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Cages G satisfies that k < rci(G) < k* — k + 1. It is also proved that the rainbow 3-connectivity

of the Heawood graphis 6 or 7.
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this work are finite, simple and undirected. We follow the book of Bondy and Murty [1] for
terminology and notations not defined here. Let G be a connected graph with vertex set V(G) and edge set E(G). The distance
between two vertices u and v, denoted by dg(u, v), is the length of a shortest (u, v)-path. For each vertex v € V(G) we use
Ng(v) and dg(v) to denote the set of neighbors and the degree of v in G. A graph G is called k-regular if each of its vertices has
degree k. The girth g(G) of G is the length of a shortest cycle in G.

An edge-coloring of a graph Gis a function p : E(G) — R, where Ris a set of distinct colors. Throughout this paper we only
consider edge-colorings. Let G be an edge-colored graph. A path P in G is called rainbow if no two edges of P are colored the
same. Chartrand, Johns, McKeon and Zhang [3] defined the rainbow connecting colorings. An edge-colored graph G is said to
be rainbow connected if there exists a rainbow path between every two distinct vertices of G. Clearly, every connected graph
G has an edge-coloring that makes it rainbow connected (simply color the edges of G with distinct colors). The rainbow
connection number rc(G) of a connected graph G is the minimum number of colors that are needed to make G rainbow
connected.

Menger [14] proved that a graph G is t-connected if and only if there are at least t internally vertex-disjoint (u, v)-
paths for every two distinct vertices u and v. Schiermeyer studied rainbow t-connected graphs with a minimum number
of edges [15], and very recently the rainbow connectivity of certain products of graphs has been studied in [12]. Similar
to rainbow connecting colorings, an edge-coloring is called a rainbow t-coloring if for every pair of distinct vertices u and
v there are at least t internally disjoint rainbow (u, v)-paths. Clearly, coloring the edges of a t-connected graph G with as
many colors as edges, every two vertices of G are connected by ¢ internally vertex-disjoint rainbow paths. Thus, the rainbow
t-connectivity rc,(G) (defined by Chartrand et al. [4]) of a graph G can be defined as the minimum integer j such that there
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exists a rainbow t-coloring using j colors. Moreover, rc(G) = rci(G) and r¢, (G) < rc,(G) for 1 < t; < t,. The complexity
of computing the rc(G) has been studied in [7]. For 2-connected graphs it has been proved that rc(G) < [|V(G)|/27, see [8].
Also for t-connected graphs with t > 5 and girth g(G) > 5 it has been proved that rc(G) < |V(G)|/t + 19, see [8]. Some
rci(G) has been computed when G is a complete graph or a complete bipartite graph in [4]. For more references on rainbow
connectivity and rainbow k-connectivity see [9] and the book by Li and Sun [11] or the survey by Li, Shi, and Sun [10].

Given two integers k > 2 and g > 3 a (k; g)-cage is a k-regular graph of girth g and minimum number of vertices, that is
denoted by n(k; g). For more information on cages see the survey on cages [5]. In this paper we focus on the case g = 6. It
is known that n(k; 6) > 2(k* — k + 1) and concerning the connectivity of any (k; 6)-cage, it has been proved that they are
k-connected [13]. When n(k; 6) = 2(k* — k + 1) the (k; 6)-cage is called a Moore (k; 6)-cage. It is known that the incidence
graph of a projective plane of order k — 1 is a Moore (k; 6)-cage [5,6].

Definition 1.1. A projective plane (P, £) is a non-empty set P of points together with a set £ of non-empty subsets of P,
called lines, satisfying the following axioms:

GP1. For any two distinct points p and p/, there exists a unique line £ connecting them.
GP2. For any two distinct lines £ and ¢’, there exists a unique point p in their intersection.
GP3. There exist at least four points such that no three of them are collinear.

From this definition it follows that each point p € P belongs to n+ 1 lines and each £ € £ line contains n+ 1 points yielding
that |P| = |£| = n? + n + 1. Thus, the number n is said to be the order of the projective plane (P, £) which must be n > 2.

The incidence graph of a projective plane (P, £) of order n is a bipartite graph G with vertex set ? U £. A vertexp € P
is adjacent to a vertex £ € £ if and only if p is incident with ¢ in (P, £). Note that G is a Moore (n + 1; 6)-cage, because it
is a regular graph of degree n + 1 with 2(n®> 4+ n + 1) vertices and girth 6. Moreover, the diameter of G is three. A Moore
(n + 1; 6)-cage has been constructed for n = q where q is a prime power. In Fig. 2 is depicted the (3; 6)-cage (Heawood
graph), which is the incidence graph of the Fano plane.

