.  Some of the greatest challenges associated with target-based virtual screening 

arise from to the quality and the limitations of the structural data available.  For many 

potential targets no structural data is available – this is particularly true of membrane 

proteins which are notoriously difficult to crystallise, though structures are starting to 

appear as new crystallization techniques are developed (128), such as the recently 

published  human G protein-coupled receptor (GPCR) structures (129,130,131).  Even in 

cases where ‘good quality’ crystallographic data is available, mistakes are often made; 

PDBREPORT (132) estimates that as many as 15% of deposited structures contain errors.  

Some of the problems associated with the use of crystallographic data are due to users not 

appreciating that X-ray crystallographic structures are “one crystallographer’s subjective 

interpretation of an electron density map” (133), rather than the direct output of X-ray 

crystallographic experiments.  The inherently static nature of a crystal makes it difficult to 

appreciate the dynamic nature of structures under native conditions, which can be 

particularly important when a ligand is bound through an ‘induced-fit’ mechanism, and the 

crystallisation process can also lead to instances where the crystal structure does not 

accurately reflect the conformation of a protein when in solution. 

1.4 Current challenges and developments 

In spite of the huge growth of virtual screening over the past decade, the high rate of 

attrition in drug development has continued.  Recently there has been a growing feeling 

among practitioners that in silico screening is not performing as well as was expected 

(134,135).  It is increasingly apparent that the reported performance of models, generally 

from cross-validation or hold-out data at the time of construction, are not being achieved 

when the models are applied to novel data (136). 

1.4.1 Activity cliffs 

In part these problems are caused by deficiencies in the modelling techniques.  There is a 

growing appreciation of the appearance of ‘activity cliffs’ (136) in QSAR data.  QSAR models 
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are based on the ‘similar property principle’ and exhibit ‘neighbourhood behaviour’ (13) – 

the assumption that activity landscapes can be compared to gently rolling hills,  where small 

changes in molecular structure lead to a small change in activity (137).  For many series of 

compounds this holds true, however instances of the ‘similarity paradox’ (138) where a 

seemingly small structural modification leads to a large change in biological activity are also 

common.  Examples of this are shown below.  Figure 12 shows how successive lengthening 

of the alkyl chain in a series on morphine analogues moves the compound’s activity from 

potent agonist to potent antagonist and then back to a potent agonist (139). 

 

Substituent (R) Activity 

methyl potent agonist 

ethyl inactive 

propyl potent antagonist 

butyl inactive 

pentyl potent agonist 

hexyl potent agonist 
 

Figure 12: The activities of Morphine (R=methyl) and a series of analogues.  Small 

changes to the structure of the compound can dramatically alter its activity. 

The presence of activity cliffs can often be rationalised if the binding mode of the ligand is 

known; it could be, for example, that the addition of a methyl group leads to an 

unfavourable steric interaction.  If an appropriate descriptor is used to represent the 

molecule then this behaviour may be captured in the model, otherwise an activity cliff 

appears.  The occurrence of activity cliffs can also be receptor dependent – ligands that 

appear very similar in some circumstances can behave quite differently in others.  Figure 13  

shows how a small structural change can lead to small changes in activity against some 

targets, but an order of magnitude increase in binding to another. 
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Ligand 
Activity (Ki / μM) 

Thermolysin NEP 24.11 ACE 

 

1.8 0.0019 0.14 

 

2.3 0.0023 10 

Figure 13: Example of molecules simultaneously illustrating both the ‘similar property 

principle’ (when binding to thermolysin or NEP 24.11) and the ‘similarity paradox’ 

(when binding to ACE) (140,141). 

1.4.2 Simple models 

There have recently been a number of reports of relatively simple models being found to 

perform as well as much more sophisticated ‘state of the art’ methods.  In one comparison 

of virtual screening tools (116) predictions based on 'dumb' atom count descriptors, 

consisting of the total number of atoms in a structure, the number of heavy atoms and the 

numbers of each of ten commonly occurring elements (boron, bromine, carbon, chlorine, 

fluorine, iodine, nitrogen, oxygen, phosphorus and sulphur), were compared with a number 

of much more sophisticated methods.  On average the best performing method in the study 

(MOLPRINT-2D) achieved enrichment factors that, although 70% higher than the ‘dumb’ 

atom counts, were much lower than the often reported 10× or higher enrichment relative to 

random compound selection.  For two of the eleven datasets described in the study the 

atom counts achieved higher enrichment factors than UNITY fingerprints, and as was noted 
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by the authors, generally found hits with a wide variety of scaffolds, avoiding the biases 

commonly associated with many substructural descriptors. 

Gillett et al. (142) have reported the use of simple descriptors to detect compounds from 

the World Drug Index in a much larger collection of molecules.  They found that even single 

descriptor models using features such as the number of hydrogen-bond donors in a 

structure gave enrichment factors of up to 4.6× higher than random selection. 

Another recent study (143) evaluated a number of logP prediction methods using two small 

public datasets (223 and 43 molecules) and two larger in-house datasets (882 molecules 

from Nycomed and 95809 molecules from Pfizer). Thirty methods of predicting logP were 

evaluated using the public datasets, and 18 against the in-house datasets.  Included in the 

comparison were two ‘dumb’ models: an Arithmetic Average Model (AAM), which assigned 

all molecules the same logP (the mean of the dataset), and a very simple QSPR, based only 

on the number of carbon atoms (NC) and the number of hetero-atoms (neither carbon nor 

hydrogen atoms – NHET) in the molecule: 

𝐿𝑜𝑔𝑃 = 1.46 + 0.11 × 𝑁𝐶 − 0.11 × 𝑁𝐻𝐸𝑇 

When evaluated against both of the in-house datasets no more than half of the tested 

methods performed better (assessed by RMSE in predictions) than the Arithmetic Average 

Model, and the simple NC+NHET QSAR was among the best performing of all the methods.  

Against the public datasets the majority of prediction methods performed better than the 

AAM and NC+NHET models.  The authors suggest that this could to be due to the paucity of 

publicly available data making it likely that many of the tools would have included data from 

the public datasets in their development. 

It has also been shown that simplistic 3D models can perform on a par with more 

sophisticated ones.  Manchester and Czermioski (144) compared CoMFA with a significantly 

less sophisticated alternative they termed Simple Atom Mapping Following Alignment 

(SAMFA).  Like CoMFA, the SAMFA method is dependent on an alignment of structures, but 

rather than comparing steric and electrostatic field values at points on a regular grid 

containing each structure, SAMFA compares the occurrence of particular elements and 

pharmacophoric atom features at each point occupied by an atom in any of the aligned 
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structures.  In a comparison of the two techniques’ performance over nine data sets the 

authors found that the SAMFA method performed “as good, or slightly better” than COMFA.  

They surmised that the number of simplifications and approximations inherent in QSAR 

modelling techniques overshadowed any problems due to the simplifications made in the 

SAMFA method, and felt that the model’s atom-centred basis made it straightforward to 

interpret. 

1.4.3 2D versus 3D 

Despite 2D based virtual screening methods generally containing no information on the 

shape or stereochemistry of a molecule, they have widely been found to perform as well as, 

or better than, either descriptor- or docking- based 3D methods (145,146,147,148).  

Combined with their generally much higher throughput, this has led to 2D models being 

used much more regularly than 3D approaches.  Although there is considerably more 

information lost in the generation of 2D models, the construction of 3D models introduces 

more noise into the data.  While it is well known that stereochemistry is important to 

molecular recognition (149), a method of including stereochemistry in 2D descriptors is yet 

to find widespread acceptance. 

As previously discussed, ligand and protein flexibility are often only partially considered, or 

completely ignored, by docking programs.  If they are fully included then this can result in 

too many degrees of freedom in the system for the problem to be computationally tractable 

with current resources and techniques.  Ligand flexibility is also often ignored in 3D 

modelling.  The ligand conformations used in 3D model generation and docking are often 

taken to be the coordinates of an idealised energy minimum structure, while it is known 

that binding often occurs in higher energy conformations.  Feher and Williams (150) have 

reported that despite docking tools usually allowing for ligand flexibility, their generated 

poses and scores are highly sensitive to the ligands’ input conformations.  In an investigation 

into the effects of input geometry of ligands on docking calculations, Feher and Williams 

found that none of the sources of coordinates evaluated (X-ray crystal structures, force field 

minimized CORINA (85) generated structures and conformational searches) consistently 

produced better results than the alternative sources. 
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A further complication arising with docking approaches is that a docking program relies on 

two distinct components: a method for generating ligand (and possibly protein) 

conformations and a scoring function that evaluates the binding of each ligand 

conformation to the target.  Scoring functions are generally intended to reflect binding 

pose, providing a relative ordering of ligand/protein complex conformations.  Unfortunately 

current scoring functions are not considered to be very reliable in predicting binding affinity 

(151); one recent investigation of docking (152) reported that “comparative studies indicate 

that none of the docking programmes truly outperforms the others”.  This is likely to be at 

least in part due to scoring functions being based mainly on the strength of interactions 

between the ligand and protein, while the free energy of binding depends on many other 

factors, such as the hydrophobic effect, destabilisation of the unbound protein or ligand or 

changes to proteins’ normal modes (heat capacity), and hence entropy, on binding. 

Specific biomolecular systems can be investigated through atomistic simulations, but this is 

not tractable in a high-throughput manner due to the computational resources required.  

There are also a number of challenges associated with such simulations; bespoke force field 

parameterization is often necessary for uncommon ligands, and there are difficulties 

associated with modelling protein quaternary structures, cooperative binding and lipid 

bilayers that have not yet been fully solved. 

1.4.4 Local versus global models 

Early QSAR/QSPRs were local models, describing changes in activity, or the variation of a 

property, within a single chemical series – a collection of structurally related compounds.  

Modern in silico models tend to be global, able to make predictions for any compound.  The 

predictions of these models are, however, only reliable within the regions of chemical space 

in which the model was trained (the applicable domain).  Some of the dissatisfaction with 

current in silico models arises from attempts to extrapolate beyond these limits, which 

generally results in poor predictions (135).  A number of studies have shown that 

compromises between local and global approaches, such as the construction of sub-models 

or the application of local corrections, can lead to improvements over a single global model. 

While predicting molecules’ pKa, Xing et al. (60) constructed separate models for subsets of 

chemical space; acids were subdivided into four broad categories: aromatic acids, aromatic 



34 

alcohols, aliphatic alcohols and aliphatic acids, and bases were similarly separated into 

different classes of molecule.  The combination of these simple sub-models gave much more 

accurate predictions than their previously published global models for the pKa of all acids 

and all bases (32).  Similarly, when modelling solubility, Bergström et al. (145) found that by 

generating sub-models for acids, bases and ampholytes (molecules containing both acidic 

and basic groups) more accurate predictions were possible than when using a single global 

model. 

Rather than pre-selecting which sub-models to generate, local models can be generated on-

the-fly, based only on the subset of the training data most relevant to a query compound 

(153,154).  Based on the assumption that similar compounds will be subject to similar errors 

in prediction, local model corrections can also be applied, adjusting the value of predictions 

made from global models according to the mean error in prediction of the k-nearest 

neighbouring molecules from the training data (155) or from data acquired after the model 

is constructed (156,157).  It has been reported that this type of approach can be much more 

accurate than use of a single global model.  However, there are conflicting reports as to the 

circumstances under which it is appropriate to apply this technique: 

“[Local regression] can also lead to larger prediction errors when compared to 

ordinary global regression.  This is especially true when the training data is 

sparse.” (153) 

 “[Locally weighted linear regression] appears to be especially well-suited for 

the development of highly predictive models for the sparse or unevenly 

distributed data sets.” (154) 

Similar results can be achieved through the use of certain machine learning techniques, such 

as decision trees, which inherently divide the model space in a (hopefully) optimal manner. 

QSARs, and other in silico models, have tended to be static, generated and evaluated by an 

expert, and then left unchanged for long periods.  Rodgers et al. have shown that the 

performance of these models can exhibit time dependent behaviour (158).  They reported 

the results of constructing and evaluating models for Human Plasma Protein Binding on a 

monthly basis over a two year period, with a portion of the new data collected each month 
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held back from model generation and used for testing.  The accuracy of predictions of 

earlier test data were found to be stable as the models were updated.  However, the 

updated models were better at predicting both new and future test data.  This suggests that 

over time the focus of current research can shift away from the compounds with which 

models were constructed, and into new regions of chemical space.  By ensuring that models 

are updated regularly to reflect this, the accuracy of predictions can be maintained. 

1.4.5 Consensus methods and data fusion 

Consensus methods, basing predictions on the combined output of many different 

approaches, have been found to perform well in a wide variety of fields.  There are many 

reports on the ‘wisdom of crowds’ – the average of many independent estimates made by 

humans being more accurate than those of individuals, even those of specialists (159), and 

the same is often true of computational models.  The recently announced winning entry of 

the Netflix Prize for the machine learning algorithm that best predicts subscribers’ ratings of 

movies makes its predictions through the combination of a number of diverse approaches 

(160). 

Increasing computer power has made combining the results of multiple models ever more 

feasible.  A recent review of data fusion methods by Willet (161) did not find them to be any 

more effective than the best individual predictor in most studies, but their results were 

comparable to the best individual functions, and were robust to changes, while the best 

predictor varied from experiment to experiment. 

The logP study (143) discussed above included a consensus model based on the mean value 

of the predictions made by the other models.  This was more accurate (predicted logP 

values had a lower RMSE) than any of the tools individually for three of the four datasets 

used in the study, and was close to the best performing model in the fourth. 

In virtual screening experiments it is often not only the accuracy of the results that is 

important, but also the diversity of the structures identified.  The output of screening 

approaches with little correlation, such as affinity and structural fingerprints (162), are often 

complementary to each other – many of the hits returned by each method are missed by 

the other (27).  Combining the results of different similarity searching methods leads to the 

inclusion of more hits than are identified by any one method alone (163).  Similarly, it has 
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been found that in docking experiments use of consensus scoring functions substantially 

improves tools’ performance in most cases (164,165). 

1.4.6 Model interpretability and inverse QSAR 

Ideally, models and the factors contributing to each prediction are easily interpreted by a 

chemist, enabling them to appreciate how alterations to the molecule’s structure will affect 

the model’s predictions.  Linear models tend to provide this interpretability, however non-

linear models and machine learning methods are often found to offer the highest 

predictivity, but at the expense of losing interpretability.  Non-linear models are often 

considered to be ‘black boxes’, giving little or no indication of the basis for a prediction. 

This is not true of all machine learning and non-linear techniques, for example Bayesian 

classifiers can be interrogated to determine the contribution of each feature to a prediction.  

When using other machine learning techniques, such as Random Forests, it may be possible 

to extract the importance of each variable within a model, but not assess its contribution to 

an individual prediction. 

Carlsson et al. (166) have recently proposed a novel method of assessing the importance of 

each input variable of a model to an individual prediction.  They proposed the generation of 

a locally linear approximation to non-linear or black-box models by either analytical or 

numerical calculation of the partial derivative with respect to each variable about the point 

at which a prediction is made.  Assuming that the function is sufficiently smooth, the 

gradient of each variable reflects its importance to that particular prediction, and enables 

rational exploration of chemical space in the local neighbourhood about a molecule, by 

indicating how the predicted property will vary with minor changes to that variable. 

1.4.7 Data quality 

One of the major issues that virtual screening research has faced, especially in academia, is 

access to and quality of data.  Much chemical data is commercially sensitive, so never gets 

published.  Many of the available datasets are fairly small, and published as supporting 

information to papers (e.g. Briem and Lessel (27), Jacobsson et al. (167) and Fontaine et al. 

(168)).  As a result many virtual screening studies report building and evaluating their 

models on far smaller data sets than the libraries to which they intend the models to be 

applied. 
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A number of databases abstracting details of active ligands from the literature are available.  

The Symyx® Molecular Drug Data Report (MDDR) (169) and the World of Molecular 

Bioactivity (WOMBAT) (170) database are commercial offerings that have been available for 

some years, and recently the EBI has acquired a similar resource, the StARlite database, and 

made it freely available rebranded as ChEMBL (171).  While useful resources, these 

databases do have limitations; they often contain a relatively small number of molecules 

tested against the majority of reported targets, and being aggregated from literature 

generally report only active compounds. 

A further problem with data aggregated from a number of sources is that results are not 

necessarily comparable between experiments.  Where quantitative results are available, 

some measures, such as IC50 values, depend on the experimental conditions, and even 

measurements of a property as apparently straightforward as solubility can vary wildly 

(172). 

Due to the relative rarity of activity, it is assumed in many analyses that any compound not 

reported to be active is inactive, but it could be that this compound has just not been 

tested, and also problems can arise if promiscuous binders are not identified. 

The NIH Molecular Libraries Initiative (173) is now making publically available the results of 

high-throughput screening (HTS) programmes through the PubChem Bioassay service (174), 

providing data on both activity and inactivity.  So far there have been few reports of models 

constructed using this data, possibly because, as with all HTS data, this brings with it issues 

regarding quality and noise. 

Due to the large imbalance in much of this data, with many more inactive (or presumed 

inactive) compounds than active ones, very high prediction accuracies can be achieved 

simply by ignoring the presence of active compounds altogether (175) – if only one in a 

thousand molecules is active, a model can correctly classify 99.9% of compounds simply by 

predicting that all of them are inactive!  This can be a particular problem when models are 

being generated and evaluated in an automated manner. 
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Many screening libraries and other datasets contain series of close analogues designed to 

bind to a particular target, which can also skew the results of evaluations of virtual 

screening techniques. 

Some datasets contain inherent biases.  In the α1A agonist dataset published by Jorisson and 

Gilson (176) active molecules are considerably larger than the inactive compounds*, 

meaning that any model including a measure of size as a descriptor can easily discriminate 

between actives and inactives.  Inherent anomalies such as this are not discoverable 

through cross-validation, but only become clear when the model generated is applied to 

alternative data and not found to perform as expected. 

The relative scarcity of data means that many supposedly independent models have in fact 

been trained using much of the same data.  As with the case of the logP models discussed 

earlier, not knowing exactly which data was used to develop a model can make reliable 

evaluation of its performance difficult. 

1.4.8 Applications of virtual screening 

Molecular similarity, QSARs and other virtual screening methods are widely used in the 

prediction of activities and properties of compounds (such as logP and solubility) but 

additionally these approaches are increasingly being applied to other more complex 

problems. 

Originally virtual screening experiments were conducted with the aim of testing as many 

compounds as possible against a single target.  Multi-target models are now being 

generated which enable compounds to be evaluated against a large panel of potential 

targets at once (e.g. BioPrint from Cerep (177)).  It is hoped that this will lead to early 

identification of off-target effects and potential drug-interactions, and may help to better 

understand the mode of action of multi-target drugs. 

A further application of multi-target predictions is the identification of novel therapeutic 

uses of existing drugs.  While some additional trials are necessary, extending the use of an 

existing drug to a novel therapeutic area is much less expensive than developing a new drug 

                                                      
* The mean length of the shortest path between the most distant atoms in each inactive compound 
is 9.3 bonds, but for the actives it is 16 bonds – an increase of 71%. 
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from scratch – the compound will already have been developed into a therapeutically useful 

form, and have undergone extensive safety testing. 

A recent study has reported the in silico screening of 3,665 approved small-molecule drugs 

and other pharmaceutical compounds (29) against a large panel of targets, using molecular 

similarity techniques.  This predicted a number of previously unknown targets for many of 

the compounds.  The authors tested 30 of the predicted drug-target interactions, and 23 of 

these were confirmed (29). 

In a similar manner, several groups have used virtual screening approaches to investigate 

traditional Chinese medicines (TCMs) (178,179,180).  The constituent compounds from TCM 

ingredients such as ginger and ginseng have been screened against models constructed for 

panels of drug targets, generating ‘bio-prints’ of the compounds’ likely activity.  These bio-

prints have been related to the TCM’s therapeutic use in order to elucidate possible modes 

of action, and potentially identify new lead compounds for pharmaceutical development.  

Evidence has been found supporting a number of the modes of action of TCM ingredients 

predicted using this approach (179). 

QSAR models often perform well within a series of closely related compounds, however it is 

often desirable to identify molecules with a novel scaffold (core structure) but offering 

similar properties to a query compound.  This may be due to a desire to avoid a liability 

identified with a particular scaffold such as toxicity or promiscuous binding, or to avoid 

regions of chemical space infringing on a competitor’s patents.  A number of studies e.g. 

(181) have investigated the scaffold hopping potential of different tools, particularly 3D 

methods. 

There have been a number of advances in automated model generation (182,112).  This can 

offer the potential to explore many combinations of descriptors and modelling techniques in 

order to identify the optimal combination.  While the risks of models over-fitting their 

training data are believed (at least for the users of such models) to be fairly well 

understood, the huge numbers of descriptors and machine learning and regression 
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techniques available to an automated system increases the likelihood of discovering chance 

correlations*. 

Virtual screening tools are also being applied to the improvement of screening library 

collections, with the aim of generating more drug-like hit and lead compounds, reducing the 

effort required to move from lead to candidate (183).  In silico models are increasingly being 

used to identify potential ADMET (Absorption, Distribution, Metabolism, Excretion, and 

Toxicity) liabilities as early in the discovery process as possible, in order to reduce the 

number of hugely expensive late-stage failures.   

The prediction of xenobiotic metabolism, which is of great importance to the 

pharmacokinetics, efficacy and toxicity of New Chemical Entities, forms the basis for the 

remainder of this thesis.  The next chapter provides an introduction to xenobiotic 

metabolism, and current approaches to its prediction.  The development and evaluation of 

MetaPrint2D, a new tool for predicting sites of xenobiotic metabolism, is then discussed, 

and the extension of MetaPrint2D to prediction of types of metabolic transformation and 

the likely metabolites formed described in subsequent chapters. 

 

                                                      
* Assuming that there is a 0.1% probability of a model exhibiting chance correlation, only 693 
independent models must be generated for there to be a better than 50% likelihood that one will 
show chance correlation (0.999693 = 0.4999). 
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2. Prediction of xenobiotic metabolism 

The remainder of this thesis describes work investigating prediction of the metabolism of 

xenobiotic compounds.  The Substrate/Product Occurrence Ratio Calculator (SPORCalc) 

method for predicting sites of xenobiotic metabolism has been re-designed with a number 

of enhancements, thoroughly evaluated, and its performance increased to the point where 

it can be used in an interactive or high-throughput manner.  The new software 

(MetaPrint2D) is available as a freely distributable library and includes a number of example 

applications, enabling more wide-spread use of the method. 

This chapter provides an introduction to xenobiotic metabolism and its effects, and to the 

current computational approaches used for its prediction.  The following two chapters 

describe the development and evaluation of MetaPrint2D, and Chapter 5 describes 

MetaPrint2D-React: an extension of MetaPrint2D extending it from site of metabolism 

prediction, to prediction of the metabolic transformations and metabolites formed.  Both 

MetaPrint2D and MetaPrint2D-React have been extensively evaluated, and this is described 

in their respective chapters.  Finally a retrospective analysis of recently published metabolic 

pathways is reported in Chapter 6. 

2.1 Introduction 

2.1.1 Xenobiotic metabolism 

Xenobiotics are compounds that are introduced into an organism, but which would not 

normally be produced by the organism or form part of a normal diet.  These can include, for 

example, drugs and food additives together with environmental chemicals, such as 

agrichemicals and personal and household products, to which the organism has been 

exposed.  These compounds must often be removed from the organism to prevent their 

producing any adverse effects, and this is achieved through their metabolism. 

Xenobiotic metabolism is generally considered to occur in two phases (184,185).  Phase I 

transformations act to ‘functionalise’ the xenobiotic in order to prepare it for phase II 

reactions, where the compound is conjugated to groups that will aid in its clearance from 

the organism.  Phase I transformations may add new functional groups to the compound, 
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increase the polarity of existing groups, or unmask existing but protected ones; reactions 

such as hydroxylation and hydrolysis are common.  Phase II transformations conjugate 

functional groups of the parent compound or its phase I metabolites to highly polar 

endogenous molecules such as glucuronic acid, sulphate and glutathione, which increase 

the hydrophilicity of the compound, facilitating its excretion.  An example of a metabolic 

pathway showing both phase I and phase II transformations is shown in Figure 14, below. 

 

Figure 14: One metabolic pathway of the sedative Clorazepate, from the 2008.1 

release of the Symyx® Metabolite database.  In the first two steps the compound is 

undergoing phase I transformations, resulting in the introduction of a hydroxyl group.  

The metabolite formed then undergoes a phase II transformation, conjugating to a 

glucuronic acid molecule.  The highly polar product formed will be rapidly excreted. 

Understanding how xenobiotics are metabolised is of great interest both within the 

pharmaceutical industry and the wider chemical community.  Metabolic transformations 

may reduce the bioactivity of a compound – deactivating the therapeutic properties of a 

drug, or detoxifying an environmental compound.  Alternatively they may increase a 

compound’s bioactivity, which can be exploited through the development of prodrugs, but 

this can also lead to the formation and build up of toxic metabolites.  These effects can only 



43 

be predicted if the biotransformations that a molecule will undergo can be understood or 

anticipated.  Additionally, prediction of likely biotransformations can help to guide 

experimental design when trying to identify a compound’s metabolites.  

Over the past decade pharmacokinetic problems, including metabolic liabilities, have been 

recognised as a major cause of failures in the development of new pharmaceuticals, 

particularly in the later stages of the drug development process where failures are most 

expensive.  It is now recognised that potential ADME and Toxicology problems should be 

addressed as early in the development cycle as possible (186,187) – ideally when selecting 

and optimising lead compounds.  At these early stages in the drug discovery process it is 

often not practical or economical to exhaustively experimentally determine the ADME 

profile of candidate compounds, so computational models are used instead, enabling the 

results of high-throughput screening programmes to be prioritized, and even the selection 

and elimination of compounds pre-synthesis. 

2.2 Effects of metabolism 

2.2.1 Toxicity, bioavailability and clearance 

In order for a drug to exhibit its desired pharmaceutical effect it must be present at a 

concentration within the drug’s therapeutic window.  At too low a concentration the drug 

will not have its desired effect, but conversely at too high a concentration the drug will likely 

exhibit adverse side-effects.  It is important that pharmaceutical compounds are removed 

from the body after their administration, in order to prevent their accumulation to toxic 

levels.  At the same time they require a certain degree of metabolic stability, in order to 

persist long enough to be able to achieve their therapeutic effect.  This is particularly true of 

orally administered compounds which have to survive the harsh conditions of the digestive 

system and first-pass metabolism in the liver, before they are able to enter the 

bloodstream. 
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Figure 15: In order to be effective (black line) a drug’s concentration must remain 

within its therapeutic window (yellow region).  The drug’s concentration rises on 

dosing, and then drops as the compound is metabolised and excreted.  If the 

compound is metabolised too slowly (red line) then repeated dosing causes its 

concentration to rise to toxic levels (red region).  On the other hand, if the compound 

is metabolised too quickly (blue line) then its concentration will fall below that 

required for the drug to be effective (below the yellow region).  Figure adapted from 

(188). 

Understanding a drug’s metabolism can enable adjustment of the compound’s 

pharmacokinetic profile through the blocking of major sites of metabolism, or addition of 

functional groups facile to metabolism.  Where a molecule has very poor bioavailability, 

caused by its rapid metabolism and clearance, this can be resolved through the 

identification of the major route of metabolic degradation, and subsequent modification of 

the compound in order to block this pathway.  A successful example of this is illustrated in 

Figure 16. 

C
o

n
ce

n
tr

at
io

n

Time

Theraputic Window

Toxic

Failure



45 

  

Figure 16: Identification of the major site of metabolism of the 5-HT2A antagonist 3-(4-

fluoropiperidin-3-yl)-2-phenyl-1H-indole (compound on left, major site of metabolism 

is highlighted), and its subsequent blocking with a fluorine atom (compound on right) 

reduced the rates of first pass metabolism and clearance, leading to the bioavailability 

in rats increasing from 18% to 80%, and the half-life from 1.4 to 12 hours (189). 

Knowledge of a drug’s metabolism is also necessary in order to determine safe dosage levels 

and warn of drug-drug interactions.  Consideration must be given to the possibility that a 

drug, which on its own is perfectly safe to take, may inhibit or induce the metabolism of 

other drugs if taken in combination.  Induction of a drug’s metabolism will lead to increased 

rates of clearance, lowering its concentration, possibly below effective levels.  Inhibition, on 

the other hand, can result in the accumulation of the drug to toxic concentrations.  The 

antihistamine Terfenadine was withdrawn for this reason (190).  

