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EXECUTIVE SUMMARY 
 

Chemicals present in food have various origins – they can be naturally occurring, 
intentionally added (additives, flavourings, preservatives, supplements), or inadvertently 
present (environmental pollutants, residues of pesticides and veterinary drugs, components of 
food contact materials, chemicals formed in food manufacturing and processing, chemicals 
produced by biological contaminants). Although these chemicals are generally present at very 
low levels, their potential for adversely affecting human health is a worldwide concern. 
Therefore, to protect the consumer against exposure to potentially harmful chemicals, national 
and international food safety standards are established on the basis of sound scientific risk 
assessments that define exposure levels that are considered to be “safe”. 

The risk assessment of chemicals present in food needs to account for the fact that in addition 
to the active/parent substance, which is generally well-characterised in terms of its 
bioavailability and toxicological properties, the consumer is also exposed to a wide range of 
substances resulting from metabolic and degradation processes. In the majority of cases, very 
limited information on the toxicological properties of metabolites and degradates is available. 
Since toxicological testing on animals is neither practicable nor desirable, alternative (non-
animal) assessment methods are needed to support evaluations of the toxicological profile of 
chemicals in food, including metabolites and degradates. Computational methods that make 
predictions of bioavailability and toxicity on the basis of chemical structure are of particular 
interest, for reasons of cost-effectiveness, efficiency and animal welfare. Computational 
toxicology is a rapidly advancing discipline. However, the question of how to use 
computational methods in a reliable and practical manner for risk assessment purposes 
represents a considerable challenge, which is receiving increasing attention by national and 
international bodies, such as European Commission and the European Food Safety Authority 
(EFSA). 

This report is based on the results obtained in the PESTISAR project, which the European 
Commission’s Joint Research Centre (JRC) performed during 2009-2010 under contract to 
EFSA. The overall aim of the PESTISAR project was to evaluate the potential applicability of 
computational methods in the evaluation of the toxicological relevance of metabolites and 
degradates of pesticide active substances. Among the various types of computational 
estimation methods, emphasis was placed on Quantitative Structure-Activity Relationships 
(QSARs), Structure-Activity Relationships (SARs) and expert systems.  

To address the overall aim of the PESTISAR project, the JRC performed a range of activities:   

a) a survey was carried out to find out how QSAR analysis is used by national regulatory 
bodies and international advisory organisations in the field of food safety; 

b) an extensive review was carried out of QSARs potentially useful in dietary risk 
assessment, focussing on toxicological endpoints (acute and repeat-dose toxicity, 
including organ and system-specific toxicities;  genotoxicity and carcinogenicity; 
developmental and reproductive toxicity; immunotoxicity), and touching on 
endocrine-related effects (in particular nuclear hormone receptor-mediated effects); 

c) an extensive review was carried out of computational models (with emphasis on 
QSARs and rule-based approaches) for biokinetic (ADME) properties, including oral 
bioavailability, human intestinal absorption, blood-brain barrier penetration, plasma 
protein binding, metabolism, and clearance; 
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d) case studies (research investigations) into the potential use of QSARs for genotoxicity 
and carcinogenicity, with a view to developing a conceptual framework for QSAR 
analysis that can be integrated with the application of the TTC concept;  

e) a conceptual framework was developed for assessing the usefulness of QSAR models 
in terms of the practical applicability of the models and the adequacy of the 
predictions; 

f) research and development needs were identified, leading to recommendations for 
further activities aimed at promoting the uptake and regulatory acceptance of 
computational methods in the food safety area. 

 

This report is an update and summary of the main findings and conclusions of the PESTISAR 
project. Altough the PESTISAR project had a focus on pesticide risk assessment, the 
information presented here is broadly applicable to the risk assessment of food chemicals in 
general, rather than any product class in particular. As such, this report is intended to be a 
background document for the further development and application of computational (QSAR) 
methods in the food safety area. 

 

Key words:  QSAR, SAR, structural alert, expert system, in silico, toxicity, pesticide active 
substance, metabolite, dietary risk assessment, alternative method. 
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1. INTRODUCTION 
 

The general objective of food safety policy is to protect consumer health. In the European 
Union (EU), Regulation (EC)178/2002 (EC, 2002) lays down the general principles and 
requirements of food law and procedures in matters of food safety, aiming at harmonising 
existing national requirements in order to ensure the free movement of food and feed 
throughout the EU. The regulation ensures a high level of protection of human life and health, 
taking into account the need to protect animal health and welfare, plant health and the 
environment. The risk assessment of food and feed in the EU is performed independently of 
risk management. The keystone of the risk assessment system for food and feed is the 
European Food Safety Authority (EFSA), which produces scientific opinions and advice to 
provide a sound foundation for EU policy and legislation. The activities of EFSA cover food 
and feed safety, nutrition, animal health and welfare, plant protection and plant health. As a 
service of the European Commission, the Joint Research Centre collaborates with EFSA in 
order to provide scientific support to EU policy in the food safety area. 

1.1 Background to pesticide risk assessment and the PESTISAR project 

One of the most important ways of protecting plants and plant products and of increasing 
agricultural yields is to use of plant protection products (PPPs). A possible consequence of 
their use may be the presence of pesticide residues in the treated products. It is therefore 
necessary to ensure that such residues should not be found in food or feed at levels presenting 
an unacceptable risk to humans. Maximum residue levels (MRLs) are therefore set by the 
European Commission at the lowest achievable level consistent with good agricultural 
practices to protect consumers from exposure to unacceptable levels of pesticide residues in 
food and feed. Regulation (EC) No 396/2005 (EC, 2005) achieves the harmonisation of 
pesticide MRLs, while ensuring consumer protection throughout the EU. MRLs undergo a 
common EU assessment to make sure that all classes of consumers, including the most 
vulnerable, such as children, are protected. The decision-making is science-based and a 
consumer intake assessment is carried out by the European Food Safety Authority (EFSA) 
before concluding on the safety of an MRL.  

A dietary risk assessment is therefore a prerequisite for MRL setting. A major difficulty stems 
from the fact the only the toxicological properties of the active substance are normally 
directly investigated through the range of toxicological studies required according to 
Directive 91/414/EEC (EC 1991), which sets out uniform principles for the evaluation and 
authorisation of plant protection products and the active substances they contain. The new 
guidance document on the definition of residue (OECD, 2009), however, requires the 
consideration of human relevance for risk assessment of all metabolites the consumer is 
exposed to both in plant and animal commodities, raw or processed. 

Metabolites may be produced from plant metabolism, from microbial activity in soil, or from 
livestock metabolism after consumption of feeding stuffs containing residues. Degradates 
arise from physical and chemical processes (e.g. photolysis) or from processing before the 
consumption (e.g. cooking) of plant and animal commodities. The consumer is therefore 
exposed not only to the active substance in the applied pesticide formulation, but also to a 
wide range of chemical compounds resulting from metabolic and degradation processes. The 
number and amount of distinct metabolites, defining the residue pattern, may widely differ 
from pesticide to pesticide depending on many parameters. 
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One of the outcomes of the evaluation of an application for use of an active substance on a 
crop is the establishment of two residue definitions, one for monitoring and one for risk 
assessment. The underlying rationales for these two definitions are different (OECD, 2009). 
While the residue definition for monitoring has regulatory purposes for the enforcement of the 
Maximum Residue Levels (MRLs) and must meet analytical practicalities, the residue 
definition for risk assessment may be wider, as its purpose is to assess consumer safety and 
should therefore include metabolites and degradates of toxicological relevance. 

The residue definition for risk assessment should be qualitatively and quantitatively 
representative of the actual toxicological burden. This means that the establishment of the 
residue definition for risk assessment requires not only a decision on which metabolites and 
degradates, due to their levels, may significantly contribute to toxicological effects, but also 
an assessment of the toxicological endpoints of interest and related reference values (e.g. 
Acute Reference Dose [ARfD] and Acceptable Daily Intake [ADI]). In practice, however, 
very limited information on the toxicological properties of metabolites and degradates is 
available in the majority of cases. From the mixture (active substance, its metabolites and 
degradates) to which the consumer is exposed, only the toxicological properties of the active 
substance and their mammalian metabolites (to the extent to which they are formed in 
laboratory animals) are directly investigated. Furthermore, since requests for further 
toxicological studies are restricted as far as possible to minimise the use of animals in 
toxicological testing, alternative (non-animal) assessment methods are therefore needed to 
support the evaluation of the toxicological profile of pesticide metabolites and degradates. 
The information derived from such methods should reinforce the expert judgement forming 
the basis of the appropriate residue definition for risk assessment.  

Quantitative Structure-Activity Relationship (QSAR) analysis represents a promising 
alternative approach, for reasons of cost-effectiveness and efficiency. For this reason, and 
within the framework of a collaboration agreement between the European Food Safety 
Authority (EFSA) and the European Commission’s Joint Research Centre (JRC) a project 
(referred to here as PESTISAR) was initiated to evaluate the applicability of QSAR analysis 
in the toxicity prediction of metabolites and degradates of pesticides for dietary risk 
assessment (JRC, 2010). 

PESTISAR was one of three projects sponsored by EFSA during 2009-2010. One of the other 
projects, carried out by the UK Chemicals Regulations Directorate (CRD) addressed the 
possible use of Threshold of Toxicological Concern (TTC) considerations in assessing 
metabolite/degradate toxicity (CRD, 2009), while other, carried out by the Austrian Agency 
for Health and Food Safety (AGES) examined the impact of metabolism and degradation on 
pesticide toxicity (AGES, 2010). Upon the completion of these projects, EFSA intends to 
pool and use the results to develop and adopt an opinion on the scientific principles for 
evaluating the toxicological burden related to metabolites, degradation and reaction products 
of active substances in food commodities. Upon adoption of this opinion, EFSA intends to 
develop a guidance document on the establishment of the residue definition for risk 
assessment in food commodities. It is foreseen that this guidance will be a practical tool to 
help risk assessors and regulatory authorities to adopt residue definitions based on objective 
criteria and weight of evidence. It could also be used for identifying cases where further 
information is needed.  

1.2 Overview of work performed in the PESTISAR project 

The overall aim of the PESTISAR project was to evaluate the potential applicability of 
computational methods in the evaluation of the toxicological relevance of metabolites and 
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degradates of pesticide active substances. Among the various types of computational 
estimation methods, emphasis was placed on Quantitative Structure-Activity Relationships 
(QSARs), Structure-Activity Relationships (SARs) and expert systems. The results of the 
PESTISAR project, completed in April 2010 (JRC, 2010), were updated throughout 2010 and 
published as a series of JRC Technical Reports.  

The PESTISAR project involved the following activities: 

• the development of a conceptual framework for assessing the usefulness of QSAR 
models and expert systems, in terms of their practical applicability and the adequacy 
of their predictions. This framework is summarised in Section 1.4 and described in 
detail in Worth et al. (2011); 

• a survey of how QSAR analysis is used by national regulatory bodies and international 
advisory organisations in the field of food safety. This survey is summarised in 
Chapter 2; 

• an extensive review of SARs, QSARs and expert systems for toxicological endpoints, 
potentially useful in dietary risk assessment. This review covered: acute and repeat-
dose toxicity, including organ and system-specific toxicities (summarised in Chapter 
4; described in detail in Lapenna et al., 2010);  genotoxicity and carcinogenicity 
(summarised in Chapter 5; described in detail in Serafimova et al., 2010); 
developmental/reproductive toxicity; including endocrine-related effects (summarised 
in Chapter 6; described in detail in Lo Piparo et al., 2010),  

• an extensive review of computational models for biokinetic properties, including oral 
bioavailability, human intestinal absorption, blood-brain barrier penetration, plasma 
protein binding, metabolism, and clearance. This review is summarised in Chapter 7 
and described in detail in Mostrag-Szlichtyng & Worth (2010). 

• case studies (research investigations) into the potential use of QSARs for genotoxicity 
and carcinogenicity, with a view to developing a conceptual framework for QSAR 
analysis that can be integrated with the application of the TTC concept. The results of 
this investigation are described in detail in Worth et al. (2010); 

• identification of research and development needs, leading to recommendations for 
further activities aimed at promoting the uptake and regulatory acceptance of 
computational methods in the food safety area. This is included in Chapter 8. 

This report is an update and summary of the main findings and conclusions from the 
international survey and from the literature reviews. 

1.3 Introduction to computational prediction methods 

Computational prediction methods, sometimes referred to as “non-testing methods”, are based 
on the premise that the properties (including biological activities) of the chemical depend on 
its intrinsic nature and can be directly predicted from its molecular structure and inferred from 
the properties of similar compounds whose activities are known. These methods comprise 
Quantitative Structure Activity Relationship (QSAR) models as well as the less formalised 
approach of chemical grouping and read-across. 
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1.3.1 Quantitative Structure Activity Relationships 

The term “QSAR analysis” is taken to include the development and use of Structure-Activity 
Relationships (SARs), Quantitative Structure Activity Relationships (QSARs), and computer-
based tools (including expert systems) based on the use of one or more of these types of 
models.  

Structure-Activity Relationships (SARs) and Quantitative Structure Activity Relationships 
(QSARs), collectively referred to as (Q)SARs, are theoretical models that relate the structure 
of chemicals to their biologic activities. (Q)SARs are used to predict the physicochemical, 
biological (e.g., toxicological) and fate properties of molecules from knowledge of chemical 
structure (Cronin, 2010). 

More specifically, a SAR is a qualitative relationship between a molecular (sub)structure and 
the presence or absence of a given biological activity, or the capacity to modulate a biological 
activity imparted by another substructure. The term substructure refers to an atom, or group of 
adjacently connected atoms, in a molecule. A substructure associated with the presence of a 
biological activity is also called a structural alert. A SAR can also be based on the ensemble 
of steric and electronic features considered necessary to ensure the intermolecular interaction 
with a specific biological target molecule, which results in the manifestation of a specific 
biological effect. In this case, the SAR is sometimes called a 3D SAR or pharmacophore.  

A QSAR is a quantitative relationship between a biological activity (e.g., toxicity), which 
may be categorical or quantitative, and one or more molecular descriptors that are used to 
predict the activity. A molecular descriptor is a structural or physicochemical property of a 
molecule, or part of a molecule, which specifies a particular characteristic of the molecule and 
is used as an independent variable in a QSAR. A comprehensive review of molecular 
descriptors has been published by Todeschini (Todeschini & Consonni, 2000, 2009).  

1.3.2 Chemical grouping and read-across 

In addition to the formalised approach of QSAR analysis, it is possible to estimate chemical 
properties and endpoints by using a less formalised approach based on the grouping and 
comparison of chemicals. The grouping approach can be used, for example, to support the 
results of QSAR analysis or to generate estimated data (and fill data gaps) in the absence of 
suitable QSARs. The most comprehensive guidance currently available for applying the 
grouping approach has been published by the OECD (OECD, 2007) and by ECHA (ECHA, 
2008). The ECHA and OECD guidance documents are scientifically equivalent, except that 
the ECHA guidance makes additional references to REACH criteria and procedures. The 
concepts of grouping and read-across are further explained and illustrated by Enoch (2010). 

The use of endpoint information for one chemical, called a “source chemical”, to make a 
prediction of the same endpoint for another chemical, called a “target chemical”, is termed 
“read-across”. The source and target chemicals are considered to be similar in some way, 
usually on the basis of structural similarity. It is assumed that, in general, similar compounds 
will exhibit similar biological activity. In principle, read-across can be applied to characterise 
physicochemical properties, fate, human health effects and ecotoxicity, and it may be 
performed in a qualitative or quantitative manner, depending on the whether the data being 
used is categorical or numerical in nature. To estimate the properties of a given substance, 
read-across can be performed in a one-to-one manner (one analogue used to make the 
estimate) or in a many-to-one manner (two or more analogues used).  
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The reliability of read-across depends on the selection of appropriate analogues associated 
with the availability of reliable experimental data. In some cases, it is only possible to identify 
a limited number of suitable analogues, whereas in other cases, it is possible to build up a 
larger and more robust chemical group, called a chemical category. A chemical category is a 
group of chemicals whose physicochemical and human health and/or environmental 
toxicological and/or environmental fate properties are likely to be similar or follow a regular 
pattern as a result of structural similarity (or other similarity characteristic). The presence of 
common behaviour or coherent trends in the chemical category is generally associated with a 
common underlying mechanism of action. In general, the application of read-across between 
analogues in a chemical category is considered to be more reliable than the application of 
read-across in a smaller group of analogues (in which trends are not apparent).  

1.3.3 Expert systems 

An expert system has been defined as any formalised system that is often, but not necessarily, 
computer based, and that can be used to make predictions on the basis of prior information 
(Dearden et al., 1997). Expert systems (and their implementation in software tools) are based 
on three main modelling approaches referred to rule-based, statistically-based, or hybrid 
methods. 

Rule-based systems contain “if-then-else” rules that combine toxicological knowledge, expert 
judgment and fuzzy logic. Commonly used software tools based on this approach include 
OncoLogic (Woo & Lai., 2005), which is freely downloadable from the US EPA website: 
(http://www.epa.gov/oppt/sf/pubs/oncologic.htm), Derek (Sanderson & Earnshaw, 1991; 
Ridings et al., 1996), developed by Lhasa Ltd (https://www.lhasalimited.org/), and 
HazardExpert (Smithing & Darvas 1992) developed by CompuDrug (http://compudrug.com/). 
Derek and HazardExpert can be used in conjunction with their sister programs Meteor and 
Metabolexpert to predict the toxicity and carcinogenicity potential of metabolites as well as 
parent compounds. In addition to these commercial tools, models included in the freely 
available Toxtree software and the OECD QSAR Toolbox are rule-based. Toxtree can be 
downloaded from the JRC (http://ecb.jrc.ec.europa.eu/qsar/qsar-
tools/index.php?c=TOXTREE) and from Sourceforge 
(https://sourceforge.net/projects/toxtree/). The QSAR Toolbox and guidance on its use are 
freely downloadable (http://www.qsartoolbox.org/). 

Statistically-based systems use a variety of statistical, rule-induction, artificial intelligence, 
and pattern recognition techniques to build models from non-congeneric databases. 
Statistically based systems are included in the commercial tools MultiCASE and TOPKAT 
http://accelrys.com/), and the publicly available Lazar (http://lazar.in-silico.de/) and CAESAR 
(http://www.caesar-project.eu) models. In addition, many models published in the literature 
and not implemented in software are statistically based. 

Hybrid models are based on a combination of knowledge-based rules and statistically-derived 
models. These are based on the general idea that, within the structural space of a single 
structural alert (considered to represent a single interaction mechanism), statistically derived 
models can quantitatively predict the variation in the reactivity of the alert conditioned by the 
rest of the molecular structure. Examples of the hydrid approach include models implemented 
in the OASIS TIMES (Mekenyan et al., 2007) as well as some literature-based models not 
implemented in software.  

The advantages and disadvantages of the three main approaches are summarised in Table 1.1. 

 

http://www.epa.gov/oppt/sf/pubs/oncologic.htm
https://www.lhasalimited.org/
http://compudrug.com/
http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=TOXTREE
http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=TOXTREE
https://sourceforge.net/projects/toxtree/
http://www.qsartoolbox.org/
http://accelrys.com/
http://lazar.in-silico.de/
http://www.caesar-project.eu/
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Table 1.1 Comparison of three main approaches in expert systems  

 
Approach Advantages Disadvantages 
   

Rule-based • mechanistically connected to the 
predicted endpoint 

• provide reasoning for the 
predictions 

• in many cases support the 
prediction with literature 
references or expert knowledge  

• often restricted and/or ill-defined 
applicability domain 

• usually cannot explain differences of the 
activity within a chemical class 

• usually have lower accuracy of the 
prediction than statistical models 

Statistical • usually have high accuracy of the 
predictions 

• can be use for preliminary research 
when mechanism of action is 
unknown  

• usually difficult to interpret the model 
predictions  

• often do not provide mechanistically 
reasoning of the predictions 

• often non-transparent to the end-user  

Hybrid • combines advantages of rule-based 
and statistical approaches, 
including mechanistic 
interpretability (for SA part),  and 
overall accuracy 

• likely to have restricted applicability 
domain 

 

 

 

1.4 The adequacy of data generated by QSARs 

The most comprehensive guidance currently available for applying QSAR analysis is 
provided in the REACH guidance on Information Requirements and Chemical Safety 
Assessment (ECHA, 2008). This guidance provides a flexible framework that can be 
extended, possibly with some specific adaptations, for use in the implementation of food 
safety legislation. 

According to the framework developed for REACH, it is possible to use data from (Q)SAR 
models instead of experimental data if each of four main conditions is fulfilled:  

• the model used is shown to be scientifically valid; 
• the model used is applicable to the chemical of interest; 
• the prediction (result) is relevant for the regulatory purpose; and  
• appropriate documentation on the method and result is given.  

 
Thus, multiple, overlapping conditions must be fulfilled to use a (Q)SAR prediction instead of 
data generated by a standard experimental test, as illustrated in Figure 1.1. The extent to 
which these conditions can be relaxed for indirect and supporting use of (Q)SAR data, 
remains to be established on the basis of experience.  

The need to provide “appropriate documentation” is fulfilled by the provision of QSAR 
reporting formats for models and their predictions. The former type of documentation is the 
QSAR Model Reporting Format (QMRF) and the latter is the QSAR Prediction Reporting 
Format (QPRF). Information on (Q)SAR model validity, including peer-reviewed 
documentation, is available from various sources, including the JRC QSAR Model Database 
(http://qsardb.jrc.it).  

http://qsardb.jrc.it/
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The considerations necessary for demonstrating model validity, applicability and adequacy 
are described in detail elsewhere (Worth et al., 2011). The latter report also proposes and 
illustrates a framework for assessing the usefulness of QSAR predictions, with reference to 
selected pesticides as case studies.  

 

 
 

Figure 1.1 The overlapping considerations of validity, applicability and relevance needed to 
demonstrate (Q)SAR adequacy 

 



 

 

11

2. USE OF COMPUTATIONAL METHODS ANALYSIS IN THE FIELD OF FOOD 
SAFETY 

2.1 Introduction 

This chapter gives an overview of how computational methods are currently used in the field 
of food safety by national regulatory bodies, international advisory organisations and the food 
industry. The results of an international survey show that currently the majority of 
stakeholders in the field of food safety do not apply computational methods on a routine 
basis, mainly because of a lack of in-house expertise. Some organisations, however, are very 
experienced in their use and have developed specialised in-house approaches. Despite this 
variable situation, computational tools are widely perceived to be a useful tool to support 
regulatory assessments and decision making in the field of food safety. However, there is a 
widespread need to develop guidance documents and software tools that will promote and 
harmonise the use of computational methods, together with appropriate training. 

2.2 Method 

To gain an overview of how computational methods are used internationally in the assessment 
of chemicals in food, a survey was carried out by EFSA and the JRC. A short and easy-to-
complete questionnaire was prepared aiming at capturing major points such as which 
endpoints are predicted, which software and methodologies are used and how and when 
QSAR analysis is applied in the daily work of regulatory bodies and industry organisations.  

In order to obtain as much information as possible, the questionnaire defined QSAR analysis 
in the broadest sense as “the use of qualitative or quantitative structure-activity relationships, 
chemical grouping and read-across, expert systems, or any other structure-based assessment 
approach.” Thus, the questionnaire was aimed at soliciting information not only on the use of 
(Q)SARs but also on the application of grouping and read across approaches. In addition, to 
obtain an overview of how (Q)SAR is perceived in the field of food safety, the questionnaire 
also gave room for additional comments on the practical application of (Q)SAR, and on 
research needs and barriers.  

The questionnaire was circulated by EFSA to its European Focal Points in the Member States, 
and by the JRC to other organisations such as US EPA, US FDA, JECFA, Environment 
Canada, Health Canada and some experts in food consultancies and the food industry. 
Recipients of the questionnaire were encouraged to forward it to interested parties and to 
return the integration information, so it is not known how many recipients there were in total. 
The questionnaire was not circulated to Japan or other Asian countries. 

To supplement the responses obtained in the survey, additional information on the use of 
computational methods in industry and regulatory authorities was identified from published 
papers (Table 2.1). 

2.3 Main results 

A total of 38 replies were received from respondents in the following countries: the 
Netherlands, Belgium, Bulgaria, Czech Republic, Estonia, Finland, Germany, Hungary, 
Latvia, Lithuania, Malta, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, 
Switzerland, USA, UK, Ireland and France. From some countries, multiple answers from 
were received from different institutions.  A detailed description of the results is provided in 
the final report of the PESTISAR project (JRC, 2010). 
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The findings concerning software, methodology and endpoints most often used are 
summarised in Table 2.2, while the general results are listed as follows: 

• 60% of the organisations do not use (Q)SAR analysis or other structure-based analysis 
for the purpose of dietary risk assessment, but 37% do (the remaining 3% didn't 
answer to the question). 

• Of these 60% organisations that do not use (Q)SAR, 60% of them never tried to and 
40% considered using it but rejected it mainly for lack of expertise. 

• Only few organisations apply (Q)SAR to give insight into the mode of action and in 
these cases, the analysis seems to be based primarily on the use of specific structural 
alerts.  

• Broad interest for the field was indicated by the fact that all respondents, except two, 
requested to receive the outcome of the project. 

Concerning the use of (Q)SAR analysis, the answers received can be summarised as follows: 

• (Q)SAR is used when a fast decision is necessary regarding the safety of a chemical 
for which no toxicity data is available, or for compounds present at very low levels.  

• Read-across (SAR) is used to compare the toxicity of a compound with those of 
compounds with similar structures for which toxicological data exist. If the mode of 
action of an active substance is known, the mode of action of a related structure is 
supposed to be the same. 

• A positive (Q)SAR result can be accepted in the absence of study results. However, a 
negative result is more likely to be accepted if multiple (Q)SAR models indicate that 
there is no alert on the molecule for toxic potential. Consensus modelling is 
sometimes applied based on the assumption that the predictive performance is 
improved when predictions from multiple types of models are combined into an 
overall prediction for an endpoint. 

• A weight-of-evidence approach is applied to determine whether a certain metabolite 
should be included in the residue definition based on a toxicity evaluation. Known 
structural alerts for toxicity may play a role in this weight-of-evidence approach, and 
they may also lead to additional data requirements. 

Concerning research needs and barriers to the widespread acceptance of (Q)SAR analysis, the 
following important observations were highlighted: 

• For some endpoints (e. g. carcinogenicity and mutagenicity) too many different 
models have been developed and published that a user can become confused. A few 
relevant models for each endpoint should be identified and then guidance with a 
strategy on their use should be written.  

• For other endpoints (e. g. developmental toxicity) there is a lack of relevant valid 
(Q)SAR models which, in turn, is caused by the limited availability of high-quality 
toxicological data for the building of models.  

• One of the biggest research needs is to digitalise the data available and make them 
available in a high-quality public domain database. 

• The application and acceptability of (Q)SAR in risk assessment should be made 
transparent with respect to how governmental organisations recognise and accept its 
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use by industry. The establishment of specific application guidance would be valuable. 
The selected models should preferably be freely and publicly accessible. 

 

Other relevant points arising from the questionnaire review include: 

• The need for quantitative as well as qualitative predictions. In the context of food 
safety, the most likely application of computational toxicology models would be in the 
establishment of the level of safety concern associated with the inadvertent/accidental 
presence of a contaminant in a food product. This requires not only qualitative 
information on the potential hazard (e.g. carcinogenicity) but also quantitative 
information (e.g. carcinogenic potency), allowing the derivation of a margin of 
exposure (MoE) with the estimated intake.  

• Global chemical diversity. Compounds found in food and food ingredients present a 
wide structural diversity and complexities that may be greater than synthetic 
pharmaceuticals targeted for a particular purpose, and, therefore, require the 
development of global in silico models (rather than local, referring to particular 
classes of chemical structure). 

• High reliability, relevance and transparency. Ideally, in silico toxicology strategies for 
food safety assessment should be able to predict adverse health effects in the human 
population. Currently, their practical application in the food sector will depend upon 
their potential to accurately predict biological endpoints/hazards that are used in food 
chemical risk assessment. This includes the need to establish confidence limits. The 
acceptance of these models will be possible only if the analysis is fully transparent. 
Therefore, the promotion of validated, freely available tools based on open-source 
codes is necessary and warranted. Results should be clear, concise and reproducible. 

 

Some examples of how computational tools are used in regulatory bodies (US EPA, US FDA) 
and the food industry (Nestlé) are described in detail in the final report of the PESTISAR 
project (JRC, 2010). 

2.4 Summary and conclusions 

On the basis of the survey, it was found that the majority of key players in the food safety 
field either do not use (Q)SAR methodology at all or in a very limited way mainly because of 
a lack of expertise. When (Q)SARs are used, they are typically applied to support priority 
setting exercises or to fill information gaps on possible health concerns during the 
management of a food crisis in food industry (e.g. if a contaminant is found in food). At 
present, (Q)SAR is not used routinely to fill data gaps in the pre-marketing assessment of 
food additives, food contact substances, or pesticide and pesticide metabolite residues. 
However QSARs are currently being explored, developed and utilised by regulatory 
authorities for risk assessment purposes. Some organisations are however very experienced in 
the use of QSAR, notably government authorities such as the US FDA Center for Food Safety 
and Applied Nutrition (CFSAN) and the US EPA (OCSPP), as well as some companies (e.g. 
Nestlé). Other organisations lack the capacity, or use QSAR tools in a restricted manner to 
provide supplementary information (e.g. information on analogues). 

Despite this variable situation, (Q)SAR analysis is widely perceived as a potential useful tool 
to support regulatory assessments in the field of food safety, and this justifies further 
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exploration and development. In particular to promote the further use of the methods, there is 
a need to perform focused substance evaluation studies that better explore the potential of 
QSAR analysis for application in specific situations, and there is a need to develop guidance 
documents and tools that will promote the harmonised use of (Q)SAR analysis in the different 
sectors. In addition, there is a widespread demand for training on the applications of (Q)SAR 
analysis in human dietary risk assessment. 
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Table 2.1. Papers describing how QSARs have been developed and used by government 
authorities and industry 

 
Reference  Organisation Key points 
   
Yang et al. 
(2009) 

US Food and Drug 
Administration 

• The Office of Food Additive Safety (OFAS) has a SAR group 
supporting regulatory decisions on the safety of food additives. 

• Several 2D QSAR models have been developed and made available 
through commercial software via agency-approved Cooperative 
Research and Development Agreements (CRADA). These models 
have not yet been assessed by external validation. 

• A project has been initiated to capture Agency preclinical toxicity 
data records in a structurally-searchable database. A data entry tool 
has been designed so that the toxicologists can record the data 
directly during the review process. 

• Current research is investigating whether TTC values can be 
developed for chemical structural categories beyond the Cramer 
categories. The knowledgebase consists of databases, alerts and 
rules for modes of action. 

• There is no regulatory guidance specific to computational toxicology 
methods. Many questions remain, including which models should be 
used, under what circumstances and how conclusions might be made 
from predictions generated by multiple software tools.  

Rothenbacher et 
al. (2009) 

Chemisches und 
Veterinäruntersuchungsamt 

• Describes the use of Derek to evaluate plastic packaging materials in 
terms of carcinogenicity, genotoxicity, thyroid toxicity, and 
miscellaneous endpoints relevant to human health  

AFSCA (2009) Federal Agency for the Safety of 
the Food Chain (Belgium) 

• The SAR methodology is used to compare the toxicity of a 
compound with those of compounds with similar structures for 
which toxicological data exist. 

Jensen et al. 
(2008) 

Danish National Food Institute • Describes the use of (Q)SARs for classification and labelling using 
57014 chemicals from the European Inventory of Existing Chemical 
Substances (EINECS) and in-house and commercial models (mainly 
MultiCASE), in order to identify possible reprotoxicants.  

Mazzatorta et 
al. (2008) 

Nestlé Research Center • A multivariate chronic toxicity (LOAEL) model, using 2D 
descriptors, was built from a dataset of 445 different chemicals.  

• The model reveals that the chronic toxicity effects are driven by the 
bioavailability of the compound that constitutes a baseline effect 
plus excess toxicity described by a few chemical moieties.  

• The model predicts LOAEL with an error of 0.70. Since this error 
approaches the experimental error (0.64), it was concluded that the 
model may be used together with exposure to establish a level of 
safety concern of chemicals in food for which hard toxicological 
data are missing. 

Maunz  & 
Helma (2008) 

Nestlé Research Center • Describes local support vector regression models developed in-
house for the prediction of Fathead Minnow Acute Toxicity (573 
compounds), Maximum Recommended Therapeutic Dose (based on 
clinical trial data for 1215 pharmaceutical compounds).  
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Reference  Organisation Key points 
   
Matthews et al. 
(2008) 

US Food and Drug 
Administration 

• Describes the use of four QSAR programs and an expert knowledge 
base system to predict the occurrence and the mode of action of 
carcinogenesis in rodents (weight-of-evidence). 

• The four QSAR programs were complementary, each detecting 
different profiles of carcinogens. Accepting any positive prediction 
from two programs showed better overall performance than either of 
the single programs alone. 

Contrera et al. 
(2007) 

US Food and Drug 
Administration 

• Comparison of the rodent carcinogenicity predictive performance of 
MC4PC and MDL-QSAR software as well as a method for 
combining the predictions from both programs using 1540 training 
set compounds.  

• Merging MC4PC and MDL-QSAR predictions improved the overall 
predictive performance.  

• Consensus rules can be tuned to reflect the priorities of the user, so 
that greater emphasis may be placed on predictions with high 
sensitivity/low false negative rates or high specificity/low false 
positive rates.  

Matthews et al. 
(2007a,b) 

US Food and Drug 
Administration 

• Describes a battery of QSAR models, running in the MC4PC 
software, to predict reproductive and developmental (reprotox) 
hazards of untested chemicals. 