Chartrand, Johns, McKeon and Zhang [2] showed that the rainbow 3-connectivity of the Petersen graph is 5, and the
rainbow 3-connectivity of the Heawood graph is between 5 and 7 inclusive. In this paper we prove that if G is a Moore
(k; 6)-cage, then k < rci(G) < k* — k + 1.1t is also proved that the rainbow 3-connectivity of the Heawood graph is 6 or 7.

2. Bounds on the rainbow connectivity of cages

In this section we give a lower bound and an upper bound for the rainbow k-connectivity of a (k; 6)-Moore cage.

Theorem 2.1. Let G be the incidence graph of a projective plane of order n > 3 and let p : E(G) — R be a coloring of G. If every
path of G of length at most 3 is rainbow, then p is a rainbow (n + 1)-coloring.

Proof. Let G be the incidence graph of a projective plane (P, £). Since the diameter of G is three, we distinguish three different
cases according to the distance between two vertices in G.

Case 1. Leta € P and L € £ be such that dg(a, L) = 3. Then there is a geodesic (a, Ly, b, L) in G which is rainbow by
hypothesis. Let Lg), i = 1,...,n, be the n lines adjacent to point a different from Ly,. Observe that |NG(LS)) N Ng(L)] = 1
because G is the incidence graph of a projective plane and let {p} = Ng(L") N Ng(L) fori = 1, ..., n. Note that pi) # a, b
and p) # p¥ for i # j because G has girth 6. The paths {(a, [", p, L) : 1 < i < n} are n internally vertex-disjoint paths
between a and L, and they are rainbow by hypothesis.

Case 2. Let a, b € P be such that dg(a, b) = 2 and let (a, Lgp, b) be the geodesic between a and b which is unique because
the girth is 6, that is, Ng(a)\Ng(b) = {Lap}. This geodesic is rainbow by hypothesis. Let LE}), i=1,...,nbethenlines adjacent

to a different from Lgy, and let L\, i = 1, ..., n, be the n lines adjacent to b different from Lg. Let {p)} = Ng(L) N No(L),
fori =1,...,n, and observe that p) # p¥ for i # j because G has girth 6. Denote the color of the edge al'’ by r; = p(aL?),
i=1,...,n, and note that r; # r; for i # j because by hypothesis paths of length 2 are rainbow. Analogously, denote by
r= p(bLg)), t = 1,...,n,and observe that r/ # r; for t # h by hypothesis. If there is no color in common among these
sets of colors {r;}, {r/}, then the n paths {(a, LE,'), p® L) : 1< i< n)are n internally vertex-disjoint rainbow paths between a
and b. If there are k colors in common, without loss of generality we may assume that r; = r{ fori=1,...,k withk < n,
andrj # r/ forj, t = k+1,...,n. Then the n paths {(a, L{’, u®, LSH), b): 1 <i < n}, where {u®} = No(I) N NC(LS“)),
i=1,...,n,and the sum of superindex is taken modulo n, are internally vertex-disjoint rainbow paths between a and b by
hypothesis and because the girth of G is 6. The case when L, L’ € £ such that dg(L, L) = 2 is solved analogously by duality.

Case 3. Leta € P and A € £ be such that d¢(a, A) = 1. Let {L{V, ..., LM} = N¢(a) — Aand {aV, ..., a™} = Ng(A) — a.
Moreover, let {M{", ..., M} = Ng(a) — A and let {b?, ..., b} = No(L9) —afori = 1,2,..., n. Since there exists a
perfect matching between the sets Ng(a®) — A and NG(Lg)) — a, for all i, j, we may assume without loss of generality that
b](-')M]FI) € E(G). Letr; = p(al™) and s; = p(AdV).

Please cite this article in press as: C. Balbuena, et al., Rainbow connectivity of Moore cages of girth 6, Discrete Applied Mathematics (2018),
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edge | color || edge | color
114 3 6L4 4
201 1 2Ls 7
3L, 2 5Ls 2
1L, 4 7Ls 5
4L, 7 3L¢ 5
Lo 1 4L¢ 3
1L3 6 5L¢ 4
5L3 1 3L~ 6
6L3 5 6L~ 7
204 6 7L~ 3
4Ly 2

Fig. 1. Heawood graph with a o -coloring.