Terfenadine is metabolised in the gut wall, so usually has a very low systemic concentration.  

It was found that when Terfenadine’s rate of metabolism is decreased, through competition 

with or inhibition by other drugs, the increased concentration of Terfenadine in the blood 

stream led to a risk of cardiac arrhythmia.  Investigation of Terfenadine’s metabolites found 

that one of them – Fexofenadine (structures shown below in Figure 17) – was in fact the 

major active compound, while not exhibiting the adverse effects.  Fexofenadine is now 

prescribed in place of Terfenadine, as a safe alternative (191). 
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Figure 17: The antihistamine Terfenadine (left) has been withdrawn from sale due to 

safety considerations.  Fexofenadine (right), one of Terfenadine’s metabolites (the 

product of oxidation of a methyl group to carboxylic acid) was found to be the active 

compound and is now prescribed in place of Terfenadine. 

2.2.2 Toxic metabolites 

The most serious effect of xenobiotic metabolism is the formation of toxic metabolites.  The 

most frequent reason for the withdrawal from market of an approved drug is drug-induced 

liver injury (192) and this is often found to be due to a metabolite, rather than the 

xenobiotic compound itself (193).  If potential metabolites can be predicted, then these 

predictions can be linked with computer systems for the prediction of toxicity, of which a 

number are commercially available such as Derek (36) and TOPKAT (37,194), enabling in 

silico screens for such liabilities to be carried out (195,196). 

There are various biological pathways through which metabolites can generate adverse drug 

reactions.  Metabolites may exhibit pharmacological activity, which can be towards the 

same target as the parent drug, increasing the effects to those that would occur if the drug 

was administered at much higher concentrations, or may be off-target, affecting other 

systems in unintended ways.  A further possibility is the formation of reactive metabolites 

which bind to other proteins and enzymes, or damage DNA.  One mechanism through which 

this occurs is via the formation of reactive oxygen species, such as peroxides, oxides and 

oxygen radicals.  Despite the body’s mechanisms to deal with such toxins, these can lead to 

serious cell damage. 

Not all toxicity is due to compounds’ reactivity and activity. ‘Non-specific’ toxicology is the 

result of a general disruption of cell membranes and biochemical processes by a xenobiotic 

(197).  As drug development extends into new areas of medication, particularly the use of 
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biological agents as pharmaceuticals, there is the possibility of other types of toxicity.  

Monoclonal antibody therapies carry a risk of over-stimulating the immune system, with 

serious consequences, as was recently the case in the widely reported adverse reactions 

during the ‘first-in-man’ trials of TeGenero’s rheumatoid arthritis and leukaemia drug 

TBN1412 (198). 

2.2.3 Prodrugs 

The traditional approach to overcoming barriers to a drug’s bioavailability has been to 

search for analogues of the drug – i.e. an alternative compound that delivers similar activity, 

but providing different pharmacokinetic properties.  An alternative approach is the use of a 

prodrug (199,200), where chemical modification of a drug molecule, or the attachment of 

an extra moiety, renders the molecule inactive but allows it to overcome the barrier to 

bioavailability – conceptually similar to the use of a protecting group during an organic 

synthesis.  Once the prodrug is absorbed, the moiety is removed by the organism’s 

metabolic pathways, restoring the drug molecule to its active form.  Recently there has been 

a growing trend in the development of prodrugs; approximately 15% of the new drugs 

approved in 2001 and 2002 were prodrugs, and they are now thought to comprise from 5-

7% of the total drugs approved worldwide (201). 

 

Figure 18: Illustration of the concept of prodrugs; in situations where a drug molecule 

cannot pass some barrier to bioavailability (a) there are two possible solutions; an 

analogue (b) may be found – that is an alternative compound exhibiting the required 

activity, but with different properties, or a prodrug (c) may be developed. 
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The prodrug approach can be used to overcome a number of barriers to bioavalability.  The 

well known influenza drug Tamiflu (Oseltamivir ethylester) is in fact an ester prodrug of the 

active compound Oseltamivir carboxylate (see Figure 19).  The modified compound is orally 

bioavailable and overcomes the poor intestinal mucosal permeability of the active drug 

(202).  

 

Figure 19: Oseltamivir carboxylate (left) an antiviral, and (right) its prodrug Tamiflu 

(Oseltamivir ethylester), which was designed to improve intestinal mucosal 

permeability.  

The same prodrug approach can be undertaken for many other purposes (203), including 

improving solubility, aiding in the targeting of an active compound to a particular organ in 

the body and controlling drugs’ rates of release. 

2.2.4 CYP450 mediated drug-drug interactions 

A common cause of adverse drug reactions has been found to be the modulation of one 

drug’s metabolism by another.  Inhibition of a drug’s metabolic pathway by a co-

administered pharmaceutical may lead to the drug accumulating to toxic levels, as in the 

case of Terfenadine, mentioned previously.  Similar problems can arise when grapefruit 

juice or, to a lesser extent, red wine are consumed in combination with certain 

pharmaceuticals, since these contain flavonoids and other compounds which inhibit 

cytochrome P450 3A4 (204).  Competition between drugs metabolised by the same enzyme 

can also reduce their rates of clearance.  Alternatively, one xenobiotic can increase the rate 

of clearance of another, by induction of the enzymes in its metabolic pathway.  This can lead 

to the drug’s concentration falling below therapeutic levels, as can occur during co-

administration of oral contraceptives with St John’s Wort (188). 
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2.2.5 Metabolite elucidation 

Studies into the metabolic fate of drug compounds are performed at several stages in the 

drug development process.  During lead optimization, knowledge of the propensity of a drug 

candidate to undergo metabolic transformation can help identify candidate molecules with 

undesirable ADME characteristics and thus guide the selection of which compounds to 

commit substantial resources for further development (205).  As development of the drug 

candidate proceeds any metabolites are investigated for signs of toxicity, alongside the 

parent compound. 

A range of experimental techniques are employed for the investigation of a compound’s 

metabolites, but structural elucidation without additional data on the metabolites likely to 

be formed is challenging.  In silico systems can suggest metabolites unexpected or 

overlooked by human experts (206).  Liver microsomal preparations, plasma and excreta 

from in vivo studies and extracts obtained from necropsy can all be examined for the 

presence of metabolites.  Covalent protein binding assays are carried out to test for 

potential liver toxicity.  High resolution liquid chromatography-mass spectrometry (LC-MS) is 

used to determine accurate masses of ions, which can be used to calculate the elemental 

composition of compounds.  LC-MS reveals which fragment of a compound has undergone 

metabolism, but there can be several atoms within that fragment at which the metabolic 

transformation could be centred, and tools for predicting sites of metabolism can help 

resolve this ambiguity. 

A further challenge is the identification of which components of complex biological mixtures 

are in fact metabolites of the compound under investigation.  Labelling of the parent 

compound with radioisotopes such as tritium can facilitate this.  However, radiolabelling 

experiments require the time-consuming and expensive synthesis of a labelled compound, 

and when this is not possible, prediction of potential metabolites is necessary. 

Of particular difficulty is the experimental detection of reactive metabolites.  Stable drug 

metabolites can be isolated, purified and identified using standard experimental techniques; 

however reactive metabolites are generally too short-lived for the same to apply.  This is an 

area where in silico predictions of the structure of metabolites can be particularly useful. 
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2.3 Mechanisms of metabolism 

Orally delivered drugs are first subjected to metabolism in the gastrointestinal tract.  From 

here the parent compound and any metabolites formed are absorbed through the mucous 

membrane of the small intestine or through the wall of the stomach, and carried to the liver 

where they encounter further metabolic enzymes.  Finally the remaining drug and its 

metabolites enter systemic circulation.  Metabolism occurring before the drug has first 

entered systemic circulation is termed ‘first-pass metabolism’, and in some instances can 

reduce the bioavailability of a drug to such a degree that alternative routes of 

administration are required.  As a protein, insulin, administered to Type I diabetics, is 

catabolised in the gastrointestinal tract so must be administered through subcutaneous 

injections in order to reach circulation without degradation.  The corticosteroid 

beclometasone dipropionate, until recently administered to asthmatics, does not enter the 

blood stream in detectable levels when taken orally due to its high rate of clearance through 

first-pass metabolism (207), so is instead administered as a nasal spray (Beconase) or 

through an inhaler (Becotide). 

 

Figure 20: First pass metabolism: drugs encounter metabolising enzymes in the 

gastrointestinal tract and the liver, before entering systemic circulation.  This can 

considerably decrease the bioavailability of the drug. 
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There are a wide variety of pathways and mechanisms through which xenobiotic 

compounds are metabolised (184).  Many compounds can be metabolised through a 

number of competing pathways, leading to the generation of a variety of metabolites, in 

differing concentrations.  The degree of formation of each metabolite depends on a number 

of factors, such as the availability of enzymes and cofactors, and competition with other 

xenobiotics.  This means that the metabolic profile of a drug varies with both environment 

and genetics.  A drug’s metabolism can differ between species, between individuals of the 

same species but different gender and age, and even within one individual at different 

instances in time. 

The pathways through which Phase I metabolism occurs are generally divided into those 

involving cytochromes P450 (CYP450), and those which do not.  Cytochromes P450 are a 

large family of enzymes, involved in the majority of drug metabolisms.  A study carried out 

by Pfizer examining the top 200 drugs prescribed in the United States in 2002 found that 

cytochromes P450 where involved in two-thirds of the metabolic clearance pathways (208).  

The human genome project has identified 57 CYP450 genes (209), which give rise to a 

variety of different CYP450 enzymes, known as isoforms.  Each isoform can bind to a 

number of substrates.  Some are very promiscuous, metabolising a wide variety of 

molecules. 

Cytochromes P450 can catalyse a range of reactions, some examples of which are illustrated 

in Figure 21, below.  The most common cytochrome P450 catalysed transformation is 

monooxygenase hydroxylation, inserting a single oxygen atom into an R-H bond, producing 

R-OH (210).  This can be the final product of the transformation, or may lead to a 

dealkylation, as in the case of the oxidative deamination reaction shown below.  

Cytochromes P450 can also oxidise hetroatoms, such as nitrogen, and form epoxides of 

alkenes (209). 
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C-Hydroxylation 

 

 
Oxidative deamination 

 

 
Heteroatom oxidation 

 

 
Epoxidation and oxidative migration 

Figure 21: Commonly observed CYP450 mediated metabolic transformations. 

The active site of cytochromes P450 contains a heme group (Figure 22).  The catalytic cycle 

of CYP450 metabolism involves the binding of an oxygen molecule to the iron atom at the 

centre of the heme group.  Reduction of the oxygen molecule, with the release of water, 

and a single electron transfer lead to the formation of an oxygen radical.  This radical can 

react with the enzyme’s substrate in a number of ways, leading to a variety of potential 

products.  An overview of the catalytic cycle and more detailed mechanisms for a number of 

transformations are shown in Figure 23 and Figure 24. 
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Figure 22: The heme group at the catalytic site of cytochrome P450 2C8; PDB ID: 2VN0 

(211). 
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Epoxidation 

 

Heteroatom release (e.g. oxidative deamination) 

 

 

 

Figure 23: Mechanisms of some cytochrome P450 catalysed transformations (212). 
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Figure 24: The basic catalytic cycle of CYP450 oxidation (209).  First (top right), the 

substrate (RH in the figure above) binds close to the heme group in the CYP450 active 

site, displacing water.  Oxygen binds to the heme group, and is activated by a single 

electron-transfer, resulting in the generation of a highly reactive Fe(V) oxo species.  

This reacts with the substrate, inserting an oxygen atom into the R-H bond, leading to 

the addition of a hydroxyl group. 

The regioselectivity of CYP450 catalysed transformations – the atom or atoms where the 

reaction occurs – is determined by a number of factors: the energy required to remove a 

hydrogen atom from the substrate (hydrogen abstraction energy) and the stability of the 

resulting carbon radical, and also the structure and shape of the binding pocket of the 
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specific CYP450 variant catalysing the transformation.  Each CYP450 isoform has a different 

sized and shaped binding pocket, which exhibits a different binding motif, favouring affinity 

to substrates displaying particular structural features. 

While cytochromes P450 catalyse many metabolic transformations, a number of other 

enzymes are also involved in phase I metabolism (213).  A number of enzymes facilitate 

oxidation reactions; Flavin-Containing Monooxygenase (FMO), Monoamine Oxidase (MAO) 

and Aldehyde Oxidase are among those commonly found.  Although less common than 

oxidations, reductions often occur in metabolic pathways, and are catalysed by a number of 

enzymes including the cytochromes P450.  Epoxide Hydrolases, Esterases and Amidases 

catalyse the hydrolysis of epoxides, esters and amides, respectively. 

Phase II transformations are also catalysed by a number of different enzymes.  Common 

phase II conjugates are glucuronic acid, glutathione and sulphate, though conjugation to 

many other molecules, including macromolecules such as proteins, DNA and RNA is also 

possible. 

2.4 Predicting xenobiotic metabolism 

Due to the interest in understanding the metabolism of xenobiotics, a considerable amount 

of effort has been put into the development of predictive tools.  There are a number of 

different goals when predicting xenobiotic metabolism: identifying sites of metabolism, 

predicting the metabolites formed, predicting rates of metabolism and metabolite 

formation, and predicting the cytochrome P450 specificity of substrates.  As might be 

expected, with a range of aims, a number of diverse approaches have been developed, with 

different techniques better suited to certain types of prediction. 

The enzymes involved in xenobiotic metabolism are fairly nonspecific towards their 

substrates.  If this were not the case then a vast array of different metabolic enzymes would 

be needed by an organism.  The upshot of this is that enzyme specificity has less effect on 

the enzyme activity than is the case in many other receptor mediated systems, so ligand-

based tools are often found to perform well.  Since cytochrome P450 mediated oxidation is 

the most common route for xenobiotic metabolism many tools consider only this system. 
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2.4.1 Site of metabolism prediction 

The atoms of a xenobiotic at which metabolic transformations are centred are termed its 

‘sites of metabolism’.  Identification of the likely sites of metabolism of a drug enables 

medicinal chemists to design modifications to the drug’s molecular structure in order to 

prevent its metabolism at that site.  Blocking the major sites of metabolism of a drug can 

reduce the rate of first-pass metabolism, allowing it to enter systemic circulation at high 

enough concentrations to exhibit a therapeutic effect and can reduce the clearance rate of 

the drug, extending the time required between doses. 

As trans-membrane proteins, it is difficult to produce crystal structures of mammalian 

cytochromes P450.  Indeed it is only in the last decade that X-ray structures for CYP450s 

from humans and other mammals have been published (214,215,216).  Prior to this, 

mammalian CYP450 structures could only be approximated through homology modelling 

based on crystal structures of soluble bacterial CYP450s e.g. (217). 

Quantum mechanical methods/reactivity calculations 

The mechanism of many cytochrome P450 catalysed biotransformations include a hydrogen 

abstraction step, where the heme-bound oxygen radical of the CYP450 active site removes a 

hydrogen atom from the substrate, creating a carbon radical.  It is believed that this is the 

rate determining step of the transformation (218), and that the likely sites of metabolism 

can be predicted from the ease with which hydrogen abstraction can take place at each 

atom of the substrate.  

Calculations using the AM1 semi-empirical quantum mechanical method have been 

performed on a number of radicals formed by hydrogen abstraction, and their parent drug 

compounds (219,220).  In most cases the calculated radical stabilities showed good 

agreement with experimental bond dissociation energies.  However, such quantum 

mechanical calculations are time-consuming, even if only a single energy minimized 

conformation of the drug molecule and each of the hydrogen abstracted radicals is 

considered. 

Olsen et al. (221) have investigated the hydrogen abstraction energies of 24 substrates in a 

model CYP450 system using state of the art Density Functional Theory (DFT) calculations.  

They have also used this approach to study specific classes of transformations in detail: 
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aromatic oxidations (222) and sulphoxide, sulphur and nitrogen oxidation and dealkylation 

(223), and the structure of the CYP450 heme complex (224).  These calculations can require 

days or weeks of CPU time for molecules the size of a typical drug, making them unsuitable 

as a tool for regular screening.  However, these results have been used to establish a 

hierarchy of methods, from visual inspection of functional groups through semi-empirical 

calculations to DFT, which can be selected depending on the accuracy required and the 

complexity of the molecule under consideration.  A rule-based method, derived from the 

high-level DFT calculations, estimates activation energies at different sites in a molecule 

relatively well (225), but with currently only eleven rules, this approach is not able to 

provide any discrimination between similar sites. 

In a recent comparison of site of metabolism prediction tools (218) Afzelius et al. explored 

the possibility that the CYP450 catalysed biotransformations proceed via an alternative 

mechanism.  It has been proposed that a single electron could be transferred from the 

substrate to the heme of the CYP450, creating a positively charged radical that reacts with 

either the heme/iron/oxygen complex or a neighbouring water molecule.  According to this 

mechanism metabolism will be centred on the location of the spin ‘hole’ on the radical 

substrate, and the spin distribution can be estimated through quantum mechanical 

calculation. 

Pharmacophores 

Some cytochrome P450 families have been found to exhibit a pharmacophore that 

determines the orientation of the substrate in the active site (226).  Through alignment of 

substrate molecules with this pharmacophore it can be predicted which atoms will be 

positioned near the heme group in the active site, and hence undergo metabolic 

transformation.  

Docking methods 

Various docking methods have been used to predict sites of CYP450 mediated oxidation.  

Afzelius et al. (218) made predictions using the Dock (227) and Glide (124) programmes 

(techniques they termed MetaDock and MetaGlide, respectively).  Vasanthanathan et al. 

(228) have predicted sites of metabolism for cytochrome P450 1A2 ligands using GOLD 

(121). 
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These methods have all taken a common approach.  The docking algorithms generate an 

ensemble of docked poses with varying substrate conformations and orientations.  These 

poses are filtered, identifying any in which atoms are sufficiently close to the heme reactive 

centre for metabolism to be possible.  The atoms are then scored on the basis of their 

distance from the catalytic site, and the energy of the binding pose or other scoring function 

of the docking algorithm. 

Although only a small number of CYP450 isoforms have had their structures solved by X-ray 

crystallography, structures for some additional isoforms can be obtained through homology 

modelling, due to their degree of sequence similarity to solved structures, and these can be 

used for docking purposes (229). 

QSAR 

In an attempt to make faster predictions, a number of QSARs for metabolism prediction 

have been developed.  Because even semi-empirical calculations take a considerable length 

of time, Singh et al. (230) have used the results of AM1 calculations on 50 known CYP450-

3A4 substrates to generate a PLS QSAR model for the hydrogen abstraction energy.  This 

enables fast estimates of the hydrogen abstraction energy, based on the local chemical 

environment of the hydrogen atom.  They also added a sterically accessible solvent surface 

area requirement for substrate binding to the active site.  While this model showed some 

predictivity, they found that it was “unable to predict the major site of metabolism in an 

appreciable number of cases”, and showed some systematic errors, notably the calculated 

dehydrogenation energy always suggesting that the piperidine ring carbons adjacent to 

nitrogen of N-methylpiperidines is the likely site of metabolism while CYP3A4 has almost 

always been observed to oxidise the methyl groups (231). 

Besides predicting sites of metabolism, QSARs have also been developed to predict other 

aspects, such as rates of clearance (232). 

Enzyme/substrate interactions 

With the availability of structures of cytochromes P450, various techniques of predicting 

metabolism by examination of enzyme/substrate interactions have been developed.  Both 

Molecular Interaction Field (MIF) (80) and Receptor Interaction Surface (RIS) methods have 

been investigated.  In the MIF approach, a probe is positioned at regular intervals in a box 
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surrounding the active site and its interactions with the protein are calculated.  In the RIS 

approach, rather than being positioned at grid points throughout the space containing the 

receptor, the probe is placed at regular points across the receptor’s surface. 

MetaSite 

MetaSite bases its predictions on Molecular Interaction Field analysis.  MIFs (80) are pre-

calculated for the enzyme active site using the GRID force field and four types of probe – 

hydrophobic, hydrogen-bond acceptor, hydrogen-bond donor and charged.  The distance of 

each probe position from the catalytic site – the oxygen bound to the heme group – is 

calculated, and the distribution stored (233).  Each atom in a potential substrate molecule is 

assigned to one or more of the probe classes and an ensemble of conformers are generated 

and minimized.  The distance distribution of probe types is calculated around each atom, 

and the complementarity between the active site and each atom determined.  This provides 

a score for the fit of the substrate into the active site, with that atom at the catalytic site. 

A reactivity score can optionally be used to weight the results of the interaction calculations.  

This is based on ab initio calculations of the hydrogen abstraction energy, but rather than 

computing this for each substrate compound, abstraction energies for small fragments, 

common to many drug-like molecules, have been pre-computed, and reactivity scores are 

generated by matching the most relevant fragment.  Zhou et al. (234) reported that the 

inclusion of the reactivity weighting increased the accuracy of the predictions considerably: 

from an average of 30% to 60% that the highest ranked atom was a site of metabolism, and 

from 40% to 70% that one or more of the three highest ranked atoms was a site of 

metabolism. 

Data mining 

Boyer and Zamora (33) proposed a method of data-mining to the prediction of sites of 

xenobiotic metabolism.  The Symyx® Metabolite database (at the time, the MDL Metabolite 

database) is widely used by chemists investigating whether a substructure is involved in any 

sorts of metabolic transformation.  Boyer and Zamora generated small atom-centred 

fragments including the neighbouring 3-4 atoms and ring systems, and searched for 

transformations involving these fragments within the Metabolite database.  Counting the 

number of occurrences of these transformations within the Metabolite database, along with 



61 

the total number of occurrences of the substrate fragment within the database, allows the 

calculation of an occurrence ratio, giving a probabilistic score for the likelihood of the 

transformation taking place.  Boyer et al. (235) automated this process through the 

generation of fragments centred on each atom in a compound under consideration using 

circular atom environment fingerprints (60). 

2.4.2 Metabolite prediction 

A number of tools for the purpose of predicting the metabolites formed, rather than just the 

sites of metabolism of molecules, have been published.  A number of these are now 

described; all follow a fairly similar approach, describing potential transformations using 

rules, and searching a molecule for sites where each rule matches. 

META 

META (236,237,238) has two dictionaries of transformations – one of CYP450 

transformations and a second of spontaneous transformations.  Each transformation 

consists of a target fragment and a product fragment.  A prediction is made by identifying 

any occurrences of the target fragments in an input molecule, and substituting them with 

the corresponding product fragment.  An example CYP450 fragment pair would be “replace 

occurrences of ‘N-CH2’ with ‘N-CH-OH’” – meaning hydroxylate aliphatic carbons α to a 

nitrogen atom.  Each CYP450 product is then processed with the spontaneous reaction 

transformations, until no further target fragment matches are found.  In cases where 

tautomers are formed, a quantum mechanical calculation is performed to identify which is 

the most stable tautomeric form. 

Experts have assigned each transform a priority value, according to the prevalence of the 

observed metabolites.  This is based on a combination of data from “any mammalian 

source”, so the model represents an ”average mammal” (237).  If the rules were not 

prioritized then a combinatorial explosion of metabolites could be generated.  As the 

number of transformation rules increased, accurately deciding on this prioritization was 

found to be challenging, and a genetic algorithm was utilised to optimise the priorities. 

As of 2002, META contained over 750 transformation rules, developed from 

pharmacological data on around 150 xenobiotics.  This included 43 transformation rules for 
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CYP450 aliphatic hydroxylation, 28 transformations modelling dealkylation of aliphatic and 

aromatic ethers and 30 dehalogenations (237). 

Meteor 

Meteor (239,240), developed by Lhasa ltd., operates on a similar principle to META.  

Meteor’s prediction engine contains two sets of rules.  In order to predict a compound’s 

metabolites, Meteor first applies a set of biotransformation rules, encoded by human 

experts, describing possible transformations, and the features of a molecule required to 

make that transformation permissible.  Meteor allows the expression of sophisticated 

biotransformation rules, or ‘biophores’, such as “a single or double bond in a five- or six- 

membered ring, but not fused to another ring”, rather than simply encoding functional 

groups. 

Where many competing transformations could apply to a molecule, a system of reasoning 

rules (such as “benzylic oxidation is more likely than ring oxidation”) is applied in order to 

determine the most likely transformations.  The reasoning rules were developed through 

computational analysis of experimental data, in order to determine priority of the different 

biotransformation rules.  As of 2002, Meteor contained 217 biotransformations, together 

with 841 reasoning rules (240) and by 2005 the knowledgebase had grown to more than 300 

biotransformations and over 1000 reasoning rules (241). 

Once potential metabolites have been identified, Meteor assigns likelihoods to each, using 

rules associated with each biotransformation, depending on the logP value of the substrate 

molecule.  In order for a biotransformation to take place a substrate must have a logP value 

that allows it to enter and leave lipid membranes, and enough hydrophobic regions to 

facilitate enzyme binding. 

Sygma 

Another rule-based tool for the prediction of metabolites is Sygma (242) (Systematic 

Generation of potential Metabolites), developed and used in-house at Organon (now 

Schering-Plough).  Sygma’s rule-base was developed through the refinement of an initial set 

of very broad rules, such as ‘oxidation of primary alcohol’ and ‘O-glucuronidation’.  These 

rules were refined through a series of iterations, in each step of which more general rules 

were split on the basis of their performance; for example the general rule for the oxidation 
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of primary alcohols was divided into two separate rules for aliphatic and aromatic primary 

alcohols.  Rather than the small number of likelihood classes employed by Meteor, Sygma 

assigns more finely grained likelihoods to its predictions.  Associated with each rule is an 

empirical probability score calculated from the performance of that rule against a set of 

6187 known metabolic reactions in humans. 

MetaDrug 

A further rule-based tool for predicting metabolism is GeneCo’s MetaDrug (243).  Rules 

describing 65 metabolic pathways were developed.  QSAR models were constructed (for the 

23 reactions with sufficient data) through kernel-partial least squares (K-PLS) analysis of 317 

molecules randomly extracted from the MetaDrug database (244), and these are utilised to 

filter and prioritize the generated metabolites. 

Microbial catabolism 

A rule-based approach, very similar to that of Meteor, has been applied by Hou et al. (245) 

to the prediction of the biodegradation of chemicals in the environment by microbes.  Over 

1000 curated biotransformations from almost 200 metabolic pathways recorded in the 

University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD) (246,247) have 

been used for the construction of a set of biotransformation rules.  These rules, compiled by 

biotransformation experts analysing the UM-BBD, each consist of a SMARTS pattern 

matching a functional group, and the biotransformation which that group undergoes (e.g. 

aldehyde to carboxylic acid). 

With around 200 rules, there are many possible transformations that could be applied to 

most molecules, leading to a combinatorial explosion in the number of predicted products.  

This leads to a high rate of false positives – predicted transformations that are not observed 

in nature.  In order to overcome this, each of the rules is assigned to a likelihood group (very 

likely, likely, neutral, unlikely, very unlikely).  A system of relative reasoning rules was also 

developed through analysis of all pair-wise occurrences of rule hits within the training data, 

and whether compounds triggered one or both of the rules (248).  Together these are used 

to prioritize and filter rule hits. 
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2.5 Conclusion 

In this chapter we have reviewed the importance of understanding the metabolism of 

xenobiotic compounds.  Metabolic transformations affect a drug’s efficacy and toxicology, 

so it is vital that any metabolic liabilities are identified.  If metabolic transformations can be 

anticipated then modifications can be made to overcome any liabilities, and the body’s 

metabolic systems can even be exploited, with the development of prodrugs. 

A wide variety of methods have been employed for the prediction of xenobiotic 

metabolism, though many focus only on cytochrome P450 catalysed transformations, 

ignoring other mechanisms.  Of the methods described, only a small number are publically 

available and straightforward for a chemist to use.  Some are in-house tools, only accessible 

to workers in the company that developed to tool.  Others, particularly the docking and 

quantum mechanical approaches, require complex calculations to be performed, and 

analysis of the results is complex, and these are typically only useable by experts.  Of the 

tools that are generally available, most are commercial offerings. 

The remainder of this thesis describes the development and evaluation of MetaPrint2D, a 

new tool for predicting sites of xenobiotic metabolism, and its extension to the prediction of 

types of transformation and metabolites likely to be formed. 
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3. Development of MetaPrint2D: a tool for 

predicting sites of xenobiotic metabolism 

This chapter describes the development of MetaPrint2D – a tool for predicting sites of 

xenobiotic metabolism, based on the previously published Substrate/Product Occurrence 

Ratio Calculator (SPORCalc) (33,235).  The initial goal of this work was to perform a more 

extensive evaluation of the SPORCalc program than had previously been carried out, and to 

remove the non-free dependencies (OEChem (249) and CORINA (85)), making the tool more 

readily distributable. 

