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a b s t r a c t

Let G be an edge-colored graph. A path P of G is said to be rainbow if no two edges of P
have the same color. An edge-coloring of G is a rainbow t-coloring if for any two distinct
vertices u and v of G there are at least t internally vertex-disjoint rainbow (u, v)-paths.
The rainbow t-connectivity rct (G) of a graph G is the minimum integer j such that there
exists a rainbow t-coloring using j colors. A (k; g)-cage is a k-regular graph of girth g and
minimum number of vertices denoted n(k; g). In this paper we focus on g = 6. It is known
that n(k; 6) ≥ 2(k2 − k + 1) and when n(k; 6) = 2(k2 − k + 1) the (k; 6)-cage is called a
Moore cage. In this paper we prove that the rainbow k-connectivity of a Moore (k; 6)-cage
G satisfies that k ≤ rck(G) ≤ k2 − k + 1. It is also proved that the rainbow 3-connectivity
of the Heawood graph is 6 or 7.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this work are finite, simple and undirected. We follow the book of Bondy and Murty [1] for
terminology and notations not defined here. Let G be a connected graph with vertex set V (G) and edge set E(G). The distance
between two vertices u and v, denoted by dG(u, v), is the length of a shortest (u, v)-path. For each vertex v ∈ V (G) we use
NG(v) and dG(v) to denote the set of neighbors and the degree of v in G. A graph G is called k-regular if each of its vertices has
degree k. The girth g(G) of G is the length of a shortest cycle in G.

An edge-coloring of a graphG is a functionρ : E(G) −→ R, where R is a set of distinct colors. Throughout this paperwe only
consider edge-colorings. Let G be an edge-colored graph. A path P in G is called rainbow if no two edges of P are colored the
same. Chartrand, Johns, McKeon and Zhang [3] defined the rainbow connecting colorings. An edge-colored graph G is said to
be rainbow connected if there exists a rainbow path between every two distinct vertices of G. Clearly, every connected graph
G has an edge-coloring that makes it rainbow connected (simply color the edges of G with distinct colors). The rainbow
connection number rc(G) of a connected graph G is the minimum number of colors that are needed to make G rainbow
connected.

Menger [14] proved that a graph G is t-connected if and only if there are at least t internally vertex-disjoint (u, v)-
paths for every two distinct vertices u and v. Schiermeyer studied rainbow t-connected graphs with a minimum number
of edges [15], and very recently the rainbow connectivity of certain products of graphs has been studied in [12]. Similar
to rainbow connecting colorings, an edge-coloring is called a rainbow t-coloring if for every pair of distinct vertices u and
v there are at least t internally disjoint rainbow (u, v)-paths. Clearly, coloring the edges of a t-connected graph G with as
many colors as edges, every two vertices of G are connected by t internally vertex-disjoint rainbow paths. Thus, the rainbow
t-connectivity rct (G) (defined by Chartrand et al. [4]) of a graph G can be defined as the minimum integer j such that there
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exists a rainbow t-coloring using j colors. Moreover, rc(G) = rc1(G) and rct1 (G) ≤ rct2 (G) for 1 ≤ t1 ≤ t2. The complexity
of computing the rc(G) has been studied in [7]. For 2-connected graphs it has been proved that rc(G) ≤ ⌈|V (G)|/2⌉, see [8].
Also for t-connected graphs with t ≥ 5 and girth g(G) ≥ 5 it has been proved that rc(G) < |V (G)|/t + 19, see [8]. Some
rck(G) has been computed when G is a complete graph or a complete bipartite graph in [4]. For more references on rainbow
connectivity and rainbow k-connectivity see [9] and the book by Li and Sun [11] or the survey by Li, Shi, and Sun [10].

Given two integers k ≥ 2 and g ≥ 3 a (k; g)-cage is a k-regular graph of girth g and minimum number of vertices, that is
denoted by n(k; g). For more information on cages see the survey on cages [5]. In this paper we focus on the case g = 6. It
is known that n(k; 6) ≥ 2(k2 − k + 1) and concerning the connectivity of any (k; 6)-cage, it has been proved that they are
k-connected [13]. When n(k; 6) = 2(k2 − k + 1) the (k; 6)-cage is called a Moore (k; 6)-cage. It is known that the incidence
graph of a projective plane of order k − 1 is a Moore (k; 6)-cage [5,6].

