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Abstract

A graph is said to be edge-superconnected if each minimum
edge-cut consists of all the edges incident with some vertex
of minimum degree. A graph G is said to be a {d,d + 1}-
semiregular graph if all its vertices have degree either d or d+ 1.
A smallest {d, d+ 1}-semiregular graph G with girth g is said to
be a ({d,d+1}; g)-cage. We show that every ({d,d+1}; g)-cage
with odd girth ¢ is edge-superconnected.

1 Introduction

We only consider undirected simple graphs without loops or multiple edges.
Unless otherwise stated, we follow [9] for basic terminology and definitions.
Let G stand for a graph with vertex set V' = V(G) and edge set E =
E(G). The distance dg(u,v) = d(u,v) between two vertices of the graph
G is the length of a shortest path between u and v, and the diameter
of G denoted by diam(G) is the maximum distance between any pair of
vertices; when G is not connected, then diam(G) = 4+o00. For w € V and
S cV,dw,S) =de(w,S) = min{d(w,s) : s € S} denotes the distance
between w and S. For every S C V and every nonnegative integer r > 0,
N, (S) ={w €V : d(w,S) = r} denotes the neighborhood of S at distance
r. Thus the set of vertices adjacent to a vertex v is N(v) = Ny({v}), and
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the degree of a vertex v in G is degg(v) = deg(v) = |N(v)|, whereas the
minimum degree 6 = §(G) is the minimum degree over all vertices of G. A
graph is called r-regular if every vertex of the graph has degree r.

A graph G is called connected if every pair of vertices is joined by a
path. An edge-cut in a graph G is a set W of edges of G such that G — W
is disconnected. A graph is k-edge-connected if every edge-cut contains at
least k edges. If W is a minimal edge-cut of a connected graph G, then
necessarily, G—W contains exactly two components. The edge-connectivity
A = A(G) of a graph G is the minimum cardinality of an edge-cut of G.
A classic result is A < § for every graph G. A graph is maximally edge-
connected if A = 4.

One might be interested in more refined indices of reliability. Even
two graphs with the same edge-connectivity A may be considered to have
different reliabilities. As a more refined index than the edge-connectivity,
edge-superconnectivity is proposed in [6, 7]. A subset of edges W is called
trivial if it contains the set of edges incident with some vertex of the graph.
Clearly, if |W| < § — 1, then W is nontrivial. A graph is said to be edge-
superconnected if A = & and every minimum edge-cut is trivial.

The degree set D of a graph G is the set of distinct degrees of the vertices
of G. The girth g(G) is the length of a shortest cycle in G. A (D; g)-graph is
a graph having degree set D and girth g. Let n(D;g) denote the least order
of a (D; g)-graph. Then a (D; g)-graph with order n(D; g) is called a (D; g)-
cage. If D = {r} then a (D;g)-cage is a (r;g)-cage. When D = {r,r + 1},
we refer to (D; g)-cages as semiregular cages.

The existence of (r;g)-cages was proved by Erdds and Sachs [10] in
the decade of the 60’s, and using this result Chartrand et al. [8] proved
the existence of (D;g)-cages. Some of the structural properties of (r;g)-
cages that have been studied are the vertex and the edge connectivity;
concerning this problem Fu, Huang and Rodger [11] conjectured that every
(r; g)-cage is r-connected, and they proved the statement for » = 3. Other
contributions supporting this conjecture can be seen in [15, 16, 17, 20].
Moreover, some structural properties of (r; g)-cages have been extended for
(D; g)-cages, for example the monotonicity of the order with respect to the
girth (see Theorem 1) and the upper bound for the diameter (see Theorem
2). The edge-superconnectivity of cages was established in [18, 19]. For
semiregular cages, it has been proved in [3] that they are maximally edge
connected. The main objective of this work is to prove that every ({d,d +
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1}; g)-cage with odd girth g > 5 is edge-superconnected. With this aim we
need the following two results.

Theorem 1 [4] Let g1,92 be two integers such that 3 < g1 < go. Then
n({d,d+1};91) <n({d,d +1}; 92).