As work progressed, it became apparent that being based on fingerprint similarity 

techniques, which generally offer very high performance, the SPORCalc method had the 

potential to form the basis of a site of metabolism prediction tool that was fast enough for a 

chemist to work with it in an interactive manner.  Unfortunately limitations in the SPORCalc 

software’s architecture meant that this performance could not be realised, so the decision 

was taken to develop a new tool – MetaPrint2D.  Additionally, a number of modifications to 

the method have been developed that could potentially improve accuracy, and the effects 

of these have been investigated. 

In this chapter the SPORCalc approach to metabolic site prediction is reviewed, and the 

available data on metabolic transformations from the Symyx® Metabolite (250) database 

examined.  The development of MetaPrint2D and the software distribution available are 

then described. 

The next chapter presents the method and results of the evaluation of MetaPrint2D, and 

Chapter 5 describes the extension of MetaPrint2D to the prediction of types of 

transformation and metabolites formed.  

3.1 Substrate/Product Occurrence Ratio Calculator 

As was briefly discussed in the previous chapter, the Substrate/Product Occurrence Ratio 

Calculator (SPORCalc) is a data-mining tool, designed to exploit the biotransformation data 

recorded in the Symyx® Metabolite database, in order to generate structure-metabolism 
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relationships.  SPORCalc introduced the use of knowledge-based statistical modelling to site 

of metabolism prediction.  An overview of the SPORCalc procedure is given in Figure 25. 

 

Figure 25: Overview of the SPORCalc procedure for site of metabolism prediction. 

SPORCalc contains two databases of atom fingerprints: one listing the fingerprints of all the 

substrate atoms found in transformations contained in the Symyx® Metabolite database 

(the Metabolite database is described in more detail on page 75), and a second listing the 

fingerprints of only those atoms occurring at a reaction centre (site of metabolism).  In order 

to investigate the sites of metabolism of a novel compound, SPORCalc generates 

fingerprints describing each of the atoms, and performs a similarity search against these two 

databases.  This enables calculation of occurrence ratios – the ratio between the number of 

reaction centre atoms in the Symyx® Metabolite database that occupy a similar chemical 

environment to each atom in the query structure, and the total number of occurrences of 

atoms in a similar chemical environment in the entire database. 
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While the SPORCalc program was envisaged as a data mining tool, its output is effectively a 

prediction of the likely sites of metabolism of a molecule, since the calculated occurrence 

ratio is equivalent to the calculation of a conditional probability: 

𝑃 𝑆 𝐸 =
𝑃 𝑆 ∩ 𝐸 

𝑃 𝐸 
 

=
𝑁 𝑆 ∩ 𝐸 𝑁𝑡𝑜𝑡 

𝑁 𝐸 𝑁𝑡𝑜𝑡 
 

=
𝑁 𝑆 ∩ 𝐸 

𝑁 𝐸 
 

= SPORCalc 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 

where: 

𝑃(𝑆|𝐸) is the conditional probability that an atom is a site of metabolism, 

given the environment it occupies. 

𝑃 𝑆 ∩ 𝐸  is the probability that an atom is a site of metabolism and occupies 

the specified environment. 

𝑃 𝐸  is the probability that an atom occupies the specified environment. 

𝑁(…) is the count of the number of atoms meeting the specified condition. 

𝑁𝑡𝑜𝑡  is the total number of atoms in the database. 

Once calculated, the occurrence ratios are normalised, so that the highest scoring atom 

always has a score of one.  This normalized occurrence ratio indicates the relative likelihood 

of each atomic site in a molecule being a centre of metabolism, while making no prediction 

as to the absolute likelihood of the molecule undergoing metabolic transformation. 

Apart from the normalization step, this is a similar calculation to that performed by a Naïve 

Bayesian classifier.  The major difference is that a Bayesian classification would consider 

both the likelihood that an atom is at a site of metabolism, given its environment, and the 

likelihood that it is not.  A Bayesian classifier would usually report the likelihood ratio (LR): 

𝐿𝑅 =  
𝑃(𝑆|𝐸)

𝑃(! 𝑆|𝐸)
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Where a likelihood ratio greater than 1.0 would indicate that, given its environment, it is 

more likely that the atom is at a site of metabolism than it is not, and a likelihood ratio of 

less than 1.0 would indicate the opposite. 

SPORCalc represents the chemical environments occupied by atoms using circular atom 

environments fingerprints (described on page 15, in Chapter 1) with Tripos’ SYBYL® (46) 

atom types (251).  Fingerprints of depth six – the central atom, and topological neighbours 

up to five bonds distant – are generated.  Each layer of the fingerprint contains 33 bins, one 

for each SYBYL® atom type.  Each bin holds a count of the number of occurrences of the 

respective atom type in that layer.  This leads to fingerprints with a total of 198 bins. 

 

 

Layer C.3 C.2 C.ar N.3 N.2 N.am O.3 O.2 O.co2  

0 0 0 1 0 0 0 0 0 0  

1 0 1 2 0 0 0 0 0 0  

2 0 0 2 0 0 0 1 1 0  

           
 

Figure 26: Illustration of the region of a structure forming an atom environment 

fingerprint (first three levels highlighted), and the contents of a subset of fingerprint’s 

bins. 

The SPORCalc package* consists of two separate programs: the database builder, which 

constructs the fingerprint databases with which SPORCalc performs its calculations, and the 

calculator which accepts a query molecule, input through a web interface, and generates a 

web page displaying the predicted sites of metabolism of the molecule. 

                                                      
* We gratefully acknowledge Lars Carlsson and AstraZeneca for sharing with us the latest version of 
SPORCalc. 
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3.1.1 SPORCalc databases 

A SPORCalc model requires two databases of atom fingerprints; one containing the 

fingerprints of all the reaction centre atoms in the training data, and a second containing 

the fingerprints of all the atoms in the training data.  The fingerprints are stored in text files, 

as a space separated list of integers – with one value for the occupancy of each of the 198 

bins making up the six-level fingerprint.  The reaction centre fingerprints are stored in a 

single file.  Due to their greater number, the substrate fingerprints are split into separate 

files, one for each type of central atom. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 …   
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 … 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 … 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 … 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 … 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  2 0 0 0 0 0 0 0 1 0 … 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  … 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 … 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 … 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1  0 … 

Figure 27: A section of a SPORCalc reaction centre fingerprint file. 

3.1.2 Site of metabolism calculator 

The site of metabolism calculator is written mostly in Python, with a C++ program used to 

carry out the computationally expensive fingerprint similarity searching.  The Python code is 

designed to run as CGI scripts on a web server.  C++ was used in place of Python for the 

fingerprint searching since being a compiled rather than an interpreted language it is often 

much faster. 

The workflow of the SPORCalc calculator is shown in Figure 28, below.  The calculator takes 

an input molecule, using the SMILES (252) representation, and runs the CORINA (85) 

program to generate a PDB file containing a 3D structure of the molecule.  This step acts to 

check that a valid SMILES has been specified.  The calculator then uses the OEChem (249) 

library to load the SMILES, remove any hydrogen atoms, since they are not used in the 

calculation, and generate the tree-structure of the fingerprints.  The molecule, with 

hydrogen atoms removed, is written to an MDL molfile, and OpenBabel (253) is used to 

convert this to a MOL2 file, from which the atom type assignments are read.  CORINA is run 

again to generate a PDB file of the structure without hydrogen atoms, which is used to 

display the results.  The fingerprints, the selected database and parameters for the 
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calculation are passed to the calculator C++ program.  This generates normalized occurrence 

ratios for the atoms, by iterating through the database files, reading each line in turn and 

comparing it to each atom’s fingerprint.  If the distance between the fingerprints is small 

enough, then the occurrence of the environment is counted towards the atom’s reaction 

centre or overall occurrence counts, depending on the database file that is being read at the 

time.  Once the normalized occurrence ratio calculations are complete, their results are 

used to generate a RASMOL script that colours and labels the atoms in the results display. 

 

Figure 28: Overview of the SPORCalc calculator’s workflow. 

3.1.3 Database builder 

Generation of a SPORCalc database requires several hours’ computation, so the databases 

are pre-built, ready for use by the calculator.  The SPORCalc database builder is also a 

python script which depends on the OEChem library.  The database builder takes as its input 

a directory containing a collection of MDL rxnfiles, numbered sequentially 1,2,3,...  The 

script reads each file in turn, identifies the reaction centres, and generates fingerprints for 
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each of the atoms in the same manner as the calculator program.  The fingerprints are 

written to the reaction centre and substrate data files, as appropriate.  An overview of the 

database builder’s workflow is shown in Figure 29. 

 

Figure 29: Overview of the SPORCalc database builder’s workflow. 

Reaction centre identification and classification 

Reaction centres are identified through the comparison of the substrate and metabolite 

structures, detecting added and eliminated atoms and bonds, and changes to bond order.  
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SPORCalc  

SPORCalc uses a process of up to four stages to identify the correct mappings between the 

atoms and bonds of the substrate and metabolite structures.  In each of the first three 

stages of searching, putative mappings generated by maximum common substructure (MCS) 

searches carried out using the OEChem toolkit (249) are compared with the annotated 

mappings from the Symyx® Metabolite database.  If none of the mappings is found to match 

the database’s annotations then the search is repeated with increasingly strict matching 

criteria.  If none of the search configurations generates an MCS mapping in agreement with 

the annotations from the Metabolite database then mappings from an MCS generated using 

the intermediate strictness are utilised. 

Step Matching criteria 

1 
Atoms: atomic number 

Bonds: order (single and double can interchange) 

2 
Atoms: atomic number, charge, aromaticity 

Bonds: order, aromaticity 

3 
Atoms: atomic number, charge, hydrogen count, mass, ring membership, chirality 

Bonds: order, aromaticity, ring membership, chirality 

Table 1: The SPORCalc database builder’s MCS matching criteria. 

Once the MCS has been determined, the database builder identifies and classifies the 

reaction centres in the structure.  SPORCalc classifies reaction centre atoms as being 

involved in one or more of phase I addition (defined as the addition of a single oxygen atom 

– i.e. hydroxylation, oxidation or epoxidation), phase II addition (addition of any group other 

than a single oxygen atom), elimination, bond order change, bond broken and bond created.  

In addition, any atoms flagged as both addition and elimination reactions are also flagged as 

substitutions.  Being concerned primarily with phase I transformations, by default SPORCalc 

discarded labelling other than phase I addition and/or elimination. 

Examples of each of the classes of transformation are shown below.  Added, eliminated and 

changed portions of the structures are highlighted, as are the assigned reaction centres. 
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Addition (Phase I) 

 

(MDLNUMBER*: RMTB00049209) 

Elimination 

 

(MDLNUMBER:  RMTB00000003) 

Bond order change 

 

(MDLNUMBER: RMTB0000400) 

                                                      
* The MDLNUMBER is the record identifier from the Symyx® Metabolite database. 
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Bond made 

 

(MDLNUMBER: RMTB00021409) 

Bond broken 

 

(MDLNUMBER: RMTB00000403) 

3.2 Development of MetaPrint2D 

Early investigations of SPORCalc found that the software’s architecture would make it 

difficult to perform the large-scale evaluation that was envisioned.  The processing time of 

several minutes per compound made any evaluation quite time-consuming to perform, and 

being accessible only through a website made the process difficult to automate.  In addition, 

since the OEChem library was integral to much of SPORCalc’s processing, it would be 

difficult to substitute and evaluate alternative software approaches – one of the goals of 

this work. 

Given this, it was decided to develop MetaPrint2D, a completely new piece of software, 

based on the SPORCalc approach to site of metabolism prediction.  MetaPrint2D has been 

designed in an extensible manner, enabling it to be integrated with other software, and its 

use automated.  This has enabled the introduction of a number of optimizations and other 

improvements to be evaluated. 

Since SPORCalc had already undergone several evaluations, and was being used both within 

AstraZeneca and through a website run by the Unilever Centre for Molecular Science 
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Informatics, it was considered to be important to, so far as possible, maintain compatibility 

and ensure that a fair comparison was possible between the tools.  To this end, the initial 

development of MetaPrint2D aimed to replicate SPORCalc’s results as closely as possible.  It 

was decided that, by default, MetaPrint2D should use the same training data as SPORCalc 

(the Symyx® Metabolite database) and the same type of models. 

3.3 The Symyx® Metabolite database 

3.3.1 Overview of the Symyx® Metabolite database 

The Symyx® (formerly MDL) Metabolite database (250), provides information on the 

metabolic fate of xenobiotics, abstracted from primary literature, conference proceedings 

and New Drug Applications.  The 2008.1 release of the database contained 87446 

transformations, with around 5000 new transformations being added each year.  

Transformations are annotated with a variety of information including references to the 

literature reporting the transformation, details of the species and systems in which the 

transformation has been detected and classification of the types of reaction the 

transformation involves.  Each individual transformation does not necessarily record all of 

these details; indeed different transformations report varying subsets of this information. 

Database Version 2005.1 2006.1 2007.1 2008.1 

Transformations 72599 78009 82671 87446 

Single step 58757 62147 65732 69402 

Product not reported 811 831 834 882 

Newly added  5410 4662 4775 

Table 2: Overview of the contents of the Symyx® Metabolite database 

A transformation in the Symyx® Metabolite database consists of a single reactant 

(substrate) molecule, and a single product (metabolite).  One substrate compound may 

undergo a number of competing metabolic transformations, leading to a variety of different 

products.  Each of these is recorded in a separate record in the database.  
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Database version 2005.1 2006.1 2007.1 2008.1 

Molecules 45486 47855 50515 53247 

as substrate 22654 23934 25272 26588 

as product 37677 39569 41786 44136 

Schemes 11280 11923 12502 13052 

Table 3: Contents of the 2005.1-2008.1 Symyx® Metabolite database releases. 

Transformations are collated into metabolic schemes, with each scheme containing the 

collection of pathways originating from a distinct parent compound.  The database contains 

one record for each single step transformation (e.g. P→1A; 1A→2D; P→1J – in Figure 30 

below) and an additional record for the overall transformation achieved in each multi-step 

pathway (in addition to the records for the individual transformations such as P→1A and 

1A→2A, there will be records for overall transformations like P→2A). 

 

Figure 30: Screenshot of a metabolic scheme from the Symyx® Metabolite database in 

the ISIS/Base Metabolite Browser.  The parent compound is designated ‘P’, and the 1st 

and 2nd generation metabolites 1X and 2X, respectively.  The database contains a 

record for each transformation (designated by a reaction arrow), and an additional 

record for the overall transformation from the parent compound to each non-first 

generation product. 
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3.3.2 Consistency of the Symyx® Metabolite database 

As will be discussed in more detail later in the chapter, this work required the simultaneous 

use of several different releases of the Metabolite database.  This made it important that a 

method was identified to track molecules and transformations between database releases, 

and to ensure that the data was consistent between the different versions of the database.  

Examination of the records in different releases of the Metabolite database shows that the 

transformation indexes and scheme identifiers change between database versions; however 

there is a hidden field – MDLNUMBER, which contains a unique identification reference for 

each molecule and transformation.  This identifier should remain the same with every 

release of the Metabolite database (254).  

In order to check that the data was consistent between releases of the Metabolite database 

and the MDLNUMBER identifier preserved, as expected, InChI™ (255,256) (IUPAC 

International Chemical Identifier) canonical identifiers were generated for each molecule – 

substrate and product – for every transformation in each Metabolite database release that 

was being used.  The InChIs were recorded along with the MDLNUMBERs of the molecules 

and of the transformation.  This information was used to check whether the MDLNUMBERs 

are preserved, and whether or not they too are canonical. 

During the InChI generation process one problem was encountered: the Symyx® Metabolite 

database contains a number of entries with generic R-groups representing parts of the 

structure (e.g. covalently bound proteins or DNA), but the InChI algorithm and software do 

not currently support the concept of ‘wildcard’ atoms – the connection table of molecules 

must be completely specified, and all atoms assigned a valid chemical element.  To 

overcome this limitation, any R-groups encountered were substituted with iodine atoms, 

selected because iodine has the same valence, but is relatively rare within the Metabolite 

database (a search of the 2008.1 database found only 140 iodine containing molecules), so 

unlikely to cause a clash.  This substitution was only carried out to facilitate the generation 

of InChI canonical identifiers for the molecules, and was not applied to any other analyses. 

Consistency of molecule and reaction identifiers 

The molecule’s MDLNUMBERs were found to be consistent between the 2006.1 and 

subsequent releases of the Metabolite database – the identifier always described the same 
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structure (the corresponding InChI is consistent).  Between 2005.1 and 2006.1, however, the 

structure of a small number of molecules was changed.  Examination of the altered 

molecules suggests that the changes are the result of a remediation process – fixing 

incorrect structures and stereochemistry: 

  

  

    

  

  

Figure 31: Examples of structures changed between 2005.1 and 2006.1 database 

releases (left: 2005.1; right: 2006.1 and later).  In a few instances alterations are made 

to elements and connectivity, but in the majority of cases the only changes are the 

addition or correction of stereochemistry. 

Other than these changes through remediation, the transformations’ MDLNUMBERs are 

also consistent (always describe a transformation between molecules having the same 



79 

InChIs) between database versions.  With respect to molecule MDLNUMBERs the 

transformation identifiers are consistent throughout the remediation process too. 

Canonicity of molecule identifiers 

An analysis was also carried out to determine whether the MDLNUMBER is a canonical 

identifier of molecules – i.e. whether all occurrences of molecules with the same structure 

are assigned the same MDLNUMBER.  In order to perform this analysis the MDLNUMBERs 

associated with each InChI were determined, and any InChI having more than one 

MDLNUMBER associated was identified. 

Initially it did appear that some molecules were assigned multiple MDLNUMBERs, but on 

further investigation it was found that in the majority of cases this could be explained by the 

recording of relative versus absolute stereochemistry.  Many transformations have been 

reported by a number of sources, some of which have specified the absolute 

stereochemistry of the molecules, and others the relative stereochemistry.  The metabolite 

database records these separately.  When the input structures’ chiral flag (indicating 

whether the structure represented a specific enantiomer) was taken into consideration this 

apparent duplication of molecules was eliminated. 

The remainder of problem cases were due to ‘indeterminate metabolites’.  In a number of 

metabolic schemes the presence of intermediate metabolites whose structure are unknown 

is reported.  The Symyx® Metabolite database represents these cases as empty structures, 

so while the molecules’ structures are in fact different (but unknown), identical (empty) 

InChIs were generated by this analysis. 

Canonicity of reaction identifiers 

The canonicity of reaction identifiers was also investigated.  Each reaction was described in 

terms of the InChI of its substrate and metabolite compounds, and these were mapped 

against the MDLNUMBER of the transformation.  Analysis of this data found that while the 

reaction identifiers were consistent across the database releases investigated, they were 

not canonical.  Some transformations from the same substrate to metabolite molecules are 

recorded multiple times in the Symyx® Metabolite database.  This is due to reaction 

schemes centred on different parent compounds converging on a common intermediate 

metabolite, and from that point on following identical reaction pathways. 
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3.3.3 Data formats 

The RDfile format 

The entire Symyx® Metabolite database can be exported as an RDfile.  The RDfile format is 

one of a family of related formats, known as CTfile (chemical table file) formats (257,258), 

developed at MDL Information Systems.  The first CTfile format is the molfile, which is used 

to specify the structure of a single molecule, and consists of a Header block and a Ctab block 

– providing a connection-table description of the molecule.  Related to molfiles are rxnfiles, 

which specify reactions and consist of a RXN Header block, together with a number of 

embedded molfiles – one for each reactant and product molecule.  The structures of one or 

more molecules, together with associated data and properties for each molecule, can be 

stored in an SDfile (structure-data file), which is again made up of a number of embedded 

molfiles, but also includes name-value data entries for each molecule.  Similarly, RDfiles 

provide the option to store one or more reactions, together with associated data and 

annotations, in a single file.  

$RDFILE 1 Header line 

$DATM 7/22/2008 15:12:35 Timestamp 

$RFMT $RIREG 1 Reaction record indicator, internal ID = 1 

$RXN 

... 

Embedded rxnfile, containing reactant and 
product molecules 

$DTYPE RXN:RXNREGNO Field title (RXN:RXNREGNO) 

$DATUM 1 Field value (1) 

$DTYPE RXN:VARIATION(1):RXNREF(1):PATH Field title 

$DATUM MTB1-A Field value 

$DTYPE RXN:VARIATION(1):RXNREF(1):STEP Field title 

$DATUM 1 Step Field value 

...  

$RFMT $RIREG 2 

... 
Next reaction record indicator 

Figure 32: Left, a portion of an RDfile export from the 2008.1 release of the Symyx® 

Metabolite database; and right, a description of the contents of each line or section of 

the file. 
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Data fields in the Metabolite database form a hierarchical tree structure, with each node in 

the tree containing child data fields, a value, or a list of values, as illustrated in Figure 33.  

The RDfile format, however, flattens this tree structure and stores reaction data as pairs 

consisting of a field name and the associated data.  

Tree Structure Corresponding Field Names 

 

 

RXN:RXNREGNO 

 

 

RXN:VARIATION(1):RXNREF(1):PATH 

RXN:VARIATION(1):RXNREF(1):STEP 

 

RXN:VARIATION(1):LITREF(1):AUTHOR 

RXN:VARIATION(1):LITREF(2):AUTHOR 

RXN:REACTANT_LINK(1):... 

RXN:PRODUCT_LINK(2):... 

Figure 33: A section of the tree structure holding the reaction data in the Symyx® 

Metabolite database, and the corresponding data field names from an RDfile export of 

the database. 
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Rxnfile format 

The structure of an rxnfile is shown in Figure 34.  The file contains a short header block 

which identifies the file as an rxnfile, allows the reaction to be named, and a short comment 

(up to 80 characters long) to be included.  The header can also contain the initials of the 

user who created the file, the identity and version of the software used to generated the 

file, the date and time the files was created, and an internal registry number for the 

reaction.  Following the header, an rxnfile has a line indicating the number of reactant and 

product molecules contained in the file, followed by those molecules embedded using the 

molfile format.  The molecules are ordered as reactants followed by products. 

$RXN Header line 

 Reaction name (blank in Metabolite) 

  ISIS  072220081512 Information on user/software 

 Line for comments 

  1  1 
The numbers of reactant and product 
molecules 

$MOL Molecule delimiter 

... Embedded molfile 

$MOL Molecule delimiter 

... Embedded molfile 

Figure 34: Overview of the format of an rxnfile. 

Molfile format 

The molfile format is similar to that of the rxnfile.  Molfiles contain a header allowing the 

molecule to be named and a comment added.  As with rxnfiles information regarding the 

user who created the file, the software used and an internal registry number can be 

included, but in addition it can be specified whether the file contains 2D or 3D coordinates, 

together with scaling factors and if used with a modelling program, a steric energy value.  

Following the header is the connection table (Ctab) block.  This starts with a counts line, 

specifying the number of atom, bond and property records in the block and a chiral flag.  

The counts line is followed by one line for each atom in the molecule, specifying the atom’s 

coordinates, element type, charge, isotope number and various other properties.  The atom 

records are followed by bond records, again with one line for each bond in the molecule, 

indicating the atoms making up the bond and the order of the bond, along with some 
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annotations.  The final section of the Ctab block contains a list of additional properties, 

including information on the isotopic composition, atomic charges and radical centres.  In 

earlier versions of the molfile format the number of properties lines was included in the 

Ctab block’s counts line, however the properties block is now terminated by a line reading 

‘M  END’.  This structure is illustrated in Figure 35, below. 

 Molecule name (blank in Metabolite) 

  -ISIS-  07220815122D Information line 

 Line for comments 

15 14  0  0  0  0  0  0  0  0999 V2000 
Counts line; first two figures are 
number of atoms and number of bonds 
in molecule 

  -8.5869  -2.2723  0.0000 C  0  0  3  0  0  0  0  0  0  1  0  0 Atoms block 

...  

  1  2  1  0  0  0  2 Bonds block 

...  

M  CHG 1 3 Properties block 

...  

M  END Molecule terminator 

Figure 35: The structure of a molfile. 
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3.3.4 Data fields in the Symyx® Metabolite database 

SPORCalc databases were generated from a list of rxnfiles.  This approach lost much of the 

information contained in the Symyx® Metabolite database, since the rxnfile format does not 

allow the inclusion of any additional data fields.  In the development of MetaPrint2D it was 

felt that although they are a more complex format, it was better to work with RDfiles, since 

they provide access to the full content of the Metabolite database. 

RXN:RXNREGNO Internal ID; reactions indexed from 1 

RXN:SCHEMEID Reaction scheme ID (e.g.: MTB1) 

RXN:VARIATION(1):RXNREF(1):PATH Reaction path ID (e.g.: MTB1-A) 

RXN:VARIATION(1):RXNREF(1):STEP Reaction step (e.g.: 1 Step;  2 of 5;  3 Steps) 

RXN:VARIATION(1):LITREF(1):ANIMAL(1):SPECIES 

RXN:VARIATION(1):LITREF(1):ANIMAL(2):SPECIES 

RXN:VARIATION(1):LITREF(2):ANIMAL(1):SPECIES 

Species/systems in which transformation 
has been observed to occur 

(e.g.: in vitro (Rabbit Liver Homogenate)) 

RXN:VARIATION(1):RXNCLASS(1):RXNCLASS 

RXN:VARIATION(1):RXNCLASS(2):RXNCLASS 

Annotated reaction types  

(e.g.: Deacetylation) 

RXN:VARIATION(1):MDLNUMBER Unique reaction ID (e.g.: RMTB00000005) 

RXN:REACTANT_LINK(1):MOL(1):MDLNUMBER 
Unique molecule ID for reactant 

(e.g.: MMTB00000001) 

RXN:PRODUCT_LINK(1):MOL(1):MDLNUMBER 
Unique molecule ID for product 

(e.g.: MMTB00002974) 

Figure 36: Selected fields from the Symyx® Metabolite database, relevant to the 

development of MetaPrint2D, with field names, descriptions and example entries. 

3.4 MetaPrint2D’s implementation 

There are two primary factors affecting the accuracy of SPORCalc and MetaPrint2D – the 

quality and breadth of the data in the Symyx® Metabolite database, and the correctness of 

the identification of sites of metabolism in the training data.  The former is something over 

which users of the database have no control (other than reporting any problems identified 

to the database’s publishers, to be fixed in subsequent releases), the latter, however, is 

open to investigation. 

Among other uses, OEChem was required by SPORCalc in order to carry out the maximum 

common substructure searches performed for the identification of reaction centres.  Since 

the goals of this work included the removal of commercial dependencies, such as OEChem, 
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from the software, and the implementation of dependable algorithms to improve the 

reliability of predictions, this area has been investigated.  Analysis of the method through 

which SPORCalc identified sites of metabolism suggested a number of alternative 

approaches. 

MetaPrint2D was written using the Java programming language.  Java is widely used in the 

chemical computing community, and offers the advantage of being easily portable between 

computers running different operating systems, while not suffering from the performance 

problems of purely interpreted languages. 

3.4.1 Reaction centre identification 

Over the course of the development of MetaPrint2D a number of approaches to the 

identification of sites of metabolism in the transformations from the training data were 

considered: 

 Bond annotations 

 Atom-atom mappings 

 Maximum common substructure search 

Each of these approaches is discussed below. 

Symyx® Metabolite database bond annotations 

The first option examined was to make direct use of the annotations contained in the 

Symyx® Metabolite database.  The CTfile formats provide support for bond annotations 

detailing their ‘reacting centre status’, and this has been used in the construction of the 

Metabolite database.  The available annotations are listed in Table 4.   
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Value Meaning 

0  Unmarked 

1  A centre 

-1  Not a centre 

2  No change 

4  Bond made (if in product)/broken (if in reactant) 

8  Bond order changes 

12 (4+8) Both made/broken and bond order changes 

Table 4: CTfile reaction centre status annotations. 

Unfortunately, the bond annotations were not found to map well to the substrate reaction 

centres.  Figure 37 shows a small selection of transformations from the Metabolite 

database, with the annotated bonds and atoms considered to be reaction centres 

highlighted. 
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(MDLNUMBER: RMTB00000003) 

 
(MDLNUMBER: RMTB00000001) 

 
(MDLNUMBER : RMTB00000023) 

 
(MDLNUMBER: RMTB00039453) 

Figure 37: Symyx® Metabolite database bond annotations; the highlighted bonds are 

all marked ‘bond made/broken’, and the highlighted atoms are those that we would 

consider to be reaction centres. 