Definition 1.1. A projective plane (P,L) is a non-empty set P of points together with a set L of non-empty subsets of P ,
called lines, satisfying the following axioms:

GP1. For any two distinct points p and p′, there exists a unique line ℓ connecting them.
GP2. For any two distinct lines ℓ and ℓ′, there exists a unique point p in their intersection.
GP3. There exist at least four points such that no three of them are collinear.

From this definition it follows that each point p ∈ P belongs to n+1 lines and each ℓ ∈ L line contains n+1 points yielding
that |P| = |L| = n2

+ n + 1. Thus, the number n is said to be the order of the projective plane (P,L) which must be n ≥ 2.
The incidence graph of a projective plane (P,L) of order n is a bipartite graph G with vertex set P ∪ L. A vertex p ∈ P

is adjacent to a vertex ℓ ∈ L if and only if p is incident with ℓ in (P,L). Note that G is a Moore (n + 1; 6)-cage, because it
is a regular graph of degree n + 1 with 2(n2

+ n + 1) vertices and girth 6. Moreover, the diameter of G is three. A Moore
(n + 1; 6)-cage has been constructed for n = q where q is a prime power. In Fig. 2 is depicted the (3; 6)-cage (Heawood
graph), which is the incidence graph of the Fano plane.

Chartrand, Johns, McKeon and Zhang [2] showed that the rainbow 3-connectivity of the Petersen graph is 5, and the
rainbow 3-connectivity of the Heawood graph is between 5 and 7 inclusive. In this paper we prove that if G is a Moore
(k; 6)-cage, then k ≤ rck(G) ≤ k2 − k + 1. It is also proved that the rainbow 3-connectivity of the Heawood graph is 6 or 7.

2. Bounds on the rainbow connectivity of cages

In this section we give a lower bound and an upper bound for the rainbow k-connectivity of a (k; 6)-Moore cage.

Theorem 2.1. Let G be the incidence graph of a projective plane of order n ≥ 3 and let ρ : E(G) → R be a coloring of G. If every
path of G of length at most 3 is rainbow, then ρ is a rainbow (n + 1)-coloring.

Proof. LetG be the incidence graph of a projective plane (P,L). Since the diameter ofG is three,we distinguish three different
cases according to the distance between two vertices in G.

Case 1. Let a ∈ P and L ∈ L be such that dG(a, L) = 3. Then there is a geodesic (a, Lab, b, L) in G which is rainbow by
hypothesis. Let L(i)a , i = 1, . . . , n, be the n lines adjacent to point a different from Lab. Observe that |NG(L

(i)
a ) ∩ NG(L)| = 1

because G is the incidence graph of a projective plane and let {p(i)} = NG(L
(i)
a ) ∩ NG(L) for i = 1, . . . , n. Note that p(i) ̸= a, b

and p(i) ̸= p(j) for i ̸= j because G has girth 6. The paths {(a, L(i)a , p(i), L) : 1 ≤ i ≤ n} are n internally vertex-disjoint paths
between a and L, and they are rainbow by hypothesis.

Case 2. Let a, b ∈ P be such that dG(a, b) = 2 and let (a, Lab, b) be the geodesic between a and b which is unique because
the girth is 6, that is,NG(a)∩NG(b) = {Lab}. This geodesic is rainbowby hypothesis. Let L(i)a , i = 1, . . . , n, be the n lines adjacent
to a different from Lab, and let L(i)b , i = 1, . . . , n, be the n lines adjacent to b different from Lab. Let {p(i)} = NG(L

