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NATURE-INSPIRED MATERIAL STRATEGIES TOWARDS FUNCTIONAL DEVICES 

 

By Sayantan Pradhan 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy in Chemical and Life Science Engineering at Virginia Commonwealth University. 

 

Advisor: Dr. Vamsi K. Yadavalli, Ph.D. 

Professor, Chemical and Life Science Engineering 

 

Research in biodevices is at a transitional point in which there is a shift from the development of 

rigid electronic components to the fabrication of flexible replacements. Flexible systems have 

attracted increasing attention due to their huge impact in healthcare, disease diagnostics and 

therapeutics, and even general way of life. However, the fabrication of flexible bioelectronics is 

limited by the selection of materials. While conventional materials have excellent electronic 

properties, they often exhibit limited compliance at biointerfaces, restricted biocompatibility, and 

poor environmental sustainability. With the increasing need for electronics in our everyday life, 

the disposal of abandoned devices has raised environmental concerns globally. Naturally sourced, 

renewable biomaterials possess outstanding advantages for a multitude of biomedical applications 

owing to their biodegradability, biocompatibility, and excellent mechanical properties. This 

dissertation focuses on the incorporation of naturally derived materials along with well-developed 

fabrication techniques for the realization of functional biodevices, with an emphasis on 
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electrochemical biosensors for the monitoring of human bioinformation. 

Of interest in this dissertation are silk (protein) and chitin (polysaccharide) biopolymers. One of 

the major challenges restricting these materials beyond their traditional usage as passive substrate 

materials is the ability to combine them with high-throughput and high-resolution fabrication 

techniques. Initial research work is directed towards the fabrication of micropatterned, flexible 2D 

substrates of silk fibroin and chitin using bench-top photolithographic techniques. Methacrylate 

moieties were conjugated to silk proteins and chitin in order to impart them with 

photocrosslinkability. The versatility of silk proteins, together with their easier processing and 

degradability in physiological environments led to their choice over chitin for the demonstration 

of functional biodevices. 

The non-conductive nature of silk proteins hinders their use in active components in functional 

electrochemical devices. Research focused on imparting electrochemical properties to silk proteins 

via conducting polymers (PEDOT: PSS and PANI) and a naturally occurring semiconductor, 

eumelanin. In return, the photocrosslinkable silk proteins provide photopatternability into 

micropatterns. The silk based conductive biomimetic inks possess favorable electronic properties 

and stability in aqueous environments. The utility of conducting biomimetic composites in device 

applications was demonstrated by the fabrication of fully organic silk based flexible 

electrochemical biosensors. The biosensors display excellent non-specific sensing of electroactive 

targets, dopamine and ascorbic acid with high sensitivity.  The benign nature of the conductive ink 

composite also allows the encapsulation of glucose oxidase enzyme (GOx) which facilitates the 

specific detection of glucose over a physiologically relevant concentration range. Further, the 

temperature dependent conductivity of PEDOT: PSS was exploited to engineer a flexible silk-

PEDOT: PSS based temperature sensor. The sensor displays a linear response in the physiological 
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temperature range with a Temperature Coefficient of Resistance (TCR) of -0.99% oC-1 with 

excellent stability towards humidity and mechanical flexure. The accurate detection of skin 

temperature was demonstrated using the silk-PEDOT: PSS based temperature sensor. 

Finally, the challenge of conformability at the biological interface is addressed using structure-

based design strategies.  Inspiration from the Japanese art of paper cutting was taken for the 

formation of patterned cuts on silk fibroin films using photolithography. Such patterned defects 

generate remarkable “self-shielding” leading to engineered elastic behavior and deformation. 

Micropatterned cuts can increase the conformability of films to soft biological interfaces by 

enhancing their strain tolerance. By doping with polyaniline (PANI), flexible, intrinsically 

conductive silk kirigami sheets could be fabricated. The unique properties of silk kirigami suggest 

a host of applications as transient, “green”, functional biointerfaces, and flexible bioelectronics. In 

conclusion, the nature-inspired material strategies developed in this dissertation work paves the 

path towards fully organic flexible biodevices with improved conformability towards soft, 

biological interfaces. Such systems have potential in personalized healthcare monitoring devices, 

improving efficient disease detection and diagnosis. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

 

1.1 INTRODUCTION  

Applications at biological interfaces, particularly those that interact and interface with biological 

systems, require materials to satisfy a number of properties. Properties such as: i. Mechanical 

robustness, ii. Biocompatibility, iii. Biodegradability, iv. Availability at a reasonable cost and, v. 

Easy processability in a sustainable manner, play an influential role in material selection.[1] It is 

challenging to synthetically design materials that can accommodate all the above requirements. 

Nature holds a myriad of materials that it employs diligently to perform a multitude of captivating, 

yet complex functions including bioactivity, mechanical toughness, optical or electromagnetic 

properties, and biocompatibility.[2, 3] Nature-derived materials have played an integral role from 

the beginning of human history, as a source of basic necessities such as food, clothing and shelter. 

It is only very recently that the scientific community has begun harnessing some of these materials 

and their unique properties to provide alternative solutions for problems while developing smart 

systems for the future. Owing to this palette of properties, there has been extensive research 

toward using natural biomaterials for a variety of tissue engineering and regenerative medicine 

applications.[4] Recently, there has been a great interest in adopting nature-derived materials for 



 

 
 

 

2 

the formation of active functional devices such as (bio)electronics, sensors, and optical systems.[5-

7] These include systems capable of performing a specific function, such as transducing signals 

from the biological environment, controlling, or activating biological functions etc.  

Concurrently, there has been a paradigm shift from traditional rigid platforms to more flexible and 

stretchable biodevices for applications on the human body.[8, 9] Recent biomedical applications 

of such platforms include electronic skins, soft-robotics, tissue engineering and wearable, or 

implantable biosensors for monitoring human bio-information.[10-15] These devices are expected 

to make a significant impact on healthcare through personalized health monitoring devices, 

improving efficient disease detection, and diagnostics. However, the fabrication of such devices is 

limited by the choice of materials. Many traditional materials show poor performance in complex, 

curvilinear biological interfaces, which makes their incorporation in flexible, wearable or 

implantable systems much more challenging.[7] On the contrary, nature-derived biomaterials 

being inherently soft and flexible in nature, can overcome the mechanical mismatch between the 

biological milieu and wearable or implanted devices. 

Flexible or conformable devices include two major components- the structural component and the 

functional component. The structural component in these devices have been mostly confined to 

synthetic polymeric materials because of their low cost, design flexibility, mechanical strength and 

overall processability.[16] However, most polymers are derived from fossil fuels, and have been 

linked to environmental pollution and poor sustainability. With the increasing need for electronics 

in our everyday life, the disposal of abandoned electronics has raised concerns globally.[17] 

Natural biopolymers provide an alternative strategy as structural materials in biodegradable 

functional biodevices. Being of natural origin, they are usually considered renewable and 

sustainable. The use of inherently biodegradable natural materials can provide additional benefits 
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by eliminating the need to surgically remove implants, thereby reducing patient discomfort. They 

can minimize immune response and scar tissue formation which are particularly important when 

designing implants for temporary use. Currently, there are numerous examples of functional 

biodevices where natural biopolymers have been used as flexible and degradable substrate on 

which the active functional components are developed.[5] 

Natural polymeric materials also have the potential of being used as the functional component in 

wearable and implanted devices.[18] These materials often act as a stable and benign matrix in 

which other active materials can be dispersed to carry out specific functions. For example, other 

electronically active materials such as metals, metal-oxides, carbon materials and conducting 

polymers can be added to the matrix of biopolymers to form the active sensing element in 

electrochemical sensors.[19] Being inherently biodegradable/ bioresorbable and biocompatible in 

nature, they can confer biodegradability to traditionally non-biodegradable active materials along 

with enhancing their compatibility in biological environments. Nature also provides several 

conductors and semiconductors such as the pigments melanin and indigo as alternatives to 

traditional synthetic counterparts.[5] However, there are several challenges that deter the use of 

natural material as active functional components. Ability to combine high-throughput and high-

resolution fabrication techniques with such materials, poor performance metrics at biological 

interfaces and poor long-term stability are some of the challenges which restrict their use in 

bioelectronics and optics, beyond functioning as substrates.[20]  

This research thesis focuses on natural proteins (silk fibroin and sericin) and polysaccharides 

(chitin) as biomaterials of choice for the fabrication of different components for use in fully 

organic, flexible and degradable devices. These devices are able to detect a wide range of physical 

and chemical physiologically relevant targets in a flexible and degradable manner. Both silk 
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proteins and chitin have been widely adopted in the field of biomedical research due to their 

distinctive intrinsic properties in addition to general properties of biomaterials noted above. Tissue 

engineering scaffolds, drug delivery vehicles, medical device packaging, and prosthetics have been 

reported.[21, 22] Recently, they have begun to be considered for the construction of biodegradable 

and biocompatible electronics, sensors and optical devices. However, significant challenges 

remain in optimizing the use of these materials in terms of function and applicability for 

conformable interfaces. This dissertation work also explores the use of natural semiconductors i.e., 

melanin, for the fabrication of the active component in electrochemical biosensor devices. Finally, 

this work also explores the adoption of new structural designs to existing materials for addressing 

the challenge of conformability to biological surfaces.  

 

1.2 RESEARCH OBJECTIVE 

The objective of this research is to explore the use of various naturally occurring biomaterials for 

applications at the biological interface, which is often complex and dynamic in nature, with an 

emphasis on biosensors which can be used for monitoring of human bioinformation. However, 

most of the materials found in nature are typically not available in the form of usable form factors. 

Hence, suitable processing strategies need to be adopted in order to facilitate their use in device 

fabrications. The natural biomaterials chosen in this work, i.e., silk proteins and chitin, have been 

extensively researched with regard to their processability for biomedical applications. In order to 

increase the complexity and repertoire of applications to biofunctional devices, the need to 

combine these materials with well developed, high throughput fabrication techniques is crucial. 

Photolithography is one such nano/microfabrication technique that is widely used due to its 

capability of patterning over a large area in a scalable process. However, a prerequisite in 
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photolithographic processes is that the material should have chemical groups that can undergo 

photo-conjugation reactions. The initial parts of this work involve using the concepts of modular 

design to chemically modify silk proteins and chitin to form photoactive counterparts to improve 

their physical properties and make them compatible with existing photolithography techniques. 

These photoactive variants along with a simple bench top photolithography process, allows the 

fabrication of various precisely patterned structures over a large area (centimeter scale) on various 

flexible and rigid substrates. After establishing the photolithography process to form patterns with 

silk and chitin, the next part of the research deals with the introduction of electrical properties to 

these silk/chitin microstructures so that they can be used for the fabrication of different elements 

in biodevices such as electrodes and circuit designs. The subsequent goal is to design devices such 

as electrochemical biosensors that are used for applications on curvilinear and dynamic surfaces. 

To this end, an emphasis was given on developing structural design concepts to address the 

challenge of enhanced conformability to biological interfaces. In summary, the aim of this work 

is to explore the use of nature derived biomaterials as an alternative route to design biodevices that 

are suitable for functioning at biological interfaces in degradable fashion, thus fulfilling the need 

of “green” electronics. 

 

1.3 SPECIFIC AIMS 

In order to achieve the goals of realizing mechanically flexible biodevices for applications on the 

human body, this research is guided along three key specific aims: 

1. Develop material processing strategies that can enable the use of silk and chitin with 

photolithographic processes. This is achieved by chemically modifying these materials to 

make them UV cross linkable. This also includes developing strategies that allow easy 



 

 
 

 

6 

processing of these materials such as enhancing the solubility, solvent compatibility and 

ability to form microstructured films, hydrogels etc. 

2. Photolithographic patterning of conductive architectures for silk/ chitin-based devices. 

This involves developments of strategies that allows the fabrication of flexible and 

degradable sensors for chemical and physical biomarkers of physiological importance.  

3. Development of strategies that can improve the flexibility and conformability of devices 

on soft surfaces. This involves adopting structural design strategies such as engineered 

“cuts” or “defects” can provide functional conformability with biological tissues as well as 

unique mechanical properties. 

1.3.1 Micropatterning of nature derived materials using photolithography 

Precise patterning of microstructures on flexible substrates using bio-derived materials is a key 

step towards the development of functional devices. The initial part of this dissertation work 

focuses on the development of a platform that allows the micropatterning of biopolymers silk and 

chitin on flexible and rigid substrates using photolithography. This includes the chemical 

modification of these materials to impart UV photocrosslinkability. 

 

1.3.2 Imparting electrical properties to nature derived materials 

This will allow their usage beyond traditional structural materials and substrates to active 

functional components in flexible biodevices. In the first part, the use of well-developed 

conducting polymers is explored due to their prevalence in modern flexible electronics to form 

photo-patternable biomimetic conducting inks. Subsequent studies are aimed at exploring the use 

of a natural semi-conductor melanin to induce electronic activity in biopolymers. 
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1.3.3 Development of biosensors for physiologically relevant biomarkers 

In this part of the study, the application of the techniques developed above was explored for the 

realization of flexible biosensors for the real time monitoring of various physiologically important 

chemical and physical biomarkers. A part of the investigation also includes development of 

strategies that allow easy connection of devices eliminating the need of electrical wires. The final 

goal of this work is to develop fully organic, flexible functional biodevices that can be easily 

interfaced with biological systems.  

 

1.3.4 Structure based design strategies towards stretchability and conformability 

The final part of this study aims at addressing the issue of conformability at soft curvilinear 

surfaces by incorporating new structural design strategies. This is achieved by introducing 

precisely designed cuts on thin polymeric films of natural origin. Inspired by “Kirigami”, the 

Japanese art of paper cutting, photolithography can be used to make selective cuts to improve 

flexibility and mechanical conformability of 2D substrates. The cuts also allow the fine tuning of 

mechanical properties of such films. The results obtained from these studies can address the 

development of substrates or active sensing regions in flexible and conformable biodevices.   

 

1.4 BACKGROUND AND SIGNIFICANCE  

The work outlined in this dissertation focuses on the use of naturally derived biomaterials for the 

fabrication of flexible devices for human health monitoring and disease diagnostics. This section 

discusses some of the background fundamental and applied studies on materials, fabrication 

techniques and design strategies that have been employed for the realization of such devices and 

its significance. 
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1.4.1 Significance of flexible devices 

Flexible devices including wearable and implantable devices have revolutionized the field of 

bioelectronics due to their capability of integrating and interacting naturally with the human body 

to stimulate or to provide valuable information from the physiological environment.[23] These 

devices are able to maintain stability in functionality and performance even under strain.[24] 

Among them, flexible and stretchable bioelectronics have generated interest for the development 

of biological sensing platforms and point-of-care diagnostic devices.[25-27] While rigid devices 

provide a snapshot of the physiological environment at a particular time in a clinical setting, 

flexible devices have the provision of being integrated with the human body to provide continuous, 

real time information in situ.[28, 29] They can mimic the dynamic nature of biological surfaces 

such as the skin to minimize any hindrance or discomfort in performing common day to day 

activities. These devices are able to achieve this by the virtue of their light weight, high flexibility 

and enhanced conformability with the soft human body.   

To achieve these properties, it is important to render flexibility in various components of devices 

such as substrates, circuits, power sources etc. Flexible substrates ensure conformal contact 

between the human body and the active component. The availability of a wide range of synthetic 

polymers has played a pivotal role in extending the frontier of wearable and implantable 

biosensors.[30] Commercially available silicone elastomers such as PDMS and Ecoflex have been 

extensively investigated as substrates for wearable devices due to their stretchability and easy 

processing.[31] Synthetic biodegradable polymers such as polyvinyl alcohol, polylactic acid, 

polycaprolactone, polyurethane, polyethylene glycol and polylactic-co-glycolic acid have also 

been studied to confer the added benefit of degradability in flexible devices.[32-35] Flexibility and 
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stretchability have been imparted to functional components using strategies such as mixing liquid 

metals with elastomers, reducing the lateral and vertical scale of metal electrodes, and introducing 

new structural designs such as serpentine, buckled and island bridge geometries.[36, 37] Carbon 

based materials such as rGO and CNTs have also been explored extensively.[38] However, the use 

of nature derived materials such as cellulose, silk proteins, collagen, gelatin and hard shellac 

provide alternatives for the development of fully organic flexible biodevices.[5] Concurrently, 

conducting polymers such as PEDOT: PSS, polyaniline and polypyrrole may be used as active 

components in flexible devices.[39] Combining natural biopolymers with conducting polymers 

can expand the repertoire of potential applications, while rendering interesting biological, 

mechanical and electrochemical properties. The following sections discuss some materials and 

strategies adopted in this dissertation work for the realization of fully organic flexible biodevices. 

 

1.4.2 Nature derived biomaterials 

Naturally-derived biomaterials is a term commonly used to describe materials primarily obtained 

from renewable sources such as animals and plants.[40] These materials are usually composites of 

polymers and minerals. They have evolved over millions of years, and have hierarchical 

architectures that display and wide range of fundamental structural and bioactive properties.[3] 

They often possess a multitude of structural and functional properties in combination with one 

another, including bioactivity, mechanical toughness, optical or electromagnetic properties.[2] 

Nature derived materials have been an integral part of human life in various forms of applications 

over thousands of years. In recent times, they have gained popularity in material science research 

due to their incomparable advantages in terms of their renewable, biocompatible, biodegradable 

and excellent mechanical properties. Of interest is the presence of reactive sites via which their 
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biological activity, porosity, and mechanical properties can be tuned by changing polymerization 

conditions or chemical functionalization.[40]  

Recently, there has been an interest in the application of naturally derived materials in flexible 

electronic devices.[5] Many natural polymers are soft, which is exploited to mimic soft tissues for 

conformable and tactile devices.[41] These devices are designed for function on or inside the 

human body. To this end, the use of naturally derived materials stems from the hypothesis that 

most of these materials can be directly contacted with tissue or skin or implanted inside the human 

body without causing significant adverse side effects. Most of these materials can be degraded or 

resorbed in biological environments in a controllable fashion, enabling their use in transient 

electronics.[42-44] It is also because of their degradable/ bioresorbable property that they are 

chosen to replace conventional materials such as polymers derived from fossil fuels, metals, and 

carbon-based materials etc., due to environmental concerns associated with them.[45]  

With regards to biodevice applications, nature derived materials can be used in two ways- they can 

either serve as the active functional component or as the structural component.[5] However, there 

are a few examples where they can be adopted in both structural and functional components. The 

properties that make them attractive for regenerative medicine, such as tunable mechanical 

strength and flexibility, lend the materials for adoption in flexible and wearable devices. As 

structural components, they have the potential to replace traditional rigid substrates as more 

flexible and sustainable counterparts. They have also been used as encapsulating layer in 

implantable devices interacting and interfacing with biological systems to enhance 

biocompatibility and device stability. As functional components they have been used singularly or 

combined with other functional materials to form the active sensing element in devices such as 

electrochemical sensors.  
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Figure 1.1 Some common proteins and polysaccharides found in nature.[5] 

 

The selection of naturally derived biopolymers for degradable biodevices can be primarily divided 

into two categories- polysaccharides and proteins. Most of the nature derived materials that have 

been investigated for bio-applications, including bioelectronics, fall under one of these two 

categories. Polysaccharides are biopolymers that are formed through glycosidic linkages whereas 

proteins are made of amino acids linked through peptide bonds.[5, 46] Some examples of proteins 

that have been used in a wide range of biomedical applications are silk proteins, collagen and 

keratin.[44, 47-49] On the other hand, some commonly used polysaccharides are cellulose, chitin/ 

chitosan, alginate, agarose and gellan gum among many others.[7, 50-53] The work in this 

dissertation explores the potential use of these classes of materials in functional biodevices. The 

material of choice from proteins includes silk proteins- fibroin and sericin. Chitin was chosen from 

polysaccharides for its potential in functional biodevices and “green” electronics. 
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1.4.3 Silk proteins 

The history of silk dates back to 4th millennium BCE by the Yangshao culture in China.[54] Ever 

since its discovery, silk has played a pivotal role in human life with diverse applications and social 

importance. Traditionally, silk fiber is typically used in the textile industry because of its 

durability, mechanical strength and luster. There also historical evidences of the use of silk in 

medical applications in the form of sutures in antient Greece.[55] These properties along with its 

abundance in nature, low cost, easy processing and attractive biological properties make them 

attractive candidates in today’s biomedical research.  

Silk from domesticated Bombyx mori mulberry silkworms is the most abundant and widely used 

variety of silk.[56] However, the silk obtained from orb-weaving spiders, Nephila clavipes, are 

known to be superior to silkworm silk in terms of mechanical properties.[57] Nevertheless, it is 

difficult to obtain large quantities of silk from these spiders due to their predatory and territorial 

nature. Hence, silk obtained Bombyx mori silkworms are widely adopted and well characterized. 

Silk fibers are produced by these insects in specialized epithelial cells that line glands. [58] The 

Bombyx mori silk contains two types of proteins- fibroin and sericin. Silk fibroin is present in the 

form of 10-25 µm diameter fibers as the core hydrophobic protein which makes up 70% of the 

fiber and imparts silk its mechanical properties. These proteins are coated by another class of 

water-soluble glue-like protein known as sericin (20–310 kDa), which makes up the remaining 

30% of the silk fiber.[59]  
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Figure 1.2 a) Schematic showing the assembly of silk protein with fibroin comprising the 

hydrophobic core and the outer sericin cover and b) SEM image of silk fiber.[23] 

 

1.4.3.1 Silk fibroin 

Fibroin from B. mori is obtained via a degumming process which comprises of boiling the silk 

worm cocoons in an alkaline solution.[60] The consensus on silk fibroin in remarkably positive 

among the material science community due to its exceptional mechanical and optical properties 

along with its inherent biocompatibility. The acceptance of fibroin as biomaterial for biomedical 

applications was further fortified by its approval by the US Food and Drug Administration (FDA) 

in 1993.[61] Silk fibroin is the main structural protein and consists of two proteins: a light chain 

(~26 kDa) and heavy chain (~390 kDa) which are present in a 1:1 ratio and linked by a single 

disulfide bond. [62] The heavy chain consists of 12 domains that form the crystalline regions in 

silk fibers which are interspersed with small non-repetitive hydrophilic linkers. Each domain 

consists of sub-domain hexapeptides such as   GAGAGS, GAGAGY, GAGAGA or GAGYGA 

where G is Glycine, A is Alanine, S is Serine and Y is Tyrosine. Overall, the amino acid 

composition of silk fibroin is primarily 43% glycine, 30% alanine and 12% serine.[63]  
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The repetitive hydrophobic amino acid domains of the heavy chain fold and bond together via 

hydrogen bonds, Van der Waals forces, and hydrophobic interactions, to form anti-parallel β-sheet 

crystalline structures.[64] Due to strong β-sheet interactions, high degree of ordering, and high 

density of β-crystallites are believed to absorb impact pressure and distribute it throughout the 

entire fibroin network, thus giving silk fibers its excellent mechanical properties.[65] The 

mechanical strength and elasticity of silk is superior in comparison to other nature derived 

materials commonly used in biomedical applications such as collagen, poly(L-lactic acid),  and 

chemically-crosslinked collagen, and is comparable to nylon and mild steel.[66] Silk obtained 

from B. mori possess an ultimate tensile strength of ~500 MPa and an elastic modulus of 5-12 

GPa. For these reasons silk fibroin is an excellent candidate for flexible and wearable biodevices 

that can withstand multiple mechanical deformations.[67]  

Owed to its structure and chemical composition, silk fibroin invokes minimal inflammatory 

potential and low immunogenic reactions.[68] Silk fibers are known to produce immunogenic 

reactions which can be attributed to the synergistic effect of fibroin and sericin present 

together.[69] However, when purified and separated from sericin, it demonstrates excellent 

biocompatibility. Further, minimal inflammatory potential and a favorable degree of 

biocompatibility was demonstrated by in vitro studies using silk fibroin films where absence of 

significant macrophage spreading along with favorable infiltration of fibroblasts was 

observed.[70]  

Silk fibroin is intrinsically biodegradable in nature. The degradation of fibroin takes place by 

enzymatic hydrolysis of the peptide bonds in the presence of protease which results in the 

metabolization of the remaining peptide fragments. This degradation is evident from the loss in 

mass and mechanical integrity of silk fibroin. There have been concerns regarding the safe 
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biodegradation of fibroin since the degradation product, amyloid β-fibrils, have been linked to 

Alzheimer’s.[22, 71] However, studies indicate that the degradations of fibroin do not show 

cytotoxicity towards neural cells.[72] The secondary structures of silk- silk I (water soluble) and 

silk II (water insoluble) are responsible for the biodegradation properties of fibroin.[73] During 

the process of spinning silk by silk worms, the conformation of silk changes from dissolved, less-

ordered silk I to solidified, highly ordered silk II.[74] This suggests that changing the internal 

secondary structure of silk can allow us to tune its external properties such as mechanical strength, 

solubility and even biodegradability. All these studies indicate that silk fibroin is a favorable 

candidate for the realization of flexible, mechanically robust, biocompatible and biodegradable 

devices with tunable properties. The challenge is to combine silk fibroin with a suitable fabrication 

technique that can facilitate its usage beyond passive structural materials in biodevices.   