It is clear that there is no simple correspondence between the bond annotations in the 

Symyx® Metabolite database and the reaction centre atoms; assigning as reaction centres 



88 

all those atoms belonging to an annotated bond would lead to a large number of extra 

atoms being labelled as reaction centres.  The possibility that the bond annotations could be 

due to the mechanistic detail of the transformation has been considered, but given the 

likely mechanism of the hydrolysis (shown in Figure 38) taking place in the first 

transformation, this is unlikely to be the case. 

  

Figure 38: Left, substrate of the hydrolysis shown in Figure 37 with annotated bonds 

from the Metabolite database highlighted, and right, with the mechanistically 

important bonds highlighted.  The bond annotations do not correspond to the 

mechanistically important bonds. 
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Symyx® Metabolite database atom-atom mappings 

In addition to the ‘reacting centre status’ annotations of the bonds, transformations from 

the Symyx® Metabolite database are annotated with atom-atom mappings, indicating 

correspondence between atoms in the substrate and metabolite structures.  Each atom that 

is conserved between the substrate and metabolite molecules is assigned a unique number, 

and annotated with that number in each of the structures.  SPORCalc made use of these 

annotations in its determination of reaction centres. 

 
 

 

Figure 39: Examples of atom-atom mapping annotations from the Symyx® Metabolite 

database.  The MCS is highlighted in bold, and the Metabolite database supplied atom 

mapping numbers are displayed. (Top – MDLNUMBER:  RMTB00000022; Bottom – 

MDLNUMBER: RMTB00015481)  

In many cases the atom-atom mapping annotations provided by the Metabolite database do 

give a good indication as to the atoms conserved between the substrate and metabolite 

compounds, and hence the locations of the reaction centres.  However a number of 

problems were identified. 
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Missed annotations 

Examination of the atom-atom mapping numbers in the Symyx® Metabolite database 

showed that they could not be used on their own to identify sites of metabolism.  Some 

transformations are not annotated with any atom-atom mapping information, and in many 

cases some conserved atoms are missed out from the mapping.  This is illustrated by the 

sulfuration shown in Figure 40, below. 

 

Figure 40: Atom-atom mapping numbers from the Symyx® Metabolite database 

(MDLNUMBER: RMTB00046671).  The oxygen atom marked with an asterisk is not 

assigned a mapping in the database despite being conserved between the substrate 

and product. 

Although the documentation for the Symyx® Metabolite database states that “atom-atom 

maps are usually assigned based on the apparent change in the transformation, rather than 

the actual transformation mechanism” (259), we have considered the possibility that the 

oxygen at which the reaction takes place (indicated with an asterisk in the figure) could have 

been excluded from the atom-atom mappings for mechanistic reasons.  However, the 

mechanism through which sulfotransferases act (260) would conserve the atom over the 

course of the transformation, as shown in Figure 41.  This suggests that the indicated atom 

is omitted from the mapping in error. 
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Figure 41: The proposed mechanism for sulfuration (260): Sulfuration takes place in 

the active site of a sulfotransferase enzyme, with cleavage of the sulphate group from 

3’-phosphoadenosine 5’-phosphosulfate (PAPS) proceeding via an SN2-like mechanism, 

stabilized by surrounding charged and polar residues.  The substrate, metabolite and 

sulfonate group are shown in bold, with the conserved substrate substructure 

highlighted in red.  The substrate’s hydroxyl oxygen is retained in the metabolite’s 

structure. 

 The omission of mappings for atoms found at centres of addition such as this is not 

occasional, but rather seems to have been a systematic choice by the database’s curators.  

The result of this is that the mapping numbers alone cannot be used to identify the 

conserved structure between a substrate and metabolite. 

Mapping errors 

While the majority of the atom-atom mappings provided in the Symyx® Metabolite 

database do appear to be accurate, aside from the missed mappings, there are a number of 

instances where they are incorrect, leading to strange apparent conserved structures.  One 

such case is shown in Figure 42(a) below.  The annotated atom-atom mapping numbers, and 

the conserved structure they imply, clearly do not correspond to the structure that is in 

actual fact conserved between the substrate and metabolite.  Interestingly, in a similar 

transformation from the same metabolic scheme, shown in Figure 42(b), the annotations 

have been correctly assigned, although the exclusion of the oxygen adjacent to atom 4 from 
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the mapped structure, suggests that the mappings in this case could have been assigned on 

the basis of mechanism, rather than just the apparent change in the transformation, in spite 

of what is indicated in the database’s documentation (259). 

(a) 

 

(MDLNUMBER: RMTB00011859) 

(b) 

 

(MDLNUMBER: RMTB00005370) 

Figure 42: (a) An example transformation from the Symyx® Metabolite database, 

where the atom-atom mappings are incorrect; (b) A related transformation where the 

atom-atom mappings have been correctly assigned. 

Maximum common substructure search 

Well over two decades ago it was suggested that the changes occurring in the course of 

chemical reactions could be identified through determination of the maximum common 

subgraph of the reactant and product (261) molecules, and this formed the basis of the 
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approach taken by SPORCalc.  The authors of SPORCalc were aware of the problem of 

incomplete mapping annotations, and, as described earlier, performed a series of maximum 

common substructure (MCS) searches with increasingly strict matching criteria until a result 

was found in which the mappings of all annotated atoms were in agreement with the 

mappings specified by the annotations.  If no such mapping can be found then SPORCalc 

defaults to using the mappings produced by an MCS search with an intermediate strictness 

of matching criteria. 

Since the annotated mappings are incomplete, an approach taking the Symyx® Metabolite 

database’s atom-atom mapping annotations as a starting point for the maximum common 

substructure search, and ‘growing’ the MCS from that structure was considered.  However, 

due to the identification of errors in the mappings such as that described above, it was 

decided not to pursue that method. 

Instead, a scheme based on the MCS between the substrate and metabolite has been 

adopted.  The difficulty in handling the data from the Symyx® Metabolite database is that 

each record contains only a single reactant and a single product – the main substrate and 

primary metabolite formed by the transformation.  Additionally, some transformations 

represent the overall result of a number of elementary reaction steps, posing additional 

challenges.  Rather than taking SPORCalc’s approach of trying MCS generated using various 

configurations, until a match with the Metabolite database’s annotations is found, 

MetaPrint2D identifies the ‘best’ conserved structure that it can, and only in the case of 

multiple equally good structures uses the Metabolite database’s mappings to choose 

between them. 

Exactly what is the best conserved substructure between a substrate and metabolite is not 

always easy to define.  Figure 43, below, shows three possible MCS for a transformation 

from the Metabolite database, each of which is the outcome of an MCS search performed 

according to a different configuration of the search algorithm.  If the search is performed 

with the requirement that bond orders must be conserved between the substrate and 

metabolite, then the MCS shown in (a) is found.  If this requirement is relaxed, then the 

result shown in (b) is detected – with 9 atoms and 8 bonds conserved, compared to the 7 of 

each for the result of the first search.  A third possibility, found if disconnected results are 
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permitted, is shown in (c); this also contains 9 conserved atoms and 8 conserved bonds, and 

unlike that shown in (b) the bond orders are conserved. 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Figure 43: The output of maximum common substructure searches with various 

settings: (a) bond orders conserved; (b) bond orders not conserved; (c) bond orders 

conserved, disconnected structures permitted. (MDLNUMBER: RMTB00016651) 

It is clear from this example that a MCS does not necessarily reflect the atoms and bonds 

conserved over the course of a reaction.  It is important to note that mappings of bonds 

cannot be restricted on the basis of their order, as these often change over the course of a 

reaction.  In order to determine the most appropriate ‘reaction conserved substructure’, 

MetaPrint2D relies on a set of heuristics to generate constraints on the permitted atom 

mappings, and then performs a search for the best maximum common substructure within 

the bounds of those constraints. 
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‘Simple’ transformations 

In many cases either a simple addition such as hydroxylation or acetylation, or a simple 

elimination such as deacetylation or dealkylation, has occurred.  In these instances there 

have either been additions or eliminations of atoms and bonds (other than hydrogen 

atoms), but not both.  Examples of such transformations are illustrated in Figure 44.  

Whether a transformation potentially represents a simple addition or elimination can easily 

be ascertained by comparing the numbers of atoms in the reactant and product structures.  

If the product contains more atoms than the reactant then an addition may have taken 

place, and this can be determined by checking whether the reactant structure is completely 

contained within the product structure.  Alternatively, if the reactant contains more atoms 

than the product then an elimination reaction may have taken place, in which case the 

product will be a substructure of the reactant.  Testing whether one structure is completely 

contained within another – the so called ‘subgraph isomorphism problem’ is much quicker 

and simpler than maximum common subgraph-isomorphism, so this test is carried out at 

the start of the analysis of each transformation. 

 

(a) 

(MDLNUMBER: RMTB00001293) 

 

(b) 

(MDLNUMBER: RMTB00001671) 

Figure 44: Examples of ‘simple’ transformations, where either the entire substrate or 

product structure is conserved.  The added or eliminated portion of the structure is 

shown in red, and the conserved structure highlighted in bold. (a) Addition: 

acetylation (b) Elimination: dealkylation. 

This test also identifies cases in which the Symyx® Metabolite database describes the result 

as ‘optical resolution’, where no transformation has occurred; rather a single enantiomeric 
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form is selected.  Since MetaPrint2D currently disregards stereochemical information, these 

transformations are discarded. 

Constrained MCS search 

If there is no ‘simple’ mapping between the substrate and metabolite structures then 

MetaPrint2D performs a maximum common substructure search in order to determine the 

conserved substructure.  However, in order to determine the most relevant MCS a series of 

heuristics imposing constraints on the permitted atom mappings have been developed. 

These constraints are based around the principle of ring conservation – that if there are 

equivalent ring systems or single rings in both the substrate and metabolite structures then 

it is likely that they are conserved over the course of the transformation.  MetaPrint2D first 

checks whether the Murcko framework (262), or scaffold, of either molecule is conserved, 

and then checks for any conserved ring systems (sets of simple rings sharing one or more 

atoms or bonds) and finally any remaining simple rings. 

1. Scaffold constraints 

Murcko frameworks consist of the set of ring atoms and bonds in a molecule, together with 

the atoms and bonds contained in linkers between rings.  The first constraints on the MCS 

mappings that MetaPrint2D attempts to generate are based on the detection and 

conservation of this scaffold. 

In order to do this the scaffold structures of both the substrate and metabolite molecule are 

identified, and a regular substructure search performed to determine whether one is 

completely contained within the other – i.e. whether a scaffold is conserved between the 

substrate and metabolite.  If this is the case then the constraint that the conserved scaffold 

atoms must map to their equivalent atoms in the other compound is imposed. 

If a conserved scaffold is identified then no further search for constraints is performed, since 

all of the ring atoms and bonds from the structure with the smaller scaffold will have had 

their potential mappings constrained. 

An example illustrating the generation of scaffold-based atom mapping constraints is shown 

in Figure 45, below. 
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Substrate Metabolite 

  

Isolate scaffolds – i.e. all rings and linkers 

  

Identify conserved scaffold 

  

Generate mapping constraints, and apply to entire molecule 

Atom numbering indicates mapping constraints.  Bold bonds indicate scaffold structure; this must be 
included in maximum common substructure generated. 

 
 

Figure 45: The generation of scaffold atom mapping constraints for MCS search 

illustrated for the metabolism of Ancitabine (MDLNUMBER: RMTB00036597).  The 

scaffolds, or Murcko frameworks, of the substrate and metabolite structures are 

identified, and it is determined whether the smaller scaffold is completely contained 

within the larger.  If this is the case then atom mappings between the two structures 

are generated.  In this example each scaffold atom has a unique mapping to an atom 

in the other structure, but often groups or classes of equivalent atoms are detected. 
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2. Ring constraints 

If the scaffold structure is not completely conserved, then a search for conserved ring 

systems and finally for conserved simple rings is carried out.  Ring systems consist of either 

lone rings, or of sets of single rings having one or more atoms or bonds in common, 

resulting in bridged, fused or spiro systems.  The ring systems in both the substrate and 

metabolite structures are detected, and any ring systems common to both molecules 

identified.  If there are ring systems common to both structures then atom mapping 

constraints are generated for the atoms in these systems.  In the case that a structure 

contains more than one identical ring system, mapping constraints are only generated if the 

other structure contains the same number of occurrences of a matching ring system. 

Finally, after any conserved ring systems are identified, conserved structures between any 

rings that remain unmapped are explored. 

An example illustrating the process is shown below in Figure 46. 
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Substrate Metabolite 

 
 

Identify ring systems 

  

Find conserved ring systems 

  

Find conserved rings within remaining ring systems 

  

Generate atom-atom mapping constraints for molecules 

 
 

Figure 46: Generation of ring system constraints (MDLNUMBER: RMTB00000482). 
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MCS search algorithm 

Once conserved scaffolds, ring systems and rings have been identified and constraints on 

permitted atom-atom mappings generated, a final heuristic is applied: any atoms that are 

not contained in any of the conserved structures may only map to another atom that is not 

contained in a conserved structure.  A maximum common substructure search is then 

performed within the bounds of these constraints. 

Maximum common substructure searching is an example of the ‘maximum common 

subgraph isomorphism’ problem, a computational task which is described as NP-complete 

(263), meaning that there is no efficient algorithm guaranteed to find the best solution.  

Between two structures having m and n atoms, respectively, there are  𝑚𝑛+1𝑛 potential 

MCS solutions (264).  However the performance of algorithms can be vastly increased in 

most cases through the application of appropriate heuristics; in the case of the searches 

performed by MetaPrint2D, both heuristics within the search algorithm itself, and 

additionally the constraints on the allowed atom-atom mappings that are generated. 

Many algorithms for the determination of maximum common substructures have been 

proposed (265).  MetaPrint2D relies on a modified version of the Recursive backtracking 

algorithm, developed by Krissinel and Henrick (264) to carry out its maximum common 

substructure searches.  This algorithm is itself an enhancement of the well known Ulmann 

algorithm (266).  The alternative approach would be to employ an algorithm based on 

maximal clique detection (267,268). 

Each iteration of the recursive backtracking algorithm picks an unmapped atom from the 

query structure and identifies the set of atoms in the target structure to which it may be 

mapped without violating the constraints imposed by the previously mapped atoms.  Each 

candidate mapping is picked in turn, with the search continuing until no more query atoms 

are available, in which case the algorithm backtracks to its previous state, and picks the next 

candidate mapping.  The time required to perform the MCS search depends on the number 

of recursive calls made.  Krissinel and Henrick have developed a strategy for efficiently 

pruning the search space, eliminating time consuming exploration of undesirable branches 

that cannot lead to a good solution to the search, at the expense of a small additional 

overhead per iteration. 
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At each iteration the algorithm checks whether the current search direction is worth 

continuing, or whether it should backtrack and pick a different path to search, by testing 

whether the number of nodes which could be mapped (the sum of the number of nodes 

currently mapped and the number of unmapped nodes with permitted mappings remaining) 

is at least as high as the number of nodes in the best result found so far.  When picking the 

next node, the node with the fewest potential mappings is selected, narrowing the search 

space as rapidly as possible.  Finally, when each mapping is made, the potential mappings of 

all remaining unmapped nodes are refined on the basis that nodes neighbouring the last 

mapped node in the query structure must neighbour the target structure node to which it 

was mapped, and similarly, nodes not neighbouring the query structure node may not map 

to a neighbour of the mapped node in the target structure. 

The recursive backtracking algorithm utilised by MetaPrint2D is slightly modified from 

Krissinel and Henrick’s published algorithm.  The option to specify constraints on the 

permitted atom and bond mappings has been added, as has an option to ensure that only 

connected results are generated, by ensuring that at each step in the search the current 

structure can only be extended into neighbouring atoms. 

Filtering suggested maximum common substructures 

Often there are several potential MCSs, with different mappings between reactant and 

product atoms.  If this is found to be the case then Occam’s razor is applied, and it is 

assumed that the simplest explanation – i.e. the MCS with the fewest reaction centres and 

fewest added, removed or changed bonds – is the best. 

The following examples illustrate how the problem is addressed. 
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1. Minimize the number of reaction centres 

 

Ignoring the symmetry of the N-
methyl groups, this 
transformation has two possible 
MCS mappings, conserving the 
same number of atoms and 
bonds. 

 

Identifying the mapping that 
minimizes the number of reaction 
centres discriminates between 
them (atoms and bonds forming 
the MCS are shown in bold). 

 

 

The MCS between the substrate 
and metabolite in this N-
demethylation is a single carbon 
atom.  The carbon atom in the 
metabolite could potentially map 
to any carbon in the substrate 
structure.  Minimising the number 
of reaction centres correctly 
identifies the mapping to one of 
the N-methyl substrate carbon 
atoms. 

Figure 47: Illustration of the selection of ‘best’ MCS, by minimizing the number of 

reaction centres. 
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2. Pick the MCS with the greatest number of unchanged bonds 

 

(a) 

 

 

(b) 

 

Figure 48: Alternative mappings for an amide hydrolysis; both have the same number 

of reaction centres; (b) is preferred since the carbonyl oxygen’s bond order is 

conserved. 

The performance of the reaction centre identification has been evaluated through manual 

inspection of 300 randomly selected transformations from the Symyx® Metabolite database.  

The results of this evaluation are presented on page 120, in Chapter 4. 

Classifying reaction centres 

Once the structure common to the reactant and product has been identified, reaction 

centres are detected and classified.  In order to maintain compatibility with SPORCalc the 

same classification scheme is used.  Reaction centres are identified through examination of 

bonds changed between the reactant and product structures.  Bonds found in the reactant 

molecule but not in the product are listed, as are bonds in the product molecule but not in 

the reactant.  In addition, bonds whose order is changed between the reactant and product 

are identified. 
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Atoms are marked as reaction centres and assigned to one or more of the same reaction 

classes used by SPORCalc.  This classification is performed on the basis of the atom and 

bond changes, and in the case of additions, also on the group added: 

 Phase I addition – defined as the addition of a single oxygen atom, which covers 
hydroxylation, oxidation and epoxidation 

 Phase II addition – defined as the addition of any other group 

 Elimination 

 Bond breaking 

 Bond formation 

 Bond order change 

 Substitution – defined as both an addition and an elimination centred on the same 
atom 

Filters can be applied during the model construction process enabling generation of models 

for any combination of these reaction types.  In order to facilitate comparison with 

SPORCalc, and other site of metabolism prediction tools, in the course of this work models 

have been restricted to the prediction of Phase I additions and eliminations. 

3.4.2 Multi-component structures 

There are a small number of transformations for which the Symyx® Metabolite database 

reports more than one component in either the substrate or metabolite structures.  In all 

cases the additional component is due to the presence of a counter-ion, such as the acetate 

anion in Figure 49, below. 

 

Figure 49: Example of a transformation in which the substrate structure contains an 

acetate counter-ion (MDLNUMBER: RMTB00042423). 
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In most cases the presence of the counter-ion is reported in either the substrate or 

metabolite, not both.  For such transformations only the largest component is analysed, and 

any counter-ions are discarded 

3.4.3 Aromaticity detection 

When determining whether a region of a molecule has undergone a metabolic 

transformation it is important that different aromatic resonance forms are taken into 

consideration; the representation of aromaticity and other delocalised systems is a 

challenge for chemical information systems.  In cases such as that illustrated in Figure 50, it 

can appear that bonds have changed order over the course of a transformation, when in 

actual fact the substrate and metabolite structures are different resonance forms of the 

same aromatic system.  

 

Figure 50: The bonds in the aromatic ring highlighted in red appear to change order 

between the substrate and metabolite structures.  These, however, do not represent 

reaction centres: the two structures are equivalent resonance forms of the delocalised 

π-system. (MDLNUMBER: RMTB00007698) 

In other cases, however, a transformation really has occurred: 
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Figure 51: In this case the change in order of the aromatic bond highlighted is due to a 

metabolic transformation, and is not the result of an alternative resonance structure. 

(MDLNUMBER: RMTB00004389) 

In Figure 51 both of the five-membered rings containing the highlighted bond can be 

considered aromatic by chemical information systems using Huckel’s 4n+2 electron rule.  

However, the change in bond order is not simply down to a change of resonance structure.  

This can be recognised in two ways: firstly, the change in bond order is not a concerted 

change of an alternating single/double bond system, and secondly a hydrogen atom has 

been added to the nitrogen atom, increasing its number of substituent atoms. 

3.4.4 Fingerprint generation 

MetaPrint2D utilises the same type of circular atom environment fingerprints as SPORCalc 

(see Page 68) to represent the chemical environment occupied by atoms.  These atom-

centred fingerprints consist of lists of the atom types encountered at successive topological 

distances from a central atom.  MetaPrint2D first assigns SYBYL® atom types (251), listed in 

Table 5 below, to each atom in a structure.  Fingerprints are then generated for each atom 

in turn, by means of a depth limited breadth-first search (BFS) encompassing the central 

atom and all atoms up to five bonds distant.  At each depth within the search, a list of the 

atom types encountered at that depth, together with their frequency of occurrence, is 

recorded.  Atoms are only recorded the first time they are encountered by the BFS, 

regardless of any cycles in the structure.  These atom type lists form the basis of the 

fingerprints used in MetaPrint2Ds. 
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Fingerprint:  C.ar  ;  2x C.ar  , C.sp2  ;  2x C.ar  , O.sp2 , O.sp3  

Figure 52: Atom environment fingerprint generation.  Neighbouring atoms are visited 

via breadth-first search, and the number of occurrences of each atom type at each 

topological distance is recorded. 

Atom 
type 

Description 
Atom 
type 

Description 

C.3 sp3 hybridized carbon N.3 sp3 hybridized nitrogen 

C.2 sp2 hybridized carbon N.2 sp2 hybridized nitrogen 

C.1 sp hybridized carbon N.1 sp hybridized nitrogen 

C.ar aromatic carbon N.ar aromatic nitrogen 

C.cat carbocation (C+) N.am amide nitrogen 

O.3 sp3 hybridized oxygen N.pl3 planar 3-coordinate nitrogen 

O.2 sp2 hybridized oxygen N.4 positively charged sp3 nitrogen 

O.co2 carboxylate/phosphate oxygen Li lithium 

S.3 sp3 hybridized sulphur Na sodium 

S.2 sp2 hybridized sulphur K potassium 

S.O sulphoxide sulphur Ca calcium 

S.O2 sulphone sulphur Al aluminium 

P.3 sp3 hybridized phosphorus Si silicon 

F fluorine H hydrogen 

Cl chlorine Du dummy atom 

Br bromine LP lone pair 

I iodine   

Table 5: The SYBYL® atom types used by SPORCalc and MetaPrint2D. 

C.ar

C.ar

C.ar

C.sp2

C.ar

C.ar

O.sp3

O.sp2
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3.4.5 Fast fingerprint searching 

As with SPORCalc, the model generation process for MetaPrint2D can be carried out 

beforehand, and the data saved, so the efficiency of this step does not affect the experience 

of users when making a query.  However, the speed of the searching of this data contained 

in the model is vital in determining the user’s experience.  Ideally predictions should be fast 

enough to be made in ‘real-time’ as far as a user is concerned, enabling immediate 

visualisation of the effects of alterations to a structure. 

SPORCalc’s database simply listed the environment of each atom in the Symyx® Metabolite 

database in a set of data files; one file contained the atom environments of all the reaction 

centres in the database, and other files contained the full list of atom environments, 

separated by the type of their central atom.  Predictions were made by iterating through all 

these files, comparing each atom environment fingerprint to the fingerprints of the atoms in 

the query structure, and keeping count of the number of reaction centre and substrate hits. 

To hold all this data, SPORCalc’s data files were very large – in the region of 600MB for each 

model.  Storing and searching this quantity of data led to SPORCalc taking several minutes 

per molecule to generate predictions.  A number of alternative approaches to storing and 

searching the model have been investigated, with the aim of increasing the speed of 

prediction. 

The 2008.1 release of the Symyx® Metabolite database contains 1352387 atoms, occupying 

166766 distinct environments.  Storing a list of atom environments, each with pre-

computed reaction centre and substrate occurrence counts, rather than recording each 

atom individually leads to a reduction in both file size and computation time of almost 90%. 

Input/Output operations (reading from/writing to a disk) are very time-consuming in 

comparison to equivalent operations on data stored in Random Access Memory (RAM).  

Calculations can be performed much more rapidly if MetaPrint2D’s dataset can be held 

entirely in RAM, rather than being read from disk on every use.  Each fingerprint consists of 

six levels of 33 bins, each of which contains a value from a small range (typically 0-5).  

Storing each bin of the fingerprint in a single byte of memory, a fingerprint would take up 

198 bytes.  This means that the fingerprints for the 165951 distinct environments found in 

the 2008.1 release of the database would require around 31MB of memory.  Additional 
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memory is needed for the storage of occurrence counts, and overheads associated with the 

data structures, but that will not expand the memory requirements to the point where this 

quantity of data cannot easily be stored in the memory of modern computer systems, which 

typically have gigabytes of RAM available. 

Since MetaPrint2D is intended to be used as a library, potentially integrated into larger 

systems, it is still desirable to minimize the storage requirements as much as possible as 

MetaPrint2D may not have access to the computer system’s entire resources.  Additionally, 

under its default settings the Java virtual machine only has access to a small proportion of 

the host computer’s resources.  Users may wish to work with models generated with various 

constraints (e.g. Human/Rat...), so it is beneficial to be able to hold several models in 

memory at the same time. 

Memory usage has been further reduced through exploitation of the hierarchical structure 

of the fingerprints.  At each level, the fingerprint contains a count of the number of 

occurrences of each atom type at that distance from the atom on which the fingerprint is 

centred.  These single-level sub-fingerprints are often identical to a single-level of many 

other full six-level fingerprints.  For example, all fingerprints centred on an aromatic carbon 

will have an identical first level (containing a single C.ar typed atom), and many will have an 

identical second level (containing two C.ar typed atoms, and nothing else).  This structure 

can be exploited in two ways.  Firstly, if the fingerprints are sorted on the basis of the 

hierarchy of single-levels fingerprints, only the sub-fingerprints for the levels differing from 

the previous fingerprint need be stored.  Alternatively the memory requirements of the 

model can be reduced through caching these single-level sub-fingerprints in memory, and 

having the six-level fingerprints share instances of them. 

These approaches are illustrated in Figure 53. 
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Figure 53: Illustration of the memory savings of the schemes described above.  Each 

row of cells (e.g. ABCD) illustrates a full fingerprint, formed from a number of sub-

fingerprints.  The sub-fingerprints represented by cells in a dark colour must be stored 

in full, while those greyed out can reference a copy of the data stored elsewhere, 

thereby saving memory. (a) Hierarchical difference: if the fingerprints are sorted 

according to their hierarchy, only the differences from the previous fingerprint need 

be stored.  (b) Single-level caching: alternatively, a single copy of each sub-fingerprint 

can be kept in a pool, with all the relevant fingerprints referencing that copy. 

The memory savings afforded by these optimizations are shown in Table 6, below. 

Storage Method Memory Usage / MB 

No optimization 77.05 

Hierarchical difference 44.51 

Single-level caching 27.02 

Table 6: The memory requirements for storage of a MetaPrint2D model constructed 

from all the data in the 2008.1 Symyx® Metabolite database.  No optimization: full 

fingerprints held in memory; Hierarchical difference: hierarchical structure of 

fingerprints exploited; Single-level caching: single-level sub-fingerprints cached, and 

shared between full six-level fingerprints.  (Memory usage recorded on a Dell Inspiron 

6400 laptop with Intel Core 2 T5300 @ 1.73GHz; 3.24GB RAM) 

Indexing 

In order to further reduce the time required to search the atom environment data it is 

indexed as it is loaded into memory.  This means that when a search is performed, rather 

than having to iterate through the entire dataset, the relevant portions can be rapidly 
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retrieved and the number of more computationally demanding similarity calculations 

performed kept to a minimum. 

In the standard parameterizations of SPORCalc the similarity searches were carried out with 

the constraint that the first one, two or three levels must exactly match the query 

fingerprint.  This clearly lends the data to being indexed on the first three fingerprint levels.  

In order to facilitate flexibility in searches, constrained to any level of exact matches, each of 

the first three levels of fingerprint is indexed separately.  The alternative would be to index 

level 1, level 1+2, level 1+2+3 – which would require much more memory, for only a small 

extra gain in performance. 

