

UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Aquesta és una còpia de la versió *author's final draft* d'un article publicat a la revista "Discrete applied mathematics".

URL d'aquest document a UPCommons E-prints: <u>http://hdl.handle.net/2117/123591</u>

Article publicat / Published paper:

Balbuena, C., Fresán, J., González, D., Olsen, M. Rainbow connectivity of Moore cages of girth 6. "Discrete applied mathematics", 11 Desembre 2018, vol. 250, p. 104-109. Doi: 10.1016/j.dam.2018.04.020

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

C. Balbuena^{a,*}, J. Fresán-Figueroa^b, D. González-Moreno^b, M. Olsen^b

^a Departament de Ingeniería Civil i Ambiental, Universitat Politècnica de Catalunya, Spain

^b Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico

ARTICLE INFO

Article history: Received 2 January 2017 Received in revised form 14 April 2018 Accepted 17 April 2018 Available online xxxx

Keywords: Rainbow coloring Rainbow connectivity Cages

ABSTRACT

Let *G* be an edge-colored graph. A path *P* of *G* is said to be *rainbow* if no two edges of *P* have the same color. An edge-coloring of *G* is a *rainbow t*-coloring if for any two distinct vertices *u* and *v* of *G* there are at least *t* internally vertex-disjoint rainbow (u, v)-paths. The *rainbow t*-coloring using *j* colors. A (k; g)-cage is a *k*-regular graph of girth *g* and minimum number of vertices denoted n(k; g). In this paper we focus on g = 6. It is known that $n(k; 6) \ge 2(k^2 - k + 1)$ and when $n(k; 6) = 2(k^2 - k + 1)$ the (k; 6)-cage is called a Moore cage. In this paper we prove that the rainbow *k*-connectivity of a Moore (k; 6)-cage *G* satisfies that $k \le rc_k(G) \le k^2 - k + 1$. It is also proved that the rainbow 3-connectivity of the Heawood graph is 6 or 7.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this work are finite, simple and undirected. We follow the book of Bondy and Murty [1] for terminology and notations not defined here. Let *G* be a connected graph with vertex set V(G) and edge set E(G). The *distance* between two vertices *u* and *v*, denoted by $d_G(u, v)$, is the length of a shortest (u, v)-path. For each vertex $v \in V(G)$ we use $N_G(v)$ and $d_G(v)$ to denote the set of neighbors and the degree of *v* in *G*. A graph *G* is called *k*-regular if each of its vertices has degree *k*. The girth g(G) of *G* is the length of a shortest cycle in *G*.

An *edge-coloring* of a graph *G* is a function $\rho : E(G) \longrightarrow R$, where *R* is a set of distinct colors. Throughout this paper we only consider edge-colorings. Let *G* be an edge-colored graph. A path *P* in *G* is called *rainbow* if no two edges of *P* are colored the same. Chartrand, Johns, McKeon and Zhang [3] defined the rainbow connecting colorings. An edge-colored graph *G* is said to be *rainbow connected* if there exists a rainbow path between every two distinct vertices of *G*. Clearly, every connected graph *G* has an edge-coloring that makes it rainbow connected (simply color the edges of *G* with distinct colors). The *rainbow connection number* rc(G) of a connected graph *G* is the minimum number of colors that are needed to make *G* rainbow connected.

Menger [14] proved that a graph *G* is *t*-connected if and only if there are at least *t* internally vertex-disjoint (u, v)-paths for every two distinct vertices *u* and *v*. Schiermeyer studied rainbow *t*-connected graphs with a minimum number of edges [15], and very recently the rainbow connectivity of certain products of graphs has been studied in [12]. Similar to rainbow connecting colorings, an edge-coloring is called a *rainbow t*-coloring if for every pair of distinct vertices *u* and *v* there are at least *t* internally disjoint rainbow (u, v)-paths. Clearly, coloring the edges of a *t*-connected graph *G* with as many colors as edges, every two vertices of *G* are connected by *t* internally vertex-disjoint rainbow paths. Thus, the rainbow *t*-connectivity $rc_t(G)$ (defined by Chartrand et al. [4]) of a graph *G* can be defined as the minimum integer *j* such that there

* Corresponding author.

https://doi.org/10.1016/j.dam.2018.04.020 0166-218X/© 2018 Elsevier B.V. All rights reserved.

