58 research outputs found

    Microwave dielectic resonator antenna design for studying of breast cncer phantom detection methodology

    Get PDF

    Prediction of Water Activity in Cured Meat using Microwave Spectroscopy

    Get PDF
    This work addresses the use of microwave techniques to determine quality parameters in cured meat. The first approach is online monitoring of weight loss in the meat curing process, which is a significant measurement for the meat industry because the weight loss is used as a method of tracking the curing process. Currently, weight loss is measured by using ordinary weighing scales, which is a time-consuming and impractical technique. Thus, a novel method is required to simplify the process by implementing an online monitoring technique. In this work, a set of microwave sensors were modelled using High Frequency Structure Simulation Software and then constructed and tested. Weight loss of the sample and change in the S11-parameter illustrated a strong linear relationship (R2 > 0.98). The prediction model then was developed using the Partial Least Squares method, which exhibited a good capability of microwave sensors to predict weight loss, with R2p (prediction) = 0.99 and root mean square error of prediction (RMSEP) = 0.41. The second approach is to determine water activity (aw) in cured meat, which is the parameter that describes available water for microorganisms and influences different chemical reactions in the product. For the cured meat industry, aw is the only moisture related measurement that is an accepted Hazard Analysis and Critical Control Point plan. This is important for safety reasons, but also for energy optimisation since curing requires controlled continuous temperature and humidity. Currently, aw is being measured by the meat industry using commercially available instruments, which have limitations, namely being destructive, expensive and time-consuming. Few attempts to develop non-destructive methods to predict aw have used X-ray systems (namely Computed Tomography), Near Infrared (NIR) and Hyperspectral Imaging (HSI). Although the techniques provided promising results, they are expensive, impractical and not commercially available for the meat industry. The results from the microwave sensors demonstrated a linear relationship (R2 = 0.75, R2 = 0.86 and R2 = 0.91) between the S11 and aw at 2.4 GHz, 5 GHz and 7 GHz, respectively. The prediction model exhibited a good capability of the sensors to predict aw (R2p = 0.91 and RMSEP = 0.0173

    Detection of brain stroke in simulation and realistic 3-D human head phantom using microwave imaging

