
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2004-20 

2004-04-28 

Design Issues of Reserved Delivery Subnetworks Design Issues of Reserved Delivery Subnetworks 

Ruibiao Qiu 

In this proposal, we introduce the reserved delivery subnetwork (RDS), a mechanism that can al-

low information service providers to deliver more consistent service to their customers without 

perflow resource reservation. In addition to service performance improvements, reserved 

delivery sub-networks can also provide protection against network resource attacks. Many 

applications such asweb content delivery services and virtual private networks can benefit from 

reserved delivery sub-networks. We address a number of issues with the deployment of RDSs. 

First, we formulate theconfiguration problem of an RDS as a minimum concave cost network 

flow problem, where the perunit flow cost decreases as the... Read complete abstract on page Read complete abstract on page 

2. 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

Recommended Citation Recommended Citation 
Qiu, Ruibiao, "Design Issues of Reserved Delivery Subnetworks" Report Number: WUCSE-2004-20 (2004). 
All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/993 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233199526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/993?utm_source=openscholarship.wustl.edu%2Fcse_research%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/993 

Design Issues of Reserved Delivery Subnetworks Design Issues of Reserved Delivery Subnetworks 

Ruibiao Qiu 

Complete Abstract: Complete Abstract: 

In this proposal, we introduce the reserved delivery subnetwork (RDS), a mechanism that can al-low 
information service providers to deliver more consistent service to their customers without perflow 
resource reservation. In addition to service performance improvements, reserved delivery sub-networks 
can also provide protection against network resource attacks. Many applications such asweb content 
delivery services and virtual private networks can benefit from reserved delivery sub-networks. We 
address a number of issues with the deployment of RDSs. First, we formulate theconfiguration problem of 
an RDS as a minimum concave cost network flow problem, where the perunit flow cost decreases as the 
current flow increases. An approximation heuristic is presented andstudied to solve this configuration 
problem. Second, we extend our study to the configuration prob-lem of RDSs with multiple sources. We 
also investigate the configuration problem for subnetworksthat allow load redistribution and load 
balancing among the sources. In addition, we plan to studyhow to use RDS proxies to regulate the flow of 
traffic to end users, so as to minimize network delay. 

https://openscholarship.wustl.edu/cse_research/993?utm_source=openscholarship.wustl.edu%2Fcse_research%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/993?utm_source=openscholarship.wustl.edu%2Fcse_research%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages




Design Issues of Reserved Delivery
Subnetworks
Ruibiao Qiu

WUCSE-2004-20

April 28, 2004

Department of Computer Science and Engineering
Campus Box 1045
Washington University
One Brookings Drive
St. Louis, MO 63130-4899, USA

Abstract

In this proposal, we introduce the reserved delivery subnetwork (RDS), a mechanism that can al-
low information service providers to deliver more consistent service to their customers without per
flow resource reservation. In addition to service performance improvements, reserved delivery sub-
networks can also provide protection against network resource attacks. Many applications such as
web content delivery services and virtual private networks can benefit from reserved delivery sub-
networks. We address a number of issues with the deployment of RDSs. First, we formulate the
configuration problem of an RDS as a minimum concave cost network flow problem, where the per
unit flow cost decreases as the current flow increases. An approximation heuristic is presented and
studied to solve this configuration problem. Second, we extend our study to the configuration prob-
lem of RDSs with multiple sources. We also investigate the configuration problem for subnetworks
that allow load redistribution and load balancing among the sources. In addition, we plan to study
how to use RDS proxies to regulate the flow of traffic to end users, so as to minimize network delay.
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1. Introduction

The Internet has become an information infrastructure that we depend on in our daily life. However, the Internet in
its current state is not sufficient for mission critical business applications. There is no efficient support for bandwidth
reservation mechanisms for flows that require guaranteed bandwidth. Because of the best effort nature of today’s
Internet, there is no way to distinguish between traffic with transaction-oriented mission critical data and traffic for
causal web browsing. These traffic sources have to compete equally for resources such as access bandwidth. Such
lack of reserved bandwidth flows makes it difficult for transaction-based business applications to guarantee mission
critical operations. Multimedia applications also suffer from such lack of efficient bandwidth reservation because it
is hard to maintain quality of service for multimedia flows with the basic best-effort Internet service. In addition, the
Internet is vulnerable to malicious attacks, such as denial of service (DOS) and various worm attacks. In January of
2003, the Internet “slammer” worm attack left thousands of bank customers without ATM access, and dozens of flights
grounded [1]. The data exchange between the servers at the headquarters of the banks and airline companies and the
terminals on ATMs and in airports was severely affected when the Internet got heavily congested. Clearly, the current
Internet is an insufficient information infrastructure, and needs great improvements to provide consistent and stable
services comparable with traditional information infrastructure, such as telephone networks.

In order to make the Internet a better information infrastructure, various techniques have been proposed to improve
services of the Internet. Some solutions, such as active networking, require changes on the routers in the Internet.
However, a number of non-technical issues, such as the incurring costs and complicated business agreements among
Internet service providers, make the deployment of this class of solutions unrealistic. In contrast, another class of
solutions use overlay networks to circumvent the deployment issues. An overlay network is built on top of the regular
Internet, and connects hosts involved in data exchange without changing the underlying network operation. New
techniques that are not readily available in the Internet can be implemented in overlay networks to improve end-to-
end stability, reliability and performance. Overlay networks vary in their architectures. Some overlay networks are
composed of special end hosts, or overlay nodes. By extensive exchange of network information among all overlay
nodes, they attempt to make intelligent data forwarding decisions [2, 3]. These overlay networks are often used as
short-term solutions or vehicles for Internet research because of their inherent limitations. Other overlay networks
(such as SON [4]) build on the underlying physical networks with reserved resources exclusively accessible to the
users of the overlay networks.

In this proposal, we introduce the concept of a Reserved Delivery Subnetwork (RDS). An RDS is designed for
information service providers who have the need for delivery of consistent service to their customers even under
very extreme network conditions. An RDS provides a subnetwork for an information service provider connecting the
provider to its customers at different locations. The traffic source is the server at the information service provider’s
central location, while the sinks are typically access routers where customers of the information service are found.
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The links in the RDS are carefully provisioned with sufficient bandwidth so that traffic from the source node can flow
through to the sinks without contention from other traffic sources, improving quality of service. Although it is difficult
to provide quality of service for individual flows in the current Internet, RDSs give service providers a way to address
the quality of service issue on an aggregate basis. In addition, bandwidth limits on reverse paths provide a protection
mechanism against malicious attacks.