Theorem 2 [5] The diameter of a ({d,d + 1}; g)-cage is at most g.

2 Main theorem

In order to study the edge-superconnectivity of a graph in terms of its
diameter and its girth, the following results were established [1, 2, 13].

Proposition 3 Let G = (V,E) be a connected graph with minimum
degree 6 > 2 and girth g. Let W C E be a minimum nontrivial edge-cut,
let H; be a component of G — W, and let W; C V(H;) be the set of vertices
of H; which are incident with some edge in W, i = 0,1. Then there exists
some vertex x; € V(H;) such that

(a) [1, 18] d(xi, Wi) = [(g — 1)/2], if Wil <6 1.

(b) [2] d(zi, Wi) = [(g = 3)/21, if W] < £ =1, where § = min{deg(u) +
deg(v) — 2 :uwv € E} is the minimum edge-degree of G.

For every minimum edge-cut W of G such that Hg, H; are the two
components of G — W, we will write henceforth W = [Wy, W;]| with W C
V(Hp) and Wy C V(H;) containing all endvertices of the edges in W. Note
that |W;| < |W/|, i = 0,1. From now on, let

wi = max{d(z,W;): z € V(H;)}, i=0,L.

When W is nontrivial and |W| < ¢ — 1, it follows from Proposition 3 that
wi > [(g —3)/2]. Likewise, puo and pq satisfy some other basic properties
shown in next lemma.

Lemma 4 Let G = (V, E) be a connected graph with minimum degree 6 > 3
and odd girth g > 5. Let W = [Wy, W1| C E be a minimum nontrivial edge-
cut with cardinality |W| < 6. Let G — W = HoU Hy, where W; C V(H;).
If ui = (g — 3)/2 the following statements hold:
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(i) |W;| = |W| =4, and every a € W; is incident to a unique edge of W.
(ii) Ewvery vertex z € V(H;) such that d(z,W;) = p; has deg(z) = 9.

(iii) For every a € W; there exists a vertex x € V(H;) such that d(x, W;) =
d(w,a) = p; and Nig_3)/2(x)W; = {a}. Further, N(x) can be labeled
as {uy,ug,...,us}t, and W; can be labeled as {ay,as,...,as}, where
a1 = a, so that N(g_5)/2(u1)ﬁWi = {al} and N(g_3)/2(uk)ﬁWi = {ak}
for every k > 1. Consequently |[Ny_3y/2(x) N Wi, Wi1]| = 1 and
[[N(g—3)/2(ur) " Wi, Wii1]| = 1 (with subscripts taken mod 2). See
Figure 2.

N
T U1 al b
——o— L U °
uz az
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OL’\/\/'\/'\/'\/—'
us as
—— —J
Nig—3),2(Wo) Wo

Figure 1: Lemma 4.

Proof: (i) Since pu; = (9 — 3)/2, d(z,W;) < p; = (g —3)/2 < (g — 1)/2
for all x € V(H;). Hence from Proposition 3 (a), it follows that |W;| > 4,
yielding |W;| = § because |W;| < |W| < 4. Observe that 6 = |W;| = ||
means that [N (a) N W;t1| = 1 for each vertex a € W; (taking the subscripts
mod 2).

(ii) First observe that u; = (9 —3)/2 > 1 since g > 5. Let us define the
following partition of N(v) for all v € V(H;)

S () — {z€ NWw) : d(z,W;) =d(v,W;) =1} if v & Wy;
() = Wit1 NN (v) if v € W;.

St(w)={2€ Nw):d(z,W;) =d
S=(v) ={z € N(v) : d(z,W;) = d(v, W;)}.
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Let z be a vertex of H; such that d(z,W;) = p; = (¢ —3)/2. Then we have

N(z)
[Ng—3)/2(5=(2)) N Wil
[Nig—s5)/2(5(2)) N Wil

Nig-3)/2(57(2)) N Nig5)/2(57(2)))

because otherwise cycles of length less than the girth g appear. Since
6 <deg(z) = [57(2)[+[57(2)]

[N(g—3)/2(57(2)) N Wil + |N(g—5)/2(5 (2)) N Wi

Wil =6

(=) US™(2);
| <z>| "

1V Iv

<
<

it follows that 0 = deg(z). Therefore item (ii) holds.