(i)
a ) ∩ NG(L

(i)
b ),

for i = 1, . . . , n, and observe that p(i) ̸= p(j) for i ̸= j because G has girth 6. Denote the color of the edge aL(i)a by ri = ρ(aL(i)a ),
i = 1, . . . , n, and note that ri ̸= rj for i ̸= j because by hypothesis paths of length 2 are rainbow. Analogously, denote by
r ′
t = ρ(bL(t)b ), t = 1, . . . , n, and observe that r ′

t ̸= r ′

h for t ̸= h by hypothesis. If there is no color in common among these
sets of colors {ri}, {r ′

t}, then the n paths {(a, L(i)a , p(i), L) : 1 ≤ i ≤ n} are n internally vertex-disjoint rainbow paths between a
and b. If there are k colors in common, without loss of generality we may assume that ri = r ′

i for i = 1, . . . , k, with k ≤ n,
and rj ̸= r ′

t for j, t = k + 1, . . . , n. Then the n paths {(a, L(i)a , u(i), L(i+1)
b , b) : 1 ≤ i ≤ n}, where {u(i)

} = NG(L
(i)
a ) ∩ NG(L

(i+1)
b ),

i = 1, . . . , n, and the sum of superindex is taken modulo n, are internally vertex-disjoint rainbow paths between a and b by
hypothesis and because the girth of G is 6. The case when L, L′

∈ L such that dG(L, L′) = 2 is solved analogously by duality.
Case 3. Let a ∈ P and A ∈ L be such that dG(a, A) = 1. Let {L(1), . . . , L(n)} = NG(a) − A and {a(1), . . . , a(n)} = NG(A) − a.

Moreover, let {M (i)
1 , . . . ,M (i)

n } = NG(a(i)) − A and let {b(i)1 , . . . , b(i)n } = NG(L(i)) − a for i = 1, 2, . . . , n. Since there exists a
perfect matching between the sets NG(a(i)) − A and NG(L

(j)
a ) − a, for all i, j, we may assume without loss of generality that

b(i)j M (i)
j ∈ E(G). Let r1 = ρ(aL(1)) and s1 = ρ(Aa(1)).
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Fig. 1. Heawood graph with a σ -coloring.

First, suppose that ρ(L(1)b(1)1 ) = s2 ̸= s1. If ρ(M
(1)
1 a(1)) = r2 ̸= r1, then ρ(b(1)1 M (1)

1 ) ̸∈ {r1, r2, s1, s2}, because by hypothesis
paths of length 3 are rainbow. Therefore the path

(a, L(1), b(1)1 ,M (1)
1 , a(1), A)

is rainbow. Then we have to suppose that ρ(M (1)
1 a(1)) = r1, which implies that ρ(M (1)

j a(1)) = rj ̸= r1 for all j ≥ 2 since
paths of length 2 are rainbow by hypothesis. Since n ≥ 3, we can take j ∈ {2, . . . , n} such that ρ(L(1)b(1)j ) = s′j ̸= s1. Then
ρ(b(1)j M (1)

j ) ̸∈ {r1, rj, s1, s′j}, since paths of length 3 are rainbow by hypothesis, which implies that the path

(a, L(1), b(1)j ,M (1)
j , a(1), A)

is rainbow. Second, suppose that ρ(L(1)b(1)1 ) = s1. Then ρ(L(1)b(1)j ) = sj ̸= s1 for all j = 2, . . . , n. Since n ≥ 3, we can take
j ∈ {2, . . . , n} such that ρ(M (1)

j a(1)) = r ′

j ̸= r1. Then ρ(b(1)j M (1)
j ) ̸∈ {r1, r ′

j , s1, sj}, since paths of length 3 are rainbow by
hypothesis, yielding that the path

(a, L(1), b(1)j ,M (1)
j , a(1), A)

is rainbow In either case we can find a rainbow path of length 5 between a and A through vertices L(1), a(1) and vertices in
NG(L(1)) − a and through vertices in NG(a(1)) − A. Repeating this process for each i = 2, . . . , n, we find n internally vertex-
disjoint rainbow paths between a and A which along with the edge aA give us n + 1 vertex-disjoint (a, A)-paths. ■

Definition 2.1. Let (P,L) be a projective plane and G the corresponding incidence graph. For all L ∈ L let σL : L → L be a
permutation such that σL(a) ̸= a for every a ∈ L. For each edge aL of G, with a ∈ P and L ∈ L, we color aL with the color
σL(a). This coloring over the edges of G is said to be a σ -coloring.

