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Projection methods in conic optimization

Didier Henrion
1,2

Jérôme Malick
3

Abstract

There exist efficient algorithms to project a point onto the intersection

of a convex cone and an affine subspace. Those conic projections are in

turn the work-horse of a range of algorithms in conic optimization, having

a variety of applications in science, finance and engineering. This chapter

reviews some of these algorithms, emphasizing the so-called regularization

algorithms for linear conic optimization, and applications in polynomial

optimization. This is a presentation of the material of several recent

research articles; we aim here at clarifying the ideas, presenting them in

a general framework, and pointing out important techniques.

1 Introduction, motivations, outline

1.0.1 Projection onto semidefinite positive matrices

Consider the space Sn of symmetric n-by-n matrices, equipped with the norm
associated to the usual inner product

〈X,Y 〉 =
n
∑

i,j=1

XijYij = trace(X⊤Y ).

The subset S+
n made of positive semidefinite matrices forms a closed convex cone

of Sn. A general result for closed convex sets yields that we can project onto S+
n :

given C ∈ Sn, there exists an unique element of S+
n (called the projection of C

onto S+
n and denoted by ProjS+

n
(C)) such that

‖ProjS+
n
(C)− C‖ = min

X∈S+
n

‖X − C‖.

It turns out that we also have an explicit expression of this projection, through
the spectral decomposition of C. Consider indeed the decomposition

C = U Diag(λ1, . . . , λn)U
⊤
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where λ1 ≥ · · · ≥ λn are the eigenvalues of C and U is a corresponding or-
thonormal matrix of eigenvectors of C; then the projection of C onto S+

n is

ProjS+
n
(C) = U Diag

(

max(0, λ1), . . . ,max(0, λn)
)

U⊤. (1)

This result was noticed early by statisticians [SA79] (see also [Hig88]), and
since then this projection has been widely used. We notice that this result
generalizes nicely for “spectral sets”; see [LM08]. Note also that the numerical
cost of computing this projection is essentially that of computing the spectral
decomposition of C, the matrix to project.

The developments of this chapter show that more sophisticated projections
onto subsets of S+

n are also computable using standard tools of numerical op-
timization. More specifically, the subsets that we consider are intersections of
the cone S+

n with a polyhedron (defined as affine equalities and inequalities).
Though the projection onto those intersections is not explicit anymore, we still
have efficient algorithms to compute them, even for large-scale problems.

1.0.2 Projection onto correlation matrices

The most famous example of such projections is the projection onto the set of
correlation matrices (that are the real symmetric positive semidefinite matrices
with ones on the diagonal). It is common to be faced with a matrix that is
supposed to be a correlation matrix but for a variety of reasons is not. For
example, estimating correlation matrices when data come from different time
frequencies may lead to a non-positive semidefinite matrix. Another example is
stress-testing in finance: a practitioner may wish to explore the effect on a port-
folio of assigning certain correlations differently from the historical estimates,
but this operation can destroy the semidefiniteness of the matrix.

These important practical questions have led to much interest in the prob-
lem of computing the nearest correlation matrix to a given a matrix C (see
e.g. [Hig02], [Mal04], [QS06] and [BH08]). This problem is simply formulated as
the projection of C onto correlation matrices







min 1

2
‖X − C‖2

Xii = 1, i = 1, . . . , n
X � 0.

(2)

The methods reviewed in this chapter apply to solving this problem in particular.
The point is that this problem (and variants of it) can now be solved efficiently
(for sizes up to n = 5000; the only limitation on a standard computer is the
memory constraints).

1.0.3 Conic projection problem

The general problem that we first focus on in this chapter is the following. In
the space R

n equipped with the standard inner product, we want to compute
the projection of a point c ∈ R

n onto the intersection K ∩ P where
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• K is a closed convex cone in R
n (that we further assume to have full

dimension in R
n; that is, intK 6= ∅),

• P is a convex polyhedron defined by affine (in)equalities

P :=
{

x ∈ R
n : ai

⊤x = (or ≤) bi, i = 1, . . . ,m
}

.

We suppose moreover that the intersection K∩P is nonempty, so that the pro-
jection onto the closed convex set K∩P exists and is unique (see e.g. [HUL93]).

The fact that P is defined by both equalities and inequalities does not re-
ally matter in our developments. To simplify presentation, one may take only
equalities, so that P is an affine subspace. We prefer to keep the above loose
notation with both equalities and inequalities, because it is closer to projection
problems arising in practice, and because it does not impact the basics of pro-
jection algorithms. Adding positive slack variables for the inequalities allows
us to reformulate the problem as a projection onto the intersection of an affine
space with a cone of the form K × (R+)

mI .
We note that in general one can project onto a polyhedron P . For the case

when there are only (independent) equalities in the definition (i.e. if P = A is
an affine subspace of the equation Ax = b with a full-rank matrix A), we have
the explicit expression of the projection of x

ProjA(x) = x−A⊤[AA⊤]−1(Ax− b). (3)

For a general polyhedron P , we still can compute the projection ProjP(x) effi-
ciently using quadratic programming solvers (see e.g. [NW99] or [BGLS03]). In
this chapter, we make the practical assumption that it is also easy to project
onto K. Recall from above that we have an easy-to-compute expression of the
projection for K = S+

n ; it turns out to be also the case for the second-order cone
(or Lorentz cone)

Ln := {x ∈ R
n : ‖(x1, . . . , xn−1)‖ ≤ xn} .

Though it is easy to project onto P and also onto K by assumption, the projec-
tion onto the intersection P ∩ K can still be challenging. The difficulty comes
from the presence of both (affine and conic) constraints at the same time. We
will see in Section 2 that many numerical methods to compute the projection
onto the intersection use combinations of projections onto P and K separately.

The geometrical projection problem has an obvious analytical formulation
as a least-squares problem, namely minimizing the (squared) norm subject to
the conic constraints and the affine constraints:

{

min 1

2
‖x− c‖2

x ∈ P ∩ K.
(4)

For example, an important subclass of such problems are semidefinite least-
squares problems (i.e. when K = S+

n ):






min 1

2
‖X − C‖2

〈Ai, X〉 = (or ≤) bi, i = 1, . . . ,m
X � 0,

(5)
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for C,Ai ∈ Sn. For example, the nearest correlation matrix problem (2) is an
instance of this later class. Notice finally that problems (4) and (5) coincide

formally with x ∈ R
n2

collecting the rows of X ∈ Sn. This also explains the
slight abuse of notation when writing K = S+

n . We use this ambiguity x ↔
X in particular in Section 4 to ease presentation of relaxations of polynomial
optimization problems.

1.0.4 Linear conic optimization problem

The second development of this chapter is about a more standard topic: solving
linear conic optimization problems. With the above notation, these problems
can be expressed as

{

min c⊤x
x ∈ P ∩ K.

(6)

As presented in this handbook and as well as in the first handbook [SVW00],
linear conic programming has been a very active field of research spurred by
many applications and by the development of efficient methods.

In this chapter, we explain how conic projections can be used to develop a
new family of algorithms for solving linear conic problems. In fact, the pro-
jection problem (4) can be written as a linear problem of the form (6) and
then can be solved using usual conic programming solvers (we come back to
this at the beginning of Section 2 and we explain why it is not a good idea
to do so). However we will also show the other way around: Section 3.1 ex-
plains that one can also solve the linear conic problem (6) by solving projection
problems (4), more precisely with a succession of (truncated) projection-like
problems. So-called regularization methods are presented, discussed and illus-
trated on solving semidefinite relaxations of combinatorial optimization and
polynomial optimization problems having many constraints.

1.0.5 Polynomial optimization

Over the last decade, semidefinite programming has been used in polynomial
optimization, namely for deciding whether a multivariate real polynomial is
nonnegative, or, more generally, to minimize a polynomial on a semialgebraic
set (a set described by polynomial inequalities and equations). A hierarchy of
embedded linear semidefinite relaxations (of the form (6)) can be constructed to
generate a monotone sequence of bounds on the global minimum of a polynomial
optimization problem. Asymptotic convergence of the sequence to the global
minimum can be guaranteed under mild assumptions, and numerical linear al-
gebra can be used to detect global optimality and extract global minimizers.
The theory is surveyed in [Lau09] and [Las09]; the potential applications are
numerous (see e.g. in control theory [HG05] or signal processing [Dum07]).

Section 4 reports numerical experiments showing that regularization algo-
rithms based on projections outperform classical primal-dual interior-point al-
gorithms for solving semidefinite relaxations arising when deciding whether a
polynomial is nonnegative, and for globally minimizing a polynomial.
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1.0.6 Objectives and outline of this chapter

This chapter focuses on projection problems that have a simple geometric appeal
as well as important applications in engineering. We give references to some of
these applications, and we give emphasis on polynomial optimization.

