

of semiregular cages with odd girth

Camino Balbuena and Julián Salas Universitat Politènica de Catalunya Barcelona

Diego González-Moreno Universidad Nacional Autónoma de México México

Abstract

A graph is said to be edge-superconnected if each minimum edge-cut consists of all the edges incident with some vertex of minimum degree. A graph G is said to be a $\{d,d+1\}$ -semiregular graph if all its vertices have degree either d or d+1. A smallest $\{d,d+1\}$ -semiregular graph G with girth g is said to be a $(\{d,d+1\};g)$ -cage. We show that every $(\{d,d+1\};g)$ -cage with odd girth g is edge-superconnected.

1 Introduction

We only consider undirected simple graphs without loops or multiple edges. Unless otherwise stated, we follow [9] for basic terminology and definitions. Let G stand for a graph with vertex set V = V(G) and edge set E = E(G). The distance $d_G(u, v) = d(u, v)$ between two vertices of the graph G is the length of a shortest path between u and v, and the diameter of G denoted by diam(G) is the maximum distance between any pair of vertices; when G is not connected, then $diam(G) = +\infty$. For $w \in V$ and $S \subset V$, $d(w, S) = d_G(w, S) = \min\{d(w, s) : s \in S\}$ denotes the distance between w and S. For every $S \subset V$ and every nonnegative integer $r \geq 0$, $N_r(S) = \{w \in V : d(w, S) = r\}$ denotes the neighborhood of S at distance r. Thus the set of vertices adjacent to a vertex v is $N(v) = N_1(\{v\})$, and

the degree of a vertex v in G is $deg_G(v) = deg(v) = |N(v)|$, whereas the minimum degree $\delta = \delta(G)$ is the minimum degree over all vertices of G. A graph is called r-regular if every vertex of the graph has degree r.

A graph G is called *connected* if every pair of vertices is joined by a path. An *edge-cut* in a graph G is a set W of edges of G such that G-W is disconnected. A graph is k-edge-connected if every edge-cut contains at least k edges. If W is a minimal edge-cut of a connected graph G, then necessarily, G-W contains exactly two components. The edge-connectivity $\lambda = \lambda(G)$ of a graph G is the minimum cardinality of an edge-cut of G. A classic result is $\lambda \leq \delta$ for every graph G. A graph is maximally edge-connected if $\lambda = \delta$.

One might be interested in more refined indices of reliability. Even two graphs with the same edge-connectivity λ may be considered to have different reliabilities. As a more refined index than the edge-connectivity, edge-superconnectivity is proposed in [6, 7]. A subset of edges W is called trivial if it contains the set of edges incident with some vertex of the graph. Clearly, if $|W| \leq \delta - 1$, then W is nontrivial. A graph is said to be edge-superconnected if $\lambda = \delta$ and every minimum edge-cut is trivial.

The degree set D of a graph G is the set of distinct degrees of the vertices of G. The girth g(G) is the length of a shortest cycle in G. A (D;g)-graph is a graph having degree set D and girth g. Let n(D;g) denote the least order of a (D;g)-graph. Then a (D;g)-graph with order n(D;g) is called a (D;g)-cage. If $D = \{r\}$ then a (D;g)-cage is a (r;g)-cage. When $D = \{r,r+1\}$, we refer to (D;g)-cages as semiregular cages.

The existence of (r;g)-cages was proved by Erdös and Sachs [10] in the decade of the 60's, and using this result Chartrand et al. [8] proved the existence of (D;g)-cages. Some of the structural properties of (r;g)-cages that have been studied are the vertex and the edge connectivity; concerning this problem Fu, Huang and Rodger [11] conjectured that every (r;g)-cage is r-connected, and they proved the statement for r=3. Other contributions supporting this conjecture can be seen in [15, 16, 17, 20]. Moreover, some structural properties of (r;g)-cages have been extended for (D;g)-cages, for example the monotonicity of the order with respect to the girth (see Theorem 1) and the upper bound for the diameter (see Theorem 2). The edge-superconnectivity of cages was established in [18, 19]. For semiregular cages, it has been proved in [3] that they are maximally edge connected. The main objective of this work is to prove that every $(\{d,d,d+1\})$

1}; g)-cage with odd girth $g \ge 5$ is edge-superconnected. With this aim we need the following two results.

Theorem 1 [4] Let g_1, g_2 be two integers such that $3 \leq g_1 < g_2$. Then $n(\{d, d+1\}; g_1) < n(\{d, d+1\}; g_2)$.

Theorem 2 [5] The diameter of a $(\{d, d+1\}; g)$ -cage is at most g.

2 Main theorem

In order to study the edge-superconnectivity of a graph in terms of its diameter and its girth, the following results were established [1, 2, 13].

Proposition 3 Let G = (V, E) be a connected graph with minimum degree $\delta \geq 2$ and girth g. Let $W \subset E$ be a minimum nontrivial edge-cut, let H_i be a component of G - W, and let $W_i \subset V(H_i)$ be the set of vertices of H_i which are incident with some edge in W, i = 0, 1. Then there exists some vertex $x_i \in V(H_i)$ such that

- (a) [1, 13] $d(x_i, W_i) \ge \lfloor (g-1)/2 \rfloor$, if $|W_i| \le \delta 1$.
- (b) [2] $d(x_i, W_i) \ge \lceil (g-3)/2 \rceil$, if $|W| \le \xi 1$, where $\xi = \min\{deg(u) + deg(v) 2 : uv \in E\}$ is the minimum edge-degree of G.