 

Table 1.1 Amino acid composition of silk fibroin and sericin.[69] 

 
Amino Acid Sericin Fibroin 
Alanine 6.7 30.23 
Arginine 3.12 0.48 
Aspartic acid 18.38 1.66 
Glutamic acid 5.74 1.57 
Glycine 17.85 43.29 
Histidine 1.32 0.2 
Isoleucine 1.02 0.57 
Leucine 1.49 0.36 
Lysine 2.08 0.21 
Phenylalanine 0.67 0.69 
Serine 25.5 10.58 
Threonine 7.47 0.88 
Tyrosine 3.1 1.88 
Valine 4.05 4.76 
Cysteine 0.38 0.01 
Proline 0.81 0.17 
Methionine 0.31 -- 
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1.4.3.2 Silk Sericin 

Sericin constitutes approximately 25-30% of the silk cocoon. It is the outer adhesive protein that 

envelopes the fibroin fibers.[75] It is because of this adhesive protein that silk worms are able to 

form cocoons. Typically, silk sericin is considered as an undesirable side product that is generated 

during the fibroin extraction process.[76] However, this protein also has desirable properties along 

with being readily water soluble.[77] Although silk sericin and fibroin exists together in nature, 

they differ from each other distinctly in terms of chemical and structural properties. Silk sericin is 

hydrophilic with a molecular weight that ranges from 20 to 400 kDa and consists of 18 amino acid 

with strong polar groups such as hydroxyl, carboxyl, and amino groups.[78] Structurally, sericin 

is a globular protein consisting of amorphous random coil and β-sheets. The enhanced solubility 

of sericin in water can be attributed to the amorphous random coils.[79] It is also because of this 

attribute, silk sericin behaves like an amorphous material and therefore fragile in its dry state.[80] 

However, treatment with ethanol can induce aggregation of the protein and a transition from 

random coils to β-sheets by dehydration and fractionation which in turn increase its crystallinity 

and physical stability.[81]  

The biocompatibility of sericin has been a controversial topic in biomaterials research. Even 

though silk fibers have been used as sutures since their biocompatibility has been established, there 

are concerns regarding the activation of immune system due to silk This hypersensitivity reaction 

has been attributed to silk sericin. However, recent studies have shown that this immune response 

is primarily caused by the native fibroin-sericin structure, but neither fibroin nor sericin show this 

behavior alone.[58, 82] Studies such as in vitro analysis of sericin in soluble form and intravenous 

injections silk sericin injections given to rabbits confirm that sericin is immunologically inter and 

does not produce any anti-bodies.[83] Studies have also shown the use of water based sericin cream 
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to treat skin wounds in rats, where there was a significant decrease in the release of cytokines 

within a week. Silk sericin is also known to promote cell proliferation with proteins with low 

molecular weight showing greater effect that high molecular weight.[84] Consequently, it is now 

concluded that sericin is biocompatible with very low immunogenic. 

 

1.4.4 Chitin 

Chitin, an amino polysaccharide found mostly in the exoskeleton of marine crustaceans and 

arthropods, is the second most abundant natural biopolymer in nature after cellulose. A copolymer 

of glucosamine and N-acetyl glucosamine, chitin has a linear chain composed of (1–4)-linked 2-

acetamido-2-deoxy-β-d-glucopyranose units, with a structure very similar to that of cellulose.[85] 

Chitosan, which is an N-deacetylated derivative of chitin obtained by transforming the acetamide 

groups into primary amino groups.[86] The high percentage of nitrogen present in chitin and 

chitosan makes them commercially important as chelating agents.[87] One of the unique 

characteristics of chitin and its derivatives is that they are alkaline in nature unlike most 

polysaccharides such as cellulose, dextran, pectin, carrageenan etc., which are mostly neutral or 

acidic.[88] Both chitin and chitosan are very highly regarded as functional materials due to 

excellent properties mechanical and biological properties. 

In terms of sustainability, the advantage of chitin and chitosan is that they are primarily obtained 

from crab and shrimp shell wastes which are recycled from marine food processing industries.[89] 

However, the extraction process of chitin involves a series of steps using chemical methods after 

grinding them into smaller sizes which includes demineralization, decalcification and dilute HCl 

treatment.[90] The low reactivity and solubility make it difficult to process chitin in forms suitable 

for biodevice application. This is mainly due to strong intra- and intermolecular H-bonds resulting 
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in a highly aggregated 3D network. Dimethylacetamide and N-methyl-2-pyrrolidone (NMP) 

containing 5-7% LiCl, NaOH/Urea and ionic liquids are some of the solvents commonly used for 

the dissolution of chitin.[91] Chitosan, obtained via a deacetylation process of chitin in 40–45 % 

sodium hydroxide at 160℃for 1–3 h in order to remove the acetyl groups, is more readily soluble 

in dilute acids.[92] When the degree of deacetylation in chitin is above 56%, it is termed as 

chitosan. Due to the presence of primary amino groups, chitosan is a strong base and becomes a 

polyelectrolyte when such amino groups get protonated. As a result, chitosan dissolves 

in acid aqueous mixtures such as dilute acetic acid. 

 
Figure 1.3 Chemical structure of chitin and chitosan (Drawn in ChemDraw). 

 

Numerous studies over the years have shown the inherent biocompatible, biodegradable and non-

cytotoxic nature of chitin and its derivatives.[88] Chitin and its derivative chitosan are one of the 
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most commonly used biomaterials for biomedical applications.[93] They have been extensively 

used in tissue engineering, wound healing, excipients for drug delivery and also gene delivery.[94-

96] They have been processed into membranes, gels, beads, micro and nanoparticles, scaffolds and 

sponges in order to support a wide range of applications. Studies have also reported the 

antimicrobial activities of chitin against S. aureus and E. coli, along with good blood clotting 

properties.[97] Chitin is degraded by the chitinase family of enzymes which are found in many 

organisms such as bacterial, eukaryote and viruses. The biodegradation of chitin takes place via 

the breakdown of the β-1,4 linkages between the N-acetyl glucosamine units.[98]  

Chitin also boasts exceptional mechanical properties such as mechanical properties, such as high 

strength, high toughness and being lightweight.[99] The elucidation of all these properties makes 

a compelling argument towards the use of chitin in flexible biodevices. However, to date, strategies 

to form chitin into precise 2D and 3D micropatterned structures with high resolution have been 

limited, especially using scalable techniques such as photolithography. Chitin micropatterning is 

limited to rigid substrates, with no reports on flexible substrates. The ability to form precise high-

resolution microstructures of chitin, while using scalable techniques in different formats (2D, 3D, 

and on flexible substrates) can provide a new strategy to form bioelectronic devices that are 

biofriendly and degradable. The development of high-resolution patterning techniques using chitin 

is a requirement for its application as nature inspired structural and functional components in 

flexible and green electronics. 

 

1.4.5 Functionalization of biopolymers  

Functionalization is often carried out on present biopolymers to endow them with specific and 

desirable functions or to control the interactions between biomaterials and living tissues. A number 
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of functionalization techniques have been employed on silk proteins and chitin including physical 

blending/doping (non-covalent) and chemical (covalent). In this section, a discussion on some of 

the techniques and materials used for the functionalization of silk and chitin in order to increase 

their repertoire of applications. 

 

1.4.5.1 Functionalization of silk proteins:  

Although native silk has a host of attractive properties that could be used in various applications, 

it is often desired to modify silk proteins in order to enhance these properties or imbue them with 

new properties. The strategies adopted for the functionalization of silk proteins can be classified 

as either physical or chemical strategies. Often, a combination of chemical and physical strategies 

maybe employed to engineer specific properties. Physical modification strategies of silk common 

involves blending them with other materials to form composites with interesting properties. For 

example, conducting materials such as carbon nanotubes (CNTs), reduced graphene oxide (rGO), 

conducting polymers such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: 

PSS), polyaniline (PANi) and polypyrrole (PPy), metals and metal oxides have been combined 

with silk in order to impart electrical properties.[100-103] The strategies for imparting 

electrochemical activities to biopolymers will be discussed in detail in further sections. Silk fibroin 

was combined with metal nanoparticles such as silver and gold to develop anti-microbial surfaces, 

enhanced Raman scattering substrates and temperature sensitive photonic sensors.[104-107]  Silk 

fiber, membrane and scaffolds have been blended or coated with Fe3O4 and ferrofluid to impart 

magnetic properties.[108, 109] Silk proteins have also been modified with materials such as poly(-

caprolactone) (PCL) and graphene to increase the mechanical strength of silk.[110]  

The presence of multiple pendent reactive groups on silk proteins provides an avenue to conjugate 
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various chemical moieties and chemically modify silk. Numerous bioconjugation reactions can 

alter its chemical, physical and mechanical properties. The benefit of these methods is that they 

can be used to impart new properties without affecting the physiochemical or biological properties 

of native silk significantly. Taking advantage of the reactive side groups, silk has been grafted with 

threonine, tyrosine, glutamic acid, and serine to immobilize peptides, enzymes, drugs and 

polymers.[21] On the other hand, modifying silk with chemicals like polycarboxylic acids and acid 

anhydrides can impart properties such as fire retardancy, water repellency, and thermal 

stability.[111-113] Similarly, modification of silk fibroin with poly (ethylene glycol) chains was 

also found to increase the hydrophilicity significantly. Silk is often modified with materials like 

poly(D, L-lactic acid), integrin-binding laminin peptide motifs, GYIGSR hexapeptide (CL2-SFF) 

etc., to enhance attachment, proliferation and differentiation of cells such as osteoblasts, 

mesenchymal stem cells and neuron like cells.[114-116] By applying similar chemical 

modification principles, photoreactive methacrylate groups can be introduced in the silk chain in 

order to impart photocrosslinkability to native silk. This will be discussed in later sections.   

 

1.4.5.2 Functionalization of chitin 

Similar to silk proteins, chitin is often modified using various chemical and physical methods to 

form derivatives that has new and improved properties. Native chitin and its derivative chitosan 

are non-conductive in nature and are typically combined with conductive materials such as metal 

oxides, conducting polymers and carbon materials to make conducting hybrids.[117-120] For 

example, chitin was blended with PANi in LiCl/DMA to form a conductive chitin-PANi composite 

to form sensors. Chitin has been often combined with glucose oxidase via electrostatic 

immobilization to form thin films or dispersed in carbon/metal pastes to form glucose 
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sensors.[121-123] There are reports where the mechanical properties of chitosan was improved by 

thermomechanical processing and enhanced by carbon nanostructures to form mechanically 

tunable composites.[124] Chitin is often modified through other physical modification methods 

such as radiation, ultrasonic treatment, plasma liquid and heat treatment which has been shown to 

alter its inherent properties like solubility and surface wettability.[125] 

The presence of reactive functional groups as well as the polysaccharide nature of chitin allow the 

chemical modification of chitin and chitosan. To this end, chitosan is often chosen over chitin 

because of its easy solubility and processing. These polysaccharides have been subjected to various 

chemical modifications including acylation, quaternization, alkylation, hydroxylation, 

phosphorylation, thiolation, and graft copolymerization.[126-129] Among various methods, graft 

copolymerization is the most popular chemical modification technique used with chitin and 

chitosan. For example, chitin grafted with D,L-lactic acid onto amino groups showed sensitivity 

towards pH aggregation of the hydrophobic side chains.[130]  Chitin grafted with  Methyl 

methacrylate (MMA) was found to have moisture absorption and lysozyme susceptibility greater 

than native chitin.[131] Chitin is frequently grafted with other natural biopolymers such as silk to 

form hybrid biocomposites with enhanced functionalities.[42] Similar to silk, the pendent hydroxyl 

groups are important to this work since they can be specifically targeted to chemically conjugate 

photoactive group in order to form photocrosslinkable chitin.  

 

1.4.6 Synthesis of photocrosslinkable silk proteins 

Silk proteins fibroin and sericin possess abundant pendant functional groups that allow the 

modification of these proteins via chemical conjugation. Therefore, the realization of 

photocrosslinkable silk proteins is achieved by introducing photoactive methacrylate groups in the 
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main chains of both fibroin and sericin.[132, 133] The synthesis of photocrosslinkable silk proteins 

(i.e., photosericin and photofibroin) takes place in a 5 hr hydrolysis reaction wherein the isocyanate 

groups (-N=C=O) in 2-isocyanatoethyl methacrylate (IEM, MW= 155.15) specifically react with 

nucleophilic amine-, hydroxyl-, sulfhydryl-, and carboxylic acid groups. Due to the highly reactive 

nature of hydroxyl groups, the reaction is optimized on the basis of the time taken to chemically 

conjugate these groups. The isocyanate is reactive with carboxylic acid and amide-terminated 

amino acids to a lesser extent. The silk proteins are dissolved in 1M Lithium chloride (LiCl) in 

Dimethyl sulfoxide (DMSO) solvent system. Due to the possible reaction of the isocyanate groups 

with water to form CO2, the reaction is carried out in an inert nitrogen purged condition. The 

reaction is terminated by precipitating the reaction mixture in cold ethanol. The precipitation 

product - methacrylate conjugated silk proteins (photofibroin and photosericin) is washed three 

times with 1:1 cold ethanol acetone mixture followed by lyophilization to obtain the final product. 

The photocrosslinkable silk protein are then coupled with a 365 nm UV commercial photoinitiator 

to induce crosslinking in the bulk biopolymer. 

 

Figure 1.4 Reaction of hydroxyl group containing amino acids in silk proteins with IEM to form 

methacrylate conjugated counterparts (Drawn in ChemDraw). 
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1.4.7 Microfabrication techniques for biopolymers 

Microfabrication techniques are used for the construction of structures with dimensions in the 

range of micrometers to a few millimeters. Microfabrication often involves a substrate material 

and structures are built either in the bulk or on the surface of the substrate material. They are 

commonly employed in the fabrication of microelectromechanical systems (MEMS). Most of 

these techniques were largely developed for applications in the semiconductor industry and hence 

are not specific to the development of biological systems. However, at present micro/ 

nanofabrication techniques have become quite common in the development of smart devices, cell 

culture substrates, and scaffolds that have facilitated the study of various processes at cellular and 

molecular scales. In this section, some of the common microfabrication techniques used with 

natural biopolymers are discussed. 

 

1.4.7.1 Soft lithography 

Soft lithography is  a common technique used to generate micro- or even nanostructures of 

biopolymers onto various flexible and rigid surfaces.[134, 135] It involves the formation of a 

master patterns using other microfabrication techniques such as photolithography over which a 

microstructure replica is produced by molding a polymer, such as poly(dimethyl siloxane) 

(PDMS). One major advantage of this process is once the PDMS replica mold is prepared, it can 

be used multiple times. Techniques such as micro-stamping, stencil patterning, and microfluidic 

patterning comes under soft lithography where a replica mold is used.[136] This technique is 

widely adopted for patterning biopolymers due to its benign nature and does not require any 

additional modification of the biopolymer. 
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1.4.7.2 Etching 

This technique utilizes liquid chemicals (wet etching) or gaseous physicochemical (dry etching) 

processes to create topographical features on a surface by selective removal of material.[137] This 

technique has been shown in the formation of silk microstructures.[138] Often either a metal mask 

or a photoresist patterned via photolithography is used to define the etching area. The advantage 

of dry etching over wet ones is that the structures are more well defined and flat in the former 

when compared to more inclined and rounded features in the latter. However, the process of 

etching is rather complex and often results in rough surfaces. Reactive ion etching, which utilizes 

oxygen or fluorine plasma, has also been extensively used. 

 

1.4.7.3 E-beam lithography 

This technique utilizes an electron beam to directly write on a material, and form the desired 

pattern. Although this process is commonly used for the fabrication of nanoscale structures, it can 

also be used to form structures in the scale of a few microns. However, there two major drawbacks 

to e-beam lithography. The first one is associated with the cost of purchasing and maintaining e-

beam lithography machines which can be quite expensive. The second drawback is that due to the 

high energy dosage requirement used in e-beam lithography processes, they can damage 

biomolecules that are present as a whole or entrapped in other biopolymers. E-beam lithography 

has been demonstrated on silk proteins for the fabrication of nano-scale structures.[139, 140]  

 

1.4.7.4. Photolithography 

Photolithography is one of the most well developed and extensively used micro/ nanofabrication 

techniques because of the high resolution and variety of pattern attributes that are possible to 
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obtain.[141] Photolithography involves a series of steps that allow the generation of a desired 

pattern on the surface of a substrate by selectively exposing areas of a light sensitive material to 

ultraviolet light.[142] In the first step, a substrate material (such as silicon or glass) is coated with 

a layer of photoresist or any photosensitive polymer. Following this, a photomask with made of an 

opaque material with desired patterns that are transparent is placed on top of the substrate with 

photoresist. The entire setup is irradiated under UV light, thus exposing the transparent light. The 

patterns are formed either by formation of new bonds via chemical crosslinking (negative 

photolithography) or by the breaking of polymer bonds (positive photolithography). In the final 

step, the patterns are developed in a suitable photoresist where either the uncrosslinked or the 

crosslinked regions are removed depending on the type of photoresist. Usually, photoresists 

commonly used are synthetic photoreactive polymers. However, previous reports have described 

the synthesis of photoactive silk proteins suitable for photolithographic processes which will be 

discussed in following sections. This concept can also be translated to other biopolymers such as 

chitin in this dissertation work to combine them with photolithography.  

 

1.4.8 Electroactive materials for biodevices 

Naturally derived biopolymers, being intrinsically non-conductive in nature, requires them to be 

doped with conductive materials in order to imbibe electrochemical properties to facilitate their 

use as the functional sensing component in electrochemical biosensors. Electroactive biomaterials 

can respond to physicochemical cues which influence their optical and conductive properties, 

and redox state.[143]  With respect to flexible bioelectronics, other than stable electrical 

conductivity, the material selection largely depends on properties such as biocompatibility, 

flexibility and chemical stability in biological environments. This section discusses some 
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intrinsically conducting materials that have been commonly employed for the fabrication of 

flexible biodevices. 

 

1.4.8.1 Inorganic conductors 

The two major classes of materials that are commonly exploited in bioelectronics are metals and 

carbon-based materials. A large number of current biodevices employ pure metals, metal oxides, 

metallic alloys, and their composites for biosensing and modulation.  Some classic examples of 

metals used as electrodes for recording electrical signals or current stimulations are Platinum (Pt), 

gold (Au), and Pt–iridium alloys (Pt–Ir).[144-147] This is largely due to their high chemical 

stability and low cytotoxicity. Metals such as Au and Pt are often considered as good candidates 

because of their excellent electrical conductivity, ductility, biocompatibility, chemical stability, 

and various fabrication and surface modification methods that allows them to be fabricated into a 

variety of geometries for bioelectronic applications.[19] However, one drawback of these metals 

is that they are not bioresorbable in nature. Nevertheless, some of the few metals currently being 

studied as electrodes and interconnects in transient electronics are- Magnesium (Mg), zinc (Zn), 

iron (Fe), tungsten (W), and molybdenum (Mo).[148] As an alternative to conventional electrodes, 

intrinsically soft, low melting temperature liquid metals, such as gallium-based liquid metal 

(e.g., EGaIn), are promising for the further convergence of biology and epidermal 

electronics.[149] Other metals such as nano-silver structures (e.g. Ag nano-wires and 2D Ag 

flakes) have become popular as conductive fillers for stretchable biodevices.[19] 

Graphene and carbon nanotubes (CNTs) have also gained much reputation in the field of 

bioelectronics owing to their chemical stability, biocompatibility, high mechanical flexibility, 

large surface area, a wide electrochemical window for doping and modification, and a variety of 
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fabrication methods.[150] The flexibility of carbon-based materials allows for conformal 

integration on human body and within dynamic tissue environments, and hence CNTs have been 

broadly examined in many intrinsically stretchable transistor-based bioelectronics, self-healable 

electronic skins, and implantable biodevices.[151-154] Other advantages include broadband 

optical transparency of more than 90% of graphene, exploited in imaging, optogenetic stimulation 

and optically transparent devices.[42, 155] For example, transparent graphene contact lenses have 

also been applied for electromagnetic interference shielding, glucose level measurement, and 

intraocular pressure sensing. 

 

1.4.8.2 Conducting polymers 

Conducting polymers describe polymeric materials that are extrinsically and 

intrinsically conducting. Extrinsically conducting polymers are composites of insulating polymer 

matrices loaded with conductive fillers such as graphene, carbon nanotubes and 

metallic nanoparticles.[156] Despite their prevalence in biomaterial research, there are concerns 

regarding the long-term effect of such fillers. Hence, this dissertation work focuses on intrinsically 

conducting polymeric materials and therefore be referred to as ‘Conducting Polymers’ (CPs). CPs 

owe their electrical conduction to their uninterrupted and ordered π-conjugated backbone 

characterized by alternating double and single bonds and conjugated π-electrons that can be 

delocalized, thereby facilitating electron flow along and within their polymer chains to form an 

electrical pathway for mobile charge carriers.[157] The use of CPs in bioelectronic devices has 

been limited to bulk phase dispersions to form hydrogels, films, sponges and scaffolds.[158] They 

have been used to coat biopolymers (such as silk fibers) to form conductive threads, which are 

however, temporary in nature and dissolve in aqueous environments. Although conducting 
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polymers have been shown in some patterning techniques such as inkjet printing and screen 

printing, they often lack high resolution, fidelity and precision.[159] To facilitate their use in rapid, 

large scale and high-resolution fabrication techniques such as photolithography, earlier reports 

have demonstrated the use of conducting polymers with photoactive silk fibroin to form 

conducting architectures and biodevices. Current research is primarily based on three CPs- 

poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS), polypyrrole (PPy), and 

polyaniline (PANi).[160] The conducting polymers chosen for the fabrication of biodevices in this 

dissertation work are PEDOT: PSS and PANi. 

 

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT: PSS) 

PEDOT: PSS is one of the most promising materials in modern flexible bioelectronics research. It 

consists of two ionomers- positively charged conjugated PEDOT and negatively charged 

insulating PSS. PEDOT is synthesized via oxidative polymerization of EDOT and is insoluble in 

water whereas the PSS counterion is a surfactant added to increase its dispersion. The presence of 

PSS allows the dispersion of PEDOT in water and increases its stability via Columbic 

interactions.[161] Currently, there are numerous commercially available aqueous dispersions of 

PEDOT: PSS with Baytron by Bayer AG, Clevios by Heraeus, and Orgacon by Agfa being some 

of the common ones used for preparing highly conductive and stretchable electrodes.[162, 163] 

The conductivity of PEDOT: PSS polymer composite largely depends on the PEDOT crystallinity 

since PSS in an insulator. Untreated PEDOT: PSS films have an electrical conductivity (σ) of no 

more than 1.0 S cm−1, but are often modified with various dopants to increase conductivity by 2-3 

orders of magnitude.[164, 165] The PEDOT: PSS dispersion used in this dissertation work was 

doped with dimethyl-sulfoxide (DMSO) in order to enhance its electrical conductivity. 
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PEDOT: PSS has a very well-established biocompatibility when compared to other conducting 

polymers. PSS and tosylate anion-doped PEDOT films have been shown to support fibroblast 

adhesion and proliferation.[166] They have also been successfully interfaced with neural cells 

where they have been shown to support a healthy morphology of neuroblastoma cells and used for 

chronic neural recording.[167, 168] Although some studies reported slight cytotoxicity of PEDOT, 

they have been shown to have good inflammatory in vivo.[169, 170] Studies have also shown the 

long term biocompatibility of PEDOT by implanting them in rats for 6 weeks where the tissue 

response was found to lower than well-established biomaterials such as platinum.[171] 

Highly quality, uniform and smooth (roughness < 5 nm) films of PEDOT: PSS can be formed 

using the PEDOT: PSS aqueous dispersion through conventional solution-processing techniques, 

such as spin coating, spray deposition, screen printing and inkjet printing. Lastly, an important 

quality in flexible and conformable biodevices is their ability to withstand mechanical stress and 

maintain their useful properties under deformation. However, PEDOT: PSS can only sustain near 

2% stretching and is often brittle in dry state.[19] Hence, integrating PEDOT: PSS with 

biopolymers which are inherently flexible in nature, can increase its stretchability, stability in dry 

and wet environments, ability to form stable films and biocompatibility, while conferring electrical 

conductivity to biopolymers.  

 

Polyaniline (PANi) 

Polyaniline (PANI) is another conductive polymer that has been extensively studied for its 

applications in flexible and wearable bioelectronics.[160] Chemical polymerization of polyaniline 

is carried out in acidic medium by using a common initiator such as ammonium persulfate and 

potassium persulfate, while the electropolymerization of polyaniline is carried out in the electrolyte 
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solution of aniline and acid through application of a potential difference between the working and 

counter electrodes.[172, 173] It has advantages such their relatively easy preparation, low cost, 

high electrical conductivity, biocompatibility, low toxicity, and environmental stability.[172] 

Initial studies indicated poor biocompatibility of PANi which was attributed to the presence of 

residual monomers and acid catalysts.[174] However, there are several reports where optimized 

synthetic protocols have shown that pristine aniline, especially in a base form, is biocompatible 

and free of embryotoxicity. 