As an example of Definition 2.1, let us consider the following permutations of lines of Heawood graph defining a σ -
coloring shown in Fig. 1.

σL1 = (132); σL2 = (147); σL3 = (165); σL4 = (264); σL5 = (273); σL6 = (354); σL7 = (367).

Lemma 2.1. Let G be the incidence graph of a projective plane of order n ≥ 2 with a σ -coloring. Then every path of length at
most three of G is rainbow.

Proof. If a path has length one, clearly it is rainbow. Let (a, L, b) be a path of length two of G. Since σL is a permutation of the
points of L and a, b ∈ Lwith a ̸= b, then σL(a) ̸= σL(b). Let (L, a, L′) be a path of length two of G. In this case {a} = L ∩ L′, and
σL, σL′ are permutations of the points of L and L′, respectively. If σL(a) = σL′ (a) = {p}, then p ∈ L ∩ L′, that is p = a, which is
a contradiction because σL(a) ̸= a and σL′ (a) ̸= a according to Definition 2.1.

Let (a, Lab, b, Lb) be a path of length three of G. Then σLab (a) ̸= σLab (b) ̸= σLb (b). If σLab (a) = σLb (b) = p, then
p ∈ Lab ∩ Lb = {b}, yielding that p = b, which is a contradiction because σLb (b) ̸= b by Definition 2.1. ■

As an immediate consequence of Theorem 2.1 and Lemma 2.1 we can write the following result.

Theorem 2.2. Let G be the incidence graph of a projective plane of order n ≥ 3 with a σ -coloring. Then G is rainbow (n + 1)-
connected and rc(n+1)(G) ≤ n2

+ n + 1.
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Fig. 2. Heawood graph with a σ -coloring which is not 3-rainbow.

Remark 2.1. In Theorem 2.2, the hypothesis n ≥ 3 is necessary as shown for the σ -coloring depicted in Fig. 2 of Heawood
graph.We can check that this σ -coloring satisfies the hypothesis of Lemma2.1, but between 1 and L1 there are no 3 internally
rainbow vertex-disjoint paths.

However, the σ -coloring of Heawood graph shown in Fig. 1 does work.

3. Rainbow 3-connectivity of Heawood graph

In the previous section we have described a rainbow 3-coloring of the Heawood graph of 7 colors. We prove that the
rainbow 3-connectivity of Heawood graph is at least 6.

Lemma 3.1. Let G be a k-regular and k-connected graph, and let ρ be a rainbow k-coloring of G. If e1 and e2 are two incident
edges, then ρ(e1) ̸= ρ(e2).

Proof. Suppose by contradiction that there are two incident edges e1 = uv, e2 = vw of G such that ρ(e1) = ρ(e2). Since
G is rainbow k-connected there are k vertex disjoint rainbow paths between vertices u and w. Since d(u) = d(w) = k, it
follows that among these k vertex disjoint rainbow paths there is one containing e1 and that path cannot contain e2, and
there must be another path containing e2 and this path cannot contain e1. A contradiction, because these two paths are not
vertex-disjoint. ■

Let ρ be a coloring of a graph G. A chromatic class [r] is the set of edges of G with color r . By Lemma 3.1, the following
corollary is immediate.

Corollary 3.1. Let G be the incidence graph of a projective plane of order n and let ρ be a rainbow (n + 1)-coloring of G. Then
every chromatic class is independent.

It is well known that the Heawood graph can be described as a bipartite graph with V (G) = Z14 and E(G) = {{2i, 2i +
1}, {2i, 2i−1}, {2i+1, 2i+6} : i = 0, . . . , 6}, see Fig. 3. In the rest of the paper we use this notation for the Heawood graph.

