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INTRODUCTION
Continuing the study of connectivity, initiated in §4.1 of the Handbook, we survey

here some (su�cient) conditions under which a graph or digraph has a given connectivity
or edge-connectivity. First, we describe results concerning maximal (vertex- or edge-)
connectivity. Next, we deal with conditions for having (usually lower) bounds for the
connectivity parameters. Finally, some other general connectivity measures, such as one
instance of the so-called “conditional connectivity,” are considered.

For unexplained terminology concerning connectivity, see §4.1.

4.7.1 High Connectivity
Since connectivity has to do with “connection,” intuitively we can expect to find

high connectivity when the “edge density” of the graph is large. Di↵erent situations in
which this seems to be the case are:

(a) Large minimum or average degree.

(b) Small diameter (for given girth).

(c) Small number of vertices (for given degree and girth).

(d) Large number of vertices (for given degree and diameter).

The results in this subsection give several conditions of the above types, under
which maximum vertex- or edge-connectivity is attained. An extensive collection of
results about maximally edge-connected and vertex-connected graphs and digraphs can
be found in the survey by Hellwig and Volkmann [HeVo08b].
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Section 4.7. Further Topics in Connectivity 361

Minimum Degree and Diameter

notation: Let G = (V,E) be a graph with order n, minimum degree �, maximum
degree �, edge-connectivity �, and (vertex-)connectivity . In some other sections of
the Handbook, the notations �min, �max, e, and v are used instead of �, �, �, and ,
respectively.

DEFINITIONS

D1: The girth g of a graph G with a cycle is the length of its shortest cycle. An
acyclic graph has infinite girth.

D2: The diameter D of G is max
u,v2V

{distG(u, v)}.

D3: The clique number of a graph G, denoted !(G), is the maximum number of
vertices in a complete subgraph of G.

D4: A (di)graph G is p-partite if its vertex-set can be partitioned into p independent
(or stable) sets.

FACTS

F1: [Ch66] If � � bn/2c, then G is maximally edge-connected (i.e., � = �).

F2: [Le74] If for any non-adjacent vertices u and v, deg(u) + deg(v) � n � 1, then
� = �.

F3: [Pl75] If G is a graph with diameter D = 2, then � = �.

F4: [HeVo08a] For any graph G, �(G) = �(G) or �(G) = �(G).

F5: [Vo88] If G is bipartite and � � bn/4c+ 1, then � = �.

F6: [Vo89] If G is p-partite (p � 2) and n  2
j

p
p�1

�
k

� 1, then � = �.

F7: [ToVo93] If G is p-partite (p � 2) and � � n 2p�3

2p�1

, then G is maximally connected

(i.e.,  = �).

F8: [DaVo95] If G is p-partite (p � 2) with clique number !  p and n  2
j

p
p�1

�
k

�1,

then � = �.

REMARKS

R1: It is easily shown that Fact F3 ) Fact F2 ) Fact F1.

R2: Fact F5 is a slight improvement of Fact F6 for p = 2.

R3: In addition to Fact F8, the authors in [DaVo95] gave other su�cient conditions
for � = � that mostly generalize conditions in [PlZn89].

R4: A consequence of Fact F4 is that �(G) = �(G) for any self-complementary graph
(G = G).

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [J

os
ep

 F
àb

re
ga

] a
t 0

8:
26

 1
0 

Fe
br

ua
ry

 2
01

4 



i
i

“chapter4” — 2013/11/4 — 14:16 — page 362 — #130 i
i

i
i

i
i

362 Chapter 4. Connectivity and Traversability

Degree Sequence

notation: For the next group of results, G is an n-vertex graph with degree sequence
d
1

� d
2

� · · · � dn = �. For a vertex u, N(u) denotes the set of vertices adjacent to u.

FACTS

F9: [GoWh78] If the vertex set of G can be partitioned into bn/2c pairs of vertices
(ui, vi) (and, if n is odd, one “unpaired” vertex w) such that deg(ui) + deg(vi) � n,
i = 1, 2, . . . , bn/2c, then � = �.

F10: [GoEn79] If each vertex u of minimum degree satisfies

X

v2N(u)

deg(v) �
(

bn/2c2 � bn/2c, for even n or odd n  15,

bn/2c2 � 7, for odd n � 15,

then � = �.

F11: [Bo79] Let G be a graph with order n � 2. If its degree sequence d
1

� d
2

� · · · �
dn = � satisfies

Pk
i=1

(di + dn�i) � kn � 1 for all k with 1  k  min{bn/2c � 1, �},
then � = �.

F12: [DaVo97] If � � bn/2c or if �  bn/2c� 1 and
Pk

i=1

(di + dn+i���1

) � k(n� 2)+
2� � 1 for some k with 1  k  �, then � = �.

F13: [Vo03] Suppose that G is p-partite (p � 2) and has order n � 6 with clique
number !  p. Let ⌫ = 1 when n is even and ⌫ = 0 when n is odd. If � � bn/2c or if

�  bn/2c � 1 and
P�+1

i=1

dn+1�i � (� + 1)p�1

p
n+1+⌫

2

� 2�+2

p(n�3+⌫) , then � = �.

REMARKS

R5: Note that Fact F9 implies Fact F1 only when n is even. Fact F10 also implies
Fact F1. Moreover, as shown by the examples in [PlZn89], Fact F10 is independent of
Fact F2 and Fact F3.

R6: Fact F11 implies Fact F1 when n is even, but in general, as shown in [PlZn89], it
is independent of Facts 1, 2, 3 and 10.

R7: Fact F12 is even valid for digraphs, and a theorem of Xu [Xu94] follows easily (see
Fact F23). It is easily shown that Fact F12 implies Fact F11.

R8: Fact F13 generalizes results in [Vo88, Vo89], as well as Fact F8. Furthermore, as
shown in [HeVo03b], the conditions in Fact F13 also guarantee maximum local edge-
connectivity for all pairs u and v of vertices in G; that is, �(u�v) = min{deg(u), deg(v)}.
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Section 4.7. Further Topics in Connectivity 363

Distance

DEFINITIONS

D5: The distance distG(U1

, U
2

) between two given subsets U
1

, U
2

⇢ V (G) is the
minimum of the distances distG(u1

, u
2

) for all vertices u
1

2 U
1

and u
2

2 U
2

. (When
there is no ambiguity, we omit the subscript G.)

D6: The line graph L(G) of a graph G has vertices representing the edges of G,
and two vertices are adjacent if and only if the corresponding edges are adjacent (that
is, they have one endpoint in common).

FACTS

F14: Let u
1

v
1

and u
2

v
2

be edges in a graph G, and let Ui = {ui, vi}, i = 1, 2. Then,
the distance between the corresponding vertices of L(G) satisfies dL(G)

(u
1

v
1

, u
2

v
2

) =
dG(U1

, U
2

) + 1 and thus, the diameters of L(G) and G satisfy D(L(G))  D(G) + 1.

F15: [PlZn89] Let G be a connected graph such that every pair of vertex subsets U
1

, U
2

of cardinality two satisfies dist(U
1

, U
2

)  2. Then � = �.

F16: [BaCaFaFi96] Let G be a graph with minimum degree � and line graph L(G).
Then,

(a) If L(G) has diameter at most three, then � = �.

(b) If L(G) has diameter two, then  = �.

REMARKS

R9: The su�cient condition given in Fact F15 is slightly weaker than the one given
in Fact F3. Furthermore, it su�ces to require such a condition on the 2-element subsets
that are the endpoints of some edge, as shown in Fact F16(a).

R10: From the above remark, Fact F16(a) generalizes both Fact F15 and Fact F3
(Plesnik’s result).

Super Edge-Connectivity

Here we consider a stronger measure of edge-connectivity.