E-mail addresses: m.camino.balbuena@upc.edu (C. Balbuena), jfresan@correo.cua.uam.mx (J. Fresán-Figueroa), dgonzalez@correo.cua.uam.mx (D. González-Moreno), olsen@correo.cua.uam.mx (M. Olsen).

2

ARTICLE IN PRESS

C. Balbuena et al. / Discrete Applied Mathematics 🛚 (💵 💷)

exists a rainbow *t*-coloring using *j* colors. Moreover, $rc(G) = rc_1(G)$ and $rc_{t_1}(G) \le rc_{t_2}(G)$ for $1 \le t_1 \le t_2$. The complexity of computing the rc(G) has been studied in [7]. For 2-connected graphs it has been proved that $rc(G) \le \lceil |V(G)|/2 \rceil$, see [8]. Also for *t*-connected graphs with $t \ge 5$ and girth $g(G) \ge 5$ it has been proved that rc(G) < |V(G)|/t + 19, see [8]. Some $rc_k(G)$ has been computed when *G* is a complete graph or a complete bipartite graph in [4]. For more references on rainbow connectivity and rainbow *k*-connectivity see [9] and the book by Li and Sun [11] or the survey by Li, Shi, and Sun [10].

Given two integers $k \ge 2$ and $g \ge 3$ a (k; g)-cage is a k-regular graph of girth g and minimum number of vertices, that is denoted by n(k; g). For more information on cages see the survey on cages [5]. In this paper we focus on the case g = 6. It is known that $n(k; 6) \ge 2(k^2 - k + 1)$ and concerning the connectivity of any (k; 6)-cage, it has been proved that they are k-connected [13]. When $n(k; 6) = 2(k^2 - k + 1)$ the (k; 6)-cage is called a Moore (k; 6)-cage. It is known that the incidence graph of a projective plane of order k - 1 is a Moore (k; 6)-cage [5,6].

Definition 1.1. A projective plane $(\mathcal{P}, \mathcal{L})$ is a non-empty set \mathcal{P} of points together with a set \mathcal{L} of non-empty subsets of \mathcal{P} , called lines, satisfying the following axioms:

- GP1. For any two distinct points p and p', there exists a unique line ℓ connecting them.
- GP2. For any two distinct lines ℓ and ℓ' , there exists a unique point p in their intersection.
- GP3. There exist at least four points such that no three of them are collinear.

From this definition it follows that each point $p \in \mathcal{P}$ belongs to n + 1 lines and each $\ell \in \mathcal{L}$ line contains n + 1 points yielding that $|\mathcal{P}| = |\mathcal{L}| = n^2 + n + 1$. Thus, the number n is said to be the *order* of the projective plane $(\mathcal{P}, \mathcal{L})$ which must be $n \ge 2$.

The *incidence graph* of a projective plane $(\mathcal{P}, \mathcal{L})$ of order n is a bipartite graph G with vertex set $\mathcal{P} \cup \mathcal{L}$. A vertex $p \in \mathcal{P}$ is adjacent to a vertex $\ell \in \mathcal{L}$ if and only if p is incident with ℓ in $(\mathcal{P}, \mathcal{L})$. Note that G is a Moore (n + 1; 6)-cage, because it is a regular graph of degree n + 1 with $2(n^2 + n + 1)$ vertices and girth 6. Moreover, the diameter of G is three. A Moore (n + 1; 6)-cage has been constructed for n = q where q is a prime power. In Fig. 2 is depicted the (3; 6)-cage (Heawood graph), which is the incidence graph of the Fano plane.

Chartrand, Johns, McKeon and Zhang [2] showed that the rainbow 3-connectivity of the Petersen graph is 5, and the rainbow 3-connectivity of the Heawood graph is between 5 and 7 inclusive. In this paper we prove that if *G* is a Moore (k; 6)-cage, then $k \le rc_k(G) \le k^2 - k + 1$. It is also proved that the rainbow 3-connectivity of the Heawood graph is 6 or 7.