    Get PDF
    Brain stroke is globally one of the most widespread sorts of brain abnormalities. There are common symptoms between the transient ischemic attack (TIA), strokes and generic medical conditions like fainting, migraine, heart problems and seizures. Therefore, the other health conditions should not be misdiagnosed with stroke. It is well known that providing immediate medical attention for a patient with a brain injury is of vital importance. Every second, from the moment of brain injury, millions of brain cells die, leading to irreparable and permanent damage or even death. Thus, if medical staff diagnose stroke, and perform an appropriate drug treatment within a few hours of the symptoms onset, they play a crucial role in saving a patient’s life. The key factor in treatment is to reliably diagnose the stroke immediately. Hence, a portable diagnosic system is pivotal on the spot for rapid diagnosis of brain injuries. Initially, a clinical examination using a neurological assessment is performed by a general practitioner (GP). Compared to CT and MRI scanners, microwave imaging (MWI) can provide a portable detection system, and allow initial diagnosis of various emergency, life-threatening circumstances such as strokes due to brain injury, whilst patients are still being taken by ambulance to hospital, and saving critical time. In recent years, MWI has emerged as a promising non-ionising and non-invasive technology for a range of applications, particularly medical applications. In the current thesis, radar-based MWI is proposed as a procedure for brain haemorrhagic stroke detection. This imaging procedure has also more advantages such as low cost, being portable, fast, and easy to use with a good potential for brain haemorrhage detection. In MWI, the imaging of different human head tissues relies on their different response (i.e., electric contrast) to an applied microwave radiation. MWI is a screening technology for detection and monitoring of haemorrhagic stroke, tumours and cancerous cells, based on the significant contrast in the dielectric properties at microwave frequencies of normal and abnormal tissues. This thesis deals with the use and validation of an innovative low complexity MWI procedure for brain imaging, where antennas operate in free space. In particular, we employ only two microstrip antennas, operating between 1 and 2 GHz for successful detection of the haemorrhagic stroke. Detection is achieved using both simulation and experimental measurements. I. In the first stage, a wideband (WB) microstrip antenna with fractal ground plane is proposed, simulated and fabricated for brain haemorrhage detection. The designed antennas exhibit a WB working frequency between 1-2 GHz. This band has demonstrated to be ideal and optimal to do brain imaging; in addition, it is obviously emphasised that WB can enhance performance in lesion detection. The simulations have been performed applying an anthropomorphic human head model where a haemorrhagic stroke has been inserted (using CST Microwave studio). The simulation results concluded that the emulated brain haemorrhagic stroke can be distinguished at four different positions of 0◦, 5◦, 40◦, and 45◦. II. The second stage of this study presents a hemi-ellipsoidal human head phantom with a millimetric cylindrically-shaped inclusion to emulate brain haemorrhage (suitable to be used inside the anechoic chamber) and a human head phantom (suitable to be applied in MWI device). The process has been performed based on the following procedures: - In the second, stage, first, multi-biostatic frequency-domain measurements have been performed to collect the transfer function (S21) between two proposed mono-static radar system based antennas inside an anechoic chamber using a multi-layered phantom mimicking a human head. This procedure is used to measure the received signal (S21). A Vector Network Analyser (VNA) is linked to the mentioned antennas, and the measured (S21) are recorded when they changed the position to every new observation position. Subsequently, the measured (S21) are post-processed in order to generate microwave images with emphasising the object (e.g. the tumour or the stroke). In this stage, on the basis of the measurement results, it is concluded that the object (brain haemorrhagic stroke phantom) can be successfully detected at four different positions of 0◦, 90◦, 180◦ and 270◦. - Secondly, since the results coming from measurements inside the anechoic chamber are not as realistic as clinical trials reports and also there is a medical requirement for a brain stroke portable imaging device, we have come to a decision on applying different signal pre-processing methods to the imaging results collected from a portable MWI device for brain haemorrhage imaging. A portable MWI device, which operates in free space with two azimuthally-rotating antennas, has been used for brain haemorrhage detection. Measurements are performed by recording the complex (S21) in a multi-bistatic fashion, i.e. for each transmitting position the receiving antenna is moved to measure the received signal every 4.5◦, leading to a total of 80 receiving points. In conclusion, based on the results of the MWI device, the inclusion emulating the brain haemorrhage may be detected at four different positions of 0◦, 90◦, 180◦ and 270◦. In this thesis, all images have been obtained through Huygens Principle (HP). To reconstruct the image, signal pre-processing techniques are used to reduce artefacts (which may be due to the direct fields and the fields reflected by the first layer). Subtraction artefact removal method between the data of a healthy head and the data of a head with stroke has been initially employed in simulation and measurements. Accordingly, an "Ideal" image would be generated using this artefact removal method to prove the concept of the technology. This would mean that the "Ideal" image performed as a reference for the comparison with the resulting image from using other artefact removal methods. It is important to point out that, for the purposes of real scenario, there is no possibility of applying this artefact removal method to medical imaging, where the ideal response is not calculated or known. Hence, in clinical trials this artefact removal method cannot be helpful. In addition to the subtraction artefact removal method, in this research, four more methods have been introduced and investigated. These methods consist of rotation subtraction, average subtraction, differential symmetric receiver type, and summed symmetric differential. The subtraction and rotation subtraction artefact removal methods have been used both in simulations and measurements. It has been verified that all artefact removal procedures allow detection. Subsequently, 6 dedicated image quantification procedures have been implemented in order to assess the detection capability. These procedures comprise area difference, centroid difference, signal-to-noise ratio, structural similarity index metric, image quality index, and signal-to-clutter ratio. Validation of the techniques through both simulation and experimental measurements have been performed and presented, illustrating the effectiveness of the methods