The first goal of this chapter is to sketch the different approaches to solve (4).
Section 2 is devoted to this review, with an emplasis on dual methods (in Sec-
tion 2.2). The bottomline is that as soon as we can easily project onto K (we
have in mind Ln and S+

n as well as direct products of these), we have efficient
algorithms to project onto the intersection K ∩ P .

The second goal of this chapter is to explain how to use these conic projec-
tions to build a family of “regularization”methods for linear conic programming.
The approach uses standard optimization techniques (proximal algorithms and
augmented Lagrangian methods) and has been recently developed for the case
K = S+

n . Section 3 presents it in a general framework and underlines the role
of conic projections. The final section presents some numerical experiments
with regularization methods on polynomial optimization problems, showing the
interest of the approach in that context.

This chapter is meant to be an elementary presentation of parts of the ma-
terial of several papers; among those, our main references are [Mal04], [QS06],
[MPRW09], [HM11], [ZST10] and [Nie09]. We aim at clarifying the ideas, pre-
senting them in a general framework, unifying notation, and most of all, pointing
out what makes things work. To this purpose, we have to elude some technical
points; in particular, we discuss algorithms, but we do not to give convergence
results. We try to give precise references throughout the text on these lacking
points.

2 Conic projections: algorithms and applications

This section reviews the methods for solving the conic projection problem (4),
presenting them in chronological order. We sketch the main ideas and give
references; we do not get into much details. Discussions about convergence
issues and numerical comparisons are beyond the scope of this section.

Beside interior-point methods, the basic idea of all the approaches is to some-
how separate the two constraint-sets K and P and to use the projections onto
them successively: this is obvious for alternating projections and alternating
directions methods; it is also the case for dual methods (we focus on this latter
method in Section 2.2). The point is that we can solve the conic projection
problem (4) efficiently (by dual algorithms in particular).

To simplify presentation, we stick here with the projection problem (4), but
the approach generalizes in two directions. First, we could replace the cone K by
any closed convex set: in this more general case, the developments are similar,
with slightly more complicated expressions of dual objects (a related work is
[MU88]). Second, we could consider problems with strongly convex quadratic
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objective functions, such as

{

min (x− c)
⊤
Q(x− c) + d⊤x

x ∈ K ∩ P
(7)

with Q positive definite. Such problems can be phrased as projection problems
with respect to ‖x‖Q =

√

x⊤Qx the norm associated to Q. The practical
technical assumption is then that one can project onto K with respect to ‖ · ‖Q
(which is not easy in general).

2.1 Computing conic projections

2.1.1 Using linear conic programming

A tempting method to solve (4) is to cast this projection problem as a usual
linear conic programming problem, so that we can use the powerful tools de-
veloped for this case. There are several ways to do so; a simple one consists in
pushing down the objective function with an additional variable t: (4) is indeed
equivalent to linear conic program















min t
x ∈ P
x− c = z
(x, (z, t)) ∈ K × Ln+1

where the variable z ∈ R
n is then introduced to express the additional second-

order cone constraint appearing in the constraints. This problem can be readily
given to usual conic solvers, for example interior-points methods, like SeDuMi
[Stu99] or SDPT3 [TTT03] under Matlab. Unfortunately, adding (z, t) makes
the computational cost and memory space needed by a standard primal-dual
interior-point method increase, and numerical testing confirms that the method
is not viable in general (as mentioned e.g. in [Hig02],[Toh08]).

We note furthermore that the projection problem (4) is a quadratic conic
programming problem, hence a special case of nonlinear conic optimization prob-
lems. We could solve (4) by algorithms and software devoted to nonlinear conic
optimization problems such as the penalization method of [KS03]. However
those methods would not use the special structure of (4), and as the above ap-
proach by linear conic programming, they would be efficient only for small-size
projection problems. The projection problems are important enough to design
algorithms specifically to them, as presented in the sequel. Note that we are
not aware of a tailored penalization algorithm for (4).

2.1.2 Alternating projections

The alternating projection method is an intuitive algorithmic scheme to find a
point in the intersection of two sets: it consists in projecting the initial point
onto the first set, then projecting the new point onto the second set, and then
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projecting again the new point onto the first and keep on projecting alterna-
tively. In other words, it consists in repeating:

{

xk+1 = ProjK(yk)
yk+1 = ProjP(xk+1)

(8)

If the two sets have a “regular” intersection, this algorithm converges linearly
to a point in P ∩K and we know the speed of convergence (for two convex sets,
see e.g. [Deu01]; for the general case, see the local result of [LLM09]).

We can modify this simple alternating projection scheme by adding a cor-
rection step (called Dykstra’s correction [Dyk83]) at each iteration (8)







xk+1 = ProjK(zk)
yk+1 = ProjP (xk+1)
zk+1 = zk − (xk+1 − yk+1).

(9)

This modification ensures the convergence of the sequence (xk)k to the projec-
tion ProjK∩P(c) – and not only to a point in the intersection K ∩ P . This ap-
proach was proposed by [Hig02] for the nearest correlation matrix problem (2).
It generalizes to (4) since it is easy to project onto P and we assume that it
is the same for K. We will see that dual methods and alternating direction
methods can be interpreted as variants of this basic geometrical method.

2.1.3 Dual methods

The conic programming problem (4) looks more complicated than a usual conic
programming problem with linear function instead of a norm as objective func-
tion. It turns out that the strong convexity of the objective function provides
nice properties to the dual problem that can then be solved efficiently.

The dual approach was proposed for the conic least-squares problem (4) in
[Mal04], later revisited by [BX05] for the case of K = S+

n , and then enhanced
by [QS06] and [BH08] for the projection onto correlation matrices. In the next
section, we give more details and more references about this approach.

2.1.4 Interior points

As a convex optimization problem, (4) can be attacked with the interior-point
machinery [NN94], assuming that both the cone K and its polar cone

Ko :=
{

s ∈ R
n : s⊤x ≤ 0 for all x ∈ K

}

are equipped with so-called self-concordant barriers (as is the case for Ln,S+
n ).

The approach consists in solving perturbed optimality conditions of (4). As any
projection problem, notice that the optimality condition is

x̄ ∈ P ∩K, (c− x̄)
⊤
(x− x̄) ≤ 0, for all x ∈ P ∩K.

7



To write down the optimality conditions more concretely, let us make explicit
the affine constraints with the help of AE ∈ R

n×mE and AI ∈ R
n×mI as







min ‖x− c‖2

AEx = bE, AIx ≤ bI
x ∈ K.

(10)

Under a non-degeneracy assumption (e.g. Slater condition, see next section),
the optimality conditions of (10) give the complementarity system























x− c+ u+AE
⊤y +AI

⊤z = 0

AEx = bE, y ∈ R
mE

AIx ≤ bI, z ∈ R
mI

+ , z⊤(AIx− bI) = 0

x ∈ K, u ∈ Ko, u⊤x = 0.

Roughly speaking, an interior-point approach consists in perturbing the com-
plementary equations above and keeping other equations satisfied. (We will see
that the forthcoming dual approach goes exactly the other way around.) A
first interior-point method is proposed in [AHTW03] for the nearest correla-
tion matrix problem (2). Interior-point methods for general quadratic SDP are
introduced and tested on projection problems (4) in [TTT06] and [Toh08].

2.1.5 Alternating directions

The alternating direction method is a standard method in variational analy-
sis (see e.g. [GM76]), going back to [DR56]. This method was proposed by
[HXY09] for solving the semidefinite projection problem (5) and by [SZ10] for
more general quadratically constrained quadratic SDP. The idea of the method
is to exploit the separable structure of the problem, as follows. Let us duplicate
the variables to write the equivalent problem







min 1

2
‖x− c‖2 + 1

2
‖y − c‖2

x = y
x ∈ K, y ∈ P .

(11)

The alternating direction method applied to (11) gives the following scheme:
consider the augmented Lagrangian function

L(x, y; z) =
1

2
‖x− c‖2 +

1

2
‖y − c‖2 − 〈z, x− y〉+

β

2
‖x− y‖2;

the minimization of L with respect to primal variables (x, y) is decomposed in
two steps, so that an augmented Lagrangian iteration is







xk+1 = argminx∈K L(x, yk, zk)
yk+1 = argminy∈P L(xk+1, y, zk)
zk+1 = zk − β(xk+1 − yk+1).
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It is not difficult to prove that the two above minimizations boil down to pro-
jections, more specifically

xk+1 = ProjK

(βyk + zk + c

1 + β

)

, yk+1 = ProjA

(βxk+1 − zk + c

1 + β

)

.

Thus the approach alternates projections onto P and K to compute the projec-
tion onto K ∩P ; it can thus be seen as a modification of the simple alternating
projection scheme (8), with the same flavour as Dykstra modification (9).

2.2 More on dual approach

2.2.1 Apply standard machinery

Let us give more details about the dual approach for solving (4). Following
[Mal04], we apply the standard mechanism of Lagrangian duality to this prob-
lem; we refer to [HUL93, Ch.XII] and [BV04, Ch. 5] for more on this mechanism
in general.

