620 research outputs found

    Design Issues of Reserved Delivery Subnetworks, Doctoral Dissertation, May 2006

    Get PDF
    The lack of per-flow bandwidth reservation in today\u27s Internet limits the quality of service that an information service provider can provide. This dissertation introduces the reserved delivery subnetwork (RDS), a mechanism that provides consistent quality of service by implementing aggregate bandwidth reservation. A number of design and deployment issues of RDSs are studied. First, the configuration problem of a single-server RDS is formulated as a minimum concave cost network flow problem, which properly reflects the economy of bandwidth aggregation, but is also an NP-hard problem. To make the RDS configuration problem tractable, an efficient approximation heuristic, largest demands first (LDF), is presented and studied. In addition, performance improvements with local search heuristic is investigated. A traditional negative cycle reduction and a new negative bicycle reduction algorithms are applied and evaluated. The study of RDS configuration problems is then extended to multi-server RDSs. The configuration problem can be similarly formulated as the single-server RDS configuration problem; however, the major challenge of multi-server RDS configuration is the optimal server locations. A number of server placement algorithms are evaluated using simulations. The simulation results show that a class of greedy algorithms provide the best solutions. In addition to configuration problem, the dynamic load redistribution mechanism is studied to improve the tolerance to server failures. A configuration algorithm to build redistribution subnetworks is proposed and evaluated to deal with single server failures in a group of servers. Besides the exclusive bandwidth access, there are potentials to further improve end-to-end performance in an RDS because end hosts can utilize the knowledge about the underlying networks to achieve better performance than in the ordinary Internet. These improvements are illustrated with a source traffic regulation technique to resolve the unbalanced bandwidth utilization problem in an RDS. A per-connection and an aggregated regulation algorithm for single-server and multi-server RDSs are presented and studied

    Design Issues of Reserved Delivery Subnetworks

    Get PDF
    In this proposal, we introduce the reserved delivery subnetwork (RDS), a mechanism that can al-low information service providers to deliver more consistent service to their customers without perïŹ‚ow resource reservation. In addition to service performance improvements, reserved delivery sub-networks can also provide protection against network resource attacks. Many applications such asweb content delivery services and virtual private networks can beneïŹt from reserved delivery sub-networks. We address a number of issues with the deployment of RDSs. First, we formulate theconïŹguration problem of an RDS as a minimum concave cost network ïŹ‚ow problem, where the perunit ïŹ‚ow cost decreases as the current ïŹ‚ow increases. An approximation heuristic is presented andstudied to solve this conïŹguration problem. Second, we extend our study to the conïŹguration prob-lem of RDSs with multiple sources. We also investigate the conïŹguration problem for subnetworksthat allow load redistribution and load balancing among the sources. In addition, we plan to studyhow to use RDS proxies to regulate the ïŹ‚ow of trafïŹc to end users, so as to minimize network delay

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    Analysing and upgrading the network infrastructure of a supermarket chain

    Get PDF
    This thesis is part of a project consisting on the network replacement of all supermarket chain's stores. The motivation of this renewal is that the store's network has become outdated, obsolete and unsecure. In this thesis, the weak points of the old network are analysed and a proposal for its settlement and improvement is shown step by step, starting from scratch. In addition, the infrastructure of both networks is also reviewed, analysing what are the characteristics of nowadays network devices available on the market and its manufacturers. The proposed final design incorporates Layer 3 and Layer 2 diagrams, including the planning of firewalls provision, routing, switching and redundancy of the network devices. An insight on the protocols that are currently used to overcome arising issues are also discussed

    A Dag Based Wormhole Routing Strategy

    Get PDF
    The wormhole routing (WR) technique is replacing the hitherto popular storeand- forward routing in message passing multicomputers. This is because the latter has speed and node size constraints. The wormhole routing is, on the other hand, susceptible to deadlock. A few WR schemes suggested recently in the literature, concentrate on avoiding deadlock. This thesis presents a Directed Acyclic Graph (DAG) based WR technique. At low traffic levels the proposed method follows a minimal path. But the routing is adaptive at higher traffic levels. We prove that the algorithm is deadlock-free. This method is compared for its performance with a deterministic algorithm which is a de facto standard. We also compare its implementation costs with other adaptive routing algorithms and the relative merits and demerits are highlighted in the text