Each index takes the form of a hash map (269).  This is a data structure mapping identifiers 

(keys) to associated values in an efficient manner.  The indexes in MetaPrint2D use single-

level sub-fingerprints as keys, and the set of all fingerprints having that pattern at the 

indexed level as the corresponding value.  When a search is performed, the sets of data 

having the required fingerprint at each level are looked up, and the conjunction of all such 

data (i.e. those data points with the correct sub-fingerprint at every level) is returned.  Set 

operations are very fast, and in this instance their speed is further increased by considering 

the index search results in order of increasing size, which minimises the number of 

calculations to be carried out. 

A hash map consists of a simple sequence of buckets, each of which can hold one or more 

data items (key/value pairs).  A hash function is employed to calculate the index of the 

bucket in which a data item should be stored, from the item’s key.  When fetching a data 

item from the hash map only a single bucket has to be inspected, rather than searching all 

the data, allowing for very fast retrieval.  Hash maps can offer “constant time performance” 

(269) – meaning that the retrieval time is independent of the number of items stored in the 

hash map, as opposed to storing data in a simple list where search time scales rapidly with 

the quantity of data.  Once a certain capacity has been reached the number of buckets is 

increased, and the data items redistributed between them.  MetaPrint2D makes use of the 

standard implementation of a hash map data structure provided by the Java language 

(java.util.HashMap). 
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Figure 54: Illustration of the indexing of fingerprints by a hash map.  The boxes 

represent three level fingerprints, with each letter representing a single-level sub-

fingerprint.  The fingerprints are stored in a hash map, indexed by their second level.  

Each fingerprint is mapped to a bucket based on its second level sub-fingerprint and a 

hash function.  All of the fingerprints having a sub-fingerprint in common are stored in 

a set in the corresponding bucket. 

The performance of a hash map is dependent on the quality of the hash function used.  The 

hash function should be quick to calculate, and distribute the data items uniformly between 

the buckets, with few collisions (generating the same value for items with different keys).  

The hash function used by MetaPrint2D is based on the hash function for strings described 

in the Java language specification (270): 

𝑕𝑎𝑠𝑕 𝑐𝑜𝑑𝑒 =   𝑐𝑖 × 31𝑖  

In both cases a hash function is required for a similar data structure; a string consists of a 

sequence of characters (represented by their numeric ASCII/UNICODE values) and a 

MetaPrint2D fingerprint consists of a sequence of bin values.  Through trial and error it was 

determined that in order to minimise hashing collisions, optimal parameters for the 

exponential term in the hash functions for MetaPrint2D fingerprints and sub-fingerprints are 

63 and 15, respectively. 

Since the fingerprints in MetaPrint2D are immutable (un-changeable) the output of the hash 

function for a particular fingerprint will never change.  This means that performance can be 

further increased by calculating the hash of a fingerprint a single time, and caching the value 

with the fingerprint. 

Index Bucket

1 N(DNQ)

2 B(ABC,FBZ); J(PJT)

3

4 Q(XQT)

5

ABC

XQK

FBZ

DNQ

PJT
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Data file size and loading times 

A number of optimizations to the data file were investigated, in order to decrease its size 

and speed-up loading.  As mentioned above, rather than storing the fingerprint for each 

atom of the Symyx® Metabolite database, the total occurrence counts for each distinct 

atom environment are stored. 

Within each atom environment fingerprint, the majority of the atom types at each single-

level have a count of zero, so, rather than storing the value of every bin in the full 

fingerprint a sparse fingerprint representation is employed, where only the indexes of the 

non-zero bins, together with their values, are stored.  The hierarchical nature of the 

fingerprints is also exploited.  The inner-layers of the fingerprints are much less variable 

than the outer layers, so rather than storing each fingerprint in full, when writing the data 

file the fingerprints are sorted in an ascending order, and only the single-level sub-

fingerprints that differ from those of the previous fingerprint are stored, in a similar manner 

to that described on page 110. 

SPORCalc stored fingerprints in an ASCII text format: a space delimited string of numbers.  In 

order to store the fingerprints as numerical values in memory, as required by the similarity 

calculations, this string must be split into a list of numbers, and then the text 

representations of the numbers converted to their numeric equivalents.  This computation 

can be reduced, decreasing the data’s loading time, by storing the data in binary format, so 

the byte values can be read directly from the files, removing the need for conversion. 

As shown in Table 7, together these optimizations have reduced the size of the data files for 

a model from over half a gigabyte to just over three megabytes, or well under one 

megabyte if GZip compression is applied to the file, and loading times have reduced from 

around two and a half minutes to well under one second, on commodity hardware (Dell 

Inspiron 6400 laptop Intel Core 2 T5300 @ 1.73GHz; 3.24GB RAM). 
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File format File size/MB t1/s t2/s t3/s t4/s t5/s tav/s 

6lvfp files 558.9 149.08 146.86 146.55 147.59 145.20 147.03 

Text file 63.8 17.09 16.49 16.47 16.75 16.56 16.67 

Bin file 32.7 4.70 4.13 4.31 4.42 4.28 4.37 

Sparse diff file 3.35 0.84 0.68 0.63 0.61 0.61 0.67 

Compressed file 0.839 0.92 0.74 0.68 0.67 0.68 0.73 

Table 7: File sizes and load times (recorded on a Dell Inspiron 6400 laptop Intel Core 2 

T5300 @ 1.73GHz; 3.24GB RAM). 6lvfp files = six level fingerprint files – full list of 

atom fingerprints as used by SPORCalc; text file = atom environment and occurrence 

counts stored in ASCII format; bin file = atom environment and occurrence counts 

stored in binary format; sparse diff file = binary file with sparse fingerprints exploiting 

hierarchical structure; compressed file = sparse diff file compressed using GZip 

compression.  The data are for models generated from the 2008.1 Symyx® Metabolite 

database, containing 1,352,387 atoms occupying 166,766 distinct environments.  

Timings have been recorded on five independent runs, each of which is reported, 

together with their mean. 

3.5 Software availability 

The core of MetaPrint2D’s calculation engine has been designed as a self-contained library, 

providing a straightforward Application Programming Interface (API).  This enables a variety 

of different user-interfaces to be developed, and makes it straightforward for MetaPrint2D 

to be embedded into larger applications. 

Three interfaces to the MetaPrint2D library, designed to facilitate a range of use cases, have 

currently been produced: a website, a command-line utility and a plug-in for the Bioclipse 

rich client platform.  These are now described, and their relative merits and disadvantages, 

along with potential future applications are discussed. 

3.5.1 Web site 

The first interface provided is a website, hosted at the Unilever Centre for Molecular Science 

Informatics in the Cambridge University Chemical Laboratories (http://www-

metaprint2d.ch.cam.ac.uk/).  This interface is the most straightforward to use, requiring no 

set-up or configuration, just access to a graphical web browser which comes preconfigured 

on almost all modern computers.  Users can input molecules using SMILES, or sketch a 

structure using the JME editor (271), and results are clearly presented in a form a chemist 

http://www-metaprint2d.ch.cam.ac.uk/
http://www-metaprint2d.ch.cam.ac.uk/
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will immediately recognise.  Predicted sites of metabolism are highlighted using a traffic-

light system.  Full details of the results are accessible by moving the cursor over an atom.  

Any regions of the molecule that are not well covered by the database are highlighted in 

grey, giving the chemist insight into the reliability of the model’s predictions (this will be 

discussed further in the next chapter). 

 

Figure 55: Results of a query carried out through the MetaPrint2D website. 

Installing and maintaining the MetaPrint2D software on a central server, rather than 

requiring users to set-up and maintain the code on their own machines, makes it simple to 

keep the application up-to-date and means that users can be sure they are accessing the 

most recent version of the software and data files.  There are, however, downsides to the 

server-client model.  The software is only accessible when users are connected to the 

internet, and the server provides a single point of failure, vulnerable to heavy usage or 

malicious attacks, though this can be mediated through techniques such as queuing 

computationally expensive tasks, and limiting the frequency with which users can make 

requests.  If demand were to grow, then flexible cloud-like compute resources, such as the 

Amazon Elastic Compute Cloud (EC2) (272) could be used to increase service availability at 
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times of high demand, without having to maintain the infrastructure of a server pool with a 

large amount of redundant capacity. 

There can also be issues regarding security of intellectual property (IP) rights when working 

with remote services.  Users may be wary of submitting confidential molecules across the 

internet; indeed many companies have absolute bans on doing so, though this position is 

becoming less prevalent with the growth in usage of Electronic Laboratory Notebook (ELN) 

systems, with the greater IP protection they afford (273). 

The web-based version of MetaPrint2D can also be packaged up with a small web-server, 

producing a stand-alone version, ideal for demonstration purposes.  This removes the need 

for a connection to the internet, and running the service locally also means that there can 

are no concerns concerning the transmission of confidential data across public networks.  

The web-based version of MetaPrint2D cannot, however, currently be distributed due to 

license restrictions prohibiting the distribution of the JME editor, which is currently used for 

structure input. 

The current web interface could readily be adapted to provide a SOAP or RESTful 

‘webservice’ interface facilitating integration with workflow tools and other remote 

applications. 

3.5.2 Command-line Utility 

A command-line based interface for MetaPrint2D has also been developed and released.  

This interface can take as its input a single SMILES string, a file containing a list of SMILES, or 

an SDF file containing one or more molecules, and generates site of metabolism predictions 

for each molecule, and optionally images displaying the likely sites of metabolism of the 

compounds, similar to those produced by the website (shown in Figure 55, above).  The 

command-line MetaPrint2D application carries out computations locally on the user’s 

computer, so does not require internet access to run, and removes the IP considerations 

surrounding the transmission of potentially sensitive data to remote services.  Use of the 

command line tool does however require some degree of technical expertise, and as such is 

more appropriate for the power-user wishing to batch-process a large number of 

compounds, or integrate MetaPrint2D’s site of metabolism predictions into a script or 

workflow. 
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The command-line application’s batch processing mode is able to fully leverage the speed of 

the MetaPrint2D calculation library, enabling high-throughput virtual screening of large 

compound collections. 

3.5.3 Bioclipse plug-in 

The third interface to MetaPrint2D currently available is a plug-in for the Bioclipse, created 

in collaboration with the developers of Bioclipse*.  Bioclipse (274) is an open source chemo- 

and bioinformatics platform, built on the Eclipse (275) rich client platform. 

The integration with Bioclipse provides the most powerful interface to the MetaPrint2D 

library.  Chemists are able to draw molecular structures into the editor, in a manner 

common to many other applications, and visualise how predicted sites of metabolism 

change as they modify the structure, in real time – the screenshot below shows that 

Bioclipse was able to capture the molecular structure from the editor, assign the required 

atom types, generate site of metabolism predictions with the MetaPrint2D library, and 

render the results of those predictions in the editor, all in 172 milliseconds.  Bioclipse is also 

able to run MetaPrint2D over large files of structures, predicting sites of metabolism for 

each structure, and displaying the output in a scrollable table, and due to its speed, this is a 

fairly trivial task. 

                                                      
* The MetaPrint2D plug-in for Bioclipse was written by Ola Spjuth of Uppsala University, one of the 
developers of Bioclipse, with assistance from the author of MetaPrint2D.  The plug-in provides an 
interface between Bioclipse’s internal data-structures and user interface, and the MetaPrint2D 
library. 
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Figure 56: MetaPrint2D running in Bioclipse. 

As with MetaPrint2D’s command-line application, Bioclipse removes the considerations 

regarding intellectual property rights that are associated with use of the MetaPrint2D 

website, since all calculations are carried out locally on the user’s computer, and no 

information is transmitted across the Internet.  The downside of the application is, however, 

that a significant effort may be required for initial set-up and configuration – the Bioclipse 

application must be installed and configured, and the MetaPrint2D plug-in then added.  In a 

corporate environment where use of computer systems is often governed by strict security 

policies, approval may be required before Bioclipse can be installed, and the system 

administrator’s assistance may be required for installation.  Users will also need to take time 

to familiarise themselves with the more complex interface than that presented by the 

website. 

3.5.4 Other possible applications 

The design of MetaPrint2D, placing the core calculation engine into a library independent of 

any user interface, means that many applications and interfaces beyond those described 

here can be developed.  The work undertaken in collaboration with the Bioclipse project has 

shown how MetaPrint2D can be integrated with other applications.  Similar work could be 
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carried out with chemical editors and electronic laboratory notebook systems, in order to 

make MetaPrint2D’s predictions more readily available to chemists. 

The potential to use MetaPrint2D for high-throughput virtual screening or as a component 

in a workflow has already been mentioned in connection with the command-line 

application.  This could also be achieved through direct integration of the MetaPrint2D 

library with a workflow engine, possibly leading to the development of a molecular 

descriptor based on the likelihoods of sites in a molecule being metabolised.  Anecdotal 

evidence from users of SPORCalc within AstraZeneca suggests that compounds with three or 

more highly likely sites of metabolism (scoring ‘red’ in the web interface’s traffic-light 

system) are highly metabolically labile, and potentially toxic.  Observations such as this 

could lead to MetaPrint2D’s integration with some sort of structural alerts or warning 

system. 

3.5.5 Licensing 

The MetaPrint2D library has been released as an Open Source project, hosted on the 

SourceForge community site (http://sourceforge.net/projects/metaprint2d/).  The code is 

published under the GNU Affero General Public License (AGPL).  This ensures that the 

MetaPrint2D software will be made as widely available as possible, and permits any 

individuals and organisations to freely use and modify the code to suit their needs, with the 

proviso that anyone wishing to ‘convey’ (distribute, or make available to others through a 

web service) copies of MetaPrint2D, or any derivative works, must also make available the 

source code containing their modifications under the terms of the AGPL.  This will ensure 

that future development of the MetaPrint2D library will benefit the whole community. 

 

 

http://sourceforge.net/projects/metaprint2d/
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4. Evaluation and optimization of MetaPrint2D 

This chapter describes the evaluation and optimization that have been performed on 

MetaPrint2D.  The result of the assessment of MetaPrint2D’s reaction centre identification 

algorithms is reported.  A number of data pre-processing steps are proposed and their 

effects investigated, and the reliability of MetaPrint2D’s predictions analysed.  MetaPrint2D 

models generated from data on specific cytochrome P450 isoforms are also discussed, as is 

the quality of the available test data, and the results of MetaPrint2D’s evaluation have been 

compared to that reported for other site of metabolism prediction tools. 

4.1 Reaction centre identification 

In order to evaluate the reaction centre detection the results of an analysis of 300 randomly 

sampled transformations from the 2008.1 release of the Symyx® Metabolite database were 

manually inspected.  In order to do this a ‘debug’ application (shown in Figure 57) was 

created.  This displays the substrate and metabolite structures in two adjacent panels.  The 

MCS atoms and bonds are displayed in a solid colour, and the remainder of the structure is 

shown ‘greyed out’.  Atoms identified as reaction centres are also highlighted. 

 

Figure 57: Metabolite analyser debug viewer used to evaluate reaction centre 

identification.  The conserved structure and identified reaction centres are 

highlighted. 
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For eight of the selected transformations it was not possible to carry out any analysis as the 

metabolite structure was not specified in the Metabolite database.  Of the remaining 292 

transformations examined only two (0.7%) caused problems, with the conserved structure 

correctly identified in all the other cases.  The problem transformations are shown in Figure 

58. 

In the case of transformation RMTB00003542, we believe it is likely that the detected MCS is 

correct; however no confirmation of this is available from the Symyx® Metabolite database, 

since this entry does not contain any mapping annotations.  In the case of transformation 

RMTB00043645, however, the detected MCS is in error; the transformation is a 

demethylation, and the true MCS is shown in (b). 

This error results from the structure of the Metabolite database: each transformation 

record contains only a single substrate and metabolite molecule.  In the case of a reaction 

producing several products, there are can be a number of records in the database, one 

recording for each product, though many reactions only record the largest/major 

metabolite formed.  For the majority of demethylation reactions in the Metabolite database 

the fate of the methyl group is not reported. 
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MDLNUMBER: RMTB00003542 

 

MDLNUMBER: RMTB00043645 

(a) 

 
(b) 

 

Figure 58: Problem transformations identified during the evaluation of the reaction 

centre identification algorithm.  These are discussed in the paragraph above. 

4.2 Pre-processing of Symyx® Metabolite data 

Models for the SPORCalc metabolic site predictor were constructed using every 

transformation in the Symyx® Metabolite database.  During the development of 

MetaPrint2D a number of possible data pre-processing steps were identified, some or all of 

which were thought to potentially improve the quality of the models generated.  In order to 

determine whether any of the pre-processing steps should be used, models were trained 

applying each of these techniques and their performance evaluated and compared. 

4.2.1 Multi-step transformations 

Related transformations in the Symyx® Metabolite database are organised into ‘schemes’ 

organised around a parent compound, as illustrated in Figure 59.  
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Figure 59: Metabolic scheme MTB2, from the Symyx® Metabolite database, 2008.1.  

The database contains 17 transformation records in this scheme – 12 corresponding to 

the transformations shown by arrows above, and a further five representing the 

overall transformation from the parent compound to each of the second generation 

metabolites 2A-2E. 

The database contains a separate entry for each transformation in the scheme, e.g. P→1A 

(representing the transformation from the parent compound P to the first generation 

metabolite 1A), P→1J, 1A→2A, and also an additional entry for each final product not 

formed in a single step from the parent compound e.g. P→2A, P→2B.  When analysing the 

records representing the overall transformation of a multi-step reaction path, the changes 

can be so great that it becomes difficult to determine the conserved structure between the 

parent compound and the final metabolite, and hence determine the sites of metabolism.  

This is particularly true of longer pathways; the Metabolite database contains reaction 

schemes with pathways up to 13 steps deep. 
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Figure 60: The overall transformation resulting from a seven step metabolic pathway 

(MDLNUMBER: RMTB00005520).  It is not immediately obvious how the metabolite 

structure maps to that of the parent compound, or which atoms are sites of 

metabolism.  Manual inspection of the individual steps of the pathway has identified 

the conserved substructure, and this is highlighted in red. 

Inclusion of multi-step records in the construction of MetaPrint2D models could cause two 

further problems.  As illustrated by the multi-step transformation shown in Figure 61, atom 

environments found to be sites of metabolism in the overall transformation may not 

correspond to sites of metabolism in any of the individual steps making up the pathway.  

Additionally, inclusion of the extra transformations leads to double (or higher) counting of 

some reaction centre and substrate atom environments, distorting the model. 

 

Figure 61: Analysis of this overall transformation (MDLNUMBER: RMTB00052516) 

suggests the presence of sites of metabolism (highlighted red) at both ends of the 

parent compound.  However, inspection of the individual steps in the reaction scheme 

shows that hydrolysis of the reactive epoxide always occurs before the hydroxylation 

of the phenyl ring. 
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4.2.2 Per-transformation versus per-molecule 

There is a second means by which the generation of MetaPrint2D models from the 

transformations in the Symyx® Metabolite database can lead to double (and higher) 

counting of the atom environments and reaction centres in certain compounds.  This is 

through the repetition of substrate compounds for different transformations.  

Considering the seven first generation metabolites of the parent compound ‘P’ in the 

reaction scheme shown previously (Figure 59, page 123), those atoms never occurring at a 

reaction centre will be recorded as such seven times – once for each transformation.  The 

atom at the reaction centre for the transformation to ‘1K’ will be recorded once as occurring 

at a site of metabolism and six times as not occurring at a site of metabolism.  The atoms 

involved in the remaining 1-step transformations will each be recorded as occurring at a site 

of metabolism twice, and as not occurring at a site of metabolism five times.  If the 

multistep transformations directly between ‘P’ and ‘2A-E’ are included, as just discussed, 

then the picture becomes even more complicated.  This is illustrated in Figure 62. 

 

Figure 62: The sites of metabolism (highlighted red) from all the transformations of a 

compound (MDLNUMBER: MMTB00000002).  The letters adjacent to sites of 

metabolism indicate the products resulting from metabolism at that site. 

4.2.3 Symmetry 

A further consideration is the metabolism of molecules exhibiting symmetry.  In instances 

where a site of metabolism exists in a symmetrical region of a molecule, as illustrated in 

Figure 63, the occurrence counts for the environment of the atom at the site of metabolism 

are updated twice, once as occurring at a reaction centre, and once as not.  In fact, the 

metabolic transformations are equally likely to occur at the equivalent atoms. 
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Figure 63: An example of a compound (MDLNUMBER: MMTB00000002) with sites of 

metabolism (highlighted in red) occurring in a symmetrical region of a molecule.  The 

atoms marked with an asterisk are not recorded as sites of metabolism, despite being 

chemically identical to those from transformations on the opposite side of the ring. 

4.2.4 Duplicate transformations 

Since the metabolism of different parent compounds can produce a common metabolite, 

which may be metabolised further, and the Symyx® Metabolite database is organised into 

schemes structured around a parent compound, some transformations appear in the 

Metabolite database multiple times.  This raises the question of whether recording all 

reports of such transformation biases the model, and whether such transformations should 

be identified and only recorded a single time. 

It was considered that this repeated counting of some atom environments could distort the 

results, though it is possible that this duplication could actually improve the results, by 

increasing the weighting of regularly occurring environments. 

4.3 Evaluating metabolic site predictions 

4.3.1 Current approaches to evaluation 

A number of recent studies have included evaluations of the ability of various software tools 

to predict sites of metabolism on molecules e.g. (218,235,234,276).  Two main approaches 

to assessing performance have been followed: a qualitative analysis via the visual inspection 

of a tool’s output compared to the known sites of metabolism of a molecule and a 

quantitative analysis.  The quantitative analysis reports the percentage of molecules for 

which the highest ranked predicted site of metabolism is an experimentally observed site, 
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and the percentage of molecules for which at least one of the top three ranked sites is an 

experimentally observed site of metabolism. 

In the evaluation of MetaPrint2D the percentage occurrence of experimentally observed 

sites of metabolism in the top one and top three ranked hits has been calculated, in order to 

enable some degree of comparison to previous studies; however these commonly used test 

metrics contain some intrinsic flaws.  The expected values of the test metrics are dependent 

on both the sizes of the molecules under investigation, and the number of sites of 

metabolism each possesses.  This leads to a bias towards higher test scores for studies on 

smaller molecules or molecules with a greater number of sites of metabolism. 

Figure 64(a) shows a box plot of the distribution of sizes of substrate molecules in the 

Metabolite database, and the wide variation in size of metabolised compounds is clearly 

visible.  Considering a molecule with ten atoms, metabolised at a single site; ranking the 

atoms at random there is a 10% chance of metabolism occurring at the highest ranked site, 

and a 30% chance of it occurring at one of the top three ranked sites.  In comparison, for a 

molecule with 20 atoms, also metabolised at a single site, the chances of metabolism 

occurring in the top one or top three randomly ranked site are 5% and 15%, respectively – 

half that of the molecule with ten atoms. 

The number of sites at which metabolism has been reported to occur can also vary widely 

between molecules, as illustrated by the compounds in Figure 64(b).  In benzopyrene 

metabolic transformations have been reported to occur at 60% of the non-hydrogen sites in 

the molecule, while for 5-chloro-2-mercaptobenzothiazole metabolism has only been 

reported at a single site – meaning there would be only a 9% chance of selecting the correct 

site at random. 
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(a) 

 

(b) 

 

 

Benzopyrene 

20 atoms 

12 reported sites of metabolism 

5-Chloro-2-mercaptobenzothiazole 

11 atoms 

1 reported site of metabolism 

Figure 64: (a) Box plot showing the distribution of sizes (heavy atom count – i.e. the 

number of non-hydrogen atoms in the molecule) of the substrate molecule on version 

2008.1 of the Symyx® Metabolite database.  Outliers, as calculated using the 

boxplot.stats method from the statistical package R (108), with default 

parameters, are not shown.  (b) Both the size of molecules and the number of sites at 

which they are metabolised (highlighted in red) can vary widely. 

4.3.2 Area under the ROC curve-based performance measure 

In order to overcome these biases, an alternative method of evaluating the performance of 

metabolic site prediction tools was proposed.  This approach, based on the receiver 

operating characteristic (ROC) curve (277), is independent of both the size of molecules and 

their numbers of metabolic sites. 

0 10 20 30 40 50 60

heavy atom count
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Receiver operating characteristic (ROC) curves 

Receiver operating characteristic curves provide a technique for visualising a classifier’s 

performance, depicting the trade-off between hit rates, and rates of false positives.  ROC 

curves were first developed during the Second World War for the analysis of radar signals, 

where it was important to determine whether a signal was from an enemy plane, or due to 

noise, and have long been used in signal detection theory.  In recent years ROC curves have 

been applied in a wide range of fields such as medical diagnostics and machine learning. 

A ROC curve consists of a plot of the True Positive Rate versus the False Positive Rate as the 

threshold at which the classifier discriminates between positives and negatives is varied. 

 

Figure 65: Example ROC curves for three different cases.  The curve in orange is that 

for a classifier that performs perfectly, and that in blue for one that is completely 

random.  In red is the more usual outcome – predictions that are better than random, 

but not perfect. 
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There are two major advantages of using ROC curves over common measures of classifier 

performance, such as accuracy, sensitivity, specificity, precision and recall.  Firstly, through 

use of the relative scores produced by the classifier, ROC curves can measure the ability of 

the classifier to distinguish between positive and negative instances without having to be 

calibrated to produce good probability estimates, and secondly, they are insensitive to the 

relative number of positive and negative instances. 

The area under the ROC curve (AUC) is a commonly used summary statistic, used to 

represent the 2-dimensional curve in a single number, and enable simple comparisons 

between classifiers.  The AUC varies from 0.0 to 1.0, with 1.0 indicating that the classifier 

discriminates between positive and negative instances perfectly, 0.5 indicating that the 

performance is equivalent to randomly assigning classes, and a value of less than 0.5 

indicating that the classifier is generating negative classifications (so multiplying by -1 gives 

a classification).  The AUC has been shown to be equal to the probability that a randomly 

selected positive instance will be ranked higher than a randomly selected negative instance, 

which is the equivalent to the nonparametric Wilcoxon rank test (278,279). 

Evaluating site of metabolism prediction using ROC curves 

Prediction of the sites of metabolism in a molecule can be treated as a binary classification 

problem: each atomic position in a molecule either is or is not a site of metabolism.  Each 

individual molecule from a test set presents an independent classification problem, and the 

ability of the prediction tool to discriminate between its sites of metabolism and atomic 

sites that are not metabolised can be assessed. 

If an AUC value is determined for each molecule in the test set (giving a measure of the 

performance of the method under evaluation when identifying the sites of metabolism in 

that molecule) then the overall performance of the tool can then be evaluated by examining 

the distribution of AUC values generated using standard statistical techniques such as 

averages and variance (278). 
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4.3.3 Generation of test data 

Selection of test data 

In order to carry out an unbiased evaluation of a prediction tool it is important that the 

evaluation is carried out using data not used in the development of the method.  This is 

often achieved through techniques such as cross-validation.  Since access to a series of 

annual releases of the Symyx® Metabolite database was available while this work was being 

carried out, an obvious alternative to cross-validation presented itself: training MetaPrint2D 

using data from one release of the Metabolite database, and testing using the data added to 

subsequent releases.  This has the added advantage of simulating a likely usage scenario, 

whereby MetaPrint2D is trained using all available data and then used by chemists to 

investigate the new compounds they are working with.  This evaluation scheme also 

facilitates investigation of the robustness of MetaPrint2D to updates of the Metabolite 

database. 

Many compounds within a single metabolic scheme exhibit only relatively minor variation.  

In order to ensure that the test data contained a diverse selection of compounds, and was 

not biased by clusters of very similar compounds, the selection of test compounds was 

restricted to new parent molecules.  This means that new molecules present either in later 

generations of new metabolic schemes, or newly identified metabolites in previously known 

schemes are excluded from the evaluation. 

The number of compounds in each test set is shown in Table 8.  

Release Novel parent compounds Containing A/E 

2006.1 601 498 

2007.1 546 461 

2008.1 509 408 

Table 8: The number of novel parent compounds identified in each release of the 

Metabolite database, and the number of those which contain phase I additions and/or 

eliminations (labelled ‘Containing A/E’ in the table above). 
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Processing of test data 

In order to identify all the sites of metabolism of a test molecule, all of the single step 

transformations in which it appears as the substrate were identified, and their reaction 

centres mapped onto a single copy of the molecule.  Symmetrical points in the molecule 

were also identified, and reaction centres mapped between equivalent atom positions, 

producing a complete set of reaction centres for the compound.  This process is illustrated 

for the metabolic sites of Flavanone in Figure 66. 