Many applications can benefit from the employment of reserved delivery service. One of the most direct applica-
tions is web content delivery. A web site or an Internet content provider can purchase such a service from the physical
network service provider. With an RDS rooted at the access router where the server resides to all locations where most
demands are found, a content provider can deliver consistent service to end users even under extreme network con-
ditions. Another application can be found in enterprise virtual private networks (VPNs) as well as banks and airline
companies that depend heavily on the time-critical delivery of transaction-oriented data. In this case, the company
headquarters can subscribe to a customized reserved delivery service such that information exchange will not be in-
terrupted even when the network is under attack. It is possible that a service provider and the end users are located in
different network domains run by different physical network service providers. Instead of negotiating a multilateral
service level agreement with each individual network provider, a special type of service provider can be involved. We
can call such service providers as Reserved Delivery Subnetwork Providers or RDSPs. An RDSP provides reserved
delivery service to a customer by constructing an RDS from the customer to their end users. The subnetwork may
span multiple network domains. According to the customer requirements, the RDSP purchases reserved bandwidth on
subnetwork links from each individual network provider, and gains service revenues from the customers that subscribe
to the service from it. In addition, RDSs could extend their applications to grid computing [5], peer-to-peer networks,
multimedia networking, and wireless networks.

The rest of the proposal is organized as follows: we first discuss the related work in Section 2. The reserved
delivery subnetwork (RDS) architecture is formally introduced in Section 3. In Section 4, we describe the configuration
problem for RDS. Two approximation heuristics are presented and compared. In Section 5, we extend our work to
deal with RDSs with multiple sources and capable of load redistribution and load balancing. The reserved delivery
service not only can provide contention free paths to end users, other performance improvements are also achievable.
In Section 6, we present techniques to improve end user application performance by leveraging the underlying RDS.
We lay out the research plan for this investigation in Section 7.

2. Related Work

A variety of overlay network solutions have been proposed to improve the end-to-end performance in the Internet.
The goal of the Detour routing project [2] is to build an alternative routing infrastructure with an overlay network,
as a research vehicle to experiment with performance-sensitive routing algorithms. Similarly in the resilient overlay
network (RON) project [3], an overlay network is built connecting a small group of participants for certain distributed
applications. The major goal is to implement quick detection and recovery from failures, improving stability and
reliability. It takes seconds to detect and recover from a failure, compared with several minutes delay in the ordinary
Internet. However, both Detour and RON share some disadvantages. First, a participant node in either a Detour
network or a RON constantly exchanges information about the network status with all other nodes in order to make
better packet forward decisions. The bandwidth and control overhead limit their applications to small groups of
participants (typically no more than 50). Second, the nodes in both a Detour network and a RON are special end hosts.
So, traffic flow must traverse the access link of an intermediate node twice when it is forwarded, making the access
links potential bottlenecks. In addition, they still rely on the underlying Internet to forward packets with no guarantees.
Hence, they only provide short-term solutions.

Another class of overlay network solutions emphasize the resource reservation in the underlying physical networks
to provide stable and reliable performance. Duan, Zhang and Hou introduced service overlay networks (SON) in [4].
They intended to address the end-to-end QoS problems by introducing a SON provider between physical network
providers and application users. A SON provider purchases bandwidth from multiple network domains with certain
guarantees and charges the application users for the end-to-end QoS sensitive service they provide. They studied the
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cost recovery problems of SONs, and presented cost models and solutions for static and dynamic bandwidth allocation
as well as an online algorithm. In their work, they assume the cost is a linear function of the provisioned bandwidth.
Such an assumption is not accurate because it ignores the fact that traffic variation becomes relatively smaller when
the volume of traffic grows. A non-linear concave cost function is more appropriate, but makes the problem compu-
tationally hard. In addition, they only covered applications requiring point-to-point connections. However, real world
application normally involve more than two participants. Simply combining together all point-to-point connections to
build a SON may not be efficient.

Recently, research in network provisioning is gaining its popularity because of its effectiveness and ease of de-
ployment. Fraleigh, Tobagi and Diot studied the problem of bandwidth provisioning in backbone networks to support
latency sensitive traffic [6]. They modeled the end-to-end delays in backbone networks, and presented a procedure
to determine the bandwidth to reduce the latency violations. They found that a small percentage of bandwidth over-
provisioning is sufficient for most latency sensitive traffic. Juttner, Szabo and Szentesi compared bandwidth require-
ments for virtual private networks using the hose model and pipe models in [7]. They also gave a lower bound using
the hose model. They concluded in their studies that the hose model is a better model for bandwidth provisioning in
virtual private networks. Mitra and Wang used a two-tier market structure to optimize bandwidth provisioning and path
selection in networks, where demands are uncertain and specified by probability distributions [8]. Using mean-risk
analysis, they were able to find an optimal solution that maximizes the revenue (demands served) while containing the
risk (revenue falling below a certain level).

Pappu, Parwatikar, Turner and Wong proposed distributed queueing (DQ) in [9], intended to resolve congestion in
a switch fabric caused by sustained overloading at an output port. The distributed queueing algorithm regulates the
transmission rates from input ports to output ports to avoid congestion inside the switch fabric. Virtual output queues
are maintained at the input port, and the information about the queues at input and output ports is used to determine
the transmission rates at the input ports. So, an output port with large backlog gets less traffic from input ports while
it drains its backlog, and output ports with small backlog get more traffic. This inspires the traffic flow regulation idea
in this proposal. We extend the distributed queueing idea to a larger context in overlay networks, and address similar
congestion problems.

3. Reserved Delivery Subnetworks

3.1. Formal Definition

A reserved delivery subnetwork (RDS) is a semi-private network infrastructure used by an information service provider
to allow it to deliver more consistent performance to its customers. The endpoints of an RDS include a source node
and a potentially large number of sink nodes distributed within a fixed network infrastructure. Sink nodes are typically
routers within metropolitan areas where customers of the information service are found. A network provider selects
a set of links within the network and dimensions bandwidth reservations on those links in order to accommodate
expected traffic flows from the server to the various sink nodes. This allows traffic from the source node to flow
through to the sinks without contention from other traffic sources, improving quality of service.

