UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Aquesta és una còpia de la versió author's final draft d'un article publicat a la revista "Discrete applied mathematics".

URL d'aquest document a UPCommons E-prints:
http://hdl.handle.net/2117/123591

Article publicat / Published paper:

Balbuena, C., Fresán, J., González, D., Olsen, M. Rainbow connectivity of Moore cages of girth 6. "Discrete applied mathematics", 11 Desembre 2018, vol. 250, p. 104-109. Doi: 10.1016/j.dam.2018.04.020

Rainbow connectivity of Moore cages of girth 6

C. Balbuena ${ }^{\text {a,* }}$, J. Fresán-Figueroa ${ }^{\text {b }}$, D. González-Moreno ${ }^{\text {b }}$, M. Olsen ${ }^{\text {b }}$
${ }^{\text {a }}$ Departament de Ingeniería Civil i Ambiental, Universitat Politècnica de Catalunya, Spain
${ }^{\text {b }}$ Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico

ARTICLE INFO

Article history:

Received 2 January 2017
Received in revised form 14 April 2018
Accepted 17 April 2018
Available online xxxx

Keywords:

Rainbow coloring
Rainbow connectivity
Cages

Abstract

Let G be an edge-colored graph. A path P of G is said to be rainbow if no two edges of P have the same color. An edge-coloring of G is a rainbow t-coloring if for any two distinct vertices u and v of G there are at least t internally vertex-disjoint rainbow (u, v)-paths. The rainbow t-connectivity $r c_{t}(G)$ of a graph G is the minimum integer j such that there exists a rainbow t-coloring using j colors. A $(k ; g)$-cage is a k-regular graph of girth g and minimum number of vertices denoted $n(k ; g)$. In this paper we focus on $g=6$. It is known that $n(k ; 6) \geq 2\left(k^{2}-k+1\right)$ and when $n(k ; 6)=2\left(k^{2}-k+1\right)$ the $(k ; 6)$-cage is called a Moore cage. In this paper we prove that the rainbow k-connectivity of a Moore $(k ; 6)$-cage G satisfies that $k \leq r c_{k}(G) \leq k^{2}-k+1$. It is also proved that the rainbow 3-connectivity of the Heawood graph is 6 or 7 .

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this work are finite, simple and undirected. We follow the book of Bondy and Murty [1] for terminology and notations not defined here. Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. The distance between two vertices u and v, denoted by $d_{G}(u, v)$, is the length of a shortest (u, v)-path. For each vertex $v \in V(G)$ we use $N_{G}(v)$ and $d_{G}(v)$ to denote the set of neighbors and the degree of v in G. A graph G is called k-regular if each of its vertices has degree k. The girth $g(G)$ of G is the length of a shortest cycle in G.

An edge-coloring of a graph G is a function $\rho: E(G) \longrightarrow R$, where R is a set of distinct colors. Throughout this paper we only consider edge-colorings. Let G be an edge-colored graph. A path P in G is called rainbow if no two edges of P are colored the same. Chartrand, Johns, McKeon and Zhang [3] defined the rainbow connecting colorings. An edge-colored graph G is said to be rainbow connected if there exists a rainbow path between every two distinct vertices of G. Clearly, every connected graph G has an edge-coloring that makes it rainbow connected (simply color the edges of G with distinct colors). The rainbow connection number $r(G)$ of a connected graph G is the minimum number of colors that are needed to make G rainbow connected.

Menger [14] proved that a graph G is t-connected if and only if there are at least t internally vertex-disjoint (u, v)paths for every two distinct vertices u and v. Schiermeyer studied rainbow t-connected graphs with a minimum number of edges [15], and very recently the rainbow connectivity of certain products of graphs has been studied in [12]. Similar to rainbow connecting colorings, an edge-coloring is called a rainbow t-coloring if for every pair of distinct vertices u and v there are at least t internally disjoint rainbow (u, v)-paths. Clearly, coloring the edges of a t-connected graph G with as many colors as edges, every two vertices of G are connected by t internally vertex-disjoint rainbow paths. Thus, the rainbow t-connectivity $r c_{t}(G)$ (defined by Chartrand et al. [4]) of a graph G can be defined as the minimum integer j such that there