For every minimum edge-cut W of G such that H_0, H_1 are the two components of G - W, we will write henceforth $W = [W_0, W_1]$ with $W_0 \subset V(H_0)$ and $W_1 \subset V(H_1)$ containing all endvertices of the edges in W. Note that $|W_i| \leq |W|$, i = 0, 1. From now on, let

$$\mu_i = \max\{d(x, W_i) : x \in V(H_i)\}, \quad i = 0, 1.$$

When W is nontrivial and $|W| \leq \xi - 1$, it follows from Proposition 3 that $\mu_i \geq \lceil (g-3)/2 \rceil$. Likewise, μ_0 and μ_1 satisfy some other basic properties shown in next lemma.

Lemma 4 Let G = (V, E) be a connected graph with minimum degree $\delta \geq 3$ and odd girth $g \geq 5$. Let $W = [W_0, W_1] \subset E$ be a minimum nontrivial edgecut with cardinality $|W| \leq \delta$. Let $G - W = H_0 \cup H_1$, where $W_i \subset V(H_i)$. If $\mu_i = (g-3)/2$ the following statements hold:

- (i) $|W_i| = |W| = \delta$, and every $a \in W_i$ is incident to a unique edge of W.
- (ii) Every vertex $z \in V(H_i)$ such that $d(z, W_i) = \mu_i$ has $deg(z) = \delta$.
- (iii) For every $a \in W_i$ there exists a vertex $x \in V(H_i)$ such that $d(x, W_i) = d(x, a) = \mu_i$ and $N_{(g-3)/2}(x) \cap W_i = \{a\}$. Further, N(x) can be labeled as $\{u_1, u_2, \ldots, u_{\delta}\}$, and W_i can be labeled as $\{a_1, a_2, \ldots, a_{\delta}\}$, where $a_1 = a$, so that $N_{(g-5)/2}(u_1) \cap W_i = \{a_1\}$ and $N_{(g-3)/2}(u_k) \cap W_i = \{a_k\}$ for every k > 1. Consequently $|[N_{(g-3)/2}(x) \cap W_i, W_{i+1}]| = 1$ and $|[N_{(g-3)/2}(u_k) \cap W_i, W_{i+1}]| = 1$ (with subscripts taken mod 2). See Figure 2.

Figure 1: Lemma 4.

Proof: (i) Since $\mu_i = (g-3)/2$, $d(x,W_i) \leq \mu_i = (g-3)/2 < (g-1)/2$ for all $x \in V(H_i)$. Hence from Proposition 3 (a), it follows that $|W_i| \geq \delta$, yielding $|W_i| = \delta$ because $|W_i| \leq |W| \leq \delta$. Observe that $\delta = |W_i| = |W|$ means that $|N(a) \cap W_{i+1}| = 1$ for each vertex $a \in W_i$ (taking the subscripts mod 2).

(ii) First observe that $\mu_i = (g-3)/2 \ge 1$ since $g \ge 5$. Let us define the following partition of N(v) for all $v \in V(H_i)$

$$S^{-}(v) = \begin{cases} \{z \in N(v) : d(z, W_i) = d(v, W_i) - 1\} & \text{if } v \notin W_i; \\ W_{i+1} \cap N(v) & \text{if } v \in W_i. \end{cases}$$

$$S^{+}(v) = \{z \in N(v) : d(z, W_i) = d(v, W_i) + 1\}$$

$$S^{=}(v) = \{z \in N(v) : d(z, W_i) = d(v, W_i)\}.$$

Let z be a vertex of H_i such that $d(z, W_i) = \mu_i = (g-3)/2$. Then we have

$$N(z) = S^{=}(z) \cup S^{-}(z);$$

$$|N_{(g-3)/2}(S^{=}(z)) \cap W_i| \geq |S^{=}(z)|;$$

$$|N_{(g-5)/2}(S^{-}(z)) \cap W_i| \geq |S^{-}(z)|;$$

$$N_{(g-3)/2}(S^{=}(z)) \cap N_{(g-5)/2}(S^{-}(z))) = \emptyset,$$
(1)

because otherwise cycles of length less than the girth g appear. Since

$$\delta \le deg(z) = |S^{=}(z)| + |S^{-}(z)|$$

$$\le |N_{(g-3)/2}(S^{=}(z)) \cap W_i| + |N_{(g-5)/2}(S^{-}(z)) \cap W_i|$$

$$\le |W_i| = \delta$$

it follows that $\delta = deg(z)$. Therefore item (ii) holds.

(iii) First let us prove that there exists an edge zz' such that $d(z, W_i) = d(z', W_i) = (g-3)/2$. Otherwise, $S^=(z) = \emptyset$ for all z with $d(z, W_i) = (g-3)/2$. This implies that for all $u \in N(z)$, $u \in S^-(z)$ and $S^=(S^+(u)) = \emptyset$. Further, $|N_{(g-5)/2}(u) \cap W_i| = 1$ for all $u \in N(z)$, because $\delta = |W_i| = \sum_{u \in N(z)} |N_{(g-5)/2}(u) \cap W_i| \ge \delta$. Hence $|S^-(u)| = 1$, and so $|S^+(u)| + |S^-(u)| = 1$

 $deg(u)-1 \geq \delta-1 \geq 2$. Suppose that $|S^{=}(u)| \geq 1$ for some $u \in N(z)$. Then as $N_{(g-3)/2}(z) \cap W_i$ and $N_{(g-5)/2}(S^{=}(u)) \cap W_i$ are two vertex disjoint sets we have $|W| \geq |N_{(g-3)/2}(z) \cap W_i| + |N_{(g-5)/2}(S^{=}(u)) \cap W_i| \geq \delta + 1$ which is a contradiction because $|W| = \delta$. Then we must assume that for all $u \in N(z)$, $|S^{+}(u)| = deg(u) - 1 \geq \delta - 1 \geq 2$. Let $t \in S^{+}(u) - z$, according to our first assumption $S^{=}(t) = \emptyset$ meaning that $N(t) = S^{-}(t)$. Since t has the same behavior as z we have $W_i = N_{(g-3)/2}(S^{-}(z)) = N_{(g-3)/2}(S^{-}(t))$, and as $2 < \delta \leq deg(z) = deg(t)$, there exist cycles through $\{z, u, t, w\}$ for some $w \in W_i$ of length less than g which is a contradiction.