First, suppose that ,o(L(”b(ll)) =5 Z5s51.1f p(MEUa“)) =1, # 11, then p(bgl)Mgl)) ¢ {r1, 12, S1, S2}, because by hypothesis
paths of length 3 are rainbow. Therefore the path

(a, LD, b, MV, oV, A)

is rainbow. Then we have to suppose that p(Mgl)a(”) = r1, which implies that ,o(M;])a(”) =1, # ry forallj > 2 since

paths of length 2 are rainbow by hypothesis. Since n > 3, we can take j € {2, ..., n} such that p(L(1)b§1)) = s]’. # s1. Then
p(b}”l\/l}”) & {r1, 1j, s1, sjf}, since paths of length 3 are rainbow by hypothesis, which implies that the path

(a, 1, bV, MY, a1V, )

is rainbow. Second, suppose that ,o(L“)b(]])) = s1. Then ,o(L“)b](.l)) =s;j # sy forallj = 2,...,n Since n > 3, we can take

j € {2,...,n} such that p(]\/lj(”a(”) = 1/ # ry. Then p(b](-l)l\/lj(l)) ¢ {r1.1{,51,5;}, since paths of length 3 are rainbow by
hypothesis, yielding that the path

(a. L, 5", MV, ), 4)

is rainbow In either case we can find a rainbow path of length 5 between a and A through vertices LV, a¥ and vertices in
Ng(L™W) — a and through vertices in Ng(a(") — A. Repeating this process for eachi = 2, ..., n, we find n internally vertex-
disjoint rainbow paths between a and A which along with the edge aA give us n + 1 vertex-disjoint (a, A)-paths. ®

Definition 2.1. Let (P, £) be a projective plane and G the corresponding incidence graph. ForallL € £leto; : L — Lbea
permutation such that o;(a) # a for every a € L. For each edge al of G, witha € P and L € £, we color al with the color
oi(a). This coloring over the edges of G is said to be a o -coloring.

As an example of Definition 2.1, let us consider the following permutations of lines of Heawood graph defining a o -
coloring shown in Fig. 1.

O'Ll = (132), O]_z = (147), O'L3 = (165), O]_4 = (264), O'LS = (273), O]_B = (354), O'L7 = (367)

Lemma 2.1. Let G be the incidence graph of a projective plane of order n > 2 with a o-coloring. Then every path of length at
most three of G is rainbow.

Proof. If a path has length one, clearly it is rainbow. Let (a, L, b) be a path of length two of G. Since o} is a permutation of the
points of L and a, b € L with a # b, then o;(a) # oy(b). Let (L, a, L") be a path of length two of G. In this case {a} = LN L', and
o1, oy are permutations of the points of L and L', respectively. If o;(a) = o1/(a) = {p}, thenp € LN L, that is p = a, which is
a contradiction because o;(a) # a and op/(a) # a according to Definition 2.1.

Let (a, Lap, b, Ly) be a path of length three of G. Then oy, (a) # oy,(b) # oy(b). If oy, (a) = oy, (b) = p, then
p € Ly N Ly = {b}, yielding that p = b, which is a contradiction because oy, (b) # b by Definition 2.1. ®

As an immediate consequence of Theorem 2.1 and Lemma 2.1 we can write the following result.

Theorem 2.2. Let G be the incidence graph of a projective plane of order n > 3 with a o -coloring. Then G is rainbow (n + 1)-
connected and rci1y(G) < n® +n+ 1.

Please cite this article in press as: C. Balbuena, et al., Rainbow connectivity of Moore cages of girth 6, Discrete Applied Mathematics (2018),
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edge | color || edge | color
104 2 6L4 4
2L, 3 2Ls 7
3L, 1 5Ls 2
1Ls 4 7Ls 5
4Lo 7 3L¢ 4
TLo 1 4Lg 5
1L3 6 5Le 3
5L3 1 3L~ 6
6L3 5 6L~ 7
204 6 7L~ 3
4L, 2

Fig. 2. Heawood graph with a o-coloring which is not 3-rainbow.

Remark 2.1. In Theorem 2.2, the hypothesis n > 3 is necessary as shown for the o -coloring depicted in Fig. 2 of Heawood
graph. We can check that this o -coloring satisfies the hypothesis of Lemma 2.1, but between 1 and L, there are no 3 internally
rainbow vertex-disjoint paths.

However, the o -coloring of Heawood graph shown in Fig. 1 does work.

3. Rainbow 3-connectivity of Heawood graph

In the previous section we have described a rainbow 3-coloring of the Heawood graph of 7 colors. We prove that the
rainbow 3-connectivity of Heawood graph is at least 6.

Lemma 3.1. Let G be a k-regular and k-connected graph, and let p be a rainbow k-coloring of G. If e, and e, are two incident
edges, then p(e1) # p(ez).