[^0]exists a rainbow t-coloring using j colors. Moreover, $r c(G)=r c_{1}(G)$ and $r c_{t_{1}}(G) \leq r c_{t_{2}}(G)$ for $1 \leq t_{1} \leq t_{2}$. The complexity of computing the $r c(G)$ has been studied in [7]. For 2-connected graphs it has been proved that $r c(G) \leq\lceil|V(G)| / 2\rceil$, see [8]. Also for t-connected graphs with $t \geq 5$ and girth $g(G) \geq 5$ it has been proved that $r c(G)<|V(G)| / t+19$, see [8]. Some $r c_{k}(G)$ has been computed when G is a complete graph or a complete bipartite graph in [4]. For more references on rainbow connectivity and rainbow k-connectivity see [9] and the book by Li and Sun [11] or the survey by Li, Shi, and Sun [10].

Given two integers $k \geq 2$ and $g \geq 3 \mathrm{a}(k ; g)$-cage is a k-regular graph of girth g and minimum number of vertices, that is denoted by $n(k ; g)$. For more information on cages see the survey on cages [5]. In this paper we focus on the case $g=6$. It is known that $n(k ; 6) \geq 2\left(k^{2}-k+1\right)$ and concerning the connectivity of any $(k ; 6)$-cage, it has been proved that they are k-connected [13]. When $n(k ; 6)=2\left(k^{2}-k+1\right)$ the $(k ; 6)$-cage is called a Moore $(k ; 6)$-cage. It is known that the incidence graph of a projective plane of order $k-1$ is a Moore (k; 6)-cage [5,6].

Definition 1.1. A projective plane $(\mathcal{P}, \mathcal{L})$ is a non-empty set \mathcal{P} of points together with a set \mathcal{L} of non-empty subsets of \mathcal{P}, called lines, satisfying the following axioms:
GP1. For any two distinct points p and p^{\prime}, there exists a unique line ℓ connecting them.
GP2. For any two distinct lines ℓ and ℓ^{\prime}, there exists a unique point p in their intersection.
GP3. There exist at least four points such that no three of them are collinear.
From this definition it follows that each point $p \in \mathcal{P}$ belongs to $n+1$ lines and each $\ell \in \mathcal{L}$ line contains $n+1$ points yielding that $|\mathcal{P}|=|\mathcal{L}|=n^{2}+n+1$. Thus, the number n is said to be the order of the projective plane $(\mathcal{P}, \mathcal{L})$ which must be $n \geq 2$.

The incidence graph of a projective plane $(\mathcal{P}, \mathcal{L})$ of order n is a bipartite graph G with vertex $\operatorname{set} \mathcal{P} \cup \mathcal{L}$. A vertex $p \in \mathcal{P}$ is adjacent to a vertex $\ell \in \mathcal{L}$ if and only if p is incident with ℓ in $(\mathcal{P}, \mathcal{L})$. Note that G is a Moore $(n+1 ; 6)$-cage, because it is a regular graph of degree $n+1$ with $2\left(n^{2}+n+1\right)$ vertices and girth 6 . Moreover, the diameter of G is three. A Moore ($n+1 ; 6$)-cage has been constructed for $n=q$ where q is a prime power. In Fig. 2 is depicted the (3; 6)-cage (Heawood graph), which is the incidence graph of the Fano plane.

Chartrand, Johns, McKeon and Zhang [2] showed that the rainbow 3-connectivity of the Petersen graph is 5, and the rainbow 3-connectivity of the Heawood graph is between 5 and 7 inclusive. In this paper we prove that if G is a Moore (k; 6)-cage, then $k \leq r c_{k}(G) \leq k^{2}-k+1$. It is also proved that the rainbow 3-connectivity of the Heawood graph is 6 or 7 .

2. Bounds on the rainbow connectivity of cages

In this section we give a lower bound and an upper bound for the rainbow k-connectivity of a $(k ; 6)$-Moore cage.
Theorem 2.1. Let G be the incidence graph of a projective plane of order $n \geq 3$ and let $\rho: E(G) \rightarrow R$ be a coloring of G. If every path of G of length at most 3 is rainbow, then ρ is a rainbow $(n+1)$-coloring.

Proof. Let G be the incidence graph of a projective plane $(\mathcal{P}, \mathcal{L})$. Since the diameter of G is three, we distinguish three different cases according to the distance between two vertices in G.