2. Bounds on the rainbow connectivity of cages

In this section we give a lower bound and an upper bound for the rainbow k-connectivity of a (k; 6)-Moore cage.

Theorem 2.1. Let *G* be the incidence graph of a projective plane of order $n \ge 3$ and let $\rho : E(G) \rightarrow R$ be a coloring of *G*. If every path of *G* of length at most 3 is rainbow, then ρ is a rainbow (n + 1)-coloring.

Proof. Let *G* be the incidence graph of a projective plane (\mathcal{P} , \mathcal{L}). Since the diameter of *G* is three, we distinguish three different cases according to the distance between two vertices in *G*.

Case 1. Let $a \in \mathcal{P}$ and $L \in \mathcal{L}$ be such that $d_G(a, L) = 3$. Then there is a geodesic (a, L_{ab}, b, L) in G which is rainbow by hypothesis. Let $L_a^{(i)}$, i = 1, ..., n, be the n lines adjacent to point a different from L_{ab} . Observe that $|N_G(L_a^{(i)}) \cap N_G(L)| = 1$ because G is the incidence graph of a projective plane and let $\{p^{(i)}\} = N_G(L_a^{(i)}) \cap N_G(L)$ for i = 1, ..., n. Note that $p^{(i)} \neq a, b$ and $p^{(i)} \neq p^{(j)}$ for $i \neq j$ because G has girth 6. The paths $\{(a, L_a^{(i)}, p^{(i)}, L) : 1 \leq i \leq n\}$ are n internally vertex-disjoint paths between a and L, and they are rainbow by hypothesis.

Case 2. Let $a, b \in \mathcal{P}$ be such that $d_G(a, b) = 2$ and let (a, L_{ab}, b) be the geodesic between a and b which is unique because the girth is 6, that is, $N_G(a) \cap N_G(b) = \{L_{ab}\}$. This geodesic is rainbow by hypothesis. Let $L_a^{(i)}, i = 1, \ldots, n$, be the n lines adjacent to a different from L_{ab} , and let $L_b^{(i)}, i = 1, \ldots, n$, be the n lines adjacent to b different from L_{ab} . Let $\{p^{(i)}\} = N_G(L_a^{(i)}) \cap N_G(L_b^{(i)})$, for $i = 1, \ldots, n$, and observe that $p^{(i)} \neq p^{(j)}$ for $i \neq j$ because G has girth 6. Denote the color of the edge $aL_a^{(i)}$ by $r_i = \rho(aL_a^{(i)})$, $i = 1, \ldots, n$, and note that $r_i \neq r_j$ for $i \neq j$ because by hypothesis paths of length 2 are rainbow. Analogously, denote by $r'_t = \rho(bL_b^{(t)})$, $t = 1, \ldots, n$, and observe that $r'_t \neq r'_h$ for $t \neq h$ by hypothesis. If there is no color in common among these sets of colors $\{r_i\}, \{r'_t\}$, then the n paths $\{(a, L_a^{(i)}, p^{(i)}, L) : 1 \leq i \leq n\}$ are n internally vertex-disjoint rainbow paths between a and b. If there are k colors in common, without loss of generality we may assume that $r_i = r'_i$ for $i = 1, \ldots, k$, with $k \leq n$, and $r_j \neq r'_t$ for $j, t = k + 1, \ldots, n$. Then the n paths $\{(a, L_a^{(i)}, u^{(i)}, L_b^{(i+1)}, b) : 1 \leq i \leq n\}$, where $\{u^{(i)}\} = N_G(L_a^{(i)}) \cap N_G(L_b^{(i+1)})$, $i = 1, \ldots, n$, and the sum of superindex is taken modulo n, are internally vertex-disjoint rainbow paths between a and b by hypothesis and because the girth of G is 6. The case when $L, L' \in \mathcal{L}$ such that $d_G(L, L') = 2$ is solved analogously by duality.