Hence we may assume that there exists an edge zz' such that $d(z, W_i) = d(z', W_i) = (g-3)/2$. Since $N_{(g-5)/2}(S^-(z)) \cap W_i$, $N_{(g-5)/2}(S^-(z')) \cap W_i$ and $N_{(g-3)/2}(S^=(z')-z) \cap W_i$ are three pairwise disjoint sets because $g \geq 5$, and taking into account (1) we have

$$\begin{split} \delta &= |W| &\geq |N_{(g-5)/2}(S^{-}(z)) \cap W_i| + |N_{(g-5)/2}(S^{-}(z')) \cap W_i| \\ &+ |N_{(g-3)/2}(S^{-}(z') - z) \cap W_i| \\ &\geq |S^{-}(z)| + |S^{-}(z')| + |S^{-}(z') - z| \\ &= deg(z) - 1 + |S^{-}(z)| \geq \delta. \end{split}$$

Therefore, all inequalities become equalities, i.e., $|S^-(z)| = 1 = |N_{(g-5)/2}(S^-(z)) \cap W_i|$. So $S^-(z) = \{z_1\}$ and $N(z) - z_1 = S^-(z)$ yielding a partition of W_i :

$$W_i = (N_{(g-5)/2}(z_1) \cap W_i) \cup (\cup_{z' \in N(z) - z_1} N_{(g-3)/2}(z') \cap W_i),$$

because for all $z' \in N(z) - z_1$ the sets $N_{(g-3)/2}(z') \cap W_i$ and the set $N_{(g-5)/2}(z_1) \cap W_i$ are mutually disjoint. Thus, $|N_{(g-3)/2}(z') \cap W_i| = 1$ for all $z' \in N(z) - z_1$. Therefore, for every vertex $a \in W_i$ there exists a vertex $x \in (N(z) - z_1) \cup \{z\}$ such that $d(x, W_i) = d(x, a) = (g-3)/2$ and $N_{(g-3)/2}(x) \cap W_i = \{a\}$. Furthermore, since every vertex $z' \in N(z) - z_1$ has the same behavior as z, N(x) can be labeled as $\{u_1, u_2, \ldots, u_\delta\}$, and W_i can be labeled as $\{a_1, a_2, \ldots, a_\delta\}$, where $a_1 = a$, so that $N_{(g-5)/2}(u_1) \cap W_i = \{a_1\}$ and $N_{(g-3)/2}(u_k) \cap W_i = \{a_k\}$ for every k > 1. Finally, using (i) we obtain $|[N_{(g-3)/2}(x) \cap W_i, W_{i+1}]| = 1$ and $|[N_{(g-3)/2}(u_k) \cap W_i, W_{i+1}]| = 1$, which finishes the proof. \square

A semiregular cage is known to be maximally edge-connected [3]. Now, we are ready to prove that semiregular cages with odd girth are edge-superconnected. As will be seen, Hall's Theorem is a key point of this study. Recall that if S is a set of vertices in a graph G, the set of all neighbors of the vertices in S is denoted by N(S).

Theorem 5 ([12] **Hall's Theorem**) A bipartite graph with bipartition (X_1, X_2) has a matching which covers every vertex in X_1 if and only if

$$|N(S)| \ge |S|$$
 for all $S \subset X_1$.

Using Hall's Theorem Jiang [14] proved the following result.

Lemma 6 [14] Let G be a bipartite graph with bipartition (X_1, X_2) where $|X_1| = |X_2| = r$. If G contains at least $r^2 - r + 1$ edges, then G contains a perfect matching.

The following lemma is an stronger version of Lemma 6, which is also proved using Hall's Theorem.

Lemma 7 Let \mathcal{B} be a bipartite graph with bipartition (X_1, X_2) where $|X_1| = |X_2| = r$. If $\delta(\mathcal{B}) \geq 1$ and $|E(\mathcal{B})| \geq r^2 - r$, then \mathcal{B} contains a perfect matching.

Proof: Let $\mathcal{B} = (X_1, X_2)$ be a bipartite graph with $|X_1| = |X_2| = r$, $\delta(\mathcal{B}) \geq 1$ and $|E(\mathcal{B})| \geq r^2 - r$. We shall apply Hall's Theorem to prove the lemma; we shall show that for a subset $S \subset X_1$, $|N(S)| \geq |S|$. Notice that if |S| = 1, then $|N(S)| \geq 1 = |S|$ because $\delta(\mathcal{B}) \geq 1$; and if $S = X_1$, $N(S) = X_2$ because $\delta(\mathcal{B}) \geq 1$ implies that each vertex $u \in X_2$ must have a neighbor in S, hence |S| = |N(S)|.

Therefore we continue the proof reasoning by contradiction and so assuming that $1 \leq |N(S)| < |S| = t \leq r - 1$. Then the number of edges in \mathcal{B} is at most

$$|E(\mathcal{B})| = |[S, N(S)]| + |[X_1 \setminus S, X_2]| \le t(t-1) + (r-t)r,$$

and by hypothesis $|E(\mathcal{B})| \geq r^2 - r$. Thus $r^2 - r \leq t(t-1) + (r-t)r$, yielding $0 \leq (t-r)(t-1)$, which is an absurdity because 1 < t < r. Therefore $|N(S)| \geq |S|$ for all $S \subset X_1$, and by Hall's Theorem the lemma follows. \square

Theorem 8 Let G be a $(\{d,d+1\};g)$ -cage with odd girth $g \geq 5$, and $d \geq 3$. Then G is edge-superconnected.