Case 1. Let $a \in \mathcal{P}$ and $L \in \mathcal{L}$ be such that $d_{G}(a, L)=3$. Then there is a geodesic ($a, L_{a b}, b, L$) in G which is rainbow by hypothesis. Let $L_{a}^{(i)}, i=1, \ldots, n$, be the n lines adjacent to point a different from $L_{a b}$. Observe that $\left|N_{G}\left(L_{a}^{(i)}\right) \cap N_{G}(L)\right|=1$ because G is the incidence graph of a projective plane and let $\left\{p^{(i)}\right\}=N_{G}\left(L_{a}^{(i)}\right) \cap N_{G}(L)$ for $i=1, \ldots, n$. Note that $p^{(i)} \neq a, b$ and $p^{(i)} \neq p^{(j)}$ for $i \neq j$ because G has girth 6 . The paths $\left\{\left(a, L_{a}^{(i)}, p^{(i)}, L\right): 1 \leq i \leq n\right\}$ are n internally vertex-disjoint paths between a and L, and they are rainbow by hypothesis.

Case 2. Let $a, b \in \mathcal{P}$ be such that $d_{G}(a, b)=2$ and let $\left(a, L_{a b}, b\right)$ be the geodesic between a and b which is unique because the girth is 6 , that is, $N_{G}(a) \cap N_{G}(b)=\left\{L_{a b}\right\}$. This geodesic is rainbow by hypothesis. Let $L_{a}^{(i)}, i=1, \ldots, n$, be the n lines adjacent to a different from $L_{a b}$, and let $L_{b}^{(i)}, i=1, \ldots, n$, be the n lines adjacent to b different from $L_{a b}$. Let $\left\{p^{(i)}\right\}=N_{G}\left(L_{a}^{(i)}\right) \cap N_{G}\left(L_{b}^{(i)}\right)$, for $i=1, \ldots, n$, and observe that $p^{(i)} \neq p^{(j)}$ for $i \neq j$ because G has girth 6 . Denote the color of the edge $a L_{a}^{(i)}$ by $r_{i}=\rho\left(a L_{a}^{(i)}\right)$, $i=1, \ldots, n$, and note that $r_{i} \neq r_{j}$ for $i \neq j$ because by hypothesis paths of length 2 are rainbow. Analogously, denote by $r_{t}^{\prime}=\rho\left(b L_{b}^{(t)}\right), t=1, \ldots, n$, and observe that $r_{t}^{\prime} \neq r_{h}^{\prime}$ for $t \neq h$ by hypothesis. If there is no color in common among these sets of colors $\left\{r_{i}\right\},\left\{r_{t}^{\prime}\right\}$, then the n paths $\left\{\left(a, L_{a}^{(i)}, p^{(i)}, L\right): 1 \leq i \leq n\right\}$ are n internally vertex-disjoint rainbow paths between a and b. If there are k colors in common, without loss of generality we may assume that $r_{i}=r_{i}^{\prime}$ for $i=1, \ldots, k$, with $k \leq n$, and $r_{j} \neq r_{t}^{\prime}$ for $j, t=k+1, \ldots, n$. Then the n paths $\left\{\left(a, L_{a}^{(i)}, u^{(i)}, L_{b}^{(i+1)}, b\right): 1 \leq i \leq n\right\}$, where $\left\{u^{(i)}\right\}=N_{G}\left(L_{a}^{(i)}\right) \cap N_{G}\left(L_{b}^{(i+1)}\right)$, $i=1, \ldots, n$, and the sum of superindex is taken modulo n, are internally vertex-disjoint rainbow paths between a and b by hypothesis and because the girth of G is 6 . The case when $L, L^{\prime} \in \mathcal{L}$ such that $d_{G}\left(L, L^{\prime}\right)=2$ is solved analogously by duality.

Case 3. Let $a \in \mathcal{P}$ and $A \in \mathcal{L}$ be such that $d_{G}(a, A)=1$. Let $\left\{L^{(1)}, \ldots, L^{(n)}\right\}=N_{G}(a)-A$ and $\left\{a^{(1)}, \ldots, a^{(n)}\right\}=N_{G}(A)-a$. Moreover, let $\left\{M_{1}^{(i)}, \ldots, M_{n}^{(i)}\right\}=N_{G}\left(a^{(i)}\right)-A$ and let $\left\{b_{1}^{(i)}, \ldots, b_{n}^{(i)}\right\}=N_{G}\left(L^{(i)}\right)-a$ for $i=1,2, \ldots, n$. Since there exists a perfect matching between the sets $N_{G}\left(a^{(i)}\right)-A$ and $N_{G}\left(L_{a}^{(j)}\right)-a$, for all i, j, we may assume without loss of generality that $b_{j}^{(i)} M_{j}^{(i)} \in E(G)$. Let $r_{1}=\rho\left(a L^{(1)}\right)$ and $s_{1}=\rho\left(A a^{(1)}\right)$.