Case 3. Let $a \in \mathcal{P}$ and $A \in \mathcal{L}$ be such that $d_G(a, A) = 1$. Let $\{L^{(1)}, \ldots, L^{(n)}\} = N_G(a) - A$ and $\{a^{(1)}, \ldots, a^{(n)}\} = N_G(A) - a$. Moreover, let $\{M_1^{(i)}, \ldots, M_n^{(i)}\} = N_G(a^{(i)}) - A$ and let $\{b_1^{(i)}, \ldots, b_n^{(i)}\} = N_G(L^{(i)}) - a$ for $i = 1, 2, \ldots, n$. Since there exists a perfect matching between the sets $N_G(a^{(i)}) - A$ and $N_G(L_a^{(j)}) - a$, for all i, j, we may assume without loss of generality that $b_i^{(i)}M_i^{(i)} \in E(G)$. Let $r_1 = \rho(aL^{(1)})$ and $s_1 = \rho(Aa^{(1)})$.

C. Balbuena et al. / Discrete Applied Mathematics 🛚 (💵 💷)

edge	color	edge	color
$1L_1$	3	$6L_4$	4
$2L_1$	1	$2L_5$	7
$3L_1$	2	$5L_5$	2
$1L_2$	4	$7L_5$	5
$4L_2$	7	$3L_6$	5
$7L_2$	1	$4L_6$	3
$1L_3$	6	$5L_6$	4
$5L_3$	1	$3L_7$	6
$6L_3$	5	$6L_7$	7
$2L_4$	6	$7L_7$	3
$4L_4$	$\begin{vmatrix} 2 \end{vmatrix}$		

Fig. 1. Heawood graph with a σ -coloring.

First, suppose that $\rho(L^{(1)}b_1^{(1)}) = s_2 \neq s_1$. If $\rho(M_1^{(1)}a^{(1)}) = r_2 \neq r_1$, then $\rho(b_1^{(1)}M_1^{(1)}) \notin \{r_1, r_2, s_1, s_2\}$, because by hypothesis paths of length 3 are rainbow. Therefore the path

 $(a, L^{(1)}, b_1^{(1)}, M_1^{(1)}, a^{(1)}, A)$

is rainbow. Then we have to suppose that $\rho(M_1^{(1)}a^{(1)}) = r_1$, which implies that $\rho(M_j^{(1)}a^{(1)}) = r_j \neq r_1$ for all $j \ge 2$ since paths of length 2 are rainbow by hypothesis. Since $n \ge 3$, we can take $j \in \{2, ..., n\}$ such that $\rho(L^{(1)}b_j^{(1)}) = s'_j \neq s_1$. Then $\rho(b_j^{(1)}M_j^{(1)}) \notin \{r_1, r_j, s_1, s'_j\}$, since paths of length 3 are rainbow by hypothesis, which implies that the path

$$(a, L^{(1)}, b_i^{(1)}, M_i^{(1)}, a^{(1)}, A)$$

is rainbow. Second, suppose that $\rho(L^{(1)}b_1^{(1)}) = s_1$. Then $\rho(L^{(1)}b_j^{(1)}) = s_j \neq s_1$ for all j = 2, ..., n. Since $n \ge 3$, we can take $j \in \{2, ..., n\}$ such that $\rho(M_j^{(1)}a^{(1)}) = r'_j \neq r_1$. Then $\rho(b_j^{(1)}M_j^{(1)}) \notin \{r_1, r'_j, s_1, s_j\}$, since paths of length 3 are rainbow by hypothesis, yielding that the path

$$(a, L^{(1)}, b_i^{(1)}, M_i^{(1)}, a^{(1)}, A)$$

is rainbow In either case we can find a rainbow path of length 5 between *a* and *A* through vertices $L^{(1)}$, $a^{(1)}$ and vertices in $N_G(L^{(1)}) - a$ and through vertices in $N_G(a^{(1)}) - A$. Repeating this process for each i = 2, ..., n, we find *n* internally vertex-disjoint rainbow paths between *a* and *A* which along with the edge *aA* give us n + 1 vertex-disjoint (*a*, *A*)-paths.

Definition 2.1. Let $(\mathcal{P}, \mathcal{L})$ be a projective plane and *G* the corresponding incidence graph. For all $L \in \mathcal{L}$ let $\sigma_L : L \to L$ be a permutation such that $\sigma_L(a) \neq a$ for every $a \in L$. For each edge aL of *G*, with $a \in \mathcal{P}$ and $L \in \mathcal{L}$, we color aL with the color $\sigma_L(a)$. This coloring over the edges of *G* is said to be a σ -coloring.