(iii) First let us prove that there exists an edge zz’ such that d(z, W;) =
d(z',W;) = (g — 3)/2. Otherwise, S=(z) = 0 for all z with d(z, W;)
(9—3)/2. This implies that for allu € N(z), u € S~ (2) and S=(5T (u)) =
Further, [N,_5y/2(u) N Wi| = 1 for all u € N(z), because § = |Wj]

> N2 (w)NW;] > 8. Hence |S~(u)| = 1, and s0 | S (uw)|+|S= (u)]
uEN(z)
deg(u)—1 > 6 —1> 2. Suppose that |[S=(u)| > 1 for some u € N(z). Then
as N(g_3)/2(2) N W; and Ny_s5)/5(5~(u)) N W; are two vertex disjoint sets
we have |W| > |N(g_3)/2(z) N Wz| + |N(g_5)/2(5:(u)) N Wz| > § + 1 which
is a contradiction because |W| = 4. Then we must assume that for all
u € N(z2), |ST(u)] =deg(u) —1>6—1>2. Let t € ST(u) — 2, according
to our first assumption S=(¢) = () meaning that N (¢) = S~ (t). Since ¢ has
the same behavior as z we have W; = N,_3)/2(57(2)) = Ng—3)2(S™ (1)),
and as 2 < 0 < deg(z) = deg(t), there exist cycles through {z,u,t,w} for
some w € W; of length less than g which is a contradiction.

Hence we may assume that there exists an edge 2z’ such that d(z, W;) =
d(, W;) = (g — 3)/2. Since N(g,5)/2(57(2’)) N w;, N(g,5)/2(57(21)) N w;
and Ng_3)/2(S7(2") —2) NW; are three pairwise disjoint sets because g > 5,
and taking into account (1) we have

=l

d=|W[ > [Ny_s5,2057(2)) N Wil + [Ng_s5),2(57 (') N Wy
+IN(g—3)/2(S7(2") — 2) N W]

> [STE+I157E)+157(F) — 2|
= deg(z) =14 |S7(2)] > 4.
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Therefore, all inequalities become equalities, i.e., |S™(2)] = 1 = [Nyy_5)/2(57 (2))N
Wil. So S7(z) ={z1} and N(z) — z; = S=(z) yielding a partition of W;:

Wi = (N(gft'))/2(21) NW;) U (UZ’EN(z)leN(gf3)/2(Z/) Nw;) ,

because for all 2/ € N(z) — 2 the sets N(y,_gy/2(z") N W; and the set
Ng_5y/2(21) N W; are mutually disjoint. Thus, [N(,_gy/5(z") N Wi = 1
for all 2’ € N(z) — z1. Therefore, for every vertex a € W; there exists a
vertex = € (N(z) — 2z1) U {2z} such that d(z, W;) = d(z,a) = (g — 3)/2 and
N(g—3)/2(x)NW; = {a}. Furthermore, since every vertex 2’ € N(z)— 2 has
the same behavior as z, N(x) can be labeled as {u1, ug,...,us}, and W; can
be labeled as {a1,az,...,as}, where a; = a, so that N,_5/2(u1) N W; =
{a1} and Nyg_gy/2(ux) N Wy = {ay} for every k > 1. Finally, using (i) we
obtain ‘[N(gfg)/Q(l') N Wi,Wi+1]’ =1 and \[N(g,g)/z(uk) nw;, Wi—&-l” =1,
which finishes the proof. O

A semiregular cage is known to be maximally edge-connected [3]. Now,
we are ready to prove that semiregular cages with odd girth are edge-
superconnected. As will be seen, Hall’s Theorem is a key point of this
study. Recall that if S is a set of vertices in a graph G, the set of all
neighbors of the vertices in S is denoted by N(S).