Let us consider the more explicit form (10), and denote also by A := [AE;AI]
and b := [bE; bI] the concatenation of the affine constraints. We dualize affine
constraints only: introduce the Lagrangian, a function of primal variable x ∈ K
and dual variable (y, z) ∈ R

mE× R
mI

+

L(x; y, z) :=
1

2
‖c− x‖2 − y⊤(AEx− bE)− z⊤(AIx− bI), (12)

and the corresponding concave dual function

θ(y, z) := min
x∈K

L(x; y, z), (13)

which is to be maximized. There is no more affine constraint in the above
minimum, and it is easy to prove ([Mal04, Th.3.1]) that the problem corresponds
to a projection onto K: there exists a unique point which reaches the above
minimum, namely

x(y, z) := ProjK(c+AE
⊤y +AI

⊤z), (14)

so we have

θ(y, z) = bE
⊤y + bI

⊤z +
1

2
(‖c‖2 − ‖x(y, z)‖2). (15)

It is also not difficult to show [Mal04, Th.3.2] that the concave function θ is
differentiable on R

m, and that its gradient

∇θ(y, z) = −Ax(y, z) + b (16)

is Lipschitz continuous. As any function with Lipschitz gradient, θ is twice
differentiable almost everywhere, but not everywhere (this basically relies on
the differentiability properties of ProjK; for the case K = S+

n , see more in
[SS02] and [MS06] among others).
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The dual problem is thus

{

max θ(y, z)
(y, z) ∈ R

mE × R
mI

+ .
(17)

Strong duality (the optimal values of (10) and (17) coincide) holds under a
standard assumption in convex optimization. The so-called (weak) Slater as-
sumption (see e.g. [Ber95], [HUL93]) is in our context:

∃ x̄ ∈ P ∩ intK. (18)

In fact, this assumption yields moreover that there exists solutions to (17) (note
that the assumption has also a natural geometrical appeal in context of projec-
tion methods, see [HM11, Sec. 3]). Finally we get directly the projection from
dual solutions: let (y∗, z∗) be a (dual) solution of (17), the (primal) solution x∗

of (4) is the associated x∗ = x(y∗, z∗) (see [Mal04, Th. 4.1]).

2.2.2 Apply standard algorithms

To compute the projection of c onto P ∩ K, we just have to solve the dual
problem (17). Let us have a closer look to this problem: the constraints are
simple positivity constraints on the variable corresponding to the dualization
of inequality constraints; the dual function is a differentiable concave function
with Lipschitz gradient. This regularity has a huge impact in practice: it opens
the way for using standard algorithms for nonlinear optimization. Hence we
can use any of the following numerical methods to solve (17) (as soon as the
software can deal with the constraints zi ≥ 0):

1. gradient methods: standard methods [Ber95] or more evolved ones, as
e.g. Nesterov’s method [Nes05];

2. Newton-like methods: quasi-Newton, limited memory quasi-Newton, in-
exact Newton, Newton-CG, see textbooks [NW99] and [BGLS03] – with
the restriction that θ is not twice differentiable everywhere, so that we
have to use the so-called semismooth Newton methods, see [QS93].

For example, [Mal04] uses a quasi-Newton method for solving (5), and [QS06]
uses a semismooth inexact Newton method for solving (2). We come back on
these two methods in the next section to give more practical details.

We also mention here the so-called inexact smoothing method of [GS09]
which consists in writing the optimality conditions of the dual problem (17)
as a nonsmooth fixed point problem (and solving it by combining smoothing
techniques and an inexact Newton method; see e.g. [NW99]).

The dual problem (17) can thus be attacked with classical tools or more
evolved techniques. In practice, the choice of the solving method depends on
the structure of the problem and the target level of sophistication.

We call dual projection methods any method using an optimization code for
functions with Lipschitz gradient to maximize θ on R

mE × R
mI

+ . Specifically, a

10



dual projection method generates a maximizing dual sequence {yk, zk}k together
with the primal sequence xk = x(yk, zk) such that:

θ(yk, zk) = bE
⊤yk + bI

⊤zk +
1

2
(‖c‖2 − ‖xk‖

2) (19)

∇θ(yk, zk) = −Axk + b. (20)

We notice that in our numerical experiments with dual methods, we have
observed better behaviour and convergence when the (strong) Slater assumption
holds (that is, when (18) holds and moreover AE is full rank).

2.2.3 More algorithmic details (for the case without inequalities)

We detail now further some algorithmic issues. To simplify we focus on the case
without inequalities (mI = 0, no dual variables z). Iterations of most algorithms
for maximizing θ can be written as

yk+1 = yk + τkWk∇θ(yk). (21)

Note that the usual stopping test of these methods has an intrinsic meaning: a
threshold condition on the gradient

‖∇θ(yk)‖ = ‖Axk − b‖ ≤ ε (22)

controls in fact the primal infeasibility. Among these methods, let us discuss
further the three following ones.

Gradient descent with constant step-size. We have a remarkable result:
the gradient method in an adapted metric, namely (21) with

Wk = [AA⊤]−1 and τk = 1, (23)

corresponds exactly to the alternating projection method (9) (see [Mal04] for
a proof in the special case of correlation matrices, and [HM11] for the proof
in general). We thus have a (surprizing) dual interpretation of the primal pro-
jection method. Using descent schemes more evolved than a simple gradient
descent (see below) then leads to (dual) projection methods that can be seen as
improvements of the basic alternating projection method.

BFGS Quasi-Newton method. The method is known to be very efficient
in general, and have many industrial applications (one of the most striking is
in weather forecasting [GL89]). The method can be readily applied to the dual
problem, since it requires no more information than (19): Wk is constructed with
successive gradients with the BFGS formula and τk is well-chosen with a Wolfe
line-search (see e.g. [BGLS03]). The initial paper about dual methods [Mal04]
proposes to use this method in general and reports very good numerical results
on the nearest correlation matrix problem (2). Since then, this dual method has
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been used successfully to solve real-life projection problems in numerical finance
(among them: the problem of calibrating covariance matrices in robust portfolio
selection [Mal04, 5.4]). A simple Matlab implementation has been made publicly
available together with [HM11] for pedagogical and diffusion purposes.

Generalized (or semismooth) Newton. A pure Newton method would be
to use τk = 1 and Wk = [Hk]

−1 with the Hessian Hk of θ at the current iterate
yk. In practice, an inexact generalized Newton method is used for the following
reasons.

As mentioned earlier, θ is differentiable but not twice differentiable (though
its gradient is Lipschitz continuous). We can still replace the usual Hessian
by a matrix Hk ∈ ∂2

c θ(yk) the Clarke generalized Hessian of θ at yk [Cla83].
Computing a matrix in ∂2

c θ(yk) ⊂ S+
n amounts to computing an element of the

Clarke generalized Jacobian of the projection onto the cone ∂cProjK since we
have (see [HUSN84])

∂2
c θ(yk) = A∂cProjK(c+A⊤yk)A

⊤.

We can often compute an element of ∂cProjK. For example, we even have an
explicit expression of the whole ∂c ProjS+

n
[MS06].

For overall efficiency of the method, the Newton direction dk is computed by
solving the system Hkd = ∇θ(yk) approximately, usually by conjugate gradient
(CG) type methods. More precisely, the idea of so-called Newton-CG (also
called inexact Newton going back to [DET82]) is to stop the inner iteration of
CG when

‖Hkd+∇θ(λk)‖ ≤ ηk‖∇θ(λk)‖ (24)

with small ηk (see e.g. [NW99]). Note that preconditioning the Newton system
is then crucial for practical efficiency. The nice feature of this algorithm is that
Hk has just to be known through products Hkd so that large-scale problems
can be handled. In our context, the main work on this method is [QS06] about
the nearest correlation matrix problem; we come back to it in the next section.

We finish here with a couple of words about convergence of this Newton dual
method. In general (see [QS93]), the two conditions to prove local superlinear
convergence are that the minimum is strong (i.e. all elements of the generalized
Hessian are positive definite), and the function has some smoothness (namely,
the so-called semismoothness). In our situation, the two ingredients implying
those conditions are the following ones:

• The intersection has some “nondegeneracy”, in the sense of [BS00, 4.172]
and [AHO97, Def. 5]. This allows us to prove ∂2

c θ(yk) ≻ 0 (see e.g. [QS06]
for a special case).

• The convex cone K has some “regularity”. An example of sufficient reg-
ularity is that K is a semialgebraic set (i.e. defined by a finite number of
polynomial (in)equalities). Indeed for semialgebraic convex sets, the pro-
jection ProjK and then θ are automatically semismooth [BDL08] (which
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is the property needed to apply the convergence results of [QS93]. This is
the case for direct products of the cones Ln and S+

n (for which we even
have strong semismoothness [SS02] so in fact quadratic convergence).