DEFINITION

D7: A maximally edge-connected graph is super-� if every minimum edge-discon-
necting set is trivial, that is, consists of the edges incident on a vertex of minimum
degree.
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364 Chapter 4. Connectivity and Traversability

EXAMPLE

E1: Figure 4.7.1 shows a 3-regular maximally edge-connected graph that is not
super-�. The set {e, f, g} is a non-trivial minimum edge-disconnecting set.

e

fg

Figure 4.7.1: G is maximally edge-connected but not super-�.

FACTS

F17: [Le74] Let G 6= Kn/2 ⇥K
2

. If for any non-adjacent vertices u and v, deg(u) +
deg(v) � n, then G is super-�.

F18: If for any non-adjacent vertices u and v, deg(u) + deg(v) � n + 1, then G is
super-�.

F19: [Ke72] If � � bn/2c+ 1, then G is super-�.

F20: [Fi92] If G has diameter two and contains no complete subgraph H on � vertices
with degG(v) = � for all v 2 V (H), then G is super-�.

F21: [So92] Let G be a graph with maximum degree �. If n > 2� +�� 1, then G is
super-�.

REMARKS

R11: Facts F18 and F19, which are analogues of Facts F2 and F1, are direct conse-
quences of Fact F17.

R12: Fact F20 can be seen as a refinement of Fact F3 (where only the diameter
condition is required) and has Fact F21 as a corollary.

Digraphs

As mentioned in §4.1, since the connectivity parameters of a graph G equal those of its
symmetric digraph G⇤ (obtained by replacing each edge of G by a digon), many of the
previous results can be generalized to the directed case.

DEFINITIONS

D8: The vertex-connectivity of a digraph G, denoted (G), is the minimum size of
a vertex subset whose deletion results in a non-strongly connected or trivial digraph.
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Section 4.7. Further Topics in Connectivity 365

D9: The edge-connectivity of a digraph G, denoted �(G), is the minimum size of an
edge subset whose deletion results in a non-strongly connected digraph.

notation: (a) For a vertex u 2 V (G), deg+(u) denotes the out-degree, the number
of vertices adjacent from vertex u, and deg�(u) denotes the in-degree, the number of
vertices adjacent to vertex u. Let �(u) = min{deg+(u), deg�(u)}.
(b) �+ = minu2V {deg+(u)} and �� = minu2V {deg�(u)}.
(c) � = minu2V �(u) = min{�+, ��}.
Similar notations with � stand for maximum degrees.

notation: For vertices u, v 2 V (G), �(u � v) denotes the maximum number of edge-
disjoint directed paths from u to v.

FACTS

F22: [Jo72] If G is a digraph with diameter D = 2, then � = �.

F23: [Xu94] Let G be a digraph of order n. If there are bn/2c pairs of (di↵erent)
vertices (ui, vi) such that �(ui) + �(vi) � n, i = 1, 2, . . . , bn/2c, then � = �.

F24: [HeVo03b] Let G be a digraph with diameter at most two. Then, �(u�v) =
min{deg+(u), deg�(v)} for all pairs u and v of vertices in G.

F25: [HeVo03a] Let G be a strongly connected digraph with edge-connectivity � and
minimum degree �. If for all maximal pairs of vertex sets X and Y at distance 3 there
exists an isolated vertex in the induced subgraph on X [ Y , then � = �.

F26: [HeVo03b] Let G be a p-partite digraph of order n and minimum degree � with
p � 2. If n  2b(p�)/(p� 1)c� 1, then �(u�v) = min{deg+(u), deg�(v)} for all pairs u
and v of vertices in G.

F27: [HeVo03b] Let G be a bipartite digraph of order n and minimum degree � � 2
with the bipartition V 0 [ V 00. If deg(x) + deg(y) � (n + 1)/2 for each pair of vertices
x, y 2 V 0 and each pair of vertices x, y 2 V 00, then �(u�v) = min{deg+(u), deg�(v)}
for all pairs u and v of vertices in G.

REMARKS

R13: Notice that Plesńık’s result (Fact F3) is, in fact, a consequence of the older result
of Jolivet (Fact F22). Similarly, Fact F23 generalizes Fact F9.

R14: Fact F23 was improved by Dankelmann and Volkmann in two subsequent papers
[DaVo97, DaVo00], where the bipartite case was also considered.

R15: A restatement of Fact F24 states that a digraph with diameter two has maximum
local edge-connectivity. Moreover, this obviously implies Jolivet’s result (Fact F22) and
the corresponding local connectivity result for undirected graphs, proved in [FrOeSw00].

R16: A consequence of Fact F25 is the directed version of Fact F15.
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366 Chapter 4. Connectivity and Traversability

Oriented Graphs

DEFINITIONS

D10: A digraph is super-� if every minimum edge-disconnecting set consists of the
edges directed to or from a vertex with minimum degree. A digraph is super- if every
minimum disconnecting set consists of the vertices adjacent to or from a vertex with
minimum degree.

D11: An oriented graph G (also called an antisymmetric digraph) is a digraph
such that between any two vertices u, v, there is at most one (directed) edge ((u, v) or
(v, u)).

EXAMPLE

E2: Figure 4.7.2 shows a 2-regular maximally connected digraph G that is not super-.
If F = {x, y}, then G� F is not strongly connected (for instance, there is no [directed]
path in G � F from u to v) and F is non-trivial (it does not consist of the vertices
adjacent to or from a vertex with minimum degree).

u

v

x

y

Figure 4.7.2: G is maximally connected but not super-.

FACTS

F28: [AyFr70] Let G be an oriented graph with n vertices and minimum degree �. If
� � b(n+ 2)/4c, then � = �.

F29: [Fi92] If G is an oriented graph with n vertices and minimum degree � � bn/4c+1,
then G is super-�.

F30: [Fi92] If G is an oriented graph with diameter two, then G is super-�.

REMARKS

R17: Facts F28 and F29 are analogues of Fact F1, whereas Fact F30, similar to
Fact F22, is a consequence of Fact F20.
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Section 4.7. Further Topics in Connectivity 367

R18: In fact, the su�cient conditions given in [AyFr70] and [Fi92] (Facts F28 and
F29) were �+ + �� � bn/2c and �+ + �� � bn/2c + 1, respectively. Furthermore, it is
easily shown that Facts F29 and F30 do not imply each other.

R19: Higher connectivity in tournaments, which are oriented complete graphs, is
discussed in §3.3 of the Handbook.

Semigirth

To generalize Jolivet’s result (Fact F22) and give new results on superconnectivity, it is
relevant to consider a new parameter related to the path structure of the digraph. In
our context, this parameter plays a role similar (and is tightly related) to the girth of a
graph.

DEFINITIONS

D12: [FaFi89, FiFaEs90] For a given digraph G = (V,E) with diameter D, the semi-
girth, denoted `(G), is the greatest integer ` between 1 andD such that for any u, v 2 V ,

(a) if dist(u, v) < `, the shortest u-v directed walk is unique and there are no u-v
directed walks of length dist(u, v) + 1.

(b) if dist(u, v) = `, there is only one shortest u-v directed walk.

D13: A digraph G is a generalized p-cycle when it has its vertex set partitioned in
p parts cyclically ordered, and vertices in one part are adjacent only to vertices in the
next part. Thus, a generalized 2-cycle is the same as a bipartite digraph.

EXAMPLE

E3: Figure 4.7.3 shows a 2-regular digraph for which the semigirth ` is equal to its
diameter, namely, ` = D = 3.

Figure 4.7.3: Semigirth ` = D = 3.
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368 Chapter 4. Connectivity and Traversability

FACTS

F31: [FaFi89] Let G be a digraph with minimum degree � > 1, diameter D, semigirth
`, and connectivities  and �.

(a) If D  2`, then � = �.

(b) If D  2`� 1, then G is super-� and  = �.

(c) If D  2`� 2, then G is super-.

F32: [FaFi96a, PeBaGo01] Let G be a generalized p-cycle (p � 2).

(a) If D  2`+ p� 1, then � = �.