Proof. Suppose by contradiction that there are two incident edges e; = uv, e; = vw of G such that p(e;) = p(e;). Since
G is rainbow k-connected there are k vertex disjoint rainbow paths between vertices u and w. Since d(u) = d(w) = k, it
follows that among these k vertex disjoint rainbow paths there is one containing e; and that path cannot contain e, and
there must be another path containing e, and this path cannot contain e;. A contradiction, because these two paths are not
vertex-disjoint. M

Let p be a coloring of a graph G. A chromatic class [r] is the set of edges of G with color r. By Lemma 3.1, the following
corollary is immediate.

Corollary 3.1. Let G be the incidence graph of a projective plane of order n and let p be a rainbow (n + 1)-coloring of G. Then
every chromatic class is independent.

It is well known that the Heawood graph can be described as a bipartite graph with V(G) = Zq4 and E(G) = {{2i, 2i +
1}, {2i,2i— 1}, {2i4+1,2i4+6} : i =0, ..., 6}, see Fig. 3. In the rest of the paper we use this notation for the Heawood graph.

Lemma 3.2. Let H be the Heawood graph, let p : E(H) — R be a rainbow 3-coloring of H with |R| = 5, and let [r] be a chromatic
class. The following assertions hold for i € {0, ..., 6}:

(i) If (2i — 1,2i}, {2i — 3,2i — 4} e [r], then {2i + 1, 2i + 2}, {2i + 4, 2i + 5} & [r].
(if) If {2i — 1, 2i}, {2i — 7, 2i — 6} € [r], then {2i + 1, 2i — 8}, {2i + 3, 2i + 4} & [r].
(iii) If {2i — 1, 2i}, {2 + 7, 2i + 6} € [r], then {2i + 5, 2i + 4}, {2i — 5, 2i — 6} & [r].
(iv) If {2i — 1,2i}, {2i + 3, 2i — 6} € [r], then {2i + 1, 2i + 2}, {2i — 2,2i + 7} & [r].
(v) If {2i — 1,2i}, {20 + 3, 2i + 2} € [r], then {2i — 3, 2i — 2}, {2i — 6, 2i — 5} & [r].

Proof. Note that if dy(a, b) = 2 for a,b € V(H), then the shortest (a, b)-path is unique because the girth of H is 6. Let
N(a) = {c,d,a’} and N(b) = {c, b, b"}. Then a, c, b is the shortest path between a and b. Since p is a rainbow 3-coloring,
it follows that between a and b there are another two vertex disjoint rainbow paths which must have even length at least 4
because H is bipartite. Moreover, since |R| = 5 these paths must have length exactly 4. If ad’, bb’ € [r], then there must be

Please cite this article in press as: C. Balbuena, et al., Rainbow connectivity of Moore cages of girth 6, Discrete Applied Mathematics (2018),
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Fig. 3. The dotted edges belong to the class [r], the black edges do not belong to [r] and the dashed edges may belong to [r].

unique paths of length 2 joining @’ with b” and b’ with a” without edges in [r]. To prove the lemma we use this fact and we
only indicate the shortest path (a, ¢, b) in most of the cases.

(i) Suppose that {2i — 1, 2i}, {2i — 3, 2i — 4} € [r]. Let us consider the path of length two (2i — 4, 2i — 5, 2i). One vertex
disjoint rainbow path between 2i — 4 and 2i must join 2i — 3 with 2i+ 1 € N(2i)\ {2i — 5, 2i — 1} since {2i — 1, 2i} € [r], and
having no edges in [r]. This path is (2i — 3, 2i 4+ 2, 2i 4+ 1) and {2i + 1, 2i + 2} ¢ [r]. And the other vertex disjoint rainbow
path must join 2i — 1 with 2i +5 € N(2i — 4) \ {2i — 5, 2i — 3} since {2i — 4, 2i — 3} € [r], and having no edges in [r]. This
pathis(2i — 1,2i+ 4, 2i+ 5)and {2i + 5, 2i + 4} & [r].

(ii) Suppose that {2i — 1, 2i}, {2i — 7, 2i — 6} € [r]. The result follows by considering the path (2i — 1, 2i — 2, 2i — 7).

(iii) Suppose that {2i — 1, 2i}, {2i 4+ 7, 2i 4+ 6} € [r]. The result follows by considering the path (2i — 1, 2i — 2, 2i 4+ 7).

(iv) Suppose that {2i — 1, 2i}, {2i + 3, 2i + 8} € [r]. The result follows by considering the path (2i — 1, 2i 4 4, 2i + 3).

(v) Suppose that {2i — 1, 2i}, {2i 4+ 3, 2i + 2} € [r]. The result follows by considering the path (2i,2i + 1,2i +2). &

Theorem 3.1. Let H be the Heawood graph. Then 6 < rc3(H) < 7.