Proof: Let us assume that G is a non edge-superconnected $(\{d, d+1\}; g)$ -cage, and we will arrive at a contradiction. To this end, let us take a minimum nontrivial edge-cut $W = [W_0, W_1] \subset E(G)$ such that $|W| \leq \delta$. Let $G - W = H_0 \cup H_1$, and let $W_i \subset V(H_i)$ be the set of vertices of H_i which are incident with some edge in W, i = 0, 1. From Proposition 3 it follows that $\mu_i = \max\{d(x, W_i) : x \in V(H_i)\} \geq (g - 3)/2$, i = 0, 1. Let $x_i \in V(H_i) \cap N_{\mu_i}(W_i)$. As G is a $(\{d, d+1\}; g)$ -cage, the diameter is at most $diam(G) \leq g$ by Theorem 2, so we get the following chain of inequalities:

$$g \geq diam(G) \geq d(x_0, x_1) \geq d(x_0, W_0) + 1 + d(x_1, W_1) = \mu_0 + 1 + \mu_1 \geq g - 2.$$

If we assume henceforth $\mu_0 \leq \mu_1$ (without loss of generality), then either $(g-3)/2 = \mu_0 \leq \mu_1 \leq (g+1)/2$, or $\mu_0 = \mu_1 = (g-1)/2$. We proceed to study each one of these cases.

In what follows, let X_0, X_1 be two subsets of V(G) such that $|X_0| = |X_1|$. Let \mathcal{B}_{Γ} denote the bipartite graph with bipartition (X_0, X_1) and $E(\mathcal{B}_{\Gamma}) = \{u_i v_j : u_i \in X_0, v_j \in X_1, d_{\Gamma}(u_i, v_j) \geq g - 1\}$, where Γ is a certain subgraph of G.

Case (a):
$$\mu_0 = (g-3)/2$$
.

From Lemma 4 (i), $|W_0|=d=|W|$ so that each vertex of W_0 is incident to a unique edge of W, yielding that every vertex $a\in W_0$ has $deg_{H_0}(a)\in\{d-1,d\}$. Also by Lemma 4 (ii), every vertex $x\in N_{(g-3)/2}\cap V(H_0)$ has deg(x)=d. And by Lemma 4 (iii), for every $a\in W_0$ there exists a vertex $x_0\in N_{(g-3)/2}\cap V(H_0)$ such that $N(x_0)=\{u_1,u_2,\ldots,u_d\}$ and $W_0=\{a_1,a_2,\ldots,a_d\}$, where $a_1=a$, in such a way that $d(u_1,a_1)=d(u_1,W_0)=(g-5)/2$, $d(u_j,W_0)=d(u_j,a_j)=(g-3)/2$, and by (ii), $deg(u_j)=d$ for every $j\geq 2$. This implies that $d_{G-x_0}(u_1,a_j)\geq (g-1)/2$ for all $j\geq 2$, because the shortest (u_1,a_j) -path in $G-x_0$, the shortest (u_j,a_j) -path in G, and the path $u_jx_0u_1$ in G of length two, form a closed walk containing a cycle. Reasoning analogously, $d_{G-x_0}(u_j,a_1)\geq (g+1)/2$ for all $j\geq 2$ and $d_{G-x_0}(u_j,a_i)\geq (g-1)/2$ for $j\neq i, j,i\in\{2,\ldots,d\}$. Furthermore, $[N_{(g-3)/2}(x_0)\cap W_0,W_1]=\{a_1b_1\}$ for some $b_1\in W_1$.

Subcase (a.1): $\mu_1 = (g+1)/2$.

Let $x_1 \in V(H_1)$ be any vertex such that $d(W_1, x_1) = (g+1)/2$. Let $X_0 = \{u_2, \ldots, u_d\} \cup \{x_0\}$ and $X_1 = \{v_1, v_2, \ldots, v_d\} \subseteq N(x_1)$. As $d(u_i, W_0) = (g-3)/2$ for $i \geq 2$ and $d_{G-x_1}(W_1, N(x_1)) \geq (g-1)/2$, then $d_{G-x_1}(X_0, X_1) \geq g-1$, so $|E(\mathcal{B}_{\Gamma})| = d^2$, where $\Gamma = G - x_1$. Clearly \mathcal{B}_{Γ} is a complete bipartite graph, so there is a perfect matching M which covers every vertex in X_0 and if $deg(x_1) = d$, also covers $N(x_1)$. Hence, in this case the graph $G^* = (G - \{x_1\} - \{x_0u_d\}) \cup M$ has girth at least g and the vertices u_2, \ldots, u_{d-1} have degree d+1 in G^* as they had degree d in G; for the same reason x_0 and u_d have degree d in G^* . The remaining vertices have the same degree they had in G. As G^* is a $(\{d, d+1\}; g^*)$ -graph with girth $g^* \geq g$ and $|V(G^*)| < |V(G)|$, we get a contradiction to the monotonocity Theorem 1. If $deg(x_1) = d+1$, since $d_{G^*}(u_d, v_{d+1}) \geq g-1$ where $v_{d+1} \in N(x_1) \setminus X_1$, we can add the new edge u_dv_{d+1} to G^* without decreasing the girth. Then $G^* \cup \{u_dv_{d+1}\}$ gives us again a contradiction.

Subcase (a.2): $\mu_1 = (g-3)/2$.