(b) If D  2`+ p� 2, then G is super-� and  = �.

(c) If D  2`+ p� 3, then G is super-.

F33: Any bipartite digraph with diameter three is maximally edge-connected.

REMARKS

R20: The main idea in the proof of the results in Fact F31 is that semigirth ` measures
how far away one can move from or to a given subset F of vertices. For instance, in
proving (a), it is shown that if |F | < �, in any connected component of G�F there are
vertices u, v such that dist(u, F ), dist(F, v) � `. Hence, any shortest path of length at
most 2`�1 cannot contain a vertex of F . As a conclusion, F cannot be a disconnecting
set.

R21: Since any digraph G has semigirth ` � 1, Fact F22 is included in Fact F31(a).

R22: Fact F33 is the analogue for bipartite digraphs of Jolivet’s result (Fact F22).
In fact, for a bipartite (di)graph, the condition � � bn/4c + 1 implies D  3, so that
Fact F33 can be also seen as a generalization of Fact F5.

Line Digraphs

DEFINITION

D14: The line digraph of a digraph G, denoted L(G), has V (L(G)) ⌘ E(G), and a
vertex (u, v) is adjacent to a vertex (w, z) if v = w (that is, the head of edge (u, v) is
the tail of edge (w, z) in digraph G). The k-iterated line digraph, Lk(G), is defined
recursively by Lk(G) = L(Lk�1(G)).

FACTS

F34: The order of L(G) equals the size of G, |V (L(G))| = |E(G)|, and their minimum
degrees coincide, �(L(G)) = �(G) = �. Moreover, (L(G)) = �(G).
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F35: If G is d-regular, d > 1, has order n, diameter D, and semigirth `, then Lk(G)
is also d-regular, has dkn vertices, diameter D(Lk(G)) = D(G) + k, and semigirth
`(Lk(G)) = `(G) + k. See the papers [Ai67, ReKuHoLe82, FiYeAl84, FaFi89].

F36: [FaFi89] Let G be a digraph with minimum degree � > 1, diameter D, and
semigirth `.

(a) If k � D � 2`, then Lk(G) is maximally edge-connected.

(b) If k � D � 2`+ 1, then Lk(G) is super-� and maximally connected.

(c) If k � D � 2`+ 2, then Lk(G) is super-.

REMARK

R23: As shown in Fact F36, the interest of considering k-iterated line digraphs stems
from the fact that if k is large enough, Fact F35 guarantees that the conditions of
Fact F31 hold.

Girth

For a given girth, high density/connectivity graphs occur when they have a reduced
diameter, and also when they have a small number of vertices.

DEFINITION

D15: The same definition for the semigirth (Definition D12) applies for an undirected
graph G (considering undirected walks). In this case, it turns out that the semigirth
` = `(G) = `(G⇤) equals b(g � 1)/2c where g = g(G) stands for the girth of G.

FACTS

F37: Let G be a graph with minimum degree � > 1, diameter D, girth g, and connec-
tivities  and �.

(a) [SoNaIm85, SoNaImPe87, FaFi89] If D 
(

g � 1, g odd,

g � 2, g even,
then � = �.

(b) [SoNaIm85, SoNaImPe87, FaFi89] If D 
(

g � 2, g odd,

g � 3, g even,
then G is super-� and

 = �.

(c) [SoNaIm85, SoNaImPe87, FaFi89] If D 
(

g � 3, g odd,

g � 4, g even,
then G is super-.

(d) [BaCeDiGVMa06] If D  g � 3, then G is super-.

(e) [BaTaMaLi09] If G is regular and D  g � 2, g odd, then G is super-.

(f) [BaMaMo10] If � � 3, �  3�/2� 1, and D  g � 2, g odd, then G is super-.
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F38: [BaCaFaFi96, CaFa99] Let G be a graph with minimum degree � > 1, girth g,
and connectivities  and �. Let L(G) be the line graph of G, with diameter D(L(G)).
Then,

(a) If D(L(G)) 
(

g, g odd,

g � 1, g even,
then � = �.

(b) If D(L(G)) 
(

g � 1, g odd,

g � 2, g even,
then G is super-� and  = �.

(c) If D(L(G)) 
(

g � 2, g odd,

g � 3, g even,
then G is super-.

F39: [FaFi96a] Any bipartite graph with diameter three is maximally edge-connected.

F40: [KnNi03] For every graph G there is a number i(G) such that Lk(G) is maximally
connected when k � i(G).

REMARKS

R24: Fact F37 is a simple consequence of Definition D15 and Fact F31.

R25: Fact F39 is the undirected version of Fact F33, which can be seen as Plesńık’s
analogue for the bipartite case.

R26: Fact F40 is based on a result of Hartke and Higgins [HaHi99] about the growth
of minimum degree in iterated line graphs. For regular graphs this result is not needed,
and in this case i(G)  5.

Girth Pair

DEFINITIONS

D16: The girth pair (g
1

, g
2

) of a graph G gives the length g
1

of a shortest odd cycle
and the length g

2

of a shortest even cycle.

EXAMPLE

E4: The Dodecahedron graph is a cubic graph with girth 5 and a shortest even cycle
has length 8. Hence its girth pair is (5, 8).

FACTS

F41: [BaCeDiGVMa07, BaGVMo11] Let G be a graph with minimum degree � � 3,
diameter D, girth pair (g, h), odd g and even h with g+3  h < 1, and connectivities
 and �.

(a) If D  h� 3, then � = �.

(b) If D  h� 4, then  = �.
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(c) If D  h� 4 and � � 4, then G is super-.

(d) If D  h� 5 and � = 3, then G is super-.

(e) If g � 5, D(L(G))  h � 3, and the maximum degree of G satisfies �  2� � 3,
then  = �.

REMARKS

R27: Fact F41 improves Fact F37 for graphs with girth pair (g, h), g odd and h � g+3
even.

Cages

DEFINITIONS

D17: A (k, g)-cage is a k-regular graph with girth g having the least possible number
of vertices.

D18: A 3-connected graph G = (V,E) is said to be quasi 4-connected if for every
vertex-cut F ⇢ V such that |F | = 3, F is the neighborhood of a vertex of degree 3 and
G� F has exactly two components.

EXAMPLE

E5: The Heawood graph, shown in Figure 4.7.4, is a (3, 6)-cage with order 14 and
diameter 3.

Figure 4.7.4: The Heawood graph.

FACTS

F42: [FuHuRo97] All (k, g)-cages are 2-connected.

F43: [JiMu98, DaRo99] Every (k, g)-cage with k � 3 is 3-connected.
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F44: [MaPeBa02] Every (3, g)-cage is superconnected, edge-superconnected, and quasi
4-connected.

F45: [WaXuWa03] Every (k, g)-cage with k � 3 and odd girth g is maximally edge-
connected.

F46: [MaBa04] Every (k, g)-cage with k � 3 and odd girth g is super-�.

F47: [LiMiBaMa06] Every (k, g)-cage with k � 3 and even girth g is super-�.

F48: [XuWaWa02] Every (4, g)-cage is 4-connected.

F49: [MaBaPeFa05] Every (k, g)-cage with k � 4 and g � 10 is 4-connected.

F50: [LiMiBa05] Every (k, g)-cage with k � 3 and odd girth g � 7 is r-connected with
r � p

k + 1.

F51: [LiBaMaMi08] Every (k, g)-cage with k � 3 and even girth g � 6 is (r + 1)-
connected, r being the largest integer such that r3 + 2r2  k.

F52: [MaBaPe07] (k, 6)- and (k, 8)-cages are maximally connected.

F53: [ArGoMoSe07] (k, 12)-cages are maximally connected.

F54: [LuWuLuLi10] Every (k, g)-cage with k � 3 and odd girth g � 9 is d
p

k +
p
k � 2e-

connected; and every (k, g)-cage with k � 3 and even girth g � 10 is r-connected, where
r is the largest integer such that r(r � 1)2/4 + 1 + 2r(r � 1)  k.