Theorem 5 ([12] Hall’s Theorem) A bipartite graph with bipartition
(X1, X2) has a matching which covers every vertex in X1 if and only if

IN(S)| > |S]| for all S C X;.

Using Hall’'s Theorem Jiang [14] proved the following result.

Lemma 6 [14] Let G be a bipartite graph with bipartition (X1, X2) where
|X1| = |Xa| = 7. If G contains at least > —r + 1 edges, then G contains a
perfect matching.

The following lemma is an stronger version of Lemma 6, which is also
proved using Hall’s Theorem.

Lemma 7 Let B be a bipartite graph with bipartition (X1, Xo) where | X;1| =
| Xo| =7. If §(B) > 1 and |E(B)| > r>—1r, then B contains a perfect match-

ing.
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Proof: Let B = (X;,X2) be a bipartite graph with | X;| = |X3| = r,
§(B) > 1 and |E(B)| > r2 — r. We shall apply Hall’s Theorem to prove
the lemma; we shall show that for a subset S C X, |[N(S)| > |S|. Notice
that if |[S| = 1, then |[N(S)| > 1 = |S| because 6(B) > 1; and if S = X7,
N(S) = X2 because 6(B) > 1 implies that each vertex u € X3 must have a
neighbor in S, hence |S| = |[N(5)|.

Therefore we continue the proof reasoning by contradiction and so as-
suming that 1 < |N(S)| < |S| =t < r — 1. Then the number of edges in B
is at most

[EB)| = [[S, NS+ X1\ 8, Xol| < #(t = 1) + (r — t)r,

and by hypothesis |[E(B)| > 72 —r. Thus 72 —r < t(t — 1) + (r — t)r,
yielding 0 < (¢ — r)(t — 1), which is an absurdity because 1 < t < r.
Therefore |[N(S)| > |S| for all § C X, and by Hall’s Theorem the lemma
follows. [

Theorem 8 Let G be a ({d,d+1}; g)-cage with odd girth g > 5, and d > 3.
Then G is edge-superconnected.

Proof: Let us assume that G is a non edge-superconnected ({d,d + 1}; g)-
cage, and we will arrive at a contradiction. To this end, let us take a
minimum nontrivial edge-cut W = [Wy, W;] C E(G) such that [W| < 6.
Let G — W = HyU Hy, and let W; C V(H;) be the set of vertices of H;
which are incident with some edge in W, ¢ = 0,1. From Proposition 3 it
follows that p; = max{d(z,W;) : © € V(H;)} > (9 —3)/2, i =0,1. Let
x; € V(H;))NN,, (W;). As G'is a ({d,d+1}; g)-cage, the diameter is at most
diam(G) < g by Theorem 2, so we get the following chain of inequalities:

[ dmm(G) 2 d(.’IJO,.%'l) > d(m'o, W0)+1+d(1'1, Wl) =po+1l+pm >g-—2.

If we assume henceforth pg < pp (without loss of generality), then either
(9—3)/2=po <p1 <(g+1)/2, or po = 1 = (g —1)/2. We proceed to
study each one of these cases.

In what follows, let Xy, X7 be two subsets of V(G) such that |Xy| =

|X1|. Let Br denote the bipartite graph with bipartition (Xo,X;) and
E(Br) = {uv; : u; € Xo,vj € X1,dr(u;,v;) > g — 1}, where I' is a certain
subgraph of G.

Case (a): po= (g —3)/2.
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From Lemma 4 (i), |Wy| = d = |W]| so that each vertex of Wy is
incident to a unique edge of W, yielding that every vertex a € Wy has
degn,(a) € {d — 1,d}. Also by Lemma 4 (ii), every vertex x € N,_3y/2 N
V(Hy) has deg(z) = d. And by Lemma 4 (iii), for every a € Wy there
exists a vertex xg € N,_3y/2 NV (Hp) such that N(zg) = {u1,ua,...,uq}
and Wy = {ay,ae,...,a4}, where a; = a, in such a way that d(uy,a;) =
d(thO) = (g - 5)/27 d(Uj,W()) = d(ujvaj) = (g - 3)/27 and by (ii),
deg(uj) = d for every j > 2. This implies that dg_,(u1,a;) > (g —1)/2
for all j > 2, because the shortest (ui,a;)-path in G — o, the shortest
(uj,aj)-path in G, and the path u;xzou; in G of length two, form a closed
walk containing a cycle. Reasoning analogously, dg—z,(u;,a1) > (g +1)/2
for all j > 2 and dg—z,(uj,a;) > (9 —1)/2 for j # i, j,i € {2,...,d}.
Furthermore, [N(y_3)/2(w0) N Wo, W1] = {a1b1} for some by € W1.