As an example of Definition 2.1, let us consider the following permutations of lines of Heawood graph defining a σ -coloring shown in Fig. 1.

 $\sigma_{L_1} = (132); \sigma_{L_2} = (147); \sigma_{L_3} = (165); \sigma_{L_4} = (264); \sigma_{L_5} = (273); \sigma_{L_6} = (354); \sigma_{L_7} = (367).$

Lemma 2.1. Let *G* be the incidence graph of a projective plane of order $n \ge 2$ with a σ -coloring. Then every path of length at most three of *G* is rainbow.

Proof. If a path has length one, clearly it is rainbow. Let (a, L, b) be a path of length two of *G*. Since σ_L is a permutation of the points of *L* and *a*, $b \in L$ with $a \neq b$, then $\sigma_L(a) \neq \sigma_L(b)$. Let (L, a, L') be a path of length two of *G*. In this case $\{a\} = L \cap L'$, and $\sigma_L, \sigma_{L'}$ are permutations of the points of *L* and *L'*, respectively. If $\sigma_L(a) = \sigma_{L'}(a) = \{p\}$, then $p \in L \cap L'$, that is p = a, which is a contradiction because $\sigma_L(a) \neq a$ and $\sigma_{L'}(a) \neq a$ according to Definition 2.1.

Let (a, L_{ab}, b, L_b) be a path of length three of *G*. Then $\sigma_{L_{ab}}(a) \neq \sigma_{L_{ab}}(b) \neq \sigma_{L_b}(b)$. If $\sigma_{L_{ab}}(a) = \sigma_{L_b}(b) = p$, then $p \in L_{ab} \cap L_b = \{b\}$, yielding that p = b, which is a contradiction because $\sigma_{L_b}(b) \neq b$ by Definition 2.1.

As an immediate consequence of Theorem 2.1 and Lemma 2.1 we can write the following result.

Theorem 2.2. Let G be the incidence graph of a projective plane of order $n \ge 3$ with a σ -coloring. Then G is rainbow (n + 1)-connected and $rc_{(n+1)}(G) \le n^2 + n + 1$.

Please cite this article in press as: C. Balbuena, et al., Rainbow connectivity of Moore cages of girth 6, Discrete Applied Mathematics (2018), https://doi.org/10.1016/j.dam.2018.04.020.

C. Balbuena et al. / Discrete Applied Mathematics 🛚 (💵 🖽) 💵 – 💵

Fig. 2. Heawood graph with a σ -coloring which is not 3-rainbow.

Remark 2.1. In Theorem 2.2, the hypothesis $n \ge 3$ is necessary as shown for the σ -coloring depicted in Fig. 2 of Heawood graph. We can check that this σ -coloring satisfies the hypothesis of Lemma 2.1, but between 1 and L_1 there are no 3 internally rainbow vertex-disjoint paths.

However, the σ -coloring of Heawood graph shown in Fig. 1 does work.

3. Rainbow 3-connectivity of Heawood graph

In the previous section we have described a rainbow 3-coloring of the Heawood graph of 7 colors. We prove that the rainbow 3-connectivity of Heawood graph is at least 6.

Lemma 3.1. Let *G* be a *k*-regular and *k*-connected graph, and let ρ be a rainbow *k*-coloring of *G*. If e_1 and e_2 are two incident edges, then $\rho(e_1) \neq \rho(e_2)$.

Proof. Suppose by contradiction that there are two incident edges $e_1 = uv$, $e_2 = vw$ of *G* such that $\rho(e_1) = \rho(e_2)$. Since *G* is rainbow *k*-connected there are *k* vertex disjoint rainbow paths between vertices *u* and *w*. Since d(u) = d(w) = k, it follows that among these *k* vertex disjoint rainbow paths there is one containing e_1 and that path cannot contain e_2 , and there must be another path containing e_2 and this path cannot contain e_1 . A contradiction, because these two paths are not vertex-disjoint.