In comparison to other conducting polymers, PANi has some disadvantages such as extremely low 

solubility in the most common solvents, infusibility, and weak processability along with decrease 

in electrical conductivity over a long cycle time.[175] PANi is also known to show reduced 

conductivity in higher pH environments. To this end, biopolymers such as cellulose and gelatin 

have been known to stabilize the PANi structure (due to the presence of hydroxyl groups) and well 

as allowing it to be conductive in nearly neutral pH environments typically found in biological 

systems. Biopolymers such as chitosan, gelatin, heparin and collagen are also added to PANi to 

degradable scaffolds for tissue engineering.[5] The current work involves the preparation of PANi 

dispersion in formic acid which is then mixed with biopolymers such as silk fibroin and chitin to 

form highly stable, mechanically robust and electrically conducting PANI films suitable for 

flexible biodevices and green electronics. 

   

1.4.8.3 Natural semiconductors 

Nature also provides a host of active materials that can provide electrochemical or optoelectronic 

behavior, similar to that of synthetic conducting polymer. There are abundant organic dyes and 

pigments such as melanin, indigo and beta-carotene that behave as natural semiconductors.[5] 
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Although most of the research is focused on understanding the exact mechanism of electrical 

conductivity, there are a few examples of functional biodevices that exploit these natural 

semiconductors. A small part of this dissertation work also explores the possible utilization of 

melanin to impart electronic activity to other naturally derived materials such as silk to form active 

functional component in biodevices. 

 

Figure 1.5 Sources of some common semiconductors found in nature and their structures.[5] 

 

Melanin is a term given to a broad class of pigments found in a number of organisms. The human 

body contains three types of melanin- eumelanin, pheomelanin and neuromelanin. The first two 

act as a photoprotectant whereas neuromelanin is produced in the brain whose deficiency is 

associated with numerous neurological disorders. Eumelanin has been of primary interest ever due 

to its unique physical and chemical properties such as broad band absorbance, free radical 

scavenging, condensed phase photo and electrical conductivity.[176] Numerous attempts have 

been made in understanding the exact mechanism of conduction in melanin.[177-179] It was 

established recently, that hydration mediated proton transport in the main process that imparts 
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conductivity to melanin. [180] Integration of melanin with biopolymers can facilitate the 

fabrication of fully bioderived functional biodevices. Moreover, combining melanin with 

photoactive silk fibroin can confer photopatternability to natural melanin, thus expanding its 

application range. 

 

1.4.9 Strategies for improving conformability to soft interfaces  

Substrates with enhanced flexibility and conformability are of great interest for application in 

flexible electronics and tissue engineering substrates. To this end, it is highly desirable that devices 

are capable of tolerating strain levels of >> 1% without any loss in physical or chemical 

properties.[181] For thin films (or sheets) to be successfully applied to soft-biological samples, it 

is very important to reduce the Young’s modulus.[37] Reducing the modulus results in a decrease 

of the stress induced in the device due to strain generated during mechanical deformation. The use 

of conventional elastomers such as polydimethylsiloxane (PDMS) was previously used to address 

this issue (due to low Young’s modulus of 0.73 MPa).[182] Numerous electronic devices have 

been successfully developed such as sensor skins,[183] sheet scanner[184], circuits suitable for 

radio frequencies[185],  and photovoltaics[186], based on flexible elastomeric materials. It is much 

more challenging to engineer a device that can be conformably wrapped around complex shapes 

which are quite common when they are integrated with biological tissues. In such cases, substrates 

that offer simple bending are not adequate. Hence, there is a demand for devices that can undergo 

out of plane bending and can be exposed to high strain levels without generating significant stress 

in the device. Advances made in this field primarily focus on developing strategies on improving 

the materials or through realizing new materials. 

Another strategy by which the problem of flexibility and conformability can be tackled involves 
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improvement of mechanical properties by implementing structural configurations.[181] Recently, 

flexible and conformable structures are being explored with inspiration from “Kirigami”- the 

Japanese art of paper cutting[187-192]. When selective cuts are made on a sheet, the flexibility of 

the sheet increases as the cuts open up to accommodate strain induced stress in the material due to 

mechanical deformation. Further, the cuts facilitate the out-of-plane bending of the sheet which 

allows better conformability for curvilinear interfaces. This can be helpful for the realization of 

sensors for instance, that can efficiently wrap around tissues or other non-planar sensing surfaces. 

In spite of the frequent attempts made in the engineering of flexible devices through the creation 

of kirigami inspired patterned defects, very little work has been shown using such strategies for 

organic biomaterials. Successful application of kirigami design techniques to biomaterials can 

increase the conformability of biodegradable and biocompatible electronics to soft biological 

interfaces. In this research primarily focuses on applying such patterned defects to increase the 

flexibility of bio-derived thin films (chitin and silk).  

 

 

 

 

 

[This chapter contains results that have been previously published: Sayantan Pradhan, Anne 

Kathrine Brooks, Vamsi K. Yadavalli, “Nature-derived materials for the fabrication of 

functional biodevices”, Mat. Today Bio, 7, 100065.] 
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CHAPTER 2 

 

PHOTOLITHOGRAPHIC MICROPATTERNING ON FLEXIBLE SILK FILMS 

 

 

 

 

2.1 INTRODUCTION 

As discussed in Chapter 1, nature derived materials such as silk proteins are of great interest in the 

design and development of biomedical devices. Of special interest is the application of nature 

derived biodegradable materials for the realization of fully organic, intrinsically flexible, thin film 

devices. However, a challenge has often been the ability to combine high-throughput and high-

resolution fabrication techniques with such materials, often restricting their use in bioelectronics 

and optics, beyond functioning as substrates. This chapter explores the development of a facile, 

scalable and simple bench top photolithographic technique that allows the fabrication of silk 

fibroin microarchitectures on flexible silk fibroin films.  

Thin polymeric films have long been used in industry for semiconductor applications, electronics 

packaging, as optical coatings, diffusion barriers, friction reduction, etc.[193, 194] Recently, such 

films and sheets have been explored for biomedical uses such as drug delivery, biofiltration, wound 

healing, tissue regeneration and biosensors.[195-197] Of specific interest are flexible, free-

standing sheets, which can be formed with controllable thickness (ultrathin - 10s of nanometers, 

to thin –few to 10s of micrometers). They can be used as substrates for soft robotics, smart skins 
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and wearable devices.[198, 199] At the nanoscale thickness, such films can directly conform to 

the underlying surface, whereas at the microscale, adhesive layers may be needed for attachment 

to tissue.[200, 201]  

Flexible sheets may be formed using various techniques including casting elastomeric or 

intrinsically flexible materials, electrospinning, or by using spin coating or layer-by-layer 

assembly.[197] Paper has also recently attracted attention due to its porosity and flexibility, while 

permitting modifications of physical and chemical properties.[202] Electrospinning to form micro- 

and nano-fibrous architectures can form sheets (e.g. fiber mats) from a variety of synthetic and 

natural materials.[203-205] However, imparting the additional property of patterned architectures 

(micro/nano-textured surface) is limited, particularly over large areas (e.g. cm).[206, 207] 

Elastomers such as polydimethylsiloxane (PDMS) and polyurethanes have been used with 

favorable properties including high optical transparency, ability to form micropatterns, and control 

of important mechanical properties such as rigidity.[208-210] Despite good biomimetic 

characteristics and tunable mechanical properties, these materials have high surface 

hydrophobicity, limited aqueous processing, and importantly, a lack of degradability, which 

precludes their application in intrinsically biodegradable and flexible devices. 

Silk proteins, fibroin and sericin as natural biomaterials have been recognized as a very appealing 

biocompatible and regeneratable resource and fostered various applications in tissue engineering 

and regenerative medicine.[211] Micropatterned thin films developed using nature-derived 

materials is an essential step in the realization of biodegradable flexible devices for applications at 

the biological milieu. Fabrication techniques using printing, molding, imprinting, and 

photolithography have shown silk proteins for the construction of flexible optical, photonic, 

optoelectronic, and electronic devices.[75, 212, 213] However, there remain several technical 
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challenges that need to be addressed. For instance, a direct patterning with high fidelity and 

complex silk-based functional features for the integration of electronic systems is an ongoing 

challenge. In this chapter, an approach is suggested that allows the fabrication of high-resolution 

microarchitectures of silk fibroin on a flexible silk fibroin films using photolithography process.  

 

2.2 EXPERIMENTAL 

2.2.1 Synthesis of photocrosslinkable silk fibroin films 

Silk fibroin was extracted from silk cocoons using a standard protocol.[60] Fibroin protein 

photoresist (variously referred to as FPP or photofibroin) was prepared by the incorporation of 

photo reactive moieties to the fibroin structure as reported earlier in Chapter 1. Briefly, pure fibroin 

was dissolved in 1 M LiCl/DMSO and reacted with 2-Isocyanatoethyl methacrylate (IEM) in 

stoichiometric amounts for 5 hours at 60oC, while maintaining inert conditions using a constant 

flow of nitrogen. After the completion of the reaction, the product mixture was added to cold 

ethanol, and the methacrylated protein was obtained as the precipitate. The product was washed 

with a 1:1 ratio of cold ethanol and acetone followed by centrifugation and lyophilization for 24 

hours to obtain the fibroin protein photoresist (photofibroin) powder. 

 

2.2.2 Fabrication of flexible micropatterned fibroin films 

The flexible micropatterned substrate was fabricated by dissolving 7.5% (w/v) of photofibroin in 

formic acid (Acros Organics 98%). 2.5% (w/v) photo initiator (Irgacure 2959, BASF) was added. 

The solution was drop cast on plain glass slides and air dried for 15 to 20 minutes in order to 

evaporate the excess solvent. The samples were exposed under a 365 nm UV lamp (Lumen 

Dynamics OmniCure 1000 system) for 3 seconds at 20 mW cm-2 for cross-linking. To create 
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fibroin films, the samples were dipped in DI water which facilitated the delamination from the 

glass. Micropatterns of silk fibroin were fabricated on these films using contact photolithography. 

Films prepared as discussed above were used as the substrates. A 5% (w/v) solution of photofibroin 

in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, Sigma-Aldrich, St. Louis, MO) was drop casted on 

fibroin films. The samples were air dried for 5 minutes, allowing the HFIP to evaporate. 

Micropatterned structures were formed by placing a photolithographic mask with the desired array 

of patterns on the substrates and exposing it under UV irradiation for 1.6 seconds. Patterns were 

developed by immersing the samples in 1 M LiCl/DMSO solution for approximately 2 hours. The 

patterns were then rigorously cleaned with DI water to wash off any un-crosslinked material and 

excess LiCl/DMSO solution.  

 

2.2.3 Proteolytic degradation in vitro 

Micropatterned fibroin films can be proteolytically degraded over time in the presence of enzymes. 

In the present work, the degradation of fibroin microstructures on films in the presence of protease 

(Protease XIV from Streptomyces griseus, ≥3.5 U mg-1, Sigma Aldrich) was studied. Films 

(containing ~2.5 mg fibroin) were incubated in 5 mL protease (1 U mg-1 of protein) at 37 ℃ and 

the degradation was studied over 2 weeks. Another set of samples were incubated in PBS buffer 

under the same environment, which served as the negative control (NC). The enzyme solution was 

replaced every 3 days to maintain the activity of protease. Samples from each set were taken out 

on different days, rinsed with DI water, dried under N2, and weighed to record their degradation 

over time. Degradation over time was characterized as a function of mass loss of the films.  
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2.2.4 Tensile tests 

Tensile tests were performed on native fibroin and photofibroin films using MTS 300 series tensile 

testing machine (MTS Systems Corporation, Eden Prairie, MN) equipped with a 50 N load cell. 

The tensile measurements were taken under ambient conditions on complete dry films. A strain 

rate of 0.01 mm s-1 was applied on the films and data was collected at a rate of 10 Hz. The tensile 

strengths of native fibroin and photofibroin films were compared. 

 

2.3 RESULTS AND DISCUSSION 

2.3.1 Fabrication of flexible, micropatterned fibroin films 

Mechanically flexible, biocompatible sheets present platforms for applications as surface for soft 

robotics, drug delivery vehicles, sealing of wounds, tissue scaffolds and biosensors.[195, 214] The 

ability to form micropatterns on these sheets can further provide opportunities to fabricate 

electrical circuits and other bioelectrical components in fully organic, flexible, and biodegradable 

devices.  To date, micropatterned films have been shown on rigid or supported formats (for 

instance, with an underlying glass or polystyrene substrate) or using flexible materials that are not 

degradable (e.g., PDMS). The development of flexible, and micropatterned films and membranes 

using degradable biopolymers is limited. In this work, the microfabrication of flexible, silk fibroin 

films was realized using light-reactive conjugates and facile photolithographic techniques. These 

conjugates can be used as stable, biodegradable and biocompatible substrates on which patterns 

are formed. Previously, patterns of sericin were shown on flexible fibroin substrates, which could 

be accomplished since the two are soluble in different solvents (viz. sericin in water, fibroin in 

formic acid or HFIP). Here, we utilize fibroin as the material for both the substrate and the pattern. 

The use of photolithography provides a rapid route to form complex patterns that are not easily 
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prepared used using microcontact printing or molding.  

 

 

Figure 2.1 Fabrication of micropatterned flexible fibroin films via photolithography. 

 

Initially, a solution of photocrosslinkable silk fibroin in formic acid with a suitable photo initiator 

was cast on a plain glass slide (1 cm2 area) and crosslinked by exposure under 365 nm UV light 

(Figure 2.1). The use of formic acid as a solvent allows us to form large scale, thin, flat and stable 

fibroin films in an environmentally friendly process. These films are formed by crosslinking of the 

protein and not by a change in β-sheet conformation as shown in other works.[215] The UV 

crosslinked fibroin sheets formed are water insoluble and are stable in a wide range of solvents. 

Due to the absence of chemical linkage between the film and the glass support, the crosslinked 

fibroin sheet can be easily peeled off when immersed in water. The thickness of the film plays a 

defining role in its flexibility, and films ranging from hundreds of nm to tens of µm are easily 

formed by controlling the amount of fibroin/formic acid solution cast and the spin coating speed. 
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For example, 60 µL of fibroin solution cast on a plain glass slide of area 1 cm2 produces films with 

a thickness ~10 µm at a spin speed of 800 rpm.  

To fabricate micro-architectures of silk fibroin photoresist on fibroin films, a 5% (w/v) solution in 

HFIP was cast on silk fibroin sheets prepared as described above. The presence of residual acrylate 

functional groups on the surface of the films enables the covalent attachment of patterns on them. 

This implies that the patterns do not delaminate when the film is subjected to mechanical 

deformation. Patterns are formed by exposure to 365 nm UV through a photomask (Figure 1). The 

area exposed by the UV light is crosslinked while, the unexposed areas dissolve when immersed 

in 1 M of LiCl in DMSO. A wide range of patterns with different shape, size and complexity can 

be obtained depending on the nature of the photolithographic mask used. The use of a single 

material for the fabrication of the substrate and the patterns allows us to form microarchitectures 

of high stability due to the presence of the same chemistry. Due to the volatility of HFIP, a solution 

of photofibroin in HFIP can be cast on the fibroin films without disrupting the underlying film. 

This demands precise control over the amount of solution drop cast on the fibroin films and drying 

time prior to UV exposure for patterning. 30 µL of photofibroin/ HFIP solution for a fibroin film 

of area 1 cm2 and a drying time of approximately 5 minutes was found to be optimum for the 

results shown here. Once they are immersed for development, the entire structure can be 

delaminated from the glass support to form mechanically flexible films (Figure 2.2a). The images 

obtained from an optical microscope shows the ability form ordered patterns of various 

complexities over a large area (cm scale) of flexible fibroin sheet (Figure 2.2b, c). Thin, moist 

films can be applied to and readily conform to irregular surfaces (e.g., skin) without the need for 

any adhesive (Figure 2d).  
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Figure 2.2 a) Mechanically stable micropatterned films formed by photolithography. Large area 

films can be patterned with microscale architectures b). c) Optical image of micropatterned films 

showing the high resolution of patterns formed by photolithography d) Ultrathin micropatterned 

films (< 1 µm) can be easily applied to soft surfaces (e.g., skin) without any adhesive – shown in 

stretched and squeezed forms. 

 

 

Figure 2.3 Evaluation of mechanical properties of silk fibroin - Comparison of Stress vs strain 

curves of photofibroin and native fibroin.  
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The photofibroin films are mechanically robust and can be rolled or bent and can be held, rolled 

or bent into various conformations numerous times without any loss in their chemical and physical 

properties. Tensile tests were performed to compare the mechanical properties of photofibroin with 

native fibroin (Figure 2.3 a). The tensile response of silk fibroin extracted using 9.6 M LiBr (the 

degumming of silk fiber process used in the work) was similar to earlier reports with a tensile 

strength of ~40 MPa.[216] In comparison the tensile strength of photofibroin films were found to 

be ~80 MPa, which is 2 times the value of native fibroin. The solvent used for the dissolution of 

photofibroin plays a crucial role on the mechanical properties of the films. It was found that the 

films prepared using formic acid as the solvent have a higher strength in comparison to 

photofibroin films prepared using HFIP as the solvent. The HFIP processed films are softer and 

more flexible, with a lower Young’s modulus. To demonstrate the structural integrity and 

scalability at the microscale, optical and SEM images were taken. The SEM images (Figure 2.3) 

depict the high fidelity and spatial and structural resolution of the micropatterns as lines or dots. 

Due to the vinyl linkage between the patterns and the substrate, a strong adhesion is observed at 

the interface and the structures are intact even in bent conditions. In Figure 2.3d, the film was 

examined after conducting several (~10 times) extreme 180o bends. While some minor cracks may 

be seen on the film at the bend junction, the patterns themselves do not delaminate, demonstrating 

the high robustness of this system. This can be correlated to the differences in terms of Young 

modulus between the softer pattern and the stiffer substrate (Figure 2.4a-c) which are observed 

under nanoindentation. Under mechanical deformation, the former is thus more flexible with 

respect the latter, adapting itself to the deformation of the substrate. This is critical to the designing 

of fully organic flexible biodevices wherein the circuits, electrodes and other active components 

are also highly flexible and do not lose their electrochemical properties under mechanical flexure.  



 

 
 

 

44 

 

 

Figure 2.4 SEM images of the different forms of flexible microstructured films of silk fibroin 

fabricated by photolithography a) films can be fully rolled, b, c) different kinds of surface 

architectures are easily patterned using different photomasks, d) image taken after repeated 180o 

bends shows nanoscale cracks but the film integrity is preserved, and no delamination of features 

observed. Scale bar on all images = 100 µm.  

 

AFM imaging of the films (Figure 2.4d, e) show that they are smooth at the nanoscale (both on 

the film and on the surface of the patterns) with a root mean square (RMS) roughness ~ 5 nm over 

a 5 µm area. In these films, the patterns were around 500 nm in height, fabricated via spin coating. 

The lines have a high structural fidelity and resolution demonstrating the accuracy of this 
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photolithographic process to form micro patterns over large areas. Patterns down to ~3 µm using 

benchtop lithography are easily formed. However, formation of nanoscale structures with 

photofibroin using electron beam lithography have been demonstrated in earlier reports. Due to 

the optical transparency of the entire structure, they can also find application in optics for the 

fabrication of soft and flexible optical systems. 

 

 

Figure 2.5 a, b, c) Spatial distribution of the patterned surface and the localized Young’s modulus 

of the surface, showing the softer pattern on the stiffer underlying substrate (scales on all panels 

are same). d) AFM imaging of the fibroin micropatterns on fibroin 75 µm scan of 10 µm lines 

separated by 25 µm and 5 µm gaps. The patterns are 500 nm in height. e) Scan of a 5 x 5 µm area 

from the flat region of the line shows the flat surface of the films (RMS roughness ~ 5 nm over this 

area).  

 

2.3.2 Proteolytic degradation of fibroin substrates in vitro 

An advantage in using natural biopolymers is that devices fabricated based entirely on these 
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materials can be degraded in physiological environments. The silk fibroin biomaterial used in this 

study enables controllable biodegradability of the flexible devices. Under the reaction of protease, 

the micropatterned sheets are degraded, ultimately leading to the loss of mass and structural 

integrity. An enzymatic biodegradation experiment was conducted on micropatterned films 

incubated in PBS solution with or without protease (control) at 37oC. The percentage of mass 

weight remaining (obtained as Wt/W0) was recorded to observe the overall decomposition of the 

films (n=3) over time (Figure 2.5). No significant mass loss was observed when incubated in PBS 

over the 2-week period. Due to proteolytic biodegradation, a gradual loss of weight was observed 

and <40% of the weight remained after 14 days of incubation. After 14 days, the films incubated 

in the enzyme broke down, whereas the control samples maintained their integrity and flexibility. 

This was consistent with previously reported observations in which the biodegradability of fibroin 

based flexible devices can be tuned by controlling the degree of crosslinking and film thickness. 

Therefore, devices with precisely engineered lifetimes can be fabricated using these 

micropatterned films, which can be useful as tissue scaffolds and implantable bioelectronics. 

 
Figure 2.6 Proteolytic degradation of micropatterned fibroin films. The films are stable in buffers 

but show significant mass loss in the presence of protease, ultimately breaking down completely 

within 3 weeks. (Sample size n=3 films for each experiment) 
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2.4 CONCLUSION 

In this chapter, the development of a platform that allows facile micropatterning of biopolymer 

silk fibroin protein is discussed. The silk fibroin has been functionalized with photoactive 

methacrylate groups that allows UV assisted photocrosslinking. Therefore, an easy, low cost and 

high throughput photolithography process is demonstrated that allows the micropatterning of high 

resolution and high-fidelity structures over a large area on a variety of rigid and flexible substrates. 

By dissolving photofibroin in two different solvents, fabrication of fibroin micropatterns on 

flexible fibroin sheets have been demonstrated. Due to the presence of similar methacrylate 

chemistry, the patterns are chemically attached to the substrate and do not come off under 

mechanical deformations. In addition to the patterns, it is also possible to modulate the mechanical 

characteristics of the patterns. Importantly, the controlled biodegradation of micropatterns silk 

fibroin sheets is shown under proteolytic conditions. These results suggest that micropatterned silk 

sheets can provide a bioinspired and biodegradable structure towards the flexible cell culture 

platforms and devices. 

  

 

 

[This chapter contains results that have been previously published: Meng Xu, Sayantan 

Pradhan, Francesca Agostinacchio, Ramendra K. Pal, Gabriele Greco, Barbara Mazzolai, 

Nicola M. Pugno, Antonella Motta, Vamsi K. Yadavalli, “Easy, Scalable, Robust, 

Micropatterned Silk Fibroin Cell Substrates”, Adv. Mater. Interfaces 2019, 6, 1801822.] 
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CHAPTER 3 
 

FABRICATION OF MICROPATTERNED CHITIN FILMS USING 

PHOTOLITHOGRAPHY 

 

 

 

 

3.1 INTRODUCTION 

As discussed in Chapter 1, among the polysaccharide class of nature derived degradable 

biopolymers, Chitin and its derivative chitosan have gained much attention in the field of 

biomedical research due to attractive properties such as biocompatibility, non-toxicity, 

biodegradability, low immunogenicity, and ease of availability.[88, 217] Excellent biological 

properties and novel intrinsic antimicrobial properties have favored the use of chitin and its 

derivatives in tissue engineering, wound healing, and drug delivery applications.[218, 219] To 

develop functional architectures from chitin and chitosan, the polymers are frequently dissolved 

acidic solutions.[220] Using this approach, there have been reports on the use of chitinous 

biomaterials for porous biodegradable scaffolds, with the polymers alone, or in combination with 

other materials such as gelatin, collagen, poly-L-lactic acid, alginate, and silk.[221-226] While 

work has been done on the use of chitin and chitosan as functional biomaterials by imparting 

specific properties, the potential of chitin as a biomaterial is somewhat limited owing to its 

intractable processing.  

To date, only a few strategies to form chitin into precise 2D and 3D micropatterned structures with 

high resolution have been reported. Micro and nanopatterned biomaterial surfaces are increasingly 
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important both as cell culture substrates as well as components of biosensors and organic 

electronics.[227, 228]  Some of the techniques reported in literature for the realization of chitin/ 

chitosan microstructures include nanosphere lithography (NSL), micromolding, inkjet printing, 

macro scale molding and micro-contact patterning with a chitin nanofiber ink.[229-233] As yet, 

creating structures of high resolution using scalable techniques such as photolithography has not 

been demonstrated with chitin. Though there has been some work on micro-patterning, primarily 

on rigid substrates, chitin micropatterning on flexible surfaces can open new avenues for its use as 

bioelectronics devices that are biofriendly and degradable. Optically transparent, flexible, 

micropatterned chitin sheets can be used for green electronics, tissue engineering, or to achieve 

conformal contact for wound healing applications.  

This chapter focuses on a facile reaction to modify the chitin chain with photoactive moieties for 

the realization of photocrosslinkable chitin. The presence of labile functional groups on the main 

chains of chitin and chitosan provides an opportunity to improve the material properties and 

function by ligating different chemical moieties. The photocrosslinkable chitin can then be easily 

combined with the simple bench top photolithographic reported in Chapter 2 to form 

micropatterned chitin films. 