2.2.4 Illustration on nearest correlation matrix problem

We give a rough idea of the efficiency of the dual approach on the projection
problem (2). The first numerical results of [Mal04, Sec. 4] show that the dual
approach copes with large-scale problems, in reporting that one can solve in a
couple of minutes projection problems of size around one thousand. By using
the dual generalized Newton method (instead of quasi-Newton as in [Mal04]),
the algorithm of [QS06], improved later by [BH08], gives very nice results in both
practice and theory. Nondegeneracy of the constraints and then of the gener-
alized Hessian is proved in [QS06, Prop. 3.6]: as recalled above, this technical
point leads to quadratic convergence of the method [QS06, Prop. 5.3].

Today’s state of the art is that one can solve nearest correlation matrix
problems of big size (say, up to 4000-5000) in a reasonable amount of computing
time (say, less than 10 minutes on a standard personal computer). The only
limitation seems to be the memory constraint to store and deal with dense
large-scale data.

To give a more precise idea, let us report a couple of results from [BH08].
The implementation of their dual algorithm is in Matlab with some external
Fortran subroutines (for eigenvalues decomposition in particular). The stopping
criterion is set to

‖∇θ(yk)‖ ≤ 10−7n. (25)

We consider the nearest correlation matrix problems for two (non-SDP) matrices
with unit diagonal (of size n1 = 1399 and n2 = 3120) provided by a fund
management company. The dual method solves them in around 2 and 15 min.,
respectively, on a very standard machine (see more details in [BH08]).

We finish with a last remark about accuracy. The approximate correlation
matrixX that is computed by such a dual method is often just what is needed in
practice. It might happen though that a special application requires a perfect
correlation matrix – that is, with exactly ones on the diagonal, whereas X
satisfies only (by (25))

(

n
∑

i=1

(Xii − 1)2
)−1/2

≤ 10−7n.

A simple post-treatment corrects this. Setting diagonal elements to ones may
destroys the positiveness, so we apply the usual transformation that computes
the associated correlation matrix X̄ from a covariance matrix X , namely

X̄ = D−1/2XD−1/2 and D = diag(X).

This operation increases the distance from C; but the error is still under control
(by ε/(1− ε); see [BH08, Prop. 3.2]).
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2.3 Discussion: applications, generalizations

2.3.1 Direct or indirect applications

Conic projection problems with the positive semidefinite cone (like K = S+
n , K =

S+
n × (R+)p or K = S+

n1
× · · · × S+

np
) are numerous in engineering. Constructing

structured semidefinite matrices, for example, are naturally modeled this way.
Such problems naturally appear in finance for constructing structured covariance
matrices (as a calibration step before simulations); they also appear in many
other fields, such as in control (e.g. [LJ09]), in numerical algebra (e.g. [AH07]),
or in optics (e.g. [NWV08]), to name a few of them.

Conic projections also appear as inner subproblems within more involved
optimization problems. Solving efficiently these inner problems is often the key
to numerical efficiency of the overall approach. Let us give some examples.

• Linear conic programming. So-called regularization methods for solv-
ing (6) use the conic projection problem as an inner subproblem; these
methods are studied in Section 3.

• Weighted projections. For given weights Hij ≥ 0, consider the semidefinite
projection (5) with a different objective function







min 1

2

∑n
i,j=1

Hij(Xij − Cij)
2

〈Ai, X〉 = (or ≤) bi, i = 1, . . . ,m
X � 0.

An augmented Lagrangian approach for this problem [QS10] produces a
projection-like inner problem, which is solved by a semismooth Newton
method (recall the discussion of the previous section).

• Low-rank projections. Consider the semidefinite projection problem (5)
with additional rank-constraint







min 1

2
‖X − C‖2

〈Ai, X〉 = (or ≤) bi, i = 1, . . . ,m
X � 0, rankX = r.

(26)

This difficult non-convex calibration problem has several applications in
finance and insurance industry (e.g. pricing interest rate derivatives for
some models; see e.g. [BM06]). Two approaches (by augmented Lagrangian
[LQ10] and by penalty techniques [GS10]) have been recently proposed
to solve these types of problems; both approaches solve a sequence of
projection-like subproblems. The numerical engine is a dual semismooth
truncated Newton algorithm for computing projections.

For these applications of conic projections, the techniques and the arguments
are often the same, but are redeveloped for each particular projection problem
encountered. We hope that the unified view of Section 2 can bring forth the
common ground of these methods and to better understand how and why they
work well. We finish this section by pointing out an easy geometrical application.
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2.3.2 Application for solving conic feasibility problems

The conic feasibility problem consists simply in finding a point x in the inter-
section K ∩ P . Many engineering problems can be formulated as semidefinite
or conic feasibility problems (for example in robust control [BGFB94] where an
element in the intersection is a certificate of stability of solutions of differential
equations). Section 4.2 focuses on semidefinite feasibility problems arising when
testing positivity of polynomials. We refer to the introduction of [HM11] for
more examples and references.

A simple and natural technique for solving conic feasibility problems is just
to project a (well-chosen) point onto the intersection K ∩ P (by dual projec-
tion methods for example). In [HM11], a comparative study of such a conic
projection method with the usual approach using SeDuMi was carried out pre-
cisely on polynomial problems. It was shown there that an elementary Matlab
implementation can be competitive with a sophisticated primal-dual interior-
point implementation. This would even have a better performance if an initial
heuristic for finding a good point to project could be determined (the numerical
experiments of [HM11, Sec. 6] simply use c = 0). An answer to this latter point
is provided by the regularization methods of the next section.

3 Projections in regularization methods

We focus in this section on standard linear conic programming. We show that,
following classical convex optimization techniques, conic projections can be used
to solve linear conic programming problems.

There exist many numerical methods for solving linear conic problem (6)
(see the first handbook [SVW00]). But on the other hand, there also exist big
conic problems, and especially big SDP problems, that make all the standard
methods fail. Relaxations of combinatorial optimization problems and polyno-
mial optimization problems yield indeed challenging problems. This motivates
the development of new algorithmic schemes.

The strategy that we present in this section exploits the efficiency of projec-
tion methods by developing proximal algorithms for linear conic programming.
We generalize the developments of [MPRW09], and give all way long references
to related works. As for numerical aspects, the target problems are semidefi-
nite programs with the number of constraints possibly very large (more than
100,000).

3.1 Proximal method for linear conic programming

3.1.1 Apply classical techniques of convex optimization

The proximal algorithm is a classical method of convex optimization and vari-
ational analysis: it goes back from the 1970s with premises in [BKL66], the
first work [Mar70] and the important reference [Roc76b]. The driving idea of
the proximal algorithm is to add quadratic terms to the objective function to
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“regularize” the problem (ensuring existence, uniqueness, and stability of solu-
tions). A (primal) proximal method of the linear conic problem (6) goes along
the following lines.

Consider the problem with respect to (x, p)
{

min c⊤x+ 1

2t‖x− p‖2

p ∈ R
n, x ∈ P ∩ K.

By minimizing first with respect to p, we see that this problem is equivalent to
the primal linear conic problem (6). We have added to the objective function a
quadratic “regularizing” term ‖x − p‖2 with the so-called “prox-parameter” t.
The idea now is to solve this problem in two steps: first with respect to x, and
second to p:

{

min
p ∈ R

n

(

min c⊤x+ 1

2t‖x− p‖2

x ∈ P ∩ K

)

. (27)

The outer problem is thus the minimization with respect to p of the function

F (p) :=

{

min c⊤x+ 1

2t‖x− p‖2

x ∈ P ∩ K
(28)

which is the result of the inner optimization problem parametrized by p. As
such defined, F is the so-called Moreau-Yosida regularization of the function
x → c⊤x+ iP∩K(x) the linear objective function plus the indicator function of
the intersection (see e.g. [HUL93, Ch.XV.4]).

The connection with the previous developments of this chapter is then obvi-
ous: the above inner problem is essentially a projection problem as studied in the
previous section (see (7)). The solution of the inner problem (the “projection”)
is called the proximal point and denoted

Prox(p) :=

{

argmin c⊤x+ 1

2t‖x− p‖2

x ∈ P ∩K.

Note that, for simplicity, the dependence of F and Prox with respect to t is
dropped in notation.

3.1.2 Primal proximal algorithm for conic programming

Applying basic convex analysis properties, it is easy to prove (see e.g. [HUL93,
Ch.XV.4]) that the Moreau-Yosida regularization F is convex and differentiable
with gradient ∇F (p) = (p−Prox(p))/t. The optimality condition of the uncon-
strained minimization of F is then simply

p̄ = Prox(p̄). (29)

Moreover a fixed-point p̄ of the Prox operator is also a solution of the initial lin-
ear conic problem (6): observe indeed that p̄ is feasible and reaches the optimal
value, since

val (6) = minF (p) = F (p̄) = c⊤p̄. (30)
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A (primal) proximal algorithm for solving (6) then consists of a fixed-point
algorithm on (29)

pk+1 = Prox(pk). (31)

Since computing Prox(pk) corresponds to solving a projection problem, we can
use any of the algorithmic schemes described in Section 2.1 to implement (31)
inside of this proximal algorithm. We call the proximal method the outer al-
gorithm, and the chosen projection algorithm, the inner algorithm. We study
in Section 3 the family of proximal algorithms obtained when dual projection
algorithms of Section 2.2 are used as inner algorithms.