• The QSARs are based on 627–2023 chemicals. 
Valerio et al. 
(2007) 

US Food and Drug 
Administration 

• Evaluates several QSAR models for decision support in the 
assessment of carcinogenicity, mutagenicity and reproductive 
toxicity.  

• Concludes that the in silico QSAR analysis is capable of identifying 
the rodent carcinogenic potential of naturally occurring organic 
molecules found in the human diet with a high degree of sensitivity. 

Kruhlak et al. 
(2007) 

US Food and Drug 
Administration 

• Discusses some of the considerations when using computational 
toxicology methods for regulatory decision support of 
pharmaceutical impurities and degradents and gives examples of 
how the technology is being applied by the US FDA. 

Tilaoui et al. 
(2007) 

Nestlé Research Center • The prediction of chronic toxicity (LOAEL) is perormed in-house 
by using an integrated system partly based on TOPKAT 

• The system is used to support the prioritisation of issues in chemical 
food research, by establishing levels of safety concern in the absence 
of sufficient experimental toxicological data. 

Mazzatorta et 
al. (2007) 

Nestlé Research Center • Describes the developmentment of a hybrid system for the 
prediction of Ames test mutagenicity based on a combination of a 
fragment-based SAR models and artificial intelligence systems. It 
was developed using a training set of 4337 chemicals (2401 
mutagens and 1936 non-mutagens) and tested using 753 compounds 
(437 mutagens and 316 non-mutagens).  

• The overall error of this system on the external test set compounds is 
15%, which is quantitatively similar to the experimental error of 
Ames test data (average interlaboratory reproducibility determined 
by the National Toxicology Program). On this basis, it was 
concluded that the system can be applied to support early and rapid 
evaluation of the level of mutagenicity concern. 

Bailey et al. 
(2005) 

US Food and Drug 
Administration 

• Describes the food contact notification (FCN) program by which the 
FDA reviews food contact substances (FCS) for safe use, the SAR 
tools available to FDA, and their use in qualitative and quantitative 
risk assessments of FCS 
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Reference  Organisation Key points 
   
Tong et al. 
(2004) 

US Food and Drug 
Administration 

• Describes a stepwise “four-phase” scheme for identifying 
oestrogenic substances. Within each step (phase), different models 
were selected to work in a complementary fashion in order to 
minimise the rate of false negatives. The system works in a 
hierarchical manner to reduce the size of a dataset incrementally 
while increasing the accuracy of prediction.  

Woo et al. 
(2002) 

U.S. Environmental Protection 
Agency 

• Disinfection by-products (DBPs) are formed when disinfectants 
react with organic and inorganic matter in water. The observations 
that some DBPs are carcinogenic in animal studies have raised 
public concern over the possible adverse health effects of DBPs. To 
prioritize research efforts, mechanism-based structure-activity 
relationship analysis was conducted to rank the carcinogenic 
potential of DBPs.  

Matthews & 
Contrera (1998) 

US Food and Drug 
Administration 

• Describes a weight of evidence scoring method for predicting the 
carcinogenic potential of pharmaceuticals in rodents using MCASE 
QSAR-ES (Expert System) software 

Woo et al. 
(1995) 

U.S. Environmental Protection 
Agency 

• Describes how SAR analysis has been used by the US EPA in the 
assessment of potential carcinogenic hazard of new chemicals for 
which test data are not available.  

• Describes the major factors and rules used in Oncologic for 
assessing the carcinogenic potential of fibers, polymers, 
metals/metalloids and several major classes of organic chemicals. 
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Table 2.2 Commonly used software, methodology and main endpoints predicted  

 

 Most often in all the 
organisations by US EPA by US FDA by Nestlé 

Software used Derek, MultiCase, 
Leadscope, 
TOPKAT, EPI Suite, 
OECD Toolbox, 
Toxtree. 

EPI Suite, 
OncoLogic, Derek 

MultiCase, MDL 
QSAR, Derek, and 
Leadscope. 
 

TOPKAT, 
MULTICASE, 
Lazar, Toxtree, in-
house models 
published and model 
developed under 
contract 

Methodology 
used 

Read across and 
chemical grouping 

Read across and 
chemical grouping  

Structural alerts and 
predictions from 
QSAR models 

QSAR models 

Endpoint 
prediction 

Genotoxicity, 
carcinogenicity and 
chronic toxicity 
followed by ADME, 
acute toxicity and 
reproductive toxicity. 

Mostly 
carcinogenicity and 
genotoxicity;  acute 
and chronic non-
mammalian organism 
toxicity; 
physicochemical 
characteristics  

Mostly 
carcinogenicity and 
genotoxicity 

Chronic toxicity, 
carcinogenicity, and 
genotoxicity 
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3. SOFTWARE TOOLS FOR TOXICITY PREDICTION 

3.1 Introduction 

The easiest and most consistent way of applying (Q)SAR models is to use ready-made 
software that implements the models via a user interface. A wide range of software tools are 
available for predicting physicochemical properties, toxicological endpoints and other 
biological effects, as well as fate in the environment and biological organisms. Typically, a 
given software package predicts multiple properties and endpoints, and some allow the user to 
develop new models or include new knowledge. In addition to (Q)SAR models and rulebases 
that are incorporated in software tools, there is a growing scientific literature which reports 
thousands of (Q)SARs. 

In this chapter, we provide an overview of the software packages that are commonly used in 
the assessment of toxicity. More-detailed information is given in Chapters 4-6 for specific 
(groups of endpoints). The availability of software and literature models for the prediction of 
biokinetic properties (including bioavailability and metabolic fate) is described in Chapter 7. 

3.2 Software for predicting chemical toxicity 

The following sections briefly describe software that is either in the public domain or 
commercially available. Some of the freely available software tools have been developed 
under the terms of open-source licensing, which means that other experts can further develop 
and disseminate the software. Websites for freely and commercially available tools are given 
in Tables 3.1 and 3.2, respectively, and their ability to predict properties and endpoints 
relevant to dietary toxicity assessment is highlighted in Table 3.3. A recent review is provided 
in Fuart Gatnik & Worth (2010). Many other reviews have also been published (Dearden  et 
al., 1997; Greene et al., 1999; ECETOC, 2003).  

3.2.1 Freely available software  

A summary of freely available software is given in Table 3.1. The following paragraphs 
describe these tools in general terms. 

CAESAR models: A series of statistically-based models, developed within EU-funded 
CAESAR project (http://www.caesar-project.eu), have been implemented into open-source 
software and made available for online use via the web. Predictions are made for five 
endpoints: mutagenicity (Ames), carcinogenicity, developmental toxicity, skin sensitisation, 
and the bioconcentration factor. 

EPI Suite: EPI (Estimation Programs Interface) Suite is a freely available program to 
estimate the physicochemical properties and environmental fate. It has been developed by the 
US EPA in collaboration with Syracuse Research Corporation (SRC), and is used widely by 
governmental and industry organisations to support the assessment of new and existing 
industrial chemicals. EPI Suite is freely downloadable from the US EPA website: 
http://www.epa.gov/oppt/exposure/pubs/episuite.htm 

Lazar: Lazar is an open-source software programme that makes predictions of toxicological 
endpoints (currently, mutagenicity, human liver toxicity, rodent and hamster carcinogenicity, 
MRDD) by analysing structural fragments in a training set (Helma, 2006; Maunz & Helma, 
2008). It is based on the use of statistical algorithms for classification (k-nearest neighbours 
and kernel models) and regression (multi-linear regression and kernel models). In contrast to 

http://www.caesar-project.eu/
http://www.epa.gov/oppt/exposure/pubs/episuite.htm


 

 20

traditional k-NN techniques, Lazar treats chemical similarities not in absolute values, but as 
toxicity dependent values, thereby capturing only those fragments that are relevant for the 
toxic endpoint under investigation. Lazar performs automatic applicability domain estimation 
and provides a confidence index for each prediction, and is usable without expert knowledge. 
Lazar runs under Linux and a web-based prototype is also freely accessible:. http://lazar.in-
silico.de/ 

OECD QSAR Application Toolbox: The OECD QSAR Application Toolbox is a standalone 
software application for gaps in (eco)toxicity data needed for assessing the hazards of 
chemicals. Data gaps are filled by following a flexible workflow in which chemical categories 
are built and missing data are estimated by read-across or by applying local QSARs (trends 
within the category). The Toolbox also includes a range of profilers to quickly evaluate 
chemicals for common mechanisms or modes of action. In order to support read-across and 
trend analysis, the Toolbox contains numerous databases with results from experimental 
studies. The first version of the Toolbox, released in March 2008, was a proof-of-concept 
version. The first update (version 1.1) was released in December 2008, and the second 
(version 2.0) in October 2010. The release of version 3.0 is planned for October 2012. The 
OECD Toolbox is freely available:  http://www.qsartoolbox.org/ 

OncoLogic: This is a freely available expert system that assesses the potential of chemicals to 
cause cancer. OncoLogic was developed by the US EPA in collaboration with LogiChem, Inc. 
It predicts the potential carcinogenicity of chemicals by applying the rules of SAR analysis 
and incorporating what is known about the mechanisms of action and human epidemiological 
studies. The software reveals its line of reasoning, like human experts, to support predictions 
made. It also includes a database of toxicological information relevant to carcinogenicity 
assessment. The Cancer Expert System is comprised of four subsystems that evaluate fibres, 
metals, polymers, and organic chemicals of diverse chemical structures. Chemicals are 
entered one-by-one and the user needs a limited knowledge of chemistry in order to select the 
appropriate subsystem. OncoLogic is freely downloadable from the US EPA website: 
http://www.epa.gov/oppt/sf/pubs/oncologic.htm 

PASS: This tool, developed by the Institute of Biomedical Chemistry of the Russian 
Academy of Medical Sciences, Moscow is a computerised system for the Prediction of 
Activity Spectra for Substances. It predicts several specific toxicities among them 
mutagenicity, carcinogenicity, teratogenicity and embryotoxicity, and also mechanisms of 
action and pharmacological effects. The system predicts the probability (Pa) of a biological 
activity for a new compound, by estimating the similarity/dissimilarity of the new substance 
to substances with well known biological activities present in the training set (70 000 
compounds). The tool also gives a cross reference between biological activities on the basis 
of the knowledgebase of mechanism-effect relationships. An online version of PASS is 
available at: http://195.178.207.233/PASS/index.html 

T.E.S.T: The Toxicity Estimation Software Tool is an open-source application developed by 
the US EPA. It estimates the toxicity of a compound by applying several QSAR 
methodologies thus allowing the user to have greater confidence in predicted toxicities. 
Among other toxicities it predicts rat oral LD50, Ames mutagenicity, developmental toxicity, 
as well as acute toxicity to fish (fathead minnow), Daphnia magna and Tetrahymena 
pyriformis. The tool is freely downloadable from the EPA website 
(http://www.epa.gov/nrmrl/std/cppb/qsar/index.html#TEST). The models are well 
documented and the training set is made available as structure files (SDF file).   

http://lazar.in-silico.de/
http://lazar.in-silico.de/
http://www.qsartoolbox.org/
http://www.epa.gov/oppt/sf/pubs/oncologic.htm
http://195.178.207.233/PASS/index.html
http://www.epa.gov/nrmrl/std/cppb/qsar/index.html#TEST
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Toxtree: Toxtree is a flexible and user-friendly open-source application that places chemicals 
into categories and predicts various kinds of toxic effect by applying decision tree 
approaches. It is freely available from the JRC website (http://ecb.jrc.ec.europa.eu/qsar/qsar-
tools/index.php?c=TOXTREE) and from Sourceforge 
(https://sourceforge.net/projects/toxtree/). 

Toxtree has been developed by the JRC in collaboration with various consultants, in 
particular Ideaconsult Ltd (Sofia, Bulgaria). A key feature of Toxtree is the transparent 
reporting of the reasoning underlying each prediction. Toxtree v 1.60 (July 2009) includes 
classification schemes for systemic toxicity (Cramer scheme and extended Cramer scheme), 
as well as mutagenicity and carcinogenicity (Benigni-Bossa rulebase and the ToxMic 
rulebase on the in vivo micronucleus assay). The Cramer scheme is probably the most widely 
used approach for structuring chemicals in order to make an estimation of the Threshold of 
Toxicological Concern (TTC).  

The current version of Toxtree (v2.1.0, June 2010) also applies the TTC scheme of Kroes et 
al. (2004), alerts for skin sensitisation alerts (Enoch et al., 2008), and SMARTCyp, a two-
dimensional method for  the prediction of cytochrome P450-mediated metabolism (Rydberg 
et al., 2010). SMARTCyp predicts which sites in a molecule are labile for metabolism by 
Cytochromes P450. 

3.2.2 Commercially available software  

A summary of commercially available software is given in Table 3.2. The following 
paragraphs describe these tools in general terms. 

ACD/Tox Suite: The ACD/Tox Suite (formerly called ToxBoxes), provided by ACD/Labs 
and Pharma Algorithms, provides predictions of various toxicity endpoints including hERG 
inhibition, genotoxicity, CYP3A4 inhibition, ER binding affinity, irritation, rodent LD50, 
aquatic toxicity, and organ-specific health effects 
(http://www.acdlabs.com/products/admet/tox/). The predictions are associated with 
confidence intervals and probabilities, thereby providing a numerical expression of prediction 
reliability.  The software incorporates the ability to identify and visualize specific structural 
toxicophores, giving insight as to which parts of the molecule are responsible for the toxic 
effect. It also identifies analogues from its training set, which can also increase confidence in 
the prediction. The algorithms and datasets not disclosed.  

ADMET Predictor: This is software developed by Simulations Plus 
(http://www.simulations-plus.com/) for the predictive modelling of ADMET (Absorption, 
Distribution, Metabolism, Elimination, and Toxicity) properties. It includes a number of in-
built models for ADMET, and allows new predictive models to be built from the user's data. 

BioEpisteme: This is primarily a research tool developed by the Prous Institute for 
Biomedical Research (http://www.prousresearch.com/). It is organised into two main 
modules: a model building module and a data prediction module. The model building module 
provides a range of 2D and 3D descriptors; the data prediction module predicts adverse 
effects. It appears to have been developed mainly for applications in the pharmaceutical 
industry. 

Derek: This SAR-based system is developed by Lhasa Ltd, a non-profit company and 
educational charity (https://www.lhasalimited.org/). DfW contains over 50 alerts covering a 
wide range of toxicological endpoints in humans, other mammals and bacteria. An alert 
consists of a toxicophore (a substructure known or thought to be responsible for the toxicity) 

http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=TOXTREE
http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=TOXTREE
https://sourceforge.net/projects/toxtree/
http://www.acdlabs.com/products/admet/tox/
http://www.simulations-plus.com/
http://www.prousresearch.com/
https://www.lhasalimited.org/
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and is associated with literature references, comments and examples. A key feature of DfW is 
the transparent reporting of the reasoning underlying each prediction. 

All the rules in DfW are based either on hypotheses relating to mechanisms of action of a 
chemical class or on observed empirical relationships. Information used in the development of 
rules includes published data and suggestions from toxicological experts in industry, 
regulatory bodies and academia. The toxicity predictions are the result of two processes. The 
program first checks whether any alerts in the knowledge base match toxicophores in the 
query structure. The reasoning engine then assesses the likelihood of a structure being toxic. 
There are nine levels of confidence: certain, probable, plausible, equivocal, doubted, 
improbably, impossible, open, contradicted. DfW can be integrated with Lhasa’s Meteor 
software, which makes predictions of fate, thereby providing predictions of toxicity for both 
parent compounds and their metabolites. 

HazardExpert: This is a module of the Pallas software developed by CompuDrug 
(http://compudrug.com/). It predicts the toxicity of organic compounds based on toxic 
fragments, and it also calculates bioavailability parameters (from logP and pKa). It is a rule-
based system with an open knowledge base, allowing the user to expand or modify the data 
on which the toxicity estimation relies. It covers the following endpoints relevant to dietary 
toxicity assessment: carcinogenicity, mutagenicity, teratogenicity, membrane irritation, 
immunotoxicity and neurotoxicity. A further application of the program is prediction the 
toxicity of the parent compound and its metabolites by linking with MetabolExpert, another 
module of the Pallas software. 

MDL QSAR: This is primarily a research tool, originally developed and marketed by MDL, 
and now by Symyx (http://www.symyx.com/).. It enables the user to build and apply new 
QSARs, supporting model development by providing over 400 built-in 2D and 3D molecular 
descriptor calculators. It includes a variety of predictive modules, including rodent 
carcinogenicity (FDA model). 

Molcode Toolbox: This is a commercial tool developed and marketed by Molcode Ltd 
(http://molcode.com/). It has a range of modules for predicting toxicological endpoints and 
ADME properties. The models are well documented and the underlying experimental data is 
made available with references and structure files (MDL molfile). A number of the Molcode 
models are documented in the form of QMRFs in the JRC QSAR model database. 

MultiCASE: This software, developed by MultiCASE Inc. (http://multicase.com/), 
implements the so-called CASE (Computer Automated Structure Evaluation) approach, and is 
referred to in different ways (MCASE or MC4PC), depending on the software version and 
computer platform and its successor. The program automatically generates predictive models 
from datasets provided by the user. It is based on a fragment-based technology sometimes 
referred to as the CASE approach (Klopman & Rosenkranz, 1994). The program performs a 
hierarchical statistical analysis of a database to discover substructures that appear mostly in 
active molecules thus being with high probability responsible for the observed activity. 
Initially, it identifies the statistically most significant substructure within the training set. This 
fragment, labelled the top biophore, is considered responsible for the activity of the largest 
possible number of active molecules. The active molecules containing this biophore are then 
removed from the database, and the remaining ones are submitted to a new analysis for 
identification of the next biophore. The procedure is repeated until either the activity of all the 
molecules in the training set has been accounted for or no additional statistically significant 
substructure can be found. Then for each set of molecules containing a specific biophore, the 
program identifies additional parameters called modulators, which can be used to derive 

http://compudrug.com/
http://www.symyx.com/
http://molcode.com/
http://multicase.com/
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QSAR within the reduced set of congeneric molecules. The modulators consist of certain 
substructures or physicochemical parameters that significantly enhance or diminish the 
activity attributable to the biophore. QSARs are then derived by incorporating the biophores 
and the modulators into the model. The program includes modules to predict physicochemical 
properties and a range of toxicological endpoints, including carcinogenicity, mutagenicity, 
teratogenicity, irritation, developmental toxicity, and acute toxicity. For the endpoints, the 
software uses it own toxicity scale, from 0 to 100 CASE units, to cover the range from 
inactive, marginally active and active. In many cases, it is difficult to relate these CASE units 
to traditional measures of toxicity. 

OASIS TIMES: The Tissue MEtabolism Simulator (TIMES), developed by LMC (Bourgas 
University, Bulgaria; http://oasis-lmc.org/) integrates on the same platform a metabolic 
simulator and QSAR models for predicting toxicity of selected metabolites. The metabolic 
simulator generates plausible metabolic maps from a comprehensive library of 
biotransformations and abiotic reactions. It allows prioritization of chemicals according to 
toxicity of their metabolites. OASIS TIMES can be used to predict a range of endpoints, 
including acute toxicity for different species, receptor-binding affinities (estrogen, androgen 
and aryl hydrocarbon receptors), mutagenicity and chromosomal aberration, while also 
accounting for the metabolic activation of chemicals. 

TOPKAT: This QSAR-based system, developed by Accelrys Inc. (http://accelrys.com/), 
makes predictions of a range of toxicological endpoints, including mutagenicity, 
developmental toxicity, rodent carcinogenicity, rat chronic LOAEL, rat Maximum Tolerated 
Dose (MTD) and rat oral LD50. The QSARs are developed by regression analysis for 
continuous endpoints and by discriminant analysis for categorical endpoints. TOPKAT 
models are derived by using a range of two-dimensional molecular, electronic and spatial 
descriptors. TOPKAT estimates the confidence in the prediction by applying the patented 
Optimal Predictive Space (OPS) validation method. The OPS is TOPKAT’s formulation of 
the model applicability domain - a unique multivariate descriptor space in which a given 
model is considered to applicable. Any prediction generated for a query structure outside of 
the OPS space is considered unreliable.  

ToxAlert: This tool, also a module of the Pallas suite, flags compounds for hazards 
associated with specific pharmacophores (structural alerts). The prediction is based on an 
improved version of the knowledge base implemented in HazardExpert, and in addition to the 
overall toxicity profile, it provides probability percentages for different toxicity endpoints. 
Like HazardExpert, it has an open knowledge base, allowing additions and modifications to 
the underlying data. 

q-Tox: A tool developed by Quantum Pharmaceuticals (http://q-pharm.com/) utilises a novel 
approach for the prediction of toxicity. It is based on the premise that biological activity 
results from the capacity of small molecules to modulate the activity of the proteome. 
Publically available IC50 values for several proteins were used to build interpretation models. 
The tool predicts several toxicity endpoints, mouse, rat, dog rabbit LD50 and also side effects. 
The draw back of the tool is that the estimated calculation time is 5 to 10 hours per molecule. 

CSGenoTox: This is a tool which predicts Ames mutagenicity, developed by ChemSilico 
(http://chemsilico.com/). Topological molecular descriptors were selected with neural 
network analysis to optimize the relationship between experimental and calculated mutagenic 
index. Mutagenicity is expressed as 1 for a mutagen and 0 for a non-mutagen

http://oasis-lmc.org/
http://accelrys.com/
http://q-pharm.com/
http://chemsilico.com/
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Table 3.1 Some commonly used freely available software tools 
Software and developer Availability Methodology Comment 
EPI Suite; US EPA 
http://www.epa.gov/oppt/exposure/pubs/episuite.htm 

Freely available Statistical Downloadable tool suitable for non-
specialised users. 

OncoLogic®; US EPA 
http://www.epa.gov/oppt/newchems/tools/oncologic.htm 

Freely available Knowledge-based Downloadable tool suitable for users with 
a limited knowledge of chemistry. 
Transparent predictions. 

Toxtree; EC – JRC 
http://ecb.jrc.ec.europa.eu/qsar/qsar-tools 

Freely available Hybrid - Statistical and 
knowledge-based 

Downloadable and open source tool 
suitable for non-specialised users. 

Toxmatch; EC – JRC 
http://ecb.jrc.ec.europa.eu/qsar/qsar-tools 

Freely available Statistical Downloadable and open source research 
tool for chemical similarity analysis. 
Supports chemical grouping and read-
across. Specialised expertise required. 

OECD QSAR Toolbox 
http://www.qsartoolbox.org/ 

Freely available Hybrid - Statistical and 
knowledge-based 

Downloadable research tool for profiling 
mechanisms, chemical grouping and 
read-across. Specialised expertise 
required. 

Lazar; In silico Toxicology (Freiburg university) 
http://lazar.in-silico.de 

Freely available Statistical Web-accessible and open source tool 
under development in EU OpenTox 
project. Suitable for non-specialised 
users. 

CAESAR project models 
http://www.caesar-project.eu/software/index.htm 

Freely available Statistical Web-accessible and open source tool 
developed in EU Caesar project. Suitable 
for non-specialised users. 

PASS 
http://195.178.207.233/PASS/index.html  

Freely available Statistical Web-accessible and generates predictions 
on line upon registration. 

T.E.S.T. 
http://www.epa.gov/nrmrl/std/cppb/qsar/#TEST 

Freely available Statistical Downloadable and open source tool for 
toxicity estimation developed by US 
EPA. Suitable for non-specialised users. 

 

http://www.epa.gov/oppt/exposure/pubs/episuite.htm
http://www.epa.gov/oppt/newchems/tools/oncologic.htm
http://ecb.jrc.ec.europa.eu/qsar/qsar-tools
http://ecb.jrc.ec.europa.eu/qsar/qsar-tools
http://www.qsartoolbox.org/
http://lazar.in-silico.de/
http://www.caesar-project.eu/software/index.htm
http://195.178.207.233/PASS/index.html
http://www.epa.gov/nrmrl/std/cppb/qsar/#TEST
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Table 3.2 Some commonly used commercial software tools 
Software and developer Availability Methodology Comment 
ADMET Predictor; Simulations Plus 
http://www.simulations-plus.com 

Commercial Statistical  

TOPKAT; Accelrys Inc 
http://www.accelrys.com 

Commercial Statistical Algorithms are not transparent. 

Pallas software (HazardExpert, ToxAlert; MetabolExpert); CompuDrug Ltd 
http://www.compudrug.com 

Commercial Knowledge-based  

Derek; Lhasa Ltd 
http://www.lhasalimited.org 

Commercial Knowledge-based Knowledge base is transparent. 
  

MultiCASE; MultiCASE Inc 
http://www.multicase.com 

Commercial Statistical  

MDL QSAR 
http://www.symyx.com/ 

Commercial Statistical Research tool. 

BioEpisteme 
http://www.prousresearch.com/ 

Commercial Statistical Research tool. 

ACD ToxSuite (ToxBoxes); ACDLabs and Pharma Algorithms 
Product description: http://www.acdlabs.com/products/admet/tox/ 
Free web application: http://www.pharma-algorithms.com/webboxes/ 

Commercial (and 
free web 
application) 

Statistical (neural 
networks) 

Easy to use. Algorithms are not 
transparent. 

OASIS TIMES; LMC, Bourgas University, Bulgaria 
http://www.oasis-lmc.org 

Commercial Hybrid - Statistical and 
knowledge-based 

 

Molcode Toolbox; Molcode Ltd, Estonia 
http://molcode.com/ 

Commercial Statistical  Easy to use. Algorithms arnd underlying 
data are transparent. 

q-Tox Commercial Statistical  
CSGenoTox Commercial Statistical  

http://www.simulations-plus.com/
http://www.accelrys.com/
http://www.compudrug.com/
http://www.lhasalimited.org/
http://www.multicase.com/
http://www.symyx.com/
http://www.prousresearch.com/
http://www.acdlabs.com/products/admet/tox/
http://www.pharma-algorithms.com/webboxes/
http://www.oasis-lmc.org/
http://molcode.com/
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Table 3.3 Software capable of predicting toxicological endpoints relevant to dietary risk assessment  
ENDPOINT  
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ACD/Tox Suite (ToxBoxes) Commercial ●  ●   ●      
ADMET Predictor (Simulations Plus Inc.) Commercial  ● (1) ● ●  ● ●     
BioEpisteme Commercial    ●   ● ●    
Caesar project models (Mario Negri Institute) Freely available   ● ● ●       
Derek (Lhasa Ltd) Commercial   ● ● ● ● ● ● ●  ● 
HazardExpert (CompuDrug) Commercial   ● ●     ●  ● 
Lazar  (In silico Toxicology; Freiburg university) Freely available  ● (1) ● ●   ●     
Leadscope (Leadscope) Commercial   ● ● ●  ● ● ●   
MCASE/MC4PC (MultiCASE) Commercial ● ●  ● ● ● ● ●  ●  
MDL QSAR (MDL) Commercial ● ● (1) ● ●   ● ●    
OASIS-TIMES (Laboratory of Mathematical Chemistry, Bourgas 
University) 

Commercial   ●   ●      

OncoLogic (US EPA) Freely available    ●        
Pallas Suite including ToxAlert, Cytotoxicity (CompuDrug) Commercial   ● ●     ● ●  

TerraQSAR (TerraBase) Commercial ●     ●      

TOPKAT (Accelrys) Commercial ● ● ● ● ●       
Toxtree (JRC) Freely available  ● (2) ● ●        
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Molcode Toolbox ( Molcode Ltd) Commercial  ● ● ●  ●    ●  
PASS (Institute of Biomedical Chemistry of the Russian Academy of  
Medical Sciences, Moscow) 

Freely available   ● ● ●  ● ● ● ●  

q-Tox (Quantum Pharmaceuticals) Commercial ●           
T.E.S.T. (US EPA) Freely available ●    ●       
CSGenoTox (ChemSilico) Commercial   ●(4)         
 
(1) maximum tolderated dose in humans; (2) Cramer classification tree; (3) immunotoxicity other than skin sensitisaton; (4) prediction of the mutagenic index for Ames test mutagenicity 
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4. PREDICTION OF ACUTE AND SYSTEMIC TOXICTY 
 

Systemic toxicity studies aim at investigating the effects of chemicals in laboratory animals 
exposed to various dosage regiments for different durations. Exposure is generally through 
the oral, dermal or inhalation routes. The information from systems toxicity studies is used in 
hazard and risk assessment of chemicals occurring in food, industrial chemicals, biocides, and 
cosmetics. In this chapter, we give an overview of the software packages used in the 
assessment of acute systemic toxicity, chronic systemic toxicity and organ- and system-
specific toxicity, as well as the databases available for obtaining such data.  Reviews on 
QSAR studies published in the literature are available elsewhere (Devillers & Devillers, 
2009; Lapenna et al., 2010; Tsakovska et al., 2008). 

4.1 Acute systemic toxicity 

Acute toxicity describes the adverse effects caused by either a single exposure to a chemical 
substance or multiple exposures within 24 hours.. The acute lethal dose to 50% of the treated 
animals (LD50 value) is the basis for the hazard assessment and classification of chemicals 
and is widely used for regulatory purposes. However, the LD50 value presents some 
drawbacks when used for QSAR modelling. First, acute toxicity effects may result from a 
wide spectrum of biokinetic, cellular and molecular events. Converting the complex, whole-
body phenomena related to acute toxicity into a simple number necessarily leads to a loss of 
information. Second, available data are highly variable, having been generated by different 
laboratories, protocols, animal species and strains. This undermines the reliability and 
repeatability of acute toxicity measurements. These facts complicate the modelling process 
and may explain why there are relatively few (Q)SAR models and expert systems for 
predicting oral acute toxicity, in comparison with other endpoints.  

4.1.1 Software for predicting acute systemic toxicity  

Software tools capable of predicting endpoints related to systemic toxicity are listed in Table 
4.1. 

The commercial software ACD/Tox Suite (now developed and marketed by Advanced 
Chemistry Development [ACD/Labs] and formerly by Pharma Algorithms as ToxBoxes) 
predicts toxicity in both the mouse and rat for various administration routes, including oral, as 
either quantitative LD50 values or classification into the five GHS categories. 

The statistically-based programs TOPKAT and MCASE use multiple QSARs on small and 
homogenous sets of data. The rat oral LD50 module in TOPKAT comprises 19 regression 
analyses developed using experimental values of approx. 4000 chemicals from RTECS, 
including pesticides and industrial chemicals. The rat oral LD50 module in MCASE (named 
A56) is based on and comprises data for 7920 chemicals from the FDA, WHO and NTP 
datasets. Tunkel and coworkers (Tunkel et al., 2005) compared the performance of the 
TOPKAT and MCASE rat LD50 modules against an external test set of 73 organic compounds 
covering 32 chemical categories retrieved from submissions to the EPA High Production 
Volume (HPV) Challenge Program (http://www.epa.gov/chemrtk/). The predictive accuracy 
of each software tool was assessed by applying the EPA’s New Chemical classification 
approach (http://www.epa.gov/oppt/newchems/index.htm), from the low-concern class 
(>2000 mg/kg) to the high-concern class (<15 mg/kg). While neither model was able to 
classify all 73 compounds, TOPKAT correctly classified 67% of the chemicals, while 

http://www.epa.gov/chemrtk/
http://www.epa.gov/oppt/newchems/index.htm
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MCASE classified 70% correctly. However, it should be noted that the test set used was 
significantly skewed toward “low concern” chemicals, which both models predicted correctly 
with a high degree of accuracy (82% and 100% correct for TOPKAT and MCASE, 
respectively). Moreover, a high degree of false negatives was found for moderate and high 
concern HPV chemicals (TOPKAT, 72%; MCASE, 100%), suggesting that these programs 
are less reliable for the identification of more toxic compounds. The authors also compared 
the model outputs against  the GHS five-tier scheme for classification of rat oral acute 
toxicants (<5, 5-50, 50-300, 300-2000, and 2000-5000 mg/kg), which is similar to the one 
adopted by EPA (<15, 15-50, 50-500, 500-2000, >2000 mg/kg). When compared against the 
GHS scheme, the ability of TOPKAT and MCASE to produce correct classifications was 73% 
and 70%, respectively, for the HPV test set chemicals, thereby changing slightly with respect 
to the EPA scheme, albeit enough to invert the rank order of these models. Overall, these 
results support the usefulness of the TOPKAT and MCASE tools when used for hazard 
classification.  

Other software tools available for predicting acute toxicity (LD50) to rat/mouse, are also 
available, such as MDL QSAR and TerraQSAR. The TerraQSAR software, based on neural 
network methodology, includes models for predicting both oral and intravenous LD50 values 
in mice and rats (http://www.terrabase-inc.com/). 

4.1.2 Databases containing information on acute systemic toxicity  

Sources of rat LD50 values which may be suitable for the development of QSARs, the 
application of read-across, and the evaluation of high-throughput in vitro methods, are listed 
in Table 4.2. In particular, Acutoxbase has been developed in the context of the EU FP6 
project ‘A-Cute-Tox’ (http://www.acutetox.org), which aims to optimise and “pre-validate” 
an in vitro testing strategy for predicting acute human toxicity. At present, Acutoxbase is not 
publicly accessible. However, parts of the data have been published in the literature (Kinsner-
Ovaskainen et al., 2009).   

In order to be useful for QSAR development, datasets should be first curated, i.e. the accuracy 
of the structures should be verified and the quality of biological data should be reviewed. In 
addition, inorganic and organometallic compounds, salts, and compound mixtures are often 
removed from the analysis. For the development of QSARs, LD50 values should be converted 
to log[1/(mol/kg)] (if originally expressed as mol/kg). Finally, approximate LD50 values 
should be converted to discrete values, and multiple LD50 values from different 
labs/experiments should be converted to a single value. The ChemIDplus and ZEBET 
databases have been recently employed as data sources for QSAR analyses (Zhu et al., 
2009a,b). 