 

3.2 EXPERIMENTAL 

3.2.1 Synthesis of low molecular weight chitin 

In order to synthesize photocrosslinkable chitin, it was necessary to convert the raw chitin flakes 

into low molecular weight chitin (LMW chitin). LMW chitin was prepared using a well-

established method. 60 mL of 37% HCl was added to 2 g chitin (Alfa Aesar, Haverhill, MA) in a 

round bottom flask. The mixture was heated at 40 oC using a water batch and continuously stirred 
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for 20 minutes. The contents of the flask were cooled using an ice-bath, and then carefully 

neutralized to a pH 7 using NaOH solution. The mixture was then centrifuged at 4000 rpm for 20 

minutes and the supernatant was collected. This solution was then dialyzed against tap water using 

12 kDa dialysis membrane for 2 days, with periodic replacement of the tap water. The solution 

within the dialysis tubing was collected and lyophilized for 2 days to obtain low molecular weight 

chitin powder. 

 

3.2.2 Synthesis and characterization of photocrosslinkable chitin 

Photocrosslinkable chitin (which refer to as photochitin (PC)) was prepared by adding photoactive 

moieties to the chitin backbone. All glassware was cleaned using deionized water and ethanol, and 

oven dried at 150 oC overnight. All the chemicals were dried to ensure they were free from any 

moisture. Low molecular weight chitin was dissolved in 5% LiCl/dimethylacetamide (DMAc) in 

a 3neck round bottom flask and 2-isocyanatoethyl methacrylate (IEM) was added to the reaction 

mixture in excess. The reaction was carried out at 65 oC for 24 hours while maintaining inert 

conditions using a continuous flow of nitrogen. The product obtained was precipitated overnight 

in cold ethanol, followed by 3 cycles of washing using 1:1 ratio of cold ethanol and acetone. The 

product was lyophilized to obtain PC powder. The yield of the product was ~54%.  

 

3.2.3 Determination of degree of deacetylation 

The degree of deacetylation (DD), which determines the content of free amino groups in the 

polysaccharides was then used to determine the chemical nature of the photochitin (PC) 

synthesized. The DD was determined using infrared spectroscopy (IR) and first derivative UV-

spectrophotometry for confirmation of the results.  
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3.2.4 Fabrication of flexible films 

Films were fabricated by casting a solution of photochitin in formic acid (Acros Organics 98%) 

with composition - 40 mL of FA, 0.1 mL of PEG-DA (Sigma-Aldrich, St. Louis, MO) and 1 mg 

of photo initiator (2-hydroxy-40-(2-hydroxyethoxy)-2-methylpropiophenone, Sigma-Aldrich) per 

3 mg of PC. The solution was dried under ambient conditions and crosslinked under 365 nm UV 

lamp (Lumen Dynamics OmniCure 1000 system) for 2 seconds at 20 mM cm-2. Pure chitin films 

were made using a suspension of 1 gm chitin powder in ~15 mL of formic acid was prepared and 

then frozen at -20 oC for 20 hours. The frozen suspension was thawed at room temperature, stirred 

and frozen again. The process was carried out for several times till a clear gel was obtained. The 

obtained clear chitin gel was added to small amount of trichloroacetic acid, mixed thoroughly was 

cast on a clean glass slide. The solvents were evaporated under ambient conditions and a chitin 

film was obtained. Films of chitosan was obtained by casting a 7.5% (w/v) solution of chitosan in 

formic acid on a clean glass slide and drying it under atmospheric conditions to obtain a film. 

 

3.2.5 Characterization of films 

IR was conducted on films of chitin and photochitin to verify the presence of the methacrylate 

moiety as well as determine the degree of deacetylation as discussed above. Films were cast from 

a solution in formic acid onto a germanium crystal for analysis. Fourier-transform infrared (FTIR) 

spectra were obtained at a resolution of 1 cm-1 and 32 scans, via a Nicolet iS10 FTIR spectrometer, 

equipped with a Smart iTR attachment for attenuated total reflectance (ATR) studies. Contact 

angles of chitin, photochitin, and chitosan films were measured using a Rame´-Hart goniometer 

(Succasunna, NJ) by placing a 5 mL drop of DI water on the films and taking images with the 

attached camera. Tensile tests were performed on PC, chitin and chitosan films prepared using 
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methods described above using MTS 300 series tensile testing machine (MTS Systems 

Corporation, Eden Prairie, MN) equipped with a 50 N load cell. The tensile measurements were 

taken under ambient conditions on complete dry films. A strain rate of 0.1 mm s-1 was applied on 

the films and data was collected at a rate of 10 Hz. The tensile strengths of chitin, photochitin, and 

chitosan films were compared. 

 

3.2.6 Fabrication of micropatterns 

Flexible chitin substrate was created using a solution of 2.5% (w/v) photochitin and 0.75% (w/v) 

PEG-DA in formic acid (Acros Organics 98%). 0.83% (w/v) photo initiator (2-hydroxy-40-(2- 

hydroxyethoxy)-2-methylpropiophenone, Sigma-Aldrich, St. Louis, MO) was added to the 

solution and the solution was casted on a clean glass slide. The solution was air dried under ambient 

conditions and then crosslinked under a 365 nm UV lamp (Lumen Dynamics OmniCure 1000 

system) for 2 seconds at 20 mW cm-2. The films were soaked in DI water to obtain freestanding 

chitin films. In order to create micropatterns on flexible chitin substrates, a solution of 2% (w/v) 

photochitin + 0.75% (w/v) PEG-DA with 0.66% photo initiator in 1,1,1,3,3,3- hexafluoro-2-

propanol (HFIP, Sigma-Aldrich) was drop cast on the chitin films prepared as above. The samples 

were air dried for ~5 minutes and then exposed under the UV lamp for 1 second through a negative 

tone photomask with desired patterns. The patterns were developed by soaking in a 1 M 

LiCl/DMSO solution for 1 hour. The micropatterned films and substrates were cleaned using 

generous amounts of DI water. 

 

3.2.7 Imaging 

Scanning electron microscopy (SEM) images of the patterns were taken on a Hitachi SU-70 FE-
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SEM to observe the fidelity of the patterned structures. The patterns were sputtered coated in a 20 

A platinum Denton vacuum cold sputtering system (Moorestown NJ) prior to imaging. Optical 

images were taken using a Nikon Eclipse microscope. 

 

3.3 RESULTS AND DISCUSSION 

 

3.3.1 Synthesis and characterization of photocrosslinkable chitin 

Similar to silk proteins as discussed in previous chapter, chitin main chain has of multiple pendant 

functional groups which provides an opportunity to introduce photo-reactive groups. This can 

impart photocrosslinkability to native chitin.  Using the concepts of modular design, photoreactive 

methacrylate groups were targeted for conjugation due to their prevalence in existing 

photolithography techniques, ease of use, and possibility for high-resolution, microscale features. 

However, the extensive hydrogen bonding between adjacent polymer chains of the predominantly 

b-(1 - 4)-linked 2-acetamido-2-deoxy-D-glucose have contributed to high rigidity and poor 

solubility and processability of chitin. Hence, initial trails that were made for the dissolution of 

native chitin in solvent systems such as 5% LiCl in DMSO, DMF and DMAc have all resulted in 

failure. After repeated failures, it was found that hydrolysis into lower molecular weight chitin can 

increase the solubility of chitin in 5% LiCl/DMAc, which is one of the few solvent systems that 

can dissolve chitin. 
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Figure 3.1 a) Steps showing the synthesis of photocrosslinkable chitin and b) Reaction scheme of 

chitin with 2-isocyanatoethylmethacrylate to form photoreactive chitin.  

 

The polymeric chain of chitin can be broken down into smaller oligomeric or monomeric groups 

either by enzymatic or by acid hydrolysis. However, concentrated hydrochloric acid (37%) was 

used in this work since it is known to hydrolyze chitin without deacetylation or formation of side 
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products. The acid catalyzed hydrolysis of chitin into low-molecular weight chitin takes place via 

cleavage of glycosidic linkages. The LMW chitin obtained via acid hydrolysis was found to 

dissolve in 5% LiCl/DMAc easily. Once the solubility issue was addressed, in the next step LMW 

chitin was then modified to photocrosslinkable chitin (PC) using 2-isocyanatoethyl methacrylate 

(IEM) with LiCl/DMAc as the solvent. The product obtained was precipitated, purified to separate 

the water-miscible components (DMAc and IEM) and subsequently lyophilized to give PC 

powder. In another trial, it was found that the methacrylation of hydrolyzed low molecular weight 

chitin reaction can be also be carried out in 5% LiCl in N-Methyl-2-pyrrolidone solvent system. 

 

3.3.1.1 Verification of conjugation 

The PC powder obtained was found to be soluble in formic acid and in polar fluorinated solvents 

such as 1,1,1,3,3,3-hexafluoro-2- propanol (HFIP). However, formic acid was used for the 

dissolution of PC in order to form films since it is more benign and less toxic when compared to 

HFIP. PC films were prepared by casting an 11% (w/v) solution of the PC in formic acid with 2% 

photo initiator (w/v) and crosslinking using 365 nm UV light. The crosslinked films were found 

to stable in water as well as solvent systems such as 1 M LiCl in DMSO and 5% LiCl in DMAc. 

On the other hand, native chitin films (prepared using the protocol described in experimental 

section) and uncrosslinked PC films were found to be soluble in 1 M LiCl in DMSO and 5% LiCl 

in DMAc. From this result, it was concluded that the successful incorporation of acrylate moieties 

in the native chitin chain which are responsible for the crosslinking in the presence of UV light 

prevented the PC films from dissolving in the aforementioned solvent systems. 
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Figure 3.2 FTIR analysis to confirm the conjugation of photoreactive groups on the chitin. 

 

The conjugation of the acrylate moiety on the chitin chain was further verified using FT-IR 

measurements. FT-IR spectra of chitin, uncrosslinked PC film and crosslinked PC film were taken 

and analyzed (Figure 3.2). The spectra of uncrosslinked PC film and crosslinked PC film showed 

peaks at 1720 cm-1, which can be attributed to the methacrylate carbonyl group (C=O stretch) and 

vinyl group (C=C stretch which imparts photoreactivity) peaks at 1640 cm-1, both of which are 

absent in the spectrum of native chitin. There is an increase in the peak intensity of C–O stretch at 

~1160 cm-1 in PC films when compared to native chitin. On comparison of the uncrosslinked PC 

and crosslinked PC spectra, it was found that there is a decrease in intensity at 1640 cm-1 which 

can be attributed to the consumption of vinyl C=C groups upon crosslinking. 

 

3.3.1.2 Determination of Degree of Deacetylation 

The degree of deacetylation (DD), which determines the content of free amino groups in the 

polysaccharides is used to differentiate between chitin and chitosan, as well as determine the 
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chemical nature of the photochitin synthesized. Typically, chitin with a high degree of 

deacetylation is classified as chitosan. A common concern during the chemical processing and 

modification of chitin is that during the process it might undergo deacetylation and convert into 

chitosan. Hence, it is important to check the DD of PC.  Various methods have been proposed for 

the determination of the DD. Several methods are tedious and expensive (e.g., NMR) or destructive 

to the sample (ninhydrin test). Therefore, we used two analytical procedures for the DD 

determination – viz. infrared spectroscopy and UV-spectrophotometry for confirmation of the 

results.[13] 

 

Determination of degree of deacetylation using infrared spectroscopy (IR) 

The degree of deacetylation (DD) of the starting chitin, a commercially available chitosan as 

reference and the synthesized photocrosslinkable chitin (PC) were evaluated by FTIR using a 

technique proposed by Moore and Roberts. Baseline corrections were made using the improved 

method suggested by Sabnis and Block. Films of PC, chitin and chitosan were obtained using the 

protocols described above and dried to ensure no moisture. The ratio of the absorbance at 1655 

cm-1 to that of the absorbance at 3450 cm-1 was recorded and the DD was established using the 

equation:  

DD= A1655/A3450 x 100/1.33 [14] 

The absorbance peak at 1655 cm-1 corresponding to the amide I band was used as the probe and 

the absorbance at 3450 cm-1 corresponding to the hydroxyl stretch was used as the reference band. 

The hydroxyl band was used as an internal reference for the correction of variables such as film 

thickness and concentration. The “1.33” in the equation is the ratio of A1655/A3450 for fully 

acetylated chitosan. The DD of commercially available chitin (Alfa Aesar) and chitosan (Sigma 
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Aldrich) was evaluated using FTIR and compared with the values reported by the manufacturer in 

order to validate the results. 

 

Table 3.1 DD values comparison of commercial chitin and chitosan with PC using FT-IR analysis. 

Sample Reported DD % Calculated DD % (FTIR) 
Chitin (Alfa Aesar) 20-30 27 
Chitosan (Sigma- Aldrich) 75-85 74 
PC N/A 35 

 

Determination of degree of deacetylation using infrared spectroscopy (IR) 

This method uses First Derivative UV Spectrophotometric Analysis to obtain the DD. Initially, a 

standard curve was formed using solutions of N-acetyl glucosamine (GlcNAc) of concentrations 

0, 10, 20, 30, 40 and 50 μg/ml were made in 0.85% phosphoric acid. A calibration curve was 

obtained using the first derivative UV values at 203 nm as a function of GlcNAc concentration. A 

linear regression fit to the data was obtained (Figure 3.3). 

 

Figure 3.3 Calibration curve of GlcNAc. 
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Solutions in concentrated phosphoric acid at concentration 5 mg/ml was prepared by mixing chitin 

and photochitin (PC) in 85% phosphoric acid at 60 oC for 40 mins. The solution was then diluted 

100 times using DI water and placed in the oven at 60 oC for 40 mins. The first derivative values 

at 203 nm of the samples were obtained. The amount of GlcNAc was determined using the 

calibration graph. 

 

Table 3.2 DD values comparison of commercial chitin and chitosan with PC obtained using 

infrared spectroscopy (IR) 

Sample First derivative 
(203 nm) 

Amount of GlcNAc 
(μg/ml) 

Calculated DD % 

Chitin (Alfa Aesar) -0.076 41.59 21.9 
Chitosan (Sigma- Aldrich) -0.0245 11.29 82.2 
PC -0.0443 23.05 40.2 

 

It was found that both methods give a very close estimate to each other as well as the validation 

from the manufacturer’s data. 

 

3.3.2 Fabrication and characterization of optically transparent, mechanically robust chitin 

films 

Once the synthesis and characterization of PC to confirm the successful incorporation of 

methacrylate groups and the DD, the next steps focused on the formation of films using PC. There 

has been a great interest in the formation of thin and strong films of chitin, which is challenged by 

its general incompatibility with many solvents. However, in this work, the issue of solubility is 

addressed by converting chitin to LMW chitin, and further by converting it into a methacrylated 

derivative (PC). As mentioned in the previous section, films of PC were formed using formic acid 

which makes the entire process facile, benign and sustainable. The films are optically transparent 
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and mechanically robust, and can be formed with varying thicknesses by casting different 

concentrations of the PC in formic acid. The films were formed on substrates such as glass and 

silicon by spin-coating followed by UV crosslinking.  

 

Figure 3.4 Mechanically robust and flexible films ~60 mm thickness. a) pure chitosan, b) pure 

chitin, c) photochitin films, all prepared using the same solvent (formic acid). All these films can 

be easily handled and are optically transparent (photochitin forms the clearest films). d) At ~10–

20 nm in thickness can conform to soft interfaces such as skin, where they can be mechanically 

deformed without breaking. 

 

Initial attempts at forming freestanding films of PC were hindered because of the structural 

characteristics of chitin. It was observed that films of 100% PC were brittle when dry, but 

malleable when fully hydrated. This issue was resolved by the addition of a minute amount (0.1%) 
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of polyethylene glycol diacrylate (PEG-DA) to the PC/formic acid solution. It was found that 

addition of PEG-DA enhances the mechanical properties of the films, even when dry. Additionally, 

the films could be peeled from the substrates to be free-standing. These films can be easily held 

and bent without any damage. At each point, films of native chitin and chitosan were also prepared 

for the purpose of comparison of properties. Upon visual inspection, pure chitin and chitosan films 

are somewhat cloudy whereas the PC films were optically transparent (Figure 3.4 a, b and c). 

Thin films ~10–20 mm thick can be formed that are conformable on dynamic surfaces (e.g., skin) 

without tearing (Figure 3.4 d).  

 

 

Figure 3.5 a) Contact angle measurements showing droplet on top: chitosan and chitin films. 

Bottom: photochitin (with 0.1% PEG-DA) films and photochitin (with no PEG-DA), (b) 

comparison of contact angles of chitin, chitosan and PC with and without PEG-DA. 

 

Contact angles of photochitin, chitin and chitosan films were measured using a Rame´-Hart contact 

angle goniometer by placing a 5 mL drop of DI water on the films. The advancing contact angle 

of chitin and chitosan were measured to be around 68.9O and 90.6O respectively which is similar 

to the values reported in literature.[234-236] Interestingly, the contact angle of photochitin films 

were measured to be 56.3O which is hydrophilic in comparison to chitin and chitosan films, and 
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hence showing better surface wettability. On addition of a small amount (0.1%) PEG to improve 

mechanical stability, the contact angle is even more hydrophilic at 49.9O. The slight increase in 

the surface wettability was attributed to the addition of PEG in the composite. In order to compare 

their mechanical properties, tensile strength of the PC, chitin and chitosan films, all prepared using 

a common solvent – formic acid, was tested. The use of a common solvent for the preparation of 

films allows easy comparison since the properties of chitin and chitosan films are known to be 

dependent on the preparation conditions and solvents. The experiment was performed using a 50 

N load cell by applying a strain rate of 0.1 mm s-1. The tensile strengths of chitin films were found 

to be ~66 MPa which is similar to earlier reports. The tensile strength of PC films (with 0.1% PEG-

DA) was measured to be ~90 MPa which indicates that the crosslinking induces a strength higher 

than the pure chitin films. As a comparison, both films were tested against chitosan and it was 

found that both photochitin and pure chitin films showed a lower tensile strength and elongation 

in comparison, which can be attributed to their higher structural rigidity.[237] 

 

Figure 3.6 Tensile testing of the films shows that photochitin films are of comparable, if slightly 

higher strength than films of pure chitin. 
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3.3.3 Micropatterning of photochitin to form high resolution structures 

The chemical modification of chitin using photoreactive moieties to form photocrosslinkable chitin 

provides a versatile biomaterial that can be micropatterned using photolithography, wherein the 

material acts as a “negative photoresist” crosslinked in the presence of UV light. The removal of 

uncrosslinked regions were achieved in the development process wherein the patterns were 

immersed 1M LiCl/DMSO (developing solution) followed by rigorous washing using DI water. 

Initially, trials were made on forming PC patterns on rigid silicon substrates using 

photolithography. Prior to the lithography process, the silicon substrates were functionalized with 

TPM in order to facilitate the attachment of PC structures to the substrate via covalent linkage. 

The process of micropatterning high resolution structures of PC on silicon initially required 

significant optimization of multiple parameters such as spin coating parameters, UV-exposure time 

and development time. The spin coating parameters were narrowed down to 800 rpm, 40 seconds 

and 30 rpm/sec ramp up. Similarly, the optimum UV exposure and development time was found 

to be 0.8 seconds and ~2 hours respectively.  
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Figure 3.7 a) Schematic showing the fabrication of microstructures of chitin. Improper formation 

of micropatterns due to b) over exposure of PC and c) insufficient development time. 

 

Following the successful optimization of the photolithography process, precise microarchitectures 

ranging from 10–100 mm could be easily formed on silicon and glass substrates. The scalability 

of photolithography allows the easy fabrication of microstructural topology over large areas 

(several cm), which is difficult using molding or imprinting. SEM imaging was used to 

characterize surface morphology and fidelity of architectures formed. Expanded views of the 

topography show the surface at the microscale and the ability to form features of controllable 

height. Various patterns of different geometry can be easily formed using different photomasks 
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(Figure 3.8a and b). More importantly, microstructures can also be fabricated on flexible films in 

order to form micropatterned chitin sheets using the photolithography technique developed in this 

work. This could be achieved due to the solubility of PC in two different solvents, i.e., formic acid 

and HFIP, similar to silk fibroin reported in Chapter 2. Following the fabrication of PC sheeting 

by casting PC/ formic acid solution on a substrate and crosslinking, a second layer of PC/ HFIP 

solution was casted on the first and exposed to UV light through a photomask. After developing 

in 1M LiCl/ DMSO solution, micropatterned PC sheets were obtained (Figure 3.8 c–e). Owing to 

the chemical crosslinking between the patterns and the underlying film, these features do not 

delaminate on mechanical flexure, which is not possible with pure chitin or with micromolding. 

As above, virtually any kinds of microscale patterns can be formed by simply changing the 

photomasks. 
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Figure 3.8 Images of the microstructures of chitin formed using photolithography (a) and (b) SEM 

images of high-resolution structures (scale bars =100 mm) formed on glass substrates. (c) and (d) 

The patterns (50 mm arrows) can also be formed directly on chitin sheets, leading to flexible 

micropatterned sheets as seen in (e) with 100 mm letters spelling out the word ‘‘Resolution’’. 

 

3.4 CONCLUSION 

The work presented in this chapter demonstrates the synthesis and application of a novel 

photocrosslinkable derivative of chitin which can be photopatterned into 2D and 3D structures. 

Optically transparent and mechanically robust films can be easily formed using a benign solvent. 

Further, high-resolution microstructures can be patterned on rigid substrates such as glass or 
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silicon, as well as form flexible micropatterned sheets. This biomaterial can form functional 

components of tissue scaffolds or bioelectronics that can be fully degraded. As an abundantly 

available renewable resource and byproduct of the food-processing industry, large quantities of 

this chitin are produced annually. Thus, through the work described in this chapter, new avenues 

for its use in biomedical applications and bioelectronics can be envisioned from this material. 

Chitin is biodegradable owing to the action of chitinase enzymes that are widely found in 

nature.[98] Numerous species of microbe such as bacterial, fungi and actinomycetes present in soil 

contain chitinase enzyme for the degradation of chitin.[238] Human gastric juices contain chitinase 

that can degrade chitin.[239] However, studies have shown that the rate of degradation of chitin 

inside physiological environments is very slow which possess the problem of long term reservation 

of chitin in the body.[240] Taking this into consideration along with the difficulties associated with 

processing chitin, photoactive silk proteins were selected over photoactive chitin for the fabrication 

of devices in the subsequent chapters. 

 

 

 

 

 

[This chapter contains results that have been previously published: Sayantan Pradhan, Kathryn 

M. Moore, Kristy M. Ainslie, Vamsi K. Yadavalli, “Flexible, microstructured surfaces using 

chitin-derived biopolymers”, J. Mater. Chem. B, 2019,7, 5328-5335.] 
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CHAPTER 4 

 

IMPARTING CONDUCTIVITY TO INHERENTLY NON-CONDUCTIVE 

BIOPOLYMERS 

 

 

 

 

4.1 INTRODUCTIOIN 

Chapter 2 and 3 explores the development of a platform that allows the photolithographic 

micropatterning of natural biopolymers such as silk proteins and chitin. This is a crucial towards 

the realization of functional biodevices using such versatile natural materials. Various components 

such as electrodes, transducer and other circuit elements of biosensors and bioelectronics (in a 

broader term) can be easily fabricated using these materials on wide range of rigid and flexible 

substrates, conferring biocompatibility and degradability. However, to extend their application 

beyond “passive” substrate materials to active functional components in bioelectronic devices, it 

is important to imbue them with electrochemical properties. This chapter focuses on the 

development of biomaterial based conductive inks that allow their application as electroactive 

components in fully organic, flexible biodevices. 

To date, a wide variety of organic and inorganic conductive fillers such as carbon-based materials, 

metal-based materials, and conducting polymers, have been extensively investigated for flexible 

conductive composites.[5, 241] Ability to impart intrinsic conductivity has been investigated in 
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both synthetic and nature derived polymers. Although metals provide excellent conductive 

properties, there are numerous disadvantages associated with the use of metals. For example, the 

oxidation of metals is linked to low long-term stability.[242] Metals have also been often known 

to cause reactions in vivo and cannot be contacted with wounds.[243-245] Moreover, deposition 

and patterning of metals is achieved via high temperature processes involving harsh chemical 

which can damage natural biopolymers. Carbon based materials such as carbon nanotubes (CNTs) 

and graphene offer good electrical conductivity along with superior chemical stability, and facile 

functionalization.[246-249] However, their hydrophobic nature makes it difficult to disperse them 

efficiently within hydrophilic natural biopolymers.[242]  

In comparison, conducting polymers are an excellent alternative due to their intrinsic conductivity 

and flexibility. Their polymeric nature allows them to be easily coupled with biopolymers and 

reduces the chance of materials mismatch which is often encountered with metals.[250] They are 

highly compatible with biopolymers in terms of processability. A number of conducting polymers 

such as poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS), polypyrrole 

(PPy), and polyaniline (PANI) have been have been integrated with biopolymers.[5, 45] 

Biopolymers can help overcome the brittle nature of conducting polymers.[12, 251] These 

biocompatible conductive composites have been used in a host of biomedical application 

especially in biodevices for continuous monitoring of human bioinformation.[252] Although 

numerous commercially developed strategies have been adopted for patterning conductive 

polymers on biomaterials (screen printing, inkjet printing and stamping), they often demonstrate 

poor adhesion and stability, causing the patterns to come off during mechanical deformation.[103, 

253] In this chapter, the confluence of conducting polymers with biopolymers (viz silk fibroin and 

sericin proteins) is explored. Moreover, the photocrosslinkable nature of the biopolymers 
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discussed in previous chapters provide a stable matrix in which the conducting polymers are 

dispersed while providing patternability using photolithography. In return, the conducting 

polymers impart electrochemical properties to these biopolymers thus making them suitable for 

functional device applications.  

