62 research outputs found

    High-performance flexible energy storage and harvesting system for wearable electronics.

    Get PDF
    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices

    Small-Scale Energy Harvesting from Environment by Triboelectric Nanogenerators

    Get PDF
    The increasing needs to power trillions of sensors and devices for the Internet of Things require effective technology to harvest small-scale energy from renewable natural resources. As a new energy technology, triboelectric nanogenerators (TENGs) can harvest ambient mechanical energy and convert it into electricity for powering small electronic devices continuously. In this chapter, the fundamental working mechanism and fundamental modes of a TENG will be presented. It can harvest all kinds of mechanical energy, especially at low frequencies, such as human motion, walking, vibration, mechanical triggering, rotating tire, wind, moving automobile, flowing water, rain drops, ocean waves, and so on. Such variety of energy harvesting methods promises TENG as a new approach for small-scale energy harvesting

    A review of solar energy harvesting electronic textiles

    Get PDF
    An increased use in wearable, mobile, and electronic textile sensing devices has led to a desire to keep these devices continuously powered without the need for frequent recharging or bulky energy storage. To achieve this, many have proposed integrating energy harvesting capabilities into clothing: solar energy harvesting has been one of the most investigated avenues for this due to the abundance of solar energy and maturity of photovoltaic technologies. This review provides a comprehensive, contemporary, and accessible overview of electronic textiles that are capable of harvesting solar energy. The review focusses on the suitability of the textile-based energy harvesting devices for wearable applications. While multiple methods have been employed to integrate solar energy harvesting with textiles, there are only a few examples that have led to devices with textile properties

    Bioinspired Designs and Biomimetic Applications of Triboelectric Nanogenerators

    Get PDF
    The emerging novel power generation technology of triboelectric nanogenerators (TENGs) is attracting increasing attention due to its unlimited prospects in energy harvesting and self-powered sensing applications. The most important factors that determine TENGs’ electrical and mechanical performance include the device structure, surface morphology and the type of triboelectric material employed, all of which have been investigated in the past to optimize and enhance the performance of TENG devices. Amongst them, bioinspired designs, which mimic structures, surface morphologies, material properties and sensing/power generation mechanisms from nature, have largely benefited in terms of enhanced performance of TENGs. In addition, a variety of biomimetic applications based on TENGs have been explored due to the simple structure, self-powered property and tunable output of TENGs. In this review article, we present a comprehensive review of various researches within the specific focus of bioinspired TENGs and TENG enabled biomimetic applications. The review begins with a summary of the various bioinspired TENGs developed in the past with a comparative analysis of the various device structures, surface morphologies and materials inspired from nature and the resultant improvement in the TENG performance. Various ubiquitous sensing principles and power generation mechanisms in use in nature and their analogous artificial TENG designs are corroborated. TENG-enabled biomimetic applications in artificial electronic skins and neuromorphic devices are discussed. The paper concludes by providing a perspective towards promising directions for future research in this burgeoning field of study

    Soft Materials for Wearable/Flexible Electrochemical Energy Conversion, Storage, and Biosensor Devices

    Get PDF
    none6Next-generation wearable technology needs portable flexible energy storage, conversion, and biosensor devices that can be worn on soft and curved surfaces. The conformal integration of these devices requires the use of soft, flexible, light materials, and substrates with similar mechanical properties as well as high performances. In this review, we have collected and discussed the remarkable research contributions of recent years, focusing the attention on the development and arrangement of soft and flexible materials (electrodes, electrolytes, substrates) that allowed traditional power sources and sensors to become viable and compatible with wearable electronics, preserving or improving their conventional performances.openBocchetta, P.; Frattini, D.; Ghosh, S.; Mohan, A.M.V.; Kumar, Y.; Kwon, Y.Bocchetta, P.; Frattini, D.; Ghosh, S.; Mohan, A. M. V.; Kumar, Y.; Kwon, Y

    Synthesis and characterization of piezoelectric thin films as functional materials for sensing

    Get PDF
    This thesis reports about the sputter deposition and characterization of ZnO nanomaterials both in the form of dense and sponge-like thin films. It is shown that high-quality ZnO thin films can be successfully grown on both hard and flexible conductive substrates, with the final aim of proving that their piezoelectric and electrical properties can be successfully exploited in the fabrication of piezoelectric-based nanosensors and nanoactuators. To further state the versatility of ZnO thin films, both spin coated and sputtered dense ZnO thin films were used as seed layers for promoting the growth of well-aligned ZnO nanowires. A strong relationship between the kind of seed layer, i.e., sputtered or spin-coated, and the final NWs morphology, surface chemistry and thus wettability was noticed. In particular NWs grown on sputtered seed layers showed a superhydrophobic behavior, ideal for self-cleaning, anti-fogging or microfluidic devices. In contrast, on spin coated seed layers, highly hydrophilic NWs were obtained, being suitable for further surface functionalization with enhanced adsorption properties towards biological agents or dye for imaging, diagnostic, optical or photovoltaic applications. Finally, the sponge-like morphology is further exploited for the synthesis and characterization of Mn- and Sb- doped, sponge-like ZnO films. The presence of Mn dopant resulted in a high resistance contribution. On the contrary, typical ferroelectric switching phenomena were observed in the Sb-doped ZnO films, showing the presence of hysteretical polarization loops