 

http://www.terrabase-inc.com/
http://www.acutetox.org/
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Table 4.1. Software tools for systemic toxicity endpoints  

 
ENDPOINT   
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ACD/Tox Suite (ToxBoxes) Commercial ●       
ADMET Predictor (Simulations 
Plus Inc.) 

Commercial   ●     

ADME/Tox WEB Freely available ●       
BioEpisteme Commercial   ● ●    
CAESAR models (Mario Negri 
Institute) 

Freely available        

Derek (Lhasa Ltd) Commercial   ● ● ●  ● 
HazardExpert (CompuDrug) Commercial     ●  ● 
Lazar  (In silico Toxicology; 
Freiburg university) 

Freely available  ● ●     

Leadscope (Leadscope) Commercial   ● ● ●   
MCASE/MC4PC (MultiCASE) Commercial ●  ● ●  ●  
MDL QSAR (Symyx) Commercial ●  ● ●    
Molcode Toolbox ( Molcode Ltd) Commercial  ●    ●  
OASIS-TIMES (Laboratory of 
Mathematical Chemistry, Bourgas 
University) 

Commercial        

OncoLogic (US EPA) Freely available        
Pallas Suite including ToxAlert, 
Cytotoxicity (CompuDrug) 

Commercial     ● ●  

TerraQSAR (TerraBase) Commercial ●       
TOPKAT (Accelrys) Commercial ● ●      
Toxtree (JRC) Freely available        
(1) immunotoxicity other than skin sensitisaton. 
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Table 4.2 Databases containing acute toxicity information 
Database Availability Information  
   
Acutoxbase, linked to the EU FP6 
project ‘A-Cute-Tox’; 
https://acubase.amwaw.edu.pl 
 
 

Access through the 
internet, currently 
restricted to project 
partners 

The following data are available for 97 
reference chemicals (i.e. 52% drugs, 31% 
industrial chemicals, 12% pesticides, 5% 
others): 
in vitro: approx. 100 in vitro assays including 
general acute cytotoxicity, metabolism-
mediated toxicity, biokinetics, and organ-
specific toxicity. 
in vivo: Over 2200 LD50 values in rodents 
(rat and mouse) and other animals (e.g. guinea 
pig, dog) with various administration routes 
(oral, intravenous, etc.) compiled from 
published literature. 
For 86 reference chemicals, human acute 
poisoning cases from clinical/forensic reports 
are also available. 

ChemIDplus, developed by the US 
NLM; 
http://chem.sis.nlm.nih.gov/chemidplus/ 

Freely available 
through the Internet, 
structure-searchable 

Toxicity data for over 139,000 records, 
retrieved from TOXNET® (TOXicology Data 
NETwork; http://toxnet.nlm.nih.gov) which 
includes HSDB (Hazardous Substances Data 
Bank). The HSDB is an older subset of the 
RTECS database. A search for rat and mouse 
oral LD50 values found 13,548 and 28,033 
records, respectively.  

CEBS, developed by the US NIEHS; 
http://cebs.niehs.nih.gov/ 

Freely available 
through the Internet 

In vivo study data and acute dose of a small 
number of known hepatotoxicants to rat. 

RTECS, originally compiled and 
maintained (until 2001) by the US 
NIOSH and currently maintained by 
Symyx Technologies. Structure-
searchable through the Symyx Toxicity 
Database: 
http://www.symyx.com/products/databas
es/bioactivity/rtecs/index.jsp 
Also searchable via the Leadscope 
Toxicity Database 
(http://www.leadscope.com/databases/) 
 
 

Commercial 
 

Rat acute oral toxicity (LD50) and acute 
inhalation toxicity (LC50) data compiled from 
the open scientific literature for approx. 7,000 
compounds (organic, inorganic and mixtures), 
including approx. 4000 organic compounds.  

ZEBET, compiled by BfR ZEBET; 
http://www.dimdi.de 

Freely searchable 
through the DIMDI 
website. Published in a 
report by ICCVAM 
(ICCVAM et al., 2001) 

Includes rat or mouse LD50 values (from the 
RTECS database) and cytotoxicity (IC50) data 
for 347 compounds compiled from the open 
literature. 

Abbreviations: CEBS, Chemical Effects in Biological Systems; DIMDI, German Institute for Medical Documentation and 
Information; ICCVAM, Interagency Coordinating Committee on the Validation of Alternative Methods; RTECS, Registry of 
Toxic Effects of Chemical Substances; US NLM, US National Library of Medicine; US NIEHS, US National Institute of 
Environmental Health Sciences; US NIOSH, US National Institute of Occupational Safety and Health; BfR ZEBET, Centre 
for Documentation and Evaluation of Alternatives to Animal Experiments of the German Federal Institute for Risk 
Assessment. 

https://acubase.amwaw.edu.pl/
http://chem.sis.nlm.nih.gov/chemidplus/
http://toxnet.nlm.nih.gov/
http://cebs.niehs.nih.gov/
http://www.symyx.com/products/databases/bioactivity/rtecs/index.jsp
http://www.symyx.com/products/databases/bioactivity/rtecs/index.jsp
http://www.leadscope.com/databases/
http://www.dimdi.de/
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4.1.3 Conclusions on the ability to predict acute systemic toxicity 

Some currently available software tools (e.g. TOPKAT and MCASE) are useful for predicting 
acute toxicity in categorical terms (e.g. in terms of GHS classifications). However, these tools 
should be further investigated in relation to apparently high degree of false negatives 
generated, since this would be undesirable in the regulatory assessment of pesticides. The 
performance of other software tools in predicting acute toxicity should also be investigated. It 
is recommended that targeted studies are carried out to explore the usefulness of these 
software tools not only for classifying chemicals but also for making quantitative predictions 
of LD50 values for chemical inventories of regulatory importance (e.g. pesticides).  

In the scientific literature, QSAR models have been generated for sets of congeneric 
compounds (organophosphates, aromatic amines, anilines, etc.) and are scattered over many 
original publications. Some of these studies have also explored the use of in vitro data as 
aadditional descriptors in the derivation of so-called quantitative structure activity-activity 
relationships (Lessigiarska et al., 2006). Despite their limited applicability when taken 
individually, these local models might be usefully combined into an expert system for toxicity 
predictions. Further research and development in this area is therefore encouraged. In 
addition, several recent research studies (Zhu et al, 2009a,b; Raevsky et al., 2009) have 
demonstrated the ability to make reasonable quantitative predictions for structurally diverse 
datasets, especially when high throughput bioactivity data are used in combination with 
traditional QSAR descriptors. These approaches should be explored further with a view to 
practical implementation. In this respect, the future availability of the models developed by 
Zhu and coworkers for use as LD50 predictors via the EPA website and the ChemBench web 
portal (Zhu et al., 2009a,b) are promising initiatives. 

4.2 Chronic systemic toxicity 

Chronic (repeated dose) toxicity refers to the general toxicological effects in mammals 
occurring as a result of prolonged and repeated (oral, dermal or inhalation) exposure to a 
substance. The general toxicity includes a wide range of possible adverse effects including 
changes in morphology, physiology, growth, development or life span which result in 
impaired functional capacity, impaired capacity to compensate for additional stress or 
increased susceptibility to the harmful effects of other environmental influences. 

The most commonly performed animal tests are the subacute (28-day) and subchronic (90-
day) oral toxicity tests in rodents. Testing is sometimes performed with a longer testing 
period (12 months or more), and sometimes with in a non-rodent species (e.g. dogs, primates). 
The studies are used to identify adverse effects on various organs and tissues (e.g. liver, 
kidney, central nervous system, reproductive organs, immune system, and the endocrine 
system), and to establish a dose metric for risk assessment - the lowest dose that induces an 
adverse effect (Lowest Observed Adverse Effect Level; LOAEL) or the highest dose with no 
biologically or statistically significant adverse effects (No Observed Effect Level; NOEL). In 
this assessment, all toxicological responses are taken into account and the critical (most 
sensitive) effect is identified. The results of repeated-dose testing can also be used to classify 
chemicals on the basis of systemic toxicity. Within the Globally Harmonised Classification 
System (GHS) for chemicals, the results of repeated dose studies can be used, in a weight-of-
evidence approach, to place systemic toxicants in two hazard categories. 

Thus, chronic toxicity is not really a single endpoint, but a common term for a multitude of 
biological effects that have different mechanisms, occur in different tissues and organs and 
over different time scales. This presents a challenge for QSAR modelling, which should 
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ideally focus on groups of chemicals with a common mode of action. Perhaps for this reason, 
there have been few attempts to develop QSAR models for chronic toxicity in mammals.   

4.2.1 Software for predicting repeated dose toxicity 

Software tools capable of predicting repeated dose toxicity are given in Table 4.1. At present, 
the best known is probably TOPKAT, which predicts oral rat chronic LOAEL values. The 
model includes five regression-based models for five classes of chemicals (acyclics, 
alicyclics, heteroaromatics, single benzenes and multiple benzenes), developed on the basis of 
393 chemicals from various sources (EPA and National Cancer Institute/National Toxicology 
Program (NCI/NTP) databases; FDA drug applications reports; and the open literature). The 
paper describing the original model development (Mumtaz et al., 1995), based on 234 
structurally-diverse chemicals for which chronic data (12 months or more) were available 
from the above-mentioned sources, provides a transparent description of the model – it is 
mulitilinear regression QSAR based on 44 structural descriptors. In contrast, the algorithm for 
the updated TOPKAT model, based on five regression models and an extended dataset of 393 
chemicals, has not been published. 

In a model assessment study by Venkatapathy et al. (2004), the predictive performance of 
TOPKAT was tested against 343 chemicals from the EPA’s Office of Pesticide Programs 
(OPP) database. After removal of compounds that TOPKAT could not recognise or which 
generated various types of warnings, the percentages of chemicals in TOPKAT’s database 
that had a LOAEL predicted within a factor of 2, 5 and 10 of the experimental LOAEL were 
65%, 83%, and 91%, respectively. When testing against chemicals not already in TOPKAT’s 
database (i.e. an external validation), the corresponding percentages were 34%, 57% and 
72%. Similar statistics were obtained when the TOPKAT predictions were compared against 
313 chemical in the “IHP database”, so-called because it was derived the Integrated Risk 
Information System (IRIS), Health Effects Assessment Summary Tables (HEAST), and 
Provisional Toxicity Value (PTV) databases. If prediction within a factor of 2 is taken as the 
criterion for “correct classification”, this implies a misclassification rate of 35-66%; and if a 
factor of 10 is adopted, the corresponding misclassification rate would be 9-28%. 

In another assessment, Tilaoui et al. (2007) investigated the ability of TOPKAT to predict the 
LOAELs of substances typically occurring in food, on the basis of 607 substances taken from 
Munro et al. (1996). After excluding the 267 substances in the TOPKAT training set, the 
number of validation substances was reduced to 340. Of those 340 molecules, 287 had 
predicted LOAELs with the model applicability domain (OPS), of which 86% were predicted 
within a factor of 2. 

In addition to providing point estimates of chronic toxicity, the similarity search capacity of 
TOPKAT can be used to identify analogues in the TOPKAT database for use in read-across 
assessments. For example, in order to predict the LOAEL of dichlorobenzophenone (DCBP), 
which is a metabolite of chlorobenzilate, dichlorodiphenyltrichloroethane, and dicofol, 
Mougdal et al. (2003) identified 47 potential analogues in the TOPKAT database, of which 
five were selected on the basis that there were toxicity data in an EPA database (IRIS, 
HEAST or PTV). Among the five potential surrogates, chlorobenzilate was chosen as a 
surrogate for DCBP, since it had the most conservative chronic oral reference dose (RfD). 
The RfD is the US EPA’s maximum acceptable oral dose of a toxic substance, obtained by 
dividing the NOEL or LOAEL by various uncertainty factors. 



 

 34

The other main software tool capable of predicting LOAELs, is a module of the recently 
developed MolCode Toolbox. A QMRF for this model is available in the JRC QSAR Model 
Database. 

4.2.2 Databases containing information on repeated dose toxicity 

There are two main databases suitable for the development and assessment of (Q)SARs for 
repeat-dose toxicity (Table 4.3). The RepDose database developed by the Fraunhofer Institute 
(Bitsch et al., 2006) contains NOELs and LOAELs for over 650 industrial chemicals, but is 
not made publicly available. A database of human Maximum Recommended Therapeutic 
Dose (MRTD) values has been compiled and made publicly available by the US FDA 
(Matthews et al., 2004b).  

In addition to these databases, there are several datasets in the published literature. Munro et 
al. (1996) developed a database of 612 structurally well-defined organic chemicals, divided 
into the three structural Cramer classes (Cramer et al., 1978) and associated with 2944 
(subchronic and chronic) NOELs derived from non-carcinogenic endpoints in oral rodent or 
rabbit studies. This database has provided the basis of the TTC concept. Oral NOELs for 45 
consumer product ingredients (not in the Munro database) have been published by Blackburn 
et al. (2005).  

4.2.3 Conclusions on the ability to predict repeated dose toxicity 

The availability of (Q)SAR models for chronic toxicity endpoints is currently very limited. 
Since a large number of potential targets and mechanisms are associated with repeated dose 
effects, it is unlikely that any single model or software tool will be capable of making reliable 
predictions for all chemicals of interest to dietary risk assessment. The most commonly used 
software tool at present is TOPKAT, and despite the lack of transparency in its predictions, 
several studies have shown that it gives reasonable predictions for a range of chemicals 
(including pesticides, industrial chemicals). Another more recently developed tool is a 
module of MolCode Toolboxes. Predictions from such tools could be used in a weight-of-
evidence approach along with additional data. Additional research investigations into the 
applicability of TOPKAT and MolCode Toolboxes across a wide range of food chemicals 
would be worthwhile. In addition, a transparent expert system or battery of (Q)SAR models 
needs to be developed for this endpoint. The studies performed by Garcia-Domenech and co-
workers, using the same data as used for TOPKAT, have shown that simple, transparent 
regression and classification models can be developed, with an equivalent performance to 
TOPKAT. Thus, it is recommended that the predictive abilities of these models are compared, 
and refinements of the literature models explored. 

A useful alternative to QSAR when limited data are available is to estimate the toxicity of a 
chemical of interest by reading across from the corresponding data for suitable analogues. 
Thus, read across provides an alternative or additional approach to the use QSAR in the 
estimation of chronic toxicity. Several studies have demonstrated the usefulness of reading 
across chronic toxicity data, and at least one freely available software tool is available to 
automate the task in the case of human MRTDs (Lazar). In view of the limited availability of 
QSARs and predictive software for chronic toxicity effects, the read-across approach merits 
further investigation, and automated software should be developed further. 
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Table 4.3. Databases containing repeated dose toxicity information 
 

Database  Availability Information  
   
US FDA Maximum Recommended Therapeutic Dose (MRTD) 
Database 
 
http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm0921
99.htm 
http://www.epa.gov/ncct/dsstox/sdf_fdamdd.html 

Freely available MRTD values for 1215 pharmaceuticals 
from clinical trials, mostly by oral 
administration and daily treatments, 
usually for 3-12 months. (with 5% of the 
pharmaceuticals being administered 
intravenously and/or intramuscularly). 
Includes structures. Available from FDA 
and EPA DSSTOX 

RepDose database developed by Fraunhofer Institute of 
Toxicology and Experimental Medicine 
 
http://www.fraunhofer-repdose.de/ 
 

Freely available 
for online 
searching  

Subacute to chronic, oral and inhalation 
NOELs and LOAELs and for 655 
industrial chemicals (version 2009); 
publicly available rat, mouse and dog 
studies; includes structures, 
physicochemical properties and study 
designs 

Mazzatorta et al. (2008) 
http://pubs.acs.org/doi/suppl/10.1021/ci8001974 
 

Freely available 
as MS Excel file 

molecular structures (encoded as 
canonical SMILES strings) with LOAEL 
values for 445 unique chemicals 

The Munro and Cramer datasets: 
http://apps.ideaconsult.net:8080/ambit2/dataset/26538?max=10
0  
http://apps.ideaconsult.net:8080/ambit2/dataset?search=Cramer  
 
http://www.efsa.europa.eu/en/scdocs.htm 
 
 

Available from 
AMBIT website.  
 
 
 
 
Also expected to 
be available from 
EFSA in 2011 

Munro database contains 612 structurally 
well-defined organic chemicals and 
aassociated NOELs 
Cramer dataset contains 83 structures (no 
toxicological data) 
 
 

 

http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm092199.htm
http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm092199.htm
http://www.epa.gov/ncct/dsstox/sdf_fdamdd.html
https://webmail.ec.europa.eu/exchweb/bin/redir.asp?URL=http://www.fraunhofer-repdose.de/
http://pubs.acs.org/doi/suppl/10.1021/ci8001974
http://apps.ideaconsult.net:8080/ambit2/dataset/26538?max=100
http://apps.ideaconsult.net:8080/ambit2/dataset/26538?max=100
http://apps.ideaconsult.net:8080/ambit2/dataset?search=Cramer
http://www.efsa.europa.eu/en/scdocs.htm
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4.3 Organ-specific and system-specific toxicity  

In addition to models for acute and repeated dose toxicity at the in vivo level, a limited 
number of models have been developed for predicting toxicities at the cellular, tissue and 
organ levels. For example, models have been developed for hepatic and urinary tract toxicities 
(e.g. Matthews et al. 2009b), nephrotoxicity and neurotoxicity, as reviewed by Lapenna et al. 
(2010). Some of these models are based on the concept of reactivity-based toxicity. The 
covalent binding of reactive electrophiles to cellular targets (i.e. nucleophilic sites of 
macromolecules) has the potential to initiate a chain of biological effects (e.g. depletion of 
glutathione and protein thiols) resulting in specific organ and and system toxicities.  

Among the commonly used software tools, Derek for Windows v.12 estimates neurotoxicity 
using the following structural alerts: γ-diketone or precursor, acrylamide or glycidamide, 
nitroimidazole, carbon disulphide or precursor, pyrethroid, 1-methyl-1,2,3,6-
tetrahydropyridine, lead or lead compound and organophosphorus ester. 

In general, the modelling of organ-specific and system-specific effects represents an 
underdeveloped field, ripe for future research but far from regulatory applications. Future 
research initiative could include, for example, re-examination of the datasets for hepatobiliary 
and urinary tract toxicities of drugs with a view to developing more accessible models and 
assessing their applicability to chemicals other than pharmaceuticals. In addition, the concept 
of reactivity-based toxicity, now established as a plausible mechanism for hepatocyte toxicity, 
could be further exploited using data from hepatocyte cultures and cell lines. In some areas, 
such as immunotoxicity, short-term progress seems unlikely. The complexity of such effects 
probably means that alternative (e.g. systems biology) approaches will need to be investigated 
in the longer term. Ultimately, it seems unlikely that QSAR models for organ-specific and 
system-specific effects will be used directly for regulatory purposes, where the focus is on the 
assessment of apical endpoints. However, these models could become a useful contribution to 
priority setting exercises, and provide means of providing supporting information, such as on 
the mechanisms of toxicity. 

4.4 The Threshold of Toxicological Concern approach 

Chronic systemic toxicity studies after oral exposure have been used to develop the Threshold 
of Toxicological Concern (TTC) concept. The TTC is a generic human exposure level for 
chemicals below which there is low probability of risk to human health, assuming lifetime 
exposure. The principle of TTC is built on the premise that a safe level of exposure can be 
identified for chemicals present at low concentrations in the diet, even for those with 
unknown toxicity, on the basis of their chemical structure (Kroes et al., 2004). As such it can 
be used to support preliminary hazard characterisation and to set priorities in toxicity testing 
(Barlow, 2005). 

The idea that toxicologically insignificant exposure levels to chemicals exist was proposed by 
Frawley due to an increasing demand for toxicity testing (Frawley, 1967). Although his 
estimation of a threshold level was based on limited systemic toxicity studies, the concept 
became broadly accepted (Safford, 2008).  

The first toxicological threshold level for chemicals migrating from food packaging was 
developed by a probabilistic assessment of the distribution of carcinogenic potency data, from 
rodent lifetime studies (Rulis, 1992). Rulis proposed a level of exposure of 0.5 ppb equivalent 
to an intake of 1.5µg/day/adult (Safford, 2008) which would be protective for known and 
unknown carcinogens. The cut-off value was then accepted by the US Food and Drug 
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Administration (FDA) as a Threshold of Regulation (ToR), which meant that no further 
testing was required for substances migrating from packaging into food below this level of 
exposure. This was the first use of TTC concept for regulatory purposes.  

Further development of the TTC concept was carried out by Cheeseman and colleagues, who 
confirmed that the threshold level of 1.5µg/day, proposed by Rulis, is valid for most 
carcinogens, and that the dose would be protective also against other toxic endpoints  
(Cheeseman et al., 1999). They also proposed higher exposure threshold levels for chemicals 
lacking structural alerts for carcinogenicity, chemicals that were negative in genotoxicity 
testing and having acute toxicity (LD50) values above 1000mg/kg. 

The TTC approach was subsequently refined by different authors with the aim of providing a 
tiered approach based mostly on chemical structure and oral systemic toxicity data. Munro 
and colleagues developed a generic threshold for chemicals where non-carcinogenic toxic 
effects are expected, by evaluating the impact of chemical structure on toxicity. For this 
purpose they applied the Cramer decision tree, which places chemicals into three structural 
classes according to the level of concern based on systemic toxicity. The Cramer decision tree 
approach uses the knowledge on structure activity relationships, metabolism, chemical 
reactivity, human exposure levels and other relevant information (Cramer et al., 1978). The 
decision tree consists of 33 questions. Each question can be answered as yes or no, leading to 
the final classification of a chemical into one of three classes, reflecting the presumption of 
low, moderate and high toxicity. As a result substances are classified into one of three classes. 

• Class I (Low) contains substances of simple chemical structure with known metabolic 
pathways and innocuous end products which suggest a low order of oral toxicity.  

• Class II (Intermediate) contains substances that are intermediate. They possess 
structures that are less innocuous than those in Class 1 but they do not contain 
structural features that are suggestive of toxicity like those in Class 3.  

• Class III (High) contains substances with a chemical structure that permits no strong 
initial impression of safety and may even suggest a significant toxicity 

The Cramer scheme (and its Toxtree implementation, see 5.1) is applicable to organic 
molecules and their salts. Polymers, oligomers and inorganics cannot be classified by the 
decision tree. 

Munro et al. (1996) proposed human exposure thresholds of 1800, 540 and 90µg/person/day 
for classes  II and II, respectively. To further evaluate the thresholds proposed by Munro, an 
expert group was established by International Life Sciences Institute (ILSI) Europe. The 
group concluded that adverse effects on the nervous system, immune system, endocrine 
system and development were covered by the thresholds previously proposed by Munro for 
the three Cramer classes. An exception was identified for organophosphates, which are more 
toxic. For this group of substances, a specific TTC of 18 µg/person/day was derived (Kroes et 
al., 2004).  

The so-called “cohort of concern” was identified. This includes aflatoxin-like, azoxy- and 
nitroso- compounds, which are genotoxic, and TCDD (2,3,7,8-dibenzo-p-dioxin and its 
analogues) and steroids, which are endocrine disruptors. Since these groups of compounds 
were considered to result in the highest risks if present at very low concentrations in the diet, 
they were excluded from the TTC approach. Other exclusions from the TTC approach include 
polyhalogenated dibenzodioxins/dibenzofurans/biphenyls and heavy metals, all of which are 
known to accumulate in the body; and proteins, because of their allergenic potential. For 
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chemicals having structural alerts for genotoxicity but which do not belong to the cohort of 
concern, a TTC of 0.15 µg/day was recommended (Kroes et al., 2004). 

The ILSI expert group also proposed a decision tree to act as guidance on how and when the 
TTC principle could be applied as a preliminary step in safety evaluation of chemicals (Kroes 
et al., 2004). The decision tree is intended for use on chemicals with known structure and low 
molecular mass. Data on total human exposure are relevant for the successful application of 
the TTC approach.  

So far, the TTC approach has been successfully applied in the safety assessment of food 
contaminants migrating from packaging by the US FDA, as well as flavouring agents by the 
Joint FAO/WHO Expert Committee on Food Additives (JECFA). The European Food Safety 
Authority (EFSA) uses the TTC approach to evaluate flavouring substances, and the 
European Medicines Agency (EMA) uses it in support of marketing applications for 
genotoxic impurities in pharmaceutical preparations, and recommends a TTC of 1.5 µg per 
day for all but highly potent subset of compounds (EMEA, 2006). The US FDA also issued a 
(draft) guidance document on recommended approaches for genotoxic and carcinogenic 
impurities in drug products enumerating acceptable TTC values, e.g. 1.5 µg per day for both 
marketing applications and grater than 1-year clinical trials (FDA, 2008). The application of 
the TTC approach has also been explored for its applicability to consumer products (Safford 
2008; Felter et al., 2009). It has also been proposed that the TTC could be adapted for 
environmental risk assessment (Barlow, 2005).  

The scientific basis of the Cramer TTC scheme and its applicability in different regulatory 
areas has been assessed by various researchers (Phillips et al., 1987) and institutions. For 
example, an EFSA opinion on the applicability of TTC in the food and feed areas is currently 
being developed and will be published in 2011. 

4.4.1 Databases underlying the derivation of toxicological threshold values 

The main databases that have been used to develop the TTC concept and to derive structure-
based threshold values (as described in the above-mentioned studies) are summarised in Table 
4.4. 
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Table 4.4. Summary of Threshold of Toxicological Concern datasets  

 
Author Database (no of substances) Evaluated experimental data   Conclusions 
    
Rulis (1986) CPDB carcinogens (343) Chronic long term exposure Proposed ToR of 0.5 ppb equivalent to 

1.5µg/day adult intake 
Munro (1996) JECFA, US EPA IRIS, non tumour 

from NTP, DART, literature (611) 
Oral toxicity data from chronic, sub-chronic, 
reproductive, teratology studies 

Proposed TTC for the three Cramer classes: 
1880 µg/day for Class I; 540 µg/day for Class 
II; 90 µg/day for Class III 

CPDB carcinogens (709) 
 

Short-term toxicity data, genotoxicity testing Confirmation of the validity of 1.5µg/day for 
subsets of potent and non potent carcinogens  

Cheeseman (1999) 

RTECS (3306) 
RTECS (2542) 
 

Oral reproductive toxicity data 
Data from other repeat-dose toxicity tests 

Confirmation of the validity of 1.5µg/day for 
other toxic effects 

Munro DB  
JECFA, US EPA IRIS, non tumour 
from NTP, DART, literature (611) 
 
 

Subchronic neurotoxicity data (45) 
Acute neurotoxicitytoxicity data (37) 
Developmental neurotoxicity (52) 
Immunotoxicity (37) 
Developmental (81) 

Confirmation of TTC proposed for the three 
Cramer classes, also for other toxic endpoints  
Lower TTC of 18 µg/day for 
organophosphates  

ILSI working group (2000, 2004) 

Cheesman's CPDB carcinogens 
(709) extended (730) 

 Identified 5 groups of chemicals of highest 
concern “cohort of concern”: 3 groups of 
genotoxic compounds (aflatoxin-like 
compounds, azoxy-compounds, nitroso-
compounds) and 2 groups of endocrine 
disruptors (TCDD, steroids) 
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4.4.2 Software to support the derivation of toxicological threshold values 

One of the best known software tools for supporting TTC estimations is the JRC’s Toxtree 
software. Toxtree is a freely available open source software tool that estimates toxic hazard 
by applying a decision tree approach. It was developed by Ideaconsult Ltd (Bulgaria) under 
the terms of a JRC contract. It is designed to be user-friendly and flexible, being capable of 
extensions and revisions to its rulebases (plug-ins). Since it is licensed under the General 
Public License (GPL), any user has the right to modify and redistribute the software in 
accordance with the GPL licensing conditions. Toxtree can be downloaded from the JRC 
(http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=TOXTREE) and from Sourceforge 
(https://sourceforge.net/projects/toxtree/) 

The current version of Toxtree (v2.1.0, June 2010), includes the following plug-ins 
(rulebases) related to TTC assessment 

 
1) the original Cramer rulebase (Cramer et al., 1978; Figure 4.1) 
 
The Toxtree implementation of the original Cramer decision has been evaluated by 
Patlewicz et al. (2008). 
 
2) the Cramer rulebase with extensions (Figure 4.2)  

 
This rulebase (first available in v1.60, July 2009) works by assigning compounds to Class 
I, II, or III, according to the rules from Cramer, and some extra ones. Several compounds 
were classified by Munro as Class I or Class II compounds according to the Cramer rules, 
even though Munro reported low NOAEL values upon oral administration (indicating 
relatively high toxicity). To overcome such misclassifications, five rules were introduced 
to capture the possible toxicity of these compounds. This plug-in was developed by 
Curious-IT, The Netherlands, on behalf of JRC. 

 
3) the TTC decision tree of  Kroes et al. (2004). 

 
This rulebase (first available in v2.1.0) results in three possible outcomes: a) substance 
would not be expected to be a safety concern; b) negligible risk (low probability of a life-
time cancer risk greater than 1 in 106); and c) risk assessment requires compound-specific 
data. It incorporates the Benigni/Bossa rules for the identification of genotoxic 
carcinogens (developed earlier by ISS, Italy on behalf of the JRC), and requires the user 
to input the estimated daily intake. 

4.4.3 Summary and conclusions on the TTC approach 

The TTC approach has been applied successfully in the food safety area (especially in the 
evaluation of flavourings, food contact substances, and pesticide metabolites in groundwater). 
It has also been evaluated in terms of its applicability in other areas, including pesticide 
metabolites and degradation products (CRD, 2010), drinking water contaminants, and 
genotoxic consituents in herbal substances and preparations. There are ongoing discussions at 
the EU and international levels on how to harmonise the TTC approach across different food 
sectors, how to provide more detailed guidance on its application, and how to improve the 

http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=TOXTREE
https://sourceforge.net/projects/toxtree/
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scientific basis of individual building blocks (steps), such as the Cramer classification scheme 
(which is based on rules developed in 1978). Ongoing activities include the work of the EFSA 
Working Group on the Threshold of Toxicological Concern and the ILSI Europe Task Force 
on Risk Assessment of Chemicals in Food, which has recently established a working group on 
Chemical Risk assessment in Absence of adequate Toxicological Information. 

To take recent scientific advances into account, there is a short-term need (within 3 years) to 
clarify and refine some of the rules in the Cramer classification scheme. This could involve 
the rescoping, addition, deletion and reordering of one or more rules. In the medium term (3 
years and beyond), there is an opportunity to completely rebuild TTC assessment schemes 
based on newly developed methodologies, including toxicity and ADME prediction tools, as 
well as advanced in vitro test methods. 

In general, it is concluded that the use of currently available (Q)SAR prediction tools in food 
safety assessment will be most effective in the context of the TTC approach. This will require 
further research to identify the most suitable models/tools and to develop appropriate ways of 
interpreting and integrating the predictions they generate.  
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Figure 4.1. Cramer scheme (original). Yes branch in green. No branch in red. Terminal nodes 

(labelled 1, 2 & 3) refer to Cramer classifications I, II and III. 

 
 

 
 
Figure 4.2. Cramer scheme with extensions decision tree. Yes branch in green. No branch in red. 

Terminal nodes (labelled 1, 2 & 3) refer to Cramer classifications I, II and III. 
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5. PREDICTION OF GENOTOXICITY AND CARCINOGENICITY 

5.1 Introduction   
To date, hundreds of (Q)SAR models have been published in the literature for predicting 
genotoxicity and carcinogenicity, and there are numerous software packages implementing 
such models. The most commonly modelled endpoint for genotoxicity has been Ames test 
mutagenicity, whereas carcinogenicity models have focused mostly on the rodent bioassay. 
This chapter describes the background biology, the various methodologies used, and 
summarises some of the key conclusions from an extensive literature review concerning the 
predictivity and applicability of existing models (Serafimova et al., 2010). 

5.2 Background biology   
Mutagenicity refers to the induction of permanent transmissible changes in the amount or 
structure of the genetic material in cells or organisms. These changes may involve a single 
gene (point mutations), a block of genes or entire chromosomes (structural or numerical 
chromosome aberrations). Genotoxicity is a broader term and refers to processes that alter the 
structure, information content or segregation of DNA and which are not necessarily 
associated with mutagenicity. Such processes include unscheduled DNA synthesis (UDS), 
sister chromatid exchange (SCE), DNA strandbreaks, DNA adduct formation, and mitotic 
recombination. In many cases, genotoxicity may lead to cancer. Thus, genotoxicity testing is 
performed to assess the potential of substances to induce genotoxic effects which may cause 
heritable damage or lead to cancer in humans. A summary of different genotoxicity tests is 
given in Table 5.1. 

Chemicals are defined as carcinogenic if they induce tumours, increase tumour incidence 
and/or malignancy or shorten the time to tumour occurrence (ECHA, 2008). Traditionally, 
carcinogens have been identified from epidemiological studies or from animal experiments. 
Carcinogenic chemicals have conventionally been divided into two broad categories based of 
the presumed mode of action: genotoxic or non-genotoxic. Genotoxic carcinogens cause 
damage by interacting directly with DNA – many known mutagens are in this category. In 
contrast, non-genotoxic carcinogens cause “epigenetic” changes, i.e. effects that do not 
involve alterations in DNA but that may influence the carcinogenic process. The mechanistic 
understanding of the carcinogenic process differs considerably between the two modes of 
action. The distinction is not absolute – chemicals can be carcinogenic by both models of 
action. 