Proof. Llet p : E(H) — R be a rainbow 3-coloring on the edges of H. We reason by contradiction assuming that
re3(H) = |R| = 5, which implies that there is a chromatic class [r] with |[r]| > 5 because [E(H)| = 21 = }_|[r]|. Let
[r] be such a chromatic class. Observe that a matching of at least 5 edges in Heawood graph always contains two edges at
distance 2. Without loss of generality suppose that {1, 2} € [r]. At distance two of {1, 2} there are 8 edges which induce a
cycleoflength8: C = (7,12, 13,4, 5, 10, 9, 8, 7). Assume that {7, 8} € [r].Since {7, 8}, {1, 2} € [r],byitem (ii) of Lemma 3.2
(taking i = 4), it follows that

{9, 0}, {11, 12} £ [r]. (1)

We consider the following cases according to the edges in E(C) N [r].

Suppose that there are four edges in C with color r. In this case, the class [r] must contain the edges {1, 2}, {7, 8}, {9, 10},
{5, 4} and {13, 12}. Since {7, 8}, {5, 4} € [r], by item (i) of Lemma 3.2 (taking i = 4), it follows that {9, 10}, {13, 12} ¢ [r],a
contradiction. Hence C contains at most 3 edges in [r] including {7, 8}.

Suppose that {7, 8}, {13, 12} € E(C) N [r]. Since {1, 2}, {13, 12} € [r] it follows that {3, 4} & [r] by item (i) of Lemma 3.2
(takingi = 1).If {5, 10} € [r], by Lemma 3.1 and (1) there is no other edge belonging to [r], see Fig. 3(a), and so |[r]| = 4,
which is a contradiction. Hence, {5, 10} ¢ [r].If {5, 4} € [r], then taking into account that {7, 8} € [r], it follows by item (i)
of Lemma 3.2 (taking i = 4) that {12, 13} ¢ [r], a contradiction. Thus, {5, 4} & [r]. If {9, 10} € [r], using that {13, 12} € [r],
item (v) of Lemma 3.2 (taking i = 5) implies that {7, 8} ¢ [r] which is a contradiction; then {9, 10} ¢ [r]. Furthermore, if
{5, 6} € [r] using that {12, 13} € [r], item (iii) of Lemma 3.2 (taking i = 3) implies that {11, 10} & [r] yielding that |[[r]| = 4
which is a contradiction. Hence, if {7, 8} € [r], then {12, 13} & [r]. By symmetry, if {7, 8} € [r], then {9, 10} & [r]. Thus, if
[r] contains two edges of C these two edges must be at distance at least 2 in C.

Suppose that {7, 8}, {5, 10} € [r] N E(C). Observe that the only other edges that can be in [r] are {3, 4}, {13, 0}, {13, 4}
(see Fig. 3(b)). By item (iv) of Lemma 3.2 (taking i = 1), {1, 2}, {5, 10} € [r] implies that {3, 4} ¢ [r], yielding that |[r]| < 4,
a contradiction. Thus, {5, 10} ¢ [r]. By symmetry {4, 13} & [r].

Suppose that {7, 8}, {5, 4} € [r] N E(C). At this point the only edges that can be in [r] are {13, 0}, {10, 11} (see Fig. 3(c)).
By item (v) of Lemma 3.2 (taking i = 1), {1, 2}, {5, 4} € [r] implies that {10, 11}, {13, 0} & [r], yielding that |[r]| = 4 which
is a contradiction, Thus, we conclude that [r] NE(C) = {7, 8}.

Therefore, we have all the edges incident with {1, 2}, {7, 8} (by Lemma 3.1) together with the edges of C minus {7, 8},
and {11, 12}, {9, 0} (by (1)) do not belong to [r]. Hence, the edges that can be in [r] are {3, 4}, {5, 6}, {10, 11} and {13, 0}.
Suppose {13, 0} € [r]. Then {7, 8}, {13, 0} € [r] implies that {3, 4} & [r] by item (ii) of Lemma 3.2, and {10, 11}, {13, 0} € [r]

Please cite this article in press as: C. Balbuena, et al., Rainbow connectivity of Moore cages of girth 6, Discrete Applied Mathematics (2018),
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implies that {1, 2} ¢ [r] by item (i) of Lemma 3.2 which is a contradiction. Therefore, if {13, 0} € [r], |[r]| = 4 which is a
contradiction. Hence, {13, 0} ¢ [r]. By symmetry {10, 11} ¢ [r], yielding that |[r]| < 4 which is a contradiction.

Since in every case we obtain a contradiction we conclude that for each chromatic class |[r]| < 4 which implies that
Rl >6. ®
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