Let ρ be a coloring of a graph *G*. A *chromatic class* [*r*] is the set of edges of *G* with color *r*. By Lemma 3.1, the following corollary is immediate.

Corollary 3.1. Let G be the incidence graph of a projective plane of order n and let ρ be a rainbow (n + 1)-coloring of G. Then every chromatic class is independent.

It is well known that the Heawood graph can be described as a bipartite graph with $V(G) = \mathbb{Z}_{14}$ and $E(G) = \{\{2i, 2i + 1\}, \{2i, 2i - 1\}, \{2i + 1, 2i + 6\} : i = 0, ..., 6\}$, see Fig. 3. In the rest of the paper we use this notation for the Heawood graph.

Lemma 3.2. Let *H* be the Heawood graph, let $\rho : E(H) \to R$ be a rainbow 3-coloring of *H* with |R| = 5, and let [r] be a chromatic class. The following assertions hold for $i \in \{0, ..., 6\}$:

 $\begin{array}{ll} (i) \ \ If \ \{2i-1,2i\}, \{2i-3,2i-4\} \in [r], \ then \ \{2i+1,2i+2\}, \{2i+4,2i+5\} \notin [r].\\ (ii) \ \ If \ \{2i-1,2i\}, \{2i-7,2i-6\} \in [r], \ then \ \{2i+1,2i-8\}, \{2i+3,2i+4\} \notin [r].\\ (iii) \ \ If \ \{2i-1,2i\}, \{2i+7,2i+6\} \in [r], \ then \ \{2i+5,2i+4\}, \{2i-5,2i-6\} \notin [r].\\ (iv) \ \ If \ \{2i-1,2i\}, \{2i+3,2i-6\} \in [r], \ then \ \{2i+1,2i+2\}, \{2i-2,2i+7\} \notin [r].\\ (v) \ \ If \ \{2i-1,2i\}, \{2i+3,2i+2\} \in [r], \ then \ \{2i-3,2i-2\}, \{2i-6,2i-5\} \notin [r]. \end{array}$

Proof. Note that if $d_H(a, b) = 2$ for $a, b \in V(H)$, then the shortest (a, b)-path is unique because the girth of H is 6. Let $N(a) = \{c, a', a''\}$ and $N(b) = \{c, b', b''\}$. Then a, c, b is the shortest path between a and b. Since ρ is a rainbow 3-coloring, it follows that between a and b there are another two vertex disjoint rainbow paths which must have even length at least 4 because H is bipartite. Moreover, since |R| = 5 these paths must have length exactly 4. If $aa', bb' \in [r]$, then there must be

4

Please cite this article in press as: C. Balbuena, et al., Rainbow connectivity of Moore cages of girth 6, Discrete Applied Mathematics (2018), https://doi.org/10.1016/j.dam.2018.04.020.

C. Balbuena et al. / Discrete Applied Mathematics 🛛 (💵 🖽) 💵 – 💵

Fig. 3. The dotted edges belong to the class [r], the black edges do not belong to [r] and the dashed edges may belong to [r].

unique paths of length 2 joining a' with b'' and b' with a'' without edges in [r]. To prove the lemma we use this fact and we only indicate the shortest path (a, c, b) in most of the cases.

(*i*) Suppose that $\{2i - 1, 2i\}, \{2i - 3, 2i - 4\} \in [r]$. Let us consider the path of length two (2i - 4, 2i - 5, 2i). One vertex disjoint rainbow path between 2i - 4 and 2i must join 2i - 3 with $2i + 1 \in N(2i) \setminus \{2i - 5, 2i - 1\}$ since $\{2i - 1, 2i\} \in [r]$, and having no edges in [r]. This path is (2i - 3, 2i + 2, 2i + 1) and $\{2i + 1, 2i + 2\} \notin [r]$. And the other vertex disjoint rainbow path must join 2i - 1 with $2i + 5 \in N(2i - 4) \setminus \{2i - 5, 2i - 3\}$ since $\{2i - 4, 2i - 3\} \in [r]$, and having no edges in [r]. This path is (2i - 1, 2i + 4, 2i + 5) and $\{2i + 5, 2i + 4\} \notin [r]$.