F55: [BaSa12] Every (k, g)-cage with k � 3 and odd girth g � 7 is r-connected with
r � dk/2e.

CONJECTURE

[FuHuRo97] Every (k, g)-cage is maximally connected.

Large Digraphs

The following results support the intuitive idea that dense (di)graphs have high con-
nectedness.

DEFINITION

D19: For a digraph with maximum degree � and diameter D, the Moore bound,
denoted n(�, D), is given by n(�, D) = 1 +�+�2 + · · ·+�D.

FACTS

F56: An n-vertex digraph with maximum degree � and diameter D has n  n(�, D).

F57: [Wa67] The order of a (di)graph with connectivity  > 1 and diameter D satisfies
n � (D � 1) + 2.

F58: [ImSoOk85]

(a) If � < �, then n  � (n(�, D � 2) +�+ 1).

(b) If  < �, then n   (n(�, D � 1) +�).
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F59:

(a) If n > (� � 1) (n(�, D � 2) +�+ 1), then � = �.

(b) If n > (� � 1) (n(�, D � 1) +�), then  = �.

F60: [Fi93]

(a) If � < �, then n  � (n(�, D � 2) + 1) +�.

(b) If  < �, then n   (n(�, D � 1)� 1) +�+ 1.

F61: [Xu92, Fi93] Let G be d-regular.

(a) If n > dD�1 + 2d� 2, then � = d.

(b) If n > dD + 1, then  = d.

F62: [So92, Fi94] Let G be a d-regular digraph, d � 2, with diameter D.

(a) If G satisfies either of the following conditions, then G is super-�.

(i) D = 2 and n > 3d.

(ii) D � 3 and n > 2dD�1 + dD�2 + · · ·+ d2 + 2d.

(b) If G satisfies either of the following conditions, then G is super-.

(i) D = 3 and n > 3d2 + 1.

(ii) D � 4 and n > 2dD�1 + dD�2 + · · ·+ d3 + 2d2 + 1.

EXAMPLE

E6: Figure 4.7.5 shows a regular digraph for which n = 6, � = � = d = 2, and D = 2.
Since n > dD�1 + 2d � 2 and n > dD + 1, Fact F61 guarantees that it is maximally
connected ( = � = d).

Figure 4.7.5:  = � = d = 2.
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REMARKS

R28: To our knowledge, Fact F57, due to Watkins, was the first result in which the
order n, the diameter D, and the connectivity  were related (in the undirected case).
It follows easily from counting the minimum number of vertices involved in  internally
disjoint u-v paths between a pair of vertices u, v at distance D, as Menger’s theorem
guarantees.

R29: Similar reasoning gives a lower bound for the number of edges m of a (di)graph
with edge-connectivity �, namely, m � �D. However, it is not di�cult to realize that
this is not a very strong result. (The situation seems to depend heavily on the values
of � and D: for � = 3 there are constructions giving a lower bound of the order of 7

2

D,
whereas for � = 4 we have a bound which is “asymptotically optimal,” that is, of the
order of 4D.)

R30: If we take into account the connectivity parameters  or �, the Moore bound
can be refined. Intuitively, a disconnecting set with few vertices or edges is a kind of
“bottleneck” that prevents the order from being large, as shown in Fact F58.

R31: Fact F59 is a direct consequence of Fact F58, and Fact F60 is an improvement
of Fact F58. Notice that if we set  = � in the upper bound on n of Fact F60(b), we
obtain the Moore bound n(�, D).

Large Graphs

Similar results for graphs were derived independently by Esfahanian [Es85], Fiol [Fi93,
Fi94], and Soneoka et al. [SoNaImPe87].

DEFINITION

D20: The Moore bound for an undirected graph with maximum degree � and
diameter D is given by n(�, D) = 1 +�+�(�� 1) + · · ·+�(�� 1)D�1.

FACTS

F63: [SoNaImPe87]

(a) If n > (� � 1) (n(�� 1, D � 2) + 1) +�� 1, then � = �.

(b) If n > (� � 1)(�� 1)D�1 + 2, then  = �.

F64: [So92, Fi94]

(a) Let D � 2 and � � 2. If n > � (n(�� 1, D � 2) + 1) + (� � 1)D�1, then G is
super-�.

(b) Let D � 3, � � 3 and g � 5. If n > (� � 1) (n(�, D � 1) +�), then  = �.
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4.7.2 Bounded Connectivity
The techniques used for proving the results of the preceding subsection can often be

used to derive bounds on the connectivity or edge-connectivity of a (di)graph. In this
subsection, we provide some examples.

⇡-Semigirth

The following definition generalizes semigirth (Definition D12).

DEFINITION

D21: [FaFi89] Let G = (V,E) be a digraph with minimum degree � and diameter D,
and let ⇡ be an integer, 0  ⇡  � � 2. The ⇡-semigirth of G, denoted `⇡(G), is the
greatest integer `⇡ between 1 and D such that, for any u, v 2 V ,

(a) if dist(u, v) < `⇡, the shortest u-v path is unique and there are at most ⇡ distinct
u-v walks of length dist(u, v) + 1.

(b) if dist(u, v) = `⇡, there is only one shortest u-v walk.

FACT

F65: [FaFi89, MaBaPe04] Let G be a connected digraph with minimum degree � > 1,
diameter D, ⇡-semigirth `⇡ for 0  ⇡  � � 2, and with k-iterated line digraph Lk(G).
Then,

(a) If D  2`⇡, then � � � � ⇡.

(b) If D  2`⇡ � 1, then  � � � ⇡.

(c) If D  2`⇡ � 1 and ⇡  b(� � 1)/2c, then � = �.

(d) If D  2`⇡ � 2, `
0

� 2 and ⇡  b(� � 1)/2c, then  = �.

(e) If k � D � 2`⇡, then �(Lk(G)) � � � ⇡.

(f) If k � D � 2`⇡ + 1, then (Lk(G)) � � � ⇡.

REMARKS

R32: Note that `
0

corresponds to the ordinary semigirth `. Moreover, for ⇡ � 1, `⇡ is
well defined even for a digraph with self-loops.

R33: The definition of `⇡ is restricted to ⇡  � � 2 since, otherwise, the above results
become irrelevant.
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Imbeddings

Here we cite one of the earliest results relating the connectivity of a graph to a topological
property of that graph. Other more recent results of this kind can be found in [PluZh98,
PluZh02].

DEFINITION

D22: A graph G is said to be imbeddable in a given surface S if G can be drawn on
S without edge crossings.

FACT

F66: [Co73] Let G be any graph embeddable in a oriented surface of genus g > 0
(where the genus is, informally, the number of handles on its surface [see Chapter 7 of
this Handbook]). Then,   ⌅

(5 +
p
1 + 48g)/2

⇧

.

Adjacency Spectrum

Given a (di)graph G with some associated matrix A, a natural problem is to study how
much can be said about the structure of G from the spectrum of A. This is a major
topic in algebraic graph theory, and has been the object of research (see §6.5 of the
Handbook or the classic textbooks D. Cvetković, M. Dragoš, and H. Sach [CvDoSa95],
Biggs [Bi94]).

DEFINITIONS

D23: Given a graph G on n vertices, its adjacency matrix A = (auv) is the n ⇥ n
matrix indexed by the vertices of G with entries auv = 1 if u and v are adjacent and
auv = 0 otherwise.

D24: The toughness t of a graph G is defined as t = minS{|S|/c(G � S)}, where S
runs over all vertex-cuts of G and c(G�S) denotes the number of components of G�S.

FACTS

F67: [Al95, Br95] Let G be a connected, non-complete d-regular graph and let � be
the maximum of the absolute values of the eigenvalues of G distinct from d. Then,
t > d/�� 2.

notation: Given a graph G, let D
2

denote the maximum distance between vertex
subsets of G with two vertices. (This parameter is a particular case of the so-called
conditional diameter, introduced in [BaCaFaFi96].)