    Circuit design in complementary organic technologies

    Get PDF

    NATURE-INSPIRED MATERIAL STRATEGIES TOWARDS FUNCTIONAL DEVICES

    Get PDF
    Naturally sourced, renewable biomaterials possess outstanding advantages for a multitude of biomedical applications owing to their biodegradability, biocompatibility, and excellent mechanical properties. Of interest in this dissertation are silk (protein) and chitin (polysaccharide) biopolymers for the fabrication of functional biodevices. One of the major challenges restricting these materials beyond their traditional usage as passive substrate materials is the ability to combine them with high-resolution fabrication techniques. Initial research work is directed towards the fabrication of micropatterned, flexible 2D substrates of silk fibroin and chitin using bench-top photolithographic techniques. Research is focused on imparting electrochemical properties to silk proteins using conducting polymers (PEDOT: PSS and PANI) and a naturally occurring semiconductor, eumelanin. The utility of conducting biomimetic composites in device applications was demonstrated by the fabrication of fully organic silk based flexible electrochemical biosensors. The biosensors display excellent detection of dopamine and ascorbic acid with high sensitivity. A flexible silk-PEDOT: PSS based temperature sensor is also demonstrated for the accurate monitoring of skin surface temperature. Finally, the challenge of conformability at the biological interface is addressed using structure-based design strategies. Inspiration from the Japanese art of paper cutting was taken for the formation of patterned cuts on silk fibroin films using photolithography. Micropatterned cuts can increase the conformability of films to soft biological interfaces by enhancing their strain tolerance. By doping with polyaniline (PANI), flexible, intrinsically conductive silk kirigami sheets could be fabricated. Such systems have potential in personalized healthcare monitoring devices, improving efficient disease detection and diagnosis

    Enhanced Piezoelectric Performance of Printed PZT Films on Low Temperature Substrates

    Get PDF
    Since piezoelectric effect was discovered in 1880, it has been widely used in micro-actuators, sensors, and energy harvesters. Lead Zirconate Titanate (PZT) is a commonly used piezoelectric material due to the high piezoelectric response. The basic PZT film fabrication process includes deposition, sintering, and poling. However, due to the high sintering temperature (\u3e 800 °C) of PZT, only high melting point material can be served as the substrate. Otherwise, complex film transfer approach is needed to achieve flexible and foldable PZT devices. The exploration is accordingly necessary to realize direct fabrication of PZT films on low melting point substrates without affecting the piezoelectric performance. In order to lower the PZT film sintering temperature, in this work, the effect of the powder size and sintering aid on the sintering temperature was studied. A maskless, CAD driven, non-contact direct printing system, aerosol jet printer, was used to deposit PZT thick films on the substrate. This technique allows creating features without masking and etching processes that are generally required for realizing designed features via conventional deposition approaches. Broadband, sub-millisecond, high intensity flash pulses were used to sinter the PZT films. The role of all sintering parameters was investigated to regulate the sintering quality of the PZT thick films. The photonically sintered films showed much lower substrate temperature increase mainly due to the extremely short pulse duration and temperature gradient through the film thickness. The superior piezoelectric property to thermally sintered group was also obtained. This process significantly shortens the processing duration and dramatically expands the possible substrate materials. It accordingly opens the possibility of processing PZT film directly on low melting point materials. A PZT energy harvester based on this process was directly fabricated on the polyethylene terephthalate (PET) substrate to demonstrate the capability. The relation between the load and the generated power was investigated to obtain the highest output power. Up to 0.1 μW was generated from this flexible energy harvester when connected with 10 MΩ resistive load. Photonic sintering of PZT film also creates the opportunity of processing poling during sintering. Different combinations of the sintering and poling techniques were studied. It was observed that the best piezoelectric property was obtained while performing poling during photonic sintering. Consequently, a new method of printing, sintering, and poling of micro-scaled PZT films was demonstrated in this work resulting in high performance films. This process provides the capability of realizing PZT devices on low temperature substrate, facilitates the fabrication of flexible piezoelectric devices, and enhances the piezoelectric property

    The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems

    Get PDF
    The market for wearable electronic devices is experiencing significant growth and increasing potential for the future. Researchers worldwide are actively working to improve these devices, particularly in developing wearable electronics with balanced functionality and wearability for commercialization. Electrospinning, a technology that creates nano/microfiber-based membranes with high surface area, porosity, and favorable mechanical properties for human in vitro and in vivo applications using a broad range of materials, is proving to be a promising approach. Wearable electronic devices can use mechanical, thermal, evaporative and solar energy harvesting technologies to generate power for future energy needs, providing more options than traditional sources. This review offers a comprehensive analysis of how electrospinning technology can be used in energy-autonomous wearable wireless sensing systems. It provides an overview of the electrospinning technology, fundamental mechanisms, and applications in energy scavenging, human physiological signal sensing, energy storage, and antenna for data transmission. The review discusses combining wearable electronic technology and textile engineering to create superior wearable devices and increase future collaboration opportunities. Additionally, the challenges related to conducting appropriate testing for market-ready products using these devices are also discussed
    • …
    corecore