    Opportunistic data collection and routing in segmented wireless sensor networks

    Get PDF
    La surveillance régulière des opérations dans les aires de manoeuvre (voies de circulation et pistes) et aires de stationnement d'un aéroport est une tâche cruciale pour son fonctionnement. Les stratégies utilisées à cette fin visent Ă  permettre la mesure des variables environnementales, l'identification des débris (FOD) et l'enregistrement des statistiques d'utilisation de diverses sections de la surface. Selon un groupe de gestionnaires et contrôleurs d'aéroport interrogés, cette surveillance est un privilège des grands aéroports en raison des coûts élevés d'acquisition, d'installation et de maintenance des technologies existantes. Les moyens et petits aéroports se limitent gĂ©nĂ©ralement à la surveillance de quelques variables environnementales et des FOD effectuée visuellement par l'homme. Cette dernière activité impose l'arrêt du fonctionnement des pistes pendant l'inspection. Dans cette thèse, nous proposons une solution alternative basée sur les réseaux de capteurs sans fil (WSN) qui, contrairement aux autres méthodes, combinent les propriétés de faible coût d'installation et maintenance, de dĂ©ploiement rapide, d'évolutivité tout en permettant d'effectuer des mesures sans interférer avec le fonctionnement de l'aéroport. En raison de la superficie d'un aéroport et de la difficulté de placer des capteurs sur des zones de transit, le WSN se composerait d'une collection de sous-réseaux isolés les uns des autres et du puits. Pour gĂ©rer cette segmentation, notre proposition s'appuie sur l'utilisation opportuniste des vĂ©hicules circulants dans l'aĂ©roport considĂ©rĂ©s alors comme un type spécial de nƓud appelé Mobile Ubiquitous LAN Extension (MULE) chargĂ© de collecter les données des sous-réseaux le long de son trajet et de les transférer vers le puits. L'une des exigences pour le déploiement d'un nouveau système dans un aéroport est qu'il cause peu ou pas d'interruption des opérations régulières. C'est pourquoi l'utilisation d'une approche opportuniste basĂ© sur des MULE est privilégiée dans cette thèse. Par opportuniste, nous nous référons au fait que le rôle de MULE est joué par certains des véhicules déjà existants dans un aéroport et effectuant leurs déplacements normaux. Et certains nƓuds des sous- réseaux exploiteront tout moment de contact avec eux pour leur transmettre les données Ă  transfĂ©rer ensuite au puits. Une caractéristique des MULEs dans notre application est qu'elles ont des trajectoires structurées (suivant les voies de circulation dans l'aéroport), en ayant éventuellement un contact avec l'ensemble des nƓuds situés le long de leur trajet (appelés sous-puits). Ceci implique la nécessité de dĂ©finir une stratégie de routage dans chaque sous-réseau, capable d'acheminer les données collectées des nƓuds vers les sous-puits et de répartir les paquets de données entre eux afin que le temps en contact avec la MULE soit utilisé le plus efficacement possible. Dans cette thèse, nous proposons un protocole de routage remplissant ces fonctions. Le protocole proposé est nommé ACME (ACO-based routing protocol for MULE-assisted WSNs). Il est basé sur la technique d'Optimisation par Colonies de Fourmis. ACME permet d'assigner des nƓuds à des sous-puits puis de dĂ©finir les chemins entre eux, en tenant compte de la minimisation de la somme des longueurs de ces chemins, de l'Ă©quilibrage de la quantitĂ© de paquets stockĂ©s par les sous-puits et du nombre total de retransmissions. Le problème est défini comme une tâche d'optimisation multi-objectif qui est résolue de manière distribuée sur la base des actions des nƓuds dans un schéma collaboratif. Nous avons dĂ©veloppĂ© un environnement de simulation et effectué des campagnes de calculs dans OMNeT++ qui montrent les avantages de notre protocole en termes de performances et sa capacité à s'adapter à une grande variété de topologies de réseaux.The regular monitoring of operations in both movement areas (taxiways and runways) and non-movement areas (aprons and aircraft parking spots) of an airport, is a critical task for its functioning. The set of strategies used for this purpose include the measurement of environmental variables, the identification of foreign object debris (FOD), and the record of statistics of usage for diverse sections of the surface. According to a group of airport managers and controllers interviewed by us, the wide monitoring of most of these variables is a privilege of big airports due to the high acquisition, installation and maintenance costs of most common technologies. Due to this limitation, smaller airports often limit themselves to the monitoring of environmental variables at some few spatial points and the tracking of FOD performed by humans. This last activity requires stopping the functioning of the runways while the inspection is conducted. In this thesis, we propose an alternative solution based on Wireless Sensor Network (WSN) which, unlike the other methods/technologies, combines the desirable properties of low installation and maintenance cost, scalability and ability to perform measurements without interfering with the regular functioning of the airport. Due to the large extension of an airport and the difficulty of placing sensors over transit areas, the WSN might result segmented into a collection of subnetworks isolated from each other and from the sink. To overcome this problem, our proposal relies on a special type of node called Mobile Ubiquitous LAN Extension (MULE), able to move over the airport surface, gather data from the subnetworks along its way and eventually transfer it to the sink. One of the main demands for the deployment of any new system in an airport is that it must have little or no interference with the regular operations. This is why the use of an opportunistic approach for the transfer of data from the subnetworks to the MULE is favored in this thesis. By opportunistic we mean that the role of MULE will be played by some of the typical vehicles already existing in an airport doing their normal displacements, and the subnetworks will exploit any moment of contact with them to forward data to the sink. A particular characteristic of the MULEs in our application is that they move along predefined structured trajectories (given by the layout of the airport), having eventual contact with the set of nodes located by the side of the road (so-called subsinks). This implies the need for a data routing strategy to be used within each subnetwork, able to lead the collected data from the sensor nodes to the subsinks and distribute the data packets among them so that the time in contact with the MULE is used as efficiently as possible. In this thesis, we propose a routing protocol which undertakes this task. Our proposed protocol is named ACME, standing for ACO-based routing protocol for MULE-assisted WSNs. It is founded on the well known Ant Colony Optimization (ACO) technique. The main advantage of ACO is its natural fit to the decentralized nature of WSN, which allows it to perform distributed optimizations (based on local interactions) leading to remarkable overall network performance. ACME is able to assign sensor nodes to subsinks and generate the corresponding multi-hop paths while accounting for the minimization of the total path length, the total subsink imbalance and the total number of retransmissions. The problem is defined as a multi-objective optimization task which is resolved in a distributed manner based on actions of the sensor nodes acting in a collaborative scheme. We conduct a set of computational experiments in the discrete event simulator OMNeT++ which shows the advantages of our protocol in terms of performance and its ability to adapt to a variety of network topologie