(*ii*) Suppose that $\{2i - 1, 2i\}$, $\{2i - 7, 2i - 6\} \in [r]$. The result follows by considering the path (2i - 1, 2i - 2, 2i - 7). (*iii*) Suppose that $\{2i - 1, 2i\}$, $\{2i + 7, 2i + 6\} \in [r]$. The result follows by considering the path (2i - 1, 2i - 2, 2i + 7). (*iv*) Suppose that $\{2i - 1, 2i\}$, $\{2i + 3, 2i + 8\} \in [r]$. The result follows by considering the path (2i - 1, 2i - 2, 2i + 7).

(v) Suppose that $\{2i - 1, 2i\}, \{2i + 3, 2i + 2\} \in [r]$. The result follows by considering the path (2i, 2i + 1, 2i + 2).

Theorem 3.1. *Let H be the Heawood graph. Then* $6 \le rc_3(H) \le 7$ *.*

Proof. Let $\rho : E(H) \rightarrow R$ be a rainbow 3-coloring on the edges of H. We reason by contradiction assuming that $rc_3(H) = |R| = 5$, which implies that there is a chromatic class [r] with $|[r]| \ge 5$ because $|E(H)| = 21 = \sum |[r]|$. Let [r] be such a chromatic class. Observe that a matching of at least 5 edges in Heawood graph always contains two edges at distance 2. Without loss of generality suppose that $\{1, 2\} \in [r]$. At distance two of $\{1, 2\}$ there are 8 edges which induce a cycle of length 8: C = (7, 12, 13, 4, 5, 10, 9, 8, 7). Assume that $\{7, 8\} \in [r]$. Since $\{7, 8\}$, $\{1, 2\} \in [r]$, by item (*ii*) of Lemma 3.2 (taking i = 4), it follows that

$$\{9, 0\}, \{11, 12\} \notin [r].$$

We consider the following cases according to the edges in $E(C) \cap [r]$.

Suppose that there are four edges in *C* with color *r*. In this case, the class [r] must contain the edges $\{1, 2\}, \{7, 8\}, \{9, 10\}, \{5, 4\}$ and $\{13, 12\}$. Since $\{7, 8\}, \{5, 4\} \in [r]$, by item (*i*) of Lemma 3.2 (taking i = 4), it follows that $\{9, 10\}, \{13, 12\} \notin [r]$, a contradiction. Hence *C* contains at most 3 edges in [r] including $\{7, 8\}$.

Suppose that {7, 8}, {13, 12} $\in E(C) \cap [r]$. Since {1, 2}, {13, 12} $\in [r]$ it follows that {3, 4} $\notin [r]$ by item (*i*) of Lemma 3.2 (taking i = 1). If {5, 10} $\in [r]$, by Lemma 3.1 and (1) there is no other edge belonging to [r], see Fig. 3(*a*), and so |[r]| = 4, which is a contradiction. Hence, {5, 10} $\notin [r]$. If {5, 4} $\in [r]$, then taking into account that {7, 8} $\in [r]$, it follows by item (*i*) of Lemma 3.2 (taking i = 4) that {12, 13} $\notin [r]$, a contradiction. Thus, {5, 4} $\notin [r]$. If {9, 10} $\in [r]$, using that {13, 12} $\in [r]$, item (*v*) of Lemma 3.2 (taking i = 5) implies that {7, 8} $\notin [r]$ which is a contradiction; then {9, 10} $\notin [r]$. Furthermore, if {5, 6} $\in [r]$ using that {12, 13} $\in [r]$, item (*iii*) of Lemma 3.2 (taking i = 3) implies that {11, 10} $\notin [r]$ yielding that |[r]| = 4 which is a contradiction. Hence, if {7, 8} $\in [r]$, then {12, 13} $\notin [r]$. By symmetry, if {7, 8} $\in [r]$, then {9, 10} $\notin [r]$. Thus, if [*r*] contains two edges of *C* these two edges must be at distance at least 2 in *C*.