edge	color	edge	color
$1 L_{1}$	3	$6 L_{4}$	4
$2 L_{1}$	1	$2 L_{5}$	7
$3 L_{1}$	2	$5 L_{5}$	2
$1 L_{2}$	4	$7 L_{5}$	5
$4 L_{2}$	7	$3 L_{6}$	5
$7 L_{2}$	1	$4 L_{6}$	3
$1 L_{3}$	6	$5 L_{6}$	4
$5 L_{3}$	1	$3 L_{7}$	6
$6 L_{3}$	5	$6 L_{7}$	7
$2 L_{4}$	6	$7 L_{7}$	3
$4 L_{4}$	2		

Fig. 1. Heawood graph with a σ-coloring.

First, suppose that $\rho\left(L^{(1)} b_{1}^{(1)}\right)=s_{2} \neq s_{1}$. If $\rho\left(M_{1}^{(1)} a^{(1)}\right)=r_{2} \neq r_{1}$, then $\rho\left(b_{1}^{(1)} M_{1}^{(1)}\right) \notin\left\{r_{1}, r_{2}, s_{1}, s_{2}\right\}$, because by hypothesis paths of length 3 are rainbow. Therefore the path

$$
\left(a, L^{(1)}, b_{1}^{(1)}, M_{1}^{(1)}, a^{(1)}, A\right)
$$

is rainbow. Then we have to suppose that $\rho\left(M_{1}^{(1)} a^{(1)}\right)=r_{1}$, which implies that $\rho\left(M_{j}^{(1)} a^{(1)}\right)=r_{j} \neq r_{1}$ for all $j \geq 2$ since paths of length 2 are rainbow by hypothesis. Since $n \geq 3$, we can take $j \in\{2, \ldots, n\}$ such that $\rho\left(L^{(1)} b_{j}^{(1)}\right)=s_{j}^{\prime} \neq s_{1}$. Then $\rho\left(b_{j}^{(1)} M_{j}^{(1)}\right) \notin\left\{r_{1}, r_{j}, s_{1}, s_{j}^{\prime}\right\}$, since paths of length 3 are rainbow by hypothesis, which implies that the path

$$
\left(a, L^{(1)}, b_{j}^{(1)}, M_{j}^{(1)}, a^{(1)}, A\right)
$$

is rainbow. Second, suppose that $\rho\left(L^{(1)} b_{1}^{(1)}\right)=s_{1}$. Then $\rho\left(L^{(1)} b_{j}^{(1)}\right)=s_{j} \neq s_{1}$ for all $j=2, \ldots, n$. Since $n \geq 3$, we can take $j \in\{2, \ldots, n\}$ such that $\rho\left(M_{j}^{(1)} a^{(1)}\right)=r_{j}^{\prime} \neq r_{1}$. Then $\rho\left(b_{j}^{(1)} M_{j}^{(1)}\right) \notin\left\{r_{1}, r_{j}^{\prime}, s_{1}, s_{j}\right\}$, since paths of length 3 are rainbow by hypothesis, yielding that the path

$$
\left(a, L^{(1)}, b_{j}^{(1)}, M_{j}^{(1)}, a^{(1)}, A\right)
$$

is rainbow In either case we can find a rainbow path of length 5 between a and A through vertices $L^{(1)}, a^{(1)}$ and vertices in $N_{G}\left(L^{(1)}\right)-a$ and through vertices in $N_{G}\left(a^{(1)}\right)-A$. Repeating this process for each $i=2, \ldots, n$, we find n internally vertexdisjoint rainbow paths between a and A which along with the edge $a A$ give us $n+1$ vertex-disjoint (a, A)-paths.