(a) 

 

 

 

  

(b) 

 

(c) 

 

Figure 66: (a) Four of the metabolic transformations of Flavanone (280), with the 

reaction centres marked on the parent compound; (b) Flavanone with reaction centres 

from all four transformations merged; and (c) with symmetry mappings applied. 

4.4 Evaluation of MetaPrint2D and the effects of data pre-

processing options 

In order to evaluate the performance of MetaPrint2D, and the effects of the various pre-

processing options proposed, a number of MetaPrint2D models have been generated and 

their performance evaluated.  Models have been generated from the data contained in each 

of the 2005.1, 2006.1 and 2007.1 releases of the Symyx® Metabolite database.  The 
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predictions by each model have been evaluated against the transformations of novel parent 

compounds from subsequent releases of the Metabolite database.  This process has been 

repeated for each of the pre-processing options discussed above. 

Details of the models generated and the evaluation metrics calculated are given in Table 9 

and Table 10, and the results of this evaluation are presented below. 

 

Model Description 

all Model constructed using all transformations 

nomulti Multi-step transformation records were excluded 

nodup Duplicate transformations were excluded 

sym Symmetry mappings were applied 

merge All transformations for each compound were merged 

hasrc Molecules with no phase I reaction centres were excluded 

Table 9: The MetaPrint2D models constructed. 

 

Name Description 

Top 1 % of molecules for which highest rank atom is a site of metabolism 

Top 3 % of molecules for which at least one of the three highest ranked 
atoms is a site of metabolism 

Mean AUC Mean area under the ROC curve 

Median AUC Median area under the ROC curve 

Table 10: The evaluation metrics calculated. 
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4.4.1 Results 

Results are presented to three significant figures in order to illustrate the small degree of 

variation.  The significance, or otherwise, of this variation is discussed on page 135. 

Training data: 2005.1 

Model 
Top 1 Top 3 Mean AUC Median AUC 

2006 2007 2008 2006 2007 2008 2006 2007 2008 2006 2007 2008 

all 60.2% 59.7% 58.8% 76.1% 77.0% 75.5% 0.766 0.780 0.792 0.903 0.895 0.882 

nomulti 61.0% 60.3% 60.3% 76.5% 77.9% 75.7% 0.770 0.785 0.794 0.920 0.889 0.892 

nodup 60.6% 59.7% 59.8% 76.5% 77.7% 75.7% 0.767 0.781 0.792 0.917 0.903 0.880 

sym 60.0% 58.4% 59.3% 75.5% 75.5% 76.0% 0.764 0.779 0.791 0.899 0.885 0.887 

merge 57.0% 57.5% 59.3% 75.3% 77.9% 76.5% 0.764 0.784 0.791 0.891 0.901 0.893 

hasrc 59.4% 61.2% 59.8% 76.3% 77.2% 74.3% 0.767 0.781 0.787 0.918 0.895 0.875 

Table 11: These models were trained using data from the 2005.1 release of the 

Metabolite database, and evaluated using novel parent compounds from the 2006.1, 

2007.1 and 2008.1 releases. 

Training data: 2006.1 

Model 
Top 1 Top 3 Mean AUC Median AUC 

2007 2008 2007 2008 2007 2008 2007 2008 

all 59.0% 59.6% 78.1% 77.0% 0.781 0.799 0.896 0.889 

nomulti 59.9% 59.6% 77.4% 76.0% 0.785 0.802 0.889 0.891 

nodup 59.2% 60.0% 78.3% 77.0% 0.781 0.800 0.901 0.897 

sym 58.1% 59.3% 75.5% 76.5% 0.779 0.799 0.885 0.893 

merge 58.8% 59.8% 77.7% 76.0% 0.784 0.799 0.904 0.897 

hasrc 60.7% 59.8% 77.7% 76.0% 0.781 0.794 0.900 0.881 

Table 12: These models were trained using data from the 2006.1 release of the 

Metabolite database, and evaluated using novel parent compounds from the 2007.1 

and 2008.1 releases. 
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Training data: 2007.1 

Model 
 Top 1 Top 3 

Mean 
AUC 

Median 
AUC 

 2008 2008 2008 2008 

all  59.6% 77.2% 0.804 0.900 

nomulti  59.3% 76.`5% 0.805 0.902 

nodup  60.3% 77.2% 0.803 0.900 

sym  59.6% 76.7% 0.803 0.900 

merge  60.0% 75.7% 0.803 0.913 

hasrc  60.5% 76.2% 0.799 0.892 

Table 13: These models were trained using data from the 2007.1 release of the 

Metabolite database, and evaluated using novel parent compounds from the 2008.1 

release. 

4.5 Analysis of MetaPrint2D’s performance 

The performance of MetaPrint2D’s predictions changes very little with the pre-processing 

options discussed.  Wilcoxon signed rank tests (281,282) have been carried out to determine 

whether there is any significant variation between the distributions of AUC scores generated 

from models constructed using all available data, and those constructed with each of the 

pre-processing options.  Wilcoxon’s signed rank test is used in place of the paired Student's 

t-test since the distribution of AUC scores is not normally distributed, as can clearly be seen 

in Figure 67 on page 137.  The results of these tests are presented in Table 14 below.  The 

only pre-processing option to consistently improve the performance of the model (p-values 

much lower than 0.05) is the exclusion of multi-step transformations from the training data, 

and this only produces a very small improvement in the AUC (~0.01). 

There is also little variation between predictions using models generated from different 

releases of the Metabolite database; the quality of MetaPrint2D’s predictions on test data 

from the 2008.1 Metabolite database shows little variation between models trained using 

the 2005.1, 2006.1 or 2007.1 releases of the database. 
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training testing nomulti nodup sym merge hasrc 

2005 

2006 
2.25E-08 0.00274 0.187 0.204 0.470 

Δ =0.011 Δ =0.0083    

2007 
1.37E-07 0.741 0.0620 0.236 0.553 

Δ =0.011     

2008 
0.00463 0.371 0.192 0.827 0.0069 

Δ =0.0079    Δ =-0.0081 

2006 

2007 
1.69E-06 0.392 0.00138 0.282 0.545 

Δ =0.0099  Δ =0.0068   

2008 
0.00030 0.0872 0.352 0.967 0.0910 

Δ =0.0093     

2007 2008 
0.00325 0.446 0.0178 0.831 0.00579 

Δ =0.0079  Δ =0.0064  Δ =0.0080 

Table 14:  p-values for Wilcoxon signed rank tests comparing the distributions of AUC 

scores generated from models constructed using all data, and models constructed 

using each of the pre-processing options.  Variations between distributions that are 

significant at the 95% confidence level (p-value < 0.05) are highlighted in bold, and the 

shift in the distribution’s median (Δ) given. 

4.5.1 Distribution of MetaPrint2D’s performance scores 

The distribution of area under the ROC curve (AUC) scores for the novel compounds from 

the 2006.1 database tested on a model constructed using the 2005.1 database, are shown in 

Figure 67 below.  This is representative of the distributions of the other combinations of 

data/models.  Examination of the distribution of AUC scores shows that in the majority of 

cases predictions are very accurate, with AUC scores in the range 0.95-1.00, however there 

is a long tail to the distribution, with MetaPrint2D performing much worse than random 

(AUC < 0.5) in a small number of instances.   
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Figure 67: Histogram showing the distribution of AUC values generated using a model 

build on all compounds from Metabolite database 2005.1, and test compounds from 

2006.1.  The distribution is highly skewed towards higher values, indicating very good 

predictions were made for the majority of test compounds. 

The molecules with the very lowest AUC scores have been identified and a selection of these 

is shown below.  On examination of the molecules’ transformations, a trend is apparent: the 

sites of metabolism occur at atoms occupying novel environments (atom environments not 

represented in the training data), so are assigned a normalized occurrence ratio of zero, but 

there are other environments within the molecule that have been found to occur at reaction 

centres in the training data, so receive a non-zero normalized occurrence ratio. 
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MDLNUMBER: MMTB00051019; AUC = 0.0625 

 
Searching the training data for the atom environment at the reaction centre in this transformation 
did not produce any hits, indicating that the environment is completely novel to the model 

MDLNUMBER: MMTB00052513; AUC = 0.125 

 
Searching the training data for the reaction centre fragment did not produce any hits; the phenyl 
ring, however, is found in many records in the Symyx(R) Metabolite database, and is observed to 
undergo a variety of transformations. 

MDLNUMBER: MMTB00050992; AUC = 0.1538 

 
Searching the training data for the reaction centre fragment produced only three hits, none of which 
underwent a metabolic transformation centred anywhere within this region of the compound. 
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MDLNUMBER: MMTB00044960; AUC = 0.167 

 
Searching the training data for any molecules containing selenium produced 51 hits, none of which 
occupied a remotely similar atom environment. 

MDLNUMBER: MMTB00050971; AUTOC = 0.167 

 
Searching the training data for other molecules containing the reaction centre fragment revealed 
only a single hit, which undergoes a completely different transformation, centred on an atom in a 
different atom environment: 

 

Figure 68: Examples of molecules for which MetaPrint2D’s predictions had the lowest 

AUC scores. 

4.5.2 Novel atom environments 

Given that the molecules for which MetaPrint2D generated the worst predictions all had 

some atoms occupying novel atom environments the relationship between the proportion 

of novel atom environments in a molecule, and the reliability of MetaPrint2D’s site of 

metabolism predictions has been investigated. 

In order to generate as detailed an analysis as possible, all 1367 novel parent compounds 

from the 2006.1, 2007.1 and 2008.1 Symyx® Metabolite databases have been collated, and 
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their sites of metabolism predicted using a MetaPrint2D model trained on the 2005.1 

release of the Metabolite database.  For each molecule the proportion of the atoms that 

occupy novel atom environments has been recorded.  The area under the ROC curve (AUC) 

statistics calculated for the test molecules have been binned according to the proportion of 

novel atom environments in the molecule.  The results of this are shown in Figure 69, below. 

Analysis of Figure 69, below, shows that the sites of metabolism of molecules in which no 

atoms occupy novel atom environments are predicted well.  The quality of predictions 

clearly decreases as the proportion of atoms with a novel environment increases.  When all 

atoms in a molecule are in novel atom environments performance of the classifier is 

essentially random (AUC=0.5).  This is to be expected, since atoms in a novel environment 

will all be assigned the same normalised occurrence ratio (nOR=0.0). 

The greatest uncertainty in the quality of prediction is found when between a third and a 

half of the molecule’s atoms are occupying novel atom environments.  This is again due to 

the novel environments being assigned a normalised occurrence ratio of 0.0.  In instances 

where the novel environment is not found at a reaction centre accurate predictions for that 

molecule are still possible.  When the novel environment is found at a reaction centre, 

however, the low score assigned means that the accuracy of prediction for that molecule 

will be very low, since the majority of the other atoms in the molecule will have a higher 

(than zero) normalised occurrence ratio, even when the likelihood of their being a site of 

metabolism is very low. 
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Figure 69: Graph showing the variation in performance of MetaPrint2D with the 

proportion of atoms in query structures occupying novel environments.  Predictions 

on 1367 novel parent molecules from the 2006.1, 2007.1 and 2008.1 releases of the 

Metabolite databases were made using a model trained on data from the 2005.1 

release.  AUC statistics and the proportion of novel atoms in the query compound 

were calculated for each molecule (novel atoms = 0.0 means that no atoms in the 

compound are in novel atom environments, while novel atoms = 1.0 indicated that all 

atoms in the compound occupy novel atom environments).  The data was binned 

according to the novel atom proportion, split at boundaries 0.05, 0.15, 0.25...0.85, 

0.95.  For each bin the mean, median, first and third quartile (Q1 and Q3 in the figure 

above) values are plotted, and locally weighted scatter plot smoothing (LOESS) lines 

have been fitted using the loess.smooth function from the statistical package R 

(108), with default parameters. 

Ideally, atom environments that have been observed in the training data and found to occur 

only very rarely, or never, at reaction centres should receive lower scores than atom 
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environments for which no information is available.  To facilitate this MetaPrint2D was been 

modified so that novel atom environments are assigned the mean normalised occurrence 

ratio of all the non-novel atoms from a sample set of test data (nOR=0.159), and the above 

analysis repeated.  The result of this change is shown in Figure 70, below. 

As a result of this modification the position of the 75-percentile line (Q3) barely changed, 

however the mean, median and 25-percentile (Q1) AUC all increased, indicating that this 

modification has resulted in fewer badly predicted molecules. 

 

Figure 70: Graph showing the variation in performance of MetaPrint2D with the 

proportion of atoms in query structures occupying novel environments.  Dotted lines 

taken from Figure 69, above, generated when novel atom environments are assigned 

a normalised occurrence ratio of 0.0; solid lines have been generated in the same 

manner, but with novel atom environments assigned the mean normalised occurrence 

ratio of the data set: 0.159. 
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The distribution showing how the performance of MetaPrint2D varies with the degree to 

which a molecule fits the descriptor space described by MetaPrint2D’s model can be used to 

estimate the reliability of a prediction generated by MetaPrint2D.  Figure 71, below, shows 

the distribution of novel atoms in the molecules from the test data.  Almost all of the atom 

environments in the majority of compounds are well characterised by the model. 

 

Figure 71: The distribution of proportions of novel atoms among test molecules. 

4.6 Speed of predictions 

The speed of MetaPrint2D has been assessed, through predictions of the sites of 

metabolism of 232 common drug molecules (mean heavy atom count: 20.9 atoms).  The 

total time taken to perform the calculations (including loading the model and assigning 

SYBYL® atom types) averaged 6.81 seconds over five runs, which is equivalent to less than 

30ms per molecule. 
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Run times 
Mean time 
(seconds) 

Mean time 
per molecule 
(milliseconds) t1/s t2/s t3/s t4/s t5/s 

6.81 6.86 6.80 6.81 6.79 6.81 29.37 

Figure 72: Time taken for MetaPrint2D to generate site of metabolism predictions for 

232 common drug molecules (recorded on a Dell Inspiron 6400 laptop Intel Core 2 

T5300 @ 1.73GHz; 3.24GB RAM).  Timings recorded on five independent runs, and 

averaged. 

4.7 Parameterization of MetaPrint2D 

SPORCalc provided the following pre-configured parameterizations, together with the 

option to set a custom parameterization: 

Setting 
Similarity 
threshold 

Exact 
levels 

Level weightings 

1 2 3 4 5 6 

Loose 1.0 2 - - 1.0 0.75 0.50 0.25 

Default 0.5 3 - - - 0.75 0.50 0.25 

Strict 0.1 4 - - - - 0.5 0.25 

Figure 73: The pre-configured parameterization of SPORCalc. 

The initial evaluations of MetaPrint2D were performed using this parameterization, and the 

effects of varying the parameterisation have subsequently been explored.  Early 

investigations found that there were very few atom environments being discarded due to 

their exceeding the similarity threshold; the major source of variation between 

parameterizations lies in the number of number of levels to which exact fingerprint matches 

are required. 

Figure 74 shows how the distribution of AUC scores changes as the number of fingerprint 

levels to exactly match is varied. 
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Figure 74: Box plots showing the changes in distribution of AUC scores for 

MetaPrint2D predictions as the number of fingerprint levels to match exactly is varied.  

Outliers, as calculated using the boxplot.stats method from the statistical package 

R (108), with default parameters, are not shown. 

In general the best results (highest AUC scores) are found when the first two or three 

fingerprint levels are exactly matched.  Exact matching to three levels produces slightly 

more very well predicted molecules than exact matching to two levels (the 4th quartile is 

higher), but also has more badly predicted molecules (the 1st quartile extends lower). 

The kernel density plots in Figure 75 show the AUC distributions in more detail. 
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Figure 75: Kernel density plots showing the changes in distribution of AUC scores for 

MetaPrint2D predictions as the number of fingerprint levels to match exactly is varied. 

When a high number of levels of exact matching are required (n=5 and n=6) the distribution 

is predominantly bimodal, with peaks around AUC=0.5 and 1.0.  The peak at AUC=1.0 is due 

to molecules well represented by the model; due to the specific nature of searches carried 

out using these settings, very good results are generated for such molecules.  However, for 

many of the atom environments in the test data such a search requiring exact matches to so 

many fingerprint levels returns little or no data, and the classifier is unable to discriminate 

between such atoms.  This leads to an AUC of around 0.5.  There is also a third, smaller, 

peak in the AUC=0.6–0.7 region of the distribution.  This is due to atoms occupying 

environments that sometimes occur at sites of metabolism; typically this arises from regions 

of a molecule which remain unaltered during some steps of a metabolic scheme, while 

containing a centre of metabolism in other steps. 
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As the number of levels that must be matched exactly is reduced the number of molecules 

for which MetaPrint2D makes good predictions increases, and reaches a maximum when 

two or three levels of exact match are required. 

4.8 Isoform specific models 

While there are a large number of cytochrome P450 isoforms, only a relatively small number 

account for the majority of known CYP450 catalysed xenobiotic transformations.  A small 

proportion of the transformations in the Symyx® Metabolite database have annotations 

indicating which, if any, cytochrome P450 isoforms catalyse the transformation.  The 2008.1 

release of the database contains 29602 metabolic transformations observed to occur in 

humans.  Of these only 3839 (13.0%) are annotated with a specific cytochrome P450 

isoform.  The reported CYP450 substrates are shared between over 150 isoforms and their 

variants.  However, for the majority of CYP450 isoforms only a few substrates are reported.  

In the 2008.1 Metabolite database only eleven isoforms have one hundred or more 

reported substrates.  These are listed in Table 15, below. 

Isoform Substrate count 

CYP3A4 1019 

CYP1A2 607 

CYP2D6 559 

CYP2C9 470 

CYP2E1 412 

CYP2C19 401 

CYP2B6 314 

CYP1A1 295 

CYP2A6 287 

CYP2C8 265 

CYP3A5 201 

Table 15: The eleven CYP450 isoforms with more than one hundred substrates 

reported in the 2008.1 release of the Symyx® Metabolite database. 

Separate MetaPrint2D models have been constructed for each of these isoforms, and their 

performance assessed.  Due to the much smaller numbers of substrate molecules available 

than for the models described earlier, a different assessment strategy was adopted.  
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Cytochrome P450 3A4, which has the largest number of reported substrates, has around 

one hundred new substrates reported with each database release; however, the numbers of 

the other cytochromes P450 are smaller.  This means that the previous approach of 

constructing models using all the data available in a particular release of the Symyx® 

Metabolite database and assessing the performance of that model using data added in a 

subsequent release of the database would leave very small quantities of data available for 

testing. 

Instead, the models have been generated and evaluated using Monte Carlo cross-validation 

(283).  For each CYP450 isoform 20 modelling runs were performed.  In each run 80% of the 

isoform’s substrates were randomly selected to be used to construct the model, the 

performance of which was tested using the remaining 20% of the substrates.  The same 

statistics as used previously – percentage correct in top one and top three hits, and the 

mean and median areas under the ROC curve – were generated for each set of test data, 

and the values averaged over the 20 runs. 

Cytochrome 
P450 Isoform 

Number of 
Substrates 

% Top 1 % Top 3 
Mean 
AUC 

Median 
AUC 

% Novel 

CYP3A4 1019 56.0 (3.3) 71.5 (3.2) 0.816 (0.016) 0.904 (0.020) 16.4 

CYP1A2 607 56.8 (4.8) 75.1 (3.5) 0.795 (0.024) 0.859 (0.033) 22.9 

CYP2D6 559 64.5 (4.0) 78.8 (2.9) 0.836 (0.018) 0.938 (0.019) 22.8 

CYP2C9 470 59.4 (4.7) 74.2 (4.5) 0.802 (0.026) 0.899 (0.038) 23.5 

CYP2E1 412 57.5 (5.3) 78.0 (3.4) 0.772 (0.028) 0.840 (0.045) 27.5 

CYP2C19 401 59.1 (4.5) 74.8 (4.4) 0.813 (0.028) 0.906 (0.043) 24.5 

CYP2B6 314 59.5 (7.1) 73.9 (6.6) 0.790 (0.034) 0.869 (0.066) 27.5 

CYP1A1 295 49.2 (6.3) 66.9 (5.9) 0.764 (0.022) 0.805 (0.041) 26.3 

CYP2A6 287 54.7 (6.9) 70.4 (5.3) 0.758 (0.028) 0.820 (0.050) 30.8 

CYP2C8 265 52.7 (6.4) 68.8 (5.6) 0.772 (0.030) 0.854 (0.041) 29.2 

CYP3A5 201 49.1 (8.2) 67.1 (7.3) 0.778 (0.036) 0.815 (0.080) 25.9 

Table 16: Performance of cytochrome P450 Isoform specific models.  The results are 

the mean of 20 Monte Carlo cross-validation runs, with standard deviations of each 

value given in parentheses. 

The performance of these models (presented in Table 16) shows little variation from that of 

the global models reported earlier.  The small standard deviations of the performance 
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scores, indicates that the results showed little variation between cross-validation runs.  As a 

result of the considerably smaller data sets a much greater number of atom environments 

have little or no data in the training set.  In the earlier models only 3.5% of atoms in test 

compounds occupied novel atom environments, but for the isoform specific models 16-30% 

of the atoms occupy environments with little or no data. 

In order to explore the specificity of the isoform specific models the models generated for 

each CYP450 isoform have been used to predict the sites of metabolism of the substrates of 

each of the other isoforms. Table 17 contains the mean area under the ROC curve results for 

each of these experiments.  The isoforms are listed in order of decreasing data quantity.  

Initial inspection appears to show a trend in the performance of each test set decreasing 

with the model size.  This is confirmed by statistical testing; Pearson’s correlation tests on 

the performance of each test set against the natural logarithm of the number of substrates 

used to generate the models give correlation coefficients in the range 0.750 – 0.898, 

indicating a positive correlation between the two, at the 95% confidence level, for all 

isoforms.  This correlation is clearly visible in Figure 76, below. 
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CYP3A4 0.816 0.882 0.900 0.906 0.859 0.910 0.925 0.874 0.914 0.918 0.962 

CYP1A2 0.783 0.795 0.871 0.867 0.847 0.870 0.898 0.899 0.897 0.898 0.810 

CYP2D6 0.767 0.820 0.836 0.866 0.821 0.867 0.860 0.808 0.854 0.852 0.789 

CYP2C9 0.779 0.807 0.872 0.802 0.822 0.887 0.846 0.791 0.843 0.894 0.793 

CYP2E1 0.734 0.807 0.829 0.813 0.772 0.810 0.865 0.822 0.882 0.841 0.742 

CYP2C19 0.753 0.792 0.854 0.846 0.790 0.813 0.823 0.760 0.831 0.871 0.764 

CYP2B6 0.741 0.800 0.810 0.799 0.813 0.820 0.790 0.806 0.853 0.845 0.785 

CYP1A1 0.704 0.783 0.780 0.755 0.761 0.750 0.800 0.764 0.791 0.789 0.778 

CYP2A6 0.737 0.804 0.814 0.808 0.832 0.820 0.850 0.821 0.758 0.850 0.762 

CYP2C8 0.726 0.778 0.800 0.811 0.771 0.831 0.820 0.778 0.815 0.772 0.761 

CYP3A5 0.695 0.684 0.701 0.680 0.670 0.694 0.718 0.731 0.704 0.733 0.778 

Table 17: The mean AUC performance of models trained on substrates metabolised by one CYP450 isoform on predicting sites of 

metabolism of substrates of other isoforms.  The diagonal cells, highlighted, show the cross-validated performance of each model, from 

Table 16. 
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Figure 76: Performance predicting sites of metabolism of CYP2B6 substrates by 

models trained on the substrates of other isoforms plotted against the natural 

logarithm of the numbers of substrates used to build the model.  The data has a 

correlation coefficient of 0.817.  Analysis of substrates of other CYP450 isoforms 

shows a similar correlation. 

These results show that MetaPrint2D models trained using the substrates of one CYP450 

isoform can predict the sites of metabolism of substrates of other isoforms as well as, or in 

some cases better than, other substrates of the isoform on which the model was developed.  

This shows that there is a fairly small variation in the specificity of the different CYP450 

isoforms, and the effects of this variation are small enough to be masked by the uncertainty 

in the model.  Given how small a quantity of data is available for each CYP450 isoform, and 

that the various isoforms catalyse the same types of reactions, differing mainly in the size 
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and shape of their binding pocket and hence which compounds they are able to metabolise, 

it is not too surprising that the inclusion of additional data improves the discrimination 

between potential sites of metabolism, even if it is from molecules metabolised by a 

different isoform. 

4.9 Comparison with other tools 

Table 18 shows the reported performances of several site of metabolism predictions 

methods. 

Isoform  SPORCalc MetaSite MetaGlide QMBO Scientist 

CYP2C9 
 
 

55% / 81% a 

49% / 87% b 

70% / 91% a 

53% / 60% b 

83%, 84% c 

33% / 67% a 

42% / 79% b 

58% / 84% a 

53% / 82% b 

49% / 81% a 

70% / 88% b 

CYP3A4 
 
 

55% / 81% a 

49% / 87% b 

61% / 87% a 

49% / 74% b 

90%, 86% c 

41% / 72% d 

21% / 40% e 

39% / 65% a 

45% / 71% b 

58% / 84% a 

51% / 87% b 

49% / 81% a 

70% / 88% b 

CYP2D6   62%, 85% c    

Table 18: Performance of selected site of metabolism prediction methods reported in 

other studies.  SPORCalc is the in-house version running at AstraZeneca.  MetaSite is a 

commercial offering.  MetaGlide makes predictions based on docking using Glide.  

QMBO is a quantum mechanical method based on hydrogen abstraction energy.  

Finally the predictions of a biotransformation scientist were included in one study.  

Sources of data:  (a) Afzelius et al. (218) public data set, % top 1 and top 3 hits contain 

site of metabolism; (b) Afzelius et al. (218) in-house data set, predictions are centred 

on functional groups rather than atoms, % top 1 and top 3 hits contain site of 

metabolism; (c) Cruciani et al. (276) % correct prediction in top 2 hits from two in-

house data sets reported; (d) Zhou et al. (234) % top 1 and top 3 hits with reactivity 

on; (e) Zhou et al.  (234) % top 1 and top 3 hits with reactivity off. 

The results of MetaPrint2D’s evaluation, reported above, are similar to these results.  Direct 

comparison is difficult since it is apparent that the reported performance of a method varies 

considerably with the dataset used for the evaluation. 
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4.10  Accuracy of the test data 

The reliability of the analysis of site of metabolism predictions described here depends on 

the assumption that all of the sites of metabolism for a molecule are reported.  This is also 

an issue with regards to the quality of the models constructed.  Analysis of the relationship 

between the proportion of sites in a molecule at which metabolism is found to occur, and 

the year in which metabolic studies on the compound were first reported (Figure 77) shows 

a weak but clear trend towards a smaller proportion of more recently reported molecules 

being found to be sites of metabolism.  This suggests that the metabolic profiles of more 

recently studied compounds may not yet be fully characterised, though it could be the case 

that there has been a tendency for those substrates undergoing a greater variety of 

metabolic transformations to have been identified earlier. 

 

Figure 77: There is a weak but clear trend for more recently studied molecules to have 

a lower proportion of their structure reported to be sites of metabolism. 
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This trend has a Pearson’s product-moment correlation coefficient of -0.543, which 

hypothesis testing (H0: ρ = 0, p = 0.003) indicates is statistically significant. 

Figure 78 shows a plot of the mean number of sites of metabolism identified in a molecule 

against the number of heavy (non-hydrogen) atoms it contains.  At the extremes of high and 

low heavy atom counts there is considerable variation in the mean number of sites of 

metabolism, which can be accounted for by the low number of compounds of those sizes.  

For the molecule sizes with a considerable amount of data available (the data from around 

10-40 heavy atoms) there is very little variation in the mean number of sites of metabolism 

per molecule, in spite of an almost quadrupling in molecule size. 

 

Figure 78: Red: The mean number of sites of metabolism of molecules of each size.  

Blue (scale not shown): Regression line indicating the number of molecules of each 

size.  The number of sites of metabolism identified remains fairly constant, 

irrespective of the size of the molecule; for molecule with more than around 40 heavy 

atoms there is too little data to draw any conclusions. 
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This suggests that the sites of metabolism of larger compounds could be under-reported.  It 

seems likely that the majority of studies are reporting only the two most major metabolites 

detected; it is possible that once two metabolites have been identified investigation of a 

compound ceases. 