    Multi-antenna multi-frequency microwave imaging systems for biomedical applications

    Get PDF
    Medical imaging refers to several different technologies that are used to view the human body in order to diagnose, monitor, or treat medical conditions. Each type of technology gives different information about the area of the body being studied depending on the radiation used to illuminate de body. Nowadays there are still several lesions that cannot be detected with the current methods in a curable stage of the disease. Moreover they present some drawbacks that limit its use, such as health risk, high price, patient discomfort, etc. In the last decades, active microwave imaging systems are being considered for the internal inspection of light-opaque materials thanks to its capacity to penetrate and differentiate their constituents based on the contrast in dielectric properties with a sub-centimeter resolution. Moreover, they are safe, relatively low-cost and portable. Driven by the promising precedents of microwaves in other fields, an active electromagnetic research branch was focused to medical microwave imaging. The potential in breast cancer detection, or even in the more challenging brain stroke detection application, were recently identified. Both applications will be treated in this Thesis. Intensive research in tomographic methods is now devoted to develop quantitative iterative algorithms based on optimizing schemes. These algorithms face a number of problems when dealing with experimental data due to noise, multi-path or modeling inaccuracies. Primarily focused in robustness, the tomographic algorithm developed and assessed in this thesis proposes a non-iterative and non-quantitative implementation based on a modified Born method. Taking as a reference the efficient, real-time and robust 2D circular tomographic method developed in our department in the late 80s, this thesis proposes a novel implementation providing an update to the current state-of-the-art. The two main contributions of this work are the 3D formulation and the multi-frequency extension, leading to the so-called Magnitude Combined (MC) Tomographic algorithm. First of all, 2D algorithms were only applicable to the reconstruction of objects that can be assumed uniform in the third dimension, such as forearms. For the rest of the cases, a 3D algorithm was required. Secondly, multi-frequency information tends to stabilize the reconstruction removing the frequency selective artifacts while maintaining the resolution of the higher frequency of the band. This thesis covers the formulation of the MC tomographic algorithm and its assessment with medically relevant scenarios in the framework of breast cancer and brain stroke detection. In the numerical validation, realistic models from magnetic resonances performed to real patients have been used. These models are currently the most realistic ones available to the scientific community. Special attention is devoted to the experimental validation, which constitutes the main challenge of the microwave imaging systems. For this reason, breast phantoms using mixtures of chemicals to mimic the dielectric properties of real tissues have been manufactured and an acquisition system to measure these phantoms has been created. The results show that the proposed algorithm is able to provide robust images of medically realistic scenarios and detect a malignant breast lesion and a brain hemorrhage, both at an initial stage

    The VHP-F Computational Phantom and its Applications for Electromagnetic Simulations

    Get PDF
    Modeling of the electromagnetic, structural, thermal, or acoustic response of the human body to various external and internal stimuli is limited by the availability of anatomically accurate and numerically efficient computational models. The models currently approved for use are generally of proprietary or fixed format, preventing new model construction or customization. 1. This dissertation develops a new Visible Human Project - Female (VHP-F) computational phantom, constructed via segmentation of anatomical cryosection images taken in the axial plane of the human body. Its unique property is superior resolution on human head. In its current form, the VHP-F model contains 33 separate objects describing a variety of human tissues within the head and torso. Each obejct is a non-intersecting 2-manifold model composed of contiguous surface triangular elements making the VHP-F model compatible with major commercial and academic numerical simulators employing the Finite Element Method (FEM), Boundary Element Method (BEM), Finite Volume Method (FVM), and Finite-Difference Time-Domain (FDTD) Method. 2. This dissertation develops a new workflow used to construct the VHP-F model that may be utilized to build accessible custom models from any medical image data source. The workflow is customizable and flexible, enabling the creation of standard and parametrically varying models facilitating research on impacts associated with fluctuation of body characteristics (for example, skin thickness) and dynamic processes such as fluid pulsation. 3. This dissertation identifies, enables, and quantifies three new specific computational bioelectromagnetic problems, each of which is solved with the help of the developed VHP-F model: I. Transcranial Direct Current Stimulation (tDCS) of human brain motor cortex with extracephalic versus cephalic electrodes; II. RF channel characterization within cerebral cortex with novel small on-body directional antennas; III. Body Area Network (BAN) characterization and RF localization within the human body using the FDTD method and small antenna models with coincident phase centers. Each of those problems has been (or will be) the subject of a separate dedicated MS thesis

