681 research outputs found

    A Newton-bracketing method for a simple conic optimization problem

    Full text link
    For the Lagrangian-DNN relaxation of quadratic optimization problems (QOPs), we propose a Newton-bracketing method to improve the performance of the bisection-projection method implemented in BBCPOP [to appear in ACM Tran. Softw., 2019]. The relaxation problem is converted into the problem of finding the largest zero yy^* of a continuously differentiable (except at yy^*) convex function g:RRg : \mathbb{R} \rightarrow \mathbb{R} such that g(y)=0g(y) = 0 if yyy \leq y^* and g(y)>0g(y) > 0 otherwise. In theory, the method generates lower and upper bounds of yy^* both converging to yy^*. Their convergence is quadratic if the right derivative of gg at yy^* is positive. Accurate computation of g(y)g'(y) is necessary for the robustness of the method, but it is difficult to achieve in practice. As an alternative, we present a secant-bracketing method. We demonstrate that the method improves the quality of the lower bounds obtained by BBCPOP and SDPNAL+ for binary QOP instances from BIQMAC. Moreover, new lower bounds for the unknown optimal values of large scale QAP instances from QAPLIB are reported.Comment: 19 pages, 2 figure

    Projection methods in conic optimization

    Get PDF
    There exist efficient algorithms to project a point onto the intersection of a convex cone and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called regularization algorithms for linear conic optimization, and applications in polynomial optimization. This is a presentation of the material of several recent research articles; we aim here at clarifying the ideas, presenting them in a general framework, and pointing out important techniques

    A second order cone formulation of continuous CTA model

    Get PDF
    The final publication is available at link.springer.comIn this paper we consider a minimum distance Controlled Tabular Adjustment (CTA) model for statistical disclosure limitation (control) of tabular data. The goal of the CTA model is to find the closest safe table to some original tabular data set that contains sensitive information. The measure of closeness is usually measured using l1 or l2 norm; with each measure having its advantages and disadvantages. Recently, in [4] a regularization of the l1 -CTA using Pseudo-Huber func- tion was introduced in an attempt to combine positive characteristics of both l1 -CTA and l2 -CTA. All three models can be solved using appro- priate versions of Interior-Point Methods (IPM). It is known that IPM in general works better on well structured problems such as conic op- timization problems, thus, reformulation of these CTA models as conic optimization problem may be advantageous. We present reformulation of Pseudo-Huber-CTA, and l1 -CTA as Second-Order Cone (SOC) op- timization problems and test the validity of the approach on the small example of two-dimensional tabular data set.Peer ReviewedPostprint (author's final draft

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page
    corecore