29 research outputs found

    A new bound for the connectivity of cages

    Get PDF
    AbstractAn (r,g)-cage is an r-regular graph of girth g of minimum order. We prove that all (r,g)-cages are at least ⌈r/2⌉-connected for every odd girth g≥7 by means of a matrix technique which allows us to construct graphs without short cycles. This lower bound on the vertex connectivity of cages is a new advance in proving the conjecture of Fu, Huang and Rodger which states that all (r,g)-cages are r-connected

    Lower Bounds for the Cop Number When the Robber is Fast

    Full text link
    We consider a variant of the Cops and Robbers game where the robber can move t edges at a time, and show that in this variant, the cop number of a d-regular graph with girth larger than 2t+2 is Omega(d^t). By the known upper bounds on the order of cages, this implies that the cop number of a connected n-vertex graph can be as large as Omega(n^{2/3}) if t>1, and Omega(n^{4/5}) if t>3. This improves the Omega(n^{(t-3)/(t-2)}) lower bound of Frieze, Krivelevich, and Loh (Variations on Cops and Robbers, J. Graph Theory, 2011) when 1<t<7. We also conjecture a general upper bound O(n^{t/t+1}) for the cop number in this variant, generalizing Meyniel's conjecture.Comment: 5 page

    On the structure of graphs without short cycles

    Get PDF
    The objective of this thesis is to study cages, constructions and properties of such families of graphs. For this, the study of graphs without short cycles plays a fundamental role in order to develop some knowledge on their structure, so we can later deal with the problems on cages. Cages were introduced by Tutte in 1947. In 1963, Erdös and Sachs proved that (k, g) -cages exist for any given values of k and g. Since then, large amount of research in cages has been devoted to their construction. In this work we study structural properties such as the connectivity, diameter, and degree regularity of graphs without short cycles. In some sense, connectivity is a measure of the reliability of a network. Two graphs with the same edge-connectivity, may be considered to have different reliabilities, as a more refined index than the edge-connectivity, edge-superconnectivity is proposed together with some other parameters called restricted connectivities. By relaxing the conditions that are imposed for the graphs to be cages, we can achieve more refined connectivity properties on these families and also we have an approach to structural properties of the family of graphs with more restrictions (i.e., the cages). Our aim, by studying such structural properties of cages is to get a deeper insight into their structure so we can attack the problem of their construction. By way of example, we studied a condition on the diameter in relation to the girth pair of a graph, and as a corollary we obtained a result guaranteeing restricted connectivity of a special family of graphs arising from geometry, such as polarity graphs. Also, we obtained a result proving the edge superconnectivity of semiregular cages. Based on these studies it was possible to develop the study of cages. Therefore obtaining a relevant result with respect to the connectivity of cages, that is, cages are k/2-connected. And also arising from the previous work on girth pairs we obtained constructions for girth pair cages that proves a bound conjectured by Harary and Kovács, relating the order of girth pair cages with the one for cages. Concerning the degree and the diameter, there is the concept of a Moore graph, it was introduced by Hoffman and Singleton after Edward F. Moore, who posed the question of describing and classifying these graphs. As well as having the maximum possible number of vertices for a given combination of degree and diameter, Moore graphs have the minimum possible number of vertices for a regular graph with given degree and girth. That is, any Moore graph is a cage. The formula for the number of vertices in a Moore graph can be generalized to allow a definition of Moore graphs with even girth (bipartite Moore graphs) as well as odd girth, and again these graphs are cages. Thus, Moore graphs give a lower bound for the order of cages, but they are known to exist only for very specific values of k, therefore it is interesting to study how far a cage is from this bound, this value is called the excess of a cage. We studied the excess of graphs and give a contribution, in the sense of the work of Biggs and Ito, relating the bipartition of girth 6 cages with their orders. Entire families of cages can be obtained from finite geometries, for example, the graphs of incidence of projective planes of order q a prime power, are (q+1, 6)-cages. Also by using other incidence structures such as the generalized quadrangles or generalized hexagons, it can be obtained families of cages of girths 8 and 12. In this thesis, we present a construction of an entire family of girth 7 cages that arises from some combinatorial properties of the incidence graphs of generalized quadrangles of order (q,q)

    Rainbow connectivity of Moore cages of girth 6

    Get PDF
    Let be an edge-colored graph. A path of is said to be rainbow if no two edges of have the same color. An edge-coloring of is a rainbow-coloring if for any two distinct vertices and of there are at least internally vertex-disjoint rainbow -paths. The rainbow-connectivity of a graph is the minimum integer such that there exists a rainbow -coloring using colors. A -cage is a -regular graph of girth and minimum number of vertices denoted . In this paper we focus on . It is known that and when the -cage is called a Moore cage. In this paper we prove that the rainbow -connectivity of a Moore -cage satisfies that . It is also proved that the rainbow 3-connectivity of the Heawood graph is 6 or 7.Peer ReviewedPostprint (author's final draft

    Further topics in connectivity

    Get PDF
    Continuing the study of connectivity, initiated in §4.1 of the Handbook, we survey here some (sufficient) conditions under which a graph or digraph has a given connectivity or edge-connectivity. First, we describe results concerning maximal (vertex- or edge-) connectivity. Next, we deal with conditions for having (usually lower) bounds for the connectivity parameters. Finally, some other general connectivity measures, such as one instance of the so-called “conditional connectivity,” are considered. For unexplained terminology concerning connectivity, see §4.1.Peer ReviewedPostprint (published version

    Edge-superconnectivity of semiregular cages with odd girth

    Get PDF
    A graph is said to be edge-superconnected if each minimum edge-cut consists of all the edges incident with some vertex of minimum degree. A graph G is said to be a {d, d + 1}- semiregular graph if all its vertices have degree either d or d+1. A smallest {d,d+1}-semiregular graph G with girth g is said to be a ({d, d+1}; g)-cage.We show that every ({d, d+1}; g)-cage with odd girth g is edge-superconnected.Peer Reviewe
    corecore