As we have an iterative optimization algorithm (inner algorithm) inside of
another iterative algorithm (outer algorithm), the question of the stopping tests
of the inner algorithm is obviously crucial. For practical efficiency, the inner
stopping test should somehow depend on some outer information; we come
back later in detail to this important point.

So in fact the iteration (31) is not carried out exactly, and replaced instead
by a looser implementable relation

‖pk+1 − Prox(pk)‖ ≤ εk. (32)

Whatever is the inner projection algorithm, we have the general global conver-
gence of the method under the assumption that the sequence of errors εk goes
rapidly to zero.

Proposition 1 (Global convergence) Assume that there exist a solution to (6).
If (tk)k is bounded away from 0 and if the primal proximal algorithm generates
a sequence (pk)k such that

∑

k

εk < +∞ (33)

then (pk)k converges to a solution p̄ of (6).

Proof: The result is straightforward from the general convergence result of
proximal algorithms. As a consequence of (33) and the existence of a solution
to (6), the sequence (pk)k is bounded and we can apply [Roc76b, Th.1]: (pk)k
converges to a fixed-point to Prox which is a solution of (6) by (30). �

3.1.3 Dual point of view: augmented Lagrangian

We give here some details about the dual interpretation of the above primal
algorithmic approach. It is known indeed that a proximal method for a problem
corresponds exactly to an augmented Lagrangian method on its dual; we detail
this for our case. To simplify writing duals, we abandon the general formulation
(6), and we suppose that there is no affine inequalities (or that there are in-
corporated with slack variables in K). So we work from now with the standard
form of primal and dual linear conic problems







min c⊤x
Ax = b
x ∈ K

and







max b⊤y
A⊤y − u− c = 0
u ∈ Ko.

(34)
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Augmented Lagrangian methods are important classical regularization tech-
niques in convex optimization (see [PT72], [Roc76a] for important earlier ref-
erences, and [HUL93, Chap.XII] for the connection with usual Lagrangian du-
ality). In our situation, a dual augmented Lagrangian method goes along the
following lines. Introduce the augmented Lagrangian function L with parameter
t > 0, for the dual problem (34):

L(y, u; p) := b⊤y − p⊤(A⊤y − u− c)−
t

2
‖A⊤y − u− c‖2.

Note that this is just the usual Lagrangian for the problem
{

max b⊤y − t
2
‖A⊤y − u− c‖2

A⊤y − u− c = 0, u ∈ Ko,
(35)

that is the dual problem with an additional redundant quadratic term in the
objective. The convex (bi)dual function is then defined as

Θ(p) := max
y∈Rm,u∈Ko

L(y, u; p). (36)

The bridge between the primal proximal method and the dual augmented La-
grangian is set in the next proposition, formalizing a well-known result.

Proposition 2 With notation above, we have Θ(p) = F (p) for p ∈ R
n.

Proof: Just apply [HUL93, XII.5.2.3]: the augmented Lagrangian function
Θ(p) is the Moreau-Yosida of the usual dual function, which is here

c⊤p+ i{Ax=b}∩K(p) = max
y,u∈Ko

b⊤y − p⊤(A⊤y − u− c).

This is exactly F (p) defined by (28) (in the case when P is just the affine
subspace of equation Ax = b).�

The primal regularization by proximal approach and the dual augmented
Lagrangian regularization thus correspond exactly to the same quadratic regu-
larization process viewed either on the primal problem or on the dual (34).

The developments of this section share similar properties with other aug-
mented Lagrangian-type approaches for conic programming, among them: a
primal augmented Lagrangian in [BV06], a primal-dual augmented Lagrangian
in [JR08] and a penalized augmented Lagrangian in [KS07].

3.2 Regularization methods for linear conic programming

In this section we give more details on primal proximal algorithms (or dual
augmented Lagrangian algorithms) that use dual projection methods as inner
algorithms to carry out the proximal iteration (32). This family of algorithms
is introduced for the case K = S+

n in [MPRW09]. They are called regularization
algorithms (rather than proximal algorithms, which would focus on the primal
point of view only); we keep this terminology here. This section is more technical
and could be skipped at a first reading.

Regularization algorithms for conic programming specialize on three points:
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1. the dual projection algorithm to compute Prox(xk),

2. the rule to stop this inner algorithm,

3. the rule to update the prox-parameter tk.

The third point is an inherent difficulty of any practical implementation of prox-
imal methods (e.g. bundle methods, see [CL93]). We are not aware of general
techniques to tackle it. So we focus here on the first two points.

3.2.1 Dual projection methods as inner algorithms

We could use any dual projection algorithm of Section 2.2 to solve

{

min c⊤x+ 1

2t‖x− p‖2

Ax = b, x ∈ K.
(37)

Embedded in a proximal scheme, a dual projection algorithm would lead to the
forthcoming overall algorithm for solving linear conic problems (34).

Note first that equations (14) and (15) for the projection-like problem (37)
become respectively

x(y) = ProjK
(

p+ t(A⊤y − c)
)

(38)

θ(y) = b⊤y +
1

2t
(‖p‖2 − ‖x(y)‖2). (39)

We use the (slightly loose) formulation (21) of the iteration of dual projection
methods to write a general regularization algorithm. We index the outer itera-
tions by k and the inner ones by ℓ.

Algorithm 1 (Regularization methods)
Outer loop on k stopped when ‖pk+1 − pk‖ small:

Inner loop on ℓ stopped when ‖Axℓ − b‖ small enough:
Compute xℓ = ProjK(pk + tk(A

⊤yℓ − c)) and gℓ = b−Axℓ

Update yℓ+1 = yℓ + τℓ Wℓ gℓ with appropriate τℓ and Wℓ

end (inner loop)
Update pk+1 = xℓ (and tk)

end (outer loop)

We discuss several points about the above conceptual algorithm.

• Memory. An important feature of regularization methods is the rather low
memory requirement. The intrinsic operations of the algorithm are basi-
cally the projection onto the cone and the multiplications by A and A⊤.
If the data has some structure, those multiplications could be performed
efficiently (without constructing matrices). Moreover for maximizing θ
(that is, essentially, implementing yℓ+1 = yℓ + τℓ Wℓ gℓ), we could use
algorithms of smooth unconstrained optimization adapted to large-scale
problems and then requiring low-memory (as limited memory BGFS or
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Newton-CG, see e.g. [NW99] and [BGLS03]). We come back to this point
later when discussing numerical issues. Roughly speaking, the point is
the following: the computer memory can be used for storing problem data
and the computation does not require much more extra memory.

• Inner restarting. At the outer iteration k, the inner projection algorithm
can be initialized with the best yℓ of the previous iteration k−1. This has
an intuitive appeal, so that in practice, ℓ keeps increasing over the outer
iterations. (Note also that the historical information on gradients may be
carried out from iteration k − 1 to k as well.)

• Dual variable u. It is known that for any x ∈ R
n, the projection onto the

polar cone ProjKo(x) is given by ProjK(x)+ProjKo(x) = x (together with

ProjK(x)
⊤
ProjKo(x) = 0, see [HUL93, III.3.2.5]). When computing xℓ,

we thus get automatically

uℓ = ProjKo(pk + tk(A
⊤yℓ − c))/tk

and it holds
pk + tk(A

⊤yℓ − c) = tkuℓ + xℓ. (40)

• Dual outer iterates. At the end of outer iteration k, we set (with a slight
abuse of notation) yk+1 = yℓ and uk+1 = yℓ for ℓ the final iteration of
inner algorithm. Thus we have a sequence of primal-dual outer iterates
(pk, yk, uk) ∈ K × R

n × Ko. Under some technical assumptions, we can
prove a convergence result of the same vein as Proposition 1: any accumu-
lation point of the sequence (pk, yk, uk) is a primal-dual solution of (10)
(see e.g. Theorem4.5 of [MPRW09] for a proof when K = S+

n ).

• Outer stopping test. We have already noticed in (22) that the natural
stopping test of dual projection algorithms controls primal infeasibility
‖Axℓ − b‖. Interpreted as a fixed point iteration (31), the natural stop-
ping of the proximal algorithm is ‖pk+1 − pk‖; it turns out that this can
interpreted as controlling dual infeasibility. Note indeed that (40) yields

pk + tk(A
⊤yk − c) = tkuk + pk

and then we have

‖pk+1 − pk‖ = tk‖A
⊤yk − uk − c‖.