Subcase (a.1): p1 = (g +1)/2.

Let 1 € V(H1) be any vertex such that d(Wy,z1) = (9+1)/2. Let Xy =
{ua,...,ugt U{xo} and X; = {v1,v2,...,v4} € N(z1). As d(u;, W) =
(9—3)/2fori > 2 and dg_g, (W1, N(z1)) > (9—1)/2, then dg_z, (Xo, X1) >
g — 1, s0 |[E(Br)| = d?, where I' = G — x1. Clearly Br is a complete
bipartite graph, so there is a perfect matching M which covers every vertex
in Xy and if deg(z1) = d, also covers N(x1). Hence, in this case the
graph G* = (G — {z1} — {zouq}) U M has girth at least g and the vertices
Ug, . .., uq_1 have degree d+1 in G* as they had degree d in G; for the same
reason zg and ug have degree d in G*. The remaining vertices have the same
degree they had in G. As G* is a ({d,d+1}; ¢*)-graph with girth ¢* > g and
[V(G*)| < |[V(G)|, we get a contradiction to the monotonocity Theorem 1.
If deg(z1) = d + 1, since dg=(ug,vg+1) > g — 1 where vy € N(z1) \ X1,
we can add the new edge ugvg41 to G* without decreasing the girth. Then
G* U {uqugy1} gives us again a contradiction.

Subcase (a.2): p1 = (g —3)/2.

By Lemma 4, given by € W there exists 1 € V(H;) N N(g,g)/Q(Wl)
of deg(x1) = d such that N(z1) = {vi,ve,...,v4}, Wi = {b1,b2,...,bq}
and each vertex of Wi is incident to a unique edge of W, hence W =
{albl, agbg, N ,adbd}. AlSO, d(bl,vl) = d(Wl,Ul) = (g—5)/2, and d(Wl,Uj) =
d(bj,vj) = (g — 3)/2 for every j > 2 and besides deg(vj) = d. Then
d(zo,z1) = d(zg,a1) + 1 +d(bi,z1) = g — 2, and if g = 5 it is easy to see
that the shortest (zg,x1)-path of length three is unique, clearly zgaibix;.
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Now let I' = G — {zg, z1}. We have

dr(ul,N(.%'l) — 1)1) = min{dp(ul,al) + 1+ dr(bl,N(.%'l) — 1)1);
dr(ui,aj) + 14 dr(bj, N(x1) —vi),j > 2}
g + 1 g—1 1

-5 -3

>min{ff 2 +14+ 2= +1+9T}:g—1,

since dr(b1,v;) > (g +1)/2 for all j > 2, because the shortest (b1, v;)-path
in I', the shortest (b1, v1)-path in I', and the path vjziv; in G of length
two, form a closed walk containing a cycle. Reasoning in the same way, it

follows for all j > 2 that

dr (uj, N(21) — vj) =
= min{dr(u;,a;) + 1+ dr(bj, N(x1) — vj); dr(uj,ap) + 1
+dp (bp, N(z1) —vj), h # j}

3 1 3
{g—+1+— g—+1+—} if h>2,h#j
> min
g—3 g— 1 g+1 g—>5] .
I DR A LI P T |
{ 5 T+ 5 tlt = ifh
=g-—1

Analogously, dr(N(zg) —wi,v1) > g — 1 and dr(N(zo) — uj,vj) > g —1
for all j > 2. Let Xo = N(z9) and X; = N(z1). The bipartite graph
Br = (X, X1) has |E(Br)| = d? — d and degp,. (w) > 1 for all w € Xy U X;.
From Lemma 7, there is a perfect matching M between Xy = N(z¢) and
X1 = N(z1). Hence G* = (G — {zo,21}) UM is a ({d,d + 1}; g*)-graph
(because every vertex in G* has the same degree it had in G and the removed
vertices xo, x1 had degree d, as well as the vertices u;, vy, for every j,k > 2)
with ¢* > g and |V(G*)| < |V(G)|, which contradicts the monotonocity
Theorem 1, and we are done.