To allow for variability in the traffic volume at sink nodes, reservations are dimensioned based on the mean and
variance of the expected traffic. Links that carry large traffic volumes are generally more efficient than links that carry
small traffic volumes, since the amount of bandwidth that must be reserved to accommodate traffic variability becomes
a smaller fraction of the total as traffic volume grows. This effect makes it beneficial to group together flows going
from the source to sinks that are close to one another. An example RDS is shown in Figure 1. Note that as traffic flows
diverge to reach different sinks, the total reserved bandwidth on the “downstream links” will generally be larger than
the reserved bandwidth on the upstream link (or links).
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Figure 1: Reserved Delivery Subnetwork.

3.2. Goals and Challenges

Cost Efficiency and Service Effectiveness The cost of an RDS is crucial its success. If insufficient bandwidth
is reserved on some links, demands from users at the location on a path with the “thin” link will not be fulfilled
completely. On the other hand, if too much bandwidth is reserved on links, the RDS provider will suffer loss of service
revenues. Therefore, an ideal solution would strike a balance between the cost efficiency and service effectiveness.

The problem of configuring an RDS can be formulated as a minimum cost network flow problem [10], in which the
cost per unit flow decreases as the flow on an edge increases (this models the declining influence of traffic variability
as traffic volume grows). While minimum cost flow problems can be solved efficiently when the cost per unit flow
is fixed [11, 12], the problem becomes NP-hard when the cost functions are concave [13]. Current research on such
problems centers on enumerative algorithms that can require exponential time in the worst-case [14, 15] and are not
practical for large problem instances. Relatively little work has been done on approximation algorithms.

Fault Tolerance and Recovery Although in theory we can assume the network providers can provide fault-
free networks to the RDS providers, failures could happen in reality. So, the RDS providers should also take such
possibilities into account in their RDS configuration.

Improved Application Performance The reserved delivery service provides guaranteed bandwidth to access
routers where the end users are located. In addition to the aggregate bandwidth guarantee, each individual end host
can also benefit from the RDS because the RDS provides a relatively stable underlying network. We should be able to
leverage such advantages to further improve the end user performance.
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4. Configuration of Reserved Delivery Subnetworks

4.1. Problem Formulation

In our previous investigation [16], we introduced an approximation algorithm for the simple RDS configuration prob-
lem, where configuration is solely based on the user demand matrix. The algorithm is a variant of a classical aug-
menting path algorithm for the minimum cost flow problem with linear costs (constant cost per unit flow). As with
the classical algorithm, we seek a minimum cost augmenting path at each step. However, the choice of such a path
is complicated by the fact that the relative costs of different paths depend on how much flow is sent along them. We
investigate the implications of this and devise an approximation algorithm based on one method for resolving the prob-
lem. Experimental results show that the proposed algorithm produces results that are generally no more than twice the
cost of an easily computed lower bound. We believe this bound to be rather loose and provide evidence that the true
performance is significantly better than what is implied by the lower bound.

We start with an elementary observation. If the traffic on a link consists of a large number of independent and
statistically similar streams, the mean and the variance of the aggregate traffic scales directly with the number of
flows. So, we let σ(µ) = αµ1/2 denote the standard deviation of an aggregate traffic flow with mean µ, where α is a
parameter. Note that when µ = α2, σ(µ) = µ. That is, α2 is the mean traffic rate for which the mean and standard
deviation are the same. Given a traffic flow with mean µ and standard deviation σ(µ), a suitable choice for the reserved
bandwidth is µ + kσ(µ) = µ + kαµ1/2, where k is a small constant (say 3). With these preliminaries, we can now
proceed with a formal statement of the RDS configuration problem.

We are given a directed graph (or network) G = (V, E) and two real-valued functions l(·) and b(·) defined on E.
We refer to l(e) as the length of edge e and b(e) as its bandwidth. We also define a real-valued edge capacity c(e),
which represents the mean rate of the largest reservation that can be carried by edge e. The edge capacity satisfies the

equation c(e) + kαc1/2(e) = b(e) and is equal to
(

−kα +
√

k2α2 + 4b(e)
)2

/4.

We are also given a source node r ∈ V and a set of sink nodes S ⊆ V , with each sink node s having a mean
demand µ(s). The minimum cost RDS that satisfies the mean demands, while respecting the capacity limits on the
network links can be found by solving a minimum cost flow problem, in which the flow into each sink is given by
its mean demand, and the total flow on each link e is bounded by c(e). The cost of a flow x on an edge e is defined
to be l(e)(x + kαx1/2). The second factor in this expression corresponds to the amount of bandwidth that must be
reserved to accommodate a flow of magnitude x. Note that the cost function is concave. Given a minimum cost flow
that satisfies the demand, the optimal RDS is the subgraph of G defined by the edges with non-zero flows. The cost of
the subnetwork is the sum of the costs of the flows on its edges.

In the minimum cost maximum flow problem, we seek a flow function f on the edges of the given network. For
any node that is not a source or a sink, the sum of the flows on the incoming edges must equal the sum of the flows
on the outgoing edges. The flow must satisfy the given capacity constraints on the edges and must satisfy the given
demands required by the sinks. Among all such flows, we seek one of minimum cost. For each edge (u, v) in the
original graph, the residual graph has an edge (u, v) if f(u, v) is less than the capacity of (u, v) and it has edge (v, u)
if f(u, v) is greater than zero. The residual capacity of the edge (u, v) is the difference between the capacity and the
current flow. The residual capacity of (v, u) equals f(u, v). An augmenting path is just any path in the residual graph
from the source to a sink on which more flow can be added. For any edge e in the original graph, the cost of carrying
x units of flow on e is l(e)(x + kαx1/2). We let δf (e, ∆) be the change in cost caused by adding ∆ units of flow on
the edge e in the residual graph, assuming that ∆ is no larger than the residual capacity of e. If ∆ is larger than the
residual capacity, δf (e, ∆) is defined to be infinite. We refer to δf (e, ∆) as the incremental cost of the edge e, with
respect to the increment ∆. The incremental cost of a path, with respect to an increment ∆, is defined as the sum of
the incremental costs of its edges. For any flow and increment ∆, we can define a tree Tf (∆), which is a shortest path
tree rooted at the source in the subgraph of the residual graph defined by the edges with residual capacity no smaller
than ∆. The path costs in T are defined with respect to the incremental costs, δf (e, ∆). As ∆ is increased from zero,
we get a finite sequence of trees T0, T1, . . . , Tm. For each tree Ti in this sequence, there is a corresponding range Ri
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of values of ∆. The incremental cost per unit flow of an augmenting path p is δf (p, ∆)/∆, where ∆ is the amount of
flow needed to saturate p.