Definition 2.1. Let $(\mathcal{P}, \mathcal{L})$ be a projective plane and G the corresponding incidence graph. For all $L \in \mathcal{L}$ let $\sigma_{L}: L \rightarrow L$ be a permutation such that $\sigma_{L}(a) \neq a$ for every $a \in L$. For each edge $a L$ of G, with $a \in \mathcal{P}$ and $L \in \mathcal{L}$, we color $a L$ with the color $\sigma_{L}(a)$. This coloring over the edges of G is said to be a σ-coloring.

As an example of Definition 2.1, let us consider the following permutations of lines of Heawood graph defining a σ coloring shown in Fig. 1.

$$
\sigma_{L_{1}}=(132) ; \sigma_{L_{2}}=(147) ; \sigma_{L_{3}}=(165) ; \sigma_{L_{4}}=(264) ; \sigma_{L_{5}}=(273) ; \sigma_{L_{6}}=(354) ; \sigma_{L_{7}}=(367) .
$$

Lemma 2.1. Let G be the incidence graph of a projective plane of order $n \geq 2$ with a σ-coloring. Then every path of length at most three of G is rainbow.

Proof. If a path has length one, clearly it is rainbow. Let (a, L, b) be a path of length two of G. Since σ_{L} is a permutation of the points of L and $a, b \in L$ with $a \neq b$, then $\sigma_{L}(a) \neq \sigma_{L}(b)$. Let $\left(L, a, L^{\prime}\right)$ be a path of length two of G. In this case $\{a\}=L \cap L^{\prime}$, and $\sigma_{L}, \sigma_{L^{\prime}}$ are permutations of the points of L and L^{\prime}, respectively. If $\sigma_{L}(a)=\sigma_{L^{\prime}}(a)=\{p\}$, then $p \in L \cap L^{\prime}$, that is $p=a$, which is a contradiction because $\sigma_{L}(a) \neq a$ and $\sigma_{L^{\prime}}(a) \neq a$ according to Definition 2.1.

Let $\left(a, L_{a b}, b, L_{b}\right)$ be a path of length three of G. Then $\sigma_{L_{a b}}(a) \neq \sigma_{L_{a b}}(b) \neq \sigma_{L_{b}}(b)$. If $\sigma_{L_{a b}}(a)=\sigma_{L_{b}}(b)=p$, then $p \in L_{a b} \cap L_{b}=\{b\}$, yielding that $p=b$, which is a contradiction because $\sigma_{L_{b}}(b) \neq b$ by Definition 2.1.

As an immediate consequence of Theorem 2.1 and Lemma 2.1 we can write the following result.
Theorem 2.2. Let G be the incidence graph of a projective plane of order $n \geq 3$ with a σ-coloring. Then G is rainbow $(n+1)$ connected and $r c_{(n+1)}(G) \leq n^{2}+n+1$.

edge	color	edge	color
$1 L_{1}$	2	$6 L_{4}$	4
$2 L_{1}$	3	$2 L_{5}$	7
$3 L_{1}$	1	$5 L_{5}$	2
$1 L_{2}$	4	$7 L_{5}$	5
$4 L_{2}$	7	$3 L_{6}$	4
$7 L_{2}$	1	$4 L_{6}$	5
$1 L_{3}$	6	$5 L_{6}$	3
$5 L_{3}$	1	$3 L_{7}$	6
$6 L_{3}$	5	$6 L_{7}$	7
$2 L_{4}$	6	$7 L_{7}$	3
$4 L_{4}$	2		

Fig. 2. Heawood graph with a σ-coloring which is not 3-rainbow.

Remark 2.1. In Theorem 2.2, the hypothesis $n \geq 3$ is necessary as shown for the σ-coloring depicted in Fig. 2 of Heawood graph. We can check that this σ-coloring satisfies the hypothesis of Lemma 2.1, but between 1 and L_{1} there are no 3 internally rainbow vertex-disjoint paths.

However, the σ-coloring of Heawood graph shown in Fig. 1 does work.

3. Rainbow 3-connectivity of Heawood graph

In the previous section we have described a rainbow 3-coloring of the Heawood graph of 7 colors. We prove that the rainbow 3-connectivity of Heawood graph is at least 6 .

Lemma 3.1. Let G be a k-regular and k-connected graph, and let ρ be a rainbow k-coloring of G. If e_{1} and e_{2} are two incident edges, then $\rho\left(e_{1}\right) \neq \rho\left(e_{2}\right)$.