By Lemma 4, given $b_1 \in W_1$ there exists $x_1 \in V(H_1) \cap N_{(g-3)/2}(W_1)$ of $deg(x_1) = d$ such that $N(x_1) = \{v_1, v_2, \dots, v_d\}$, $W_1 = \{b_1, b_2, \dots, b_d\}$ and each vertex of W_1 is incident to a unique edge of W, hence $W = \{a_1b_1, a_2b_2, \dots, a_db_d\}$. Also, $d(b_1, v_1) = d(W_1, v_1) = (g-5)/2$, and $d(W_1, v_j) = d(b_j, v_j) = (g-3)/2$ for every $j \geq 2$ and besides $deg(v_j) = d$. Then $d(x_0, x_1) = d(x_0, a_1) + 1 + d(b_1, x_1) = g - 2$, and if g = 5 it is easy to see that the shortest (x_0, x_1) -path of length three is unique, clearly $x_0a_1b_1x_1$.

Now let $\Gamma = G - \{x_0, x_1\}$. We have

$$d_{\Gamma}(u_1, N(x_1) - v_1) = \min\{d_{\Gamma}(u_1, a_1) + 1 + d_{\Gamma}(b_1, N(x_1) - v_1); d_{\Gamma}(u_1, a_j) + 1 + d_{\Gamma}(b_j, N(x_1) - v_1), j \ge 2\}$$

$$\geq \min\{\frac{g - 5}{2} + 1 + \frac{g + 1}{2}; \frac{g - 1}{2} + 1 + \frac{g - 3}{2}\} = g - 1,$$

since $d_{\Gamma}(b_1, v_j) \geq (g+1)/2$ for all $j \geq 2$, because the shortest (b_1, v_j) -path in Γ , the shortest (b_1, v_1) -path in Γ , and the path $v_j x_1 v_1$ in G of length two, form a closed walk containing a cycle. Reasoning in the same way, it follows for all $j \geq 2$ that

$$\begin{split} d_{\Gamma}(u_{j},N(x_{1})-v_{j}) &= \\ &= \min\{d_{\Gamma}(u_{j},a_{j})+1+d_{\Gamma}(b_{j},N(x_{1})-v_{j});\ d_{\Gamma}(u_{j},a_{h})+1 \\ &+d_{\Gamma}(b_{h},N(x_{1})-v_{j}),h \neq j\} \\ &\geq \min\left\{ \begin{array}{l} \left\{\frac{g-3}{2}+1+\frac{g-1}{2};\ \frac{g-1}{2}+1+\frac{g-3}{2}\right\} \ \ \text{if} \ h \geq 2,h \neq j \\ \left\{\frac{g-3}{2}+1+\frac{g-1}{2};\ \frac{g+1}{2}+1+\frac{g-5}{2}\right\} \ \ \text{if} \ h = 1 \\ &= g-1. \end{array} \right\} \end{split}$$

Analogously, $d_{\Gamma}(N(x_0) - u_1, v_1) \geq g - 1$ and $d_{\Gamma}(N(x_0) - u_j, v_j) \geq g - 1$ for all $j \geq 2$. Let $X_0 = N(x_0)$ and $X_1 = N(x_1)$. The bipartite graph $\mathcal{B}_{\Gamma} = (X_0, X_1)$ has $|E(\mathcal{B}_{\Gamma})| = d^2 - d$ and $deg_{\mathcal{B}_{\Gamma}}(w) \geq 1$ for all $w \in X_0 \cup X_1$. From Lemma 7, there is a perfect matching M between $X_0 = N(x_0)$ and $X_1 = N(x_1)$. Hence $G^* = (G - \{x_0, x_1\}) \cup M$ is a $(\{d, d+1\}; g^*)$ -graph (because every vertex in G^* has the same degree it had in G and the removed vertices x_0, x_1 had degree d, as well as the vertices u_j, v_k for every $j, k \geq 2$) with $g^* \geq g$ and $|V(G^*)| \leq |V(G)|$, which contradicts the monotonocity Theorem 1, and we are done.

Subcase (a.3): $\mu_1 = (g-1)/2$. In this case we distinguish two other possible subcases.

Subcase (a.3.1): There exists $x_1 \in V(H_1) \cap N_{(g-1)/2}(W_1)$ such that $d(b,v) \leq (g-1)/2$ for all $b \in W_1$ and for all $v \in N(x_1)$.

Then, every $b \in W_1$ has $deg_{H_1}(b) = deg(x_1) \in \{d, d+1\}$ because $d(b, v) \leq (g-1)/2$ and $|N_{(g-3)/2}(v) \cap N(b)| \leq 1$ for all $v \in N(x_1)$ (otherwise

cycles of length less than g appear). Hence $deg(x_1) = d$ and deg(b) = d+1 for all $b \in W_1$. Thus $N(x_1) = \{v_1, \ldots, v_d\}$ and $W = [W_0, W_1]$ is a matching, i.e., $W = \{a_1b_1, \ldots, a_db_d\}$. Therefore the subgraph H_1 gives a contradiction unless H_1 is d-regular. In this case let us consider the graph $\hat{G} = (G - x_1 - W) \cup \{a_1v_1, \ldots, a_dv_d\}$ which clearly has girth at least g. Moreover $deg_{\hat{G}}(b_i) = deg(b_i) - 1 = d$ and every vertex different from b_i has the same degree it had in G. Thus we may suppose that \hat{G} is d-regular because otherwise \hat{G} would be a $(\{d, d+1\}; g^*)$ -graph with girth $g^* \geq g$ and smaller than G, a contradiction. Moreover, we may assume that $d_{H_1}(b_1, v_1) = (g-3)/2$ and $d_{H_1}(b_1, N(x_1) - v_1) = (g-1)/2$. Thus we have

$$d_{\hat{G}}(b_1, u_2) \geq \min\{d_{H_1}(b_1, v_2) + |\{v_2 a_2\}| + d_{H_0}(a_2, u_2); d_{H_1}(b_1, v_1) + |\{v_1 a_1\}| + d_{H_0}(a_1, u_2)\}$$

$$\geq \min\{\frac{g - 1}{2} + 1 + \frac{g - 3}{2}; \frac{g - 3}{2} + 1 + \frac{g + 1}{2}\}$$

$$= g - 1.$$

which implies that we can add to \hat{G} the edge u_2b_1 to obtain a graph without decreasing the girth g. As this new graph is smaller than G and has degrees $\{d, d+1\}$ we get a contradiction to the monotonicity Theorem 1, and we are done.