• Normal to interior-point methods. By construction, conic feasibility p ∈ K
(and u ∈ Ko) and complementary x⊤u = 0 are ensured throughout
the algorithm, while primal-dual feasibilities are obtained asymptotically.
In contrast, recall that basic interior-point methods maintain primal and
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dual feasibility and the conic feasibility and work to reach complemen-
tarity. Note also that, regularization algorithms give solutions that are
usually on the boundary of the cone K, since the primal iterates are con-
structed by projections onto K. In contrast again, basic interior-points
give solutions as inside of the cone as possible. In a sense, regularization
methods are then “normal” to interior point methods.

• Overall stopping test. We have seen above that the natural outer and
inner stopping rules of the regularization algorithm have a practical in-
terpretation as dual and primal infeasibilities. Since complementary and
conic feasibility are ensured by construction, the natural stopping test of
the overall algorithm is

max
{

‖Apk − b‖, ‖A⊤yk − uk − c‖
}

. (41)

In practice, one should divide moreover the two infeasibilities by some
constant quantities to get homogeneous ratios.

3.2.2 Stopping inner iterations

For which inner iteration ℓ can we set pk+1 = xℓ to proceed with the outer
iteration? Since we have a loop inside of another, the rule to terminate the inner
projection algorithm is indeed an important technical point for regularization
algorithms. We discuss three strategies to set up inner stopping rules.

Solving approximately the inner problem. The usual stopping inner rule
in proximal methods is to stop inner iterations when the current inner iterate
xℓ is close to the proximal point Prox(pk). Doing this, the regularization algo-
rithm approximates at best the conceptual proximal algorithm (which requires
to solve the inner problem exactly), so that we keep convergence properties (as
in Proposition 1 for instance).

This is the strategy followed by the regularization method of [ZST10] for
K = S+

n . This paper adopts the dual point of view (augmented Lagrangian)
and uses semismooth Newton as dual projection algorithm for inner iterations
(remember Section 2.2). The regularization method thus combines the usual
stopping strategy and an efficient inner algorithm (supporting large-scale prob-
lems); it gives excellent numerical results on various semidefinite programming
test-problems (see the last section of [ZST10]). Under nondegeneracy assump-
tions, we have moreover proofs of global and local convergences of the inner
algorithm as well as the overall regularization method.

Only one inner iteration; interpretation as saddle-point. An opposite
strategy is to do only one inner iteration per outer iteration. This cautious
strategy is motivated by the following remark. Let us come back to the proximal
formulation (27) of the linear conic problem. Under Slater assumption (18), the
inner projection problem can be replaced by its dual (recall (15), (17) and
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(38)), so that the primal and dual conic problems (34) have the saddle-point
formulation

{

min
p ∈ R

n

(

max b⊤y − 1

2t (‖p‖
2 − ‖ProjK(p+ t(A⊤y − c)‖2)

y ∈ R
m

)

.

With this point of view on the process, the choice of inner stopping conditions
appears indeed to be crucial, because the inner and outer loops are antagonistic,
as the first minimizes and the second maximizes. The idea of the “Arrow–
Hurwicz” approach (see, for instance, [AHU59]) is essentially to proceed with
gradient-like iterations with respect to each variable successively.

This is the strategy of the simple regularizationmethod presented in [MPRW09,
Sec. 5.1]. Doing one inner iteration of (21) with Wk = [AA⊤] and τk = 1/tk
allows to simplify the regularization algorithm to just one loop with

pk+1 = ProjK(pk + tk(A
⊤yℓ − c)) (with uk+1 as by-product) (42)

yk+1 = yk + [AA⊤]−1(b −Apk)/tk. (43)

We retrieve algorithm 5.1 of [MPRW09] by using the proof of proposition 3.4
in there. This simple regularization algorithm has also an interpretation as an
alternating direction method, see the chapter of this book devoted to them.

In practice, it is important to note that AA⊤ and its Cholesky factorization
can be computed only once at the beginning of the algorithm. Even if this is an
expensive task in general for problems that have many unstructured constraints
(so that AA⊤ is big and unstructured), there exists some cases when AA⊤

is very simple, so that solving the system (43) is cheap. This is the case in
particular when AA⊤ is diagonal, as for SDP relaxations of max-cut problem, or
k-max-cut problem [GW95], frequency assignment problems, see [BMZ01, (5)],
max-stable problem, see more below, and polynomial minimization problems,
see forthcoming Section 4.

Something in-between. An attractive option is to find something in-between
the previous two extreme strategies. Explicit rules for the management of εk in
(32) should be given, and for numerical efficiency they should be given online.
Using off-line rules independent of the function is interesting in theory since it
allows to get proof of linear convergence. Following usual paradigms of numeri-
cal optimization, it would be possible to do better as soon as practical efficiency
in concerned. An appropriate stopping rule still has to be found and studied;
this is actually a general question and we are not aware of efficient techniques.

Note finally that the practical implementation of the regularization method
of [ZST10] does indeed something in-between: the simple scheme with one inner
gradient iteration (second strategy) is used as a preprocessing phase before
switching to making inner Newton iterations (first strategy). See more about
this on numerical illustrations of the method in Section 4. A stopping test
along the above lines would further enhance the numerical performance of the
implementation.
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3.2.3 Illustration: Computing Lovász theta number

We finish this section with a numerical illustration (borrowed from [MPRW09])
of the performance of regularization methods on a classical combinatorial opti-
mization problem.

Lovász [Lov79] proved the celebrated “sandwich” theorem in graph theory:
the stable number α(G) of a graph G and the chromatic number χ(Ḡ) of its
complementary graph Ḡ are separated

α(G) ≤ ϑ(G) ≤ χ(Ḡ)

by the optimal value of an SDP problem

ϑ(G) =







max 〈1n×n, X〉
Xij = 0, when (i, j) is an edge of G
trace X = 1, X � 0.

(44)

As expected, it can be shown that this SDP problem is a formulation of the
SDP relaxation of the max-stable problem. The stable number α(G) and the
chromatic number χ(Ḡ) are both NP-hard to compute and even hard to ap-
proximate, so that the tractable ϑ(G) gives interesting information about G.

Some graphs from the DIMACS collection [JT96] are very challenging in-
stances for computing ϑ(G). Those graphs have many edges and also many
edges on the complementary, so that makes them the most difficult for standard
methods (as noticed in [DR07]). On the other hand, the structure of problem
(44) is very favorable for regularization methods and in particular for the simple
one of [MPRW09, Sec. 5.1] which is essentially (42)-(43). Observe indeed that
the affine constraints (44) is given by “orthogonal” matrices (i.e. 〈Aj , Ai〉 = 0),
such that the matrix AA⊤ is diagonal. For illustration, the next table reports
some of the bounds that were computed for the first time in [MPRW09].

graph name n m ϑ(G)
brock400-1 400 59723 10.388
keller5 776 225990 31.000
brock800-1 800 207505 19.233
p-hat500-1 500 31569 58.036
p-hat1000-3 1000 371746 18.23

For more examples, see [MPRW09, Sec. 5.4] and [ZST10, Sec. 6.3].

4 Applications to polynomial optimization

In this section, we illustrate the regularizationmethods for solving linear semidef-
inite optimization problems in the context of polynomial optimization. We
collect numerical experiments showing that regularization algorithms can be
considered as an alternative to standard methods for deciding whether a poly-
nomial is non-negative (Section 4.2) and for globally minimizing a polynomial
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(Section 4.3). The point is thus the same as in [Nie09] which reports extensive
numerical results using regularization methods for solving various large-scale
polynomial optimization problems.

We aim at giving here a methodology: our main focus is the generality of
the approach and the reproducibility of experiments and results. We explain
how to generate the test problems, we use public-domain implementations of the
algorithms with default parameter tunings and with no attempt to adapt them
to each particular problem instances (contrary to [Nie09]). We do not carry
out a comprehensive benchmarking with all methods and solvers; we just com-
pare a widely used implementation of interior-point algorithm [Stu99] with two
recent implementations of regularization methods (the basic one of [MPRW09,
Sec. 5.1], and the more sophisticated one of [ZST10]).

4.1 Sum-of-squares, SDP and software

We briefly introduce in this section the notions and notation of polynomial
optimization that we need. We refer to the recent surveys [Lau09] and [Las09]
and to the other chapters of this book for more on this topic.