A unifying scientific theory for the mode of action of epigenetic carcinogens is still missing, 
because they act through a wide variety of different and specific mechanisms. For this reason, 
QSARs for epigenetic carcinogenicity are still in an early stage of development. A number of 
structural alerts (SAs) and characteristics of several types of non-genotoxic carcinogens have 
been summarised (Woo & Lai, 2003). Recognised mechanisms of non-genotoxic 
carcinogenicity include peroxisome proliferation, aryl hydrocarbon receptor (AhR) binding, 
inhibition of gap junctional intercellular communication, oxidative stress, alteration of DNA 
methylation, endocrine disruption and renerative cell proliferation (Woo & Lai, 2003). 

In contrast, in the case of genotoxic carcinogens, the electrophilic theory was introduced more 
than 25 years ago by James and Elizabeth Miller (Miller & Miller, 1981) who also led the 
way for the use of (Q)SAR in the prediction of genotoxicity and carcinogenicity. In general, 
genotoxic carcinogens have the unifying feature that they are either electrophiles or can be 
activated to electrophilic reactive intermediates (pro-electrophiles). The electrophilic theory 
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of genotoxic carcinogenicity has led to two main (Q)SAR approaches for modelling  
genotoxic chemicals: a) to identify the electrophilic functional groups or substructures, i.e. to 
develop SAR models based on structural alerts (SAs); and b) to find molecular descriptors 
which can be quantitatively related to the activity of the chemicals, i.e. to develop QSARs. 
Most studies have provided qualitative models (SARs), which provide a “coarse-grain” and 
mechanistically based approach for the identification of genotoxic potential. The mechanistic 
chemistry concerning the structural alerts associated with covalent DNA binding has been 
reviewed in detail by Enoch et al. (2010). In addition, although more challenging, numerous 
studies have attempted to develop quantitative models (QSARs), which provide a more 
precise means of assessing genotoxicity and carcinogenicity, mainly for congeneric sets of 
chemicals. Other studies have focussed on the development of decision tree approaches (e.g. 
Purdy, 1996).  
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Table 5.1 Genotoxicity test methods and endpoints 
Test  method Genotoxic endpoints EU method /  

OECD guideline 
   
In vitro test methods   
Bacterial reverse mutation test - Ames Mutagenicity: gene mutations EU B.12/13 

OECD 471 
In vitro mammalian cell gene mutation test – 
hprt test 

Mutagenicity: gene mutations EU B.17 
OECD 476 

In vitro mammalian cell gene mutation test – 
Mouse lymphoma assay 

Mutagenicity: gene mutations and 
structural chromosome aberrations 

EU B.17 
OECD 476 

In vitro mammalian chromosome aberration 
test 

Mutagenicity: structural and numerical 
chromosome aberrations 

EU B.10 
OECD 473 

In vitro micronucleus test Mutagenicity: structural and numerical 
chromosome aberrations 

EU (none) 
OECD 487 (draft) 

In vivo test methods, somatic cells   
In vivo mammalian bone marrow 
chromosome aberration test 

Mutagenicity: structural and numerical 
chromosome aberrations 

EU B.11 
OECD 475 

In vivo mammalian erythrocyte micronucleus 
test 

Mutagenicity: structural and numerical 
chromosome aberrations 

EU B.12 
OECD 474 

Unscheduled DNA synthesis (UDS) test in 
mammalian liver cells in vivo 

Genotoxicity: DNA repair EU B.39 
OECD 486 

Transgenic animal models Mutagenicity: gene mutations EU (none) 
OECD (none) 

In vivo alkaline single-cell gel electrophoresis 
assay for DNA strand breaks (Comet assay) 

Genotoxicity: DNA strand breaks EU (none) 
OECD (none 

Mammalian bone marrow Sister Chromatid 
Exchanges (SCE) 

Genotoxicity: DNA strand breaks and 
DNA adduct formation 

 

In vivo test methods, germ cells   
Mammalian spermatogonial chromosome 
aberration test 

Mutagenicity: structural and numerical 
chromosome aberrations 

EU B.23 
OECD 483 

Rodent dominant lethal test Mutagenicity: structural and numerical 
chromosome aberrations 

EU B.22 
OECD 478 

Transgenic animal models Mutagenicity: gene mutations EU none 
OECD none 

In vivo alkaline single-cell gel electrophoresis 
assay for DNA strand breaks (Comet assay) 

Genotoxicity: DNA strand breaks EU none 
OECD none 

Unscheduled DNA synthesis (UDS) test in 
testicular cells in vivo 

Genotoxicity: DNA repair  
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5.3 Databases ontaining information on genotoxicity and carcinogenicity 

A number of web-based databases provide access to experimental data for genotoxicity and 
carcinogenicity, and are thus useful for (Q)SAR development and assessment. Until recently, 
public toxicity databases were constructed primarily as “look-up-tables” of existing data, and 
most often did not contain chemical structures. However, modern technologies are now 
providing powerful tools to create new types of searchable databases, providing an effective 
means of linking toxicity with chemical structure. Some databases only allow information to 
be retrieved chemical-by-chemical but others provide the possibility to download an entire 
database. Several reviews have surveyed the status of public toxicity databases (Richard & 
Williams 2003; Benigni et al. 2008a). In this section, a short explanation is given of the main 
databases, and a summary is presented in Table 5.2. 

CPDB: The Carcinogenic Potency Database (CPDB) (http://potency.berkeley.edu/cpdb.html) 
provides a unique resource of the results of 6540 chronic, long-term animal cancer tests on 
1547 chemicals. The CPDB provides easy access to the bioassay literature, with qualitative 
and quantitative analyses of both positive and negative experiments that have been published 
over the past 50 years in the general literature through 2001 and by the National Cancer 
Institute/National Toxicology Program through 2004. The CPDB is downloadable in pdf, xls 
and txt formats, and is searchable by chemical name, CAS number, or author. 

Danish QSAR database: The Danish EPA has developed a (Q)SAR database as a free source 
of predicted toxicities (not experimental data) for over 166,000 chemicals. For information on 
genotoxicity, the database contains predictions for various types of Ames test as well as  a 
range of in vitro endpoints: chromosomal aberrations (CHO and CHL cells), gene mutation 
assays (mouse lymphoma/tk, CHO/hprt) and Unscheduled DNA Synthesis (UDS) in rat 
hepatocytes. A range of in vivo models are also included (Drosophila SLRL, mouse 
micronucleus, rodent dominant lethal assay, mouse Sister Chromatid Exchange (SCE) in bone 
marrow and mouse Comet assay). All these models were derived using the MULTICASE 
software. For information on carcinogenicity, the database includes (in addition to the 
genotoxicity models), eight MULTICASE FDA cancer models, rodent carcinogenic potency, 
hepatospecificity, oestrogenicity and aryl 33 hydrocarbon (AH) receptor binding. The Danish 
QSAR database can be freely accessed over the internet from the JRC website 
(http://ecbqsar.jrc.it/) and the Technical University of Denmark (DTU) website 
(http://130.226.165.14/). The database includes a flexible system for chemical structure and 
parameter searching. This database should be used with caution, since the data are not 
experimental data but predictions, many of which will not resultfrom use of the more recent 
models. 

DSSTOX: Both the CPDB and the online NTP database have been “chemically-indexed” in 
the DSSTox (Distributed Structure-searchableToxicity) database 
(http://www.epa.gov/ncct/dsstox), developed by US EPA’s National Center for 
Computational Toxicology (NCCT). DSSTOX emphasises quality procedures for accurate 
and consistent chemical structure annotation of toxicological experiments. Chemical 
structures and summary mutagenicity and carcinogenicity data have been published for the 
entire CPDB inventory (www.epa.gov/ncct/dsstox/sdf_cpdbas.html), along with the URL 
address locating the specific chemical data webpage on the CPDB website provided for each 
indexed chemical substance. Chemical structures and indicators of data availability have also 
been provided for the entire chemical inventory of the online NTP database, for each of the 
four main NTP study areas (developmental, immunological, genetox, and chronic cancer 
bioassays). 

http://potency.berkeley.edu/cpdb.html
http://ecbqsar.jrc.it/
http://130.226.165.14/
http://www.epa.gov/ncct/dsstox
http://www.epa.gov/ncct/dsstox/sdf_cpdbas.html


 

 47

ECHA CHEM: Information on susbtances evaluated under REACH are provided by ECHA 
CHEM, which is hosted by the European Chemicals Agency  (ECHA) 
(http://echa.europa.eu/chem_data_en.asp).   

ESIS: The European chemical Substances Information System (ESIS) is a freely accessible 
data via the JRC website (http://ecb.jrc.ec.europa.eu/esis/) providing information on 
chemicals related to: EINECS (European Inventory of Existing Commercial chemical 
Substances); ELINCS (European List of Notified Chemical Substances); NLP (No-Longer 
Polymers); the Biocidal Products Directive (BPD) active substances listed in Annex I or IA of 
Directive 98/8/EC or listed in the so-called list of “non-inclusions”; PBT (Persistent, 
Bioaccumulative, and Toxic) or vPvB (very Persistent and very Bioaccumulative) 
assessments of Existing Substances; Classification and Labelling (C&L), the Export and 
Import of Dangerous Chemicals listed in Annex I of Regulation (EC) No 689/2008; High 
Production Volume Chemicals (HPVCs) and Low Production Volume Chemicals (LPVCs), 
including EU Producers/Importers lists; IUCLID Chemical Data Sheets; EU Priority Lists and 
EU Risk Assessments produced under the Existing Substances Regulation (ESR). 

EXCHEM: This database (http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageENG.jsp) was 
developed by the Chemicals Investigation Promoting Council, Japan and was supervised by 
Office of Chemicals Safety Evaluation and Licensing Bureau Pharmaceutical and Food Safety 
Bureau Ministry of Health, Labour and Welfare, Japan. EXCHEM contains data for Ames 
mutagenicity, chromosomal aberrations and mouse micronucleus assays for more than 250 
HPV chemicals. Most of the information is in Japanese but there is also information in 
English. The database is searchable by CAS number and name. 

GAP: The Genetic Activity Profile Database was initially developed by US EPA and IARC, 
and now by ILS (http://www.ils-inc.com). Data on approx 300 chemicals were compiled from 
volumes 1-50 of the IARC Monographs and on 115 compounds identified as Superfund 
Priority Substances. The data (qualitative and quantitative) are displayed as graphic profiles 
and data tables for up to 200 short-term assays that range from bacterial tests to human 
studies in vivo. The latest version was produced in 2000 (GAP2000). A CD rom is available 
on request from ILS.  

IARC: The International Agency for Research on cancer (IARC) website provides access to 
the IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 
(http://monographs.iarc.fr/index.php). The IARC Monographs have reviewed more than 900 
chemcials and have identified more than 400 known, probable and possible carcinogens. The 
monographs are searchable by key word, CAS number, synonym or chemical name. 

ISSCAN: This database (http://www.iss.it/ampp/dati/cont.php?id=233&lang=1&tipo=7), 
developed by the Istituto Superiore di Sanità (Rome, Italy), contains information on more 
than 1150 chemical compounds tested with the long-term carcinogenicity bioassay on rodents 
(rat, mouse). Historically, this database was developed to support the development of (Q)SAR 
models for chemical carcinogenicity. ISSCAN is downloadable in pdf, xls and sdf formats, 
and is searchable by chemical name and CAS number. 

NTP: The US National Toxicology Program (NTP) (http://ntp.niehs.nih.gov) provides access 
to publicly available data from more than 500 two-year, two species, toxicology and 
carcinogenesis studies collected by the NTP and its predecessor, the National Cancer 
Institute's Carcinogenesis Testing Program. The NTP database also contains results relating to 
approximately 300 toxicity studies from shorter duration tests and from more than 2000 
genetic toxicity studies, including both in vitro and in vivo tests. In addition, test data from the 
immunotoxicity, developmental toxicity and reproductive toxicity studies are continually 

http://echa.europa.eu/chem_data_en.asp
http://ecb.jrc.ec.europa.eu/esis/
http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageENG.jsp
http://www.ils-inc.com/
http://monographs.iarc.fr/index.php
http://www.iss.it/ampp/dati/cont.php?id=233&lang=1&tipo=7
http://ntp.niehs.nih.gov/
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being added to this database. The data can be accessed as technical reports; the user can 
browse them directly, make searches (by chemical name or CAS number, for example), or 
download the reports in pdf form.  

ToxRefDB: This database (http://www.epa.gov/ncct/toxrefdb/) was developed by the NCCT, 
in partnership with EPA's Office of Pesticide Programs (OPP), to store data from in vivo 
animal toxicity studies. The original aim was to populate ToxRefDB with pesticide 
registration toxicity data that has been historically stored as hard-copy and scanned 
documents by OPP. ToxRefDB currently includes chronic, cancer, sub-chronic, 
developmental, and reproductive studies on 330 chemicals, many of which are pesticide 
active ingredients. ToxRefDB is downloadable in xls format but without structural 
information. 

TOXNET: The TOXNET database of the US National Library of Medicine (NLM) 
(http://toxnet.nlm.nih.gov) is a cluster of different databases, collecting information on 
toxicology, hazardous chemicals, environmental health, and toxic releases. From the website, 
it is possible to search within and across the databases by several identifiers, such as chemical 
name, CAS number, molecular formula, classification code, locator code, and structure or 
substructure. Among the TOXNET databases, the Chemical Carcinogenesis Research 
Information System (CCRIS) and the GENE-TOX databases deal specifically with 
mutagenicity and carcinogenicity data. CCRIS contains over 9000 chemical records with 
animal carcinogenicity, mutagenicity, tumour promotion, and tumor inhibition test results 
provided by the National Cancer Institute (NCI). Test results have been reviewed by experts 
in carcinogenesis and mutagenesis. GENE-TOX was developed by the US EPA and contains 
genetic toxicology (mutagenicity) test data, resulting from expert peer review of the open 
scientific literature, on over 3000 chemicals. 

http://www.epa.gov/ncct/toxrefdb/
http://toxnet.nlm.nih.gov/
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Table 5.2 Public databases for genotoxicity and carcinogenicity 
Database (name and link) Information 
Benchmark Data Set 
for In silico Prediction of Ames Mutagenicity 
http://ml.cs.tu-berlin.de/toxbenchmark/ 

Ames mutagenicity databaset for 6500 compounds, made 
freely available by Berlin University of Technology. 
Downloadable sdf files. 

Carcinogenic Potency Database (CPDB) 
http://potency.berkeley.edu/cpdb.html 

Contains of the results of 6540 chronic, long-term animal cancer 
tests on 1547 chemicals 

Danish QSAR database 
DTU site: http://130.226.165.14/ 
JRC site: http://ecbqsar.jrc.ec.europa.eu/ 

Searchable database of predictions for approx 166,000 
chemicals. The predictions are based on MulitCase 
models developed by the Danish EPA. 

DSSTox (Distributed Structure-searchable 
Toxicity) database 
www.epa.gov/ncct/dsstox 

The DSSTox website provides a public forum for publishing 
downloadable, structure- searchable, standardized chemical structure 
files associated with toxicity data 

GAP – Genetic Activity Profile Database initially 
developed by US EPA and IARC, and now by ILS 
(http://www.ils-inc.com). CD rom available on 
request 

Data on approx 300 chemicals from volumes 1-50 of the IARC 
Monographs and on 115 compounds identified as Superfund Priority 
Substances. Latest update in 2000. 

European Chemical Substances Information 
System (ESIS). Freely accessible from the JRC ex-
ECB website: 
http://ecb.jrc.ec.europa.eu/esis/  

Information on chemicals related to: EINECS, the European List of 
Notified Chemical Substances (ELINCS); No-Longer Polymers 
(NLP) list; High Production Volume Chemicals (HPVCs); Low 
Production Volume Chemicals (LPVCs); Classification and 
Labelling (C&L); IUCLID chemical data sheets; EU priority lists 
and risk assessments performed under the Existing Substances 
Regulation (ESR); active substances listed on Annex 1 or 1A of the 
Biocidal Products Directive as well as substances that are “non-
inclusions”;  Existing Substance evaluated in relation to their PBT 
properties. 

Existing Chemicals Examination (EXCHEM) 
database  (Japan) 
http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageE
NG.jsp 

Contains data for Ames mutagenicity, chromosomal aberrations and 
mouse micronucleus assays for more than 250 HPV chemicals 

Istituto superiore di Sanità database (ISSCAN)  
http://www.iss.it/ampp/dati/cont.php?id=233&lan
g=1&tipo=7 

Contains information on more than 1150 chemical compounds tested 
with the long-term carcinogenicity bioassay on rodents as well as 
mutagenicity data for more of them. 

Monographs on the Evaluation of Carcinogenic 
Risks to Humans  
http://monographs.iarc.fr/index.php 

A series of scientific reviews that studied more than 900 agents and 
have identified more than 400 known, probable and possible 
carcinogens. 

National Toxicology Program  (NTP) database  
http://ntp.niehs.nih.gov 

 

Contains data from more than 500 two-year, two species, toxicology 
and carcinogenesis also contains results collected on approximately 
300 toxicity studies from shorter duration tests and from more than 
2000 genetic toxicity studies, some of which include both in vitro 
and in vivo tests 

Toxicity Reference Database (ToxRefDB) 
http://www.epa.gov/ncct/toxrefdb/ 

Includes chronic, cancer, sub-chronic, developmental, and 
reproductive studies on 330 of chemicals, many of which are 
pesticide active ingredients 

TOXNET database of the National Library of 
Medicine (NLM), including the Carcinogenesis 
Research Information System database (CCRIS)  
and the Genetic Toxicology Databank (GENE-
TOX) 
http://toxnet.nlm.nih.gov/ 

CCRIS contains over 9000 chemical records with animal 
carcinogenicity, mutagenicity, tumour promotion, and tumor 
inhibition test results.  
GENE-TOX contains genetic toxicology (mutagenicity) test data, 
resulting from expert peer review of the open scientific literature, on 
over 3000 chemicals 

http://ml.cs.tu-berlin.de/toxbenchmark/
http://potency.berkeley.edu/cpdb.html
http://130.226.165.14/
http://ecbqsar.jrc.ec.europa.eu/
http://www.epa.gov/ncct/dsstox
http://www.ils-inc.com/
http://ecb.jrc.ec.europa.eu/esis/
http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageENG.jsp
http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageENG.jsp
http://www.iss.it/ampp/dati/cont.php?id=233&lang=1&tipo=7
http://www.iss.it/ampp/dati/cont.php?id=233&lang=1&tipo=7
http://monographs.iarc.fr/index.php
http://ntp.niehs.nih.gov/
http://www.epa.gov/ncct/toxrefdb/
http://toxnet.nlm.nih.gov/
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5.4 Structure-activity relationships for non-congeneric chemicals 
One of the simplest and best known approaches to predict genotoxicity and carcinogenicity 
for structurally diverse chemicals is based on the use of SAs, sometimes accompanied by 
modulating factors. This section traces the development of the main SA-based approaches. 

The first list SAs for mutagenicity was proposed by Ashby (Ashby, 1985), who subsequently 
extended the lists with additional SAs as well as some detoxifying functionalities (Ashby & 
Tennant, 1988; Tennant & Ashby, 1991). The resulting 19 SAs are referred to collectively as 
the Ashby poly-carcinogen model, often represented by a fictitious chemical structure 
containing all of the alerts (Figure 5.1). 
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Figure 5.1 Ashby’s poly-carcinogen model, modified after Ashby and Tennant (1988) and 

Tennant and Ashby (1991) 

Bailey et al. (2005) generated a list of 33 SAs for regulatory use in the US FDA. This list was 
based on the Ashby alerts and on a list compiled by Munro et al. (1996). 

Kazius et al. (2005) produced another list of SAs by using a combination of data mining and 
expert knowledge. This list contains 29 SAs accompanied with detoxifying fragments and is 
reported to classify its training set (2401 mutagens and 1936 non-mutagens) with an accuracy 
of 82%.  

The Laboratory of Mathematical Chemistry (LMC, Bourgas, Bulgaria) has developed a list of 
17 SAs. These are implemented in the OASIS TIMES software (see below). 

More recently, Benigni and Bossa (2008) combined the above sources and some information 
from the OncoLogic software to generate a list of 33 SAs. Five of the Benigni-Bossa alerts 
refer to non-genotoxic mechanisms of action and several of them have accompanying 
modulating factors. The reported accuracy of prediction is 78% for mutagenicity and 70% for 
carcinogenicity, based on an analysis of the ISSCAN database. The Benigni-Bossa SAs is 
implemented in the Toxtree software and in the OECD QSAR Toolbox (see below). 

The relationships (overlaps) between the different lists of SAs are illustrated in Figure 5.2. 
For the purpose of this Venn diagram, comparison between alerts was based simply on the 
main functional group in the SA and not on exact matches between whole alerts. In the 
different lists, SAs are described with different levels of detail. At present, the most 
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comprehensive list of SAs is the Benigni-Bossa list (the number of the SAs containing in the 
Bailey list is the same but many of these alerts contain the same functional group and 
different substitutes).  

 
Figure 5.2 Comparison between the Ashby, Benigni-Bossa, LMC, Bailey and Kazius lists of SAs  

 

5.5 Software for predicting genotoxicity and carcinogenicity  

Genotoxicity and carcinogenicity prediction is featured in a wide range of commercial and 
freely available software tools, the most commonly used of which are described below. A 
summary is given in Table 5.3. 

CAESAR: A statistical model for mutagenicity was developed and released as an open source 
software tool in the frame of the EU CAESAR project (http://www.caesar-project.eu/). Gini 
and colleagues (Ferrari et al., 2009) used the Support Vector Machine (SVM) classification 
method to develop a model based on the 4225 compounds from the Kazius-Bursi 
mutagenicity database. The authors reported correct classification rates of 92.3% and 83.2% 
for the training and test sets, respectively. The results were considered to be in the same order 
of magnitude as experimental error. No information was provided about the applicability 
domain. In order to minimise the number of false negatives, the authors investigated the 
combined use of their model with some SAs from the Benigni-Bossa rulebase (using 
Toxtree). As expected, the results showed that the number of false negatives could be reduced 
but this was at the expense of increasing the number of the false positives. This resulted in a 
slight change in accuracy of 1.1% less. The authors concluded that by using the so-called 
“cascade model”, a classification accuracy close to the reliability of the Ames test data could 
be achieved. In fact, they achieved this accuracy by using just the SVM classification 
algorithm. 

In the CAESAR project, two complementary approaches (regression and classification) were 
applied to develop models for carcinogenicity. The original dataset, extracted from the CPDB, 
consisted of 805 chemicals with rat TD50 values. This dataset was spit into training (n=644) 
and test (n=161) sets. The regression model was developed by applying a Monte Carlo 

http://www.caesar-project.eu/
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method to TD50 data. The classification model was developed by applying the Counter-
Propagation Artificial Neural Network (CP-ANN) method and a set of MDL descriptors. The 
authors reported an accuracy of classification of 91-96% for the training set and 68-74% for 
the test set.  

Derek: This is a commercial system developed and marketed by Lhasa Ltd (Sanderson & 
Earnshaw, 1991). The development of knowledge-based rules in Derek is overseen by 
collaborative group which consists of representatives from commercial, educational and non-
profit organisations. The current version of Derek (v. 12; released in December 2009) 
contains 89 alerts for mutagenicity, 77 for chromosome damage, and 61 for carcinogenicity. 
The chromosome damage alerts are based primarily on data from the in vitro chromosome 
aberration test, however additional assays (in vivo chromosome aberration test, in vitro and in 
vivo micronucleus test and L5178Y TK+/- assay) have been considered when writing alerts, 
and some alerts are entirely based on alternative assays.  The chromosome damage alerts 
cover both direct DNA damage and other genotoxic mechanisms. 

The hazard assessment in Derek is usually justified with relevant literature references, which 
give the user more confidence in the predictions. The main advantages of the system are the 
transparency in the predictions, the fact that the rule development is peer-reviewed by a user 
group, and new rules can be added easily. It should be noted that Derek does not provide 
negative predictions (the absence of a predicted hazard simply means that no relevant alerts 
were identified; it does not necessarily mean the absence of hazard). A QMRF for the Derek 
mutagenicity model is available in the JRC QSAR Model Database. 

Crettaz and Benigni (2005) assessed the ability of Derek to qualitatively predict the rodent 
carcinogenicity and the genotoxic potential of 60 pesticides registered in Switzerland. The 
percentage of false negatives was 31% for carcinogenicity. The associated sensitivity of 69% 
indicates that most of the pesticides with positive rodent bioassay results were detected by 
Derek. On the other hand, the low specificity of 47% is equivalent to a false positive rate of 
53%. Such chemicals would be predicted as carcinogenic while rodent bioassays would not 
confirm this potential.  

In a recent EFSA-sponsored study on the applicability of TTC concept to pesticides and their 
metabolites carried out by the Chemicals Regulation Directorate (UK), Derek was used to 
predict the genotoxicity and carcinogenicity of 100 randomly selected pesticide active 
substances (CRD, 2009). It was concluded that Derek is not reliable predictor for these two 
endpoints. However, authors note that the dataset of 100 compounds is inevitably biased by 
excluding compounds with high genotoxic potential. When the analysis focused on 
compounds of greatest potential concern, those with positive study results for both tumours 
and genotoxicity, the predictivity based on an alert for either genotoxicity or carcinogenicity 
was good (10/12 correct), although the ratioanle for the prediction was often incorrect. It was 
concluded that additional work should be performed on the reliability of genotoxicity 
predictions from Derek and other (Q)SAR programs. 

HazardExpert:  The HazardExpert models (Smithing & Darvas, 1992) are proprietary, the 
software now being marketed by CompuDrug Ltd. The program works by searching the query 
structure for known toxicophores that are derived from the literature in the field of QSAR or 
from the US EPA and Interagency Testing Committee (ITC) monographs. Predictions are 
made in four levels of toxicity, taking into account the effects of bioavailability and 
bioaccumulation.  

As an evaluation of its ability to predict human and animal carcinogenicity, 192 agents 
evaluated in the IARC Monographs (volumes 1-42) were processed through Hazardexpert 
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(Dearden et al., 1997). The difference between the classification in the IARC list and that 
assessed by Hazardexpert was used for the analysis. As a result, some important fragments 
were found to be missing from the toxic fragments database, including vinyl chlorides, 
organophosphates, organometallic compounds, and isocyanates.  

In a separate evaluation study based on 80 NTP chemicals (56 rodent carcinogens; 24 non-
carcinogens), HazardExpert was found to have an overall concordance of 51%, and to be 
good at identifying non-carcinogens (specificity of 81%), but poor at identifying carcinogens 
(sensitivity of 36%).  

Lazar: The predictive performance of Lazar was assessed by Helma (2006), who used a 
training set of 1447 chemicals from the CPDB and 4337 chemicals from the Kazius/Bursi 
database for external validation. Leave-one-out and external validation experiments indicated 
that Salmonella mutagenicity can be predicted with 85% accuracy for compounds within the 
applicability domain of the CPDB. The LOO accuracy of Lazar predictions for rodent 
carcinogenicity was reported as 86%, and the accuracies for other carcinogenicity endpoints 
varied between 78 and 95% for structures within the applicability domain. A QMRF for Lazar 
mutagenicity is under preparation. 

MDL QSAR: This is a commercial software tool originally developed by MDL and now 
marketed by Symyx Ltd (see above). The software has been used by Contrera et al. (2005a) to 
develop discriminant models for bacterial mutagenicity using a dataset of over 3000 
chemicals and with sensitivity, specificity and concordance of 81%, 76% and 81%, 
respectively. These models are not readily transferable and thus of limited practical used.  

Valerio et al. (2007) evaluated the utility of a discriminant analysis modelling approach 
(MDL-QSAR) to estimate the carcinogenic potential of small, organic, naturally occurring 
chemicals found in the human diet. They used as a training set of over 1200 chemicals, 
comprised primarily of pharmaceuticals, industrial chemicals and some natural products. A 
sample set of 123 naturally occurring chemicals found in the human diet with known low and 
high risk potential as rodent carcinogens, and a control group of 19 synthetic dietary 
chemicals with known high carcinogenic potential were use as a test set. The predictive 
performance based on this test set was an overall concordance of 80%, a sensitivity of 97%, 
and a marginal specificity of 53%. These results support the usefulness of the MDL-QSAR 
software in identifying the rodent carcinogenic potential of naturally occurring organic 
chemicals. As also noted by the authors, further assessment of the software will be needed for 
a wider range of dietary chemicals. 

MolCode Toolbox: This commercial tool developed and marketed by Molcode Ltd includes 
modules for Ames mutagenicity and female rat carcinogenicity. 

MultiCASE: The MultiCASE models are proprietary. The software has been widely used by 
the Danish EPA to build models for a range of genotoxicity and carcinogenicity endpoints. 
Genotoxicity models include Ames mutagenicity (two models), direct mutagenicity, base-pair 
mutagenicity, frame-shift mutagenicity, chromosomal aberrations (two models), mouse 
micronucleus assay, mouse sister chromosomal exchange. Carcinogenicity models include 
rat, mouse, female, male carcinogenicity, TD50 rat, mouse carcinogenicity. The Danish EPA 
reported concordances between 56-100% for the different models 
(http://www.mst.dk/English/Chemicals/Substances_and_materials/QSAR/). More information 
on these models, and pre-generated predictions for over 166,000 chemicals and can be found 
at the DTU website http://130.226.165.14/) as well the as JRC website (http://ecbqsar.jrc.it/). 
The Danish database includes a flexible system for chemical structure and property searching. 

http://www.mst.dk/English/Chemicals/Substances_and_materials/QSAR/
http://130.226.165.14/
http://ecbqsar.jrc.it/
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In a study by Matthews and Contrera (1998), MCASE was used with numerous in-house 
modifications of the system, including: a) enhancement of the size of the control database 
modules; b) optimization of MCASE SAR assay evaluation criteria; c) incorporation of a 
carcinogenic potency scale for control compound activity and MCASE biophores; d) 
construction of individual rodent gender and species-specific modules; and e) use of assay 
acceptance criteria for query and control database compounds. The optimised system was 
reported to demonstrate excellent sensitivity for carcinogens (97%), and specificity for non-
carcinogens (98%), in a test set of 126 chemicals. While these seem like very promising 
results, they are not verifiable: the MCASE model is not readily transferable, and the data 
used are confidential and therefore are not available for use in the development other 
modelling methodologies or to assist in the assessment of the improved MCASE system. 
Similar studies have been carried out more recently by Matthews and co-workers, with more 
extensive datasets (Matthews et al., 2006a, 2006b). 

OASIS/TIMES: The hybrid approach has been used by Mekenyan and colleagues to develop 
models for Ames mutagenicity and chromosomal aberration. These models are implemented 
in the OASIS TIMES software. Each SA is accompanied by modulating factors, to account 
for the influence of the rest of the molecule, as well as with defined and documented 
mechanism of interaction with DNA (for the mutagenicity model) and/or nuclear proteins and 
enzymes (for the chromosomal aberration model). Expert knowledge was used to define the 
SAs and the mechanistic basis for prediction (interaction with biological macromolecules) is 
well documented. A pattern recognition approach (COREPA) was used to derive modulating 
factors for each SA.  

In contrast to other models for genotoxicity, the OASIS models include a liver metabolic 
simulator based on documented metabolic pathways. The training sets used for the models 
were split into chemicals that are mutagenic without metabolic activation, mutagenic after 
metabolic activation, and non mutagenic with and without metabolic activation. This is an 
important advantage of the OASIS/TIMES software, because the role of metabolism is rarely 
accounted for. To demonstrate the importance of metabolism, the authors showed that when 
predictions are obtained without using the metabolic simulator for chemicals known to be 
active after metabolic activation, the sensitivity was dramatically decreased to 22% The main 
disadvantage of the OASIS/TIMES software is that it is a little bit slower than other software.  

OECD Toolbox: The current version of this software (http://toolbox.oasis-lmc.org; 
http://www.qsartoolbox.org/) implements five so-called “profilers” connected with 
genotoxicity and carcinogenicity. Two are general mechanistic profilers: DNA binding by 
OECD (OECD, 2010) and DNA binding by OASIS (Serafimova et al., 2007); and three are 
endpoint-specific: micronucleus alerts by Benigni/Bossa (Benigni et al., 2009); 
mutagenicity/carcinogenicity alerts by Benigni/Bossa (Benigni et al., 2008b) and Oncologic 
Primary classification (see below).The OECD Toolbox also includes a few databases with 
experimental data that can be used to support grouping and read-across: a) the ISSCAN 
database – 1149 chemicals containing data for carcinogenicity and Ames mutagenicity; b) the 
CPDB database – 1536 chemicals containing data for Ames mutagenicity and 
carcinogenicity; c) the OASIS Genotox database – 7500 chemicals with data for Ames 
mutagenicity and chromosomal aberrations as well as data for metabolism; d) the Toxicity 
Japan MHLW database – 252 chemicals containing data for Ames mutagenicity e) the 
Micronucleus ISSMIC database – 142 chemicals with data from in vivo Micronucleus assay; 
f) the Micronucleus OASIS  database – 557 chemicals with data from in vivo Micronucleus 
assay. The Toolbox also includes the Danish EPA database containing predicted data of 
different genotoxicity and carcinogenicity endpoints for more than 166,000 chemicals. 

http://toolbox.oasis-lmc.org/
http://www.qsartoolbox.org/
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Oncologic: Oncologic is a knowledge-based system developed by LogicChem Inc (Woo & 
Lai, 2005). It can be freely download from the US EPA website 
(http://www.epa.gov/oppt/sf/pubs/oncologic.htm). It uses a series of hierarchically ordered 
rules to describe and predict the carcinogenic potential of chemicals. These rules have been 
developed in collaboration with the structure-activity team at the US EPA’s Office of 
Pollutions Prevention and Toxics. The current version (December 2009) includes over 40,000 
rules based on knowledge and generalisations derived from the examination of more than 
10,000 chemicals belonging to approximately 50 chemical classes. The main advantages of 
the system are that it includes a large amount of human knowledge, the predictions are 
restricted to those classes for which adequate knowledge is available, and reports usually 
include supporting information to justify the prediction. The main disadvantages are that there 
is no possibility for batch calculations, and the system requires some chemistry expertise, 
with the user needed to take decisions step-by-step during the prediction. 