Proof. Suppose by contradiction that there are two incident edges $e_{1}=u v, e_{2}=v w$ of G such that $\rho\left(e_{1}\right)=\rho\left(e_{2}\right)$. Since G is rainbow k-connected there are k vertex disjoint rainbow paths between vertices u and w. Since $d(u)=d(w)=k$, it follows that among these k vertex disjoint rainbow paths there is one containing e_{1} and that path cannot contain e_{2}, and there must be another path containing e_{2} and this path cannot contain e_{1}. A contradiction, because these two paths are not vertex-disjoint.

Let ρ be a coloring of a graph G. A chromatic class $[r]$ is the set of edges of G with color r. By Lemma 3.1, the following corollary is immediate.

Corollary 3.1. Let G be the incidence graph of a projective plane of order n and let ρ be a rainbow $(n+1)$-coloring of G. Then every chromatic class is independent.

It is well known that the Heawood graph can be described as a bipartite graph with $V(G)=\mathbb{Z}_{14}$ and $E(G)=\{\{2 i, 2 i+$ $1\},\{2 i, 2 i-1\},\{2 i+1,2 i+6\}: i=0, \ldots, 6\}$, see Fig. 3. In the rest of the paper we use this notation for the Heawood graph.

Lemma 3.2. Let H be the Heawood graph, let $\rho: E(H) \rightarrow R$ be a rainbow 3-coloring of H with $|R|=5$, and let [r] be a chromatic class. The following assertions hold for $i \in\{0, \ldots, 6\}$:
(i) If $\{2 i-1,2 i\},\{2 i-3,2 i-4\} \in[r]$, then $\{2 i+1,2 i+2\},\{2 i+4,2 i+5\} \notin[r]$.
(ii) If $\{2 i-1,2 i\},\{2 i-7,2 i-6\} \in[r]$, then $\{2 i+1,2 i-8\},\{2 i+3,2 i+4\} \notin[r]$.
(iii) If $\{2 i-1,2 i\},\{2 i+7,2 i+6\} \in[r]$, then $\{2 i+5,2 i+4\},\{2 i-5,2 i-6\} \notin[r]$.
(iv) If $\{2 i-1,2 i\},\{2 i+3,2 i-6\} \in[r]$, then $\{2 i+1,2 i+2\},\{2 i-2,2 i+7\} \notin[r]$.
(v) If $\{2 i-1,2 i\},\{2 i+3,2 i+2\} \in[r]$, then $\{2 i-3,2 i-2\},\{2 i-6,2 i-5\} \notin[r]$.

Proof. Note that if $d_{H}(a, b)=2$ for $a, b \in V(H)$, then the shortest (a, b)-path is unique because the girth of H is 6 . Let $N(a)=\left\{c, a^{\prime}, a^{\prime \prime}\right\}$ and $N(b)=\left\{c, b^{\prime}, b^{\prime \prime}\right\}$. Then a, c, b is the shortest path between a and b. Since ρ is a rainbow 3-coloring, it follows that between a and b there are another two vertex disjoint rainbow paths which must have even length at least 4 because H is bipartite. Moreover, since $|R|=5$ these paths must have length exactly 4 . If $a a^{\prime}, b b^{\prime} \in[r]$, then there must be

Fig. 3. The dotted edges belong to the class [r], the black edges do not belong to $[r]$ and the dashed edges may belong to $[r]$.
unique paths of length 2 joining a^{\prime} with $b^{\prime \prime}$ and b^{\prime} with $a^{\prime \prime}$ without edges in [r]. To prove the lemma we use this fact and we only indicate the shortest path (a, c, b) in most of the cases.
(i) Suppose that $\{2 i-1,2 i\},\{2 i-3,2 i-4\} \in[r]$. Let us consider the path of length two $(2 i-4,2 i-5,2 i)$. One vertex disjoint rainbow path between $2 i-4$ and $2 i$ must join $2 i-3$ with $2 i+1 \in N(2 i) \backslash\{2 i-5,2 i-1\}$ since $\{2 i-1,2 i\} \in[r]$, and having no edges in $[r]$. This path is $(2 i-3,2 i+2,2 i+1)$ and $\{2 i+1,2 i+2\} \notin[r]$. And the other vertex disjoint rainbow path must join $2 i-1$ with $2 i+5 \in N(2 i-4) \backslash\{2 i-5,2 i-3\}$ since $\{2 i-4,2 i-3\} \in[r]$, and having no edges in $[r]$. This path is $(2 i-1,2 i+4,2 i+5)$ and $\{2 i+5,2 i+4\} \notin[r]$.
(ii) Suppose that $\{2 i-1,2 i\},\{2 i-7,2 i-6\} \in[r]$. The result follows by considering the path ($2 i-1,2 i-2,2 i-7$).
(iii) Suppose that $\{2 i-1,2 i\},\{2 i+7,2 i+6\} \in[r]$. The result follows by considering the path ($2 i-1,2 i-2,2 i+7$).
(iv) Suppose that $\{2 i-1,2 i\},\{2 i+3,2 i+8\} \in[r]$. The result follows by considering the path ($2 i-1,2 i+4,2 i+3$).
(v) Suppose that $\{2 i-1,2 i\},\{2 i+3,2 i+2\} \in[r]$. The result follows by considering the path ($2 i, 2 i+1,2 i+2$).