Subcase (a.3): p1 = (g — 1)/2. In this case we distinguish two other
possible subcases.

Subcase (a.3.1): There exists 1 € V(Hi) N N(g_1)/2(W1) such that
d(b,v) < (g —1)/2 for all b € W; and for all v € N(z1).

Then, every b € Wj has degpy, (b) = deg(x1) € {d,d + 1} because
d(b,v) < (g—1)/2 and |N4_3)/2(v)NN(b)| < 1for allv € N(z1) (otherwise

99



Edge-superconnectivity
of semiregular cages with odd girth C. Balbuena et al.

cycles of length less than g appear). Hence deg(z1) = d and deg(b) =
d+1 for all b € Wi. Thus N(z1) = {v1,...,v45} and W = [Wy, W1] is
a matching, i.e., W = {a1by,...,aqbs}. Therefore the subgraph H; gives
a contradiction unless H; is d-regular. In this case let us consider the
graph G = (G—x1 —W)U{ayvy,...,aqvq} which clearly has girth at least
g. Moreover degs(b;) = deg(b;) — 1 = d and every vertex different from
b; has the same degree it had in G. Thus we may suppose that G is d-
regular because otherwise G would be a ({d,d + 1}; ¢*)-graph with girth
g* > g and smaller than G, a contradiction. Moreover, we may assume
that dgg, (b1,v1) = (9 —3)/2 and dg, (b1, N(z1) —v1) = (g — 1)/2. Thus we
have

de(br,uz2) > min{dg, (b1,v2) + {v2a2}|
+dp,(az,u2); dp, (b1,v1) + [{via1}] + du, (a1, u2)}

1 i 1
S>min{fd L y149°297°2 4 90
:9_17

2 2 2

which implies that we can add to G the edge u2b; to obtain a graph without
decreasing the girth g. As this new graph is smaller than G and has degrees
{d,d + 1} we get a contradiction to the monotonicity Theorem 1, and we
are done.

Subcase (a.3.2): For all 2 € V(Hi) N Ny_1)/2(W1) there exists v €
N(z1) and b € W; such that d(b,v) > (g +1)/2.

Let x1 € V(H1) N Nig_1)/2(W1), v1 € N(x1) and b* € Wy be such
that d(b*,v1) > (¢ + 1)/2. By Lemma 4, there exists a unique edge
a*b* € W to which the vertex a* € Wy is incident, and there exists a
vertex x* € V(Hp) of deg(z*) = d such that d(z*, Wy) = d(z*,a*) =
(9 —3)/2 and N(y_3)/5(x*) N Wo = {a*}. Further, N(z*) can be labeled as
{z1,29,...,24}, and Wy can be labeled as {aj,as,...,aq}, where a; = a*,
so that Ny_5y/2(21) "W = {a1}, Ng—3y/2(2) "W; = {ar} and deg(z;) = d
for every k > 1. Furthermore, [N(,_3)/2(z*) N Wy, W1] = {a1b"}

Let I' = G — {z*,z1}. We obtain

dr(z1,v1)

= min{dp(zl,al) + 14+ dr(b*,vl); dp(zl,aj) +1+ dr(b/,vl),j > 2,ajb’ € W}
. 9= g+l g-1 g—3

> l1+—=—+14+=——}=¢g—1.