TOPKAT: The TOPKAT models are proprietary. According to one study (Enslein et al., 
1994), the accuracy of mutagenicity and carcinogenicity predictions are extremely high: 98% 
(against a mutagenicity dataset of 1083 chemicals) and 99.6% (against a carcinogenicity 
dataset of 705 chemicals), respectively. However, some subsequent evaluation studies (Prival, 
2001) indicate that for external sets of chemicals, the accuracy of TOPKAT prediction is 
considerably lower (40-75% against datasets of 30-40 chemicals) and these results were not 
significantly better when the analyses were restricted to predictions made inside the OPS. 

Toxtree: Toxtree currently includes two modules for mutagenicity and carcinogenicity 
prediction – the Benigni-Bossa rulebase (which expands on the Ashby supermutagen model; 
see above) and the ToxMic rulebase for the in vivo micronucleus assay (Benigni et al., 2010). 
The developers have reported an accuracy of prediction around 70% for carcinogenicity, 78% 
for mutagenicity and 59% for the in vivo micronucleus assay (Benigni et al., 2009). 

http://www.epa.gov/oppt/sf/pubs/oncologic.htm
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Table 5.3 Software for genotoxicity and carcinogenicity 
Software Availability Comments  (endpoints predicted, applicability and 

performance)  
CAESAR 
http://www.caesar-project.eu/ 

Freely 
available 

Mutagenicity, carcinogenicity 
 

Derek (Lhasa Ltd.) 
http://www.lhasalimited.org 

Commercial Mutagenicity, chromosome damage, genotoxicity, 
carcinogenicity, peroxisome proliferation 

GAP – Genetic Activity Profile 
Database developed by US EPA 

Not readily 
available. 
Used in-house 
by US EPA 

Data on 299 chemicals compiled by IARC and US EPA. 
Data are available on 299 compounds selected from 
volumes 1-50 of the IARC Monographs and on 115 
compounds identified as Superfund Priority Substances. 

HazardExpert 
http://www.compudrug.com 

Commercial Mutagenicity, oncogenicity 

Lazar  
http://lazar.in-silico.de 

Freely 
available 

Ames mutagenicity, carcinogenicity 

MDL-QSAR 
http://www.symyx.com/ 

Commercial Carcinogenicity 

MolCode Toolbox 
http://molcode.com/ 

Commercial Ames mutagenicity, carcinogenicity 
 

Multicase (MCASE/MC4PC) 
MultiCASE Inc 
http://www.multicase.com 

Commercial Research tool - applies a statistical approach that 
automatically identifies molecular substructures that have 
a high probability of being relevant to the observed 
biological activity. Requires a learning set comprised of a 
mix of active and inactive molecules of diverse 
composition.  

OASIS – TIMES 
http://www.oasis-lmc.org 

Commercial Ames mutagenicity, chromosomal aberrations 
 

OECD Toolbox 
http://toolbox.oasis-lmc.org 
http://www.qsartoolbox.org/ 

Freely 
available 

Includes two so-called “profilers” associated with 
genotoxicity and carcinogenicity, as well as three 
databases with experimental data that can be used to 
support grouping and read-across 

OncoLogic™ 
http://www.epa.gov/oppt/newchems
/tools/oncologic.htm 

Freely 
available 

Carcinogenicity  

PASS 
Institute of Biomedical Chemistry of 
the Russian Academy of Medical 
Sciences, Moscow 
http://ibmc.p450.ru/PASS// 

Commercial Classification models giving probability of mutagenic 
effects. There are two models, one for Ames 
mutagenicity, and another covered multiplein vitro and in 
vivo mutagnicity endpoints in mammals. 

TOPKAT (Accelrys) 
http://www.accelrys.com 

Commercial Ames mutagenicity, carcinogenicity 

Toxtree 
http://ecb.jrc.ec.europa.eu/qsar/ 

Freely 
available 

Includes modules for mutagenicity, carcinogenicity, and 
the in vivo micronucleus assay 

 

http://www.caesar-project.eu/
http://www.lhasalimited.org/
http://www.compudrug.com/
http://lazar.in-silico.de/
http://www.symyx.com/
http://molcode.com/
http://www.multicase.com/
http://www.oasis-lmc.org/
http://toolbox.oasis-lmc.org/
http://www.qsartoolbox.org/
http://www.epa.gov/oppt/newchems/tools/oncologic.htm
http://www.epa.gov/oppt/newchems/tools/oncologic.htm
http://ibmc.p450.ru/PASS/
http://www.accelrys.com/
http://ecb.jrc.ec.europa.eu/qsar/
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5.6 Literature reviews and comparative evaluation studies 
The literature relating to the in silico prediction of genotoxicity and carcinogenicity is huge, 
with more than 100 papers dedicated to (Q)SARs. A list of reviews, expert opinions and 
evaluation studies published since 2000 is given in Table 5.4. Given the extent of the 
literature in this field, this section focuses on key findings from evaluation studies that have 
compared the performances of different models, including software models. A range of 
“multi-model evaluation studies” have been summarised by Benigni et al. (2007). A 
representative selection of evaluation studies is described below. 

Zeiger et al. (1996) used 100 NTP chemicals to compare ability of two computer systems 
(TOPKAT and CASE), one physicochemical screening test and one human expert system to 
predict Salmonella mutagenicity. The three structure-based systems produced equivalent 
results (71-76% concordance), whereas the physicochemical system produced a lower (61%) 
concordance. Similar results for Derek and TOPKAT were reported by Cariello et al. (2002) - 
the accuracy of prediction of Ames mutagenicity by Derek was 65% (against a dataset of 400 
GlaxoSmithKline chemicals). The overall concordance for TOPKAT was 73% but it should 
also be noted that TOPKAT was capable to predict 300 out of the 400 chemicals. 

Two other evaluation exercises were devised by the NTP. In the first exercise (Benigni, 
1997), regarding the prediction of rodent carcinogenicity for 44 chemicals, different 
approaches were compared: computer-based systems (CASE, TOPKAT, Derek, COMPACT), 
human experts (Benigni, Tennant and Ashby, Weisburger and Lijinsky) and experimental 
data. For the structure-based approaches the overall accuracy was in the range 50-65%, 
whereas the Tennant and Ashby approach attained an accuracy of 75%. In the second 
exercise, based on 30 chemicals, the list of methods was extended. In this second exercise, the 
highest overall accuracy achieved was 60-65% (Benigni & Zito, 2004). 

An informative survey was performed by Benigni and Bossa (2008a). They summarised the 
outcomes of a series of external prediction exercises performed by various investigators with 
three non-local models in the commercial domain: MultiCase, TOPKAT, and Derek. The 
results included those obtained in the prospective prediction exercises by the NTP as well as 
several studies performed by companies using in-house datasets. The common characteristic 
of these studies is that the chemicals to be predicted were different from those used in the 
training sets by the model developers, and were performed independently. It was found that 
the predictions for external chemicals vary considerably both in terms of overall accuracy and 
in terms of relative proportions of true and false positives. The observations for TOPKAT and 
MultiCase were similar to those for Derek. These findings contrast with the usually good 
performances reported by the model developers, as assessed on large non-congeneric 
databases. 

Mayer et al. (2008) compared the abilities of several computer-based models (OncoLogic, 
MultiCASE, Ashby-Tennant structural alerts) to predict carcinogenicity with several 
genotoxic tests (Ames, mouse lymphoma assay and chromosomal aberration). Using data for 
650 chemicals from the CPDB database, the authors found that the (Q)SAR methods 
produced a higher concordance frequency (71% to 88% versus 62% to 75% for genetic tests) 
and lower percentage of false negatives (8.6% to 27% versus 20% to 39% for genetic tests).  

Similar findings were reported by Snyder (2009) who compared the carcinogenicity test 
results of 545 marketed drugs with genotoxicity assay results. The data were taken primarily 
from the Physicians Desk Reference (PDR; 1999-2008). The analysis included an evaluation 
of the predictivity of Derek and MCASE/MC4PC. The authors reported a low predictability 
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of carcinogenicity based on the genotoxic assays. The two software programs performed 
reasonably well, and better than the in vitro genotoxic assays, in terms of high specificity 
(low percentage of false positives) and overall concordance. The weakness of the software 
was the low sensitivity of both programs, but it was still higher than that performed from in 
vitro assays. 

Building on the study using MDL QSAR study by Valerio and colleagues (2007), Mazzatorta 
et al. (2009) examined the performance of a wider series of in silico tools for predicting the 
carcinogenicity of natural chemicals. They extracted 50 chemicals from the Valerio data set, 
the majority of which were pyrrolidine alkaloids and phenolic-type compounds (20 high-risk 
and 30 low-risk chemicals in terms of carcinogenicity) and they applied two statistical models 
(MC4C and Lazar) and three knowledge-based expert systems (Toxtree, Derek and 
OncoLogic). Based on the results, the authors categorised the models into three performance 
groups. The first group - high sensitivity (>90%) and low to medium specificity (<68%) - 
includes OncoLogic. The second group - medium sensitivity and specificity (between 58 and 
80%) - includes MC4PC and Lazar. The third group - low sensitivity (<41%) and high 
specificity (>74%) includes Derek and Toxtree. These results indicate that the carcinogenicity 
potential of naturally occurring chemicals can be reliably predicted by using a battery of 
software tools that combine high sensitivity (thereby minimising false negatives) and high 
specificity (thereby minimising false positives). 

The battery approach was also investigated by Matthews et al. (2008), who explored the 
combined use of MC4PC, MDL-QSAR, BioEpisteme, Leadscope PDM and Derek in 
predicting carcinogenic potential. They found that the use positive predictions from any two 
programs showed better overall performance than use of the single programs alone, with a 
sensitivity of about 85% and specificity of 58%. When focussing on defined modes of action, 
the authors reported that consensus positive predictions of carcinogenicity by two QSAR 
programs could detect 99% of the carcinogens (including both genotoxic and nongenotoxic 
carcinogens) in the study. 

The results of (Q)SAR evaluation studies such as those described here can also be placed into 
context by considering the results of a study by Kirkland et al. (2005) who evaluated the 
abilities of some of the most commonly used in vitro genotoxicity tests (Ames, mouse 
lymphoma assay (MLA), in vitro micronucleus (MN) and chromosomal aberrations (CA) as 
well as battery of three of these tests) to discriminate rodent carcinogens from non-
carcinogens. The authors based their comparison on a large dataset of over 700 chemicals 
compiled from the CPDB, NTP and IARC databases as well as other publications. It was 
found that combinations of two and three test systems had greater sensitivity than individual 
tests resulting in sensitivities of around 90% or more, depending on the test combination The 
sensitivity of individual methods was between 59% (for Ames for over 500 chemicals) and 
79% (for MN for over 80 chemicals). The specificity of the Ames test was reasonable 
(73.9%), but all mammalian cell tests had a low specificity (below 45%), and this was 
reduced in combinations of two and three test systems. When a battery of three tests was 
investigated, 75–95% of the non-carcinogens were incorrectly predicted (i.e. were false 
positives) results in at least one test in the battery. This highlights deficiencies in the current 
ability to extrapolate from in vitro mutagenicity results to in vivo carcinogenicity. 

In a recent study by Hansen et al. (2009), and a large Ames mutagenicity data set comprising 
about 6500 non-confidential compounds was compiled and made publicly available 
(http://ml.cs.tu-berlin.de/toxbenchmark/). They used the dataset to compare the predictive 
performances of three commercial tools  (Derek, MultiCASE, and an off-the-shelf Bayesian 
machine learner in Pipeline Pilot) with four non-commercial machine learning 

http://ml.cs.tu-berlin.de/toxbenchmark/
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implementations (Support Vector Machines, Random Forests, k-Nearest Neighbours, and 
Gaussian Processes). PipelinePilot, trained with the developed data set, showed the best 
predictive perfromance of the three commercial tools followed by MultiCASE. The expert 
system Derek gave the lowest sensitivity and specificity of all considered models. However, 
closer examination of the results reveals that the difference between the best commercial 
model (Pipeline Pilot) and the best machine learning approach (SVM) is a sensitivity of just a 
few percent, so it is difficult to draw firm conclusions. In general, machine learning 
algorithms are expected to perform better in cases such as this where they derive their 
knowledge exclusively from the training data, as opposed to models such as MultiCASE and 
Derek, which have rules derived from other datasets ot based on expert knowledge. This 
study is useful not only in terms of the dataset which is made publicly available, but also 
because it demonstrates the power of machine learning approaches. Such approaches are 
particularly useful in model discovery, after which optimal models could be used as the basis 
for developing models with a mechanistic basis. 

5.7 Conclusions on the ability to predict genotoxicity and carcinogenicity 

When considering computational models for genotoxicity and carcinogenicity prediction, it 
should be remembered that these endpoints are based on multiple mechanisms of action, and 
are experimentally assessed by multiple tests, the results of which require expert 
interpretation. Thus, the in silico models are often modelling the “higher-level” interpretation 
of one or more experimental results rather than the “lower-level” experimental data 
themselves. This is different to models for some other endpoints (e.g. acute toxicity) where 
the models can be based directly on experimental data (e.g. LD50 values).     

At present, (Q)SAR methods are more reliable for predicting genotoxic potential than 
carcinogenic potential. Carcinogenicity prediction represents a considerable challenge due to 
the multitude of possible mechanisms of toxic action. The prediction of non-genotoxic 
carcinogenicity and carcinogenicity in humans is especially problematic. Models for 
predicting carcinogenic potency are lacking. 

The accuracy of Ames mutagenicity prediction is typically 70-75%, whereas for 
carcinogenicity it is generally between 50-75%, depending on the (Q)SAR and dataset used. 
This is reasonable taking into account the complexity of the carcinogenicity endpoint, and the 
fact that models do not explicitly include ADME properties, which could be critical steps in 
the carcinogenic process. An important direction for future research would be to incorporate 
ADME considerations in the overall prediction. It will also be important to build more models 
for non-genotoxic mechanisms of action. 

When evaluating (Q)SARs and software models on the basis of published papers, it is easy to 
obtain mixed messages. Thus, it is important to critically evaluate the design of the study. The 
accuracy of model prediction reported by the model developers is usually quite high for both 
training and test sets. However, this can be deceiving and is generally a consequence of the 
way in which the training and test sets were formed by splitting available datasets. In contrast, 
the accuracy of the prediction for external and independently chosen test sets is not so high.  

When using computational models for regulatory purposes, it is concluded that predictions of 
genotoxicity and carcinogenicity should not be based on the use of any single model alone, 
but on a Weight of Evidence approach including information is possible from all available 
sources (QSARs, read across, in vitro test methods). Studies such as those performed by 
Valerio et al. (2007), Coterrill et al. (2008) and Mazzatorta et al. (2009) support the 
usefulness of computational tools, especially when used in batteries that combine high 
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sensitivity models (to minimise false negatives) with high specificity models (thereby 
minimising false positives). Building on such studies, there is a need for further research 
aimed at developing and assessing model batteries and integrated testing strategies for 
genotoxicity and carcinogenicity.  

As with all endpoints, predictions should always be interpreted by an expert with knowledge 
of the endpoint and an appreciation of the strengths and limitations of the specific model 
applied. An essential piece of information is the applicability domain of the model, and the 
reliability of prediction for the chemical of interest. Unfortunately, this information is often 
not available or easily obtained.  
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Table 5.4 Reviews and model evaluation studies on (Q)SARs for genotoxicity and 
carcinogenicity (since 2000) 

Year Reference 
  
2009 Snyder RD (2009). An update on the genotoxicity and carcinogenicity of marketed pharmaceuticals with 

reference to in silico predictivity. Environmental and Molecular Mutagenesis 50, 435-450. 
2009 Rothenbacher T & Schwack W (2009). Nontargeted multicomponent analytical screening of plastic food 

contact materials using fast interpretation of deliverables via expert structure-activity relationship software. 
Journal of AOAC International  92(3), 941-950 

2009 Hansen K, Mika S, Schroeter T, Sutter A, ter Laak A, Steger-Hartmann T, Heinrich N & Mueller K-R (2009). 
Benchmark Data Set for in silico Prediction of Ames Mutagenicity. Journal of Chemical Information and 
Modeling 49(9), 2077-2081. 

2009 Mazzatorta P, Ringeissen S, Note R, Schilter B & Meunier JR (2009). In silico models to predict rodent 
carcinogenicity of naturally-occurring chemicals: comparative study and first insights into modes of action. 
Poster presentation at the Lhasa International Collaborative Group Meeting, November 2009 

2008 Kulkarni SA & Zhu J (2008). Integrated approach to assess the domain of applicability of some commercial 
(Q)SAR models. SAR and QSAR in Environmental Research 19(1-2), 39-54.   

2008 Mayer JM et al. (2008). Structure–activity relationship analysis tools: Validation and applicability in 
predicting carcinogens. Regulatory Toxicology and Pharmacology 50, 50-58. 

2008 Custer LL & Sweder KS (2008). The role of genetic toxicology in drug discovery and optimization. Current 
Drug Metabolism 9, 978-985. 

2008 Benigni R & Bossa C (2008). Predictivity of QSAR. Journal of Chemical Information and Modeling 48, 971-
980. 

2008 Benigni R & Bossa C (2008). Predictivity and reliability of QSAR models: The case of mutagens and 
carcinogens. Toxicology Mechanisms and Methods 18(2-3), 137-147 

2008 Benigni R, Bossa C, Richard A & Yang C (2008). A novel approach: chemical relational databases, and the 
role of the ISSCAN can database on assessing chemical carcinogenicity. Ann Ist Super Sanità 44(1): 48-56. 

2008 Saiakhov RD & Klopman G (2008). MultiCASE Expert Systems and the REACH Initiative. Toxicology 
Mechanisms and Methods 18(2-3), 159-175.    

2008 Contrera JF, Matthews EJ, Kruhlak NL & Benz RD (2008). In silico Screening of Chemicals for Genetic 
Toxicity Using MDL-QSAR, Nonparametric Discriminant Analysis, E-State, Connectivity, and Molecular 
Property Descriptors. Toxicology Mechanisms and Methods 18(2-3), 207-216. 

2008 Matthews EJ, Kruhlak NL, Benz RD, Contrera JF, Marchant CA & Yang C (2008). Combined Use of 
MC4PC, MDL-QSAR, BioEpisteme, Leadscope PDM, and Derek for Windows Software to Achieve High-
Performance, High-Confidence, Mode of Action-Based Predictions of Chemical Carcinogenesis in Rodents. 
Toxicology Mechanisms and Methods 18(2-3), 189-206. 

2008 Yang C, Hasselgren CH, Boyer S, Arvidson K, Aveston S, Dierkes P, Benigni R, Benz RD, Contrera J & 
Kruhlak NL (2008). Understanding Genetic Toxicity Through Data Mining: The Process of Building 
Knowledge by Integrating Multiple Genetic Toxicity Databases. Toxicology Mechanisms and Methods 18(2-
3), 277-295. 

2008 Cotterill JV, Chaudhry MQ, Matthews W & Watkins RW (2008). In silico assessment of toxicity of heat-
generated food contaminants. Food and Chemical Toxicology 46, 1905–1918. 

2007 Benigni R., Netzeva T, Benfenati E, Bossa C, Franke R, Helma C, Hulzebos E, Marchant C, Richard A, Woo 
Y-T & Yang C (2007). The expanding role of predictive toxicology: An update on the (Q)SAR models for 
mutagens and carcinogens. Journal of Environmental Science and Health 25, 53–97. 

2007 Kulkarni SA, Moir D & Zhu J (2007). Influence of structural and functional modifications of selected 
genotoxic carcinogens on metabolism and mutagenicity - a review. SAR and QSAR in Environmental 
Research 18(5-6), 459-514. 

2007 Kruhlak N, Contrera J, Benz D & Matthews E (2007). Progress in QSAR toxicity screening of pharmaceutical 
impurities and other FDA regulated products. Advanced Drug Delivery Reviews (2007), 59(1), 43-55. 
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Year Reference 
  
2007 Mazzatorta P, Tran L-A, Schilter B & Grigorov M (2007). Integration of Structure-Activity Relationship and 

Artificial Intelligence Systems To Improve in silico Prediction of Ames Test Mutagenicity. Journal of 
Chemical Information and Modeling 47(1), 34-38. 

2006 Benigni R & Bossa C (2006). Structure-activity models of chemical carcinogens: state of the art, and new 
directions. Annali dell'Istituto Superiore di Sanita 42(2), 118-126 

2006 Greene N (2006). Computational models to predict toxicity. In Comprehensive Medicinal Chemistry II (Eds 
Taylor JB & Triggle DJ) 5, 909-932 

2006 Dobo KL, Greene N, Cyr MO, Caron S & Ku WW (2006). The application of structure-based assessment to 
support safety and chemistry diligence to manage genotoxic impurities in active pharmaceutical ingredients 
during drug development. Regulatory Toxicology and Pharmacology 44(3), 282-293. 

2006 Veith G (2006). Roles for QSAR in risk assessment. ALTEX Alternativen zu Tierexperimenten (2006), 23 
Suppl, 369-72. 

2006 Snyder RD, Ewing D & Hendry LB (2006). DNA intercalative potential of marketed drugs testing positive in 
in vitro cytogenetics assays. Mutation Research, Genetic Toxicology and Environmental Mutagenesis 609(1), 
47-59. 

2006 Cronin M (2006). The role of hydrophobicity in toxicity prediction. Current Computer-Aided Drug Design, 
2(4), 405-413. 

2005 Woo Y-T & Lai DY (2005). OncoLogic: A mechanism-based expert system for predicting the carcinogenic 
potential of chemicals. In Predictive Toxicology (C Helma, ed), 385-413. 
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6. PREDICTION OF REPRODUCTIVE TOXICITY 
 

Reproductive and developmental toxicity (referred to collectively here as reprotoxicity) 
studies are used to identify the adverse effects a chemical may have on sexual function and 
fertility in adult males and females, developmental toxicity in the offspring, as well as effects 
on, or mediated via, lactation. Thus, reproductive toxicity refers to a range of endpoints 
relating to the impairment of male and female reproductive capacity (fertility) and the 
induction of non-heritable harmful effects on the progeny (developmental toxicity). The 
variety of observable effects are brought about by a plethora of mechanisms of action, many 
of which are unknown or only partially understood at the molecular and cellular level. Along 
with carcinogenicity studies, reprotoxicity studies are among the most costly and time-
consuming experimental procedures. Furthermore, reprotoxicity testing requires the highest 
number of test animals. For all these reasons, the development of alternative (non-animal) 
methods for reprotoxicity assessment is a high political priority.  

There are relatively few (Q)SARs for reproductive toxicity, which is partly due to the 
complexity of the endpoint (many of the underlying mechanisms of action are unknown or 
only partially understood), and partly due to the paucity of high quality data suitable for 
model development (Cronin & Worth, 2008). A detailed review of available software and 
literature models is given in Lo Piparo et al. (2010). 

6.1 Databases 

To improve the availability of (Q)SARs and other in silico methods for reprotoxicity 
endpoints, there is a need to develop reprotoxicity databases of high quality and high 
resolution, in terms of capturing the wide variety of adverse effects and underlying 
mechanisms of action. Currently available databases are summarised in Table 6.1. 

This need has been acknowledged by the International Life Sciences Institute Risk Science 
Institute (ILSI RSI), who convened a working group to review methodology used to construct 
statistically based SAR systems for developmental toxicity (Julien et al., 2004). It was 
concluded that an improved process is needed for utilizing developmental toxicity data in the 
construction of statistically based SAR models. As result of the ILSI RSI report (Julien et al., 
2004), ILSI is developing a QSAR-ready and peer-reviewed database 
(http://www.ilsi.org/Lists/Activities/AllItems.aspx) with the assistance of Leadscope Inc. 
(Columbus, Ohio, USA), and with data contributions coming from a range of governmental 
and academic organisations, as well as  contract research laboratories and major 
pharmaceutical companies. At the time of writing, this database is not yet available.  

To support the establishment of interoperable databases and more consistent risk assessment 
practices, the DevTox project is developing an internationally harmonised terminology for 
endpoints in developmental toxicity studies (Paumgartten et al., 2009), including a controlled 
vocabulary of terms and a defined set of hierarchical relationships between the terms 
(ontology). An online database (http://www.devtox.org/index.htm) is freely accessible and 
contains supporting data in the form of image files and text descriptions of tissue anomalies 
that can be used as the basid for assigning malformations. The DevTox project was initiated 
by the German Federal Institute for Risk Assessment (BfR), and sponsored by the German 
Federal Ministry of the Environment, Nature Conservation and Nuclear Safety under the 
auspices of the International Programme on Chemical Safety (IPCS). 

http://www.ilsi.org/Lists/Activities/AllItems.aspx
http://www.devtox.org/index.htm
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The US FDA has developed and made publicly available the ICSAS Reprotox database 
(named after the developer research unit, the Informatics and Computational Safety Analysis 
Staff [ICSAS]), as reported by Matthews et al.  (2007a,b). The majority of the data were 
taken from five publicly available sources: Reproductive Toxicology Center System 
(REPROTOX), Shepard’s Catalog of Teratogenic Agents, Teratogen Information System 
(TERIS), The Registry of Toxic Effects of Chemical Substances (RTECS), and The 
Physicians’ Desk Reference (PDR). In addition, a small portion of internal FDA reprotoxicity 
data was included. A review of the many duplicate records provided an opportunity to 
investigate the consistency of information that was reported in the different public databases 
but extracted from the same original source. This investigation revealed a consistent 
interpretation of the data from the original sources with the exception of RTECS, indicating in 
a lesser reliability of this database. The reprotoxicity data were classified into seven general 
classes (male reproductive toxicity, female reproductive toxicity, fetal dysmorphogenesis, 
functional toxicity, mortality, growth, and newborn behavioural toxicity), and 90 specific 
categories. Each specific category contained over 500 chemicals, but the percentage of active 
chemicals is low, generally only 0.1–10%. In total, the database contains 51,724 study records 
from over 10,000 individual reprotoxicity studies in which each record is linked to the test 
chemical structure. The majority of reprotoxicity studies were conducted in rats, mice and 
rabbits. The majority of test substances were pharmaceuticals, with a relatively limited 
number of industrial chemicals. The chemical structures are represented as “mol” files and as 
SMILES (Simplified Molecular Input Line Entry System) codes. The database contains 2134 
organic chemicals that are suitable for QSAR modelling. In the QSAR-ready database, built 
for QSAR analysis, the inorganics, organometallics, high molecular weight polymers, and 
mixtures of organic chemicals, were excluded. 

In support of the ToxCast predictive toxicology effort (Dix et al., 2007) the US EPA has 
developed and made publicly available the Toxicity Reference Database (ToxRefDB) for 
capturing information from publicly available in vivo toxicity studies. This database contains 
standard toxicity test results for pesticides and other environmental chemicals. It includes the 
Developmental Toxicity Endpoints dataset (Knudsen et al., 2009)  resulting from 383 rat and 
368 rabbit prenatal studies on 387 chemicals, mostly pesticides; and the Reproductive 
Toxicity Endpoints dataset (Martin et al., 2009) results from multigeneration reproductive 
toxicity studies on 316 chemicals. The multigeneration reproductive toxicity data set includes 
assessment of gonadal function, the oestrous cycle, mating behaviour, conception, gestation, 
parturition, lactation, weaning, and on the growth and development of the offspring. The 
information in the ToxRefDB is well structured, searchable and downloadable, which makes 
it a potentially useful resource for QSAR modelling and other developments in predictive 
toxicology. In order to develop models capable of supporting risk assessment, dose-response 
data will need to be added. 
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Table 6.1 Databases for reproductive toxicity (including receptor binding) 
 
Database  Availability Information  
   
Toxicology Data Network (TOXNET) 
Developmental and Reproductive Toxicology 
Database (DART) 
http://toxnet.nlm.nih.gov/cgi-
bin/sis/htmlgen?DARTETIC. 

Freely 
available 

Bibliographic database containing over 
200,000 references to literature published 
since 1965. It covers teratology and other 
aspects of developmental and reproductive 
toxicology. Users can search by subject 
terms, title words, chemical name, Chemical 
Abstracts Service Registry Number (RN), 
and author. 

Endocrine Disruptor Knowledge Base (EDKB) 
database  (US FDA) 
http://www.fda.gov/ScienceResearch/Bioinfor
maticsTools/EndocrineDisruptorKnowledgebas
e/default.htm 

Freely 
available 

Biological activity database including in 
vitro and in vivo experimental data for more 
than 3,000 chemicals and chemical-structure 
search capabilities. It includes two datasets: 
Estrogen Receptor (ER) binding dataset 
(containing 131 ER binders and 101 non-ER 
binders), and Androgen Receptor (AR) 
bataset (containing 146 AR binders and 56 
non-AR binders). Searchable by assay type 
and by structure; provides a search ranking 
based on a structure similarity index. 

Endocrine Active Substances Portal  (JRC) Under 
development 

Searchable database giving information on 
chemical identity (e.g. CAS number), 
chemical structure, toxicity (both to humans 
and wildlife), physicochemical properties, 
mode and mechanism of action, for about 
520 chemicals, including those on the EU 
priority list of substances 
(http://ec.europa.eu/environment/endocrine/st
rategy/substances_en.htm) 

ICSAS Reprotox Database (US FDA) 
http://www.fda.gov/AboutFDA/CentersOffices/
CDER/ucm092217.htm 

Freely 
available 

Weight-of-Evidence values for 2134 organic 
chemicals (most of them pharmaceuticals; 
plus limited numbers of industrial 
chemicals). SMILES and mol files available.  

ILSI Developmental Toxicity database Underdevelop
ment  

Will be available in downloadable format 
from the ILSI website 
(http://www.ilsi.org/Lists/Activities/AllItems
.aspx) and via the DSSTox website 
(http://www.epa.gov/ncct/dsstox/) 

NureXbase 
http://nurexbase.prabi.fr 

Freely 
available 

Information on endocrine-active compunds 
linked to their receptor targets. Sequence, 
expression and 3D structures data are linked.  

NURSA (Nuclear Receptor Signaling Atlas) 
http://www.nursa.org/ 

Freely 
available 

Information on chemical structure, crystal 
structure, SMILES, physical descriptors, 
nuclear receptors and mechanism of 
endocrine action. 

http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?DARTETIC
http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?DARTETIC
http://www.fda.gov/ScienceResearch/BioinformaticsTools/EndocrineDisruptorKnowledgebase/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/EndocrineDisruptorKnowledgebase/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/EndocrineDisruptorKnowledgebase/default.htm
http://ec.europa.eu/environment/endocrine/strategy/substances_en.htm
http://ec.europa.eu/environment/endocrine/strategy/substances_en.htm
http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm092217.htm
http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm092217.htm
http://www.ilsi.org/Lists/Activities/AllItems.aspx
http://www.ilsi.org/Lists/Activities/AllItems.aspx
http://www.epa.gov/ncct/dsstox/
http://nurexbase.prabi.fr/
http://www.nursa.org/
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Database  Availability Information  
   
OECD (Q)SAR Toolbox 
http://www.qsartoolbox.org/ 

Freely 
available 

Although primarily a tool for chemical 
categories and read-acros, it also includes 
several databases, including reprotoxicity 
data: 166,072 ER binding data from Danish 
EPA (pre-generated predictions, not 
experimental values) as well as 1606 
experimental ER binding affinity values from 
the OASIS commercial database.  

REDIPED (Relational Database of Information 
on Potential Endocrine Disrupters) developed 
by the Institute for Environment & Health, 
University of Leicester, Leicester, UK. 
http://www.cranfield.ac.uk/health/researchareas
/environmenthealth/ 
 

Commercial Includes references and data on chemical 
identity, physical properties, production 
volumes, uses, regulations, sources of 
exposure, exposure assessment, 
environmental fate & transport (i.e. 
accumulation, degradation, fate), and 
biological activity (in vitro and in vivo 
activity, binding abilities, relative activity, 
and general toxic effects). 

ToxRefDB  
http://www.epa.gov/NCCT/toxrefdb/ 
 
 

Freely 
available 

Standard toxicity test results for pesticides 
and other environmental chemicals including 
developmental toxicity (387 chemicals) and 
multigeneration reproductive toxicity (316 
chemicals). 

 

6.2 Software 

A number of computer programs generate structure-based predictions of reprotoxicity 
endpoints, as summarised in Table 6.2, and reviewed briefly below. Some of these models are 
classification models, amking categorical predictions, whereas others make quantitative 
predictions. 

ACD/Tox Suite: The ACD/Tox Suite (formerly called ToxBoxes), provided by ACD/Labs 
and Pharma Algorithms, provides predictions of various toxicity endpoints including ER 
binding affinity (http://www.acdlabs.com/products/admet/tox/). The predictions are 
associated with confidence intervals and probabilities, thereby providing a numerical 
expression of prediction reliability.  The software incorporates the ability to identify and 
visualize specific structural toxicophores, giving insight as to which parts of the molecule are 
responsible for the toxic effect. It also identifies analogues from its training set, which can 
also increase confidence in the prediction. The algorithms and datasets not disclosed. A web 
version of the software is freely accessible at http://www.pharma-algorithms.com/webboxes/ 

ADMET Predictor: This commercial program is designed to estimate certain ADMET 
(Absorption, Distribution, Metabolism, Elimination, and Toxicity) properties of a drug-like 
chemical from its molecular structure (see Chapter 7). It includes a qualitative assessment of 
oestrogen receptor toxicity in rats (TOX_ER_filter), together with a quantitative measure of 
oestrogen receptor toxicity in rats (TOX_ER (IC50(estrogen)) that is applied only for 
compounds classified as ‘Toxic’ by the previous model. 