Alternatively, nature also provide numerous conducting materials that can be coupled with 

biopolymers to impart electronic activity.[5, 45] Ever since the discovery of eumelanin as a 

naturally occurring amorphous semiconductor, there has been an interest in eumelanin based 

organic electronics. Numerous studies have attempted at understanding the conduction mechanism 

of eumelanin along with its unique physical structure, photoprotective, or antioxidant properties. 

Additionally, studies have shown that the hydration state of eumelanin has significant effect on its 

electrical properties. Various melanin-based devices, such as sensors [54]–[56], energy storage 

devices [18], [57], [58] and OECTs [59], have been reported. A part of the work done in this 

chapter is extended towards achieving fully nature derived conductive biocomposites by 

incorporating natural semiconductor melanin in the photofibroin matrix to form a photopatternable 

conductive ink. 

 

4.2 EXPERIMENTAL 

4.2.1 Synthesis of photofibroin and photosericin 

Photofibroin and photosericin were prepared following the method described in Chapter 1. 

 

4.2.2 Synthesis and patterning PEDOT:PSS- photosericin conductive ink  

PEDOT:PSS dry pellets (Orgacon, Sigma-Aldrich, St. Louis, MO) were dispersed in DI water by 

sonicating the mixture for 20 minutes followed by ultrasonication for another 20 minutes. The 
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concentration of the PEDOT: PSS dispersion was 1% (w/v). The dispersion was then doped with 

5% (v/v) DMSO in order to increase the conductivity of PEDOT: PSS. Finally, the PEDOT: PSS 

was mixed with photosericin in varying amounts to form a conductive ink composite with different 

percentages of PEDOT: PSS. Photoinitiator (Darocur 1173, BASF) was added to the conductive 

composite (0.2 μl/1 mg of photosericin) and mixed. In order to make patterns, the PEDOT: PSS-

photosericin ink was spin coated either on TPM functionalized silicon or glass surfaces or on 

photofibroin films and air dried under a chemical fume hood. The samples were then exposed 

under 365 nm UV light (Lumen Dynamics OmniCure 1000 system) for 1 s at 20 mW cm−2. The 

PEDOT: PSS-photosericin conductive patterns were developed in water to remove the 

uncrosslinked area.  

 

4.2.3 Synthesis of PANI- photofibroin conductive sheets 

A dispersion of polyaniline (PANI) emeraldine salt from p-toluenesulfonic acid (Alfa Aesar, 

Tewksbury, MA) in formic acid (Acros Organics, 98%) was by sonicating the mixture for 20 

minutes followed by ultrasonication for another 20 minutes. The final concentration of the 

dispersion was maintained at 1% (w/v). The PANI in formic acid dispersion was mixed with 

photofibroin to make a PANI-photofibroin conductive ink with varying PANI concentration. In 

order to make PANI- photofibroin films, the composite was mixed with photoinitiator (Irgacure 

2959, BASF) 0.6% (w/v) and casted on clean glass slides. Following air drying under a chemical 

fume hood, the films were crosslinked under 365 nm UV light for 3 s at 20 mW cm−2. The samples 

were immersed in DI water in order to detach them from the glass slide to form freestanding PANI-

photofibroin films.  
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4.2.4 Preparation of a eumelanin-photofibroin conductive composite 

A conductive ink composite composed of photofibroin and eumelanin obtained from cuttlefish ink 

was prepared. Dry eumelanin powder (obtained from cuttlefish) was dispersed in formic acid 

(Acros Organics, 98%) by ultrasonicating the mixture for 40 min, resulting in a 1% (w/v) 

dispersion of eumelanin in formic acid (FA). Photofibroin was mixed with the eumelanin 

dispersion to form a composite solution. Varying compositions with 12%, 20% and 28% (w/w) of 

eumelanin blending with photofibroin were studied. A photoinitiator (2-Hydroxy-4'-(2-

hydroxyethoxy)-2-methylpropiophenone) (2.5% (w/v) in the solution) was added to the composite. 

Films were fabricated by casting the solution of eumelanin and photofibroin with appropriate 

amounts of photo initiator, on clean glass slides (up to 1-inch x 1 inch). The composite was left to 

dry under ambient conditions (21oC) for 30 mins and crosslinked under 365 nm UV lamp (Lumen 

Dynamics OmniCure 1000 system) for 3 seconds at 20 mW cm-1. The films were immersed in DI 

water for ~24 hr to delaminate the films, and to wash off the excess photoinitiator.  

 

4.2.5 Electrochemical characterization 

The resistance of the composites was measured using a conventional four-point probe technique 

using an HP 4156B precision semiconductor parameter analyzer (Agilent Technologies).  Cyclic 

voltammetry (CV), linear scanning voltammetry (LSV) and EIS measurements were performed 

using a Gamry Interface 1010E Potentiostat (Gamry Instruments, Warminster, PA). 0.1 M PBS 

Buffer (7.4 pH) was used as the electrolyte. A three- cell configuration consisting of Ag/AgCl as 

the reference electrode, platinum as the counter electrode, and as-prepared samples as the working 

electrode was used. Electrical connection to the working electrode was made using silver 

conducting epoxy or a water pasted carbon paste, and was subsequently scanned from −1.0 to 1.6 
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V at 100 mV/s. The charge storage capacity (CSC) of the samples were obtained from the area 

under the CV using OriginPro (Origin Lab). The impedance spectra of the working electrodes in 

the 0.1 M PBS buffer (7.4 pH) at a frequency range of 10−2Hz to 105Hz with a 5 mV AC amplitude 

were obtained using the same three-cell setup.  

 

4.2.6 Electrochemical characterization 

Scanning electron microscopy (SEM) images of the conductive silk films and patterns were 

obtained using a Hitachi SU-FE-SEM to show the fidelity of the patterned structures. The patterns 

were sputter coated in a 20Å platinum Denton vacuum cold sputtering system (Moorestown NJ) 

before imaging. The optical images were recorded using a Nikon Eclipse microscope. 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Development of PEDOT: PSS- photosericin conductive ink composite 

As discussed in Chapter 1, silk fiber comprises of two protein- the core hydrophobic fibroin, and 

a glue-like water soluble outer sericin. PEDOT: PSS cannot be dispersed in formic acid or HFIP, 

the solvents used to dissolve fibroin, they could not be combined together to form a conductive 

ink composite suitable for biodevice fabrications. Instead, the water-soluble counterpart, 

photosericin, was selected as the carrier protein which could serve as a stable matrix in which 

PEDOT: PSS is dispersed. Although PEDOT: PSS dispersion is commercially available (Baytron 

by Bayer AG, Clevios by Heraeus, and Orgacon by Agfa), a 1% (w/v) dispersion of PEDOT:PSS 

was prepared in house using ultrasonication. The PEDOT:PSS aqueous dispersion obtained 

homogenous and could be easily blended with photosericin to form a conductive ink composite. 

The photosericin helps to overcome the brittle nature of PEDOT:PSS films and improves stability. 
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Unlike most naturally occurring polymers, photoreactive sericin is soluble in water, which offers 

great processability when used with most of the biorecognition reagents such as enzymes and 

antibodies. 5% (v/v) DMSO was added into the composite since it improves conductivity of 

PEDOT:PSS by inducing better packing and reducing PSS content from the surface of the film.  

 

4.3.1.1 Micropatterning of PEDOT: PSS- photosericin ink 

The fabrication of microscale conductive architectures can be achieved via techniques such as 

inkjet printing, lithography or direct etching. As discussed in Chapter 1, photolithography is a well-

developed, high throughput, and high-resolution microfabrication technique. The ink has 

extremely favorable performance metrics and can be patterned on both rigid and flexible substrates 

using sustainable process. To form conductive microarchitectures, the ink could be easily spin 

coated on TPM functionalized silicon or glass surfaces and exposed under the UV light though a 

photomask to form patterns of in a single step. Due silk sericin being water soluble in nature, the 

patterns could be immersed in water for development, wherein the area that was not cross-linked 

could be easily washed off, giving very clean, high resolution and high fidelity micropatterns 

(Figure 4.1 a-c). The design and complexity of the structures formed are restricted only by the 

nature of the photomasks, and thus user defined microcircuits can be fabricated over microscale to 

centimeter scale in a precise manner. The ink could also be spin coated on polymeric substrates 

such as photofibroin and methacrylate functionalized PDMS to flexible sheets with conductive 

microarchitectures, which is critical for the development of flexible and wearable biodevices. Due 

to the presence of chemical linkage, the micropatterns can withstand all kinds of mechanical 

deformations without any delamination or degradation in physio-chemical and electrical properties 

(Figure 4.1d). The entire fabrication process is carried out on a benchtop setup, making it 
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relatively low cost since no cleanroom facility is required. Hence, a green and sustainable 

microfabrication of organic bioelectronics could be envisioned in a rapid high throughput process 

using the approach developed here.   

 

Figure 4.1 PEDOT: PSS- photosericin patterns on flexible substrates. (a) Pattern flexibility, (b) 

water stability, (c) SEM image showing pattern fidelity, and (d) pattern adhesion to substrate. 

Scalebars = 100 µm. 

 

4.3.1.2 Electrochemical characterization of the conductive ink 

Upon electrochemical characterization, the conductive ink composite was found to possess 

favorable performance metrics. The sheet resistance of the PEDOT:PSS-photosericin was 
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measured using a 4-point probe. The conductivity of the ink was found to increase (resistivity 

drops) with the increasing concentration of PEDOT: PSS in the composite. The resistivity trend of 

the ink (Ω/sq.) is shown in Figure 4.2a. However, the ability to photopattern or form high fidelity 

architectures was lost at higher PEDOT: PSS concentration owing to lack of penetration of the UV 

light into the ink, causing an incomplete covalent crosslinking at the interface. Consequently, 28% 

PEDOT:PSS was chosen as an optimal concentration suitable for forming the circuits in biodevices 

and bioelectronics. This composition of conductive ink was investigated with cyclic voltammetry 

(CV) to understand electrochemical stability at an electrode-electrolyte interface at physiological 

pH. The CV showed a wide stable potential window of −1.0 to 1.6 V in PBS buffer (0.1 M, 7.4 

pH) without any significant water splitting peaks (Figure 4.2b). This indicates its stability and 

potential usefulness for detecting biomolecules at different oxidation or reduction potentials. 

 

 

Figure 4.2 Electrochemical characterization in PBS (7.4 pH). (a) measurement of the sheet 

resistance/conductivity of the conducting ink at varying concentrations of the conducting polymer 

(b) CV at 0.1 V/s scan rate for the 28% ink used in the electrodes. 
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4.3.2 Development of PANI- photofibroin conductive ink composite 

PANI is a widely used polymer among conductive families, with unique properties such as high 

thermal, electrical, and environmental/chemical stability, as well as reasonable cost. However, one 

of the major drawbacks of PANI is that it is relatively harder to process in comparison to other 

well-known conducting polymers. This can be attributed to its rigid backbone, which is related to 

its high level of conjugation. Initial attempts were made for the synthesis of an aqueous dispersion 

of PANI using ultrasonication technique which was not successful. However, on subsequent 

investigation, it was found that PANI could be easily dispersed in formic acid via ultrasonication. 

This was found to be highly advantageous since formic acid is also used to solubilize photofibroin. 

Therefore, by mixing photofibroin in the PANI-formic acid dispersion, a PANI- photofibroin 

conductive ink composite was formed. The dispersion of PANI in formic acid was favorable since 

doping PANI with acids increases its conductivity.  

Conductive PANI-photofibroin sheets were fabricated by casting the conducting ink on clean glass 

slides and air drying under the chemical hood. This was followed by UV crosslinking. Similar to 

that of PEDOT: PSS-photosericin composite, it was found the higher concentration of PANI in the 

composite affected the UV crosslinkability of the films. Hence, 28% PANI in the composite was 

selected as the optimum concentration. The crosslinked PANI-photofibroin films could be easily 

detached from the underlying substrate by immersing them in water to form mechanically robust 

and flexible freestanding films (Figure 4.3a). CVs of 28% PANI-photofibroin composite were 

taken in the range of -1V to 1V at a scan rate of 100 mV/seconds in 7.4 pH PBS buffer. Similar to 

PEDOT: PSS-sericin composite, a stable CV was obtained with any water splitting peaks. This 

demonstrates its usefulness in the realization of electrochemical devices for the biological milieu.  
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Figure 4.3 Electrically conducting films of PANI-photofibroin a) mechanically robust and flexible 

freestanding films and b) CV at 0.1 V/s scan rate for the 28% ink. 

 

4.3.3 Development of eumelanin- photofibroin conductive ink composite 

The ability to form mechanically strong, flexible films and coatings, which are stable in 

physiological environments using eumelanin, is crucial for the realization of new electroactive 

applications on tissue engineering and regenerative medicine. Combining eumelanin with fibroin 

renders electrochemical properties to silk fibroin, while imparting photopatternability to 

eumelanin. In this work, the combination of eumelanin with the photofibroin is aimed at enhancing 

the versatility of patterns while rendering it compatible with photolithographic techniques. While 

eumelanins are insoluble in most organic solvents which hinders their easy processing [45], 1% 

(w/v) dispersion of eumelanin could be obtained in formic acid by ultrasonication. Thus, a 
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composite of the two materials could be formed, while varying their relative concentrations.  

Films of varying thickness (typical thickness ~ 50 µm) were formed by casting or spin coating the 

photofibroin/eumelanin composite on clean glass slides followed by exposure to 365 nm UV light. 

The resulting freestanding films are easily detached from the support on water immersion and are 

mechanically robust (Figure 4.4a). Tensile testing on the films showed that the addition of 

eumelanin improves the strength of the fibroin films (12 % eumelanin – 28.4 ± 10.2 MPa in 

comparison to 21.4 ± 5.9 MPa for fibroin films without any eumelanin) (Figure 4.4b). Moreover, 

that the values of tensile strength of regenerated silk fibroin (rSF) are in the same order of the 

values reported in the literature – from 4 MPa to 30 MPa, depending on the preparation and 

measurement conditions [46],[47]. This comparison is to show that the photofibroin (PF) films 

formed by crosslinking do not different substantially from rSF. However, the addition of more 

eumelanin causes the films to become weaker (28 % eumelanin – 12.1 ± 1 MPa). Importantly, 

even at this concentration, the films are very robust and can easily be handled without breakage.  

 

 
Figure 4.4 a) Free standing films of crosslinked eumelanin-photofibroin. Films are mechanically 

robust and flexible. b) Tensile testing of the films of fibroin/eumelanin biocomposite as a function 

of the % of eumelanin in the film 
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4.3.3.1 Micropatterning of eumelanin-photofibroin ink via photolithography 

Patterns of eumelanin-photofibroin on glass, ITO glass or silicon substrates were fabricated via 

photolithography (Figure 4.5). The photoreactive fibroin in the composite behaves as a “negative 

photoresist”, providing a stable and biocompatible matrix for entrapping the eumelanin. The 

fibroin/eumelanin composite solution was spin coated on the functionalized surface and photo-

crosslinked through a photomask to form microstructures. Patterns were developed in 1M 

LiCl/DMSO, wherein the uncrosslinked fibroin/eumelanin dissolved in the developing solution. 

Upon exposure to UV light, the methacrylate moieties from photofibroin in the composite form 

covalent bonds with the pendant acrylate groups on the functionalized surface. This chemical 

conjugation anchors the patterns onto the substrate, thus forming high fidelity structures that are 

stable in various solvents. Similarly, fibroin films with covalently attached fibroin/eumelanin 

patterns can be formed as seen in Figure 4.6. This implies that fibroin/eumelanin “circuits” can be 

formed on a variety of substrates including fibroin.  

 
Figure 4.5 High resolution micropatterning of the eumelanin-photofibroin composite. The 

composite solution was spin coated on a glass substrate to form various microscale patterns. Scale 

bar on all the panels = 100 µm. 
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Figure 4.6 High-resolution patterns of the eumelanin-photofibroin composite can be printed on 

flexible fibroin sheets resulting in (a) micropatterned films that (b) can be rolled.  

 

4.3.3.2 Electrochemical characterization of eumelanin-photofibroin composite 

Most electrochemical studies have been performed using melanin in ITO/glass, carbon paper or 

silicon as the substrate. Here, eumelanin-photofibroin electrodes were fabricated on functionalized 

ITO/glass. Electrochemical characterization of the composite at different compositions was 

performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A 

scan was performed over a wide potential window of -1.0 to 1.6V at a scan rate of 100 mV/sec 

with varying eumelanin concentrations (Figure 4.7a). A stable CV was obtained with each 
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composition without any water splitting. The electroactivity and electrochemical stabilities of the 

eumelanin composites were characterized in terms of charge storage capacity (CSC). The 

electroactivity of the composite increases with an increase in the concentration of eumelanin 

(Figure 4.7b). The electrodes with 28% eumelanin (w/w) composite showed a CSC of ~0.3 

mC/cm2. This is comparable to the values reported in literature, where the CSC values of pure 

eumelanin was found to be 1.8 to 2.8 mC/cm2 in acidic medium [58]. The electroactivity of 

eumelanin is affected when blended with fibroin to form a composite. A comparison of the various 

CSC values of eumelanin reported in literature is presented in Table 4.1. Although the CSC values 

of eumelanin-photofibroin composite is comparable with those reported in literature, it is 

significantly lower than other silk protein based conducting composites such as PEDOT: PSS- 

photosericin (~74 mC/cm2).[103] The stability of eumelanin on ITO substrate is a major concern 

while performing electrochemical experiments [57]. The presence of fibroin in the composite 

chemically adhered the film onto the ITO surface, which prevented the film from delaminating. 

This increased the stability of the entire system. The 28% eumelanin incorporated in fibroin 

composite was able to retain ~90% of its electroactivity even after 7 days of soaking in PBS. The 

material was able to retain ~83% of its electroactivity after 100 redox cycles (Figure 4.7c).  

 

Table 4.1 Comparison of the electrochemical properties of the eumelanin composites. 

System CV range Scan Rate CSC Ref 
Eumelanin on carbon paper -0.4 – 0.4 V 5 mV/s 2.8 mC/ cm2 [254] 
Eumelanin on carbon paper -0.35 – 0.3 V 5 mV/s 24 mAh/g [255] 
Eumelanin+ AgNW -0.7 – 0.3 V 1 mV/s 49.3 mAh/g [256] 
Eumelanin-Na -0.7 – 0.3 V - 30.4 mAh/g [257] 
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Figure 4.7 Electrochemical characterization of the eumelanin-photofibroin biocomposite on ITO 

substrates. (a) Cyclic voltammetry with varying % eumelanin (w/w) in composite, (b) Charge 

storage capacity of composite over 1 week, (c) Effect of redox cycles on the electroactivity of 

fibroin/eumelanin composite using 28% of eumelanin, and (d) Nyquist plots for the composite. 

0.1M PBS (7.4 pH) was used as the electrolyte. 

 

EIS spectra of varying eumelanin concentrations in silk fibroin/eumelanin composites was 

conducted. Figure 4.7d shows the Nyquist plots of 3 different electrode compositions. A simple 

Randles equivalent circuit with a parallel resistance and constant phase element connected in series 

with a resistance was constructed. The values from the fitting are presented in Table 4.2. The 

resistance of the solution is almost the same in each case, which implies the electrolyte imposes 

comparable resistance. There is no significant change in the double layer non-ideal capacitance of 
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the electrodes. This is a clear decrease in the charge transfer resistance from 108 MΩ to 23.05 MΩ 

upon increasing the concentration of the eumelanin in the composite (Table 4.1). 

 

Figure 4.8 A simple Randles equivalent circuit used for the EIS modelling eumelanin-photofibroin 

ink. 

 

Table 4.2 Equivalent circuit model fit of the electrochemical impedance spectroscopy (EIS) data 

for varying compositions of the fibroin/eumelanin composite.  

% Eumelanin (w/w) Rs (Ω) Rct (MΩ) CPEdl μF s(a-1) adl 

12 234.3 108 3.27E-06 0.912 
20 153.9 46.98 3.34E-06 0.963 
28 254.6 23.05 1.41E-06 0.954 

 

4.4 CONCLUSION 

This chapter focuses on methods and materials that can be used to imbibe silk proteins- fibroin 

and sericin with electrochemical properties. A water based PEDOT: PSS dispersion was combined 

with photosericin whereas water insoluble photofibroin was combined with a dispersion of PANI 

in formic acid to form conductive ink composites. The silk proteins provide a stable matrix for the 

entrapment of conducting polymers PEDOT: PSS and PANI. Importantly, these biocomposite inks 

could be easily combined with simple photolithographic processes to form conducting 
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microstructures of various complexities which can allow their use as active functional components 

in organic electronics. Nature also provides a host of active materials. The other part of this work 

presents a natural electroactive biocomposite formed from silk fibroin (structural component) and 

eumelanin (electroactive component). This fibroin/eumelanin composites can be formed into films 

using the simple technique of spin-coating followed by UV crosslinking, and also patterned into 

microstructures via photolithography. The natural eumelanin-photofibroin composite films with 

improved mechanical properties and electroactivity could be used for active biomedical 

applications such as biosensing, theranostics, and regenerative medicine. 
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CHAPTER 5 

 

FULLY ORGANIC, FLEXIBLE BIOSENSORS FOR PHYSIOLOGICALLY 

RELEVANT CHEMICAL BIOMARKERS 

 

 

 

 

5.1 INTRODUCTION 

In previous chapters, various platforms were shown that facilitate the fabrication of silk protein 

microstructures photolithographically on a variety of rigid and flexible substrates. Subsequently, 

these proteins were combined with conducting polymers (PEDOT: PSS and PANI) and natural 

semi-conductors (eumelanin) to form conductive pathways and circuits that allows us to envision 

smart and adaptable systems such as wearable or implantable devices, electronic skin and tissue-

integrated sensors. In order to demonstrate the utility of such platforms for the development of 

functional biodevices, this chapter focuses their use as active sensing elements in fully organic 

biosensors. Moreover, lower charge transfer resistance of these conductive composites can 

facilitate Faradaic processes suitable for biosensing applications. 

A biosensor is a device capable of transforming signals generated at the biological interface into 

quantifiable analytical forms.[258] A typical biosensor consists of three primary components- a 

biorecognition element, a signal transducer element, and a signal processing element that processes 

the transduced signal into quantifiable forms.[259] Based on the types of signal relayed by the 
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transducer, some of the commonly used biosensors include electrochemical biosensors, optical 

biosensors, electronic biosensor, piezoelectric biosensor and magnetic biosensors.[260, 261] 

Among these, electrochemical biosensors are widely used due to their ability to directly convert 

biological events into electrical signals. However, the process of converting biological information 

into electrical signals is rather challenging due to the complexity of deploying an electronic device 

at the biological interface. Hence, there is a need to develop electrochemical sensing platforms that 

can be easily introduced at dynamic and soft biological environments for the detection of 

physiologically relevant chemical biomarkers.[262] 

The design of successful biosensors requires them to be highly specific to target analytes with a 

response that is accurate, precise, reproducible and linear over the concentration range of 

interest.[259] Biosensors targeted for operating at the biological milieu should be small in 

dimension and biocompatible, without producing toxic or antigenic effects.[15] Finally, to be 

widely and effectively adopted, biosensors need to be conformable to the sensing surface and to 

accommodate changes in the surface shape (such as the human body), as well as be compatible 

with low cost, scalable microfabrication techniques.[263] They should also be free from electrical 

or other transducer induced noise.[264] State-of-the-art microfabrication techniques can reduce 

the size of electrochemical sensors which can increase the signal-to-noise ratio for processes 

designed to occur at the biological interface. While metals present high conductivity and low cost, 

they tend to be oxidized under ambient and especially, physiological conditions, and can possess 

a mechanical mismatch in terms of weight and modulus at soft tissue interfaces.[242, 265] They 

often have low biocompatibility, cytotoxicity, and could induce foreign body reaction.  

The PEDOT: PSS- photosericin conductive ink described in Chapter 4 can provide viable and 

competitive alternative to metal, metal oxides and carbon-based materials as the active sensing 
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element in organic biosensors. Conducting polymers such as PEDOT: PSS have gained popularity 

at effective and sensitive transducer material for rapid real-time analysis of Faradaic events taking 

place at the biological environment due to their ability to transport electrons as well as ions.[266] 

The PEDOT: PSS – photosericin ink can be photolithographically patterns on a variety of rigid 

(glass, ITO, silicon) and flexible (silk fibroin, methacrylated PDMS) substrates which can 

effectively miniaturize biosensor devices. Additionally, the water processability of the PEDOT: 

PSS- photosericin conductive provides a stable and benign matrix in which specific biorecognition 

elements such as enzymes, antibodies, DNA, whole cells etc. can be easily immobilized. 