Consider a multivariate polynomial of total degree 2d

v ∈ R
N 7−→ p(v) =

∑

|α|≤2d

pαv
α. (45)

We use here the multi-index notation vα = vα1

1 · · · vαN

N where α ∈ N
N runs over

all nonnegative integer vectors of sum |α| = α1 + · · · + αN ≤ 2d. We say that
p(v) is a sum-of-squares (SOS) of polynomials if one could find polynomials
qk(v) such that

p(v) =
∑

k

qk
2(v). (46)

It can be shown that finding such polynomials qk(v) amounts to a semidefinite
feasibility problem. More specifically, if π(v) denotes a vector of basis of poly-
nomials of total degree less than or equal to d, finding an SOS decomposition
(46) amounts to finding a so-called Gram matrix X ∈ R

n×n such that

p(v) = π(v)
⊤
Xπ(v) and X ∈ S+

n . (47)

The set of SOS polynomials has thus a SDP representation of the form

Ax = b, x ∈ K (48)

where K = S+
n , A ∈ R

m×n2

is a linear operator depending only on the choice
of basis π(v), and b ∈ R

m is a vector depending on p(v). For example if the
vector of basis polynomials π(v) = [xα]|α|≤d contains monomials xα indexed by
α ∈ N

n, then identifying powers of v in relation (47) yields

pα = 〈Aα, π(v)π(v)
⊤〉, for all α
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where matrix Aα selects monomials xα in rank-one matrix π(v)π(v)
⊤
. More

specifically, the entry in Aα with row index β and column index γ is equal to
one if β + γ = α and zero otherwise. In problem (48), the row indexed by α in
matrix A collects entries of matrix Aα, and the row indexed by α in vector b is
equal to pα. Note that

n =

(

N + d
N

)

and m =

(

N + 2d
N

)

,

so that the sizes of SDP problems grow quickly with the degree and the number
of variables.

The important remark is that this type of constraints are favorable to regu-
larization methods: AA⊤ is always diagonal indeed. To see this, let α, β denote
the row and column indices in matrix AA⊤. By construction, the entry (α, β)
in AA⊤ is equal to 〈Aα, Aβ〉: if α = β, this is equal to the number of non-zero
entries in matrix Aα, otherwise, this is zero. Since it is important for numerical
efficiency, we formalize the previous remark in a proposition.

Proposition 3 (Orthogonality of constraints) Let A be the matrix in SOS
semidefinite problem (48). Then AA⊤ is diagonal with integer entries.

Polynomial optimization problems that we consider in the next two sections
are difficult to tackle directly but admit standard SOS relaxations involving
constraints sets (48). In practice, an SOS relaxation approach boils down to
solving linear semidefinite problems of the form

{

min c⊤x
Ax = b, x ∈ S+

n
(49)

where and c ∈ R
n2

, b ∈ R
m, A ∈ R

m×n2

, and vector x collects entries of
matrix X ∈ R

n×n. For solving problem (49), we use the three following the
public-domain Matlab implementations:

1. SeDuMi1.3 implementing the primal-dual interior-point algorithm of [Stu99]
(available on sedumi.ie.lehigh.edu)

2. MPRW a version of the basic regularization method of [MPRW09, Sec. 5.1]
(available on www.math.uni-klu.ac.at/or/Software/mprw2.m)

3. SDPNAL0.1 the regularization method of [ZST10]
(available on www.math.nus.edu.sg/∼mattohkc/SDPNAL.html)

Our goal here is just to show that the regularization methods are interesting
in this context. We simply use default parameter tunings of the algorithms,
with no attempt to adapt them to each particular problem instances contrary
to in [Nie09]. With K.s=n, the calling sequences of the three Matlab functions
SeDuMi, MPRW and SDPNAL for solving (49) are thus as follows:
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pars = []; pars.tol = 1e-9;

[x,y] = sedumi(A,b,c,K,pars);

X = reshape(x,K.s,K.s);

tol = 1e-9; C = reshape(c,K.s,K.s);

[X,y] = mprw(A,b,C,1e6,1,tol);

opts = []; opts.tol = 1e-9;

[blk,At,C,B] = read_sedumi(A,b,c,K);

[obj,X,y] = sdpnal(blk,At,C,B,opts);

X = X{1};

Experiments are carried out with Matlab 7.7 running on a Linux PC with
Intel Xeon CPU W3520 2.67Ghz using 64 bit arithmetic and 8GB RAM. Com-
putation times are given in seconds, with two significant digits only (since our
objective is not a comprehensive accurate benchmarking of codes).

Similarly to [Nie09], we will see that, due to lower memory requirements,
regularization methods can solve larger polynomial optimization problems than
classical interior-point methods with the above setting.

A last note about tolerance. The tolerance parameters tol for the three
solvers are set to 10−9 for all the numerical experiments (except otherwise
stated). Notice though that the meaning of the tolerance parameter is not
the same for two types of algorithms. With regularization methods, the relative
accuracy measured in terms of primal and residuals (remember (41)) is easily
controlled. We stress that lower requirements on the relative accuracy could
result in a significant saving of computational time, and this could be useful
when solving approximately large-scale problems with MPRW and SDPNAL
(see some examples in [Nie09]). In contrast, we observe (as expected) that the
iteration count of SeDuMi does not depend significantly on the expected accu-
racy, measured in terms of duality gap. Most of the computational time is spent
to generate an approximately feasible primal-dual pair with relatively small du-
ality gap, and only a few more iterations are required to refine the accuracy
below 10−9.

4.2 Testing positivity of polynomials

We focus in this section on the very first problem of polynomial optimization:
we would like to know whether a polynomial (45) is positive

p(v) ≥ 0, for all v ∈ R
N . (50)

In general this is a difficult problem for which no polynomial-time algorithm is
known. It can be relaxed to the easier problem of testing if p could be expressed
as an SOS (46). Whenever it holds, then obviously condition (50) is satisfied.
The converse is not true in general if N ≥ 2 and d ≥ 3, and there are explicit
counter-examples; the simplest of them (the Motzkin polynomial) is studied
below.
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4.2.1 Random full-rank polynomial SOS problems

We consider random polynomial SOS problems which are constructed so that
there is a full-rank orthogonal Gram matrix X (an interior point) solving prob-
lem (47). We use GloptiPoly 3 (see [Las09]) to generate matrix A and vector b
as follows:

N = 5; % number of variables

d = 3; % half degree

mpol(’v’,N,1); % variables

P = msdp(min((v’*v)^d); % construct A matrix

[A,b,c,K] = msedumi(P); % retrieve A and K in SeDuMi format

A = [c’;-A]; % constant term and sign change

c = zeros(size(A,2),1); % no objective function

X = orth(randn(K.s)); % random Gram matrix

b = A*X(:); % corresponding right handside vector

On Table 1 we report execution times (in seconds) required by SeDuMi,
MPRW and SDPNAL to solve problem (48) for d = 3 (degree six polynomials)
and N = 5, . . . , 12. We also indicate the size n of matrix X and the number m
of constraints (row dimension of matrix A). We observe that SeDuMi is largely
outperformed by MPRW and SDPNAL. We also observe that MPRW is about
4 times slower than SDPNAL, but this is not surprising as MPRW is a sim-
ple prototype (without comments and printing instructions it is about 50 lines
of interpreted Matlab), whereas SDPNAL is a much more sophisticated pack-
age heavily relying on the efficient data handling and numerical linear algebra
routines of the SDPT3 package. We also recall that SDPNAL makes several
iterations of MPRW as preprocessing.

N n m SeDuMi MPRW SDPNAL
5 56 462 0.29 0.03 0.05
6 84 924 0.92 0.05 0.07
7 120 1716 4.8 0.13 0.10
8 165 3003 25 0.35 0.16
9 220 5005 110 0.66 0.25
10 286 8008 410 1.3 0.43
11 364 12376 1500 3.0 0.73
12 455 18564 > 3600 5.0 1.3

Table 1: Comparative execution times for SOS problems.

4.2.2 Random low-rank polynomial SOS problems

We consider random polynomial SOS problems which are constructed so that
there is a rank-one Gram matrix X solving problem (48). For such problems,
it is unlikely that there is an interior point x solving problem (48), and indeed
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SeDuMi does not find a full-rank solution. We use the same code as above,
replacing the instruction X = orth(randn(K.s)); with the instructions

X = orth(randn(K.s,1));

X = X*X’;

We report execution times (in seconds) in Table 2. In comparison with the
problems with interior points of Table 1, we observe that all the solvers experi-
ence convergence issues. However, there is still a considerable improvement in
terms of efficiency brought by regularization methods, though Slater’s qualifi-
cation constraint cannot be invoked to guarantee convergence.

N n m SeDuMi MPRW SDPNAL
5 56 462 0.83 0.20 0.21
6 84 924 0.85 0.32 0.28
7 120 1716 16 2.1 0.51
8 165 3003 61 4.8 0.98
9 220 5005 330 12 1.2
10 286 8008 1300 24 2.5
11 364 12376 > 3600 50 3.5
12 455 18564 > 3600 110 6.6

Table 2: Comparative execution times for low-rank SOS problems.