CAESAR: The freely accessible CAESAR model for developmental toxicity was built using 
292 compounds. Two models were developed, one using WEKA (Waikato Environment for 

http://www.qsartoolbox.org/
http://www.cranfield.ac.uk/health/researchareas/environmenthealth/
http://www.cranfield.ac.uk/health/researchareas/environmenthealth/
http://www.epa.gov/NCCT/toxrefdb/
http://www.acdlabs.com/products/admet/tox/
http://www.pharma-algorithms.com/webboxes/
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Knowledge Analysis) and Random Forest, and the other using the Adaptive Fuzzy Partition 
(AFP) classification model.  

Derek: This rule-based system includes structural alerts for three specific endpoints: 
developmental toxicity (3 alerts), teratogenicity (5 alerts), testicular toxicity (1 alert) and 
oestrogenicity (4 alerts). 

Pearl et al. (2001) conducted a small validation study with 34 chemicals, and reported 100% 
specificity (equivalent to 0% false positives) and 72% sensitivity (28% false negatives). 
However, due to the small size of the dataset, it is difficult to draw general conclusions from 
these results.  

The Dutch National Institute for Public Health and the Environment (RIVM) published a 
study (Hulzebos & Posthumus, 2003) where Derek predictions for the reproductive toxicity 
effects of 60 substances were compared with experimental data. The authors concluded that 
reprotoxicity is poorly predicted by this software. A further study by the RIVM 
(Maslankiewicz, 2005) reached the same conclusion. The study examined the ability to 
correctly predict the developmental toxicities of 108 industrial chemicals by using Derek and 
by applying the chemical categories developed by the US EPA to support the implementation 
of the Toxic Substances Control Act (TSCA; 
http://www.epa.gov/compliance/civil/tsca/tscaenfstatreq.html). The conclusion was based on 
the observation that Derek only recognised 10% of substances which may cause impaired 
fertility, and only 19% of chemicals which may harm the foetus (on the basis of the 
harmonised EU classifications of chemicals in Annex I of the Dangerous Substances 
Directive). However, this conclusion is unfair to the extent that it ignores the fact that Derek 
is only designed to identify positives and does not make negative predictions – the absence of 
a prediction simply means there are no rules identifying chemical features of toxicological 
concern, and does not necessarily reflect the absence of toxicity. For the same reason, use of 
the ten TSCA categories also revealed low sensitivities (percentage of correctly predicted 
positive substances) – 19% and 18% for fertility and teratogenicity effects, respectively. The 
authors also noted that Derek and TSCA had one structural alert in common for the studied 
chemicals and thus the applicability domain is different for the two predictive approaches. For 
this reason, it would be worthwhile to build on the RIVM study by investigating the 
combined use of prediction based on the use of TSCA categories and Derek. 

Endocrine Disruptor Knowledge Base (EDKB): This online database, developed and made 
publicly available by the US FDA’s National Center for Toxicological Research (NCTR), 
contains computer-based predictive models to predict the binding affinity of compounds to 
the oestrogen and androgen nuclear receptor proteins 

Leadscope: The Leadscope software has a module containing QSAR models for predicting 
the developmental toxicity of the rodent foetus, including dysmorphogenesis (structural and 
visceral birth defects), developmental toxicity (foetal growth retardation and weight 
decrease), and foetal survival (foetal death, post-implantation loss, and preimplantation loss). 
The Leadscope QSAR models for reproductive toxicity include rodent male reproductive, 
rodent male sperm, female reproductive. 

Molcode Toolbox: This is a commercial tool developed and marketed by Molcode Ltd 
(http://molcode.com/). It has a range of modules for predicting toxicological endpoints and 
ADME properties between them endocrine activity. The models are well documented and the 
underlying experimental data is made available with references and structure files (MDL 
molfile). 

 

http://www.epa.gov/compliance/civil/tsca/tscaenfstatreq.html
http://molcode.com/


 

 70

MultiCASE: The US FDA have applied MultiCASE methodology (the MC4PC software) to 
the above-mentioned FDA database to develop a battery of QSAR models for reproductive 
and developmental toxicity hazard identification (Matthews et al. 2007a, 2007b). Their 
models were designed to predict seven general reprotoxicity classes: male and female 
reproductive toxicity, foetal dysmorphogenesis, functional toxicity, mortality, growth, and 
newborn behavioural toxicity. These are different to the models included in the marketed 
version of the software. The QSARs were derived from weighted reproductive toxicity 
findings, in order to incorporate a WoE paradigm based on data from as many as three 
mammalian species (rats, mice, and rabbits) and to identify trans-species reprotoxicants with 
a high probability of being reprotoxic in humans. The authors reported a good predictive 
performance for the majority of the QSARs in this battery: high specificity (>80%), low false 
positive rate (<20%), and high database coverage (>80%). Because of the large size of the 
training sets (containing 627 to 2023 chemicals) and the diversity of molecular structures they 
represent, the authors argue that the QSARs to have a wide applicability domain. However, 
the models are not documented in sufficient detail to be reproduced and they are not readily 
transferable. Therefore, in order to use the models, it would be necessary to purchase the 
MC4PC software and redevelop the models using the same dataset. In conclusion, these 
studies provide support for the ability to model specific reprotoxicity endpoints, but they are 
of limited practical usefulness.  

OECD QSAR Application Toolbox: This freely available software 
(http://www.qsartoolbox.org/) includes a profiler for predicting ER binding potential, based 
on a decision tree developed by the US EPA described below (OECD, 2009).  

PASS: The PASS (Prediction of Activity Spectra for Substances) is developed and marketed 
by the Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences. 
Chemicals structures are presented in mol format and used to generate Multilevel 
Neighbourhood of Atoms (MNA) descriptors (Filimonov et al., 1999). A Bayesian algorithm 
is used to predict various biological activities in terms of the probabilities of presence (Pa) 
and absence (Pi) of each particular activity (Filimonov & Poroikov, 2008; Poroikov et al., 
2007). Further information is available at: http://195.178.207.233/PASS/ 

PharmMapper Server: This is a freell accessible web service 
(http://59.78.96.61/pharmmapper/) which identifies potential target proteins for small 
molecules, using a pharmacophore mapping approach (Liu et al., 2010). Over 7,000 receptor-
based pharmacophore models (covering 1,627 protein targets) are accessible. Protein targets 
include ER, thyroid and progesterone receptors. 

TerraQSAR - E2-RBA: This suite of software modules, developed and marketed by 
TerraBase Inc (http://www.terrabase-inc.com/) includes the TerraQSAR - E2-RBA 
programme, which applies a probabilistic neural network for the computation of estrogen 
receptor binding affinity (RBA; %) values, relative to that of 17beta-estradiol, for organic 
substances. 

T.E.S.T.: The Toxicity Estimation Software Tool is an open-source application developed by 
the US EPA. It estimates the toxicity of a compound by applying several QSAR 
methodologies thus allowing the user to have greater confidence in predicted toxicities. 
Among other toxicities it predicts developmental toxicity. The tool is freely downloadable 
from the EPA website (http://www.epa.gov/nrmrl/std/cppb/qsar/index.html#TEST). The 
models are well documented and the training set is made available as a structure (sdf) file.  

TIMES: TIssue MEtabolism Simulator is a heuristic algorithm to generate metabolic maps 
from a library of biotransformations and abiotic reactions. It allows prioritization of chemicals 

http://www.qsartoolbox.org/
http://195.178.207.233/PASS/
http://59.78.96.61/pharmmapper/
http://www.terrabase-inc.com/
http://www.epa.gov/nrmrl/std/cppb/qsar/index.html#TEST
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according to toxicity of their metabolites. The TIMES platform is also used to predict 
different endpoints including receptor mediated endpoints for oestrogen, androgen and aryl 
hydrocarbon binding affinity. They are based on the Common Reactivity Pattern (COREPA) 
approach developed by the Laboratory of Mathematical Chemistry at the Bourgas University, 
Bulgaria. The COREPA approach is a probabilistic classification method which assesses the 
impact of molecular flexibility on stereo electronic properties of chemicals. Similarity 
between chemicals is analysed by comparing their conformational distributions, and the 
system automatically identifies the parameter that best discriminate chemicals in groups. A 
Bayesian decision tree is then developed for classifying untested chemicals. The use of 
COREPA to predict oestrogenicity has been well described elsewhere (Mekenyan et al., 
2003a, b; Schmieder et al., 2003). 

TOPKAT: The Developmental Toxicity Potential (DTP) module of the TOPKAT software 
was developed from experimental studies selected after review of literature citations on rat 
oral data. TOPKAT comprises three QSAR models, each applicable to a specific class of 
chemicals. The output is the probability of a submitted chemical structure being a 
developmental toxicant in the rat. A probability below 0.3 indicates no potential for 
developmental toxicity (NEG), whereas a probability above 0.7 signifies developmental 
toxicity potential (POS). The probability range between 0.3 and 0.7 refers to the 
“indeterminate” zone (IND). The TOPKAT model automatically determines whether the 
submitted structure belongs to the Optimum Prediction Space (OPS) of the model in order to 
evaluate the reliability of prediction. The original models were published by Enslein et al. 
(1983) and by Gombar et al. (1995), although it is not clear whether the models now 
implemented in the software are the same as, or refinements of, the original models. 

Toxmatch: This freely available software (http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/) does 
not in itself generate predictions of reprotoxicity endpoints, but it can be used to develop 
categories and support read-across assessments. This has been demonstrated in a study by 
Enoch et al. (2009). This study illustrates the use of 2D similarity indices within Toxmatch to 
form categories for 57 query chemicals. The underlying hypothesis is that chemicals selected 
as being similar should act via a single mechanism of action, even if that mechanism is 
unknown. Read-across predictions were performed for the 17 query chemicals for which a 
category could be formed. The authors concluded that 2D similarity methods offer a useful 
method for building chemical categories for reproductive toxicity in which a priori 
mechanistic knowledge is limited. Although the categories proposed are limited in terms of 
their applicability (40 query chemicals were not allocated to categories), the results form a 
good basis for further investigations. 

VirtualToxLab: This is a commercial tool for predicting endocrine disrupting potential by 
simulating and quantifying the interactions with aryl hydrocarbon, oestrogen alpha/beta, 
androgen, thyroid alpha/beta, glucocorticoid, liver X, mineralocorticoid and peroxisome 
proliferator-activated receptor gamma (Vedani et al., 2009; Vedani & Smiesko 2009). It also 
includes metabolic considerations by simulating interactions with the enzymes CYP450 3A4 
and 2A13. The tool is based on the combined use of automated flexible docking with multi-
dimensional QSAR (mQSAR). 

http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=TOXTREE
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Table 6.2 Software for reproductive toxicity (including receptor binding) 
Software Availability Applicability  
ACD ToxSuite (ToxBoxes); 
http://www.acdlabs.com/products/admet/tox/ 

Commercial 
Free web 
application: 
http://www.phar
ma-
algorithms.com/
webboxes/ 

ER binding affinity prediction. Identifies 
and visualises specific structural 
toxicophores. Identifies analogues from 
its training set. Algorithms and datasets 
not disclosed. Predictions associated 
with confidence intervals and 
probabilities, providing prediction 
reliability. 

ADMET Predictor 
http://www.simulations-plus.com/ 

Commercial  Qualitative and quantitative prediction 
of oestrogen receptor toxicity in rats. 
Based on two models: a qualitative 
model and, if toxic, the quantitative ratio 
of IC50 estradiol/IC50 compound. 

CAESAR 
http://www.caesar-project.eu/ 

Freely available Two classification models for 
developmental toxicity based on the 
dataset of Arena et al. (2004) including 
292 compounds.  

Derek 
http://www.lhasalimited.org/ 

Commercial Classification models (different levels of 
likelihood) based on 23 alerts for 
developmental toxicity; 4 alerts for 
oestrogenicity. 

Endocrine Disruptor Knowledge Base (EDKB) 
database (US FDA) 
http://www.fda.gov/ScienceResearch/Bioinforma
ticsTools/EndocrineDisruptorKnowledgebase/def
ault.htm 

Freely available Quantitative models to predict the 
binding affinity of compounds to the 
estrogen and androgen nuclear receptor 
proteins.  

Leadscope 
http://www.leadscope.com/ 
 

Commercial Classification models for developmental 
toxicity in the rodent fetus: 
dysmorphogenesis (structural and 
visceral birth defects), developmental 
toxicity (fetal growth retardation and 
weight decrease), and fetal survival 
(fetal death, post-implantation loss, and 
preimplantation loss). Models of 
reproductive toxicity: rodent male 
reproductive, rodent male sperm, female 
reproductive. 

MolCode Toolbox 
http://molcode.com/ 

Commercial Quantitative prediction of rat ER 
binding affinity and AhR binding 
affinity 

MultiCASE (MC4PC) 
http://www.multicase.com/ 

Commercial Classifcation models for developmental 
toxicity associated with a variety of 
datasets, mainly drugs. The marketed 
software includes modules for predicting 
mammal sperm toxicity, developmental 
toxicity, developmental fetal growth 
retardation, development fetal weight 
decrease and survival fetal death. 

http://www.acdlabs.com/products/admet/tox/
http://www.pharma-algorithms.com/webboxes/
http://www.pharma-algorithms.com/webboxes/
http://www.pharma-algorithms.com/webboxes/
http://www.pharma-algorithms.com/webboxes/
http://www.simulations-plus.com/
http://www.caesar-project.eu/
http://www.lhasalimited.org/
http://www.fda.gov/ScienceResearch/BioinformaticsTools/EndocrineDisruptorKnowledgebase/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/EndocrineDisruptorKnowledgebase/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/EndocrineDisruptorKnowledgebase/default.htm
http://www.leadscope.com/
http://molcode.com/
http://www.multicase.com/
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Software Availability Applicability  
OSIRIS property explorer  
http://www.organic-chemistry.org/prog/peo/ 

Freely available Classification model which predicts 
“undesirable” effects (mutagenicity, 
tumorigenicity, irritating effects and 
reproductive effects), mainly based on 
the RTECS database of >3500 
compounds. 

PASS 
Institute of Biomedical Chemistry of the Russian 
Academy of Medical Sciences, Moscow 
http://195.178.207.233/PASS/ 
 

Commercial, 
with free 
internet service, 
and 
downloadable 
demo 

Classification models giving probability 
of reprotoxic effects. The 
embryotoxicity model predicts the 
probability that a substance crosses the 
placental membrane and causes any 
toxic effect (e.g. fetal bradycardia, low 
birth weight) or death of an embryo. The 
teratogenicity model predicts the 
probability that a substance crosses the 
placental membrane and causes 
abnormal development of one or more 
body systems in the embryo. 

PharmMapper Server 
http://59.78.96.61/pharmmapper/ 

 

Free web 
service 

Identifies potential target proteins for 
small molecules, using a pharmacophore 
mapping approach. Over 7,000 receptor-
based pharmacophore models (covering 
1,627 protein targets) are accessible. 
Protein targets include ER, thyroid and 
progesterone receptors. 

TerraQSAR – E2 RBA 
http://www.terrabase-inc.com/ 

Commercial Neural network model that computes the 
estrogen receptor binding affinity (RBA; 
%), relative to that of 17beta-estradiol 
(E2), for organic chemicals. 

T.E.S.T.: The Toxicity Estimation Software Tool 
http://www.epa.gov/nrmrl/std/cppb/qsar/index.ht
ml#TEST) 

 

Freely available Developmental toxicity estimation. The 
prediction is done by applying several 
QSAR methodologies resulting in a 
greater confidence of the results. 

TIMES (COREPA) 
Laboratory of Mathematical Chemistry, Bourgas 
University 
http://oasis-lmc.org/ 

Commercial Classification models for the prediction 
of estrogen, androgen and aryl 
hydrocarbon binding.The chemical is 
predicted to fall in one of several 
activity bins (ranges of binding affinity). 

TOPKAT (Accelrys) 
http://www.accelrys.com 

Commercial Classification model for developmental 
toxicity of pesticides, industrial 
chemicals. 

ToxBoxes 
Pharma Algorithms 
http://pharma-algorithms.com/tox_boxes.htm 

Commercial Classification model for the prediction 
of ER binding. 

VirtualToxLab 
http://www.biograf.ch 
 
 

Commercial Classification model for endocrine-
disruptiong potential based on 
simulations of the interactions towards 
aryl hydrocarbon, estrogen α/β, 
androgen, thyroid α/β, glucocorticoid, 
liver X, mineralocorticoid, peroxisome 
proliferator-activated receptor γ, as well 
as the enzymes CYP450 3A4 and 2A13. 

 

http://www.organic-chemistry.org/prog/peo/
http://195.178.207.233/PASS/
https://webmail.ec.europa.eu/exchweb/bin/redir.asp?URL=http://59.78.96.61/pharmmapper/
http://www.terrabase-inc.com/
http://www.epa.gov/nrmrl/std/cppb/qsar/index.html#TEST
http://www.epa.gov/nrmrl/std/cppb/qsar/index.html#TEST
http://oasis-lmc.org/
http://www.accelrys.com/
http://pharma-algorithms.com/tox_boxes.htm
http://www.biograf.ch/
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6.3 Endocrine-related effects 

6.3.1 Endocrine Active Substances and potential Endocrine Disruptors 

Endocrine Active Substances (EAS) are chemicals having the potential to interfere with the 
endocrine systems, as judged from in vitro or in vivo tests. Such chemicals may be regarded 
as endocrine disruptors (EDs) if there is evidence that the substance causes adverse health 
effects in an intact organism, or its progeny, secondary to changes in endocrine function. In 
particular, EDs have been associated with reprotoxicity, as well as cancer, diabetes and 
obesity. Numerous mechanisms of action have been associated with endocrine disruption, and 
a wide variety of in vitro tests have been developed to identify chemicals acting via these 
mechanisms. The status of these in vitro tests has been reviewed by Jacobs et al. (2008), who 
also emphasise the need to incorporate metabolic considerations into the assessment of EAS. 
While endocrine disruption is not a defined endpoint in the framework of EU legislation on 
chemicals or pesticides, chemicals with ED potential are of particular concern for human 
health and the environment, especially if their potential adverse effects are not detected by 
other endpoint assays. In REACH, EDs are considered to be Substances of Equivalent 
Concern as other Substances of Very High Concern. 

EAS act via a range of mechanisms with the result of enhancing or suppressing normal 
hormone responses, including homeostatic and feedback mechanisms. In many cases, EAS act 
by binding to nuclear hormone receptors (NRs), which are ligand-inducible transcription 
factors involved in the regulation of specific target genes and of critical cellular processes 
such as cell growth, differentiation and metabolic processes. Members of the NR superfamily 
include receptors for various steroid hormones oestrogen (ER), androgen (AR), progesterone 
(PR), several corticosteroids, retinoic acid, thyroid hormones, vitamin D, and dietary lipids 
(the peroxisome proliferator activated receptor; PPAR). 

The largest and best studied group of NRs is the Oestrogen Receptor (ER) family. The ER is a 
ligand-dependent transcription factor - when a hormone binds to the ligand binding domain 
(LBD), it induces a conformational change in the receptor that initiates a series of events that 
culminate in the activation or repression of responsive genes (Anstead et al., 1997). The 
crystallographic structures available for the ER have provided insights into mechanisms of 
action and have given an input to the development of highly specific in silico models. The 
mobility and plasticity of the ER ligand-binding cavity have been identified as important 
factors allowing the binding of compounds of different structural types to the receptor site 
(Pike et al., 1999). In absence of the ligand, ERs are in an inactive conformation in the target 
cell nuclei. The binding of an agonist switches the ER into an active conformation, while the 
binding of an antagonist blocks agonist access. A third category of ligands, termed selective 
ER modulators (SERMS), have the ability to act as both agonists and antagonists, depending 
on the cellular and promoter context. 

6.3.2 In silico modelling of endocrine-related effects 

There is an extensive literature on the modelling of NR binding and endocrine activity, 
including studies based on traditional QSAR, molecular modelling, and decision tree 
approaches. This section reviews, with illustrative examples, these main types of in silico 
methods that have been developed to support the identification of EDs. Strictly, these should 
not be regarded as in silico models for endocrine disruption, since they do not in themselves 
provide sufficient information to determine whether adverse effects are produced secondary 
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to changes in endocrine function. However, they could be regarded as models for the 
identification of EAS.  

A number of literature studies were reviewed in the context of a JRC-funded study entitled 
the “Validation of non-commercial (Q)SAR models for ER and AR binding”, which was 
performed by Mario Negri Institute (Benfenati et al., 2005). In this study, non-proprietary 
models for ER and AR binding activity were reviewed in order to identify interesting 
publications related to ER and AR endpoints. A scheme for scoring each model/publication 
was based on the availability of key information (experimental biological data, structures, 
descriptors, chemical domain and models). A total of 158 models (published until 2005) were 
scored. Additional studies (published after 2005) are reviewed in Lo Piparo et al. (2010) 

Several studies (e.g. Netzeva et al., 2006; Gallegos Saliner et al., 2006) have reported 
decision trees for categorising chemicals based on the NR binding potential. These are 
potentially useful for regulatory applications, due to their simplicity, transparency, 
reproducibility and transferability 

A decision tree for predicting ER binding has been developed by the US EPA and included as 
a “profiler” in the OECD (Q)SAR Application Toolbox, thereby making it freely available 
and readily applicable (OECD, 2009). The decision tree is based on the hypothesis that the 
structural domain of chemicals that can bind to the ER is determined by the energy and steric 
constraints of the ER itself. Based on experimental data available in literature, the nature of 
the chemical interactions in the various “subpockets” within the ER-binding domain(s) was 
hypothesised. Three primary ER binding subpockets were identified, having different 
requirements for hydrogen bonding. The decision tree described uses basic structural features 
and simple properties to match chemicals with “similar” chemical groups. The system 
examines each chemical and places them into groups of inactive chemicals, “drug-like” 
chemicals (which have the potential for strong ER binding affinity), or groups of chemicals 
which may have weak-to-moderate binding affinity, depending on specific properties or 
structural features.  

When the 3D structure of the protein receptor is known, in silico approaches such as 
molecular docking can be applied. Docking is used to find the best match between a 
biological macromolecule and a ligand. The ligand is placed inside the receptor pocket and 
the free energy of binding of the molecular complex is estimated computationally. The 
receptor structure needs to available from experimental studies, usually X-ray crystallography 
or NMR. In the case of ERs, several crystal structures of the receptor with different ligands 
(both agonists and antagonists) are available from the Protein Data Bank (PDB) 
(http://www.rcsb.org/pdb/home/home.do).  

Another in silico approach often used for ER affinity prediction is 3D-QSAR based on so-
called field-based descriptors that describe the micro-environment surrounding the (ligand) 
molecules (molecular electrostatic and steric potential and Van der Waals volume). For 
example, Comparative Molecular Field Analysis (CoMFA) is a modelling method that 
examines molecules in three-dimensional detail, describing the magnitude and directions of 
electronic and steric interactions (Cramer et al., 2002). CoMFA produces an imaginary 3D 
box around the ligand, consisting of steric and electrostatic interaction energies at each grid 
point. These values become the descriptors for QSAR analysis. The main advantages of 
CoMFA methods are: a) the crystal structure of the protein target is not needed, since the 
analysis is derived entirely from the ligand; and b) by describing properties in terms of 3D 
fields, it is possible to visualise areas within the 3D space around the ligand  that are 
positively or negatively related to the activity. The main disadvantage of CoMFA is the need 

http://www.rcsb.org/pdb/home/home.do
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to align (superimpose) numerous 3D structures, which makes it difficult to study 
heterogeneous datasets. CoMFA is a research tool that requires considerable expertise to 
implement. It is useful for investigations into mechanisms of binding and in the development 
of QSARs, but is not suited for the routine assessment of chemicals by non-specialists. 

An alternative to CoMFA, which avoids alignment difficulties, is to use VolSurf (Cruciani et 
al., 2000) and ALMOND (Pastor et al., 2000), which are commercially available 3D-QSAR 
methods developed by Molecular Discovery (http://www.moldiscovery.com/index.php). 
These are sophisticated yet easy-to-handle computational procedures that can be used to 
explore the physicochemical property space of a molecule, using a simple molecular input 
such as SMILES. There is no need to use and manipulate 3D structures since these operations 
are automatically performed by the software. VolSurf automatically generates 3D maps and 
compresses the information into numerical descriptors. ALMOND generates and handles 
alignment-independent descriptors called GRIND (GRid INdependent Descriptors). These are 
a new generation of 3D-molecular descriptors - being alignment independent, they are quickly 
and automatically computed. These methodologies are promising research tools for future 
QSAR development.  

A more recent development is VirtualToxLab, developed by Vedani and colleagues (Vedani 
et al., 2009; Vedani & Smiesko 2009). This is an in silico tool for predicting the endocrine-
disrupting potential of compounds by simulating their interactions towards a series of proteins 
known to trigger adverse effects. It is based on a fully automated protocol, calculating the 
binding affinity of a molecule towards a series of proteins and estimating the resulting toxic 
potential. Currently, 12 protein targets are included: the androgen, aryl hydrocarbon, 
oestrogen alpha/beta, glucocorticoid, mineralocorticoid, thyroid alpha/beta liver X and the 
peroxisome proliferator-activated receptor gamma (PPAR-γ), as well as the enzymes 
cytochrome P450 3A4 and 2A13. Toxic potential is estimated automatically by simulating the 
interactions with the macromolecular targets, by quantifying these interactions in terms 
individual binding affinities and combining the flexible docking routine with 
multidimensional QSAR. The technology is accessible over the Internet 
(http://www.biograf.ch/).  

6.4 Regulatory use of in silico predictions 

In silico models for reprotoxicity endpoints and NR binding have mainly been used for setting 
priorities for testing, rather than to fill data gaps for hazard and risk assessment.  

An example of how (Q)SARs can be used in classification and labelling has been reported by 
the Danish National Food Institute in Denmark (Jensen et al., 2008). They performed a 
screening exercise of 57, 014 European Inventory of Existing Chemical Substances 
(EINECS) chemicals by using in-house and commercial QSAR models (mainly MultiCASE) 
in order to identify possible reprotoxicants. Three QSAR models were used for reproductive 
toxicity for the endpoints teratogenic risk to humans, dominant lethal effect in rodents and 
Drosophila melanogaster sex-linked recessive lethal effect. In addition, the chemicals were 
also screened by using three models for endocrine activity. Chemicals were considered 
predicted positive for reproductive toxicity if a positive prediction was obtained in any of the 
models within the applicability domain. On this basis, 5240 EINECS chemicals (9.2% of the 
chemicals screened) were predicted as reprotoxicants by one or more of the models. The 
authors also interpreted the model outputs in terms of EU classifications for reproductive 
toxicity - category Xn (Harmful) and R63 (Possible risk of harm to the unborn child). The list 
of chemicals with EU classifications suggested on the basis of QSAR, have been submitted to 

http://www.moldiscovery.com/index.php
http://www.biograf.ch/
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the Danish EPA to support a future update of the advisory classification list (which industry 
can use to support the self-classification of chemicals). 

6.5 Conclusions 

At present, the availability of (Q)SARs for reprotoxicity endpoints (excluding models related 
to endocrine activity) is limited as a result of the diversity and biological complexity of the 
endpoints, and the paucity of data suitable for modelling. Available models are potentially 
useful as a means of supporting hazard identification and priority setting, but not yet for the 
establishment of toxic potencies for use in risk assessment. 

Given the nature of the reprotoxicity endpoints, it is unlikely that an entirely structure-based 
approach will be capable of fully describing and predicting the in vivo effects. Thus, available 
models should not be used in isolation but to contribute to WoE assessments, and to guide 
experimental testing, where necessary. Batteries of models and in vitro tests will need to be 
developed, and this has been the aim of an ongoing EU-funded Reprotect project 
(http://www.reprotect.eu/). This project has included the development of QSARs for 
predicting passage across the placental barrier (Hewitt et al., 2007).  

At the current state of development, it is not possible to give clear recommendations on how 
to use the results of models for reprotoxicity endpoints. For short-term progress (next 3 
years), it is recommended that further research on the regulatory applicability of current 
models is performed, for example along the lines of the Danish EPA study (Jensen et al., 
2008). In additional to traditional QSAR approaches, the grouping and read-across approach 
has also been found to be a promising means of making predictions, especially when 
mechanistic insights are lacking (Fabjan et al., 2006). Further work will also need to be aimed 
at the development and assessment of integrated strategies including in vitro data as well as in 
silico models (Hewitt et al., 2010). 

The future development of (Q)SAR models and databases will also depend on the 
development of a standardised vocabulary for describing the plethora of reprotoxic effects at 
different levels of biological organisation. ILSI and Leadscope have already started such an 
initiative. In relation to databases, an important achievement has been the construction, from 
publicly available information sources, of the US FDA’s weight-of-evidence (WoE) reprotox 
database suitable for QSAR modelling (Matthews et al., 2007a, 2007b). 

In the longer term (5 years and more), the development of systems biology approaches 
incorporating “omic” and HTS data is likely to become increasingly important. Preliminary 
investigations have started, for example in connection with the US ToxCast initiative (Martin 
et al., 2009; Knudsen et al., 2009). It is too early to judge whether this approach, which 
reflects a shift from modelling apical endpoints to toxicity pathways, will ultimately be useful 
in the routine regulatory assessment of chemicals. 

In contrast to reprotoxicity, there is an extensive and growing range of software and literature 
models for predicting endocrine-related activities, and especially binding to the ER and AR 
receptors. In many cases, these models are at the research stage and require specialised 
expertise to recreate them in molecular modelling software. However, there are a number of 
potentially useful models, including simple decision tree approaches (e.g. OECD, 2009) as 
well as commercial models (e.g. the VirtualToxLab approach; Vedani et al., 2009).  One of 
the main challenges here is to develop agreed approaches for interpreting model results for 
regulatory applications other than priority setting. 

http://www.reprotect.eu/
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7. PREDICTION OF BIOKINETIC (ADME) PROPERTIES  

7.1 Introduction 

The term ADME refers to Absorption, Distribution, Metabolism and Excretion, the four 
processes related to the toxicokinetic (pharmacokinetic) profile of the chemicals interacting 
with living organisms. Collectively, these processes determine the fate of the substance inside 
the body. The term ADMET is sometimes also used, especially in the pharmacological area, 
the express the overall profiling of ADME properties and Toxicological effects of a 
substance. 

The development of methods for determining ADME properties, including in silico methods, 
is a large and rapidly evolving field. This chapter provides an introduction to the background 
biology, and reviews the current status of available databases, software tools and literature 
models relevant to ADME prediction. The in silico methods cover a range of approaches, 
including but not limited to (Q)SAR models. A more detailed review is provided by Mostrag-
Szlichtyng & Worth (2010). 

7.2 Background biology 

Absorption is a complicated process governed by a wide variety of factors, including not 
only the intrinsic properties of the substance (molecular size, solubility (logSaq), ionization 
constant (pKa) and octanol/water partition coefficient (logP) values), but also physiological 
conditions inside the organism (local pH, absorptive surface area), and activities of enzymes, 
transporters and carriers along the gastrointestinal (GI) tract. Absorption in the upper GI tract 
(in mouth and stomach) is minimal and occurs as a result of passive diffusion. Substances 
absorbed in mouth (despite enzymatic degradation processes) enter directly the systemic 
circulation; substances absorbed in the stomach (despite hydrolysis and biotransformation 
processes) go to the liver first and their actual bioavailability is usually limited by first-pass 
metabolism. The most intensive absorption takes place in the lower GI tract, especially via 
large mucous surface of small intestine. The predominant absorption mechanism there is 
passive diffusion, although large molecules may be taken up by pinocytosis. In the large 
intestine absorption is less efficient and occurs by passive diffusion or active transport (in 
case of electrolytes). The activity of gut microflora, enzymatic degradation processes and 
hepatic first-pass metabolism usually diminish the amount of parent molecule that enters 
systemic circulation.  

Human intestinal absorption (HIA) is usually measured as the percentage of the dose that 
reaches the portal vein after passing the intestinal wall (%HIA) and is a basis of most in silico 
absorption models. The percentage of the dose that remains after absorption and first-pass 
hepatic metabolism is defined as the oral bioavailability (F) of the compound. In other words, 
bioavailability describes the passage of a substance from the site of absorption into the 
systemic circulation and is usually not equivalent to the amount of a substance absorbed.  

Once a compound enters the systemic circulation, it is distributed inside the body. This 
distribution process is governed by two main factors, namely the permeability of a substance 
between blood and particular tissues and the affinity of a substance to bind with tissues and 
plasma proteins.  

One of the most important tissue/blood partitioning coefficients is blood/brain (BB) partition 
coefficient, usually expressed as logBB and defined as the ratio of substance concentration in 
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blood to its concentration in brain. The passage of compounds across the blood/brain barrier 
(BBB), an important determinant of neurotoxicity, is based mainly on passive diffusion across 
the BBB membrane. However active transport also may be important. For nutrients and 
endogenous compounds, such as amino acids, monocarboxylic acids, amines, hexoses, 
thyroid hormones, purine bases and nucleosides, several transport systems regulating the 
entry of the respective compound classes into the brain have been identified. In addition, there 
is evidence that active efflux pumps like the multidrug transporter P-glycoprotein (P-gp) on 
the luminal membrane of the brain capillary endothelial cells serve to impede the entry of 
hydrophobic compounds into the brain.  