Subcase (a.3.2): For all $z \in V(H_1) \cap N_{(g-1)/2}(W_1)$ there exists $v \in N(x_1)$ and $b \in W_1$ such that $d(b,v) \geq (g+1)/2$.

Let $x_1 \in V(H_1) \cap N_{(g-1)/2}(W_1)$, $v_1 \in N(x_1)$ and $b^* \in W_1$ be such that $d(b^*, v_1) \geq (g+1)/2$. By Lemma 4, there exists a unique edge $a^*b^* \in W$ to which the vertex $a^* \in W_0$ is incident, and there exists a vertex $x^* \in V(H_0)$ of $deg(x^*) = d$ such that $d(x^*, W_0) = d(x^*, a^*) = (g-3)/2$ and $N_{(g-3)/2}(x^*) \cap W_0 = \{a^*\}$. Further, $N(x^*)$ can be labeled as $\{z_1, z_2, \ldots, z_d\}$, and W_0 can be labeled as $\{a_1, a_2, \ldots, a_d\}$, where $a_1 = a^*$, so that $N_{(g-5)/2}(z_1) \cap W_i = \{a_1\}$, $N_{(g-3)/2}(z_k) \cap W_i = \{a_k\}$ and $deg(z_k) = d$ for every k > 1. Furthermore, $[N_{(g-3)/2}(x^*) \cap W_0, W_1] = \{a_1b^*\}$

Let
$$\Gamma = G - \{x^*, x_1\}$$
. We obtain

$$d_{\Gamma}(z_1, v_1)$$

$$= \min\{d_{\Gamma}(z_1, a_1) + 1 + d_{\Gamma}(b^*, v_1); d_{\Gamma}(z_1, a_j) + 1 + d_{\Gamma}(b', v_1), j \ge 2, a_j b' \in W\}$$

$$\ge \min\{\frac{g - 5}{2} + 1 + \frac{g + 1}{2}; \frac{g - 1}{2} + 1 + \frac{g - 3}{2}\} = g - 1.$$

Moreover, $d_{H_0}(z_k, W_0) = (g-3)/2$ for all $z_k \in N(x^*) - z_1$ and for k > 1 there exists a unique vertex say $b_k \in W_1$ for which $a_k b_k \in W$. As for each $b \in W_1$, $|N_{(g-3)/2}(b) \cap N(x_1)| \le 1$ (otherwise cycles of length less than g appear) we may denote by v_k the vertex in $N(x_1) - v_1$ such that $d(b_k, v_k) = (g-3)/2$, if any. Thus we obtain

$$d_{\Gamma}(z_k, N(x_1) \setminus \{v_1, v_k\}) = d(z_k, a_k) + 1 + d(b_k, N(x_1) \setminus \{v_1, v_k\})$$

$$\geq \frac{g-3}{2} + 1 + \frac{g-1}{2} = g - 1.$$

Let us consider $X_0 = N(x^*) - z_1$ and $X_1 \subseteq N(x_1) - v_1$, with $|X_1| = d - 1$. It is clear that $|deg_{\mathcal{B}_{\Gamma}}(z_k)| \ge d - 2 \ge 1$ for all $z_k \in N(x^*) - u_1$ yielding $|E(\mathcal{B}_{\Gamma})| \ge (d - 2)(d - 1) = (d - 1)^2 - (d - 1)$.

First, suppose that $|deg_{\mathcal{B}_{\Gamma}}(v)| \geq 1$ for all $v \in N(x_1) - v_1$. From Lemma 7, there is a matching M which covers every vertex in $N(x^*) - z_1$ and every vertex in $N(x_1) - v_1$ if $deg(x_1) = d$. In this case $G^* = (G - \{x^*, x_1\}) \cup M \cup \{z_1v_1\}$ is a graph with girth $g^* \geq g$ and smaller than G whose vertices have the same degree they had in G; thus G^* is a $(\{d, d+1\}; g^*)$ -graph and we are done. Thus suppose that $deg(x_1) = d+1$ and that after adding the matching $M \cup \{z_1v_1\}$ to $G - \{x^*, x_1\}$ the vertex $v_{d+1} \in (N(x_1) - v_1) \setminus X_1$ remains of degree d-1. By Lemma 4 every z_k , k > 1, has degree d in d0, and we have proved that $d(z_k, N(x_1) \setminus \{v_1, v_k\}) \geq g-1$. Then we add one extra edge z_kv_{d+1} to d0 obtaining a new $(\{d, d+1\}; g^*)$ -graph with $g^* \geq g$ 1 and smaller than d1, a contradiction to the monotonicity Theorem 1, so we are done.