Note that when there are no limits on edge capacities, the best RDS is always a tree. We expect that in practice,
network link capacities will often not be a limiting factor, so that the best RDS may typically be a tree. Even when
link capacities are limited, we may wish to constrain the form of the solution so that all traffic going to a single sink
is constrained to use the same path, in order to simplify the routing of the traffic (note that in this case, the RDS need
not be a tree).

4.2. Algorithm Design Issues

As we noted previously, the edge cost function is a concave function of the currently carried amount of flow. Thus,
when we aggregate more flows on a link, the over-provisioned bandwidth, that is necessary to accommodate traffic
variations, decreases, resulting in more cost efficient networks. So, we prefer a configuration algorithm that rewards
flow aggregation. However, it is possible that if we favor aggregation to strongly, longer paths may be selected while
shorter and cheaper routes exist. Thus, we need also to restrict the path selection within a reasonable region.

When we select a path from the root to a sink, we can either keep all traffic to the sink on a single path, or split it
among a number of paths leading to the sink, some of which may not have enough capacity for the sink by themselves.
The concave edge cost function suggests that keeping the traffic flows together is more cost efficient than splitting
them. However, such a strategy is not always able to satisfy all sinks in networks with limited link capacities, which
leads to higher demand blocking ratio (the ratio of unmet demands to the total demands) than an algorithm that splits
flows. Therefore, when we design an RDS configuration algorithm, we need to consider the tradeoff of flow splitting
and aggregation, and try to reduce the cost while minimizing the possibility of sink blocking.

4.3. Path Augmentation Algorithm

One of the classical methods for solving minimum cost flow problems is the minimum cost augmenting path method.
This method iteratively selects a minimum cost augmenting path from the source to a sink that has unmet demand and
adds flow along that path until either the demand has been satisfied or the capacity limit of some edge on the path has
been reached. While this method can find an optimal flow when the cost per unit flow on each edge is constant, it
cannot be directly applied to the RDS configuration problem, since the relative costs of two different paths can change
depending on the magnitude of the flows added to those paths. That is, it may cost less to add x units of flow to a path
p than to an alternative path q, but it may cost more to add 2x units of flow to p than to q.

Although we cannot use the minimum cost augmentation algorithm directly in the RDS configuration problem,
we can apply similar ideas to construct an approximation algorithm that does not require an enumerative search of the
problem space. In the minimum cost augmenting path algorithm, at each step we choose an augmenting path from
the source to the sink in the residual graph for the current flow. It is well known [10] that when the cost per unit
flow is constant, we can construct a minimum cost flow by finding a succession of minimum cost augmenting paths
and saturating each one in turn (that is adding as much flow to the path as allowed by the capacity constraints, or
the unmet demand at the sink, whichever is smaller). To apply the minimum cost augmentation strategy to the RDS
problem, we seek an augmenting path from the source to a sink that has the smallest incremental cost per unit flow
among all augmenting paths. In principle, this can be done by constructing each of the distinct shortest path trees
and selecting the best augmenting path found in all the trees. A computationally simpler alternative is to choose a
small set of increments, construct the tree corresponding to each increment, and find the best augmenting path from
among this smaller set of trees. While this only “samples” the set of trees, and hence will not always find the best
path, it does at least approximate the minimum cost augmentation strategy. There are various strategies to select the
set of increments. Because our goal is to schedule flows to the sinks, we should select increments related to the sink
demands. In order to make such a selection, we can order the sinks in a specific order, and use the remaining unmet
demand as the increment values (∆). If a path is found within Tf (∆), we can then augment the flow along the path.
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Note that the flow augmentation can also be implemented with various strategies, resulting in RDSs with different
costs. The following pseudo code shows the generic framework of our algorithm. Depending on the sink sorting and
path augmentation strategies, different algorithms can be obtained.

Order the sinks s1, · · · , sm according to a certain sorting strategy
for i ∈ [1, m]

Augment flow to satisfy demand to si with a certain augmentation strategy
end

Each iteration of the algorithm requires the computation of a shortest path tree and possibly a bottleneck shortest path
tree. Both of these computations can be implemented to run in O(m + n logn) time, where m is the number of edges
and n the number of nodes.

4.3.1. Sink Ordering Strategies

Largest Demand First (LDF) The Largest Demand First (LDF) algorithm orders the sinks by their demands
such that for sink si ∈ {s1, s2, · · · , sm}, µi ≥ µi+1. LDF establishes paths to the sinks with the largest demands
first. Therefore, the flows on existing paths are large, and the costs benefits of sharing a path to the root by subsequent
sinks are high. In networks with ample link capacity, each iteration fully satisfies the demand at some sink, so the
number of iterations equals the number of sinks. However, in networks with limited capacity, it is possible that some
sink demands will not be satisfied after the same number of iterations.

Shortest Distance First (SDF) The Shortest Distance First (SDF) algorithm is another sorting algorithm which
orders the sinks by their physical shortest path distance to the root. That is, for the sorted sinks {s1, s2, · · · , sm},
li ≤ li+1 for 1 ≤ i < m where li is the length of the physical shortest path p from si to the root. SDF tries to take
advantage of sinks that are close together. By ordering sinks by their distances to the root, sinks that are close to each
other are likely to share the same path to the root, resulting in a more cost efficient network.

Maximum Demand/Flow First (MDF) From the cost function, we can see that the cost increment incurred by
adding ∆x units of flow on edge e is l(e)[∆x+kα(∆x+x0)

1/2−kαx
1/2

0 ], where x0 is the original amount of flow on
e. Thus, the incremental cost is not only affected by the edge length and flow increment, but also by the current flow
on the edge. Consequently, the cost increment is also affected by the current flow on paths because the cost increment
on the path is simply the sum of the edge cost increments of all the edges in the path. The Maximum Demand/Flow
First (MDF) attempts to include the current flow factors in ordering the sinks.