Theorem 3.1. Let H be the Heawood graph. Then $6 \leq r c_{3}(H) \leq 7$.
Proof. Let $\rho: E(H) \rightarrow R$ be a rainbow 3-coloring on the edges of H. We reason by contradiction assuming that $r C_{3}(H)=|R|=5$, which implies that there is a chromatic class $[r]$ with $|[r]| \geq 5$ because $|E(H)|=21=\sum|[r]|$. Let [r] be such a chromatic class. Observe that a matching of at least 5 edges in Heawood graph always contains two edges at distance 2 . Without loss of generality suppose that $\{1,2\} \in[r]$. At distance two of $\{1,2\}$ there are 8 edges which induce a cycle of length $8: C=(7,12,13,4,5,10,9,8,7)$. Assume that $\{7,8\} \in[r]$. Since $\{7,8\},\{1,2\} \in[r]$, by item (ii) of Lemma 3.2 (taking $i=4$), it follows that

$$
\begin{equation*}
\{9,0\},\{11,12\} \notin[r] . \tag{1}
\end{equation*}
$$

We consider the following cases according to the edges in $E(C) \cap[r]$.
Suppose that there are four edges in C with color r. In this case, the class $[r]$ must contain the edges $\{1,2\},\{7,8\},\{9,10\}$, $\{5,4\}$ and $\{13,12\}$. Since $\{7,8\},\{5,4\} \in[r]$, by item (i) of Lemma 3.2 (taking $i=4$), it follows that $\{9,10\},\{13,12\} \notin[r]$, a contradiction. Hence C contains at most 3 edges in $[r]$ including $\{7,8\}$.

Suppose that $\{7,8\},\{13,12\} \in E(C) \cap[r]$. Since $\{1,2\},\{13,12\} \in[r]$ it follows that $\{3,4\} \notin[r]$ by item (i) of Lemma 3.2 (taking $i=1$). If $\{5,10\} \in[r]$, by Lemma 3.1 and (1) there is no other edge belonging to $[r]$, see Fig. 3(a), and so $|[r]|=4$, which is a contradiction. Hence, $\{5,10\} \notin[r]$. If $\{5,4\} \in[r]$, then taking into account that $\{7,8\} \in[r]$, it follows by item (i) of Lemma 3.2 (taking $i=4$) that $\{12,13\} \notin[r]$, a contradiction. Thus, $\{5,4\} \notin[r]$. If $\{9,10\} \in[r]$, using that $\{13,12\} \in[r]$, item (v) of Lemma 3.2 (taking $i=5$) implies that $\{7,8\} \notin[r]$ which is a contradiction; then $\{9,10\} \notin[r]$. Furthermore, if $\{5,6\} \in[r]$ using that $\{12,13\} \in[r]$, item (iii) of Lemma 3.2 (taking $i=3$) implies that $\{11,10\} \notin[r]$ yielding that $|[r]|=4$ which is a contradiction. Hence, if $\{7,8\} \in[r]$, then $\{12,13\} \notin[r]$. By symmetry, if $\{7,8\} \in[r]$, then $\{9,10\} \notin[r]$. Thus, if $[r]$ contains two edges of C these two edges must be at distance at least 2 in C.