Compounds in the blood may exist in bound or unbound form. The protein binding of a 
substance influences the half-life inside the body and the bound fraction often serves as a 
reservoir from which the substance is slowly released to the unbound form. Unbound 
substances cross membrane barriers more readily, and may be metabolised and/or excreted. 
Hence the percentage of plasma protein binding (%PPB) is one of the key determinants in 
distribution. The most abundant protein in blood plasma is human serum albumin (HSA) 
accounting for about 60% of the total plasma protein. Since HSA is capable of binding 
diverse molecules, it significantly affects the overall %PPB.  

Metabolism (biotransformation) is one of the main factors influencing the fate and toxicity 
of a chemical. Metabolism includes a set of chemical reactions (so-called metabolic 
pathways) inside the organism, which generally convert xenobiotics into more polar and more 
easily excreted (i.e. less toxic) forms. However, in some cases metabolism may lead to the 
formation of toxic metabolites or/and intermediates. Traditionally biotransformation is 
divided into two main phases - phase I and phase II. Phase I, the so-called functionalisation 
phase, has a major impact on lipophilic molecules, rendering them more polar and more 
readily excretable. In phase II, often referred to as detoxification, such functionalised moieties 
are subsequently conjugated with highly polar molecules before they are excreted. Both 
phases are catalysed by specific enzymes which are either membrane-bound (microsomal 
proteins) or present in the cytosol (cytosolic or soluble enzymes). The superfamily of 
cytochrome P450 (CYP450; also termed heme-thiolate protein P450) enzymes, including 
more than 70 families of proteins, catalyses the oxidative (and sometimes reductive) phase I 
metabolic reactions of diverse compounds. Phase II metabolism is governed by various 
enzymes acting on different types of molecules. The most significant among them are 
glutathione S-transferase (GST), methyltransferase (MT), N-acetyltransferase (NAT), 
sulfotransferase (SULT) and UDP-glucuronosyltransferase (UGT). Besides phase I and phase 
II metabolism, the liver causes specific pre-systemic (first-pass) effects, especially following 
the oral intake. In addition, phase III metabolism refers to the excretion of metabolites from 
cells with efflux transporters.  

Excretion is the process of eliminating waste metabolic products, the major route of which is 
renal (urinary) excretion via the kidneys. The major non-metabolic routes of clearance (CLtot) 
include bile and urinary elimination of unchanged compounds. The excretion with sweat, 
faeces and expired air as well as the ability of compounds to be excreted into breast milk and 
transferred to neonates may also be significant. 

7.3 Literature reviews on the modelling of ADME properties 

Despite difficulties in the modelling of ADME (e.g. low availability and/or quality of 
experimental data, complexity of physiological mechanisms inside the organisms), a large 
number of in silico prediction models and tools have been developed for ADME and ADME-
related properties. As an illustration of the vastness of the ADME literature, Table 7.1 lists the 
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major reviews and expert opinions that have been published only during the last five years 
(2005-2010). A recent literature review (Mostrag-Szlichtyng & Worth, 2010) describes in 
detail a range of models for human intestinal absorption, human oral bioavailability, 
blood/brain barrier permeability, plasma protein binding, metabolism and excretion 
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Table 7.1. Recent (2005-2010) reviews/expert opinions concerning in silico studies in 
ADME and ADME-related endpoints 

 
Year Reference 

2010 Mostrag-Szlichtyng & Worth (2010). Review of QSAR Models and Software Tools for 
predicting Biokinetic Properties. JRC Technical Report EUR 24377 EN 

2010 Madden (2010). In silico approaches for predicting ADME properties 
2010 Veselovsky et al. (2010). Computer-based substrate specificity prediction for cytochrome P450 
2010 Wang & Skolnik (2010). Mitigating permeability-mediated risks in drug discovery 
2010 Kortagere & Ekins (2010). Troubleshooting computational methods in drug discovery 
2010 Cross & Cruciani (2010). Molecular fields in drug discovery: getting old or reaching maturity? 
2010 Sprous et al. (2010). QSAR in the pharmaceutical research setting: QSAR models for broad, 

large problems 
2010 Kharkar (2010). Two-Dimensional (2D) in silico models for Absorption, Distribution, 

Metabolism, Excretion and Toxicity (ADME/T) in drug discovery 
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Year Reference 

2006 Hou et al. (2006). Recent advances in computational prediction of drug bbsorption and 
permeability in drug discovery 

2006 Chohan et al. (2006). Quantitative Structure Activity Relationships in drug metabolism 
2006 Crivori & Pogessi (2006). Computational approaches for predicting CYP-related metabolism 

properties in the screening of new drugs 
2006 Fox & Kriegl (2006). Machine learning techniques for in silico modeling of drug metabolism 
2006 Norinder & Bergström (2006). Prediction of ADMET properties 
2006 Gola et al. (2006). ADMET property prediction: The state of the art and current challenges  

2006 Schuster et al. (2006). Predicting drug metabolism induction in silico 

2006 Tetko et al. (2006). Can we estimate the accuracy of ADME-Tox predictions? 

2006 Wan & Ulander (2006). High-throughput pKa screening and prediction amenable for ADME profiling 

2006 Segall et al. (2006). Focus on success: using a probabilistic approach to achieve an optimal balance of 
compound properties in drug discovery 

2006 Hyland et al. (2006). Utility of human/human-derived reagents in drug discovery and development: An 
industrial perspective 

2006 Luco & Marchevsky (2006). QSAR studies on blood-brain barrier permeation 

2006 Allen & Geldenhuys (2006). Molecular modeling of blood–brain barrier nutrient transporters: In silico 
basis for evaluation of potential drug delivery to the central nervous system 

2006 Cianchetta et al. (2006). Molecular Interaction Fields in ADME and safety 

2005 Colmenarejo (2005). In silico ADME prediction: Data sets and models 

2005 De Graaf et al. (2005). Cytochrome P450 in silico: an integrative modeling approach 

2005 Delisle et al. (2005). Computational ADME/Tox modeling: aiding understanding and enhancing decision 
making in drug design 

2005 Goodwin & Clark (2005). In silico predictions of BBB penetration: considerations to “keep in mind” 

2005 Ekins et al. (2005). Computational prediction of human drug metabolism 

2005 Ekins et al. (2005). Techniques: Application of systems biology to absorption, distribution, metabolism, 
excretion and toxicity 

2005 Kaznessis (2005). A review of methods for computational prediction of BB partitioning 

2005 Otagiri (2005). A molecular functional study on the interactions of drugs with plasma proteins 

2005 Testa et al. (2005b). Musings on ADME predictions and structure-activity relations 

2005 Votano (2005). Recent uses of topological indices in the development of in silico ADMET  models 

 

7.4 Databases and literature datasets 

Although a wide range of diverse molecules have been screened in terms of their ADME 
properties, mainly to satisfy the needs of the pharmaceutical industry, relatively few data are 
publicly available. The majority of information on drug candidates are proprietary. 
Furthermore, ADME data for other types of chemicals (e.g. food additives, environmental 
pollutants, industrial chemicals, pesticides, etc.) are scarce. Thus, for the purpose of 
developing new ADME models, limited information is available. It is also unclear whether 
models developed for pharmaceuticals are applicable to a broader range of compounds, since 
pharmaceuticals are designed to be bioavalabnle and bioactive.  

A list of available databases suitable for the development of QSARs for ADME properties is 
given in Table 7.2. One of them is WOMBAT-PK 2009, the clinical pharmacokinetics 
database of top selling drugs, provided by Sunset Molecular 
(http://www.sunsetmolecular.com/). It includes information about over 13,000 clinical 

http://www.sunsetmolecular.com/
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pharmacokinetic measurements for 1230 molecules (1230 unique SMILES) and is being 
constantly expanded (over 100 drugs are planned to be added in 2010). All WOMBAT-PK 
2009 drugs are represented (if possible) in neutral species. The searchable categories of 
WOMBAT-PK 2009 database include, among others, percentage oral bioavailability (for 818 
drugs), percentage plasma protein binding (for 1006 drugs), percentage urinary excretion (for 
811), qualitative blood brain barrier permeability (for 519 drugs) and phase I metabolizing 
enzymes (for 511 drugs). The Metabolism & Transport Drug Interaction Database 
(DIDB) has been developed by the University of Washington scientists 
(http://www.druginteractioninfo.org/). It contains in vitro and in vivo information on drug 
interactions in humans and provides pharmacokinetic profiles of drugs. The MetaboliteTM 
Database provided by Symyx (http://www.symyx.com/) indexes paths and schemes of 
biotransformation for xenobiotics and medicinal drugs and collects experimental data from in 
vivo and in vitro studies. ADME DB, a database provided by Fujitsu (http://www.fqs.pl/), 
contains data on interactions of substances with drug metabolizing enzymes and drug 
transporters. It includes information on ADME properties (e.g. CYP and other phase I and 
phase II enzymes) as well as interactions between drugs. 

Among freely available databases (Table 7.2), two are of importance. The ADME-AP 
database developed by Bio Info & Drug Design 
(http://xin.cz3.nus.edu.sg/group/admeap/admeap.asp/) (Sun et al., 2002), provides data on 
diverse ADME-associated proteins including physiological function of each protein, 
pharmacokinetic effects, ADME classification, direction and driving force of disposition, 
location and tissue distribution, substrates, synonyms, gene name and protein availability in 
other species. The PK/DB database (http://www.pkdb.ifsc.usp.br/) includes 1203 compounds 
with respect to 2973 pharmacokinetic measurements (Moda et al., 2008). This database also 
includes five models for in silico ADME prediction (human intestinal absorption, human oral 
bioavailability, plasma protein binding, blood/brain barrier permeability and water solubility). 

Numerous datasets published recently in the literature are also of importance as far as the 
modeling of ADME properties is concerned (Table 7.3). They can be used for a wide range of 
predictive purposes, e.g. for human intestinal absorption, human oral bioavailability, plasma 
protein binding, blood brain barrier permeation and metabolic pathway modelling. 

http://www.druginteractioninfo.org/
http://www.symyx.com/
http://www.fqs.pl/
http://xin.cz3.nus.edu.sg/group/admeap/admeap.asp
http://www.pkdb.ifsc.usp.br/
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Table 7.2. Databases for ADME 

Database  

(developer and availability) 

Database size/ chemical classes Provided properties Details 

 
ADME INDEXTM DATABASE 
Bio-Rad Laboratories  
http://www.bio-rad.com/ 
(commercial; hosted by Bio-Rad Lab KnowItAll) 

FDA-approved drugs and non-
approved compounds 

ADME Experimental in vitro ADME data generated by 
Lighthouse Data Solutions (LDS) Laboratory 

ADME DB 
Fujitsu 
http://www.fqs.pl/ 
(commercial, available online) 

Drugs Drug metabolizing 
enzymes, kinetic 
metabolism, 
transporters 

Protein information about enzymes and 
transporters, metabolic reactions, types of drug-
drug interactions, structures of drugs and 
metabolites, kinetic information 

ADME-associated proteins (ADME-AP) Database 
Bio Info & Drug Design  
(Sun et al., 2002)  
http://xin.cz3.nus.edu.sg/group/admeap/admeap.asp/ 
(freely available online) 

321 proteins and 964 substrates ADME Drug ADME associated proteins, functions, 
similarities, substrates/ligands, and tissue 
distributions 

AurSCOPE® ADME/DDI 
Aureus Pharma 
http://www.aureus-pharma.com/ 
(commercial) 

7000 compounds ADME 
Drug-drug interactions 

Biological and chemical information on metabolic 
properties of drugs 

BioPath Database 
Molecular Networks 
http://www.molecular-networks.com/ 
(trial version freely available online) 
(commercial full version) 

Endogenous compounds 
1175 chemical structures in free 
online version  
2074 chemical structures in 
commercial version 

1545 biochemical 
transformations (in free 
online version) 
2881 biochemical 
transformations (in 
commercial version) 

Biochemical pathways (metabolic transformations 
and cellular regulations). 
Covered organisms: prokaryotes, plants, yeasts 
and animals 
Subcellular localisation of pathways including: 
cytosol, chloroplasts, mitochondria, endoplasmatic 
reticulum, peroxysomes, endothelium of blood 
vessels, vascular muscle cell, animal extracellular 
matrix, nucleus, animal cell membrane, plant cell 
wall 

http://www.bio-rad.com/
http://www.fqs.pl/
http://xin.cz3.nus.edu.sg/group/admeap/admeap.asp
http://www.aureus-pharma.com/
http://www.molecular-networks.com/
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Database  

(developer and availability) 

Database size/ chemical classes Provided properties Details 

 
BioPrint® 
CEREP 
http://www.cerep.fr/ 
(commercial) 

2500 compounds Pharmacology and 
ADME database 

Chemical descriptors (structures, 2D and 3D); in 
vitro profiles; in vivo effects. 
Enzyme/solubility/absorption assays  

KEGG (Kyoto Encyclopaedia of Genes and 
Genomes) Database 
Kanehisa Laboratories (Kyoto University & 
University of Tokyo) 
http://www.genome.jp/kegg/ 
(freely available for academic use only; for other 
purposes available commercially under license 
agreement with Pathway Solutions Inc.,  
http://www.pathway.jp/licensing/commercial.html)  

16 databases including 344 
metabolic pathway maps, 9150 
drugs, 1231 organisms, 16083 
metabolites and other small 
molecules, 8064 biochemical 
reactions and many others 

Metabolism KEGG metabolism information includes (among 
others) the following aspects: carbohydrate/ 
energy/ lipid/ nucleotide/ amino acid/ metabolism; 
biosynthesis of secondary metabolites; xenobiotic 
biodegradation and metabolism 

Metabolism Database 
Accelrys 
http://accelrys.com/ 
(commercial) 

Drugs, agrochemicals, food 
additives and industrial & 
environmental chemicals (69,241 
records) 

Metabolism Metabolism data for vertebrates, invertebrates and 
plants; data on pathways and related compounds 

Metabolism & Transport Drug Interaction Database 
(DIDB) 
University of Washington 
http://www.druginteractioninfo.org/ 
(commercial) 

Drugs Pharmacokinetic data; 
Enzyme/transporter 
interactions 

Drug interactions in humans, pharmacokinetic 
profiles of drugs 

MetaboliteTM 
Symyx 
http://www.symyx.com/ 
(commercial) 

Xenobiotics and drugs Metabolism Metabolic paths and schemes; experimental data  

http://www.cerep.fr/
http://www.genome.jp/kegg/
http://www.pathway.jp/licensing/commercial.html
http://accelrys.com/
http://www.druginteractioninfo.org/
http://www.symyx.com/
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Database  

(developer and availability) 

Database size/ chemical classes Provided properties Details 

 
PharmGKB Database 
Stanford University 
http://www.pharmgkb.org/ 
(freely available for research purposes) 

Drugs, genes, pathways, diseases, 
information about people who have 
participated in pharmcogenomics 
research studies 

Pharmacokinetic data Clinical and basic pharmacokinetic and 
pharmacogenomic research in the cardiovascular, 
pulmonary, cancer, pathways, metabolic and 
transporter domains 

PharmaPendiumTM Database 
Elsevier 
https://www.pharmapendium.com/ 
(commercial) 

Data from the FDA freedom of 
information documents and EMEA 

EPAR  approval documents 
(structure/substructure searchable) 

Pharmacokinetic data Data on efficacy, indications and dosage, safety, 
pharmacokinetics, pharmacology and mode of action, 
preclinical and clinical toxicity (extracted from 
documents), adverse effects (extracted from 
documents), general product information 

PK/DB Database 
(Moda et al., 2008) 
http://www.pkdb.ifsc.usp.br/ 
(freely available online) 

1203 compounds Pharmacokinetic data Human intestinal absorption, human oral 
bioavailability, plasma protein binding, 
blood/brain barrier penetration 

Prous Ensemble ® Database 
Prous Science 
http://www.prous.com/ 
(commercial) 

127 000 bioactive compounds 
275 000 references 

Pharmacokinetic and 
metabolism data 

Drug monographs containing information on the 
synthesis, pharmacological actions, 
pharmacokinetics and metabolism, toxicity, 
clinical studies, manufacturers and references 

Symcyp 
http://www.simcyp.com/ 
(commercial) 

47 drugs -experimental data   from 
in vitro enzyme and cellular 
systems, physicochemical properties 
and dosage forms 

ADME, 
pharmacokinetic 
profiles, drug-drug 
interactions 

Population-based PBPK simulator for modelling 
ADME and drug-drug interactions in virtual 
patient populations.  

WOMBAT-PK 2009 
Sunset Molecular 
http://www.sunsetmolecular.com/ 
(commercial) 

1230 drugs Pharmacokinetic data Percentage oral bioavailability, percentage plasma 
protein binding, qualitative blood/brain barrier 
permeability, phase 1 metabolizing enzymes 

 
 

http://www.pharmgkb.org/
https://www.pharmapendium.com/
http://www.pkdb.ifsc.usp.br/
http://www.prous.com/
http://www.simcyp.com/
http://www.sunsetmolecular.com/
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Table 7.3. Literature datasets for ADME  

Dataset  

(reference) 

Dataset 
size/chemical 

class(es) 

ADME and ADME-
related properties 

provided 

Information 

available 

Hou et al. (2007b) 648 compounds Human intestinal 
absorption (HIA) 

HIA 

Hou et al. (2007a) 768 compounds 
Moda et al. (2007a)  302 drugs 
Sietsema et al. (1989)  (Dataset & 550 

references) 

Oral bioavailability 
(F) 

Oral bioavailability 

Konovalov et al. (2007)  328 compounds  LogBB  
Zhao et al. (2007)  1593 compounds Binary classification 

(BBB+/BBB-) 
Abraham et al. (2006)  328 drugs and 

organic 
compounds  

Blood/plasma/serum 
to rat brain 
distribution 
coefficients  

Li et al. (2005)  415 compounds 

Blood/brain barrier 
(BBB) penetration 

Binary classification 
(BBB+/BBB-) 

Hollósy et al. (2006)  179 drugs Percentage PPB, 
urinary excretion and 
other ADME data 

Votano et al. (2006)  1008 compounds Percentage human 
plasma protein 
binding 

Turner et al. (2004b)  62 drugs Human plasma 
protein binding; total 
and renal clearance 

Thummel & Shen (2001)  320 drugs 

Plasma protein 
binding (PPB) 

Percentage PPB, 
urinary excretion and 
other ADME data 

Kalgutkar et al. (2005)  (464 references) Metabolic pathways Structural alerts  
Manga et al. (2005)  147 drugs CYP metabolism CYP isoforms 

predominantly 
responsible for their 
metabolism 
(CYP3A4/2D6/2C9) 

Yap et al. (2006) 503 compounds Clearance (CLtot) Total clearance in 
humans 

 

7.5 Software for predicting ADME properties 

Tables 7.4 and 7.5 indicate the extensive range of software tools for the purpose of ADME 
and ADME-related predictions. The vast majority of available software tools are commercial. 
The tools differ greatly in terms of their capabilities and applications.  

Some software, e.g. ACD/PhysChem Suite, ASTER, EPISUITE, ClogP (Table 7.4) were 
designed to perform the predictions of basic physicochemical properties (e.g. ionizstion 
constant pKa, octanol/water partition coefficient logP, distribution coefficient logD or 
aqueous solubility logSaq). The best accuracy attained in physicochemical property prediction 
is close to that of measured data. The only approach that promises to improve the predictive 
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accuracy of such models seems to be consensus modelling, in which the results of multiple 
models are combined.  

The importance of physicochemical property prediction is that the estimated data often serve 
as inputs to models of key ADME properties, such as gastrointestinal absorption, BBB 
permeability, oral bioavailability and plasma protein binding. Software tools such as Know-it-
All, ADME Boxes, and ADMET Predictor (Table 7.5) generate physicochemical property 
predictions and use them in further ADME modeling.  

In addition to structure-based models, there is a trend towards developing more sophisticated, 
mathematical PBPK models (Table 7.5). In these tools, in vitro and/or in vivo ADME data are 
integrated with the results of QSAR/QSPR models (e.g. for percentage plasma protein 
binding or blood/brain barrier penetration) for organism-based ADME modelling. Examples 
of such software tools include GastroPlus and Cloe which mimic the processes inside living 
organisms.  

Simcyp (http://www.simcyp.com/) is a proprietary PBPK simulator that provides a platform 
for modelling the ADME properties of drugs and their metabolites, as well as drug-drug 
interactions, in virtual patient populations (Jamei et al., 2009). By predicting inter-individual 
variability, it can be used to identify people at the extreme risks arising from both oral and 
non-parenteral routes (lungs and skin) of drug administration / exposure. The populations 
included are: Healthy Volunteers, North European Caucasians, Japanese, Cirrhotic (different 
degree), Renal Impairment (different degrees), Obese (different levels), and all paediatric age 
groups. A Bayesian based parameter estimation module can be used to predict individual as 
well as population parameters. Various QSAR-based predictors are included to predict 
ADME parameters if measured data are not available. Symcyp is based on and includes a 
database of demographic, physiological, genomic and in vitro biochemical data. It has been 
developed by a consortium of pharmaceutical companies, academic institutes and regulatory 
authorities. In addition, as a module to the Simcyp Population-based ADME Simulator, 
Simcyp Rat is a ‘virtual animal’ for predicting drug kinetics in rats. Simcyp is a unique and 
comprehensive tool, and although is has been developed to support the safety assessment of 
drugs and their metabolites, it would be worth investigating for its applicability in dietary risk 
assessment. 

http://www.simcyp.com/
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Table 7.4. Software tools for predicting physicochemical properties useful as input data 
for ADME modelling 

PROPERTY  
 
 
SOFTWARE (COMPANY) 
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ACD/PhysChem Suite/Batch (ACD Labs) 
http://www.acdlabs.com/ 

Commercial ● ● ● ● 

ASTER (U.S. EPA) 
http://www.epa.gov/med/Prods_Pubs/aster.htm/ 

Not publicly available ● ●  ● 

ChemOffice (CambridgeSoft) 
http://www.cambridgesoft.com/ 

Commercial  ●   

ChemProp  
(Helmholtz Centre for Environmental Research, UFZ) 
http://www.ufz.de/ 

 
Commercial 

 ●  ● 

ClogP (DAYLIGHT) 
http://www.daylight.com/ 

Commercial  ●   

EPISUITE (U.S. EPA) 
http://www.epa.gov/oppt/exposure/pubs/episuite.htm/ 

Freely downloadable  ●  ● 

JAGUAR (Schrödinger) 
http://www.schrodinger.com/ 

Commercial ●    

Molecular Modeling Pro (ChemSW) 
http://www.chemsw.com/molecularmodeling.htm/ 

Commercial  ●  ● 

MoKa (Molecular Discovery) 
http://www.moldiscovery.com/ 

Commercial ●    

Pipeline Pilot (Accelrys Scitegic) 
http://accelrys.com/ 

Commercial ● ●  ● 

SPARC (U.S. EPA) 
http://ibmlc2.chem.uga.edu/sparc/ 

Free on-line application ● ●  ● 

TSAR (Accelrys) 
http://accelrys.com/ 

Commercial  ●   

VCCLAB (Virtual Computational Chemistry Lab) 
 http://www.vcclab.org/ 

Free on-line application ● ●  ● 

 

http://www.acdlabs.com/
http://www.epa.gov/med/Prods_Pubs/aster.htm
http://www.cambridgesoft.com/
http://www.ufz.de/
http://www.daylight.com/
http://www.epa.gov/oppt/exposure/pubs/episuite.htm
http://www.schrodinger.com/
http://www.chemsw.com/molecularmodeling.htm
http://www.moldiscovery.com/
http://accelrys.com/
http://ibmlc2.chem.uga.edu/sparc/
http://accelrys.com/
http://www.vcclab.org/
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Table 7.5. Software tools for physicochemical-based and organism-based ADME predictions 
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ACD/ADME Suite with AbSolv module (ACD Labs) 
http://www.acdlabs.com/ 

Commercial ● ● ● ● ● ● ● ● ● ●  ● 

Accord for Excel with ADME/Tox Add-on (Accelrys) 
http://accelrys.com/ 

Commercial ● ● ● ● ●   ● ● ●   

ADME Batches1 (Pharma Algorithms) – now included in ACD/ADME Suite Commercial    ● ●        
ADME Boxes1 (Pharma Algorithms) – now included in ACD/ADME Suite Commercial ● ● ● ● ● ● ●  ●  ●  
DISCOVERY STUDIO including Cerius2 (Accelrys) 
http://accelrys.com/ 

Commercial    ● ●   ● ● ●  ● 

ADMENSA1 (Inpharmatica) Commercial  ●  ● ●  ●  ● ●   
ADMET Predictor (Simulations Plus Inc.) 
http://www.simulations-plus.com/ 

Commercial ● ● ● ● ●   ● ●   ● 

ADMETox/Pallas including MetabolExpert, MEXAlert, pKalc, PrologD, 
TPSA,  
RetroMEX, RuleOf5, PrologP, ToxAlert, Cytotoxicity (CompuDrug) 
http://www.compudrug.com/ 

Commercial ● ● ● ●      ●  ● 

ADMEWORKS including Predictor and ModelBuilder (Fujitsu) 
http://www.fqs.pl/ 

Commercial  ●  ● ●   ●  ●  ● 

http://www.acdlabs.com/
http://accelrys.com/
http://accelrys.com/
http://www.simulations-plus.com/
http://www.compudrug.com/
http://www.fqs.pl/
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BioFrontier/P450 (Fujitsu) 
http://www.fqs.pl/ 

Commercial          ●   

ChemDBsoft with MOLPRO Package including SLIPPER (ChemDBsoft) 
http://www.chemdbsoft.com/ 

Commercial ● ● ● ● ●        

ChemSilico Predictors, i.e. CS LogWS/D/P, CS BBB/PB/HIA (ChemSilico)  
http://chemsilico.com/ 

Commercial  ● ● ● ●   ● ●    

Cloe® including Cloe PK, Cloe PredictHIA (Cyprotex)* 
http://www.cyprotex.com/ 

Commercial     ●     ●   ● 

COMPACT (Computer-Optimised Molecular Parametric Analysis of Chemical 
Toxicity), University of Surrey, Guildford, UK  
Lewis et al. (1996, 2001)  

Neither 
commercial nor 
public 

         ●   

GastroPlus (Simulations Plus Inc.)* 
http://www.simulations-plus.com/ 

Commercial    ● ●  ●   ●   

iDEA ADME1 (Lion Biosciences) Commercial    ● ● ● ● ●  ●   
iDEA PKexpress1 (Lion Biosciences) Commercial     ●     ●   
Jchem with Calculator Plugins (ChemAxon) 
http://www.chemaxon.com/ 

Commercial ● ● ●         ● 

KnowItAll ADME/Tox (Bio-Rad Laboratories) 
http://www.bio-rad.com/ 

Commercial ● ● ● ● ●  ● ● ●   ● 

http://www.fqs.pl/
http://www.chemdbsoft.com/
http://chemsilico.com/
http://www.cyprotex.com/
http://www.simulations-plus.com/
http://www.chemaxon.com/
http://www.bio-rad.com/
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META/METAPC/ MCASE ADME Module (MultiCASE) 
Klopman et al. (1994, 1997, 1999), Talafous et al. (1994) 
http://www.multicase.com/ 

Commercial       ●  ● ●  ● 

MetaDrugTM (Genego) 
http://www.genego.com/ 

Commercial  ● ● ●    ● ● ● ● ● 

MetaSite (Molecular Discovery) 
Cruciani et al. (2005) 
http://www.moldiscovery.com/ 

Commercial          ●   

METEOR (Lhasa Ltd.) 
Testa et al. (2005a) 
http://www.lhasalimited.org/ 

Commercial          ●   

MolCode ToolBox (MolCode) 
http://www.molcode.com/ 

Commercial      ●  ● ● ●   

NorayMet ADME (Noray Bioinformatics) 
http://www.noraybio.com/ 

Commercial ● ● ● ● ● ●   ● ●  ● 

OraSpotter1 (ZyxBio) Commercial    ● ●      ●  
PK SiM (Bayer Technology Services) 
http://www.systems-biology.com/ 

Commercial     ●  ●   ● ●  

ProPred (CAPEC) 
http://www.capec.kt.dtu.dk/ 

Commercial  ●  ●         

http://www.multicase.com/
http://www.genego.com/
http://www.moldiscovery.com/
http://www.lhasalimited.org/
http://www.molcode.com/
http://www.noraybio.com/
http://www.systems-biology.com/
http://www.capec.kt.dtu.dk/
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PreADME (Bioinformatics and Molecular Design Research Centre) 
PreADMET web-based application (BMDRC)  
http://www.bmdrc.org/ 

Commercial  ●  ● ● ●  ● ●   ● 

q-ADME (Quantum Lead) 
http://www.q-lead.com/ 

     ● ●   ●    

QikProp (Schrödinger) 
http://www.schrodinger.com/ 

Commercial  ●  ●  ●  ● ●   ● 

QMPRPlus1 (Simulations Plus Inc.) 
http://www.simulations-plus.com/ 

Commercial  ● ● ● ●   ●     

StarDrop (BioFocus DPI) 
http://www.scientific-computing.com/ 

Commercial ● ● ● ● ●   ● ● ● ● ● 

Simcyp® (SimCYP)* 
http://www.simcyp.com/ 

Commercial     ●     ●   

OASIS-TIMES (Laboratory of Mathematical Chemistry, Bourgas University) 
http://www.oasis-lmc.org/ 

Commercial          ●   

TruPK1 (Strand Genomics), now a part of KnowItAll platform from Bio-Rad 
Labs 

Commercial     ●    ● ●   

VolSurf/VolSurf+  (Molecular Discovery & Tripos) 
http://www.moldiscovery.com/ 

Commercial  ● ● ● ● ●  ● ● ●   

1 Former software, not commercially available now, but often cited and still possibly in use 
 

http://www.bmdrc.org/
http://www.q-lead.com/
http://www.schrodinger.com/
http://www.simulations-plus.com/
http://www.scientific-computing.com/
http://www.simcyp.com/
http://www.oasis-lmc.org/
http://www.moldiscovery.com/


 

 

94

7.6 Types of in silico modelling approaches  

Thousands of ADME models have been published in the scientific literature during the last ten 
years. These models can be divided into a few categories of modelling approaches. The selection 
of the most useful approach depends on the aims of investigation and is usually driven by the 
availability of necessary input data, as well as by the level of information needed as an output 
(e.g. high-throughput screening of numerous compounds or detailed analysis of particular 
metabolic reaction).  

The simplest approach is based on rules-of-thumb and structural alerts. Their main advantages, 
i.e. simplicity and transparent interpretability, make them very useful for fast screening of large 
datasets. As far as ADME-related endpoints are concerned, several rules-of-thumb have been 
developed (Table 7.6), especially for assessing the likelihood of human intestinal absorption, 
blood/brain barrier penetration and plasma protein binding. Structural alerts have been identified 
mainly for metabolism-related issues, but also for human intestinal absorption (Raevsky et al., 
2002). Models in this category are suitable for routine assessments by non-specialists, especially 
when rough approximations are sufficient. 

Another approach to ADME modelling is data-based modelling. This includes conventional 
QSAR/QSPR and the application of different statistical algorithms, from relatively simple linear 
multivariate methods, such as Multiple Linear Regression (MLR), Partial Least Squares (PLS) 
and Linear Discriminant Analysis (LDA) to sophisticated nonlinear ones, such as Artificial 
Neural Networks (ANN). They are usually combined with learning methods such as Genetic 
Algorithms (GAs), Support Vector Machines (SVMs), Inductive Logic Programming (ILP), 
Bayesian Modelling (BM) and Self-Organizing Maps (SOMs). In addition, the approach of 
Hologram Quantitative-Structure Property Relationship (HQSAR) has been applied to ADME 
modelling. This technique is based on the arrangement of molecular fragments in a molecular 
hologram which allows three-dimensional information to be obtained from two-dimensional 
input structures (Wang et al., 2006; Moda et al., 2007a). Models in this category may be suitable 
for routine assessments by non-specialists, provided that a software implementation of the model 
is available.  

QSARs for ADME properties tend to be local models, i.e. are based on small, homogenous data 
sets, with reliable predictions being obtained for the compounds falling within the model’s 
applicability domain. Relatively few models have been developed on structurally diverse 
datasets containing more than 100 compounds. However, the accuracy of predictions across 
structurally diverse datasets can be improved by the application of consensus modelling, which 
transfers the strengths of multiple single models to a final consensus one. This approach has 
been demonstrated, for example in the modelling of blood/brain barrier penetration (Zhang et al., 
2008a) and total clearance (Yap et al., 2006).  