The work demonstrated in this chapter shows how silk proteins in conjunction with conducting 

polymers can be used for the fabrication of functional fully organic, flexible, degradable 

biosensors. The PEDOT: PSS- photosericin composite was evaluated for its ability to detect 

electronically active and inactive chemical moieties in a flexible format. In the second part of the 

study, focuses on the development of an integrated biosensing platform that can be used in 

wearable or implantable biosensors.  

 

5.2 EXPERIMENTAL   

5.2.1 Synthesis of photofibroin and photosericin 

Photofibroin and photosericin were prepared following the method described in Chapter 1. 

 

5.2.2 Fabrication of fibroin substrates 

The fibroin substrate was fabricated by dissolving 7.5% (w/v) of photoreactive fibroin in formic 

acid (Acros Organics 98%), and 2.5% (w/v) photo initiator (Irgacure 2959, BASF) was added to 

the fibroin solution. The solution was drop casted on clean glass slides and air dried for 15 to 20 
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minutes in order to evaporate the excess formic acid. The samples were exposed under a 365 nm 

UV lamp (Lumen Dynamics OmniCure 1000 system) for 1.5 seconds at 2000 mW cm-2 for cross-

linking. To obtain free standing fibroin films, the samples were dipped in DI water which 

facilitated the delamination of the fibroin films from the glass. 

 

5.2.3 Fabrication of conductive patterns on flexible substrates 

1% (wt./vol.) dispersion of PEDOT: PSS (Orgacon™, Sigma-Aldrich, St. Louis, MO) in water 

was obtained through ultrasonication for 20 minutes. The PEDOT: PSS dispersion was filtered 

and 5% DMSO (v/v) was added to get the final stock solution. The basic conductive ink containing 

2.5% (w/v) of photoreactive sericin, 1% (w/v) PEDOT: PSS, and 0.5% (v/v) of photoinitiator 

(Darocur 1173, Ciba Specialty Chemicals Inc., Basel, Switzerland) was then casted on the 

photofibroin substrates and air dried in the dark. Micropatterns were formed by exposure to UV 

light through a chrome photomask for 1.5 seconds. The patterns were developed in deionized water 

to obtain flexible bioelectronic components (Figure 5.1). 

 

5.2.4. Sensing experiments 

Chronoamperometry was used for the electrochemical sensing of the three analytes of interest - 

dopamine hydrochloride (DA), ascorbic acid (AA), and glucose. 10 mL of a stirred 0.1 M PBS 

buffer solution (7.4 pH) was used with a polarization potential of 0.3 V for DA and 0.6 V for AA 

and glucose. 0.01 M AA and DA solutions were prepared for the experiments. For glucose sensing, 

the PEDOT: PSS-photosericin ink was loaded with 200 U of glucose oxidase (A. Niger, Sigma-

Aldrich). 0.5 mM of ferrocenyl methyl trimethyl ammonium iodide (Strem Chemicals, 

Newburyport, MA) was added to the buffer to shuttle electrons from the enzyme active site to the 
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conductive ink. Following stabilization of the background current, increasing amounts of the 

analyte was added to the stirred PBS solution to obtain I vs. t curves. Sensitivity was then 

calculated per ICH guidelines [33]. Sensitivity = 𝑚𝑚
𝐴𝐴

 µA/ µM.cm2, where m = slope of the calibration 

curve (A/µM). The values were obtained from the regression analysis of calibration curves. A = 

area of sensor exposed to electrolyte (cm2). 

 

 

Figure 5.1 Schematic showing the fabrication of flexible devices based on silk proteins. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Fabrication of a flexible biosensor based on silk proteins 

Although bio-derived materials possess a variety of properties that enables their use as functional 

materials in bioelectronics, their electrically insulating natures have limited their use as active 

components.[5] The biocomposite conductive ink developed in Chapter 4 based on the 

photoreactive silk sericin and the conducting polymer PEDOT: PSS permits use as active sensing 

elements in flexible biosensors (Figure 5.1). Devices can be easily fabricated on flexible substrates 

such as methacrylate functionalized PDMS thin films and freestanding fibroin films. However, in 
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this work biosensors were fabricated on flexible fibroin films to form silk based fully organic 

devices that are inherently biocompatible and biodegradable in nature. This is crucial to the goal 

of this dissertation work, where entire device fabrication is envisioned through nature derived 

materials. The photoreactive sericin is functionalized with the same photo-active moieties as the 

fibroin so that it can be self-crosslinked as well as covalently bound to fibroin substrates under UV 

light, thereby producing properly patterned bioelectronics. The rigidity of the devices can be easily 

altered by modifying the thickness of the substrate by simply modulating the spin coating 

parameters during film formation. Unlike most naturally occurring polymers, photoreactive sericin 

is soluble in water, which offers great processability when used with most of the biorecognition 

reagents such as enzymes and antibodies. It also allows the easy development of patterns once 

immersed in water. The sericin area that was not cross-linked could be easily washed off, giving 

very clean, high resolution and high fidelity micropatterns, whose complexity is only limited by 

the engineering design of the photomasks. The entire fabrication process is carried out on bench-

top and low cost using only benign solvents, eliminating the need for clean room procedures. Due 

to the presence of chemical linkage, the micropatterns can withstand all kinds of mechanical 

deformations without any delamination or degradation in physio-chemical and electrical 

properties. This approach therefore has a significant advantage over other techniques where the 

active patterns tend to dissociate from the substrate under mechanical stress. Moreover, this 

approach gives rise to a rapid high throughput, green microfabrication of sensors. 

 

5.3.2 Sensing of electrochemically active targets 

Electrochemical biosensors can facilitate the detection of chemical analytes using two different 

sensing mechanisms: i. Direct biosensing and ii. Indirect biosensing. Direct biosensing of chemical 
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analytes requires them to be electrochemically active so that they can be directly oxidized on 

electrodes. The sensing of these types of chemical targets is also known as non-specific sensing 

since they do not require any specific biorecognition molecule such as enzyme or antibody for 

their recognition. Ascorbic acid and dopamine are some of the common electrochemically active 

chemical biomarkers that are of great physiological importance. AA, commonly known as vitamin 

C, plays an important role in the formation of collagen, wound healing, and the maintenance of 

healthy gums. It also plays an important role in various metabolic activities such as activation of 

vitamin B, conversion of cholesterol to bile acids, and conversion of amino acids to the 

neurotransmitter, serotonin. DA is a vital neurotransmitter from catecholamine family, responsible 

for controlling the reward and pleasure centers of the brain. Neuronal diseases such as Parkinson’s, 

schizophrenia and attention deficit hyperactivity have been linked to dysfunction in the dopamine 

system, making it an important detection target. 

 

Figure 5.2 Sensor response curves for (a) ascorbic acid and (b) dopamine. 

 
Ascorbic acid and dopamine were detected in separate experiments using amperometry. 

Amperometric biosensors are widely used since continuously measure current resulting from the 

oxidation or reduction of an electroactive species in a biochemical reaction.[267, 268] Flexible 
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PEDOT: PSS-photosericin architectures were used as working electrodes, while Ag/AgCl and 

platinum wire were used as reference and counter electrodes respectively. The sensing experiment 

was carried out in a 10mL PBS system with continuous stirring. The detection of ascorbic acid and 

dopamine were carried out at 0.3 V and 0.6 V constant potentials respectively. Following the 

stabilization of background current, ascorbic acid and dopamine were added in increments from a 

0.01M stock solution of each. Each experiment was replicated using at least 3 different sensors. 

The amperometric response curves of ascorbic acid reveal a linear range from 10 µM to 200 µM. 

Similarly, the response of dopamine was found to be linear in the range from 10 µM to 300 µM. 

Current values were normalized to surface area (mA/cm2) to account for any differences in sensor 

area of the 3 different fabricated sensors measured (sensor area is ∼0.08 cm2). The sensitivity of 

the ascorbic acid sensor was found to be 25 nA/ (µM cm2), whereas the dopamine sensor showed 

a sensitivity of 113 nA/(µM cm2) (Figure 5.2). The response time (time taken to reach 95% of 

steady state current) for DA and AA sensors is ∼35 s. The linear and dynamic ranges was found 

to be comparable with earlier reported sensors such as flexible graphite-paper sensor and graphene 

on plastic freestanding electrodes.[103, 269, 270] Due to the versatility of the PEDOT: PSS-

photosericin ink, suitable electroactive species such as graphene can also be added to increase the 

sensitivity and detection limits. 

 
5.3.3 Sensing of non-electroactive targets 

Ever since the development of first glucose sensor by Clark, glucose sensing has become the gold 

standard of electrochemical sensors. As mentioned previously, the water based ambient 

temperature processing of the conductive biocomposite makes it possible to encapsulate and 

stabilize active biomolecules directly in the ink. These include enzymes, DNA, and antibodies for 

use in specific and “indirect” sensing modalities (e.g., enzymatic reaction, binding etc.). Through 
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the inclusion of glucose oxidase (GOx) enzyme in the conductive matrix a flexible glucose sensor 

is realized. Glucose sensing takes place via the breakdown of glucose by the enzyme and the free 

electrons are shuttled to the conductive polymer by a mediator. Importantly, the glucose sensor 

developed in this work is free from any metallic and metal oxide-based charge carrying substrates, 

since the ink is able to function as both the transducer and active electrode. The amperometric 

response and calibration curve (n = 3 sensors) of the glucose sensor is shown in Figure 5.3. 0.1 M 

glucose solution was added to sensors in PBS at different intervals. The sensor shows a rapid linear 

response throughout the dynamic range of 0–8 mM, which covers physiologically relevant blood 

glucose concentrations. The average response time of the sensor (time taken to reach 95% of 

steady-state current) is 25 s with a sensitivity of 5.06 µA/mM cm2. The signal change also confirms 

that the glucose oxidase retains its bioactivity after the fabrication process, implying that the 

process is indeed benign to biomolecules. The results obtained in this experiment also indicates 

that other specific targets can be easily detected by incorporating their complementary enzyme or 

antibody in the ink composition.  

 
Figure 5.3 Glucose sensing (a) mechanism and (b) sensor response to glucose concentrations. 

The inset shows the I-t response of one sensor with the arrows corresponding to addition of 

glucose.   
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5.3.4 Development of a fully organic flexible integrated biosensor 

Conventional 3 electrode systems often include metals such as Ag/AgCl and platinum as reference 

and counter electrodes. Although such systems are simple to design and are cost effective, it is 

rather difficult to engineer such systems into flexible formats.[265] They are generally not 

biodegradable. Further, the electrode material often has to be encapsulated with a biocompatible 

material to minimize inflammatory responses when implanted inside the biological 

environment.[271] Hence, there is a need to develop better sensor configurations. In this work, the 

fabrication of functional fully organic, flexible, degradable biosensors has been proposed wherein 

the working (WE), reference (RE), and counter electrodes (CE) are formed using the PEDOT: 

PSS-photosericin conductive ink. The electrodes are photolithographically patterned on a flexible 

fibroin substrate thus making the system compliant to curvy biological surfaces. The proposed 

sensor has a dimension of ~ 1cm2 with electrode patterns 1,000μm wide. A cyclic voltammetry 

scan performed on the sensor shows a wide stable potential window in the range of -1V to 1V 

without any water splitting window, thus demonstrating the usefulness of the system in detection 

of various biomolecules. Finally, to demonstrate that such sensor configuration could indeed be 

used for sensing chemical analytes, electroactive neurotransmitter dopamine was detected. The 

sensor response was found to be linear in the dopamine concentration range of 0- 400 µM. The 

sensitivity of the sensor was found to be 160 nA/mM cm2 which is in the same range as the 

conventional 3 electrode system with Ag/AgCl and Pt wire as the reference and the counter 

electrodes respectively.  
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Figure 5.4 a) Sensor design showing the position of the working, reference, and counter 

electrodes. The biosensor is conformable, flexible and can be subjected to mechanical deformation 

b) a stable CV and c) sensor response to dopamine. 

 

5.4 CONCLUSION  

In summary, this work discussed in this chapter demonstrates the application of PEDOT: PSS-silk 

sericin composite for the detection of physiologically relevant chemical analytes in a flexible 

format. The PEDOT: PSS-silk sericin composite possess competitive performance metrics along 

with low charge transfer resistance that can Faradaic processes suitable for biosensing applications. 

PEDOT: PSS-silk sericin electrodes fabricated on flexible silk fibroin substrates were used to 

detect electronically active chemicals dopamine and ascorbic acid in a highly sensitive manner. 

The benign nature of the PEDOT: PSS-silk sericin composite allows the encapsulation of GOx 
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enzyme which has been exploited for the detection of glucose. The second part of the study 

demonstrated the fabrication of a fully organic, flexible, degradable biosensors has been proposed 

wherein the working (WE), reference (RE), and counter electrodes (CE) are formed using the 

PEDOT: PSS-photosericin conductive ink. The integrated biosensor was applied for the detection 

of dopamine as a proof of concept. The work presented in this chapter demonstrates the potential 

of nature derived materials for the realization of complex, state-of-the-art biosensing platforms.  

 

 

 

 

 

 

 

 

 

 

[This chapter contains results that have been previously published: Ramendra K. Pal, Sayantan 

Pradhan, Lokesh Narayanan, Vamsi K. Yadavalli, “Micropatterned conductive polymer 

biosensors on flexible PDMS films”, Sens. Actuators B Chem., 2018, 259, 498-504.] 
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CHAPTER 6 

 

SILK-PEDOT: PSS BASED FLEXIBLE TEMPERATURE SENSOR 

 

 

 

 

6.1 INTRODUCTION  

Chapter 5 discussed the development of silk based fully organic, flexible biosensors that can sense 

various biomolecules of physiological importance. However, precise, real-time monitoring of 

temperature in flexible and bio conformable formats is important for healthcare and disease 

diagnostics. In this chapter, the expansion of silk-based devices for the detection of physical 

biomarkers of physiological significance has been explored.  

Among the biointegrated and wearable systems that have been studied, the measurement of local 

temperature is an essential parameter in the monitoring of physiological function.[30] Of interest 

have been flexible and conformable temperature sensors that can function as wearables for real-

time healthcare monitoring.[272, 273] While rigid thermometers have long been in existence, 

creating direct contact with the body has the potential to provide localized, real-time or continuous 

sensing, or improve comfort and accuracy. To accomplish conformal contact with uneven and 

dynamic interfaces, soft, flexible, conformable, and biocompatible sensors have been proposed. 

Skin is a primary target,[274-276] whereas localized temperature recordings for monitoring soft 

tissue interfaces for wound healing, or cardiovascular or pulmonary function, may also be 
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envisioned for disease diagnosis or observing organ function.[277] 

The demand for improved, degradable, and conformable sensors continues to motivate research in 

this field towards ubiquitous sensing.[278, 279] The properties of a flexible temperature sensor 

may be affected by complex strains/stresses induced by the body. Thus, the presence of skin-like 

conformability and stretchability is desirable. In addition to conferring degradability, properties 

such as light weight, thinness, and mechanical flexibility are desirable for improved conformability 

and comfort. They can promote accurate sensing at tissue interfaces, or for packaging and smart 

textile applications. Further, sensors capable of operating in wet and dry environments are needed. 

A challenge lies in providing stable and reliable operation with properties intact for designed 

operational periods, followed by their degradation. Finally, integration with fabrication techniques 

makes the devices accessible and easily reproducible at low cost. 

There have been prior reports of such flexible sensors for temperature measurement, which operate 

via different mechanisms (e.g. resistive, capacitive, or thermocouple) or different materials (e.g. 

carbon based, metals, or conducting polymers), on a variety of substrates (e.g. polyimide (PI), 

polydimethylsiloxane (PDMS), polyurethane (PU), polyethylene terephthalate (PET)-based films, 

paper or textiles).[272, 274, 280, 281] Among various conducting inks that have been reported, 

conducting polymers such as poly(3,4-ethylenedioxythiophene):polystyrene sulfonate 

(PEDOT:PSS) or polyaniline (PANI) are attractive for the development of flexible and wearable 

devices.[164] Many sensors incorporate either nondegradable synthetic substrates and/or use 

metallic electrodes. For example, temperature sensors based on CNT ink and (PEDOT:PSS) 

solution were printed on PET.[282] A PEDOT: PSS sensing layer was sandwiched between two 

PDMS layers with sensors pre-strained to improve sensitivity and linearity by creating 

microcracks.[283] A skin-conformable inkjet printed temperature sensor using 
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graphene/PEDOT:PSS as the active material was shown with screen printed silver conductors and 

inkjet-printed graphene/PEDOT:PSS temperature sensors. The functional layer was printed on an 

adhesive bandage, which had a polyurethane surface and polyacrylate adhesive layer.[284] The 

negative effect of humidity on the electrochemical behavior of PEDOT:PSS motivated sensors 

with high humidity stability.[285] A fluorinated passivating polymer with low water permeability 

was used to provide stability to a crosslinked PEDOT:PSS sensing layer on Ag electrodes printed 

on a polyethylene naphthalate (PEN) substrate. [286] To date, fully degradable and mechanically 

flexible temperature sensors based on organic components have not been shown.  

Natural biopolymers may provide an avenue for flexible temperature sensing with degradability. 

The work in this chapter demonstrates the photolithographic fabrication of functional, flexible and 

degradable temperature sensor using fully organic components. A photoreactive silk fibroin sheet 

function as a flexible, biocompatible substrate and a humidity protection layer, whereas 

functionality derives from conductive bioinks. These bioinks comprise the conducting polymer 

PEDOT: PSS mixed with photoreactive silk sericin, which allow facile fabrication into 

microelectrodes via photolithography. A silk sericin/reduced graphene oxide (rGO) ink is 

crosslinked as the temperature sensitive layer. The sensors are mechanically robust, thin and 

ultralightweight, while possessing humidity stability. The sensors are stable in both air and liquid 

environments over several days and can be stored in dry and wet conditions. The use of silk 

proteins to form novel degradable and biocompatible, yet functional (e.g. conducting) substrates 

provides a ‘green’ future for tissue interfacing (bio) electronics and electronic skins. [4] [228, 287] 

 

6.2 EXPERIMENTAL 

6.2.1 Synthesis of photoactive silk proteins 
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Photofibroin and photosericin were prepared following the method described in Chapter 1. 

 

6.2.2 Formation of conductive composites 

A photopatterning conducting ink for the fabrication of sensing microelectrodes was formed using 

a composite of the conducting polymer PEDOT: PSS with photosericin. The protein matrix forms 

a stable and biodegradable carrier which entraps the PEDOT: PSS while making it patternable 

using an aqueous process. A 1% (w/w) dispersion of dry PEDOT: PSS pellets (Sigma-Aldrich, St. 

Louis, MO) in water was obtained by ultrasonicating for 30 mins and filtering using a 0.25 µm 

syringe filter. 5% (v/v) DMSO was added to the dispersion to enhance its conductivity and 

stability. To form the conducting ink, photosericin was mixed with the PEDOT: PSS dispersion at 

varying concentrations, with appropriate amounts of Irgacure 2959 photoinitiator to facilitate 

crosslinking. 

A composite of photoactive silk sericin and rGO was used to enhance conduction and sensing. GO 

was reduced to rGO chemically using an aqueous protocol.[288] Briefly, a 2 mg/ml solution of 

GO (University Wafer, South Boston, MA) was reduced at room temperature using L-ascorbic 

acid (5 mg per 1 mg of GO) for 1 hour under continuous stirring. Reduction was verified by UV-

Vis. Freshly prepared rGO was mixed with the photosericin at varying concentrations with PI 

added to the solution. 

 

6.2.3 Fabrication of the temperature sensor 

Microfabrication of the temperature sensor was carried out via contact photolithography using a 

benchtop setup (no cleanroom needed) (Figure 6.1). The substrate was prepared by casting a 

solution of 7.5% (w/v) photofibroin and 1.5% PI in formic acid on clean glass slides. The solution 
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was dried under ambient conditions and crosslinked using an OmniCure S1000 UV Spot Curing 

lamp (Lumen Dynamics, Ontario, Canada) (365 nm UV (2 mW cm−2) for 2 s) to form flexible 

substrates. Interdigitated electrodes (IDEs) were formed by spin-coating a solution of photosericin 

containing 28% (w/w) PEDOT: PSS and PI (0.2 µL/mg) on the substrates and drying under dark 

conditions in a fume hood. IDEs were patterned by crosslinking the ink under UV light for 2.5 s 

through a photomask, followed by developing in DI water. The temperature sensing layer was 

fabricated by casting a solution of 1% (w/w) of rGO and photosericin + PI on the IDEs and drying, 

followed by UV crosslinking. The top passivation layer was fabricated by casting a solution of 

7.5% (w/v) photofibroin and PI in hexafluoro-2-propanol (HFIP, Sigma-Aldrich, St. Louis, MO), 

and crosslinking to form an integrated, flexible device.  

 

6.2.4 Device characterization and temperature sensing 

To perform electrochemical experiments on the flexible silk temperature sensors, connections 

were made using copper wires. Measurements were performed using a Gamry Interface 1010E 

potentiostat (Gamry Instruments, Warminster, PA). Conductivity measurements on the sensors 

were calculated from I-V scans performed in the range of −1 to 1 V at 50 mV s−1. A water bath 

placed on a hotplate with a commercial thermocouple was used to control the temperature at which 

sensor measurements were taken. To obtain the conductivity at each temperature point, an I-V scan 

was performed after equilibration for 5 minutes. Responses at different humidity was measured by 

placing the sensors in a controlled humidity desiccator. The sensor was maintained at each 

humidity level for 30 mins before performing conductivity measurements. For all calculations, 

room temperature (20oC) was taken as initial temperature (T0).  

Realtime measurement of temperature was performed using chronoamperometry at 1 V potential. 
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A calibration plot was obtained using amperometric measurements (I vs. t) by varying temperature 

from 20-45oC. The temperature was kept stable at each point for 50 seconds. Current values (I) 

were normalized to the value at 20oC (I0) to obtain a calibration curve. For the determination of 

temperature of a surface, amperometric measurement was obtained at room temperature for 50 

seconds followed by placing the sensor on the surface (with fibroin substrate in contact with the 

surface) and taking a reading for 50 seconds. The final temperature was calculated from the 

calibration curve. 

 

6.2.5 Degradation and stability in aqueous media 

The stability of the devices was observed by storage in PBS over extended period of time (several 

weeks) followed by electrochemical testing. Degradation of devices was observed under 

enzymatic conditions. Unsheathed devices (no top fibroin layer) were immersed in 3 ml of PBS 

solution containing 1 mg ml−1 protease (Protease XIV from Streptomyces griseus, ≥3.5 U mg−1, 

Sigma Aldrich) and stored at 37°C. A higher concentration of enzyme was used in order to speed 

up the process. A control set was designed with devices immersed in PBS buffer at 37°C. To 

preserve enzyme activity, the solution was replaced every 2 days. Imaging was performed on the 

devices following removal from the enzyme solution and drying in a gentle N2 stream. 

 

Figure 6.1 Schematic of formation of flexible silk/PEDOT: PSS temperature sensor. 
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6.3 RESULTS AND DISCUSSION 

6.3.1 Fabrication of flexible organic temperature sensors 

In order to form the flexible, biodegradable temperature sensor, the various components were 

fabricated using silk protein photolithography discussed in Chapter 2. Fibroin films serve as 

mechanically robust, biodegradable substrates on which the entire temperature sensor is fabricated. 

High tensile strength (~100 MPa), optically transparency, and stability in physiological conditions 

makes them ideal for flexible and bio conformable devices.[289] The photoreactive, conducting 

ink formed from silk sericin and PEDOT:PSS is a versatile matrix for electrochemical sensing. In 

this study, temperature sensitivity of PEDOT: PSS was used as the transduction mechanism. 

Specifically, on applying a thermal stimulus, the charge transport carriers increase along with an 

increase in the number of charge carriers. This increase in carrier mobility decreases the resistance 

of the temperature sensor, which is reported as a function of temperature.[290, 291]  
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Figure 6.2: Images showing the flexible temperature sensor formed using silk proteins. a) the 

sensor may be placed on skin or integrated into a wrinkled surface (e.g., a textile) with a small 

form factor. b) SEM imaging of the cross-section of the sensor showing the layers that are 

covalently integrated, preventing delamination and improving stability.  

 

The flexible substrates are formed as thin, smooth, mechanically robust silk fibroin films 

crosslinked on glass supports. The PEDOT: PSS ink was patterned on these substrates by spin 

coating, followed by photolithography. The process schematic is shown in Figure 6.1. 

Interdigitated electrodes (IDEs) with 250 µm finger width were fabricated to have a small form 

factor for the sensors (IDEs cover ~ 1 mm x 2 mm area on a substrate that is ~10 mm x 10 mm). 