Suppose that $\{7,8\},\{5,10\} \in[r] \cap E(C)$. Observe that the only other edges that can be in $[r]$ are $\{3,4\},\{13,0\},\{13,4\}$ (see Fig. $3(b)$). By item (iv) of Lemma 3.2 (taking $i=1$), $\{1,2\},\{5,10\} \in[r]$ implies that $\{3,4\} \notin[r]$, yielding that $|[r]| \leq 4$, a contradiction. Thus, $\{5,10\} \notin[r]$. By symmetry $\{4,13\} \notin[r]$.

Suppose that $\{7,8\},\{5,4\} \in[r] \cap E(C)$. At this point the only edges that can be in $[r]$ are $\{13,0\},\{10,11\}$ (see Fig. 3(c)). By item (v) of Lemma 3.2 (taking $i=1$), $\{1,2\},\{5,4\} \in[r]$ implies that $\{10,11\},\{13,0\} \notin[r]$, yielding that $|[r]|=4$ which is a contradiction, Thus, we conclude that $[r] \cap E(C)=\{7,8\}$.

Therefore, we have all the edges incident with $\{1,2\},\{7,8\}$ (by Lemma 3.1) together with the edges of C minus $\{7,8\}$, and $\{11,12\},\{9,0\}$ (by (1)) do not belong to $[r]$. Hence, the edges that can be in $[r]$ are $\{3,4\},\{5,6\},\{10,11\}$ and $\{13,0\}$. Suppose $\{13,0\} \in[r]$. Then $\{7,8\},\{13,0\} \in[r]$ implies that $\{3,4\} \notin[r]$ by item (ii) of Lemma 3.2, and $\{10,11\},\{13,0\} \in[r]$

ARTICLE IN PRESS

implies that $\{1,2\} \notin[r]$ by item (i) of Lemma 3.2 which is a contradiction. Therefore, if $\{13,0\} \in[r],|[r]|=4$ which is a contradiction. Hence, $\{13,0\} \notin[r]$. By symmetry $\{10,11\} \notin[r]$, yielding that $|[r]| \leq 4$ which is a contradiction.

Since in every case we obtain a contradiction we conclude that for each chromatic class $|[r]| \leq 4$ which implies that $|R| \geq 6$.

Acknowledgments

The first author's research was supported by the Ministry of "Economía y Competitividad", Spain, and the European Regional Development Fund (ERDF), both under project MTM2014-60127-P. The third author's research was supported by CONACyT-México, under project CB-222104.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM, Vol. 244, Springer, Berlin, 2008.
[2] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, On the rainbow connectivity of cages, Congr. Numer. 184 (2007) 209-222.
[3] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[4] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54 (2) (2009) 75-81.
[5] G. Exoo, R. Jajcay, Dynamic cage survey, Electron. J. Combin. (2013) \#DS16.
[6] F. Kartezi, Piani finiti ciclici come risoluzioni di un certo problema di minimo, Boll. Unione Mat. Italiana 3 (15) (1960) $522-528$.
[7] J. Lauri, Further hardness results on rainbow and strong rainbow connectivity, Discrete Appl. Math. 201 (2016) 191-200.
[8] X. Li, S. Liu, Rainbow connection number and connectivity, Electron. J. Combin. 19 (2012) \#P20.
[9] X. Li, Y. Shi, Rainbow connection in 3-connected graphs, Graphs Combin. 29 (5) (2013) 1471-1475.
[10] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: a survey, Graphs Combin. 29 (1) (2013) 1-38.
[11] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer, London, 2013.
[12] Y. Mao, F. Yanling, Z. Wang, C. Ye, Rainbow vertex-connection and graph products, Int. J. Comput. Math. 93 (7) (2016) $1078-1092$.
[13] X. Marcote, C. Balbuena, I. Pelayo, On the connectivity of cages with girth five, six and eight, Discrete Math. 307 (2007) 1441-1446.
[14] K. Menger, Zur allgemeinen kurventheorie, Fund. Math. 10 (1927) 96-115.
[15] I. Schiermeyer, On minimally rainbow k-connected graphs, Discrete Appl. Math. 161 (2013) 702-705.

[^0]: * Corresponding author.

 E-mail addresses: m.camino.balbuena@upc.edu (C. Balbuena), jfresan@correo.cua.uam.mx (J. Fresán-Figueroa), dgonzalez@correo.cua.uam.mx (D. González-Moreno), olsen@correo.cua.uam.mx (M. Olsen).
 https://doi.org/10.1016/j.dam.2018.04.020
 0166-218X/© 2018 Elsevier B.V. All rights reserved.