In order to factor in the current flow, we note that the incremental cost (with regard to the flow increment ∆x) can
be written as

l(e)[∆x + kα(∆x + x0)
1/2 − kαx

1/2

0
] ≈ l(e){[1 + kα/(2x

1/2

0
)]∆x − kα/(8x

3/2

0
)∆x2}

and the unit incremental cost then is approximately l(e)[1 + kα/(2x
1/2

0 )− kα∆x/(8x
3/2

0 )]. We thus introduce a new
metric

f =
∑

e∈p

l(e)[1 + kα/(2x
1/2

0
) − kα∆x/(8x

3/2

0
)]

where p is the augmenting path, e is an edge on p, and ∆x and x0 are the flow increment and current flow on e,
respectively. We can use f as a factor when we order the sinks. In particular, we first order sinks by their demands
in a decreasing order. Sinks are divided into subsets, and each subset holds sinks with similar demands. Within each
subset, create Tf (b) for each sink, where b is the smaller of the unmet demand of that sink and the largest residual
capacity among all paths to that sink. Compute f for all Tf , and then sort all sinks by the results.
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Sink Sorting Path Augmentation
LDF SFA
SDF MCA
MDF HA
CDF DCA

(DCAγ , DCAβ , DCAε)

Table 1: Feasible algorithms.

Combined Distance/Flow (CDF) The Combined Distance/Flow (CDF) algorithm uses a similar idea to MDF.
Instead of first ordering sinks into subsets by their demands in a decreasing order as in MDF, CDF orders sinks by
their physical distances in an increasing order first. Subsets of sinks with similar physical distance are first formed,
and Tf (bi) is created for each sink i within a subset, where bi is the smaller of the unmet demand of that sink and the
largest residual capacity among all paths to that sink. Sinks are then ordered by their metrics f .

4.3.2. Path Augmentation Strategies

Single Flow Augmentation (SFA) The Single Flow Augmentation (SFA) algorithm always tries to augment a
flow to a sink in a single path. If no such path can be found while there is still unmet demand, then the algorithm fails.
In networks with ample link capacity, each iteration fully satisfies the demand at some sink, so the number of iterations
equals the number of sinks. This leads to an overall running time of O(s(m + n log n)), in the case of ample link
capacities. For arbitrary link capacities, the number of iterations still equals the number of sinks, but there are sinks
whose demands cannot be satisfied, resulting in blocking situations. In addition, SFA results in lower cost network
when the link capacity is not a limiting factor because it avoid the “penalty” of splitting flows. The obvious drawback
is blocking in more congested networks.

Most Cost-efficient Augmentation (MCA) The Most Cost-efficient Augmentation (MCA) is the opposite to
SFA. It always tries to augment along the paths that give the minimum per unit incremental cost. SPA has the benefits
of low blocking as long as there is residual capacity to the sink. However, it may create more fragments of flows,
which increases the cost of the resulting network.

Hybrid Augmentation (HA) The Hybrid Augmentation (HA) algorithm combines the previous algorithms by
first attempting to add a single flow and reverting to the most cost-efficient path when there is no single path with
enough capacity.

Distance Constrained Augmentation (DCA) The Distance Constrained Augmentation (DCA) algorithm con-
strains the selection of augmenting paths to a sink by the physical shortest distances to the root from the sink. The
goal of this algorithm is to avoid unnecessarily long paths. γ is a pre-defined parameter. We refer to this algorithm
as Fixed Range DCA, or DCAγ due to the parameter γ. Another DCA implementation adds more flexibility by using
varied ranges. We refer to this DCA implementation as the Varied Range DCA, or DCAβ due to the use of parameter
β. A more extensive but time-consuming DCA implementation method checks a range of parameters to determine
the optimal results. We refer to this DCA implementation method as the Best Range DCA, or DCAε due to its use of
parameter ε.
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Figure 2: An example RDS in a national network topology.

4.3.3. Comparison of Different Path Augmentation Algorithms Depending on the choice of different strate-
gies in the sorting and augmentation steps, we can obtain different algorithms as listed in Table 1. There are 24 feasible
algorithms with the listed sink sorting and path augmentation strategies using the our solution scheme. In our simula-
tion, we refer to an algorithm in the form of “S-A”, where “S” is a sink sorting strategy, and “A” is an augmentation
strategy.

4.4. Evaluation

In order to evaluate the different algorithms under our approximation heuristic, we simulate the algorithms on network
topologies with variable sizes and demand variations. In our previous study, we examined the performance of the LDF
algorithm on a torus topology and a network that includes the fifty major metropolitan areas in the United States [16].
Fig. 2 shows (in highlight links) an example RDS in a national network with fifty major metropolitan areas. In this
example RDS, Chicago is the root node, and there are ten sinks at various locations around the country.

Fig. 3 shows how the LDF algorithm performs on the national network. The first chart shows the ratio of the cost
of the solution produced by LDF to a lower bound, as the number of sinks increases from 1 to 50, where α2 is fixed so
that σ(D) = D, where D is the average demand per sink. Each data point represents the average of results from 100
independent problem instances. For large numbers of cities, the LDF algorithm produces solutions costing no more
than about 1.6 times the lower bound. The curves labeled LB*(2), LB*(3) and LB*(4) are related to the lower bound
and provide evidence (although no proof) that for larger numbers of cites the lower bound is fairly loose. LB*(2)
is computed by first dividing the sinks into two sets, those to the “left” of the source and those to the ”right” of the
source. Each of these subsets is then sorted by distance from the source and each node is assumed to share its path
to the source with all nodes in the same subset that are at greater distance from the source. LB*(3) (and LB*(4))
is computed similarly, by first dividing the sinks into three (respectively four) sets of nodes defined by “pie-shaped”
regions centered on the root, then sorting the subsets by distance from the root and assuming the maximum possible
sharing of paths among nodes in the same set. For larger numbers of randomly distributed cities, it’s reasonable to
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Figure 3: Cost comparison of algorithms in national network topologies.

expect LB*(2), LB*(3) and LB*(4) to be no larger than the cost of an optimal solution, although they do not constitute
true lower bounds. We also include two curves labeled “SPT” and “SPT(C)” for comparison. The “SPT” curve
corresponds to the traffic delivery cost using a shortest path tree network topology, and the “SPT(C)” curve is the cost
of a star network assuming a complete connected topology of all metropolitan areas. Note that for 50 sinks, LDF
produces solutions that average about 1.1 times LB*(3). The second chart in Fig. 3 shows how the performance of
LDF varies in comparison to the lower bound as α2 is varied so that σ(D)/D varies from .2 to 5, while the number
of sinks is fixed at 25. For small values of σ(D)/D, there is less to be gained from sharing paths, so LDF performs
better, relative to the lower bound. For larger values of σ(D)/D, there is much more to be gained by sharing paths, so
the gap between the lower bound and LDF gets larger. The charts also show that simply scheduling traffic flows along
the shortest paths would not results suboptimal costs because there is less degree of traffic sharing. As in Fig 3a, a
shortest path network has an average cost about 1.2 times of the LDF solutions, while the star network in the complete
network as the average cost more than twice of the LDF solutions. When σ(D) is five times the average demand per
sink, the cost of the solutions produced by LDF increases to about 1.55 times the lower bound.