F68: [FiGaYe97] Let G be a d-regular graph with D
2

> 1 and distinct eigenvalues (of
its adjacency matrix A) �

0

(= d) > �
1

> · · · > �r. Let P (x) := 2(x� �r)/(�1

� �r)� 1.

Then, (G) � min
n

d,
l

2(P (d)2�1)(n�2)

2(P (d)2�1)+n

mo

.
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REMARKS

R34: Besides Fact F67, Brouwer [Br96] gave some other interesting examples of results
about the connectivity of a graph G in terms of its spectrum.

R35: For other results concerning the toughness of a graph, mainly used in the study
of vulnerability of network topologies [BoHaKa81], see, for instance, [ChLi02].

R36: Notice that, from Fact F16(b), if D
2

= 1 then G is maximally connected.
Otherwise, Fact F68 applies.

Laplacian Spectrum

DEFINITION

D25: Given a graph G, its Laplacian matrix L is defined as L = D�A, where D is
the diagonal matrix of the vertex degrees and A is the adjacency matrix of G (see, for
instance [Bi94]). The Laplacian eigenvalues of G are the eigenvalues of its Laplacian
matrix.

terminology: The second smallest Laplacian eigenvalue, ✓
1

, usually denoted by a =
a(G), is called the algebraic connectivity of G because it has some properties which
are similar to those satisfied by the connectivity .

FACTS

F69: Since the Laplacian matrix L is positive semidefinite, its eigenvalues are all
nonnegative, with the first one equal to zero. If G is d-regular with (distinct) eigenvalues
�
0

(= d) > �
1

> · · · � �r, then its Laplacian eigenvalues are ✓
0

, ✓
1

, . . . , ✓r, where
✓i = d� �i, i = 1, 2, . . . , r.

F70: [Fi73] Let G be a graph with second smallest Laplacian eigenvalue a.

(a)  � a � 0, and a = 0 if and only if G is not connected.

(b) For any spanning subgraph H of G we have a(H)  a(G).

(c) For any vertex subset U of G we have a(G� U) � a(G)� |U |.

F71: Let G be a d-regular graph with n vertices, D
2

> 1, and Laplacian eigenvalues

✓
0

(= 0) < ✓
1

< ✓
2

< · · · < ✓r. If d < n(✓
r

�✓1)
2
+8✓1✓r(n�1)

n(✓
r

�✓1)2+8✓1✓r
, then  = d.

REMARK

R37: Fact F71 is just a consequence of Fact F68 in terms of the Laplacian eigenvalues.
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4.7.3 Symmetry and Regularity

Boundaries, Fragments, and Atoms

The concepts of fragment and atom are very useful in the study of connectivity, both
in the undirected and the directed case, and, in particular, for (di)graphs with strong
symmetries. For graphs, the concept of an atom was introduced independently by Mader
[Ma70] and Watkins [Wa70]. The notion of an atom for digraphs was introduced by
Chaty [Ch76] and first used extensively by Hamidoune [Ha77, Ha80, Ha81].

Because of the close relationship between a graph G and its corresponding symmetric
digraph G⇤, we only give the definitions for digraphs. (For undirected graphs, the
corresponding definitions are unsigned.)

DEFINITIONS

D26: The positive boundary of a vertex subset F in a digraph G, denoted @+F , is
the set of vertices that are adjacent from F , and the negative boundary, @�F , is the
set of vertices adjacent to F .

D27: The positive edge-boundary and the negative edge-boundary, denoted !+F
and !�F , respectively, are given by

!+F = {(u, v) 2 E : u 2 F and v 2 V � F};
!�F = {(u, v) 2 E : u 2 V � F and v 2 F}.

D28: Let G be a strongly connected digraph with connectivity . A vertex subset F is
a positive fragment of G if |@+F | =  and V � (F [ @+F ) 6= ;, and F is a negative
fragment if |@�F | =  and V � (@�F [ F ) 6= ;.
D29: Let G be a digraph with edge-connectivity �. A vertex subset F is a positive
↵-fragment of G if |!+F | = �, and F is a negative ↵-fragment if |!�F | = �.

D30: A vertex u of a positive [negative] ↵-fragment F is called interior if none of the
edges adjacent from [to] u belongs to !+F [!�F ].

D31: An atom is a (positive or negative) fragment of minimum cardinality.

EXAMPLE

E7: For the digraph of Figure 4.7.6,  = 2 and F is a positive (respectively, negative)
fragment with positive (respectively, negative) boundary {u, v} (respectively, {z, t}).
Analogously, !+F = {(x, v), (y, u)} and !�F = {(z, x), (t, y)}. In this digraph, each
single vertex is an atom.

FACT

F72: If F [ @+F 6= V [F [ @�F 6= V ], then @+F [@�F ] is a vertex-cut of G. Similarly,
if F is a proper (nonempty) subset of V , then !+F [!�F ] is an edge-cut. Using these
concepts, we have the following alternative definitions of the connectivity parameters:

 = min{|@+F | : F ⇢ V, F [ @+F 6= V or |F | = 1}
� = min{|!+F | : F is a nonempty, proper subset of V }
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u

v

F
x

y

z

t

Figure 4.7.6: F is a fragment.

Fragments and Atoms in Undirected Graphs

FACTS

F73: [Wa70, Ma71a] In a connected graph, any two distinct atoms are disjoint.

F74: [Ma71a] Let G be a graph with order n and connectivity . Let F
1

and F
2

be
distinct minimal fragments of G, with at most n� 3/2 vertices. Then F

1

\ F
2

= ;.

F75: [Ma71a] Let G be a graph with connectivity . If T is a disconnecting set with
 vertices and A is an atom, then either A ⇢ T or A \ T = ;.

REMARKS

R38: To quote a personal communication from Watkins [Wa02]: “It is an amazing
coincidence that Prof. Mader and I not only conceived of the notion of ‘atom’ indepen-
dently and simultaneously, but we also accorded this notion almost identical names.” In
fact, Watkins [Wa70] used the term “atomic part,” while Mader [Ma70] used the term
“kleinstes Glie” (that is, “smallest member”). Then, in a subsequent paper, Mader
[Ma71a] mentioned the main result in [Wa70] on atomic parts, and deduced it from his
results. Moreover, inspired by Watkins’ terminology, he first used the simpler name
“atom.”

R39: Fact F73 was proved by Watkins for transitive graphs, whereas the general case
is due to Mader.

R40: As already mentioned, the seminal papers on atoms are those of Mader [Ma70]
and Watkins [Wa70]. Notice that Fact F75 is a generalization of Fact F73, and it is
considered as the more important property of an atom.

R41: Results on atoms and the connectivity of infinite graphs can be found in [JuWa77]
and [Ha89].
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Fragments and Atoms in Digraphs

The results above can be seen as consequences of the corresponding directed versions,
which are due to Hamidoune.

FACTS

F76: [Ha77] Let G be a connected digraph with a positive (negative) atom A and a
positive (negative) fragment F . Then, either A ⇢ F or A \ F = ;. In particular, two
distinct positive (negative) atoms are disjoint.

F77: [Ha80] If G is a connected digraph with � < �+ (� < ��), then every positive
(negative) ↵-fragment contains an interior vertex.

REMARKS

R42: Contrary to the case of graphs, where the presence of an atom is always assured,
a digraph does not necessarily have an atom with a prescribed sign.

R43: Fact F77 implies Jolivet’s theorem (Fact F22).