Therefore we must suppose that there exists $v_2 \in N(x_1) - v_1$ such that $|deg_{\mathcal{B}_{\Gamma}}(v_2)| = 0$. This implies that $d(v_2, b) = (g-3)/2$ for all $b \in W_1 - b^*$, hence $d(v, W_1 - b^*) = (g-1)/2$ for all $v \in N(x_1) - v_2$. First suppose that $d(v_2, b^*) \geq (g+1)/2$; then $d_{\Gamma}(z_1, v_2) \geq g-1$, $d_{\Gamma}(z_k, N(x_1) - v_2) = g-1$ for all $k \geq 2$, thus we consider the set $X_1 \subseteq N(x_1) - v_2$ with $|X_1| = d-1$. It is clear that $|deg_{\mathcal{B}_{\Gamma}}(w)| \geq d-1$ for all $w \in X_0 \cup X_1$. Using Lemma 7 and reasoning as before we get a contradiction. Therefore we must suppose that $d(v_2, b^*) \leq (g-1)/2$. Since $N(x_1) - v_2 \subseteq N_{(g-1)/2}(W_1) \cap V(H_1)$ we have by hypothesis that for all $v \in N(x_1) - v_2$ there exists $\hat{v}_1 \in N(v)$ and $\hat{b}^* \in W_1$ such that $d(\hat{b}^*, \hat{v}_1) \geq (g+1)/2$. As the behavior of any $v \in N(x_1) - v_2$ is the same as vertex x_1 , reasoning as before we get a contradiction unless for all $v \in N(x_1) - v_2$ there exists $\hat{v}_2 \in N(v) - \hat{v}_1$ such that $|deg_{\mathcal{B}_{\hat{\Gamma}}}(\hat{v}_2)| = 0$ satisfying $d(\hat{v}_2, b) = (g-3)/2$ for all $b \in W_1 - \hat{b}^*$ and $d(\hat{v}_2, \hat{b}^*) \leq (g-1)/2$. Therefore we conclude that every vertex $b \in W_1$ has

 $deg_{H_1}(b) = deg(x_1) \in \{d, d+1\}$. Now considering the same graph as in Subcase (a.3.1) we get a contradiction.

Case (b):
$$\mu_0 = \mu_1 = (g-1)/2$$
.

Let
$$x_0 \in V(H_0)$$
 and $x_1 \in V(H_1)$ satisfy $d(x_i, W_i) = (g-1)/2$, $i = 0, 1$.

First of all note that there must exist a vertex in $N(x_0)$ of degree d, otherwise $G - x_0$ would be either a $\{d, d+1\}$ -graph or a d-regular graph. In the former case we get a contradiction because $G - x_0$ is smaller than G and has girth at least g. And in the latter case we consider the graph $(G - x_0) \cup \{u_i x_1\}$ with $u_i \in N(x_0)$, which gives again a contradiction. Similarly, note that there must exist a vertex in $N(x_1)$ of degree d.

Suppose that $deg(x_0) = deg(x_1) = r$ with $r \in \{d, d+1\}$. Let $X_0 = N(x_0), X_1 = N(x_1)$ and $\Gamma = G - \{x_0, x_1\}$. Define $A = \{u_i v_j : u_i \in X_0, v_j \in X_1, d_{\Gamma}(u_i, v_j) \leq g-2\}$ and consider $\mathcal{B}_{\Gamma} = K_{|X_0|,|X_1|} - A$. Note that every (u_i, v_j) -path in G goes through an edge of W. Therefore every edge in W gives rise to at most one element in A, otherwise G would contain a cycle of length at most 2(g-3)/2 + 2 = g-1. Hence $|A| \leq |W| \leq d$ and $|E(\mathcal{B}_{\Gamma})| = |K_{r,r}| - |A| \geq r^2 - d$.

If r = d + 1 then $|E(\mathcal{B}_{\Gamma})| \geq (d+1)^2 - d = d^2 + d + 1$ and by Lemma 6, the graph \mathcal{B}_{Γ} contains a perfect matching M. Therefore the graph $G' = G - \{x_0, x_1\} \cup M$ has fewer vertices than G and girth at least g producing a contradiction unless G' is regular of degree d. In this case we consider the graph $G'' = G' \cup \{uv\}$ where $u \in N(x_0)$ is such that $d(u, W_0) = (g-1)/2$ (such a vertex must exist because $deg(x_0) = d + 1$ and $|W_1| \leq d$) and $v \in N(x_1)$ such that $uv \notin M$. As G'' is a $(\{d, d+1\}; g)$ -graph with fewer vertices than G and girth g a contradiction is again obtained.

Suppose r=d. If $deg_{\mathcal{B}_{\Gamma}}(z)\geq 1$ for all $z\in\mathcal{B}_{\Gamma}$, then by Lemma 7 there exists a perfect matching M between X_0 and X_1 ; reasoning as before we obtain again a contradiction. Hence, we may assume that $deg_{\mathcal{B}_{\Gamma}}(u_1)=0$ for some $u_1\in X_0$. This implies that $d_{\Gamma}(u_1,v_j)=g-2$ for all $v_j\in N(x_1)$, or equivalently $d_{\Gamma}(v_j,W_1)=(g-3)/2$ for all $v_j\in N(x_1)$. From this, and because $g\geq 5$, we get $|W_1|\geq |N(x_1)|=d$, yielding $|W_1|=d$ (since $d=|W|\geq |W_1|$), and also $N_{(g-3)/2}(v_j)\cap W_1=\{b_j\}$ for all $v_j\in N(x_1)$. That is, $|N(b_j)\cap W_0|=1$ for every $b_j\in W_1$. Also we have $N_{(g-1)/2}(u_1)\cap W_1=W_1$, hence $N_{(g-3)/2}(u_1)\cap W_0=W_0$ and thus $d(u_i,W_0)=(g-1)/2$ for $i\geq 2$.

Let $u_k \in N(x_0)$, $k \ge 2$, define $\Gamma_k = G - \{u_k, x_1\}$ and consider the sets

$$X_k = \begin{cases} N(u_k) & \text{if } deg(u_k) = d; \\ N(u_k) - x_0 & \text{if } deg(u_k) = d+1; \end{cases}$$

$$X_1 = N(x_1);$$

$$A_k = \{ z_i v_j : z_i \in X_k, v_j \in X_1, d_{\Gamma_k}(z_i, v_j) \le g - 2 \}.$$

Let $\mathcal{B}_{\Gamma_k} = K_{|X_k|,|X_1|} - A_k$.