To expand the evaluation sample space and avoid biases towards certain topologies, we plan to conduct more
performance studies in other cases to develop greater insight into the performance of the algorithms.

5. Reserved Delivery Subnetworks with Multiple Sources

In the previous section, we investigated RDSs with a single source. In this section, we consider RDSs with multiple
sources. These RDSs come into play when we want to improve performance and reliability. Using multiple distributed
servers allows lower delay and better service. In addition, we would allow some load redistribution and load balancing
to handle irregular traffic and failures, so that the subnetworks are more reliable.

5.1. Source Replica Placement

Delivering data from a single source node to all sinks could lead to long delay for sinks far away and therefore long
response time and performance. It could also be a single point of failure, decreasing the reliability in case of link or
node failures. Therefore, replicating source data onto multiple servers can improve both performance and reliability.
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Figure 4: RDS with multiple sources.

Shi and Turner [17] studied the server placement problem in overlay networks, and used a set cover algorithm to
find solutions. Qiu, Padmanabham and Voelker [18] investigated how to place web server replicas cost efficiently, and
found that a greedy algorithm based on distances and requests performed best for trace-driven tests. Although their
proposed methods are good starting points, placement of multiple server replicas in an RDS requires some different
methods. This is mainly because previous work assumes linear edge costs, while the cost is concave on edges in an
RDS.

To investigate the source replica placement problem, we will start with the greedy algorithm in [18] and the set
cover algorithm in [17], and observe the effects of concave edge costs on the performance of the algorithms. Besides,
the bandwidth for each source must be allocated according to the sinks it serves.

5.2. Simple Configuration Problem with Multiple Sources

This section extends our prior work to handle subnetworks with multiple sources. The configuration problem of an
RDS can be transformed into a corresponding single source RDS configuration problem. Assume the source nodes are
R = {r1, r2, . . . , rn}. We can create a pseudo source node r′, and connect r′ to r, where r ∈ R. Make the capacity
on the newly added link (r′, r) equal to the total bandwidth Br of the source node r, and the length of (r′, r) be 0.
By this transformation, an RDS with multiple source nodes becomes an RDS with r′ as the single source node, and
∑

r∈R Br as the total source capacity. Fig. 4 shows an example of such transform. After this transformation, we can
apply the algorithm for single source RDS configuration directly.

5.3. Dynamic Load Redistribution

In this section, we want to investigate the configuration problems for RDSs with multiple sources in which extra
capacity is set aside to allow for load redistribution among sources. This is needed when there is a dramatic increase
of demands in some sinks such that the original source can no longer handle the user demands. It is also helpful to
quickly recover when a host or link failure make a source inaccessible.

In order to study the problem, we first introduce the concept of “coverage” of a source node. The coverage of a
source node r is a set of nodes, which includes sink nodes that receive traffic from r as well as nodes on the paths from
r to these sink nodes. It is clear that no two sources has the same coverage, and the union of all source coverage is the
set of all nodes in the subnetwork. In addition, denote the extra bandwidth as Be, and bandwidth of source r as Br.
We refer to a source node that experiences dramatic traffic demand increase as a “deficit source” and the incremental
traffic demand as “deficit”. Thus, we can handle deficit up to Be with extra set aside bandwidth Be. We also refer to
a source node that can serve the traffic demand for a deficit source as a “substitute source”. Therefore, in case of a
deficit at a source node, its substitute sources will take over traffic demands from a subset of its sinks .
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(a) Original coverage. (b) Extended coverage.

Figure 5: Load redistribution.

In order to enable dynamic load redistribution, we need to decide a set of deputy sources for each possible deficit
source, and allocate the extra bandwidth among the deputy sources such that a maximum number of sinks originally
served by the deficit node can be served with the least cost. A simple solution to determine these sets is to start with the
subnetwork computed previously without load redistribution. The coverage set Cr is constructed for each source node
r. For each source node r, we pick the source node rd that is the closest to nodes in Cr as the deputy source node, and
recompute the RDS with Brd

+Be as the bandwidth of rd. In the new subnetwork, rd could cover more sinks. Record
the “extended” coverage of rd and the overlapped sinks nodes. Next, we pick two closest sources as possible deputy
sources, and divide Be between them, either equally or proportionally to the distance of the sinks close by. Then, a
new RDS is computed with the updated source bandwidth, and the new extended coverage and overlapped sinks are
recorded. Repeat the above procedure in a similar way until the possible deputy sources include all other sources.
Compare all the coverage, overlapped sinks, and cost increments, the set of sources that has the largest overlapped
sinks and the least cost is chosen as the deputy sources for r. We repeat this procedure for all sources to determine the
deputy sources. Fig. 5 shows an example of extended coverage.

6. Traffic Regulation in Reserved Delivery Subnetworks

Clearly, the exclusive bandwidth access in an RDS can improve the end-to-end performance. Besides the benefits of
exclusive bandwidth access, we argue that there is potential for further end-to-end performance improvements in an
RDS. In this section, we present techniques to improve end-to-end performance in an RDS by regulating traffic flows
from the source to sinks.

6.1. Regulating Traffic Flows in an RDS

In an RDS, when a sink node is under sustained overload, and the demand is kept on a higher than average level, flows
to such a sink will over-consume more bandwidth resources than it should be allocated on upstream links in the path
from the root to the sink. This resource over-consumption will lead to a undesirable situation where the other sinks
sharing some of the same upstream links to the root receive less bandwidth resources than their demands, even though
the links close to the these sink nodes have sufficient bandwidth. As a result, the reserved bandwidth on these links is
under utilized, and the users at the locations of these affected sinks will experience reduced quality of service.



13

End Hosts

Server

Source
Sink

PEP

End Hosts

Server

Source
Sink

PEP

PEP

(a) Sink side proxies. (b) Proxies on both source and sink sides.

Figure 6: Architecture alternatives.