Graphs with Symmetry

Graphs with high symmetry often have “good” properties, and their study has special
relevance to other areas of mathematics. In particular, the results here show that, for
connected graphs, high symmetry goes hand in hand with high connectivity. Graph
automorphisms and symmetry are discussed in §6.1 and §6.2.
DEFINITION

D32: A (di)graph G is vertex-transitive (or vertex-symmetric) if for any vertices
u, v there is an automorphism of G which maps u into v. Similarly, G is called edge-
transitive (or edge-symmetric) if for any (possibly oriented) edges uv,wz there is
an automorphism of G that maps uv into wz.

FACTS

F78: [Ma70, Ma71b] Let G be a vertex-symmetric connected graph with degree d � 3.
Then, � = d,  � 2bd/3c+ 2 if d > 3, and  = 3 otherwise. Furthermore, if G does not
contain K

4

, then  = d.

F79: [Ma70] Let G be an edge-symmetric connected graph with degree d. Then
 = � = d.

F80: [Ma70, Wa70] Let G be a vertex-transitive graph with an atom A. Then the
subgraph G(A) induced on A is also vertex-transitive. Moreover, the set of atoms of G
constitutes a partition of V (G).

F81: [Ha77] Let G be a vertex-transitive digraph with a positive (negative) atom A.
Then, the induced subdigraph G(A) is also vertex-transitive. Furthermore, the set of
positive (negative) atoms of G constitutes a partition of V (G).
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F82: [Ha81] Let G be a vertex-symmetric strongly connected digraph with (constant)
outdegree d+. Then � = d+ and  � 1

2

d+. Moreover, if G is an oriented graph, then
 � 2

3

d+.

REMARKS

R44: The inequality in Fact F78, which is best possible, is a consequence of Fact F73
and, for d 6⌘ 2 mod 3, it is an improvement of a result of Watkins [Wa70], who showed
that  > (2/3)d.

R45: From Facts F80 and F81, the order of a (positive or negative) atom of G divides
the order of G. Consequently, every connected vertex-transitive (di)graph with a prime
number of vertices is maximally connected ( = � = �). In fact, it is known that such
(di)graphs must be Cayley (di)graphs of cyclic groups.

R46: By Fact F76, Hamidoune [Ha77] proved Kameda’s result stating that every
minimal k-connected digraph has one vertex of out-degree or in-degree k [Ka74], and
Hamidoune also proved that every edge-transitive digraph is maximally connected.

Cayley Graphs

The Cayley graphs are among the most interesting vertex-symmetric (di)graphs, mainly
because of their relationship with group theory (see §6.1 and §6.2). In particular, the
study of the connectivity of Cayley graphs has striking connections with some key results
in additive number theory, such as the well-known Cauchy–Davenport theorem: If p is
a prime number and A,B are two nonempty subsets of the cyclic group Zp, then either
A+B = Zp or |A+B| � |A|+ |B|� 1.

DEFINITIONS

D33: Let � be a finite group with identity element e and generating set S ⇢ �� {e}.
The Cayley digraph G = (�, S) has vertices labeled with the elements of �, and edges
of the form (u, ug) where g 2 S. In particular, when S�1 = S (where S�1 = {x�1 : x 2
S}) we obtain a symmetric Cayley digraph or, simply, a Cayley graph.

D34: If � is a cyclic group, then the Cayley graph is called a circulant graph.

D35: A generating set S of a group � is called minimal when any proper subset
S0 ⇢ S does not generate �.

D36: The symmetric group on n elements, denoted ⌃n, is the group of all permu-
tations of the set {1, 2, . . . , n}.
D37: LetH be a subgroup of a group G, and let x 2 G. Then the set xH = {xh|h 2 H}
is a left coset of G with respect to H.

FACTS

F83: [Im79] Let S be a generating set of the symmetric group � = ⌃n with n � 5,
such that xSx�1 = S for every x 2 �. Then, the Cayley digraph (�, S) is maximally
connected (that is,  = |S|).
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F84: [Ha84] Let � be a finite group with identity e and generating set S. Let A be a
positive (respectively, negative) atom of (�, S) containing e. Then A is the subgroup of
� generated by S \ A, and the positive (respectively, negative) atoms of (�, S) are the
left cosets of � with respect to A.

F85: [Ha84] Let � be a finite group with a minimal generating set S. Let S0 ⇢ S�1.
Then, the Cayley digraph (�, S [ S0) is maximally connected.

F86: [HaSe96] Let � be an Abelian group of order n and let S be a generating subset
of � such that |S [ {0}|  n� 1. Let D be the diameter of G = (�, S). Then there is a
vertex-cut of size less than (4n ln(n/2))/D whose deletion separates G into a negative
fragment B and a positive fragment B such that |B| = |B|. Moreover, G can be
separated into two equal parts of size |B| by deleting less than (8e/|S|)n1�1/|S| ln(n/2)
vertices.

REMARKS

R47: Fact F84, due to Hamidoune, provides a very short proof of Fact F83.

R48: For the case of Cayley graphs, Fact F85 was previously proved by Godsil
[Go81]. Subsequently, Akers and Krishnamurthy [AkKr87], Hamidoune, Lladó, and
Serra [HaLlSe92], and Alspach [Als92] improved these results by considering Cayley
(di)graphs with a hierarchical generating set (that is, when the group generated by
the first k generators is a proper subgroup of the group generated by the first k + 1 for
each k).

Circulant Graphs

Because of their circular symmetry, circulant graphs have been proposed as good models
for local area network topologies, where they are called loop networks. In this context,
other good topologies are provided by Cayley graphs of Abelian groups, also called loop
networks (see [BeCoHs95], [BoTi84]).

FACTS

F87: [Ha84] Let � be the cyclic group Zn. Let S be the strictly increasing sequence
of s integers (1 =)b

1

< b
2

< · · · < bs(< n) such that bi+1

� bi � min{2, bi � bi�1

} for
i = 2, 3, . . . , s� 1. Then the circulant digraph (�, S) is maximally connected ( = s).

F88: [Ha84] Let � be the cyclic group Zn. Let S be the strictly increasing sequence
of s integers (1 =)b

1

< b
2

< · · · < bs(< n/2) such that bi+1

� bi � min{2, bi � bi�1

}
for i = 2, 3, . . . , s� 1, and let S0 ⇢ �S, where �S denotes the set of (additive) inverses
of the elements in S. Then the circulant digraph (�, S [ S0) is maximally connected
( = |S [ S0|).

F89: The Cauchy–Davenport theorem is equivalent to stating that, for any generating
set S ⇢ Zp, p prime, the Cayley digraph (Zp, S) is maximally connected (that is,
 = |S|).
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REMARKS

R49: The case S0 = �S in Fact F88 (that is, for circulant graphs) was proved in
[BoFe70] using the “convexity conditions” bi+1

� bi � bi � bi�1

(see also [BoTi84]).

R50: Fact F89, noted by Hamidoune, is a bridge between additive number theory
and graph theory. (For a comprehensive survey on the subject, we refer the reader to
[Ha96].)

Distance-Regular Graphs

The concept of distance-regularity was introduced by Biggs [Bi71] in the early 1970s, by
changing a symmetry-type requirement, that of distance-transitivity, to a regularity-
type condition concerning the cardinality of some vertex subsets. Distance-regular
graphs have important connections with other branches of mathematics, such as ge-
ometry, coding theory, and group theory, as well as with other areas of graph theory. In
our context, their high regularity seems also to induce a high degree of connectedness.

DEFINITIONS

D38: Let G be a regular graph with diameter D and let k be an integer between 1
and D. Graph G is said to be distance-regular if, for any two vertices u and v with
dist(u, v) = k, the numbers ck, ak, and bk of vertices that are adjacent to v and whose
distance from u is k � 1, k, and k + 1, respectively, depend only on k.

D39: An n-vertex k-regular graph G is called (n, k; a, c)-strongly-regular if any two
adjacent vertices have a common neighbors and any two non-adjacent vertices have c
common neighbors.

FACTS

F90: Let G be a connected graph. Then G is strongly-regular if and only if G is
distance-regular of diameter two.

F91: Every strongly regular graph is maximally edge-connected.