> min{ 5 + 1+ 5 5 +1+ 5 g
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Moreover, dp,(zx, Wo) = (g9 — 3)/2 for all z;, € N(z*) — z; and for k > 1
there exists a unique vertex say by € Wi for which apby, € W. As for
each b € Wy, [Nyy_3)/2(b) N N(z1)| < 1 (otherwise cycles of length less
than g appear) we may denote by vy the vertex in N(z1) — vy such that
d(by,vk) = (g — 3)/2, if any. Thus we obtain

dr(zk, N(z1) \ {v1, v }) = d(zk, ar) + 1+ d(bg, N(21) \ {v1, vx})
>93 1149 —g 1

Let us consider X = N(z*)—2z; and X7 C N(x1)—wv1, with | X;| =d—1.
It is clear that |degp.(zr)| > d —2 > 1 for all z; € N(z*) — u; yielding
E(Br)| > (d—2)(d—1) = (d— 1)? — (d—1).

First, suppose that |degp,.(v)| > 1 for all v € N(z1) — v1. From Lemma
7, there is a matching M which covers every vertex in N (z*) — 2z and every
vertex in N(z1) — vy if deg(x1) = d. In this case G* = (G — {z*,21}) U
M U{zv1} is a graph with girth ¢g* > g and smaller than G whose vertices
have the same degree they had in G; thus G* is a ({d,d+ 1}; g*)-graph and
we are done. Thus suppose that deg(x1) = d + 1 and that after adding the
matching M U {zjv1} to G — {z*, z1} the vertex vg11 € (N(x1) —v1) \ X1
remains of degree d — 1. By Lemma 4 every zp, k > 1, has degree d in G,
and we have proved that d(zx, N(x1) \ {v1,vx}) > g — 1. Then we add one
extra edge zxvg+1 to G* obtaining a new ({d,d + 1}; g*)-graph with g* > ¢
and smaller than G, a contradiction to the monotonicity Theorem 1, so we
are done.

Therefore we must suppose that there exists vy € N(x1) — v1 such that
|degp,. (v2)| = 0. This implies that d(ve,b) = (g — 3)/2 for all b € W; — b*,
hence d(v, W1 —b*) = (¢ — 1)/2 for all v € N(z1) — va. First suppose that
d(ve,b*) > (g + 1)/2; then dp(z1,v9) > g — 1, dp(zx, N(z1) —v2) = g — 1
for all k£ > 2, thus we consider the set X7 C N(z1) — vo with | X;| =d — 1.
It is clear that |degp.(w)| > d — 1 for all w € Xp U X;. Using Lemma 7
and reasoning as before we get a contradiction. Therefore we must suppose
that d(v2,b*) < (g — 1)/2 Since N(ml) — v C N(g—l)/Q(Wl) N V(Hl) we
have by hypothesis that for all v € N(x1) — vy there exists 03 € N(v)
and b* € Wi such that d(b*,91) > (g + 1)/2. As the behavior of any
v € N(x1) — vy is the same as vertex x, reasoning as before we get a
contradiction unless for all v € N(x1) — vy there exists 2 € N(v) — 01 such
that |degp. (92)| = 0 satistying d(d2,b) = (g — 3)/2 for all b € W1 — b* and
d(d9,b*) < (g — 1)/2. Therefore we conclude that every vertex b € W has

101



Edge-superconnectivity
of semiregular cages with odd girth C. Balbuena et al.

degp, (b) = deg(x1) € {d,d + 1}. Now considering the same graph as in
Subcase (a.3.1) we get a contradiction.

Case (b): po=p1 = (g —1)/2.
Let xg € V(Hp) and z; € V(H;) satisfy d(z;, W;) = (¢ —1)/2,i=0,1.

First of all note that there must exist a vertex in N(zg) of degree d,
otherwise G — xg would be either a {d,d + 1}-graph or a d-regular graph.
In the former case we get a contradiction because G — xg is smaller than
G and has girth at least g. And in the latter case we consider the graph
(G — x9) U {uz1} with w; € N(zp), which gives again a contradiction.
Similarly, note that there must exist a vertex in N(z1) of degree d.