This unbalanced resource utilization on RDS links and reduced bandwidth on affected sinks is similar to the
blocking problem in a packet switch with a sustained overloaded output port. By applying similar ideas from the
distributed queueing algorithm for packet switches [9], such problems can be resolved in an RDS, and end-to-end
performance improvements can be achieved. The essential idea is to regulate the transmission rates of the source node
to sink nodes according to the backlog to individual sink nodes, such that bandwidth utilization on links is balanced
and maintained at high level, and the quality of service at a sink node is not affected by other overloaded sinks.

6.2. Performance Enhancing Proxies

Recently, proxy servers see increasing deployment and acceptance in the Internet as a viable means for performance
improvements for end users. A special class of proxies that are often employed to improve the performance of TCP
are gaining their popularity. They are referred to as performance enhancing proxies (PEPs).

The use of PEPs in an RDS can be justified when we compare it with the traditional end-to-end TCP connections.
The throughput of a connection is decided by the end-to-end latency and bandwidth. Assume an end host connects to a
sink node with 500 kbps, with a nominal round trip delay (without queueing) of 80 ms. Suppose we insert a proxy that
splits the end-to-end connection into two segments, where the connection from the source to the proxy has a bandwidth
of 1Mbps, and a round trip delay of 70 ms. The round trip delay between the proxy and the end host is roughly 10 ms.
If we want to transmit a document of 10KB, the effective throughput with end-to-end connection is about 330 kbps,
while the connection through the proxy gets an effective throughput of 470 kbps. In addition, the informed transport
protocol and traffic flow regulation can use aggregate traffic flow information that can only be obtained from a proxy.

As Border et al. summarized in [19] PEPs generally employ a number of mechanisms to achieve their goal
of performance enhancement: special ACK handling, tunneling, compression, special handling of periods of link
disconnection with TCP, priority-based multiplexing, and “protocol boosters” [20]. The PEPs could be located on the
sink nodes of an RDS, or on both the source node and sink nodes. If they are on both sides, the communication between
the the PEPs could use standard protocols such as TCP, or some special protocols. The sink side only architecture is
illustrated in Fig. 6(a), and the architecture with PEPs on both the source and sink sides is shown in Fig 6(b).

In contrast to end host modification approaches, the performance enhancing proxies approaches provide a richer
set of options for performance improvements, and thus have greater potential for performance improvements. This is
because proxies located close to the access routers of end hosts, are able to gather aggregate information about the
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Figure 7: Per-connection traffic flow regulation.

underlying overlay network such as the status of end-to-end paths. In this section, we present the source traffic control
and aggregate flow monitoring on performance enhancing proxies to improve end-to-end performance.

6.3. Regulating Traffic Flows

6.3.1. Per-connection Traffic Regulation A transport protocol such as TCP keeps information about an indi-
vidual connection on hosts at both ends of the connection (for example, the Internet PCB and TCP PCB in BSD
implementations). In order to implement traffic flow regulation, we need to include additional information for each
connection. Specifically, we need to keep track of how fast the receiver is consuming data from the sender, how much
data is waiting to be forwarded to the receiver at the sender, and how much data is to be transmitted to the receiver at
the sink side proxy. For each connection from the sender to an end host x, we define the input backlog Bi(x) as the
amount of data that the sender has to send to x, the output backlog Bo(x) as the data backlog awaiting delivery to the
receiver on the sink node, and the drain rate r(x) as the rate at which the receiver receives data from the sink node.
The drain rate and output backlog for a connection can be constantly measured at the sink side proxy that monitors the
flows to end hosts. This information is then fed back to the sender. At the sender side, a virtual sink queue (VSQ) is
maintained for each connection. A VSQ is the counterpart of a virtual output queue (VOQ) used in source routers [9],
and keeps tracks of data to be forwarded to a specific end host at the other end of the connection. This additional
per-connection information does not consume too much system resources.

The sender allocates transmission bandwidth within the total reserved bandwidth constraints for each connection
based on the input backlog, the output backlog, and the receiver drain rate. To enforce the reserved bandwidth con-
straint on all end-to-end paths, the reserved bandwidth on all links within the overlay network is kept at the sender
consistent with the RDS topology. These bandwidth constraints are checked when the sender determines the allocation
of transmission rate for each end-to-end connection.
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Fig. 7 shows an example per-connection traffic flow regulation architecture. In this example, there are three sink
side proxies, and five end-to-end connections to end hosts a, b, c, d and e. The total reserved bandwidth that is allocated
for the source is R, and the reserved bandwidth on the other links are R1, C3, C1, and C2.

R1 ≥ C1 + C2, R ≥ R1 + C3 (1)

Assume the sender assigns a transmission rate R(x) for receiver x. These transmission rates are subject to the reserved
bandwidth constraints:

R(1) + R(2) ≤ C1, R(3) ≤ C2, R(4) + R(5) ≤ C3 (2)

If (1) and (2) are all enforced, internal blocking can be avoided.

If we denote T as the scheduling period (the interval between two updates of the backlog information), the sender
can allocate bandwidth using the following algorithm:

For each sink x, let t(x) = B0(x)/r(x)
Sort the sinks in the increasing order of t(x)
For each sink x (in order)

Let R(x) = min{Bi(x)/T, Ra},
where Ra is the maximum rate allowed by the previously allocated rates and rate constraints

end

However, this basic algorithm relies on timely and precise measurement of Bi(x), Bo(x), and r(x). Unfortunately,
such measurements are usually unavailable, especially in the wide area environment because of latency and feedback
control overhead. Thus, it only provides coarse grained control, and its effectiveness is affected by the round trip
latency on end-to-end paths. In this algorithm, we assume that the estimated end host drain rates are sent back to the
sender in an update interval of T . It attempts to clear the data backlogs that can be drained quickly first by sorting
the connections by the estimated drain time in an increasing order. For a flow with the shortest estimated drain time,
compare its input backlog with the traffic allowed by the reserved bandwidth to the destination sink node. If the input
backlog is greater, then send data to use up the reserved bandwidth. If there is remaining bandwidth after cleaning out
the input backlog, then allocate the residual bandwidth to the other flows, using the flow with the shortest estimated
drain time first. Repeat the above procedure until all input backlogs are cleared, or all reserved bandwidth is consumed.

6.3.2. Aggregate Traffic Regulation If there is a large number of flows in an RDS, the additional per-flow
information could be overwhelming and the per-flow traffic flow regulation could limit the performance. In this
section, we propose an aggregate traffic flow regulation algorithm to handle large numbers of connections.