If $deg_{\mathcal{B}_{\Gamma_k}}(z) \geq 1$ for all $z \in X_k$, we get a perfect matching M between X_k and $N(x_1)$ by Lemma 7; if $deg(u_k) = d$ the graph $\Gamma_k \cup M$ yields a contradiction; if $deg(u_k) = d+1$ the graph $\Gamma_k \cup M \cup \{x_0v_j\}$, where v_j is a vertex of $N(x_1)$ with degree d, yields again a contradiction. Therefore we can suppose that for every $u_k \in N(x_0) - u_1$ there exists $\hat{z}_k \in N(u_k)$ such that $d_{\Gamma_k}(\hat{z}_k, v_j) = g - 2$ for all $v_j \in N(x_1)$. Hence, $N_{(g-3)/2}(\hat{z}_k) \cap W_0 = W_0$, that is $d_{\Gamma_k}(\hat{z}_k, a_j) = (g-3)/2$ for each $a_j \in W_0$. Therefore $deg_{H_0}(a_j) = d$, $deg(a_j) = d+1$ and $[W_0, W_1]$ is a matching (recall that $|N(b_j) \cap W_0| = 1$ for every $b_j \in W_1$). We can now use the same graph $\hat{G} = (G - \{x_0\} - W) \cup \{b_1u_1, \ldots, b_du_d\}$ as used in Case (a.3.2), arriving again at a contradiction.

The only remaining case occurs when x_0 and x_1 have different degrees. Let us suppose $deg(x_0) = d$ and $deg(x_1) = d+1$. As $deg(x_1) = d+1 > |W_1|$, there exists, say $v_{d+1} \in N(x_1)$, such that $d(v_{d+1}, W_1) = (g-1)/2$. We proceed as before, with the sets $X_0 = N(x_0)$ and $X_1 = N(x_1) - v_{d+1}$, finding a graph G' with fewer vertices and the same girth and degrees as G, except for the vertex v_{d+1} . Recall that there must exist a vertex $y \in N(x_0)$ such that deg(y) = d. Then we construct the graph $G^* = G' \cup \{yv_{d+1}\}$, which is a new $\{d, d+1\}$ -graph with girth g, arriving at a contradiction. This ends the proof of the theorem. \square

Acknowledgement

This research was supported by the Ministry of Education and Science, Spain, and the European Regional Development Fund (ERDF) under project MTM2008-06620-C03-02/MTM; also by Catalonian government 2009 SGR 1298. The author J. Salas has been supported by CONACYT.

References

- [1] M.C. Balbuena, A. Carmona, J. Fàbrega, and M.A. Fiol. On the order and size of s-geodetic digraphs with given connectivity. *Discrete Math.* 174:19–27, 1997.
- [2] C. Balbuena, P. García-Vázquez, and X. Marcote. Sufficient conditions for λ' -optimality in graphs with girth g. J. Graph Theory 52:73–86, 2006.
- [3] C. Balbuena, D. González-Moreno, and X. Marcote. On the connectivity of semiregular cages. *Networks* 56(8):81–88, 2010.
- [4] C. Balbuena and X. Marcote. Monotonicity of the order of (D;g)-cages. Submitted.
- [5] C. Balbuena and X. Marcote. Diameter and connectivity of (D;g)cages. International Journal of Computer Math., accepted.
- [6] F.T. Boesch. Synthesis of reliable networks—A survey. *IEEE Trans Reliability*, 35:240–246, 1986.
- [7] F.T. Boesch and R. Tindell. Circulants and their connectivities. *J. Graph Theory* 8:487–499, 1984.
- [8] G. Chartrand, R.J. Gould, and S.F. Kapoor. Graphs with prescribed degree set and girth. *Period. Math Hungar.* 6:261–266, 1981.
- [9] G. Chartrand and L. Lesniak. *Graphs and digraphs*, 3rd ed. Chapman and Hall, London, 1996.
- [10] P. Erdös and H. Sachs. Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 12:251–257, 1963.
- [11] H. Fu, K. Huang, and C. Rodger. Connectivity of cages. J. Graph Theory, 24:187–191, 1997.
- [12] P. Hall. On representatives of subsets. J. London Math. Soc., 10:26–30, 1935.

- [13] M. Imase, T. Soneoka, and K. Okada. Connectivity of regular directed graphs with small diameter. *IEEE Trans Comput.*, C-34:267– 273, 1985.
- [14] T. Jiang. Short even cycles in cages with odd girth. Ars Combin., 59:165–169, 2001.
- [15] T. Jiang and D. Mubayi. Connectivity and separating sets of cages. J. Graph Theory, 29:35–44, 1998.
- [16] Y. Lin, C. Balbuena, X. Marcote, and M. Miller. On the connectivity of (k, g)-cages of even girth. *Discrete Math.*, 308:3249–3256, 2008.
- [17] Y. Lin, M. Miller, and C. Balbuena. Improved lower bound for the vertex connectivity of $(\delta; g)$ -cages. Discrete Math., 299:162–171, 2005.
- [18] Y. Lin, M. Miller, C. Balbuena, and X. Marcote. All (k; g)-cages are edge-superconnected. *Networks*, 47:102–110, 2006.
- [19] X. Marcote and C. Balbuena. Edge-superconnectivity of cages. *Networks*, 43:54–59, 2004.
- [20] X. Marcote, C. Balbuena, I. Pelayo, and J. Fbrega. (δ, g) -cages with $g \ge 10$ are 4-connected. *Discrete Math.*, 301:124–136, 2005.