Suppose that deg(zg) = deg(x1) = r with r € {d,d + 1}. Let Xy =
N(zg), X1 = N(z1) and I' = G — {xg, 21 }. Define A = {u;v; : u; € Xo,v; €
X1,dr(ui,vj) < g — 2} and consider Br = K|x,|x, — A. Note that every
(ui,vj)-path in G goes through an edge of W. Therefore every edge in
W gives rise to at most one element in A, otherwise G would contain a
cycle of length at most 2(g — 3)/2 +2 = g — 1. Hence |4| < |[W| < d and
(E(Br)| = |Kpp| — |A] > 72 — d]

If r =d+1then |[E(Br)| > (d+1)> —d =d?>+d+ 1 and by Lemma
6, the graph Br contains a perfect matching M. Therefore the graph G’ =
G —{x0, 1} UM has fewer vertices than G and girth at least g producing a
contradiction unless G’ is regular of degree d. In this case we consider the
graph G"” = G' U {uv} where u € N(xg) is such that d(u, Wp) = (¢ — 1)/2
(such a vertex must exist because deg(xo) = d + 1 and |W;| < d) and
v € N(x1) such that wv € M. As G” is a ({d,d + 1}; g)-graph with fewer
vertices than G and girth ¢g a contradiction is again obtained.

Suppose r = d. If degp.(z) > 1 for all z € Br, then by Lemma 7 there
exists a perfect matching M between Xy and Xi; reasoning as before we
obtain again a contradiction. Hence, we may assume that degg.(ui) = 0
for some u; € Xo. This implies that dr(ui,v;) = g — 2 for all v; € N(x1),
or equivalently dr(vj, Wi) = (g — 3)/2 for all v; € N(x1). From this, and
because g > 5, we get |Wi| > |N(z1)| = d, yielding |[W;| = d (since d =
|W| > |Wi]), and also Ny_g)/2(v;) "Wy = {b;} for all v; € N(z1). That is,
[N (bj) NWo| = 1 for every b; € W1. Also we have N,_1y/2(u1) N W1 = Wi,
hence N(,_3)/5(u1) N Wo = Wy and thus d(u;, Wo) = (9 — 1)/2 for i > 2.
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Let ux € N(xg), k > 2, define I'y, = G — {ug, z1} and consider the sets

% N (uy,) if deg(ux) = d;
" N(ug) —zo if deg(ug) =d + 1;
X1 = N(ml),

A ={zw; 1 2z € Xi,v; € Xu,dr, (2,v5) < g —2}.

Let Br‘k = K\Xk\7\X1| — Ak

If degp;, (z) > 1 for all z € Xy, we get a perfect matching M between
Xy and N(z1) by Lemma 7; if deg(ux) = d the graph I'y U M yields a
contradiction; if deg(uy) = d + 1 the graph I'y U M U {zgv;}, where v; is a
vertex of N(z1) with degree d, yields again a contradiction. Therefore we
can suppose that for every uy € N(xo) — u; there exists 2 € N(ug) such
that dr, (2k,v;) = g—2 for all v; € N(x1). Hence, N(y_3)/2(2x) N Wo = Wy,
that is dr, (2, a;) = (9 — 3)/2 for each a; € Wy. Therefore degn,(a;) = d,
deg(a;) = d+ 1 and [Wy, W] is a matching (recall that |N(b;) N Wy| = 1
for every b; € W1). We can now use the same graph G = (G — {xo} — W)U
{biui,...,bjus} as used in Case (a.3.2), arriving again at a contradiction.

The only remaining case occurs when xg and x; have different degrees.
Let us suppose deg(zg) = d and deg(z1) = d+1. Asdeg(xy) = d+1 > |[Wq],
there exists, say vg41 € N(z1), such that d(vgi, W1) = (g —1)/2. We
proceed as before, with the sets Xo = N(z9) and X; = N(z1) — vgi1,
finding a graph G’ with fewer vertices and the same girth and degrees as G,
except for the vertex vyy1. Recall that there must exist a vertex y € N(x)
such that deg(y) = d. Then we construct the graph G* = G' U {yvgs1},
which is a new {d,d + 1}-graph with girth g, arriving at a contradiction.
This ends the proof of the theorem. O
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