To obtain detailed information on the mechanisms of interaction between molecules, similarity-
based molecular modelling may be useful. The methods within this category are used mainly in 
metabolism-related studies, especially for assessing the role of cytochrome P450 or identifying 
reaction sites (atoms) on particular enzyme substrates. Such methods include 3D-QSAR (e.g. 
Comparative Molecular Field Analysis, CoMFA); quantitative molecular similarity analysis 
(QMSA), based on experimental data or computed molecular descriptors; pharmacophore 
modelling and docking. Models in this category tend to require highly specialised modelling 
expertise, and as such are not suitable for routine assessments by non-specialists. 
This review of literature-based ADME models given below focuses on the conventional 
QSAR/QSPR approach (data-based modelling category), which could be useful for dietary risk 
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assessment purposes. Given the large number of QSAR studies published and the wide variety of 
ADME properties, the description is limited to a few illustrative examples, focusing on key 
ADME properties: human intestinal absorption (predicted as percentage fractional absorption, 
[%FA] or percentage human intestinal absorption [%HSA]), oral bioavailability (classification 
models), blood/brain barrier permeability (logBB and classification models), plasma protein 
binding (human serum albumin [HSA] binding or percentage plasma protein binding [%PPB]) 
and excretion (total clearance [CLtot] renal clearance). Since conventional QSARs for 
metabolism prediction are highly limited in terms of their applicability, other types of 
biotransformation models (e.g. 3D-QSAR, pharmacophore modelling, docking) are also 
included. Additional detail is given in Mostrag-Szlichtyng & Worth (2010).  
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Table 7.6. Rules-of-thumb for ADME evaluation 

 
Reference ADME property Rules-of-thumb details 
Gleeson (2008) Solubility 

Bioavailability 
PPB 
Brain/tissue binding 
CYP1A2/2C9/2C1/2D6/
3A4 inhibition 

The influence of molecular weight (MW), ionization state (pKa) and 
calculated octanol/water partition coefficient (ClogP) on various 
ADME properties was discussed, e.g: 
• Solubility increases as: MW decreases and ClogP decreases. In 
terms of pKa: zwitterionic molecules containing both an acidic and 
basic functional group are the most highly soluble, while neutral 
molecules are the least soluble; acidic molecules are more soluble 
than basic molecules; 
• Bioavailability increases as MW decreases; ClogP does not have a 
significant influence. In terms of pKa: bioavailabilities for neutral, 
basic and zwitterionic molecules are quite similar; 
• Plasma protein binding increases as: MW increases and ClogP 
increases. In terms of pKa, PPB follows the trend: acids > neutrals > 
zwitterions > bases; 
• Brain/tissue binding increases as MW increases and ClogP 
increases. In terms of pKa, no significant relationships have been 
observed 

Lobell et al..(2006) GI absorption Good GI absorption is characteristic for reasonably soluble, not too 
liphophilic, large, polar or flexible compounds. The combined 
calculated values of physicochemical properties determining these 
factors, i.e. aqueous solubility (logSaq), octanol/water partition 
coefficient (ClogP), molecular weight (MW), polar surface area 
(PSA) and the number of rotatable bonds (RotB) give a “traffic 
light” (TL) scheme for absorption, as follows: 

• Green: logSaq ≧ 50; ClogP ≤ 3; MW ≤ 400; PSA ≤ 120; RotB ≤ 7; 

• Yellow: logSaq: 10-50; ClogP: 3-5; MW: 400-500; PSA: 120-140 
RotB: 8-10; 

• Red: logSaq < 10; ClogP > 5; MW > 500; PSA > 140; RotB ≧ 11 

Zmuidinavicius et al. 
(2003) 

Human intestinal 
absorption 

• Compounds with quaternary nitrogens or biphosphonate moieties 
are poorly absorbed; 
• Compounds with molecular weight < 255 have good absorption;  
• Compounds with molecular weight between 255 and 580, polar 
surface area < 154 Å2 and one of two following conditions hold: logP 
> 0 or hydrogen bond acidity < 1.3 display good absorption; 
• Compounds with molecular weight > 580, polar surface area < 291 
Å2 and logP > 0 are well absorbed 

Norinder & Haberlein 
(2002) 

 
BBB penetration 

• The molecule has a high chance of entering the brain if the number 
of  nitrogen and oxygen atoms (N+O) atoms is ≤ 5; 
• LogBB is positive if [logP-(N+O)] is positive 
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Reference ADME property Rules-of-thumb details 
Veber et al. (2002) Oral bioavailability High probability of good oral bioavailability for compounds with: 

• ≤ 10 rotatable bonds; 
• Polar surface area ≤ 140 A2 or 
• The sum of hydrogen bond donors and acceptors ≤ 12 

Kelder et al. (1999) BBB penetration • The upper limit for the polar surface area (PSA) for a molecule that 
has a high chance of entering the brain is < 60-70 Å 

Van der Waterbeemd 
et al. (1998) 

BBB penetration • The upper limit for the polar surface area (PSA) for a molecule that 
has a high chance of entering the brain is around 90 Å 
• The molecular weight (MW) of such molecule should be not larger 
than 450 g/mol 

Lipinski et al. (1997, 
2001) 

Absorption “Rule of 5”, indicating that a molecule is prone to poor absorption if: 
• Molecular weight > 500; 
• Sum of OH and NH hydrogen bond donors > 5; 
• Sum of O and N hydrogen bond donors > 10; 
• ClogP > 5 
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7.7 Current status of in silico models for key ADME properties  

7.7.1 Human intestinal absorption models 

The majority of published models for human intestinal absorption have been developed using 
datasets including drugs and drug-like molecules, what creates a significant shortcoming as far 
as their applicability to different classes of chemicals is concerned. Furthermore, the published 
models are at the research stage, and not yet implemented into software suitable for the routine 
assessment of chemicals. 

Nevertheless, some general findings have been identified that may be useful in further studies. 
The most significant descriptors for HIA are related to hydrogen bonding, molecular size, 
lipophilicity and surface polarity. Moreover, some generic functional groups which have 
detrimental impact on HIA have been identified, e.g. quaternary nitrogens and biphosphonates. 
The datasets used in modelling procedures should include, if possible, chemicals covering the 
whole range of %HIA values in order to avoid biases towards poorly/highly absorbed 
compounds. Some compounds (usually those actively transported, insoluble or acting as P-
glycoprotein substrates) appear as outliers or rule contradictors in HIA models – in such cases a 
set of preliminary models for active transport/solubility/P-gp binding could be developed before 
HIA prediction in order to identify the outliers and avoid final prediction errors. In addition, 
future research efforts should investigate ways of incorporating metabolic effects into QSAR 
models.  

7.7.2 Bioavailability models 

Bioavailability is a very challenging property to model, due to the diversity of the underlying 
determinants, some of which (e.g. first-pass metabolism) are very difficult to model. One of the 
handicaps in bioavailability modelling is the paucity of data publicly available to the scientific 
community and the fact that the majority of the data available concerns mainly drugs and drug-
like molecules.  

Despite these difficulties, several attempts have been made to model human oral bioavailability, 
generally in categorical terms (e.g. high vs low bioavailability). These studies have resulted in a 
reasonable or good ability to identify high bioavailability compounds, but a relatively poor 
ability to identify low bioavailability compounds. Available studies also show that modelling 
strategies based on whole-molecule descriptors of diverse structures is not sufficient, as it does 
not allow to effectively characterise the first-pass metabolism. The more successful models 
employ well-defined substructures, which are probably related to different metabolism pathways. 

7.7.3 Blood-brain barrier models 

There is a wealth of BBB permeability information published in the literature and available 
databases, which could potentially be applied by researchers to develop in silico models of brain 
penetration. However, the major shortcomings of existing data sets is that they tend to be 
relatively small (less than 100 compounds), they come from a variety of sources and may not be 
sufficiently consistent for modelling purposes. Other datasets were compiled specifically for 
drugs. Very few models have been proposed for determination of logBB for pollutants. Hence, 
one of the most urgent needs is the generation of larger and more diverse datasets with accurate 
measurements of logBB values. Nevertheless, the majority of recently developed QSAR models 
based on logBB data represent good predictivity as determined by both internal validation 
against the training set and external validation against test sets. There are a number of in silico 
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models yielding logBB predictions of around 0.35-0.45 log units that could be used for screening 
purposes. By examining the wide variety of potentially useful molecular descriptors that have 
been reported, and some important generalisations for further modelling studies can made. 
Generally it is possible to distinguish two categories of descriptors. The first includes descriptors 
of size (i.e. molar refraction, connectivity and topological indices, molecular mass, surface area) 
while the second includes descriptors of polarity (i.e. polar surface area, partial charges, 
functions of hydrogen bond acid or hydrogen bond base groups). The descriptors from the first 
class are important predictors for the partitioning of non-polar compounds in the brain, whereas 
the descriptors from the second category express the features of polar molecules which are 
determine their tendency to partition in the blood.  

7.7.4 Models for plasma protein binding 

The relatively small number of studies performed for plasma protein binding is a result of 
complexity of factors influencing the binding process on the one hand and the paucity of PPB 
human data on the other. Large differences between data obtained from various species put into 
question the utility of models developed on non-human plasma proteins to predict human plasma 
protein binding. The majority of available human PPB models are based on data for drug 
molecules and tend to have a local character with applicability domains limited to small sets of 
structurally similar molecules. Although such models are relatively simple (they are based on 
relatively small number of descriptors, with lipophilicity being the most significant one) and 
probably easily reproducible and transferable, they cannot be applied to sets of structurally 
diverse compounds. However, a few investigations (discussed above) were based on broader 
datasets. Based on these studies, it can be concluded that lipophilicity alone is not important but 
not sufficient to model PPB processes, especially in the case of large and diverse datasets are 
concerned. It is necessary to use additional descriptors of various types (e.g. structural, 
topological, quantum mechanical) to obtain more complex and reliable human PPB models, and 
the use of non-linear modelling technques may also be necessary. However, this is usually 
connected with a decreased transparency and reproducibility of the models. 

7.7.5 Metabolic fate models 

The utility of conventional QSARs predicting the metabolic fate of chemicals is highly limited. 
However, computer-based expert systems (COMPACT, META, MetabolExpert, METEOR, 
TIMES; see Table 7.5) have a much broader applicability.  

A few QSAR models in the literature have provided some promising results for further research 
studies (discussed above). Most of these were designed to predict the phase I metabolism, with 
CYP450 isoforms playing a predominant role in the biotransformation of human drugs and 
xenobiotics. The modelling of phase II metabolism has not received as much attention; in most 
cases, these models have been developed for GST-catalyzed biotransformation. 

Although progress is being made in the development of QSARs for metabolism, currently 
available models are typically derived from small data sets (only few of them are based on more 
than 100 compounds) and thus show poor predictivity for heterogenous sets of compounds. Most 
of the available QSARs have been developed for the purposes of drugs discovery and 
development. Furthermore, the model-building methodology, underlying training sets and model 
algorithms are often not transparent, which is an impediment to interpretation and 
reproducibility. A major bottleneck is the paucity of high quality and relevant experimental (in 
vitro or in vivo) data for use in model building and validation. Thus, it is difficult to make clear 
recommendations about which currently available literature models could be used in the dietary 
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risk assessment of chemicals other than drugs. To make progress in this respect, more 
transparent descriptions of the applied approaches and training datasets are needed. 

As far as modelling of CYP inhibition is concerned, literature QSARs are at an early stage of 
development as they usually give poor predictions when tested on the external sets of 
compounds. Much better results can be obtained from the models predicting the site of the 
metabolism (predictivity of 80% or more). The most challenging task seems to be modelling the 
rates of metabolism.  

Significant improvement could probably be obtained by combining multiple in silico models for 
metabolism prediction (consensus modelling) along with physiologically based pharmacokinetic 
(PBPK) modelling utilising the data from different sources (in silico, in vivo and in vitro). 
However, this represents a long-term research effort. 

7.7.6 Excretion (clearance) models 

The complexity of excretion processes and paucity of experimental data have hindered the 
development of models for excretion. Some efforts to model human total, urinary and (to a lesser 
extent) biliary clearance have been made only recently. These studies have identified some 
important trends governing the clearance processes, which form a useful basis for further 
research and model development. Most of the models are based on non-linear relationships and 
utilise large numbers of molecular descriptors in order to capture the multiple features affecting 
the clearance process. These models tend to be less transparently documented and thus of low 
reproducibility. However, if encoded into software tools, they could be practically useful. From 
the available literature, it seems that the software-based VolSurf approach (Cruciani et al., 
2000), shown to be successful for modelling human intestinal absorption, oral bioavailability and 
blood/brain barrier penetration modelling, also works well for renal clearance prediction. Given 
the emphasis of published studies on drugs, the applicability of these approaches to other types 
of chemicals significant in dietary risk assessment, would require further investigation.   



 

 

8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

8.1 Survey on the use of computational methods  

The survey of regulatory use resulted in responses from 38 organisations around the world, 
including government authorities and industry. The results indicate that the majority of 
stakeholders in the food safety field do not currently apply QSAR analysis on a routine basis, 
mainly through lack of in-house expertise. A few organisations, however, have developed 
specialised in-house expertise and approaches, mainly for priority setting and filling data gaps 
in emergency situations. In general, the respondents were in favour of further using QSAR 
analysis (including chemical grouping and read-across), and requested additional guidance 
and training. 

8.2 A conceptual framework for assessing QSAR predictions 

A framework for assessing the usefulness of QSARs was proposed (Worth et al., 2011), 
building on guidance already adopted for the REACH regulation, including international 
(OECD) guidance on the validation and documentation of QSAR models for regulatory 
purposes. Assessing the usefulness of a model, in terms of both its practical applicability and 
the adequacy (relevance, reliability and completeness) of its predictions, is not a trivial 
exercise, and needs to be performed on a case-by-case basis. It is therefore difficult to make 
generalisations and provide firm guidance on the assessment of model usefulness. Since 
REACH is still in an early phase of implementation, the current guidance has not been tried 
and tested to any significant extent, and it leaves many issues open to judgement, such as the 
level of detail needed in the reportining formats for QSAR models (QMRFs) and their 
predictions (QPRFs), and the criteria for deciding when a given estimate is adequate for a 
specific regulatory purpose. There is therefore a need to develop further this guidance, and 
also adapt it for regulatory purposes in the food safety field. With this eventual goal in mind, 
a checklist of questions is proposed that focus on issues that could be reasonably considered 
by the risk assessor. Other issues can only be assessed by drawing upon specialised QSAR 
expertise. The application of the checklist to a range of software models for gentoxicity 
prediction was illustrated with several examples using two pesticide actives as case studies 
(Worth et al., 2011). 

8.3 The availability of models for toxicity prediction  

The review of (Q)SARs for toxicological endpoints was performed in a broad sense, 
considering both models available in software tools and models that are published in the 
literature. The review identified numerous (Q)SAR models for toxicological endpoints 
relevant to dietary risk assessment. The models are based on a wide variety of approaches, 
including models that are mechanistically-based or at least mechanistically plausible, and 
models that have no apparent mechanistic basis. Literature-based models tend to be “local” 
models, applicable only to specific groups of chemicals, whereas software tools tend to be 
“global” models, with a wider (but not universal) applicability. Literature-based models are 
not as accessible to the end-user, unless they have also been encoded in the form of a software 
tool.  

The review also revealed considerable differences in the availability of models depending on 
the endpoint. At one extreme, there is a huge literature and range of software tools for 
predicting genotoxicity and carcinogencity, and at the other extreme, there are few or no 
models for organ and system-specific toxicities. The quality of the models also varies 
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depending on the endpoint: in general, models for acute toxicity are more reliable than 
“complex” endpoints which comprise a large number of partially understood mechanisms, 
such as chronic toxicity, systemic toxicities, and reproductive toxicity. For mutagenicity and 
carcinogenicity, there is a relative abundance of reliable models, mainly based on the fact that 
these toxic effects are driven by chemical reactivity (electrophilic binding to DNA). In many 
cases, promising models were identified but they are still at the research stage. For routine 
application in a regulatory setting, further efforts will be needed to explore the applicability of 
such models for specific purposes, and to implement them in a practically useful form (i.e. 
user-friendly software).  

It was also noted that a range of software tools are research tools suitable for model 
development, but these require more specialised expertise than other tools that are aimed 
primarily at end-users such as risk assessors. It is concluded that the most useful models are 
those which are implemented in software tools and which are associated with transparent 
documentation on the model development and validation process. While transparency is much 
valued, this does not necessarily mean that all aspects of model development and validation 
need to be completely open for a model to be useful in a regulatory context. It could be 
argued that commercial software tools do not need to document their predictive algorithms, 
provided that information on model applicability is provided, and the user obtains an 
indication of the reliability of individual predictions, ideally with supporting data for one or 
more analogues. Similarly, it could be argued that the training set does not need to be 
completely transparent, provided that a celar definition of the applicabity domain is provided. 
In the case of models that are published in the literature however, a greater degree of 
transparency is needed in order to ensure reproducibility and transferability. Ultimately, the 
degree of information needed to support the regulatory use of models should be a policy 
decision, and this will most likely be context-dependent, and even decided on a case-by-case 
basis. 

At present, it is difficult to give firm guidance on how to use available models for specific 
groups of food chemicals and for specific purposes in dietary risk assessment. This would 
require focussed research investigations. In general, most models are not sufficiently 
validated (across a diverse range of chemical groups) or documented to promote confident 
use. However, it may be possible to use such models in dietary risk assessment, on a case-by-
case basis, in a weight-of-evidence approach in which the predictions are substantiated by 
other available information, e.g. experimental data on close analogues. In addition, it is often 
recommended to combine the use of multiple models for a given endpoint, to improve the 
reliability of prediction, although clear guidance on how to combine the results of multiple 
models (e.g. in the form of model batteries or decision tree approaches) still needs to be 
developed. 

8.4 The availability of computational models for ADME prediction  

The review of computational models for ADME properties was also performed in a broad 
sense, with emphasis on QSARs and rule-based approaches. This revealed a vast and rapidly 
growing literature and software range, especially for the prediction of certain ADME 
properties (e.g. blood/brain barrier permeability, human intestinal absorption). While it is 
difficult to give firm conclusions on the applicability of such tools, it is clear that many have 
been developed with pharmaceutical applications in mind, and as such may not be applicable 
to other types of chemicals (this would require further research investigation). Most of the 
available data sets are thus skewed toward drug molecules. If these models are applied to 
other classes of chemicals, the predictions may be unreliable, and in many cases the user will 
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not be able to judge on this, since the applicability domains have not been explicitly defined 
and in many cases the training sets are confidential. On the other hand, a range of predictive 
methodologies have been explored and found promising, so there is merit in pursuing their 
applicability in the field of food safety. Many of the software tools are not transparent in 
terms of their predictive algorithms or underlying datasets. However, the literature identifies a 
set of commonly used and easily-interpreted descriptors that have been found useful in 
ADME prediction, so further research and model development activities could be based on 
such studies. 

To promote the wider use of in silico models for ADME properties in the risk assessment of 
food chemicals, various significant research initiatives would need to be undertaken: a) it will 
be necessary to generate high-quality experimental datasets for relevant classes of chemicals 
other than drugs (e.g. pollutants, food additives, food contact materials, pesticides); and b) the 
applicability of each model would have to be determined, on a case-by-case basis, by 
comparing its predictions with experimental data for chemical inventories of interest.  

8.5 The applicability of models for genotoxicity and carcinogenicity prediction 

The case studies (JRC, 2010; Worth et al., 2010) focussed on the applicability of several 
software tools for predicting genotoxicity and carcinogenicity endpoints. This was identified 
as particularly important in terms of incorporating such tools into TTC assessment schemes. 
To assess the predictive performance of software models, some conclusions could be drawn 
from a large and structurally diverse dataset containing more than 700 chemicals. The 
abilities of several software tools to predict genotoxicity and carcinogenicity were 
comparable to previously published evaluations. 

The ability of individual models to identify carcinogens was found to be moderately better 
than chance (typical sensitivities of 66-71%, typical false negative rates of 29-33%), which 
might not be considered adequate. In contrast, several tools were good identifiers of Ames 
mutagenicity (typical sensitivities of 80-93%; typical false negative rates of 7-20%). The 
boundaries of these ranges (93% sensitivity and 7% false negatives) are likely to represent 
extreme values of predictivity, since in the case of statistical models, a defined but variable 
percentage of the test chemicals are also present in the model training sets. Furthermore, some 
of these tools were good identifers of classified mutagens (highest sensitivities of 73-87%; 
lowest false negative rates of 13-27%). Pairwise combinations of these tools could increase 
the overall sensitivity (to about 90%) and reduce the false negative rate (to about 10%). Such 
tools could be employed to identify potential genotoxicants. In the context of a TTC 
assessment, such chemicals could either be excluded from the TTC scheme, and therefore 
assessed on a case-by-case casis, or subjected to a lower threshold of toxicological concern. 
For example, following the proposal of Kroes et al. (2004), the dietary intake of compounds 
predicted to be genotoxic should be compared with a TTC of 0.15µg/person/day (as opposed 
to thresholds of 1800, 540 and 90 µg/person/day for chemicals in Cramer classes I, II and III, 
respectively). Chemicals that are predicted to be classified (in vivo) mutagens (or both 
genotoxic and carcinogenic) could perhaps be excluded from the TTC scheme and assessed 
on a case-by-basis using experimental data. The performances of the various software tools 
were assessed by applying transparent schemes for interpreting the predicted data. It 
principle, it is possible to modify these schemes in order to optimise the prediction of 
positives (usually at the expense of correctly predicting negatives) or vice versa. Thus, future 
research could focus on optimising the data interpretation schemes with a particular purpose 
in mind (e.g. improving the ability to identify positives). Furthermore, models that are good at 
predicting positives can be used alongside models that are good at predicting negatives, to 
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produce an optimised model battery. Further research is needed to investigate how to develop 
optimised model batteries against fixed and pre-defined criteria (which may include, for 
example, criteria based on sensitivity, specificity and rates of indeterminate/equivocal 
predictions). 

8.6 The use of computational models in dietary risk assessment 

Based on the reviews of QSARs and other in silico models, it is not possible to give strong 
conclusions and provide firm guidance on which models should be used in the routine 
assessment of chemicals in food. In general, however, it can be concluded that: 

a) model predictions should be substantiated with additional information, e.g. a 
comparison of model predictions with experimental data for one or more analogues, 
thereby adding confidence to the prediction for the untested chemical; 

b) predictions from multiple models are sometimes superior to individual model 
predictions; however, identification of optimal model combinations (batteries) still 
requires considerable research; 

c) individual models have their own strengths and weaknesses, for example in terms of 
their applicability to different areas of chemical space; however, building a detailed 
understanding, endpoint-by-endpoint, of where individual models perform more or 
less reliably will require a considerable research effort. 

d) In cases where user-friendly QSAR models / expert systems are either not available or 
reliable, the grouping and read-across approaches could be useful in order to predict 
toxicological endpoints and ADME properties. Various computational tools exist to 
support grouping and read-across approaches. However, the application of these 
methodologies requires expert judgement drawing on QSAR, chemistry and 
toxicology, so they are not as stratighforward as some of the conventional QSAR 
software packages. 

e) For the purposes of dietary risk assessment, computational models will be used most 
profitably in the overall context of the TTC approach, which has been shown to be 
valid for assessing. Further research is needed to optimise TTC approaches for food 
safety applications. 

A summary of the state-of-the art of software models is given in Table 8.1, along with some 
observations that may guide the user. These observations are based on the reviews and the 
experience of the authors, and should therefore not be taken as absolute guidance. 

8.7 Recommendations 

To achieve a wider and more judicious use of QSARs and related computational methods in 
the food safety area, efforts will be needed to provide tailor-made training courses and 
materials, to raise awareness through improved communication and outreach activities, and 
by investing in focussed research strategies. 

Research strategies should partly focus on available models, investigating their applicability, 
endpoint-by-endpoint, to chemical inventories of relevance in the food safety area (e.g. 
pesticides, food contact materials, food additives). In parallel, efforts will be needed to 
develop tailor-made models using relevant and quality-assured databases. Given the scale of 
undertaking these approaches, international collaboration and coordination will be essential. 
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Once a better understanding has been obtained concerning the performances of various 
software tools in predicting toxicological and ADME endpoints relevant to food safety 
assessment, international agencies such as EFSA should consider developing their own 
criteria for acceptance of model estimates according to specific regulatory applications. For 
example, in assessing the toxicological relevance of pesticide residues for possible inclusion 
in the residue definition, it is desirable to minimise the number of false negative predictions 
for critical endpoints such as genotoxicity. In order to establish the usefulness of different 
models in this context, it is necessary to set clear criteria for the generation of false negatives, 
as well as sensitivity, and perhaps also in terms of percentage coverage of the pesticides 
(PPP) inventory. Models or combinations of models can then be assessed and optimised 
against these criteria. For example, a battery of models could be developed, although it is by 
no means guaranteed a priori that a given set of criteria will be achievable.  

Recommendations for further activities, both in the short-term and long-term, are summarised 
in Table 8.2. 



 

 

Table 8.1.  Summary of the status of software models and observations on their potential applicability 

Endpoint Comments 
Acute oral toxicity A range of models are available for estimating rodent LD50 balues or for classifying chemical on the basis of acute toxicity. 

Literature models tend to be local models with limited applicability domains.  
Freely available and user-friendly tools, suitable for the non-specialist user, are almost completely lacking: an online ToxBoxes 
application provides LD50 estimations; ChemBench web portal is in development. 
Commercially available and user-friendly tools, suitable for the non-specialist user, include: ACD/Tox Suite, MCASE/MC4PC, 
MDL QSAR, TerraQSAR and TOPKAT. 

Repeat dose oral toxicity Very few models are available. 
User-friendly commercial tools include TOPKAT and MolCode Toolbox, which predict chronic (12 month or more) LOAELs. 
User-friendly and freely available tools include Lazar, which predicts MRTDs in humans; and Toxtree, which predicts Cramer 
classifications, reflecting the level of concern based on oral toxicity. 

Organ and system-specific 
toxicities 

No software was identified as potentially useful for routine assessment purposes. The development of such tools would provide a 
useful means of supplementing the use of models for apical effects. 
A few models are available for effects such as hepatotoxicity, nephrotoxicity and (developmental) neurotoxicity; these are restricted 
to literature models with limited applicability domains. 
Several software packages (CASE/MC4PC, MDL-QSAR, BioEpisteme, and Leadscope Predictive Data Miner) have been reported 
as useful research tools in the development of models for hepatic and urinary tract toxicities. 

Genotoxicity A vast range of models are available, mostly for chemicals that are electrophilic and DNA-reactive. The majority of models predict 
Ames mutagenicity. Many models predict genotoxic effects in general withour reference to a specific endpoint. 
Freely available and user-friendly tools, suitable for the non-specialist user, are limited: online ToxBoxes application, Lazar, 
Toxtree (Benigni-Bossa and In vivo Micronucleus), CAESAR, OECD QSAR Toolbox (DNA-binding profilers). 
Based on the research investigation, various gentoxicity models are considered sufficiently predictive for the identification of 
potential genotoxic carcinogens in the context of a TTC assessment. 
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Endpoint Comments 
Carcinogenicity A vast range of classification models are available for predicting carcinogenic potential, mostly in rodents. Models for predicting 

carcinogenic potency are lacking. 
Various compilations of structural alerts have been found useful (e.g. Ashby, Bailey, Kazius, Benigni-Bossa) 
User-friendly and freely available tools, suitable for the non-specialist user, are limited: Lazar, Oncologic, Toxtree.  
User-friendly commercial tools include: Derek, TOPKAT, MolCode Toolbox, HazardExpert, OASIS TIMES. 
Based on the research investigation, current carcinogenicity models are not considered sufficiently predictive for use in isolation. 
However, they may have some value when used to supplement the use of genotoxicity models in the context of a TTC assessment. 
Several software packages have been reported as useful research tools for model building: CASE/MC4PC, MDL-QSAR. 

Developmental and reproductive 
toxicity 

Very few models are available, and these are mostly classification models. Literature models tend to be local models with limited 
applicability domains.  
User-friendly and freely available tools, suitable for the non-specialist user, are almost non-existent: CAESAR (developmental 
toxicity) 
User-friendly and commercial software tools, suitable for the non-specialist end-user, include: TOPKAT (developmental toxicity), 
Derek, Leadscope. 
Several software packages have been reported as useful research tools for model building: CASE/MC4PC, Toxmatch 

Endocrine activity 

Many models are available for predicting nuclear hormone receptor binding or receptor-mediated effects, especially for the 
oestrogen, androgen and aryl hormone receptors. In many cases, the models are the results of research investigations and not 
suitable for routine use.  
A range of user-friendly software tools, suitable for the non-specialist end-user, are commercially available, including: ADMET 
Predictor, ToxBoxes, MolCode Toolbox, TerraQSAR, TIMES and VirtualToxLab. 
Simple and freely available decision tree approaches have been found useful for screening and priority setting, especially the US 
EPA decision tree which is implemented in the OECD QSAR Toolbox. 
Important challenges are to develop an understanding of how to use these model results for regulatory purposes, and how to 
integrate metabolic information into the assessment.  
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Endpoint Comments 

Physicochemical properties useful 
in ADME prediction 

A wide range of software tools are available for predicting key physicochemical properties such as partition coefficients (logP), 
distribution coefficients (logD), ionisation constants (pKa) and solubility; these are generally perceived to be highly reliable within 
their applicability domains.   
User-friendly and freely available and tools, suitable for the non-specialist user, include: EpiSuite, SPARC, VCCLab and 
ADMEBoxes online application. 
Commercially available and user-friendly tools, suitable for the non-specialist user, include: Accord for Excel with ADME/Tox Add-
on , ACD ADMEBoxes,  

ADME properties 

A vast and rapidly growing range of models are available, although in many cases they have been developed for pharmaceuticals., 
which raises questions about their applicability to other types of chemicals. Literature models tend to be local models with limited 
applicability domains. 
A wide range of research tools are available (e.g, for modelling enzyme interactions and metabolism), which are not suitable for the 
routine assessment of chemicals by non-specialists.  
For routine application in the assessment of chemicals, a number of simple rules-of-thumb have been found useful for approximate 
estimations and screening purposes. 
User-friendly and freely available tools, suitable for the non-specialist user, are almost completely lacking:  an online version of 
ADMEBoxes provides bioavailability estimation, volume of distribution and P-gp binding. 
User-friendly and commercially available tools, suitable for the non-specialist user, include: ACD/ADME Suite, MetabolExpert, 
Meteor, Accord for Excel with ADME/Tox Add-on, Symcyp. 

The comments in this table are based on the outcome of the literature review and on the experience of the authors. It is not intended to provide complete and definitive guidance on the 
applicability of available models for specific purposes. A reasonable amount of QSAR expertise is always required to interpret model predictions.  
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Table 8.2.  Recommendations for further activities to promote the regulatory use of QSARs in the food safety field 

 

Short term (1-3 years) Long-term (>3 years) 
  
General  

1) Need to investigate the applicability (predictivity and scope) of different 
software tools on an endpoint-by-endpoint basis 

2) Need to explore the advantanges of combining the use of multiple tools in 
model batteries and Integrated Testing Strategies 

3) Need to take policy decisions on how much information is needed to support 
the regulatory use of models 

4) Need to establish criteria for model acceptability according to the regulatory 
purpose and context (e.g. mimising false negatives in the identification of 
genotoxicants in the context of a TTC scheme) 

5) Need to investigate and develop detailed guidance on how to use the outputs 
of models for defined regulatory purposes 

6) Need for training on how to use software tools, and interpret their outputs in a 
regulatory context 

7) Need to clarify and refine the Cramer classification scheme 

1) The development of publicly accessible, structured and searchable databases 
will be vital for further model development and validation 

2) Focussed research and development activities are needed to implement 
potentially useful literature models in the form of software tools. Ideally, a 
sufficient range of models will be made freely available 

3) Agencies such as EFSA could consider developing purpose-built models 
based on their own databases, e.g. pesticides 

4) Opportunity to replace the Cramer classification scheme with a new TTX 
assessment scheme incorporating the latest scientific developments in in 
silico and in vitro toxicology 

 

Prediction of acute oral toxicity  
1) Need to further explore the combined use of structural descriptors and in vitro 

data via quantitative structure-activity-activity analysis (QSAAR) 
2) Need to increase availability of models in the public domain. Several 

promising model-building methodologies have been identified. 
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Short term (1-3 years) Long-term (>3 years) 
  

Prediction of repeat-dose toxicity  
1) Need to compare the applicability (predictivity and scope) of TOPKAT and 

MolCode Toolbox. 
 

1) Considerable scope for new model development, but this will depend on 
increased availability of high quality data. Given the biological complexity 
of the endpoint, systems biology approaches could be worth pursuing in 
addition to traditional QSAR analysis. 

 
Prediction of organ and system-specific toxicities  

1) Need to build public databases suitable for modelling organ and system 
toxicities 

 
 

1) Considerable scope for new model development, but this will depend on 
increased availability of high quality data. 

2) Models could be integrated with models for acute and chronic apical 
effects. 

Prediction of  genotoxicity and carcinogenicity  
1) Need to add or refine rules in current expert systems in order to reduce false 

positive predictions of genotoxicity and carcinogenicity 
2) Hybrid approaches, based on both statistical algorithms and mechanistic 

knowledge, represent a promising way forward in model development. 
3) Need to build models for specific endpoints rather than genotoxicity or 

carcinogenicity in general. 
4) Need to explore alternative ways of interpreting model predictions with a view 

to optimising positive or negative predictivity. 
5) Need to further explore use of model batteries.  

 

1) Need to incorporate ADME into current models / expert systems. 
2) Need to increase availability of models for non-genotoxic carcinogenicity. 
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Short term (1-3 years) Long-term (>3 years) 
  

Prediction of  developmental and reproductive toxicity  
1) Need to develop ublic databases suitable for modelling reprotoxic effects (e.g. 

ILSI initiative) 
 
 
 

1) Need to expand current ontolgies linking adverse effects with underlying 
changes at the molecular and cellular and tissue levels 

2) Considerable scope for new model development, but this will depend on 
increased availability of high quality data. Need to build models based on 
point estimates (e.g. LOAELs) as well as classification models. Given the 
biological complexity of the endpoint, systems biology approaches could be 
worth pursuing in addition to traditional QSAR analysis. 

 
Prediction of  endocrine activity  

1) Need to develop models for a wider range receptors (other than ER, AR, ArH) 
2) Need to better understand how to use data from receptor models 
 

1) Need to incorporate ADME considerations into model 
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Short term (1-3 years) Long-term (>3 years) 
  
Prediction of  ADME properties  

1) Need to increase availability of models in the public domain. A range of 
promising model-building methodologies have been identified. 

2) Need to assess available software tools in terms of their applicability to chemicals 
other than pharmacuticals 

 

1) A wide range of ADME databases are commercially available. Substantial 
efforts are needed to bring more information into the public domain. 

2) Traditional QSAR approaches should be supplemented by mathematically and 
physiologically based models - PBBK models. 
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