4.11 Conclusions 

Chapters 3 and 4 have reported the development and evaluation of MetaPrint2D – a new 

tool for the prediction of sites of xenobiotic metabolism.  MetaPrint2D has been made 

freely available as an Open Source library, meaning anyone can develop applications making 

use of it, and future improvements should feed back into the project.  Three interfaces to 

the MetaPrint2D library have been provided, suiting a variety of use cases; MetaPrint2D is 

accessible through a website run from the Chemistry Department at the University of 

Cambridge, through integration with the Bioclipse platform, and as a simple command-line 

application. 

The data-mining approach to site of metabolism prediction used by MetaPrint2D allows 

predictions to be made on tens of structures per second, on a regular desktop PC.  This is 

much faster than other comparable tools, and means that for the first time chemists using a 

tool such as Bioclipse will be able to investigate how the likely sites of metabolism of a 

molecule change as they make modifications to its structure in real time.  MetaPrint2D’s 

speed will also enable the inclusion of site of metabolism predictions in high-throughput 

virtual screening programmes. 

MetaPrint2D has undergone one of the most extensive evaluations reported for any site of 

metabolism prediction tools, with predictions tested on around 1200 substrates.  In the 

course of this evaluation a novel ROC curve-based method for evaluating the performance 

of site of metabolism predictions has been proposed, which overcomes the biases inherent 

to the evaluation metrics currently used. 

The evaluation of MetaPrint2D demonstrated the stability of the model to updates of the 

training data.  It has also demonstrated how the model’s applicability to a query compound 

can be straightforwardly estimated from the proportion of sites within the molecule for 
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which little or no data is available from the training database, and that this can be used to 

assign a degree of confidence to the model’s predictions. 

There are some limitations to MetaPrint2D’s current approach to site of metabolism 

prediction: stereochemistry is ignored, as are 3-dimensional effects.  Despite this, 

MetaPrint2D’s performance has been found to be comparable to that reported for other 

tools.  Finally, MetaPrint2D only predicts the relative likelihood of metabolism occurring at 

each site within a molecule, ignoring rates and yields. 

The next chapter discusses the extension of MetaPrint2D in order to predict specific types of 

metabolic transformation, and the structures of potential metabolites. 
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5. Extension of MetaPrint2D to the prediction of 

transformation types and the generation of 

metabolites 

As discussed in Chapter 2, current methods for predicting the metabolites formed through 

xenobiotic metabolism are rule based, often only provide a coarse-grained discrimination 

between the different products’ likelihood of formation, and are prone to over-prediction of 

the number of metabolites.  This chapter reports an extension of the data-mining approach 

to site of metabolism used by MetaPrint2D.  Introduction of a list of reaction type 

definitions enabled identification of the transformations that each predicted site of 

metabolism is likely to undergo, and the metabolites generated. 

5.1 Introduction 

MetaPrint2D and its predecessor SPORCalc predict sites of xenobiotic metabolism, but make 

no prediction of the metabolites likely to be formed.  MetaPrint2D-React is an extension of 

MetaPrint2D which includes predictions of the types of transformation that occur, and 

generates the structures of the metabolites formed.  Like the other approaches to 

metabolite prediction described in Chapter 2, a set of reaction patterns are used to define 

the possible transformations, but MetaPrint2D-React provides much finer grained 

differentiation between the likelihoods of various metabolites being formed than the other 

rule-based tools. 

As discussed previously, tools for the prediction of metabolites, such as Meteor (239), use a 

set of rules to define ‘biophores’ (descriptions of functional groups and other molecular 

properties) that are used to determine where in a molecule metabolic transformations may 

take place.  In order to predict the metabolites of a compound, its structure is searched for 

the presence of each biophore, identifying all the sites in the structure where each 

transformation could occur.  When different biophores indicate that several competing 

transformations could occur, relative reasoning rules can be used to assert one 

transformation’s precedence over another.  Each biophore has associated with it a 

likelihood score; this may be one of a small number of categories such as very likely, likely, 
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unlikely or may be a more finely grained score such as the empirical probabilities assigned to 

each rule by Sygma (242). 

MetaPrint2D-React extends the data model used by MetaPrint2D in order to include sub-

models for each class of reaction.  In addition to recording the reaction centre and substrate 

occurrence counts, each atom environment fingerprint in MetaPrint2D-React also records 

occurrence counts for each type of transformation that has been observed to occur in the 

training data at an atom occupying that environment.  Since this has been achieved through 

extension of the data structures described in Chapter 3, it adds very little overhead to the 

search performance. 

In order predict the metabolism of a compound MetaPrint2D-React performs a search of 

the model’s data for similar atom environments to each atom in the query structure in 

exactly the same manner as MetaPrint2D does.  However, in addition to calculating the 

overall occurrence ratio for each atom in the structure, a separate occurrence ratio for each 

type of transformation reported in the training data is calculated.  Structures of predicted 

metabolites are then generated through application of the reaction rules associated with 

each predicted transformation type. 

This approach enables much finer grained differentiation between the relative likelihoods of 

predicted metabolites than any of the methods described in Chapter 2 since the occurrence 

ratio of each metabolite is based on a data mining search of the environments occupied by 

atoms in the molecule, rather than a match against one of a list of pre-defined 

transformation patterns, or biophores. 

There are also a number of other benefits.  Since pattern matching is not used to determine 

the sites at which transformations occur, a much smaller and simpler set of 

biotransformations can be defined, making maintenance of the rule base much simpler.  For 

instance, rather than requiring many different rules for hydroxylation, defining precisely 

which substructures at which hydroxylation may occur, together with a separate likelihood 

for each rule, MetaPrint2D-React needs only a single definition of hydroxylation: the 

addition of an -OH group, and can determine the appropriate locations at which to apply the 

transformation, and the likelihood of it taking place, through a statistical analysis of the data 

in the Symyx® Metabolite database. 
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In addition, MetaPrint2D-React’s metabolite prediction has the potential to be much faster 

than a purely rule-based approach.  Substructure searches are a relatively computationally 

expensive procedure; in the case of a method relying on a list of several hundred 

biotransformation rules, the query structure must be searched for occurrences of the 

substrate pattern of each of the hundreds of rules.  MetaPrint2D-React can determine the 

sites in a molecule at which each type of transformation can occur using the fast fingerprint 

search described previously.  The most time consuming part of the MetaPrint2D search is 

the lookup of similar atom environments and the addition of occurrence counts for specific 

transformation types makes little difference to the calculation time. 

Some methods, such as Meteor, base their estimate of a metabolite’s likelihood of 

formation on an assessment of the structure of the metabolite formed.  This means that 

even if the user only wishes to examine a subset of the predicted metabolites, say the 10 

most likely, all of the metabolite structures must be generated and assessed.  By generating 

likelihoods of formation from the results of atom environment fingerprint searching, 

MetaPrint2D-React allows small subsets of the metabolites to be rapidly selected for further 

analysis. 

5.2 Identifying transformations 

5.2.1 Metabolite database annotations 

The 87,446 biotransformations recorded in the 2008.1 release of the Symyx® Metabolite 

database encompass a wide range of types of reaction.  68,900 of the records have reaction 

class annotations, assigning one or more of 286 reaction class labels such as Hydroxylation 

and Hydrolysis to the transformation.  Of these reaction class labels, 115 are assigned to 

twenty or fewer biotransformations and only 95 are assigned to more than one hundred 

transformations.  The most common reaction class labels are listed in Table 19. 
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C-Hydroxylation 8386 N-Oxidation 811 Oxidative Dealkylation 277 

Hydrolysis 7658 N-Deacylation 768 Glycination 254 

C-Oxidation 6033 Covalent Binding 757 S-Alkylation 230 

Aromatic 
Hydroxylation 

4063 Isomerization 751 N-Acetylcysteination 227 

Aliphatic 
Hydroxylation 

3855 O-Conjugation 746 Condensation 221 

O-Glucuronidation 3666 Tautomerization 724 Cleavage 214 

N-Dealkylation 3537 O-Methylation 678 Deglycosidation 208 

Reduction 3108 N-Acylation 670 Epimerization 203 

Ring Opening 2515 N-Reduction 632 Dealkylation 201 

Oxidation 2232 Dehydration 604 O-Deacetylation 196 

O-Dealkylation 1702 Decarboxylation 604 Dehydroxylation 189 

N-Demethylation 1673 Phosphorylation 587 N-Deacetylation 185 

Hydrogenation 1579 Ring Closure 573 Desulfuration 178 

Conjugation 1464 Chain Shortening 550 O-Phosphorylation 173 

Glutathionation 1322 Rearrangement 533 Lipid Binding 161 

O-Sulfation 1315 O-Alkylation 531 C-Dealkylation 157 

Dehydrogenation 1254 Deamination 519 Dimerization 155 

Epoxidation 1232 O-Deacylation 478 Dephosphorylation 154 

Dehalogenation 1187 Nucleophilic Addition 467 Chain Elongation 152 

Aromatization 1166 Cyclization 459 O-Dephosphorylation 152 

O-Demethylation 1156 Elimination 442 N-Methylation 152 

Dearomatization 1072 Esterification 405 Inversion 150 

S-Oxidation 1033 
Oxidative 
N­Dealkylation 

376 Radical Formation 147 

Protein Binding 1027 N-Glucuronidation 337 Lactonization 147 

Optical Resolution 1013 Hydration 333 Glycosidation 144 

N-Acetylation 1013 
Nucleophilic 
Substitution 

306 O-Deglycosidation 140 

DNA Binding 1010 Sulfation 290 Sulfuration 135 

Glucuronidation 1005 S-Methylation 289 Amidation 133 

Oxidative Deamination 875 S-Dealkylation 286 
Oxidative 
Desulfuration 

132 

Hydroxylation 856 N-Hydroxylation 285 N-Alkylation 118 

Table 19: The 90 most common reaction class labels from the 2008.1 release of the 

Symyx® Metabolite database, together with their occurrence counts. 
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Initially the use of these database annotations as the basis for determining the types of 

reaction to have occurred was considered, however this approach was not found to be 

feasible.  Unfortunately the reaction type annotations in the Symyx® Metabolite database 

are inconsistent, and often incomplete.  For instance, hydroxylation reactions occurring at a 

carbon atom are variously labelled with one or more of Hydroxylation, C-hydroxylation, 

Aromatic Hydroxylation and Aliphatic Hydroxylation.  The hydroxylation transformations 

shown in Figure 79, illustrate this variability. 

(a) 

 
Aromatic Hydroxylation 

C-Hydroxylation 

 

(b) 

Aromatic Hydroxylation 

(c) 

 
C-Hydroxylation 

 

(d) 

 

C-Hydroxylation 

Hydroxylation 

 

(e) 

 
Aliphatic Hydroxylation 

C-Hydroxylation 

Hydroxylation 

(f) 

 

Aliphatic hydroxylation 

Figure 79: Examples of hydroxylation transformations from the Symyx® Metabolite 

database with their annotated reaction classes. 
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Transformations (b)-(e) from Figure 79 are all from the same reaction scheme, and even 

here there is little consistency in the annotations, while for transformation (f) no 

hydroxylation is immediately obvious.  This single record in the database represents the 

combined result of a series of elementary reactions (shown in Figure 80), and the 

annotations describe the reactions occurring in the separate steps, rather than the overall 

transformation. 

 

Figure 80: The series of elementary reactions making up the transformation shown in 

Figure 79(f).  The record is annotated Aliphatic Hydroxylation, N-Acetylation, N-

Deacylation and Ring Closure. 

There is little consistency, however.  In some similar cases where records represent the 

result of more than one elementary reaction the classes of some steps are omitted from the 

annotations, and in other cases the records are only annotated with the apparent reaction 

shown by the overall transformation.  Alternatively, a record may represent the product of 

several transformations in different regions of the molecule, but only one of these is 

annotated. 

The annotations also vary between database releases.  The transformation shown in Figure 

81 is described as an Epoxidation and Hydrolysis in the 2007.1 release of the database, but 

in the 2008.1 release is additionally annotated as Aliphatic Hydroxylation, C-Hydroxylation 

and Hydrogenation.  The Hydroxylation annotations can be accounted for as the result of 

the overall process, but the last annotation does not appear to be related to the reaction 

scheme. 
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Figure 81: This transformation (MDLNUMBER: RMTB00078230) is annotated 

Epoxidation and Hydrolysis in the 2007.1 release of the Metabolite database.  In the 

2008.1 release it is additionally annotated Aliphatic Hydroxylation, C-Hydroxylation 

and Hydrogenation. 

Other annotations are simply incorrect: 

 

Figure 82: This transformation (MDLNUMBER: RMTB00010291) is annotated as an N-

deglucosidation in the 2008.1 release of the Symyx® Metabolite database, but the 

transformation it represents is a hydroxylation. 

A further challenge in working with the reaction class annotations from the Symyx® 

Metabolite database arises from the fact that each record in the database only represents a 

single product of the transformation.  Reactions that generate more than one product are 

recorded in a series of records, one for each product.  In these cases the assigned reaction 

classes can vary, depending on which product is under consideration.  The reaction shown in 

Figure 83(a) is recorded as two separate transformations, originating from the same 

substrate, one leading to each of the product compounds.  Transformation (b) is described 

as an ‘Oxidative Deamination’ and an ‘Oxidative N-Dealkylation’, while transformation (c) is 
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described as a ‘C-Oxidation’ and an ‘N-Dealkylation’ – despite both records being separate 

views onto the same metabolic transformation. 

(a) 

 

 

(b) 

 
Oxidative Deamination 

Oxidative N-dealkylation 

(MDLNUMBER: RMTB00065456) 

(c) 

 
C-Oxidation 

N-Dealkylation 

(MDLNUMBER: RMTB00000032) 

Figure 83: The Symyx® Metabolite database reports the overall reaction (a) in two 

separate records (b) and (c), one for each of the products.  The reaction class 

annotations differ between these records, depending on which product is under 

consideration. 

5.2.2 SMARTS patterns 

Since the reaction class annotations in the Symyx® Metabolite database were unsuitable for 

use in assigning transformation types to sites of metabolism, a method for classifying the 

transformations using reaction SMARTS (55) patterns was developed.  SMARTS is a language 

for describing molecular patterns, based on the widely used SMILES representation of 

molecular structure.  Reaction SMARTS is an extension of the SMARTS language enabling 

description of reactions.  Reaction SMARTS describe structures required to be present in 

reactant and product molecules, and can specify mappings between atoms in these 

structures.  An example reaction SMARTS is described in Figure 84, below. 
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[OH:1]>>[O:1]C(=O)C 

Figure 84: Reaction SMARTS pattern representing an esterification reaction.  The 

reactant (to the left of the ‘>>’) must contain an -OH group, and this maps to an 

oxygen in the product with an acetyl group added. 

MetaPrint2D-React identifies reaction centres through a constrained maximum common 

substructure search, in exactly the same way as described in Chapter 3 for MetaPrint2D.  

MetaPrint2D assigned broad classifications (phase I addition, phase II addition, elimination, 

bond breaking, bond formed, bond order changed) to the reaction centre atoms.  

MetaPrint2D-React instead uses a list of reaction SMARTS patterns to classify the 

transformations on the basis of the structural changes between the substrate and 

metabolite compounds. 

In order to determine which reaction types should be included in MetaPrint2D-React the 

most common reaction classes in the Symyx® Metabolite database were identified, along 

with common types of transformations reported in the literature.  Reaction SMARTS 

patterns were then written to describe these transformations.  MetaPrint2D-React stores 

these reaction type definitions in a configuration file, making it straightforward to make 

changes to the reaction types that are supported by the software. 

Since the fingerprinting/data-mining approach of MetaPrint2D is used to determine the 

sites in a molecule where transformations should be applied, very general reaction rules can 

be used.  Rather than the highly specific rules such as ‘4-Hydroxylation of 1,3-Disubstituted 

Benzenes’ required by tools like Meteor, only a single rule for hydroxylation (using a 

wildcard to represent the atom to which the –OH group is added) is necessary.  The same is 

true for many other types of reaction.  If users wish to discriminate between transformation 

types at a more fine-grained level than these generic rules permit, for example between 

aliphatic C-hydroxylations, aromatic C-hydroxylations and N-hydroxylations, then this can 

easily be achieved with the addition of extra rules – appropriate reaction SMARTS patterns 

can be added to the reaction type definitions and the training data reprocessed to generate 

a new model. 
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(a) 

 
(MDLNUMBER: RMTB00046712) 

(b) 

(MDLNUMBER: RMTB00015229) 

Figure 85: Both the N-glucosidation shown in (a) and the O-glucosidation shown in (b) 

can be described using the same reaction SMARTS pattern by representing the atom 

to which the glucose is conjugated by a wildcard which can match any chemical 

element. 

The reaction types defined in MetaPrint2D-React mostly correspond to reaction classes in 

the Symyx® Metabolite database.  Some of the Metabolite database’s reaction classes are 

very broad, and have been assigned to a number of quite different reactions.  The 

annotation ‘Hydrolysis’, for instance, can describe an ester, amide or epoxide hydrolysis 

reaction.  MetaPrint2D-React has separate reaction SMARTS patterns to handle these 

various cases. 

The Symyx® Metabolite database also contains a number of quite generic reaction classes, 

such as acylation.  In such cases MetaPrint2D-React can define several reaction patterns 

covering both specific commonly occurring cases and broader generic reaction types.  In the 

case of acylation (illustrated in Figure 86), MetaPrint2D-React contains two rules; the first 

covering the specific case of acetylation, the most common type of acylation, and a broader 

rule to catch the remainder of cases.  Similarly in the case of dealkylation reactions 

MetaPrint2D-React defines two rules: one covering the most common case – 

demethylation, and a broader rule for the generic case. 
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[*:1]>>[*:1]C(=O)[CH3] 

Acetylation 

 
[*:1]>>[*:1]C(=O)* 

Acylation 

Figure 86: MetaPrint2D–React includes generic reaction type rules such as acylation, 

and also more specific rules to cover the most common instances, such as acetylation. 

In other cases multiple rules may be required in order to represent variants of a group that 

is added: 

(a) 

 
(MDLNUMBER: RMTB00012784) 

(b) 

 
(MDLNUMBER: RMTB00038161) 

Figure 87: Separate reaction SMARTS patterns are required to describe the 

glycosidation reactions shown in (a), and with and additional phosphate group in (b). 
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Finally, in order to avoid enumerating the large number of possible substitution reactions, 

MetaPrint2D-React has the capability to recognise substitutions as the combination of an 

addition pattern and an elimination pattern. 

The browser tool used to evaluate the reaction centre identification algorithms used by 

MetaPrint2D (described on page 120) has been adapted to assist with the evaluation and 

refinement of the reaction type rules.  The browser enables each record from the Symyx® 

Metabolite database to be inspected, highlighting the regions of the molecule undergoing a 

transformation.  The reaction classes detected by the rules are listed and the atoms at 

which the reaction occurred highlighted.  Any regions undergoing transformation that are 

not described by a transformation rule are also highlighted.  The initial reaction type rules 

were refined through manual inspection of records sampled at random from the Symyx® 

Metabolite database using this browser.  Common types of transformation that were not 

adequately described by the initial rule set were identified and the rules adapted 

accordingly. 

The reaction type rules developed through this process characterize 81.2% of reaction 

centre atoms identified in the 2008.1 release of the Symyx® Metabolite database.  Examples 

of the reaction SMARTS patterns describing the most common reaction types, together with 

cases of the transformations they represent, are presented below. 

 



 

1
6

9
 

5.2.3 Reaction type definitions 

Description Frequency Example Transformations SMARTS Patterns 

Hydroxylation 12732 

 
MDLNUMBER: RMTB00000015 

[*:1]>>[*:1]-[OH] 

Dealkylation 6996 

 
MDLNUMBER: RMTB00000099 

[*:1]-C>>[*:1] 

Glucuronidation 5741 

 
MDLNUMBER: RMTB00015763 

[*:1]>>[*:1]C1C(O)C(O)C(O)C(C(=O)O)O1 

Demethylation 3560 

 
MDLNUMBER: RMTB00000024 

[*:1]-[CH3]>>[*:1] 
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Description Frequency Example Transformations SMARTS Patterns 

Reduction (double to single 
bond) 

3466 

 
MDLNUMBER: RMTB00017724 

[*:1]=[*:2]>>[*:1]-[*:2] 

Oxidation (+=O) 2905 

 

 
MDLNUMBER: RMTB00001469 

 [*:1]>>[*:1]=O 

Amide hydrolysis 2707 

 
MDLNUMBER: RMTB00074205 

[N:1]-[C$(*=O):2]>> [*:1].[OH]-[*:2] 

[N:1]-[C$(*=O):2]>> [OH]-[*:2] 

[N:1]-[C$(*=O):2]>> [*:1] 

Conjugation 2400 

 
MDLNUMBER: RMTB00066487 

[*:1]>>[*:1]-[#0] 
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Description Frequency Example Transformations SMARTS Patterns 

Oxidation (single to double 
bond) 

2218 

 
MDLNUMBER: RMTB00000313 

[*:1]-!:[*:2]>>[*:1]=!:[*:2] 

Sulfation 1988 

 
MDLNUMBER: RMTB00046671 

[*:1]>> [*:1]-S(=O)(=O)-O 

Ester hydrolysis 1971 

 
MDLNUMBER: RMTB00000001 

[C:1](=[O:2])-[O:3]-[*:4] 

    >>[C:1](=[O:2])-[OH].[OH:3]-[*:4] 

[C:1](=[O:2])-O-* 

    >>[C:1](=[O:2])-[OH] 

C(=O)-[O:1]-[*:2]>>[OH:1]-[*:2] 

Methylation 1154 

 
MDLNUMBER:  RMTB00000079 

[*:1]>>[*:1]-[CH3] 

Dehalogenation 1115 

 
MDLNUMBER: RMTB00000221 

[*:1]-[I,Br,Cl,F]>>[*:1] 
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Description Frequency Example Transformations SMARTS Patterns 

Dehydroxylation 1088 

 
MDLNUMBER: RMTB00070716 

[*:1]-[O;H,-]>>[*:1] 

Epoxidation 1035 

 
MDLNUMBER: RMTB00000022 

[*:1]=[*:2]>>[*:1](-O1)-[*:2]-1 

Oxidation (=O,-OH) 1004 

 
MDLNUMBER: RMTB00000113 

[*:1]>>[*:1](=O)-[OH] 

Acetylation 935 

 
MDLNUMBER: RMTB00011676 

[*:1]>>[*:1]-C(=O)-[CH3] 
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Description Frequency Example Transformations SMARTS Patterns 

Phosphorylation 821 

 
MDLNUMBER: RMTB00003618 

[*:1]>>[*:1]-P(=O)(-O)-O 

Tautomerization 720 

 
MDLNUMBER:  RMTB00086505 

[*:1]=[*:2]-[*:3]>>[*:1]-[*:2]=[*:3] 

Epoxide hydrolysis 701 

 
MDLNUMBER: RMTB00059271 

[r:1]1-[r:1]-[Or:2]-1>>[*:1](-[OH])-[*:1]-[OH:2] 

Hydroxidation 681 

 
MDLNUMBER: RMTB00006966 

[*:1]>>[*:1]-[O-] 

Oxidative deamination (=O) 678 

 
MDLNUMBER: RMTB00060711 

[*:1]-N>>[*:1]=O 
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5.3 Predicting transformations 

MetaPrint2D-React predictions are based on a circular atom environment fingerprint 

similarity search, performed analogously to that used by MetaPrint2D for site of metabolism 

predictions.  In order to enable prediction of the types of transformation that can occur at 

each site, every fingerprint is associated with a count of how many times each reaction type 

has been observed at an atom occupying that environment in the training data.  When 

predictions are made, each atom in the query compound has a score (normalized 

occurrence ratio) generated for each type of reaction, in addition to the overall score for the 

likelihood of metabolism occurring at that site.  The overall score is equal to the sum of the 

scores for each reaction type at that site. 

The fingerprint search determines the possible reactions at each site in the molecule, and 

these predictions are refined through checks that the reactant pattern for each reaction 

type matches the sites at which they are predicted to occur.  For many reaction types, such 

as hydroxylation, this is a trivial process that can be omitted since the reactant pattern is 

simply the wildcard ‘any atom’, but for others, particularly those transformations involving 

several atoms in their pattern, this is an important step.  In the case of reaction types with 

several atoms in their reactant pattern, such as hydrolysis or epoxidation, it is possible that 

the reaction is predicted to occur at some of the required atoms but not others: 

 
[$(C=O):1][O:2]>>[$(C=O):1][OH].[O:2] 

Figure 88: Hydrolysis has been predicted to occur at the highlighted position, but not 

at the adjacent carbonyl carbon, required by the reaction pattern.  Since there is not a 

full match of the reaction pattern to atoms at which hydrolysis is predicted, the partial 

prediction is discarded. 

The atoms’ overall scores are analogous to the normalized occurrence ratios calculated by 

MetaPrint2D when making site of metabolism predictions.  The values differ from the site of 

metabolism scores computed by MetaPrint2D however, as MetaPrint2D-React captures a 

different subset of the reaction centres.  The site of metabolism prediction models used by 
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MetaPrint2D were trained using reaction centres classified as either phase I addition, or 

elimination.  MetaPrint2D-React makes predictions on a greater range of additions, 

including phase II conjugations, but only includes the subset of elimination reactions 

specifically described by reaction SMARTS patterns. 

5.4 Generating product structures 

In order to generate the structures of metabolites the reaction SMARTS patterns are treated 

as SMIRKS (55) transformation patterns.  SMIRKS is a language for defining transformations, 

derived from SMILES and SMARTS. 

In order to apply a SMIRKS transformation to a structure the reactant component of the 

SMIRKS pattern is matched against the sites of the query structure predicted to undergo the 

transformation.  The SMIRKS pattern is analysed in order to determine the atoms conserved 

between the reactant and product patterns (using mapping IDs incorporated in the SMIRKS 

pattern), and the added, deleted and altered atoms and bonds are identified.  The 

metabolite structure is then generated through duplication of the query structure and 

application of the changes from the transformation pattern. 

5.5 User interface 

Like the site of metabolism prediction code, MetaPrint2D-React has been designed as a 

library, enabling different user interfaces to be developed independently of the prediction 

engine, and facilitating the embedding of the tool in larger applications.  Currently only one 

user interface is available: a website, hosted at the Unilever Centre for Molecular Science 

Informatics in the Cambridge University Chemical Laboratories (http://www-

metaprint2d.ch.cam.ac.uk/metaprint2d-react). 

Query molecules can either be input using the SMILES format, or sketched using the JME 

editor.  The output initially appears in a very similar form to that of the MetaPrint2D 

website: a structure diagram with atoms highlighted using a traffic-light system indicating 

the relative likelihood of metabolic transformations being centred on that site.  Moving the 

cursor over an atom, however, reveals the list of reaction types predicted to occur at that 

site, with their relative scores, as shown in Figure 89. 

http://www-metaprint2d.ch.cam.ac.uk/metaprint2d-react
http://www-metaprint2d.ch.cam.ac.uk/metaprint2d-react
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Figure 89: MetaPrint2D-React predictions for a compound.  The relative likelihood of 

metabolism occurring at different sites in the structure is shown, and moving the 

cursor over an atom reveals more details, including the types of reaction predicted to 

occur at that site. 

Clicking on one of the predicted reaction types generates the structure of the metabolite 

resulting from that transformation: 

 

Figure 90: Clicking on one of the predicted reaction types generates the structure of 

the metabolite resulting from that transformation. 
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It is also possible to apply a filter to the results, presenting only the sites predicted for one 

particular class of reaction: 

 

Figure 91: The reaction type filter can be used to limit predictions to one class of 

reaction; here it is being used to show the relative likelihood of hydroxylation 

occurring at different sites in a molecule. 

5.6 Evaluation 

Two evaluations of MetaPrint2D-React have been performed.  The first evaluated the 

identification of sites of metabolism by MetaPrint2D-React and the second evaluated the 

predictions of specific reaction types. 

The evaluation of site of metabolism predictions using MetaPrint2D-React was performed in 

the same manner as the assessment of MetaPrint2D, described in Chapter 4.  The 2006.1 

release of the Symyx® Metabolite database was used to train the MetaPrint2D-React model 

and the quality of predictions was evaluated using novel data from the 2008.1 release.  The 

reaction schemes added to the Metabolite database between the 2006.1 and 2008.1 

releases were identified, and one test compound was randomly selected from each scheme.  