F92: [BrMe85] Every strongly regular graph is maximally connected and super-.

F93: [BrKo09] Every distance-regular graph is maximally connected. If the degree is
at least 3, it is also super-.

REMARKS

R51: Fact F91 is a consequence of Facts F3 and F90.

R52: Fact F93 was a long standing conjecture of Brouwer [Br96]. The result was
previously proved for some families of distance-regular graphs, such as the so-called odd
graphs Ok (having the k-subsets of a (2k� 1)-set as its vertices and adjacencies defined
by void intersection); see [Gh92].

R53: Fact F93 implies a previous conjecture of Godsil [Go81], stated in the context
of association schemes, that every distance-regular graph is maximally edge-connected.
In fact, this last result was proved by Brouwer and Haemers in [BrHa05].
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4.7.4 Generalizations of Connectivity Parameters
The standard connectivity parameters have been generalized in di↵erent ways, giving

rise to numerous articles; see, for instance, [BaBeLiPi87], [BeOePi02], [Ha83], [Wo73].
Here we will consider several examples, some of which have special relevance to the
study of network vulnerability.

Conditional Connectivity

The next two definitions generalize the concept of superconnectivity.

DEFINITIONS

D40: Given a graph G = (V,E) and a nonnegative integer s, a vertex subset V 0 ⇢ V
is said to be n-trivial if it contains the boundary @(H) of some subgraph H ⇢ G with
s0 vertices, 1  s0  s. Similarly, an edge subset E0 ⇢ E is said to be s-trivial if it
contains the edge-boundary !(H) of some subgraph H ⇢ G with s0 vertices, 1  s0  s.

D41: The conditional connectivity s of a graph G is the minimum cardinality of
a disconnecting set that is not s-trivial. The conditional edge-connectivity �s of G
is the minimum cardinality of a disconnecting edge set that is not s-trivial.

FACT

F94: [FaFi89, FiFaEs90, FaFi94] Let G be a graph with minimum degree � > 1,
diameter D and girth g. Let ` =

⌅ g�1

2

⇧

.

(a) If D  2`, then �
0

= �.

(b) If D  2`� 1, then 
0

= � and �
1

� 2� � 2.

(c) If D  2`� 2, then 
1

� 2� � 2 and �
2

� 3� � 4.

(d) If D  2`� 3, then 
2

� 3� � 4.

CONJECTURE

C1: [FaFi94]

(a) If D  2`� s, then �s � (s+ 1)� � 2s.

(b) If D  2`� s� 1, then s � (s+ 1)� � 2s.

REMARKS

R54: Harary [Ha83] introduced the general concept of conditional connectivity. In our
context, the graphs are assumed to be those for which s and �s are well-defined.

R55: Note that the conditional connectivities 
0

and �
0

correspond to the standard
connectivities  and � (thus, Fact F94 generalizes Fact F37). If 

1

> �, then G is
super-, and if �

1

> �, then G is super-�.

R56: The conjecture above was proved to be true for even s (provided that � >
2 and ` > (s + 1)/2) [FaFi96b]. Moreover, if s is large enough in comparison with
the minimum degree �, further improvements of the su�cient conditions were given in
[BaCaFaFi97b, Ba99].
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Section 4.7. Further Topics in Connectivity 385

Restricted Connectivity

D42: The restricted edge-connectivity �0 = �0(G), introduced by Esfahanian and
Hakimi [Es88], is the minimum cardinality over all restricted edge-cuts, i.e., those
edge-cuts S such that there are no isolated vertices in G� S.

D43: The minimum edge-degree of G is ⇠ = ⇠(G) = min{deg(u)+deg(v)� 2 : uv 2
E}.
D44: A graph is said to be �0-optimal if �0 = ⇠.

D45: Given a graph G = (V,E), an edge set S ⇢ E is called a k-restricted-edge-cut
if G� S is disconnected and every component of G� S has at least k vertices.

D46: The k-restricted-edge-connectivity ofG, denoted by �(k) = �(k)(G), is defined
as the cardinality of a minimum k-restricted-edge-cut.

D47: The edge-boundary !(F ) is called a �(k)-cut if |!(F )| = �(k), and F ⇢ V is called
a k-fragment of G. A minimum k-fragment is called a k-atom, and its cardinality is
denoted ak(G) = ak.

D48: The minimum k-edge-degree of G is ⇠k = ⇠k(G) = min{|!(U)| : ; 6= U ⇢
V (G), |U | = k and G[U ] is connected}.
D49: A graph with k-restricted edge cuts is said to be �(k)-optimal if �(k) = ⇠k.

D50: A graph G is super k-restricted edge connected, or super-�(k), if G is �(k)-
optimal and the deletion of every �(k)-cut isolates a component with k vertices; that is,
if every k-fragment X has cardinality |X| 2 {k, n� k}.

REMARKS

R57: Esfahanian and Hakimi [Es88] showed that each connected graph of order n � 4
except a star has restricted edge-cuts and satisfies �0  ⇠.

R58: The restricted edge-connectivity �0 corresponds to the 2-restricted-edge-connectivity
�(2) and also to the conditional connectivity �

1

defined in Definition D41.

R59: Furthermore, the k-restricted-edge-connectivity �(k) corresponds to the condi-
tional connectivity �k�1

given in Definition D41, for any k � 1.

R60: If G is super-�(k), then ak = k.

FACTS

F95: [BaGVMa06] Every graph with girth g and � � 2 is super-� and has �0 = ⇠ if its
diameter D  g � 2.

F96: [BaGVMa06] Every graph G with girth g odd and � � 2 is super-� and has
�0 = ⇠ if D = g � 1 and either of the following assertions holds.

(i) All pairs u, v of vertices at distance d(u, v) = g� 1 are such that neither vertex u
nor v lies on a cycle of length g.
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(ii) |N
(g�1)/2(u) \N

(g�1)/2(v)| � 3 for all pairs u, v of vertices at distance d(u, v) =
g � 1 where Nh(u) = {w 2 V (G) : d(u,w) = h}.

F97: [BaCeDiGVMa05] Every graph with girth g even and � � 2 is super-� and has
�0 = ⇠ if D = g � 1 and only � � 1 vertices are mutually at distance g � 1 apart.

F98: [BaLiMi08] Every graph G with girth g, minimum degree � � 3, and diameter D
is super-�0 if D  g � 3 or if the diameter of the line graph satisfies D(L(G))  g � 3.

F99: [ZhYu05] Let G be a connected graph with order at least 2(�+1) not isomorphic
to any G⇤

s,�, where G⇤
s,� is the graph obtained from s copies of K� by adding a new

vertex u and joining u to every other vertex. Then for any k  �+1, G has k-restricted
edge cuts and �(k)  ⇠k.

F100: [ZhYu07] Let G a connected graph on n � 2k vertices. If deg(u) + deg(v) �
n+ 2k � 3, for every pair of nonadjacent vertices u and v, then G is �(k)-optimal.

F101: [BoUeVo02, XuXu02] For k = 2, 3, a graph with �(k)-cuts has �(k) = ⇠k if and
only if ak = k.

F102: [BaGMMa09] Let G be a graph with �(k)-cuts and such that �(k)  ⇠k. Then
G is �(k)-optimal if ak = k. Moreover, ak = k follows if G is �(k)-optimal and either of
the following conditions holds.

(i) � � 2k � 1.

(ii) � � k + 1 and g � k + 1.

F103: [BaGMMa09] Let G be a graph with �(k)-cuts such that �(k)  ⇠k and �(k+1)

exists. Then G is super-�(k) if and only if �(k+1) > ⇠k.

F104: [ZhLi10] Let G be a graph with �(k)-cuts, k � 3, girth g � 5, minimum degree
� � k, and diameter D. Then G is �(k)-optimal if either of the following conditions
holds.

(i) D  g � 4 when g is even, or D  g � 3 when g is odd;

(ii) D  g � 3 and � � 2k � 3.