    Standing-Wave Dielectric Array Antennas

    Get PDF
    Due to the evolutions in wireless communication systems, antenna engineers have been confronting a number of challenges regarding improving the performance of antennas, miniaturizing the size as well as considering the fabrication simplicity. Although dielectric resonator antennas typically suffer from exhibiting low gain, they have been thoroughly under investigating as they are being excellent candidates to be utilized to fulfill contemporary communication systems requirements and specifications, especially at high-frequency ranges. The reason behind this solicitude is because they have several advantageous features, including but not limited to the simplicity of the used excitation mechanism and fabrication easiness. One of the well-known methods to improve the gain is by arraying additional individual DRAs. However, one major obstacle evokes when designing the array to operate at a higher frequency. Spurious radiations from the feeding network are considerable and unfavorably influence the overall array performance. Moreover, it is mandatory to have several quarter-wavelength transmission lines and power dividers which, in turns, lead to high configuration complexity. The substantial intention of this dissertation is to explore dielectric resonator array antenna designs where the concept of standing waves is utilized. In contradictory to corporate-fed traveling-wave array antennas designs, the need to utilize microstrip discontinuities such as quarter-wave transformers or power dividers is eliminated while having a single feeding port to excite the entire array structure. Consequently, undesired spurious coupling and radiations can be exceedingly minimized especially when operating at very high-frequency bands. The dissertation proposes two novel dielectric array configurations based on the concept of standing-wave. In the first configuration, vertical and horizontal low-profile dielectric bridges have been employed to connect 3x3 dielectric array elements. The top surface of each bridge is covered by a metallic patch to prevent unfavorable radiations coming out of the bridges. The array structure is fed using a single coupling aperture resides symmetrically underneath the center element only. When exciting waves are coupled to the center element, these waves can be transferred to other array elements via the introduced dielectric bridges. Therefore, the entire structure resonates at the resonant frequency as a whole. The proposed design provides a realized gain of about 15 dBi at the boresight. The return loss is about -20 dB possessing about 35.7% useful impedance bandwidth. The experimental results show excellent agreement with those obtained by simulation. The second proposed configuration consists of four dielectric resonator antennas forming a linear array. On the top surface of the substrate and between the array elements, there are three metallic patches which are employed to excite the array elements. These patches are slightly extended under the slabs to allow sufficient coupling. Under each dielectric slab, there is one metallic patch reside symmetrically at the center to enhance the wave coupling in both directions toward the array elements. The single feeding coaxial probe is attached to the center patch, and its location was optimized to provide excellent impedance matching. The maximum observed gain is 15 dBi at the boresight. The array structure is well matched and the return loss is measured to be -45 dB. The validity and versatility of both designs are realized and illustrated. One powerful advantageous feature is that the feeding network was extremely simplified to a single port to excite the entire array structure. Another advantage is that both designs were partially fabricated using 3D printing technology. Therefore, it can be said that the proposed configurations are easy to fabricate since the complexity of designing feeding networks was obviated

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Electromagnetic Waves

    Get PDF
    This volume is based on the contributions of several authors in electromagnetic waves propagations. Several issues are considered. The contents of most of the chapters are highlighting non classic presentation of wave propagation and interaction with matters. This volume bridges the gap between physics and engineering in these issues. Each chapter keeps the author notation that the reader should be aware of as he reads from chapter to the other
    corecore