Suppose that $\{7, 8\}$, $\{5, 10\} \in [r] \cap E(C)$. Observe that the only other edges that can be in [r] are $\{3, 4\}$, $\{13, 0\}$, $\{13, 4\}$ (see Fig. 3(*b*)). By item (*iv*) of Lemma 3.2 (taking *i* = 1), $\{1, 2\}$, $\{5, 10\} \in [r]$ implies that $\{3, 4\} \notin [r]$, yielding that $|[r]| \le 4$, a contradiction. Thus, $\{5, 10\} \notin [r]$. By symmetry $\{4, 13\} \notin [r]$.

Suppose that {7, 8}, {5, 4} \in [*r*] \cap *E*(*C*). At this point the only edges that can be in [*r*] are {13, 0}, {10, 11} (see Fig. 3(*c*)). By item (*v*) of Lemma 3.2 (taking *i* = 1), {1, 2}, {5, 4} \in [*r*] implies that {10, 11}, {13, 0} \notin [*r*], yielding that |[*r*]| = 4 which is a contradiction, Thus, we conclude that [*r*] \cap *E*(*C*) = {7, 8}.

Therefore, we have all the edges incident with $\{1, 2\}$, $\{7, 8\}$ (by Lemma 3.1) together with the edges of *C* minus $\{7, 8\}$, and $\{11, 12\}$, $\{9, 0\}$ (by (1)) do not belong to [*r*]. Hence, the edges that can be in [*r*] are $\{3, 4\}$, $\{5, 6\}$, $\{10, 11\}$ and $\{13, 0\}$. Suppose $\{13, 0\} \in [r]$. Then $\{7, 8\}$, $\{13, 0\} \in [r]$ implies that $\{3, 4\} \notin [r]$ by item (*ii*) of Lemma 3.2, and $\{10, 11\}$, $\{13, 0\} \in [r]$

C. Balbuena et al. / Discrete Applied Mathematics 🛚 (💵 🌒)

6

implies that $\{1, 2\} \notin [r]$ by item (*i*) of Lemma 3.2 which is a contradiction. Therefore, if $\{13, 0\} \in [r]$, |[r]| = 4 which is a contradiction. Hence, $\{13, 0\} \notin [r]$. By symmetry $\{10, 11\} \notin [r]$, yielding that $|[r]| \le 4$ which is a contradiction.

Since in every case we obtain a contradiction we conclude that for each chromatic class $|[r]| \le 4$ which implies that $|R| \ge 6$.

Acknowledgments

The first author's research was supported by the Ministry of "Economía y Competitividad", Spain, and the European Regional Development Fund (ERDF), both under project MTM2014-60127-P. The third author's research was supported by CONACyT-México, under project CB-222104.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM, Vol. 244, Springer, Berlin, 2008.
- [2] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, On the rainbow connectivity of cages, Congr. Numer. 184 (2007) 209–222.
- [3] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.
- [4] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54 (2) (2009) 75–81.
- [5] G. Exoo, R. Jajcay, Dynamic cage survey, Electron. J. Combin. (2013) #DS16.
- [6] F. Kartezi, Piani finiti ciclici come risoluzioni di un certo problema di minimo, Boll. Unione Mat. Italiana 3 (15) (1960) 522–528.
- [7] J. Lauri, Further hardness results on rainbow and strong rainbow connectivity, Discrete Appl. Math. 201 (2016) 191–200.
- [8] X. Li, S. Liu, Rainbow connection number and connectivity, Electron. J. Combin. 19 (2012) #P20.
- [9] X. Li, Y. Shi, Rainbow connection in 3-connected graphs, Graphs Combin. 29 (5) (2013) 1471-1475.
- [10] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: a survey, Graphs Combin. 29 (1) (2013) 1–38.
- [11] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer, London, 2013.
- [12] Y. Mao, F. Yanling, Z. Wang, C. Ye, Rainbow vertex-connection and graph products, Int. J. Comput. Math. 93 (7) (2016) 1078–1092.
- [13] X. Marcote, C. Balbuena, I. Pelayo, On the connectivity of cages with girth five, six and eight, Discrete Math. 307 (2007) 1441–1446.
- [14] K. Menger, Zur allgemeinen kurventheorie, Fund. Math. 10 (1927) 96–115.
- [15] I. Schiermeyer, On minimally rainbow k-connected graphs, Discrete Appl. Math. 161 (2013) 702–705.