F105: [BaGV10] Let G be a graph with �(k)-cuts, girth g, minimum degree � �
max{3, k}, and diameter D. Then G is super-�(k) if either of the following conditions
holds.

(i) D  g � 4 when g is even, or D  g � 4 when g is odd and � � k + 1;

(ii) the diameter of the line graph is D(L(G))  g � 4.
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Section 4.7. Further Topics in Connectivity 387

Distance Connectivity

Here we consider a generalization of the concepts of connectivity and edge-connectivity
of a (di)graph, introduced in [FiFa94] and [BaCaFi96], which takes into account the
distance between vertices.

DEFINITIONS

D51: Let G = (V,E) be a digraph. Given u, v 2 V such that (u, v) 62 E, recall (from
§4.1) that a set S ⇢ V � {u, v} is called a (u|v)-set if there is no u-v path in G � S,
and (u|v) is the minimum cardinality of a (u|v)-set. Similarly, a given edge-set T ⇢ E
is called a (u|v)-edge-set for some u, v 2 V if there is no u-v path in G�T , and �(u|v)
is the minimum cardinality of a (u|v)-edge-set.
D52: LetG = (V,E) be a digraph with diameterD. Given t, 1  t  D, the t-distance
connectivity of G, denoted by (t;G) = (t), is defined as (t) = min{(u|v) : u, v 2
V, dist(u, v) � t} if t � 2, and (1) = , where  is the standard connectivity of G.
Analogously, the t-distance edge-connectivity is �(t;G) = �(t) = min{�(u|v) : u, v 2
V, dist(u, v) � t} for t � 1.

FACTS

F106:

(a)  = (1) = (2)  (3)  · · ·  (D).

(b) � = �(1)  �(2)  · · ·  �(D).

F107: Let G be a digraph with minimum degree � > 1 and semigirth ` (see Defini-
tion D12).

(a) If � < � then D � 2`+ 1 and � = �(2`+ 1).

(b) If  < � then D � 2` and  = (2`).

F108:

(a) � = � if and only if D  2` or �(2`+ 1) � �.

(b)  = � if and only if D  2`� 1 or (2`) � �.

F109: Every digraph with distance connectivity �(3) � � has maximum edge-connectivity.

F110: Let G be an undirected graph with associated symmetric digraph G⇤. Since a
minimum t-distance disconnecting set of G⇤ cannot contain digons, (t;G⇤) = (t;G)
and �(t;G⇤) = �(t;G).

F111: Let G be an undirected graph with girth g and � > 1.

(a) If � < � then

(

D � g and � = �(g), g odd,

D � g � 1 and � = �(g � 1), g even.

(b) If  < � then

(

D � g � 1 and  = (g � 1), g odd,

D � g � 2 and  = (g � 2), g even.
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F112:

(a) � = � if and only if

(

D � g � 1 or �(g) � �, g odd,

D � g � 2 or �(g � 1) � �, g even.

(b)  = � if and only if

(

D � g � 2 or (g � 1) � �, g odd,

D � g � 3 or (g � 2) � �, g even.

F113: Any graph with distance connectivity �(3) � � has maximum edge-connectivity.

REMARKS

R61: In Fact F108, since (t) and �(t) are defined only for t  D, the two su�cient
conditions on the diameter and the distance connectivity are complementary to one
another.

R62: Since the semigirth of any digraph is at least one, Fact F107(a) implies Fact F109,
which complements Jolivet’s result (Fact F22).

R63: Fact F111 follows from Fact F107 by considering Fact F110 and `(G⇤) = b(g �
1)/2c.

High Distance Connectivity

DEFINITIONS

D53: Given a vertex u of a digraph G, the out- and in-eccentricity of u are ecc+(u) =
maxv2V {dist(u, v)} and ecc�(u) = maxv2V {dist(v, u)}, respectively.
D54: For any integer t, 1  t  D, the minimum t-degree of a digraph G is
�(t) = min{�+(t), ��(t)}, where �+(t) = minu2V {deg+(u) : ecc+(u) � t} and ��(t) =
minu2V {deg�(u) : ecc�(u) � t}.
D55: A connected digraph G with diameter D is said to be s-geodetic, for some
1  s  D, if any two vertices of G are joined by at most one path of length less than
or equal to s. If s = D, the digraph is called strongly geodetic (see [BoKoZn68],
[PlZn74]).

FACTS

F114: � = �(1) = · · · = �(r)  �(r + 1)  · · ·  �(D).

F115: For any t, 1  t  D, (t)  �(t)  �(t).

terminology: A digraph G is called maximally t-distance connected when (t) =
�(t) = �(t), and maximally t-distance edge connected when �(t) = �(t).

F116: If a digraph G is maximally connected, then G is maximally t-distance connected
for any 1  t  r.
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F117: [BaCaFaFi97a] Let G be an s-geodetic digraph. Then,

(a) �(t) = min{�(t),�(2`+ 1)}, for any t  2s+ 1.

(b) (t) = min{�(t),(2`)}, for any t  2s.

F118: [BaCaFaFi97a] Let G be an s-geodetic digraph.

(a) G is maximally t-distance connected for any t  2s if D  2`� 1.

(b) G is maximally t-distance edge connected for any t  2s+ 1 if D  2`.

F119: Let G be a graph with girth g and diameter D. Then, for any 1  t  D,

(a) G is maximally t-distance edge connected if

(

D  g � 1, g odd,

D  g � 2, g even.

(b) G is maximally t-distance connected if

(

D  g � 2, g odd,

D  g � 3, g even.

Maximal Connectivity

Instead of looking for minimum disconnecting sets, we can consider those (minimal)
disconnecting sets with maximum cardinalities. This leads to considering the following
connectivity parameters.

notation: Denote by 
max

and �
max

the maximum cardinality of a minimal discon-
necting (vertex) set and a minimal disconnecting edge set, respectively.

FACTS

F120: 
max

�  and �
max

� �.

F121: [PeLaHe86] For any non-trivial graph G with order n and maximum degree
� 6= n� 1 we have 

max

 �
max

. Furthermore, if G is 2-connected, then �
max

� �.

F122: [PeLaHe86] Let G be an n-vertex graph with minimum degree �.

(a) If � � bn/2c, then �
max

� �.

(b) If � � b(n+ i)/2c for some i with 1  i  n/2, then �
max

� ib(n� i+ 2)/2c.

(c) If � � b(n+ i)/2c for some i with n/2 < i < n�2, then �
max

� dn/2e · b(i+1)/2c.
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Hamiltonian Connectivity

DEFINITIONS

D56: A graph G is hamiltonian connected if between any pair of vertices u, v there
is a hamiltonian u-v path in G.

D57: A graph G k-leaf-connected if |V (G)| > k and for each subset S of V (G) with
k = |S| there exists a spanning tree T with precisely S as the set of endvertices (vertices
of degree 1).

FACTS

F123: [GuWa86] Let u and v be non-adjacent vertices of G with d(u) + d(v) �
|V (G)|+ k � 1. If G+ uv is k-leaf-connected, then G is k-leaf-connected.

F124: [GuWa86] For all natural numbers n, k, 2  k < n�2, there are k-leaf-connected
graphs with d(k + 1)n/2e edges (the minimum number of edges that a k-leaf-connected
graph on n vertices can have).

REMARK

R64: The generalization of the concept of hamiltonian connectivity (Definition D57)
is due to Murty. Notice that G is hamiltonian-connected if and only if G is 2-leaf-
connected.
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[FaFi94] J. Fàbrega and M.A. Fiol, Extraconnectivity of graphs with large girth. Dis-
crete Math. 127 (1994), 163–170.
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Sér. A 284 (1977), 1253–1256.

[Ha80] Y.O. Hamidoune, A property of ↵-fragments of a digraph. Discrete Math. 31
(1980), 105–106.
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