Lemma 3.2. Let H be the Heawood graph, let ρ : E(H) → R be a rainbow 3-coloring of H with |R| = 5, and let [r] be a chromatic
class. The following assertions hold for i ∈ {0, . . . , 6}:

(i) If {2i − 1, 2i}, {2i − 3, 2i − 4} ∈ [r], then {2i + 1, 2i + 2}, {2i + 4, 2i + 5} ̸∈ [r].
(ii) If {2i − 1, 2i}, {2i − 7, 2i − 6} ∈ [r], then {2i + 1, 2i − 8}, {2i + 3, 2i + 4} ̸∈ [r].
(iii) If {2i − 1, 2i}, {2i + 7, 2i + 6} ∈ [r], then {2i + 5, 2i + 4}, {2i − 5, 2i − 6} ̸∈ [r].
(iv) If {2i − 1, 2i}, {2i + 3, 2i − 6} ∈ [r], then {2i + 1, 2i + 2}, {2i − 2, 2i + 7} ̸∈ [r].
(v) If {2i − 1, 2i}, {2i + 3, 2i + 2} ∈ [r], then {2i − 3, 2i − 2}, {2i − 6, 2i − 5} ̸∈ [r].

Proof. Note that if dH (a, b) = 2 for a, b ∈ V (H), then the shortest (a, b)-path is unique because the girth of H is 6. Let
N(a) = {c, a′, a′′

} and N(b) = {c, b′, b′′
}. Then a, c, b is the shortest path between a and b. Since ρ is a rainbow 3-coloring,

it follows that between a and b there are another two vertex disjoint rainbow paths which must have even length at least 4
because H is bipartite. Moreover, since |R| = 5 these paths must have length exactly 4. If aa′, bb′

∈ [r], then there must be
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Fig. 3. The dotted edges belong to the class [r], the black edges do not belong to [r] and the dashed edges may belong to [r].

unique paths of length 2 joining a′ with b′′ and b′ with a′′ without edges in [r]. To prove the lemma we use this fact and we
only indicate the shortest path (a, c, b) in most of the cases.

(i) Suppose that {2i − 1, 2i}, {2i − 3, 2i − 4} ∈ [r]. Let us consider the path of length two (2i − 4, 2i − 5, 2i). One vertex
disjoint rainbow path between 2i−4 and 2imust join 2i−3 with 2i+1 ∈ N(2i)\ {2i−5, 2i−1} since {2i−1, 2i} ∈ [r], and
having no edges in [r]. This path is (2i − 3, 2i + 2, 2i + 1) and {2i + 1, 2i + 2} ̸∈ [r]. And the other vertex disjoint rainbow
path must join 2i − 1 with 2i + 5 ∈ N(2i − 4) \ {2i − 5, 2i − 3} since {2i − 4, 2i − 3} ∈ [r], and having no edges in [r]. This
path is (2i − 1, 2i + 4, 2i + 5) and {2i + 5, 2i + 4} ̸∈ [r].

(ii) Suppose that {2i − 1, 2i}, {2i − 7, 2i − 6} ∈ [r]. The result follows by considering the path (2i − 1, 2i − 2, 2i − 7).
(iii) Suppose that {2i − 1, 2i}, {2i + 7, 2i + 6} ∈ [r]. The result follows by considering the path (2i − 1, 2i − 2, 2i + 7).
(iv) Suppose that {2i − 1, 2i}, {2i + 3, 2i + 8} ∈ [r]. The result follows by considering the path (2i − 1, 2i + 4, 2i + 3).
(v) Suppose that {2i − 1, 2i}, {2i + 3, 2i + 2} ∈ [r]. The result follows by considering the path (2i, 2i + 1, 2i + 2). ■

Theorem 3.1. Let H be the Heawood graph. Then 6 ≤ rc3(H) ≤ 7.

Proof. Let ρ : E(H) → R be a rainbow 3-coloring on the edges of H . We reason by contradiction assuming that
rc3(H) = |R| = 5, which implies that there is a chromatic class [r] with |[r]| ≥ 5 because |E(H)| = 21 =

∑
|[r]|. Let

[r] be such a chromatic class. Observe that a matching of at least 5 edges in Heawood graph always contains two edges at
distance 2. Without loss of generality suppose that {1, 2} ∈ [r]. At distance two of {1, 2} there are 8 edges which induce a
cycle of length 8: C = (7, 12, 13, 4, 5, 10, 9, 8, 7). Assume that {7, 8} ∈ [r]. Since {7, 8}, {1, 2} ∈ [r], by item (ii) of Lemma3.2
(taking i = 4), it follows that

{9, 0}, {11, 12} ̸∈ [r]. (1)

We consider the following cases according to the edges in E(C) ∩ [r].
Suppose that there are four edges in C with color r . In this case, the class [r]must contain the edges {1, 2}, {7, 8}, {9, 10},

{5, 4} and {13, 12}. Since {7, 8}, {5, 4} ∈ [r], by item (i) of Lemma 3.2 (taking i = 4), it follows that {9, 10}, {13, 12} ̸∈ [r], a
contradiction. Hence C contains at most 3 edges in [r] including {7, 8}.