The results of this evaluation are presented in Table 20, below. 
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Molecule Count % Top 1 % Top 3 
Mean 
AUC 

Median 
AUC 

922 58.9% 78.7% 0.812 0.918 

Table 20: Results of the evaluation of site of metabolism predictions made using 

MetaPrint2D-React. 

During this exercise the ability of MetaPrint2D-React to predict types of transformation was 

also assessed.  At each reaction centre in the test compounds the types of transformation 

that MetaPrint2D-React predicted were compared to the transformation types reported at 

that site.  Of the 2889 transformations reported to occur in the training data, 2257 (78.1%) 

were predicted by MetaPrint2D-React. 

A separate assessment has been performed for each reaction type predicted by 

MetaPrint2D-React.  Due to the variation in the number of times that transformation types 

are reported in the Metabolite database, training and test data were selected through 

Monte Carlo cross-validation (283), in a similar manner to the approach used for the training 

and evaluation of cytochrome P450 isotope specific models described previously in Chapter 

4. 

For each reaction type, 20% of the molecules from the 2008.1 release of the Symyx® 

Metabolite database identified as undergoing that reaction were randomly selected to form 

a test set, and the remainder of the data, excluding molecules occurring in the same 

metabolic scheme as any of the test compounds, used to generated a MetaPrint2D-React 

model.  This model’s predictions for the molecules in the test set were assessed using the 

same metrics as described previously – the percentage of molecules having a site of 

metabolism among the top one or three predicted sites of metabolism, and the mean and 

median area under the ROC curve (AUC) statistics.  The selection of test and training data, 

model construction and evaluation of predictions were repeated ten times for each reaction 

type, and the results averaged.  These are reported in Table 21, below. 
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Reaction Type Molecule Count % Top 1 % Top 3 
Mean 
AUC 

Median 
AUC 

Hydroxylation 5726 47.20% 69.30% 0.804 0.891 

Dealkylation 4975 71.80% 87.50% 0.895 0.994 

Glucuronidation 4110 73.80% 88.10% 0.927 1.000 

Demethylation 2340 86.60% 95.10% 0.928 1.000 

Oxidation (=O) 2036 55.80% 72.20% 0.826 0.978 

Amide hydrolysis 1817 79.70% 90.30% 0.934 1.000 

Conjugation to unknown structure 1777 55.80% 78.20% 0.857 0.985 

Reduction (double to single bond) 1571 76.20% 87.80% 0.887 0.992 

Ester hydrolysis 1495 91.50% 97.40% 0.963 1.000 

Oxidation (single to double bond) 1450 72.80% 85.70% 0.851 0.966 

Sulfation 1395 73.40% 87.60% 0.927 1.000 

Dehydroxylation 694 75.30% 90.60% 0.859 0.974 

Acetylation 672 79.30% 85.40% 0.892 1.000 

Methylation 670 61.30% 80.00% 0.841 0.990 

Oxidation (=O,-OH) 607 54.80% 75.10% 0.829 0.947 

Epoxidation 582 62.90% 77.00% 0.812 0.915 

Dehalogenation 570 74.40% 90.60% 0.798 0.852 

Oxidative deamination (=O) 552 81.50% 87.50% 0.877 1.000 

Hydroxidation 539 60.60% 72.30% 0.839 0.995 

Phosphorylation 467 81.30% 85.40% 0.920 1.000 

Epoxide hydrolysis 431 94.50% 96.40% 0.941 1.000 

Glutathionation (+SX) 430 38.60% 62.90% 0.724 0.763 

Oxidative deamination (=O,-OH) 335 75.00% 85.00% 0.874 0.993 

Dehydration 334 79.80% 88.30% 0.818 0.846 

Tautomerization 320 65.00% 80.20% 0.806 0.890 

Hydroxylation/ 
Tautomerization(=O) 

296 59.40% 74.30% 0.771 0.831 

Dephosphorylation 270 74.50% 89.20% 0.929 0.993 

Oxidative deamination (-OH) 268 57.40% 69.90% 0.754 0.761 

Epoxide opening (+X) 267 80.90% 89.80% 0.886 1.000 

Epoxidation/Hydrolysis 266 50.00% 75.50% 0.784 0.819 

Reduction (=O) 250 72.00% 80.90% 0.804 0.906 

Aromatization 220 57.70% 72.30% 0.795 0.864 

Oxidative Elimination 220 73.10% 86.00% 0.791 0.831 
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Reaction Type Molecule Count % Top 1 % Top 3 
Mean 
AUC 

Median 
AUC 

Acylation 196 45.10% 65.20% 0.738 0.808 

Hydration 173 51.30% 61.60% 0.720 0.711 

Glycination 171 79.40% 87.20% 0.866 0.995 

Reduction (=O,-O) 170 90.00% 94.50% 0.925 1.000 

Methoxylation 156 39.00% 60.80% 0.778 0.873 

Dealkylation (x2) 153 54.90% 70.60% 0.768 0.813 

Elimination 152 61.40% 75.90% 0.820 0.895 

Alkylation 147 50.70% 70.20% 0.747 0.820 

Epoxide Hydrolysis/Aromatization 144 88.40% 91.70% 0.929 1.000 

Glutathionation (=) 144 53.00% 71.50% 0.725 0.737 

Elimination (XX) 140 61.30% 76.30% 0.755 0.755 

Conjugation (substituting OH) 133 62.00% 76.50% 0.790 0.882 

Acetylcysteination 131 42.50% 61.40% 0.710 0.723 

N-dealkylation 111 42.30% 55.50% 0.697 0.666 

Dealkylation (3) 111 83.60% 96.00% 0.930 1.000 

Desulfuration 105 77.50% 90.00% 0.818 0.907 

Glutathionation (O>SX) 102 58.70% 78.30% 0.770 0.829 

Glucosidation (+X) 97 42.50% 64.00% 0.778 0.916 

CoA Binding 90 73.00% 85.00% 0.911 1.000 

Dealkylation (2) 89 51.30% 60.60% 0.763 0.828 

Oxidation(=O=O) 87 54.00% 70.70% 0.763 0.857 

Cysteamination 80 38.80% 54.90% 0.685 0.629 

Demethylation (x2) 76 79.90% 90.00% 0.863 0.976 

N-Dearylation 70 53.50% 58.90% 0.777 0.855 

Denitration 65 91.50% 96.50% 0.892 0.938 

Amination 64 26.70% 61.30% 0.708 0.685 

Protein Binding 62 41.90% 63.30% 0.752 0.783 

Conjugation (+SX) 62 53.00% 62.70% 0.740 0.755 

Glutamation 61 21.70% 32.40% 0.731 0.788 

Esterification 58 65.50% 84.20% 0.872 0.989 

Azo_cleavage 57 83.80% 92.50% 0.924 0.994 

Ring_opening 57 26.30% 45.30% 0.655 0.635 

Elimination (XH) 55 71.90% 80.30% 0.834 0.918 

Chlorination 54 54.10% 71.20% 0.809 0.898 
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Reaction Type Molecule Count % Top 1 % Top 3 
Mean 
AUC 

Median 
AUC 

Dehydrohalogenation 51 88.60% 92.80% 0.831 0.894 

Conjugation (=) 48 45.10% 64.20% 0.695 0.724 

Sulfuration 46 19.20% 44.70% 0.566 0.496 

Methiolation 46 30.80% 38.10% 0.609 0.539 

Epoxide Hydrolysis/Dehydration 38 76.90% 80.00% 0.886 0.962 

DNA Binding 37 70.90% 81.00% 0.824 0.945 

Cyanidation 35 32.90% 62.90% 0.708 0.693 

Formylation 34 46.70% 52.00% 0.714 0.751 

Nitrosation 33 52.00% 65.30% 0.714 0.711 

Deamination (NH2) 29 58.00% 69.00% 0.648 0.584 

Disulphide Reduction 28 30.00% 66.00% 0.788 0.803 

Epoxide opening (3) 27 64.00% 72.00% 0.813 0.884 

Glycosidation (+XP) 27 55.20% 83.80% 0.840 0.903 

Aromatization/ Elimination 26 36.50% 69.50% 0.663 0.668 

Sulfonation 25 58.50% 62.50% 0.769 0.825 

Glycosidation (+X) 19 48.30% 80.00% 0.811 0.869 

Oxidation/Dehalogenation 15 76.70% 76.70% 0.737 0.765 

Hydroxylation/ 
Tautomerization(=O=O) 

14 30.00% 60.00% 0.706 0.706 

Thioester hydrolysis 13 85.00% 100.00% 0.962 0.962 

Condensation 12 40.00% 55.00% 0.649 0.649 

Oxidation (=O,-[O-]) 11 75.00% 85.00% 0.713 0.713 

Epoxide dehydration 9 50.00% 50.00% 0.743 0.743 

N2-elimination 9 80.00% 100.00% 0.900 0.900 

Fluorination 8 30.00% 60.00% 0.641 0.641 

Glucosidation (+OX) 8 0.00% 0.00% 0.444 0.444 

Bromination 7 50.00% 70.00% 0.810 0.810 

Peroxidation 6 10.00% 10.00% 0.475 0.475 

Deamination (NHNH2) 6 0.00% 70.00% 0.676 0.676 

Rearrangement 6 90.00% 100.00% 0.931 0.931 

Dealkynylation 4 80.00% 100.00% 0.702 0.702 

Table 21: MetaPrint2D-React’s performance in predicting each type of reaction. 
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For the majority of reaction types MetaPrint2D-React’s predictions are as accurate as, or 

better than, the site of metabolism predictions generated by MetaPrint2D.  The best 

performing reaction types are those that can only occur at a specific substructure, such as 

ester hydrolysis, as opposed to transformations such hydroxylation which using a wild-card 

match can potentially be applied to any chemically relevant site. 

The least accurately predicted transformations are all amongst those with the lowest 

numbers of occurrences, and those occurrences are in several different atom environments.  

This means that when the data is split into training and test sets in the course of cross-

validation runs many of the atom environments occupied by reaction centre atoms in the 

test set do not appear in the training data. 

The reaction types with the least occurrences have been removed from MetaPrint2D-React. 

5.7 Conclusions 

There are some limitations to the methods used by MetaPrint2D-React.  Reaction types 

must be expressed as SMARTS patterns.  This means that transformations must be defined 

in terms of exact substructures – SMARTS patterns cannot represent a query such as ‘a 

chain of 3-5 carbon atoms’.  SMARTS patterns cannot represent the formation of radicals, 

though extensions to address this issue have been proposed (253).  These restrictions make 

it unfeasible for MetaPrint2D-React to capture certain types of reaction, such as 

dimerization and ring contractions, since to do so would require enumerating every possible 

structure.  This is not a major limitation of the approach since such reactions occur quite 

infrequently. 

A related limitation is in the handling of reactions involving transformations at different sites 

in a molecule, linked by a conjugated system.  Examples of these are shown in Figure 92.  

Such transformations can occur with a varying number of bonds separating the main 

reaction sites, and again cannot currently be handled by MetaPrint2D-React unless all 

possible arrangements are enumerated. 
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Figure 92:  In order to represent reactions consisting of transformations at different 

sites in a molecule connected by a conjugated system using SMARTS patterns separate 

SMARTS are required for different lengths of conjugation. 

There are several cases in which MetaPrint2D-React requires a number of separate reaction 

type definitions in order to describe closely related reaction types.  An example where this 

arises is acylation – there is currently a specific rule for acetylation (the acetyl group is most 

common acyl group to be added) and a generic rule that captures the remaining cases of 

acylation.  A similar situation occurs with alkylation where there is a specific rule describing 

methylation, and a generic rule describing other alkylation reactions.  It may be useful, and 

improve the quality of predictions, if it were possible to establish hierarchies of reaction 

types.  This would mean that methylation reactions could count towards the occurrences of 

alkylations, and the overall likelihood of alkylation could be predicted more accurately, 

while still enabling the likelihood of specific types of alkylation to be calculated.  Similarly, in 

the case of oxidative deamination there are three different rules covering the hydroxyl, 

aldehyde and carboxy metabolites. 
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6. Retrospective prediction of recently 

published metabolic schemes 

This chapter reports further work carried out to evaluate the performance of MetaPrint2D-

React.  Fifteen studies reporting the metabolic disposition of a novel xenobiotic compound 

were identified from the January to October 2008 issues of the journal Drug Metabolism 

and Disposition.  Site of metabolism and type of transformation predictions for the parent 

compounds in each of these studies were generated by MetaPrint2D-React.  These are 

compared to the compounds’ reported metabolic dispositions below. 

The metabolic studies used in this evaluation were selected on the basis of two criteria.  

Firstly, that the parent compounds in the studies were not included in the data used to train 

the MetaPrint2D-React model, and secondly that the paper reporting the study included a 

clear summary of the proposed metabolites of the parent compound. 
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6.1  [14C]Brasofensine (284) 

6.1.1 Reported metabolites 

 

 



186 

6.1.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React correctly identified the two possible demethylation reactions as the 

most likely transformations for the query molecule.  The stereoisomerism was not predicted 

since this type of transformation is not included in MetaPrint2D-React’s models since the 

descriptors currently used by MetaPrint2D-React do not include any information on 

stereochemistry.  In addition to the reported transformations, MetaPrint2D-React predicted 

(with a low normalised occurrence ratio) two possible sites of hydroxylation.  Overall, all 

four sites of metabolism (for transformations supported by MetaPrint2D-React) were 

identified. 
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6.2 14C-Brivaracetam (285) 

6.2.1 Reported metabolites 
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6.2.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React’s model does not contain very much data on several of the atom 

environments occupied by atoms in this molecule, but correctly predicted the amide 

hydrolysis, hydroxylation and oxidation reactions.  Hydrolysis of the cyclic amide and 

alkylation were also predicted, though not reported.  Given that 5% of the metabolites 

identified in the study were not characterised, it is possible that these transformations could 

be occurring.  All four sites of metabolism were identified. 
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6.3 Bicifadine (286) 

6.3.1 Reported metabolites 
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6.3.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React correctly predicted hydroxylation of the 5-membered ring, and one of 

the sites of oxidation.  Hydroxylation of the methyl group was also correctly predicted.  

Sulfation of the nitrogen atom was not predicted, though hydroxylation, which is likely to be 

the first step of this process, was predicted.  Three of the four reported sites of metabolism 

were identified. 
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6.4 N-(2-Hydroxyethyl)-3,5-dinitrobenzamide 2-mustard 

prodrug (287) 

6.4.1 Reported metabolites 
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6.4.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React correctly predicted reduction of the nitro groups, and the 

glucuronidation reaction was also identified, but with a low likelihood ratio.  The reported 

acetylation was not predicted, and neither was the N-dealkylation.  In the latter case this 

was due to the nitrogen atom occupying a novel atom environment.  In all, only three of the 

reported sites of metabolism were identified. 
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6.5 Dabigatran (288) 

6.5.1 Reported metabolites 
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6.5.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React correctly predicted the amide hydrolysis and glucuronidation, and gave 

a likely location for the reported hydroxylation of the pyridine ring.  The model contained 

little information on a number of atom environments found in the molecule, and possibly as 

a result of this failed to predict the amine hydrolysis or oxidation.  The model also failed to 

predict the N-dealkylation, and suggested an additional hydroxylation that has not been 

reported to be observed.  Overall, half of the reported sites of metabolism were identified. 
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6.6 Ligustilide (289) 

6.6.1 Reported metabolites 
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6.6.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React performed poorly on this molecule, only one of the predicted 

hydroxylation reactions was correctly located, and all the other reported transformations 

missed.  This is not surprising given that almost half of the atoms in the structure are 

occupying novel atom environments, so lie outside of the model’s domain of applicability. 
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6.7 Lithocholic acid (290) 

6.7.1 Reported metabolites 
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6.7.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React correctly predicted the oxidation transformation but failed to predict 

the hydroxylation reaction, and the stereoisomerism is beyond the scope of the model.  The 

model also predicted a number of additional transformations which have not been 

reported. 
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6.8 Pactimibe (291) 

6.8.1 Reported metabolites 

 

  



200 

6.8.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React correctly predicted the glucuronidation reaction, and suggested that 

other types of conjugation could occur.  The hydroxylation was also correctly predicted, 

though a number of additional potential sites of hydroxylation that have not been reported 

were suggested.  Neither the reduction or dealkylation reactions were predicted; in both 

cases there are atoms occupying novel environments in the vicinity of the metabolic sites. 
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6.9 Seliciclib (292) 

6.9.1 Reported metabolites 
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6.9.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React predicted half of the reported metabolic transformations of this 

compound.  The hydroxylation, dealkylation and one of the sites of oxidation were 

identified; however the alkylation, hydrolysis and second site of oxidation were not.  Several 

transformations that have not been reported were also suggested. 
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6.10 Aryl-propionamide derived selective androgen receptor 

modulator (293) 

6.10.1 Reported metabolites 
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6.10.2 MetaPrint2D-React predicted transformations 

 

 

Quite a large number of metabolites have been reported for this compound.  MetaPrint2D-

React suggested locations for both of the reported aromatic hydroxylation reactions, and 

the glucuronidation, and predicted reduction of the nitro group.  The model failed to predict 

the dephenylation reaction or the sulfonation, but did predict a number of transformations 

that have not been reported: dehalogenations, amide hydrolysis and an additional site of 

hydroxylation.  In the case of both the dephenylation and sulfonation transformations it is 

likely that the first step in these processes would be a hydroxylation reaction and these 

were predicted at the appropriate sites. 
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6.11 Colchicine (294) 

6.11.1 Reported metabolites 
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6.11.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React successfully predicted demethylation of three of the four methoxy 

groups, but failed to predict formation of the glutathione conjugate, though this was 

reported to be the result of a multi-step process.  No predictions were possible for a large 

region of this compound due to the number of atoms occupying novel environments. 
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6.12 3-Amino-5,6,7,8-tetrahydro-2-{4-[4-(quinolin-2-

yl)piperazin-1-yl]butyl}quinazolin-4(3H)-one (295) 

6.12.1 Reported metabolites 
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6.12.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React performed quite poorly on this compound.  Of the three reported sites 

of hydroxylation of the quinoline ring, only two were identified and they were predicted to 

be generated in tandem, through epoxide formation and hydrolysis, while they are reported 

to occur independently of each other.  The site of hydroxylation in the ring system at the 

opposite end of the compound was incorrectly predicted, and the deamination reaction was 

not predicted at all – due to the atoms occupying novel environments.  The final reported 

hydroxylation reaction was not identified either, though oxidative deamination was 

predicted to occur at that site, the first step of which would likely involve the addition of a 

hydroxyl group. 
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6.13 Lasofoxifene (296) 

6.13.1 Reported metabolites 
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6.13.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React correctly predicted the reported glucuronidation and sulfation 

transformations, and suggests locations for the reported hydroxylation reactions.  The 

model failed to predict the reported oxidation reaction, and predicted an N-

dealkylation/oxidative deamination that has not been observed. 
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6.14 Chenodeoxycholic acid (297) 

6.14.1 Reported metabolites 
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6.14.2 MetaPrint2D-React predicted transformations 

 

 

MetaPrint2D-React correctly predicted both of the hydroxyl oxidation reactions, and also 

suggests that glucuronidation and sulfation reactions could occur at these positions.  The 

hydroxylation reactions were not identified; MetaPrint2D-React predicted hydroxylation at 

all of the vacant positions in the steroid ring system with a very low likelihood ratio, and 

made very little differentiation between the positions.  MetaPrint2D-React also predicted 

that glucuronidation and other types of conjugation are likely to occur in the chain region of 

the molecule.  The study focused on the contribution of cytochromes P450, so, like the 

glucuronidation and sulfation reactions mentioned earlier, these metabolites would not 

have been identified. 
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6.15 Torcetrapib (298) 

6.15.1 Reported metabolites 
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6.15.2 MetaPrint2D-React predicted transformations 

  

 

This was another compound containing a considerable number of atoms occupying 

environments novel to MetaPrint2D-React’s model, and this has impacted heavily on the 

quality of the metabolite predictions, with none of the reported transformations correctly 

identified. 
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6.16 Conclusions 

Overall, the quality of MetaPrint2D-React’s predictions on these compounds was a little 

disappointing.  In some cases both sites of metabolism and the types of transformations 

occurring at those sites were well predicted, but for many of the compounds a large number 

of reported transformations were missed.  In large part this was due to the relatively high 

proportion of atoms occupying novel atom environments.  Since MetaPrint2D-React is 

based on a data mining method, if there is no relevant or suitable data available then 

reliable predictions cannot be expected. 

In the evaluations of MetaPrint2D and MetaPrint2D-React reported earlier, only around 

3.5% of the evaluation compounds’ atoms occupied novel atom environments, while for this 

test set the proportion was over 15%, indicating that these compounds fit less well into the 

model’s domain of applicability.  This is reflected in the proportion of transformations that 

were correctly predicted; 78% of the transformations found in the sample of the Symyx® 

Metabolite database used to evaluate MetaPrint2D-React where correctly identified, while 

in the case of this data only 53% of the reported transformations were predicted, although 

in a some instances a reaction that is likely to form the first step of the reported 

transformation was predicted.  In both cases it was checked that none of the test 

compounds had been used in the training of the model, in order to ensure a fair evaluation. 
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7. Conclusions and further work 

This thesis has reported the development and evaluation of MetaPrint2D and MetaPrint2D-

React.  MetaPrint2D is the result of a re-development of the Substrate Product Occurrence 

Ratio Calculator (SPORCalc) statistical knowledge-based method for site of metabolism 

prediction and MetaPrint2D-React is an extension of this approach enabling the prediction 

of the types of reaction likely to occur at each site and the metabolites formed. 

MetaPrint2D and MetaPrint2D-React have been released as freely available open source 

software.  MetaPrint2D is accessible through a number of different user interfaces – a web 

site, a command line application and through the Bioclipse rich client application.  The 

variety of interfaces to MetaPrint2D has been made possible through the abstraction of 

MetaPrint2D’s ‘calculation engine’ into a library, separate from the user interface.  This 

library provides an application programming interface (API) that other applications can use 

in order to integrate MetaPrint2D.  MetaPrint2D-React is also available as a library, but 

there is currently only a single user interface available – a web site. 

Extensive evaluations of MetaPrint2D and MetaPrint2D-React have been performed, in the 

course of which a new metric for assessing the performance of site of metabolism 

predictions has been proposed.  This receiver operating characteristic (ROC) curve based 

procedure overcomes the various biases inherent to the most commonly used metrics for 

site of metabolism predictions – the percentage of molecules for which a true site of 

metabolism is found within the top one or top three predicted sites. 

MetaPrint2D’s predictions have been shown to be comparable in accuracy to those of other 

recent site of metabolism prediction tools, but with the advantage of being very fast to 

compute.  MetaPrint2D can generate site of metabolism predictions for drug-like molecules 

in just tens of milliseconds, making it possible for the first time for a chemist to explore the 

effects of structural modifications on a compound’s metabolism in a highly responsive 

interactive manner. 

Having its basis in a data mining method, MetaPrint2D can only generate reliable prediction 

on compounds for which relevant data was included in the model’s construction.  This has 



217 

been illustrated both during the evaluation of MetaPrint2D, and during the prediction of 

recently reported metabolites described in the previous chapter.  The accuracy of 

MetaPrint2D depends on how well a query compound fits the model, and it has been shown 

that this can be estimated from the proportion of atoms in a molecule occupying novel 

atom environments – environments that occur only rarely in, or are completely absent from, 

the training data used to develop the model.  In cases where a compound does not occupy a 

region of chemical space characterised by MetaPrint2D an alternative method of prediction 

would need to be used. 

A major factor affecting the performance of MetaPrint2D and MetaPrint2D-React it the 

quality of the data from the Symyx® Metabolite database used to train the models.  As was 

discussed in Chapter 5, there are two problems with this data: the inconsistency with which 

transformations are reported, and that multiple products of a reaction are recorded in 

separate transformation records. 

The Symyx® Metabolite database collates observed metabolic transformations as reported 

in the literature.  Little normalization of the data appears to take place in the preparation of 

the database, so the manner in which a transformation is reported can vary depending on 

the source publication.  Some metabolic schemes report only those metabolites that were 

characterised experimentally, but others report ‘putative metabolites’ – intermediates 

postulated to have been formed during the course of reactions between positively 

characterised compounds.  The experimental methods used can determine whether 

intermediate metabolites are observed.  This means that in some cases multiple reactions, 

either connected or occurring in different regions of the molecule, are reported as a single 

step process, while in other cases the same overall transformation is reported as a series of 

separate reactions. 

It may be possible to improve the quality of MetaPrint2D’s models through the application 

of normalization procedures, pre-processing the training data.  Ideally such a process should 

be able to identify common inconsistencies and generate a standardized version of the 

transformations, possibly generating missing intermediates and separating reactions 

occurring in independent regions of a compound. 
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A further limitation of both MetaPrint2D and MetaPrint2D-React is that neither makes any 

estimate of the likelihood of a compound undergoing metabolic transformation, predicting 

only the relative likelihood of transformations centred on each site in the compound if the 

compound is metabolised.  This makes it difficult to use MetaPrint2D-React to construct 

trees of potential metabolites.  There are a number of ways in which this could be resolved, 

such as through the use of simple rules, such as ‘no further reactions occur after a phase II 

transformation’, or integration with a logP calculator together with a rule to terminate the 

tree once a certain hydrophilicity has been reached.  Alternatively it may be possible to 

construct a QSAR model to predict whether a compound will undergo further metabolism 

by comparing the parent and intermediate compounds in metabolic schemes (from the 

Symyx® Metabolite database) to those at the end of metabolic scheme. 

An interesting extension of MetaPrint2D-React would be the application of the statistical 

data mining methods used in this work to reverse metabolism prediction.  In 

biotransformation research it is often necessary to determine the parent compound of a 

metabolite that has been identified.  There are currently no tools designed to make these 

types of prediction.  The only in silico options currently available are to predict the 

metabolites of all possible parent compounds and look to see whether the metabolite 

appears among the predictions, or to search for similar metabolites in collections of known 

transformations, such as the Symyx® Metabolite database.  It should be possible to adapt 

the reaction analysis and data mining tools in MetaPrint2D-React to consider reverse 

transformations – from metabolite to substrate, and in this way make predictions from 

metabolite structures such as whether a hydroxyl group is the result of a hydroxylation, 

ester hydrolysis, epoxide opening or hydration reaction. 

All of the work reported in this thesis was performed using data from the Symyx® 

Metabolite database – both for the production of models, and their evaluation.  There are, 

however, a number of other sources of data that could be investigated.  Many organisations 

such as pharmaceutical companies have large collections of proprietary data – the results of 

unpublished experiments carried out within the organisation.  MetaPrint2D models could be 

constructed using this data alone, or by combining it with data from the Metabolite 

database.  Incorporating an organisation’s bespoke data into the model building process 
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should lead to the generation of models that are more relevant to the regions of chemical 

space on which the organisation is focussing its attention. 

These tools could also be used to model other sources of transformations, in a similar 

manner to the work on predicting microbial catabolism using the University of Minnesota 

Biocatalysis/Biodegradation Database (UM-BBD) (246,247), discussed in chapter 2. 

It may also be possible to adapt the reaction analysis tools of MetaPrint2D-React to other 

uses.  For example, it could be possible to produce a tool for predicting potential side-

reactions during organic syntheses through a similar type of reaction analysis and modelling 

to that described here, performed on reaction schemes reported in synthetic chemistry 

journals and theses. 

As already discussed, during the course of this work it has been shown that the reliability of 

predictions is dependent on the amount of data on which the prediction is based.  Currently 

users can access this information in the form of the raw values behind the calculated 

occurrence ratio, and SPORCalc’s ‘traffic-light’ visualization has been extended to highlight 

regions of the molecule occupying novel environments – having fingerprints with little or no 

related data on which to base a prediction. 

More information could be presented to the user.  Care must be taken not to make the 

display of results too complicated, but it may be possible to provide some indication of the 

quantity of data behind each atom’s occurrence ratio, and hence the confidence in 

predictions at that site, through varying the shade or the size of the coloured highlights of 

the atoms.  Alternatively, finer discrimination between predicted sites of metabolism could 

be indicated through use of varying shades of highlighting. 

 

In conclusion, two new tools for making predictions of xenobiotic metabolism have been 

developed and made freely available.  Xenobiotic metabolism is of great importance to the 

safety and efficacy both of pharmaceutical compounds and within the wider chemical 

industry.  It is hoped that MetaPrint2D and MetaPrint2D-React will help to make it easier to 

identify and address potential metabolic liabilities. 
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