The films were soaked in water for development and to delaminate them from the support and 

form free-standing devices (Figure 6.2a). A conducting composite of rGO and photosericin was 
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cast on the electrodes and covalently crosslinked, taking advantage of the same pendant 

methacrylate moieties present in the substrate and electrodes to form interpenetrating layers. rGO 

is used as the temperature sensing element due to its well-known phenomenon of temperature 

dependent charge transport behavior. Upon thermal excitation, the mobility of charge carriers in 

rGO increases, thus increasing the conductivity of the material. Finally, to provide stability against 

humidity, a fibroin layer was used to sheath the top of the sensor. The use of water as the 

developing solvent makes the entire process benign and environmentally friendly. The chemical 

crosslinking of the different layers using the same chemistry makes the entire device more robust, 

durable and less prone to failure under multiple mechanical deformations and flexure. By 

incorporating the PEDOT: PSS in the photosericin matrix, which contains residual methacrylate 

groups, the IDEs are covalently attached to the underlying fibroin substrate. Figure 6.2b shows an 

SEM image of the cross-section of the device, showing how the layers are integrated.  

 

6.3.2 Device characterization and optimization 

The temperature sensor reported here utilizes two different conducting composites- rGO-

photosericin and PEDOT: PSS- photosericin. The inclusion of the (photoreactive) sericin offers a 

stable, patternable matrix for the rGO and PEDOT: PSS, while also providing biodegradation 

under proteolysis. Both rGO and PEDOT: PSS have been used as the active sensing elements in 

temperature sensors.[275, 286] Hence, the temperature sensitivity of each layer was separately 

investigated. The effect of temperature on the resistance of PEDOT: PSS-photosericin and rGO- 

photosericin was studied, while keeping the configuration (amount of material and area) similar 

(Figure 6.3). In order to characterize each sensor configuration, linear voltammetry scans were 

performed while varying the temperature from 20-50oC. The temperature sensitivity is expressed 
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in terms of the Temperature Coefficient of Resistance (TCR):  

TCR = 𝑅𝑅−𝑅𝑅0
𝑅𝑅0∗△𝑇𝑇

× 100. 

 

Figure 6.3 a) I-V curves as a function of temperature for temperature sensors in liquid 

environment (PBS buffer) b) Comparison of the effect of temperature on resistance from each of 

the individual composites with the final temperature sensor. c) Difference in sensitivity as a 

function of rGO in the electrode ink vs. rGO in the top sensing layer and d) effect of increasing 

the concentration of rGO in the conduction layer. 

The temperature sensitivity of the 1% rGO-photosericin layer (-1.51% oC-1) is higher compared to 



 

 
 

 

108 

the 28% PEDOT: PSS-photosericin layer (-0.86% oC-1). In comparison to the individual 

composites, the TCR of the temperature sensor is -0.99% oC-1 (Figure 6.3b). Although the change 

in resistance is not linear for either of the composites, the response of the final sensor was found 

to be linear. Since the sensitivity of the 1% rGO-photosericin is higher than the 28% PEDOT: PSS-

photosericin layer. To optimize device characteristics, the use of rGO dispersed within the IDEs 

instead of using it as a separate layer was investigated. The temperature sensitivity of electrodes 

with 1 wt.% rGO in the PEDOT: PSS-photosericin ink composite was estimated at -0.5% oC-1, 

which is almost half the sensitivity of devices with 1% rGO in the top layer (-0.99% oC-1) (Figure 

6.3c). The presence of rGO in the PEDOT: PSS-photosericin ink did not lead to any noticeable 

enhancement of sensing behavior.  

 

Table 6.1 Some comparative reports of sensors showing the temperature coefficient of resistance 

(TCR) response.  

 
Temperature sensing active 

material 
Temperature 

range oC 
TCR ( oC-1) Reference 

PEDOT:PSS + GOP sensing layer 
on Ag electrode 

25-50 -0.77% [286] 

PBH-rGO composite 20-65 -0.3% - 0.8% [275] 
rGO 25-45 -1.30% [276] 

Silk fibroin and Ca (II) ions 0-40 -1.9% [292] 
Silk based graphitic nanocarbon 25-80 -0.81% [293] 

Gr/SF/Ca2+  20-50 -2.1% [294] 
PEDOT:PSS 30-55 -0.42% [295] 
Graphene/PEDOT:PSS 30-45 -0.064% [284] 

PDMS/ PEDOT:PSS/ rGO 30-50 -1.69% [296] 

Silk/PEDOT:PSS 20-50 -0.99% This work 
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Figure 6.4 Calibration curve showing the temperature response of the flexible sensors. The inset 

shows the signal vs. time measured by chronoamperometry in steps of 5oC. (n=3 different sensing 

experiments). 

Similarly, increasing the concentration of rGO in the top layer was studied. The temperature 

dependent I-V characteristics of devices with varying rGO loading was obtained from 20 to 50oC. 

Even though the overall resistivity of the devices decreased while increasing the rGO concentration 

from 1 wt.% to 3 wt.%, the temperature sensitivity of the devices decreased (Figure 6.3d). This 

can be explained by the percolation threshold and dispersion of rGO in the photosericin matrix. 

1% rGO-photosericin is more efficiently dispersed, making it more sensitive to temperature 

changes. The charge carrier mobility of the rGO-photosericin composite might be impeded at 

higher temperatures with higher rGO loading. Hence, the configuration as shown in Figure 6.2 

was proposed. Finally, a calibration curve was obtained by suspending the sensor in a temperature-

controlled water bath and varying the temperature of the water bath from 20-50oC, covering the 
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physiological temperature. A liner chronoamperometric response in current was observed upon 

increasing the temperature (Figure 6.4).  

 

6.3.2.1 Temperature response to humidity 

The change of conductivity depending on the environmental conditions such as humidity and 

temperature are important for device operation. The influence of relative humidity (RH) on the 

electrical and optical properties of PEDOT:PSS is known.[297] A significant cause of degradation 

of organic PEDOT:PSS devices in air is the adsorption of moisture from the atmosphere.[298] In 

PEDOT:PSS, the polycationic PEDOT chains are interspersed in the polyanionic poly(4-

styrenesulfonate) (PSS) matrix, making it water dispersible. However, the presence of the PSS 

renders the material to be hygroscopic. This degradation of the PEDOT:PSS layer is spatially 

inhomogeneous, and related with the formation of insulating patches causing loss of device 

current, an increase in the resistivity, and consequently decrease in device efficiency.[299]  

 
Figure 6.5 Effect of humidity on the temperature sensor with and without fibroin encapsulation 

layer. 
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While the calibration curve in Figure 3 was obtained under fully hydrated conditions, the effect of 

humidity on the conductivity of the temperature sensor was estimated by measuring the I-V 

characteristics while varying the relative humidity level from 10% to 90% by placing them in 

desiccator. Further, the effect of sheathing of the sensing layers using a photofibroin layer (top 

layer shown in Figure 6.2b) in order to enhance stability towards humidity was studied. In the 

devices without a photofibroin passivation layer (unsheathed), the resistance of the sensor was 

relatively unchanged till ~60% RH. However, the resistance increased by 6% and 11% upon 

increasing the humidity level to 70% and 90% respectively (Figure 6.3). However, when a 

photofibroin layer was introduced, the resistance of the sensors increased by only ~1.2 % even 

under high humidity (90% RH) conditions. This demonstrates that a degradable fibroin 

encapsulation/sheath provides excellent protection against humidity interference while enhancing 

stability in wet environments. 

 

Figure 6.6 Effect of heating and cooling. a) Measurement of TCR hysteresis of the sensor in a 

single heating and cooling cycle. Repeated heating and cooling over b) 5 cycles and c) 50 cycles. 

 

6.3.2.2 Effect of heating and cooling 

The characteristics of the temperature sensors for heating and cooling cycles was measured. The 

response of the devices for heating and cooling is similar with a very small hysteresis between the 
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heating and cooling curves. The TCR of the device while heating (-0.989% oC-1) was very close 

to the co-efficient on cooling (-0.973% oC-1) (Figure 6.6a). This suggests that the reported 

temperature sensor can be used in multiple heating and cooling cycles. The sensors displayed 

excellent cycling stability over multiple heating cooling cycles (Figure 6.6b). Only minuscule 

changes in response were observed over even 50 cycles of consecutive heating and cooling, 

demonstrating the exceptional consistency of the sensors (Figure 6.6c). This suggests that the 

reported temperature sensor can be used in multiple heating and cooling cycles without 

compromising on precision. 

 

6.3.3 Application of the sensor for measuring surface temperatures 

The ability to detect surface temperature, especially on the human body, reliably in a flexible and 

conformable format finds potential applications in healthcare, disease diagnostics and in 

developing e-skins. As seen in Figure 6.2a, the sensors are conformable and can be easily applied 

to surfaces including skin and wrinkled fabric. The experiments noted in the prior section were 

performed using a water bath to maintain a steady and measurable temperature. The response of 

the flexible sensors was tested in contact with surface temperatures, including human skin. In the 

first series of experiments, a flexible, soft, synthetic skin surface (commercially available silicone 

matrix product) was used. A temperature calibration in the range of 23oC to 45oC was used. The 

synthetic skin slab was immersed in a water bath (40oC) till an equilibrium temperature was 

reached. The skin slab was removed, and the sensor placed on it to obtain the current response. 

From the calibration plot, the temperature was calculated to be 39.4oC, which was extremely close 

to the surface temperature of 39oC as measured by two different commercial thermometers.  

The developed temperature sensor was subsequently deployed on skin for measuring the surface 
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temperature. The conformable nature of the sensor allows it to be easily placed on the forearm 

surface (Figure 6.2a). After taking a reading at room temperature (23oC, 60% RH), the sensor was 

placed on the arm and the response was monitored. The current signal response is practically 

instantaneous as the sensor was placed on the skin and stabilized once the skin temperature was 

reached (Figure 6.7a). The current signal at the skin temperature was taken for 50 seconds, with 

the sensor giving a stable response for the entire duration. Once the sensor was removed from the 

skin, the current value dropped back to the signal observed at room temperature observed initially. 

The temperature reading of skin obtained from the calibration curve previously generated was 

calculated to be 30.4oC. For the purpose of validation, the skin temperature was measured using a 

commercial IR skin thermometer which gave a reading of 30.5oC (Figure 6.7a inset).  While the 

skin temperature is below the normal physiological temperature. The agreement in temperature 

response illustrates the fidelity of the sensor developed in this work. From the current vs time 

graph, an increase in current signal is observed as soon as the sensor was placed on skin, showing 

that this flexible sensor is rapid and conformable to the underlying surface. It may be noted that 

the biocompatible fibroin substrate through which the conduction occurs is in contact with the 

surface, rendering it useful for soft interfacial measurements. The application of the sensor for 

touch detection was also considered. A current response was recorded as soon as a finger was 

placed on the sensor, indicating its utility for flexible touch panels using an array of sensors.  
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Figure 6.7 a) Temporal sensor measurement of skin surface temperature (forearm). The inset 

shows the temperature reading taken using a commercial IR thermometer. b) Current response 

upon placing a finger on the sensor. 

 

 
Figure 6.8 Response of the temperature sensor to bending. The resistance (a) was measured by 

generating I-V curves at different bends. Representative bending (b) is shown by placing the 

sensors on a PDMS support that can be flexed.  
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6.3.4 Flexibility and bendability of temperature sensor 

Flexibility and conformability against soft curvilinear surfaces are two basic requirements for 

sensors designed for applications on the human body. As shown above, these sensors are easily 

placed on, and function, on non-rigid and non-planar surfaces. It is important to measure the 

retention of electrical and mechanical properties under non-planar deformations. We studied the 

effect of bending on the electrical properties of the sensors by subjecting them to 30o, 60o and 90o 

bends, which may be encountered in the body. The resistance of the sensor under different bend 

conditions was compared to the resistance of a “flat” sensor. At small bends, no change in the 

resistance is noted. Even at a 90o bending angle, the resistance increased by only 2.4% showing 

the high stability of this device (Figure 6.8). Importantly, the sensor retains its structural integrity 

when subjected to mechanical deformations, without any structural failures such as delamination 

of the electrodes, fracture, or cracking of the layers. Collectively, these experiments demonstrate 

the utility of the proposed sensor for real-time and continuous monitoring of temperature of 

arbitrary, dynamic surfaces including soft tissue interfaces. 

 

 

Figure 6.9 Degradation of the flexible temperature sensor in 10 days in an enzymatic (protease) 

environment. 
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6.3.5 Degradation studies: 

One of the primary advantages of using an organic, biomaterial-based fabrication strategy is the 

ability to form a degradable device. While the applications demonstrated above are primarily ex 

vivo (e.g., on skin), this property can permit the sensor to be bioresorbed or disappear in a 

physiological microenvironment after a stable operation lifetime. Silk proteins are known to be 

enzymatically degraded [300, 301]. A simulation of enzymatic degradation of the temperature 

sensors was carried out in vitro to demonstrate their transient nature. The devices were immersed 

in a 3.5 U/ml solution of protease at 37oC. The control consisted of devices immersed in 1M PBS 

buffer. In the presence of the enzyme, the devices lose their structural integrity in a few days and 

break apart completely in ~ 10 days (Figure 6.9). A higher protease concentration was employed 

to accelerate this process. This implies that a sensor in a standard environment can be designed to 

last longer. A lower protease concentration of 1 U/ml was studied, resulting in proteolytic 

degradation over 1 month (Figure 6.10). Similarly, by controlling the thickness of the substrates 

and the degree of crosslinking, this degradation rate may be further modulated to a period of 

several weeks. It must be noted that the devices in the control group retain their structural integrity 

and function, even after 1 month of immersion in buffer. We note that in these experiments, it is 

the supportive matrix (silk fibroin and sericin) that degrades in the presence of protease enzyme. 

While PEDOT: PSS and rGO are not known to be degradable inside the human body, the loss of 

the sericin ink matrix results in their dispersal in the form of fine particles that can be eventually 

expelled. We can therefore envision such flexible and degradable devices to be used for short 

periods of time, in external operation (on body or in textiles) or in vivo.  
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Figure 6.10 Degradation of the temperature sensors in different proteolytic conditions weaker 

enzyme solution (1 U/ml protease solution). In this case, the sensor begins to fall apart after about 

2.5 weeks, with almost complete degradation in 4 weeks.  

 

6.4 CONCLUSION  

In summary, a flexible silk/PEDOT: PSS device is shown in this chapter for the monitoring of 

surface temperature. This demonstrates the usefulness of natural polymeric materials combined 

with conductive materials for the development of temperature sensitive composites which further 
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allow the realization of fully organic sensors for physical biomarkers. The device is a fully organic, 

degradable temperature sensor that possesses several useful features including small size with 

high-resolution, reproducible microstructured electrodes. The entire device is optically 

transparent, mechanically robust while being flexible and conformable to complex surfaces. 

Notably, this sensor is formed from protein matrices that comprise an organic framework for the 

device, while allowing it to be proteolytically degraded over a period of several weeks. The sensing 

performance was stable against humidity variations while being able to function in fully hydrated 

environments. Sensor response is rapid, repeatable and cyclable and functions under various 

mechanical challenges. Such degradable systems may be applied for wearable and degradable 

applications for on-body, tissue interfacing, implantable physiological monitoring of temperature, 

or as e-skins that can provide temperature response to touch. 

 

 

 

 

 

 

 

[This chapter contains results that have been previously published: Sayantan Pradhan, Vamsi 

K. Yadavalli, “Photolithographically Printed Flexible Silk/PEDOT: PSS Temperature 

Sensors”, ACS Appl. Electron. Mater. 2021, 3, 1, 21–29.] 
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CHAPTER 7 

 

A KIRIGAMI INSPIRED APPROACH TOWARDS FLEXIBILITY AND 

COMFORMABILITY 

 

 

 

 

7.1 INTRODUCTION 

The ability to produce flexible, thin, mechanically robust, and compliant interfaces that perform 

in dynamic environments is an ongoing challenge. Devices imbued with such multifunctionality 

can establish adaptive interfaces with the body. The biosensor devices reported in Chapters 5 and 

6 have been developed on silk fibroin substrates which are inherently flexible and robust, making 

them ideal for wearable or conformable electronics. However, there is a scope to enhance their 

flexibility, stretchability and conformability to soft biological interfaces by introducing new 

structural design concepts. A variety of structural design concepts have been integrated with 

functional materials to form biodevices and surfaces for health monitoring. This chapter explores 

such a possibility by taking inspiration from the concept of Kirigami (Japanese art of paper cutting) 

to engineer flexibility in materials through the creation of patterned defects. 

The successful designing of flexible biodevices for application at the biological milieu requires 

them to possess a host of important features. However, one of the most important property of such 

devices is stretchability, i.e., the ability of the device to maintain normal functionality under 

mechanical strain.[302] This is crucial to the realization of biodevices that are mechanically robust 
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and are able to conform to soft non-planar surfaces commonly encountered when dealing with the 

human body. Stretchability can be imbued to such devices via two strategies: i. material design 

strategies wherein either novel stretchable materials are synthesized, or elastomeric materials are 

blended with non-stretchable materials and ii. Structural design strategies which involve subjecting 

existing materials to new structural conformations and geometries.[303, 304] Recently, the second 

strategy has gained much attention in the field of flexible and wearable electronics because of its 

ability to include to a wider selection of materials, as traditional non stretchable materials or 

components can simply adapt the specially designed structure to achieve device-level 

stretchability.[181] For examples, flexibility can be imparted to rigid materials such as metals 

metal oxides and semiconductors simply by altering their thickness.[37] Stretchability has been 

introduced to various active components in devices such as electrodes, sensors, transistors etc., 

through structural designs such as wrinkles, arches, serpentines interconnections and island-bridge 

structures.[304, 305] Of interest is the use of kirigami-inspired cuts to transform materials toward 

multifunctional bio interfaces. While designed to enhance elasticity for traditionally stiff materials, 

kirigami architectures can transform intrinsically flexible and soft materials in interesting ways. 

Kirigami cuts have been mostly achieved using material substation using techniques such as 

microscale laser cutting,[306] optical lithography,[307] etching (e.g., plasma, masked ion),[308] 

and macroscopic cutting (e.g., x-acto knife).[309] Kirigami has been successfully shown on 

flexible materials including traditional paper, elastomers (polydimethylsiloxane, PDMS), metal 

foils, plastics (polyimide, polyethylene terephthalate, polyester films), and graphene-silk 

composite are among materials reported.[191, 308] The use of kirigami with active functional 

components in devices using conductive materials such as metal electrodes (Au, Ag, Pt, and Al), 

indium tin oxide, carbon nanomaterials (nanotubes, graphene), conducting polymers, and 2D 
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layered materials such as MoS2 have also been shown.[188, 305, 310, 311] At present, kirigami 

design strategies have been effectively demonstrated in stretchable and conformable devices such 

as light-emitting diode (LED), stretchable supercapacitor, thin-film GaAs solar cells, wearable 

health monitoring device and strain sensors.[312] However, the use of fully biodegradable and 

biocompatible materials with kirigami strategies has not been shown. 

In this chapter, for the first time, photolithographic fabrication of biofunctional, biodegradable silk 

kirigami via a facile, single-step subtractive process is demonstrated. The photolithographic 

process described in Chapter 2 was used as a route to form precise cuts on photoreactive silk fibroin 

over a large (centimeter scale) area. This results in flexible, freestanding, optically transparent, 

macroscale sheets with precisely defined microscale cuts. The PANI-photofibroin conductive 

composite developed in Chapter 4 was combined with kirigami to form intrinsically conducting 

silk kirigami films that are flexible, stretchable, and can be bent and twisted while retaining 

electrical properties. 

 

7.2 EXPERIMENTAL 

7.2.1 Fabrication of kirigami films using photocrosslinkable fibroin 

Photocrosslinkable fibroin (referred to as photofibroin) was prepared following the protocol 

discussed in Chapter 2. The photofibroin (7.5% (w/v)) was dissolved in hexafluoroisopropanol 

(HFIP) with the 2.5% (w/v) Photoinitiator (Irgacure 2959, BASF). The solution was drop cast on 

plain glass slides and air-dried for 15 min to evaporate the excess solvent. Samples were 

crosslinked using 365 nm UV (Lumen Dynamics OmniCure 1000) at 20 mW/cm2. Uncrosslinked 

areas (cuts) were developed by soaking in 1 M LiCl/dimethyl sulfoxide (DMSO). Freestanding 

films were obtained by soaking developed films in deionized water to delaminate them from the 
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glass support. Films were washed in water and stored in air or water. To form conducting fibroin 

films, polyaniline (PANI) emeraldine salt from p-toluenesulfonic acid (Alfa Aesar, Tewksbury, 

MA) (11% w/w) was dispersed in formic acid (1 wt.%) using ultrasonication and mixed with 

photofibroin along with appropriate amounts of photoinitiator. Similar fabrication steps were 

followed to make cuts.  

 

7.2.2 Tensile tests 

Kirigami samples were fixed on a paper frame with a window of 0.5 cm side. The tensile test was 

performed on an MTS 300 series tensile testing machine (MTS Systems Corporation, Eden Prairie, 

MN) equipped with a 50 N load cell. Measurements were taken at a strain rate of 0.1 mm/s, and 

data was collected at a rate of 10 Hz. All other parameters are sample-specific such as thickness, 

width, and length. Typically, films were 20−25 μm thick. 

 

7.2.3 Electrochemical characterization 

Linear sweep voltammetry (LSV) was used to characterize the electrochemical properties of the 

silk-PANI kirigami films. The measurement was conducted by a Gamry Interface 1010E 

Potentiostat (Gamry Instruments, Warminster, PA). The scanning range of applied potential was 

from −0.5 to 0.5 V (over 1 V) with a rate of 100 mV/s. The electrochemical data was analyzed 

using the Gamry Echem Analyst software. Electrical connections were tested by connecting to a 

DC power source. 

 

7.2.4 Proteolytic degradation in vitro  

Silk fibroin films can be proteolytically degraded over time in the presence of enzymes. In the 
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present work, the degradation of silk kirigami films in the presence of protease (Protease XIV from 

Streptomyces griseus, ≥3.5 U/mg, Sigma- Aldrich) was demonstrated. Films, 20 μm thick with 

100 μm cuts (containing ∼2.5 mg fibroin), were incubated in 5 mL of protease (1 U/mg of protein) 

at 37 °C, and the degradation was studied over 2 weeks. Another set of samples was incubated in 

PBS buffer under the same environment, which served as the negative control. The enzyme 

solution was replaced every 3 days to maintain protease activity. Samples from each set were taken 

out on different days, rinsed with deionized (DI) water, and imaged under a microscope to record 

their degradation over time. 

 

 

Figure 7.1 Schematic diagram showing the single-step fabrication of kirigami cuts in silk fibroin 

films via photolithography. 

 

7.3 RESULTS AND DISCUSSION 

7.3.1 Fabrication of silk kirigami films 

In previous chapters, the use of silk fibroin films as a mechanically robust, optically transparent 
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and flexible substrate on which devices can be easily fabricated using bench top photolithographic 

techniques was discussed. The incorporation of kirigami inspired cuts can enhance the 

stretchability of such devices by aiding the substrate material (silk fibroin) to withstand more 

strain, thus enabling better conformability to curvilinear surfaces. In this Chapter, kirigami-

inspired cuts/patterns using degradable and biocompatible polymer silk fibroin were used to add a 

new dimension to their function. Material subtraction or cutting is photolithographically 

accomplished in a single-step process. 

Initially, a solution of photofibroin in formic acid was spin coated on glass substrates and 

crosslinked under 365 nm UV light through a photomask. The photofibroin acts as a negative 

photoresist and the uncrosslinked material is removed by developing the films in 1M LiCl/ DMSO 

solution. Here, the cuts comprise the uncrosslinked regions from where the material is removed 

during the development process. Following the development step, inspection under an optical 

microscope revealed the presence of residual crosslinked material which prevent the cuts from 

opening up. It was hypothesized that after the spin coating step, even though formic acid is 

relatively volatile, it took around 20-30 minutes for it to evaporate completely, which is sufficient 

for the formation of a thin crosslinked layer at the bottom (Figure 7.2a). To overcome this 

problem, formic acid was replaced with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to dissolve the 

fibroin for solvent casting. HFIP is a highly volatile fluorinated polar solvent and its use resulted 

in a smooth dry layer of photofibroin in less than 5 minutes which could significantly reduce the 

bottom layer crosslinking. Additional care was also taken to avoid any exposure to light, and 

samples were kept under aluminum foil during the drying process.  
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Figure 7.2 Kirigami cuts fabricated on silk fibroin films using a) glass substrate and formic acid 

solvent and b) silicon substrate with HFIP solvent after stretching. Scale bar = 500 µm. 

 

However, this was sufficient enough to completely overcome the problem of residual crosslinking. 

In subsequent trials, the glass substrate was replaced with silicon one which the photofibroin-HFIP 

solution was spin coated since the transparent nature of glass led to the combination of refraction 

and scattering of UV light from the bottom of the glass surface, thus resulting in a thin crosslinked 

bottom layer. Silicon being opaque in nature along with a highly polished surface did not pose any 

problems pertaining to refraction. This finally resulted in cuts that have high structural fidelity and 

spatial resolution demonstrating the scalability and accuracy of this photolithographic process to 

form micropatterns over large areas (Figure 7.2b). 
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Figure 7.3 Designing of various cut geometries depending on the direction of strain tolerance. 