Suppose that {7, 8}, {13, 12} ∈ E(C) ∩ [r]. Since {1, 2}, {13, 12} ∈ [r] it follows that {3, 4} ̸∈ [r] by item (i) of Lemma 3.2
(taking i = 1). If {5, 10} ∈ [r], by Lemma 3.1 and (1) there is no other edge belonging to [r], see Fig. 3(a), and so |[r]| = 4,
which is a contradiction. Hence, {5, 10} ̸∈ [r]. If {5, 4} ∈ [r], then taking into account that {7, 8} ∈ [r], it follows by item (i)
of Lemma 3.2 (taking i = 4) that {12, 13} ̸∈ [r], a contradiction. Thus, {5, 4} ̸∈ [r]. If {9, 10} ∈ [r], using that {13, 12} ∈ [r],
item (v) of Lemma 3.2 (taking i = 5) implies that {7, 8} ̸∈ [r] which is a contradiction; then {9, 10} ̸∈ [r]. Furthermore, if
{5, 6} ∈ [r] using that {12, 13} ∈ [r], item (iii) of Lemma 3.2 (taking i = 3) implies that {11, 10} ̸∈ [r] yielding that |[r]| = 4
which is a contradiction. Hence, if {7, 8} ∈ [r], then {12, 13} ̸∈ [r]. By symmetry, if {7, 8} ∈ [r], then {9, 10} ̸∈ [r]. Thus, if
[r] contains two edges of C these two edges must be at distance at least 2 in C .

Suppose that {7, 8}, {5, 10} ∈ [r] ∩ E(C). Observe that the only other edges that can be in [r] are {3, 4}, {13, 0}, {13, 4}
(see Fig. 3(b)). By item (iv) of Lemma 3.2 (taking i = 1), {1, 2}, {5, 10} ∈ [r] implies that {3, 4} ̸∈ [r], yielding that |[r]| ≤ 4,
a contradiction. Thus, {5, 10} ̸∈ [r]. By symmetry {4, 13} ̸∈ [r].

Suppose that {7, 8}, {5, 4} ∈ [r] ∩ E(C). At this point the only edges that can be in [r] are {13, 0}, {10, 11} (see Fig. 3(c)).
By item (v) of Lemma 3.2 (taking i = 1), {1, 2}, {5, 4} ∈ [r] implies that {10, 11}, {13, 0} ̸∈ [r], yielding that |[r]| = 4 which
is a contradiction, Thus, we conclude that [r] ∩ E(C) = {7, 8}.

Therefore, we have all the edges incident with {1, 2}, {7, 8} (by Lemma 3.1) together with the edges of C minus {7, 8},
and {11, 12}, {9, 0} (by (1)) do not belong to [r]. Hence, the edges that can be in [r] are {3, 4}, {5, 6}, {10, 11} and {13, 0}.
Suppose {13, 0} ∈ [r]. Then {7, 8}, {13, 0} ∈ [r] implies that {3, 4} ̸∈ [r] by item (ii) of Lemma 3.2, and {10, 11}, {13, 0} ∈ [r]
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implies that {1, 2} ̸∈ [r] by item (i) of Lemma 3.2 which is a contradiction. Therefore, if {13, 0} ∈ [r], |[r]| = 4 which is a
contradiction. Hence, {13, 0} ̸∈ [r]. By symmetry {10, 11} ̸∈ [r], yielding that |[r]| ≤ 4 which is a contradiction.

Since in every case we obtain a contradiction we conclude that for each chromatic class |[r]| ≤ 4 which implies that
|R| ≥ 6. ■
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