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    An investigation into Off-Link IPv6 host enumeration search methods

    Get PDF
    This research investigated search methods for enumerating networked devices on off-link 64 bit Internet Protocol version 6 (IPv6) subnetworks. IPv6 host enumeration is an emerging research area involving strategies to enable detection of networked devices on IPv6 networks. Host enumeration is an integral component in vulnerability assessments (VAs), and can be used to strengthen the security profile of a system. Recently, host enumeration has been applied to Internet-wide VAs in an effort to detect devices that are vulnerable to specific threats. These host enumeration exercises rely on the fact that the existing Internet Protocol version 4 (IPv4) can be exhaustively enumerated in less than an hour. The same is not true for IPv6, which would take over 584,940 years to enumerate a single network. As such, research is required to determine appropriate host enumeration search methods for IPv6, given that the protocol is seeing increase global usage. For this study, a survey of Internet resources was conducted to gather information about the nature of IPv6 usage in real-world scenarios. The collected survey data revealed patterns in the usage of IPv6 that influenced search techniques. The research tested the efficacy of various searching algorithms against IPv6 datasets through the use of simulation. Multiple algorithms were devised to test different approaches to host enumeration against 64 bit IPv6 subnetworks. Of these, a novel adaptive heuristic search algorithm, a genetic algorithm and a stripe search algorithm were chosen to conduct off-link IPv6 host enumeration. The suitability of a linear algorithm, a Monte Carlo algorithm and a pattern heuristics algorithm were also tested for their suitability in searching off-link IPv6 networks. These algorithms were applied to two test IPv6 address datasets, one comprised of unique IPv6 data observed during the survey phase, and one comprised of unique IPv6 data generated using pseudorandom number generators. Searching against the two unique datasets was performed in order to determine appropriate strategies for off-link host enumeration under circumstances where networked devices were configured with addresses that represented real-word IPv6 addresses, and where device addresses were configured through some randomisation function. Whilst the outcomes of this research support that an exhaustive enumeration of an IPv6 network is infeasible, it has been demonstrated that devices on IPv6 networks can be enumerated. In particular, it was identified that the linear search technique and the variants tested in this study (pattern search and stripe search), remained the most consistent means of enumerating an IPv6 network. Machine learning methods were also successfully applied to the problem. It was determined that the novel adaptive heuristic search algorithm was an appropriate candidate for search operations. The adaptive heuristic search algorithm successfully enumerated over 24% of the available devices on the dataset that was crafted from surveyed IPv6 address data. Moreover, it was confirmed that stochastic address generation can reduce the effectiveness of enumeration strategies, as all of the algorithms failed to enumerate more than 1% of hosts against a pseudorandomly generated dataset. This research highlights a requirement for effective IPv6 host enumeration algorithms, and presents and validates appropriate methods. The methods presented in this thesis can help to influence the tools and utilities that are used to conduct host enumeration exercises
    • 

    corecore