 

A variety of cuts of different complex geometries could be formed easily which is only restricted 

to the designing of the photomask. A representative photomask is shown in Figure 7.3a. The 

designing of the cut geometries is largely governed by the intended direction of stretching or strain 

tolerance. For example, the cuts shown in Figure 7.3b (left) represents single slit geometries that 

are suitable for unidirectional stretching. On the other hand, cuts shown in Figure 7.3b (center) 

are more suitable for accommodating strains from multiple directions. Finally, cuts such as the one 
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shown in Figure 7.3b (right) can conform around complex curvilinear surfaces easily. 

Additionally, the silk kirigami films are optically transparent which could enable their application 

in stretchable optics and transparent devices. Cuts down to 10 µm resolution could be easily 

fabricated using simple bench top photolithography without requiring any cleanroom procedures. 

Moreover, the fabrication of nano-scale cuts can be envisioned via state-of-the-art nanofabrication 

techniques such as electron beam lithography (EBL). SEM images taken on the kirigami films 

shows ordered patterns of various complexities over a large area (cm scale) of flexible fibroin 

sheets. The mechanical robustness of the kirigami films allows for their easy handling wherein 

they can be bent, stretched and rolled into tubes without generating any faults or loss in mechanical 

properties. Bending certain patterns such as branches, saddles, or chevrons results in interesting 

and useful microscale openings and out-of-plane deformations. 
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Figure 7.4 Images of silk kirigami (a) large-scale silk kirigami films can be formed that are 

optically transparent (shown here are cuts 50 μm wide × 500 μm long). SEM images showing the 

diversity of geometries of cuts that can be formed using photolithography—(b) linear cut geometry 

with 25 μm cuts, (c) crosscuts that can be stretched biaxially, (d) branched (“Y”-cuts), (e) saddles, 

and (f) chevrons. The top right insets show the out-of-plane deformation of the cuts. (g) Optical 

image of a fully stretched silk kirigami film. The scale bar on all images = 100 μm. Film thickness 

= 25 μm. 

 

Finally, in a simple experiment, the conformability of the reported kirigami films to nonplanar 
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surfaces was tested. As discussed in Chapter 2, by altering the amount of material cast, and the 

spin coating parameters, thin silk fibroin films could be fabricated. These films can effortlessly 

conform to soft biological interfaces. However, with the addition of precisely designed cuts, this 

attribute is further enhanced. The kirigami films reported in this work possess a thickness of ~20 

˗ 25 µm thick which was confirmed using SEM and optical microscopy. Human skin is known to 

be stretchable to 75% strain, with surface strain ∼55% at the knees. The introduction of 

deformability in silk kirigami sheets, with fracture-resistant openings to accommodate stretch, 

allows conformable interfaces or attachment at interfaces. While the dry films are flexible but not 

compliant, moist films can be applied to and readily conform to irregular surfaces such as that of 

a bent finger.  In comparison, a pristine film of a similar size and thickness is quickly delaminated 

on bending the finger. Expectedly, it was found that certain cut geometries such as ‘Y’ cuts 

conform better to irregular surfaces due to their ability to stretch in all directions when compared 

to simple slit cuts which can only stretch in one direction (Figure 7.5).  

 

 

Figure 7.5 Adherence of a) Y cut and b) simple slit cuts. The Y shaped cuts provide better 

conformability and remain on during flexure. 

 



 

 
 

 

130 

7.3.2 Evaluation of mechanical properties using tensile testing 

Following the fabrication of silk fibroin kirigami films, tensile tests were conducted on the films 

with various cuts to understand their mechanical behavior. Kirigami-based structural designs can 

achieve dynamic shaping toward stretchability and foldability.[313] Kirigami sheets possess a 

mechanical regime in which they are stretchable and soft in comparison to pristine (uncut) 

sheets.[314] Initially, tensile tests were performed on 3 types of silk kirigami films with cut 

dimensions- 100 μm wide × 500 μm long, 100 μm wide × 1000 μm long and pristine films (without 

any cuts). MTS 300 series tensile testing machine equipped with a 50 N load cell was used.  

 

 

Figure 7.6 Tensile testing of kirigami films. a) kirigami film placed inside a paper window and b) 

kirigami film mounted on tensile testing machine.  

 

Due to the flexible nature of the films, it was extremely difficult to mount the films to the tensile 
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testing machine without damaging them. Hence, the silk kirigami films were placed between a 

paper window to allow easy handling during the tensile tests (figure 7.6a, b). This made the 

process of mounting the films between the clamps of the tensile testing machine relatively easier. 

Strain rate is an important parameter that critically affects the tensile data obtained. Hence, it is 

important to set the strain rate of measurement carefully to obtain an accurate representation of the 

mechanical properties of the samples. In initial experiments, the strain rate of measurement was 

set around 5 mm/sec. However, it was found that the kirigami samples failed instantly and gave 

incorrect tensile data, thus indicating that such high strain rates are not suitable for soft biological 

samples. After a series of careful investigations, the strain rate was optimized to 0.1 mm/sec 

(Figure 7.7). 

 

Figure 7.7 Stress vs. Strain curves of plain fibroin films at 5mm/s and 0.1mm/s strain rates.   

 

To evaluate the effect of cut dimensions on the stress-strain response of the kirigami films, a simple 

tensile test was performed wherein the width of the cuts were kept constant at 100 µm while 



 

 
 

 

132 

varying the length of the cuts to 500 µm and 1000 µm. The tensile response of these kirigami films 

were also compared with pristine films (Figure 7.8). It was found that although the pristine fibroin 

films displayed a higher tensile strength of ~16 - 30 MPa, they could tolerate strain levels only up 

to ~7%. On the other hand, even though the kirigami films with 500 µm cut length possessed lower 

tensile strength (~8 -10 MPa), they could easily tolerate up to ~20% strain. Finally, the kirigami 

films with 1000 µm cuts had an even lower tensile strength of ~ 4 -6 MPa but their maximum 

strain tolerance increased significantly to ~70%. The decrease in tensile strength could be 

attributed to the kirigami cuts, which in this case acts at faults (or cracks) in the films, thus 

decreasing their capability to withstand high mechanical stress. Nevertheless, the primary 

objective of introducing kirigami cuts is to increase the strain tolerance levels of nature derived 

materials so that they can be successfully integrated with soft nonplanar biological surfaces.  

 
Figure 7.8 Comparison of Stress vs. Strain curves of plain fibroin films with kirigami films with 

500 and 1000 µm cut length.  

For thin films to be successfully applied to soft-biological samples, it is very important to reduce 
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the Young’s modulus.[37] Reducing the modulus results in a decrease of the stress induced in 

devices due to strain generated during mechanical deformation. Due to the low Young’s modulus 

of elastomeric materials such as PDMS (0.73 MPa), they have been widely adopted as materials 

of choice for the realization of flexible and stretchable electronics. The modulus of the kirigami 

films were calculated and compared to that of pristine silk films. Young’s modulus (also known 

as elastic modulus) is defined as the ratio of the stress acting on a substance to the strain produced 

and was calculated using the formula- E = 𝜎𝜎
𝜀𝜀
 ,where E= Young’s modulus, [MPa], σ = Uniaxial 

stress, [MPa],  ε = Strain/ deformation [Dimensionless]  

 

The Young’s modulus at 0.1 strain was calculated for the kirigami and pristine films. It was found 

that modulus of the kirigami films were much lower that the pristine film. Additionally, the 

modulus decreased further upon increasing the length of the cuts from 500 µm to 1000 µm. The 

modulus values of the films are reported in Table 7.1. This proves the usefulness of Kirigami as a 

tool to fine tune the mechanical properties of nature derived polymeric materials. 

 

 Table 7.1 Young’s modulus of kirigami films with 500 and 1000 µm cut length and pristine films. 

Film Type Young’s modulus (MPa) 
Plain Film 340 
500 μm cuts 162 
1000 μm cuts 112 
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Figure 7.9 Optical image showing one of the modes of failure on stretching a silk kirigami film 

with a slit geometry. 

Upon further investigation it was observed that the strain at which the pristine films failed (~7%, 

0.07 mm/mm), the kirigami films underwent a mechanical transformation and entered a stretchable 

regime. It is hypothesized that beyond ~7% strain level, the tensile behavior of the films is 

governed by the kirigami cuts, whose absence in pristine films causes them to fail. The tolerance 

of strain beyond 7% is thus attributed to the opening of the kirigami cuts and not the inherent 

stretchability of the films. Further, it was observed that the kirigami films did not break at once 

and rather had a slow and gradual mode of failure. This was associated to the tearing of the kirigami 

films across the line of the cuts (Figure 7.9). Even though some of the cuts tear, the entire structure 

does not come apart at once. The stills from the tensile test with the point of failure (red arrow) 

under load are shown in Figure 7.10. 
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Figure 7.10 Stills from video taken for kirigami stretch. The red arrow in the bottom row indicates 

the point of failure of the film. The failure then propagates through the entire film.  

 

7.3.3 Degradation of silk kirigami sheets 

As discussed in previous chapters, the advantage of using nature derived organic materials for the 

realization of kirigami inspired stretchable systems is their ability to confer controlled 

biodegradability in physiological environments. The degradation of photocrosslinked silk films 
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were studies under enzymatic condition as a function of their loss in mass. In this work, the 

biodegradation of silk kirigami films were studied.  An enzymatic biodegradation experiment was 

conducted on silk kirigami films incubated in the phosphate-buffered saline (PBS) solution with 

or without protease (control) at 37 °C. It was observed that kirigami films in the control set retained 

their structural integrity and flexibility whereas the films incubated in the enzyme started broking 

down after 10 days. This is consisted with the results previously observed in Chapter 2. Moreover, 

the degradation rate and subsequently the lifetime of the silk kirigami films can be tuned by varying 

the degree of crosslinking, film thickness and the number of cuts introduced on the films. 

Stretchable devices and bio interfaces with precisely engineered lifetimes can therefore be 

fabricated using the kirigami films, which can be useful as flexible biomimetic cellular constructs 

for tissue regeneration, drug delivery platforms, and biosensors.  
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Figure 7.11 Proteolytic degradation of silk kirigami sheets. On the left, films in (control) PBS 

buffer remain stable over several days (stored for a month with no loss in properties or 

morphology). On the right, a thin film (~10 μm) is completely biodegraded in solution of 

proteolytic enzyme (protease XIV), showing for the first time, a kirigami film that can be degraded. 

By controlling the thickness of the films, the rate of degradation can be controlled. Scale bar = 

100 μm. 
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7.3.4 Imparting conductivity to silk kirigami 

So far, the development of a facile process was explored that can enhance the strain tolerance of a 

natural biopolymer (viz silk fibroin) has been discussed. They can be used as stretchable substrates 

on which devices are fabricated. However, the concept of kirigami can also be used to imbibe 

active functional components with enhanced strain tolerance and flexibility. Moreover, while 

many soft materials are not potentially degradable or resorbable, conducting polymer composites 

with silk and auxetic patches using chitosan have been used toward tissue-interfacing electronics 

and e-textiles.[315-318] In this work, multifunctional kirigami with intrinsic electrical 

conductivity is demonstrated on fully organic electroactive sheets fabricated using the PANI-

photofibroin biocomposite developed in Chapter 3. A similar photolithographic procedure was 

followed by spin coating the PANI-photofibroin ink on silicon substrate and dying under a 

chemical hood. The samples were then exposed under UV light through a photomask and 

developed in 1M LiCl/ DMSO solution. After washing thoroughly using DI water, flexible, 

intrinsically electroactive kirigami sheets were formed.  

 

 

Figure 7.12 Schematic diagram showing the fabrication of conducting silk kirigami sheets via 

photolithography.  
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The PANI-photofibroin conductive composite is formed using a 1 wt.% dispersion of PANI in 

formic acid in which the photofibroin is mixed. As discussed previously, following the spin coating 

step, use of formic acid as the solvent increases the drying time to 20-30 mins which results in the 

formation of a thin crosslinked bottom layer. However, such effect was not observed in this case 

since the dark color of PANI prevented light from penetrating though the film during the drying 

process. Due to the same phenomenon, the higher concentration of PANI in the composite make 

the photolithography process difficult and affected the formation of cuts. Hence, 11% (w/w) PANI 

in the composite was found to be optimum for the formation of high-resolution cuts. The higher 

concentration of PANI in the composite can also cause the films to be brittle due to the presence 

of H-bonding between the benzene ring structures of the molecular backbone. 

Following the fabrication of PANI-photofibroin based conductive kirigami sheets, the 

electrochemical properties of the sheets were evaluated as a function of mechanical deformation. 

In order to take electrochemical measurements, the films were connected to copper pads for 

electrical connections. I-V scans were taken on the sheets in the range of -0.5 V to 0.5V. while 

subjecting them to mechanical deformations. The experiments were performed on simple silt 

geometries with cut dimensions- width 100 μm, length 500 μm, gap spacing −500 μm, and gap 

width 500 μm, 25 μm thick, in order to maintain simplicity. In the first set of investigations, the 

kirigami sheets were compared with pristine PANI-photofibroin conductive sheets. Both films 

displayed excellent conductive behavior in the range of µS with kirigami films showing slightly 

better conductivity.  
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Figure 7.13 a) PANI-photofibroin based conductive silk kirigami sheets and b) Kirigami films vs. 

pristine film I-V comparison. 

 

I-V scans were performed on the kirigami samples under relaxed condition and subjecting them to 

~10% strain. It was found that the films retained their conductivity at such strain level although a 

decrease in conductance by ~40% was observed. This was attributed to the well-known 

phenomenon of reduced electron coupling due to the increase in π-π stacking distance which is 

caused due to stretching. In the final investigation, the films were placed on PDMS supports and 

subjected to ~50 – 55O bends to simulate bends commonly encountered on the human body such 

as the knee. PDMS was chosen as a support to mimic a soft stretchable surface similar to human 

skin. Upon bending the conductance of the films decreased by ~22% from 3.03 to 2.35 μS which 

is again a result of the increase in π-π stacking distance. Further understanding of the effect of 

mechanical deformation of conductance can be useful in design strain or pressure sensors where 

the stain or deformations are measured as a function of current change.  
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Figure 7.14 a) Comparison of electrical behavior between stretched and unstretched conductive 

kirigami sheets. b) Comparison of behavior in relaxed (0°) and bent (50°) conditions. c) Bending 

experiment bend 2 is 20o, bend 3 is 50o (knee), bend 4 is 180o.  Film thickness = 25 μm. 

 

The conducting kirigami sheets were used to complete an electrical circuit connected to a DC 

power source and an LED bulb to evaluate their capability to retain satisfactory electrical 

conductivity under mechanical deformations. It was observed that the kirigami films were able to 

retain their conductivity even under 180O bends and twists can maintain current flow from the 

power source to the LED bulb. All these results indicate that such bioinspired and degradable 

systems can used to design skin-like devices while addressing sustainability in bioelectronics. 
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Figure 7.15 Electrically conducting, mechanically robust kirigami sheets that can be bent and 

twisted. Films are conductive enough to illuminate a light-emitting diode (LED) under both 

bending and twisting. 

 

7.4 CONCLUSION 

In summary, this chapter discusses the development of silk kirigami films to address the issue of 

stretchability and conformability at the bio interface. Through the formation of precisely designed 

cuts using benchtop photolithography, the silk fibroin films are imbued with enhanced strain 
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tolerance when compared to pristine films. Limited by the design of photomask, a large variety of 

cuts can be fabricated easily over a large-scale area in a single step process. Further, the mechanical 

properties of the silk fibroin films can be fine-tuned by modulating the cut dimensions. 

Importantly, the silk kirigami film can be degraded under enzymatic condition in a controllable 

fashion. This chapter also demonstrates the fabrication of conductive silk kirigami sheets by 

incorporating conducting polymer PANI in the fibroin matrix. The conductive kirigami sheets 

displayed excellent electrochemical properties. Additionally, the conductive kirigami sheets are 

also able to retain their electronic properties even under extreme mechanical deformations. These 

results suggest that silk kirigami can provide exceptional bioinspired and biodegradable structures 

toward flexible and stretchable biodevices. 

 

 

 

 

 

[This chapter contains results that have been previously published: Sayantan Pradhan, 

Leonardo Ventura, Francesca Agostinacchio, Meng Xu, Ettore Barbieri, Antonella Motta, 

Nicola M. Pugno, Vamsi K. Yadavalli, “Biofunctional Silk Kirigami With Engineered 

Properties”, ACS Appl. Mater. Interfaces 2020, 12, 11, 12436–12444.] 
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CHAPTER 8 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 

 

8.1 CONCLUSIONS 

The research discussed in this dissertation is focused on the exploration of the application of nature 

derived materials for the realization of functional biodevices. Among the host of biomaterials 

available in nature, silk and chitin were chosen as materials of choice, due to their well-established 

characteristics and prevalence in modern biomedical research. However, lack of proper fabrication 

techniques that can be combined with these materials have hindered their use beyond substrate 

materials for tissue engineering and biodegradable electronics. The combination of high 

throughput fabrication techniques along with doping with suitable conducting materials can enable 

their applications in functional biodevices. 

The studies performed in this dissertation can be summarized as follows: 

1. Development of processing and microfabrication strategies that allow the formation 

of precise microstructures of silk and chitin on a variety of substrates. 

Photolithography was chosen over other fabrication techniques as a tool to micropattern 

high resolution structures over large areas due to its simplicity, low cost, and prevalence in 

modern systems. A key step to this process is the chemical modification of silk proteins 

and chitin to impart photoactivity. Chemical modification of silk proteins and subsequent 



 

 
 

 

145 

silk protein photolithography were developed in prior work. In this work, fabrication of 

fibroin micropatterns on flexible fibroin sheets was demonstrated. This is possible due to 

the dissolution of photofibroin in different solvents. The micropatterned silk fibroin sheets 

can be degraded in a controlled fashion under proteolytic conditions. Similar to silk 

proteins, we showed synthesis and application of photocrosslinkable derivatives of chitin 

which can be photopatterned into 2D and 3D structures.  

2. Development of conductive composites with silk proteins that can be used for the 

realization of active functional components in flexible biodevices.  

Inherently non-conductive photocrosslinkable silk proteins were combined with 

electroactive materials wherein the silk proteins provide a stable matrix in which the 

conducting polymer was crosslinked. The application of well-known conducting polymers 

PEDOT: PSS and PANI was explored due to their popularity in flexible bioelectronics 

research. PEDOT: PSS was combined with photosericin to develop a water processable 

conducting composite in which other biomolecules can be entrapped due to its benign 

nature. On the other hand, fibroin, due to its limited solubility, was combined with a 

dispersion of PANI in formic acid to form a conductive biocomposite with competitive 

performance metrics. Finally, the study was extended to the utilization of the natural 

semiconductor melanin to induce electrochemical activity in photofibroin.  

3. Development of silk based fully organic, flexible and degradable biosensors.  

Electrochemically active silk based biocomposites using photolithography was utilized for 

the formation of fully organic and flexible biosensors. The photopatternability of the 

composites was harnessed to form conducting microarchitectures which act as the active 

sensing element in these biosensors. The devices can be formed on various synthetic 
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(PDMS) and natural (silk fibroin) flexible polymeric substrates. The devices formed are 

optically transparent, mechanically robust, degradable in a controlled fashion, and are 

formed using water based green processing techniques. Their usefulness in the detection 

of various electroactive and non-electroactive chemical analytes was studied. Further, they 

were used for the development of flexible and degradable temperature sensors.  

4. Application of structural design strategies to address conformability at the bio 

interface.  

Conformability to soft nonplanar surfaces is a key challenge in the development of systems 

intended for use on the human body. Stretchability is a key requirement in such devices 

that allows higher strain levels without the loss of mechanical or electrochemical 

properties. The work presented in this dissertation aimed at applying the concept of 

kirigami for the formation of structural defects or cuts that enabled silk fibroin films to 

tolerate high strain. The cuts were formed in a simple single step process using 

photolithography. The mechanical properties of the films were modulated by altering the 

geometry and dimension of the cuts. By doping silk fibroin films with conducting polymer 

PANI, intrinsically conducting silk kirigami films were demonstrated, that were flexible, 

stretchable, and could be bent and twisted while retaining electrical properties. 

 

In conclusion, the research emphasizes the usefulness of nature derived biopolymers in the 

development of fully organic functional devices for biomedical applications. Although 

biopolymers silk and chitin are widely studied for applications such as tissue engineering, 

regenerative medicine and drug delivery, their application in active functional devices is limited. 

Of specific interest is the use of such materials for the realization of sensors for the detection of 
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chemical and physical biomarkers which finds importance in disease diagnostics and therapeutics. 

However, the work done in this dissertation represents only a small part of the immense potential 

of these materials. There is further scope of these materials in unique applications which can pave 

the path forward. 

 

8.2 FUTURE WORK 

 

8.2.1 Deposition of ZnO on biopolymers 

Among all the bioresorbable metal oxides, ZnO has gained much attention in opto 

/electronic/bio/chemical applications as a wide-band gap semi-conductor.[319] Combining ZnO 

with flexible biopolymers silk and chitin can lead to interesting applications. Initials attempts were 

aimed at forming ZnO thin films on silk fibroin. In the first step, ZnO was deposited on ITO glass 

using electrochemical methods from Zn (NO3)2 (Zinc nitrate) solution. A smooth ZnO film was 

obtained on the ITO within 15 minutes (Figure 8.1a). In the second step, the ZnO film was 

transferred to a flexible silk fibroin film (Figure 8.1b). Since highly conductive Aluminum-doped 

ZnO (AZO) has been successfully deposited on cellulose films using atomic layer deposition 

technique, such procedures can be easily translated to other polysaccharides such as chitin.[320]   
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Figure 8.1 a) electrochemically deposited ZnO film on ITO glass and b) ZnO layer transferred 

onto a flexible silk fibroin film. 

 

8.2.2 Silk based adhesives 

One of the key challenges in interfacing flexible biodevices with the biological surfaces such as 

the human skin is crucial for obtaining accurate, reliable, and stable signals. Tissue adhesives are 

also of great importance in wound care where there are used as sealants for ruptured tissues.[321] 

Currently there are a wide variety of tissue adhesives to meet different clinical requirements and 

can be broadly classified as (1) natural tissue adhesives, (2) synthetic and semisynthetic tissue 

adhesive, and (3) biomimetic tissue adhesives.[322] Recently, calcium-modified silk fibroin was 

reported as adhesive for epidermal electronics.[323, 324] The Ca‐modified silk exhibits physical 

adhesive characteristics because Ca ions act as both cross‐links for random coil chains of silk via 

metal–chelate complexes and water‐capturing points. Such biomimetic adhesives can be useful for 

the attachment of the biofunctional devices described in this work, where the adhesives themselves 
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degrade over time along with the devices. 

 

8.2.3 Flexible and biodegradable sensors for sensing of analytes on a surface 

The ability to detect targets of physiological importance from surfaces such as the human skin 

finds applications in healthcare and disease diagnostics. For example, such sensors can be mounted 

on the skin for detecting physical cues (temperature, strain, pressure) as well as valuable analytes 

found in sweat (Na+, K+, glucose, pH).[325] Flexible and biocompatible sensors find critical 

importance in wound monitoring, since they can conformally cover the wound and do not apply 

excessive force/stress to the healing area.[326] Therefore, the fully organic, flexible and 

biocompatible silk based sensors developed can be rationally extended towards the detection of 

chemical targets from a wound surface. Preliminary studies show that a 2-electrode system with 

GOx enzyme immobilized in the working electrode can be used for the detection of glucose on a 

surface. Following baseline measurement of 0 mM glucose, the sensor was placed on a surface 

containing glucose wherein an instant increase in current signal can be observed (Figure 8.2). 

However, significant work needs to be done on understanding and optimizing such systems. 

Critical performance metrics such as behavior under dynamic conditions (mechanical 

deformations, effect of temperature and humidity), accuracy, stability and operational lifetime 

have to be investigated meticulously before they can be successfully adopted in a clinical setting.  
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Figure 8.2 Electrochemical measurements performed on a random surface using flexible silk-

based biosensor. a) A stable CV obtained from PBS electrolyte on a surface and b) increase in 

current signal (after 10s) after the sensor was deployed on a surface with glucose.  

 

8.2.4 Silk based multianalyte sensors 

The ability to detect multiple analytes using the same device can further enhance the continuous 

monitoring of human health, thus improving patient care. Such devices are expected to detect 

multiple analytes which high accuracy and sensitivity. Additionally, the specificity of each 

individual electrode to a particular analyte without any interference from other analytes should 

also be considered while engineering such systems. For this purpose, the ability to encapsulate 

large number of biorecognition molecules such as enzymes and antibodies can prove to be 

advantageous for the realization of such a platform. With the sensing techniques and platforms 

developed in this dissertation work, it is possible to envision a multianalyte sensor for the 

continuous monitoring of various chemical and physical targets using nature derived materials.  
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