4.2.3 Motzkin’s polynomial

We study a well-known bivariate (N = 2) polynomial of sixth degree (d =
3) which is non-negative but cannot be written as a polynomial SOS, namely
Motzkin’s polynomial

p0(v) = 1 + v21v
2
2(v

2
1 + v22 − 3)

see [Lau09] or [Las09]. This polynomial achieves its minimum zero at the four
points v1 = ±1, v2 = ±1. In a basis of monomials of degree up to 3 there is no
Gram matrix X solving problem (48). However, it was observed in [HL05] and
later on shown theoretically in [Las06] that the perturbed polynomial

p0(v) + εp1(v)

can be represented as a polynomial SOS (with full-rank Gram matrix) pro-
vided the degree of the perturbation polynomial p1(v) is high enough, inversely
proportional to scalar ε > 0. In some sense, this can be interpreted as a reg-
ularization procedure as in [HM11]. Practically speaking, since semidefinite
programming solvers use inexact operations (floating point arithmetic), it is not
necessary to perturb explicitly the data. It is enough to choose a basis π(v) of
sufficiently high degree d > 3 in relation (47), and higher-order perturbations
are automatically introduced by the algorithm.

We use the following GloptiPoly3 instructions to generate data A, b for
increasing values of d:
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d = 8; % half degree

mpol v1 v2

p = 1+v1^2*v2^2*(v1^2+v2^2-3);

P = msdp(min(p),d);

[A,b,c,K,b0] = msedumi(P);

A = [c’;-A];

b = [-b0;-b];

c = zeros(size(A,2),1);

For this problem, we set tol=1e-6 for the three solvers. When d = 3, 4, 5, 6,
SeDuMi takes less than 0.1 seconds to detect that problem (48) is infeasible,
and it provides a Farkas dual certificate vector y ∈ −K such that b⊤y = 1.
When d = 7, 8, 9, 10, SeDuMi takes less than 0.5 seconds to return a vector x
such that the primal residual ‖Ax − b‖2/‖b‖2 is less than 10−9 and the dual
objective function b⊤y is less than 10−9 in absolute value.

The behavior of SDPNAL and MPRW is more erratic, and convergence
issues occur, as shown by the execution times (in seconds) of Table 3. For
d = 3, 4, 5, MPRW stops after 106 iterations, as there is no mechanism to detect
infeasibility in this prototype software.

d time ‖Ax− b‖2/‖b‖2 b⊤y
3 - - -
4 - - -
5 - - -
6 15 6.20 · 10−6 1.12 · 10−6

7 25 6.03 · 10−7 6.81 · 10−7

8 26 5.80 · 10−6 −4.08 · 10−7

9 34 1.01 · 10−6 −1.45 · 10−7

10 75 5.42 · 10−7 −1.58 · 10−7

d time ‖Ax− b‖2/‖b‖2 b⊤y
3 5.1 4.28 · 10−3 33.4
4 9.2 1.56 · 10−4 0.832
5 3.5 4.59 · 10−6 4.37 · 10−5

6 4.6 6.33 · 10−6 1.05 · 10−6

7 5.7 8.95 · 10−6 3.86 · 10−7

8 5.9 2.79 · 10−6 −3.46 · 10−7

9 7.9 2.54 · 10−6 −3.25 · 10−7

10 8.8 1.88 · 10−6 −1.34 · 10−7

Table 3: Behavior of MPRW (left) and SDPNAL (right) for Motzkin’s polyno-
mial.

4.2.4 Regularization vs projection

Though it solves linear semidefinite problems, using regularization techniques
somehow generalizes and enhances the idea [HM11] to using projection methods
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directly for SOS feasibility problems. With this approach indeed, a question is
to find a good point to project; taking systematically the zero matrix gives inter-
esting results but could be greatly enhanced. Regularization methods provide a
numerical solution to this: doing a sequence of truncated projections allows to
keep the projection idea while getting rid of the question of the initial point to
project. The behaviour of SDPNAL is interesting with this respect: it does first
a preprocessing of several alternating direction iterations to get a meaningful
point, then follows by projection-like iterations. In practice, we observe usually
a very few iterations, and often one. For example, to decide whether the (admit-

tedly trivial) polynomial p(v) =
∑10

i=1
v10i is SOS, the SDP problem dimensions

are n = 3003 and m = 184756, and after 90 seconds and only one projection-like
iteration, SDPNAL provides a vector x satisfying ‖Ax− b‖2/‖b‖2 ≈ 1.4 · 10−10.

4.3 Unconstrained polynomial minimization

In this section we study global minimization problems

p∗ = min
v∈RN

p(v) (51)

where p(v) is a given polynomial. For this problem, a semidefinite relaxation
readily follows from the observation that

p∗ = maxp p

s.t. p(v)− p ≥ 0, ∀v ∈ R
N

and by relaxing the above non-negativity constraint by the semidefinite pro-
gramming constraint that polynomial p(v)− p is SOS, see [Lau09] and [Las09].

4.3.1 Random polynomial minimization problems

We generate well-behaved instances of unconstrained polynomial minimization
problems (51) with

p(v) = p0(v) +
N
∑

i=1

v2di

where p0(v) is a random polynomial of total degree strictly less than 2d. The

leading term
∑N

i=1
v2di ensures coercivity of p(v) and hence existence of a global

minimum in (51). We use the following GloptiPoly 3 script to generate our
examples:

N = 10;

mpol(’v’,N,1);

b = mmon(v,0,2*d-1); % degree up to 2d-1

p0 = randn(1,length(b)); p0 = p0/norm(p0);

p = p0*b + sum(mmon(v,d).^2);

P = msdp(min(p));

[A,b,c,K] = msedumi(P);
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In Table 4 we report comparative execution times (in seconds) for d = 2 and
various values of N , for solving the semidefinite relaxation. It turns out that
for these generic problems, we observe that global optimality is always certified
with a rank-one moment matrix [HL05]. Both MPRW and SDPNAL largely
outperform SeDuMi on these examples.

N n m SeDuMi MPRW SDPNAL
5 21 126 0.09 0.05 0.18
6 28 209 0.11 0.07 0.18
7 36 329 0.24 0.12 0.20
8 45 494 0.36 0.19 0.22
9 55 714 0.77 0.28 0.26
10 66 1000 1.9 0.45 0.29
11 78 1364 5.0 0.78 0.36
12 91 1819 11 1.1 0.41
13 105 2379 20 1.6 0.47
14 120 3059 42 2.3 0.65
15 136 3875 74 3.0 0.68

Table 4: Comparative execution times for semidefinite relaxations of random
polynomial minimization problems.

4.3.2 A structured example

Consider the problem studied in [Nie09, Example 3.5], that is (51) with

p(v) =

N
∑

i=1



1−
i

∑

j=1

(vj + v2j )





2

+



1−
N
∑

j=1

(vj + v3j )





2

.

We solve the semidefinite relaxation for increasing values of N . We collect
comparative execution times on Table 5 for this example. For example, when
N = 10, SDPNAL resp. MPRW returns a point x such that ‖Ax − b‖/‖b‖ is
equal to 1.4 · 10−9 resp. 2.6 · 10−10 and the minimum eigenvalue of X is equal
to zero to machine precision.

We observe again a considerable improvement in terms of performance brought
by regularization methods in comparison with a classical interior-point method.
For larger instances, most of the computation time of SeDuMi is spent for mem-
ory swapping when constructing and handling large matrices. We refer to the
recent extensive numerical work of [Nie09] for various structured problems.
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N n m SeDuMi MPRW SDPNAL
5 56 461 0.50 0.54 0.60
6 84 923 2.5 1.2 1.2
7 120 1715 14 5.0 2.6
8 165 3002 92 19 6.7
9 220 5004 410 65 22
10 286 8007 1800 200 71
11 364 12375 7162 490 150
12 455 18563 > 7200 1500 530
13 560 27131 > 7200 3500 2300
14 680 38760 > 7200 > 7200 9900

Table 5: Comparative execution times for semidefinite relaxations of a larger
polynomial minimization problem.
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[CL93] R. Correa and C. Lemaréchal. Convergence of some algorithms for
convex minimization. Mathematical Programming, 62(2):261–275,
1993.

[Cla83] F.H. Clarke. Optimization and Nonsmooth Analysis. Wiley, 1983;
reprinted by SIAM, 1983.

[DET82] R. Dembo, S. Eisenstat, and T.Steihaug. Inexact Newton methods.
SIAM Journal on Numerical Analysis, 19(2), 1982.

[Deu01] F. Deutsch. Best Approximation in Inner Product Spaces. Springer,
New York, 2001.

[DR56] J. Douglas and H.H. Rachford. On the numerical solution of heat
conduction problems in two and three space variables. Trans. Amer.
Math. Soc., 82:421–439, 1956.

[DR07] I. Dukanovic and F. Rendl. Semidefinite programming relaxations
for graph coloring and maximal clique problems. Mathematical Pro-
gramming, 109:345–365, 2007.

[Dum07] B. Dumitrescu. Positive Trigonometric Polynomials and Signal
Processing Applications. Springer Verlag, 2007.

[Dyk83] R.L. Dykstra. An algorithm for restricted least-square regression.
Journal of the American Statistical Association, 78:837–842, 1983.

33
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