Fig. 8 shows a simplified diagram of aggregate traffic flow regulation. In contrast to the per-connection traffic flow
regulation algorithm, a VSQ is maintained for each sink node instead of each flow, and each sink node only maintains
an aggregate queue for all end hosts connected to the sink node instead of one queue for each end host. The sink node
measures the aggregate drain rate, and all connections to the same sink node share the same input backlog, output
backlog and drain rate.

The per-connection traffic flow regulation algorithm introduced previously can be modified to use aggregate traffic
flow regulation. For the basic algorithm, first check if the total drain rate is higher than the reserved bandwidth. If not,
assign drain rate as the transmission rate to the sink. Otherwise, allocate bandwidth to a sink node according to the
computed urgency parameter for each sink node within the reserved bandwidth constraint. The urgency parameter has
similar definition except that it is for each sink node instead of end host.

In the second aggregate traffic flow regulation algorithm, we first sort the aggregate flows by their estimated drain
time at sink nodes in an increasing order. Then, pick the VSQ with the shortest estimated drain time, and check if it is
sufficient to drain the input backlog. If not, transmit as much as allowed by the reserved bandwidth. Otherwise, clear
out the input backlog, and use the remaining bandwidth for the other VSQs.
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Figure 9: Multiple traffic flow regulation.

It should be noted that such rate regulation is coarse grained because rates are determined based on the past
information that lags at least one round trip delay. The frequency of the control messages and rate adjustment should
be carefully chosen to reduce the overhead and achieve effective rate control.

6.3.3. Multiple Source Regulation The above traffic flow regulation algorithms are for overlay networks with a
single data source. In an RDS, if there is more than one data source, the traffic from different sources could compete
for link bandwidth. It is clear that as the number of source nodes increases, more nodes are likely to be affected by
overloaded sink nodes. Note, if the reserved bandwidth is exclusively for an individual source node, the blocking
caused by an overloaded sink node will be limited to flows from the same source node. In this case, the single traffic
flow regulation is sufficient.



17

However, in overlay networks with multiple data sources with shared reserved bandwidth among different source
nodes, more complicated traffic flow regulation algorithms should be used to account for the additional senders. The
major challenge is to coordinate the transmission rates from different source nodes to the same sink node without
causing internal blocking. As shown in Fig. 9a, there is more than one data source node sending to a set of sink nodes.
One sender has to consider other source nodes to the same sink when allocating its transmission rates to sink nodes.
In particular, a sender with a larger input backlog to a sink node should get higher transmission rate than the ones with
smaller input backlogs. The rate allocation should also consider the output backlog and drain rates as for the single
source case. Similarly, the reserved bandwidth limits at both source and sink nodes should be observed.

We need to modify our previous definitions to handle multiple source nodes. We denote m as the number of source
nodes, Bi(i, j) as the input backlog from source i to end host j, R(i, j) as the transmission rate from source i to end
host j, and Ri as the reserved bandwidth at source node i. One tricky thing about the multiple traffic flow regulation is
how a source node can get information about input backlog of other source nodes. One solution is to let the sink node
proxy collect it from source nodes. Thus, a source node not only receives information from sink nodes, but also sends
out its input backlog to all sink nodes. The sink node gathers and sends back input backlog from all source nodes to
a specific end host to all source nodes that send it. In this algorithm, the rates are first allocated by the input backlog
and the bandwidth limit at sink nodes. Then, they are checked against the source side bandwidth limits, and are scaled
down if necessary.

In the basic multiple traffic flow regulation algorithm, because a source node needs to multicast its input backlog to
all sink nodes, the control message overhead grows dramatically, making it less effective and less efficient. In this case,
an aggregate multiple traffic flow regulation algorithm is more favorable as it reduces the control overhead. Sources
send their backlogs to sinks which aggregate and send sources the aggregate input backlog information. Sources can
use this to limit their use of shared resources to prevent overuse. Fig. 9b shows an overlay network with aggregate
multiple traffic flow regulation. As in the single source case, a single queue is maintained for all flows from a sink
node to all end hosts connected, and only aggregate drain rates are fed back to the source nodes.

In this algorithm, Bi(i, j) is the input backlog from source i to sink j, and R(i, j) is the transmission rate from
source i to sink j.

6.3.4. Work-conservation Study of Traffic Flow Regulation In a switch, a scheduling algorithm is work-
conserving if for all traffic patterns and all time steps, cells are forwarded on every link for which cells are presented.
We can further extend this concept to traffic flow regulation. That is, a traffic flow regulation algorithm is work-
conserving if it can forward to a sink whenever there is data destinate for that sink. Most scheduling algorithms in
switching systems require a speedup inside the switching fabric to be work-conserving. We will study the work-
conservation issue for traffic flow regulation in RDSs. In particular, we will determine if speedup is needed in an RDS
to achieve work-conservation? If so, what are the deciding factors of the speedup required for work-conservation? The
answers to these questions can help us to identify a good traffic flow regulation algorithm and determine the required
bandwidth requirements.

7. Research Plan

7.1. Configuration of Single Source RDSs

We plan to study the performance of the bandwidth provisioning algorithms described in Section 4 through analysis
and simulation. Currently, we have some preliminary results indicating that the Distance Constrained algorithms
give better performance than other alternatives. However, we plan to conduct more extensive simulation studies with
various network topologies, traffic mixes, and demand models. The simulation tool is currently a customized tool. In
order to better simulate larger networks in operation, we also plan to conduct simulation with the network simulator
(ns-2) [21].
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We plan to use more network topologies to test our algorithms thoroughly. The network topologies we consider
include radial grids and random donuts. A radial grid is a network consisting of multiple layers of circles with the same
center. The source node is at the center, and the sink nodes are evenly distributed on the outermost circle. Intermediate
nodes evenly distribute on the circles, and evenly spaced links connect the neighboring circles. If we fix the diameter
of the outermost circle, and vary the number of intermediate circles and nodes, we can control the density of the
resulting network. A random donut is a network with two circles with a common center. Source node is at the center
of the circles, while sink nodes and intermediate nodes are uniformly randomly distributed in the space between the
inner and outer circle. When the inner circle shrinks to the center node, it becomes a random disk topology. We will
also compare the proposed algorithms with the results obtained from search-based heuristics for small size networks.

7.2. Configuration of Multi-source RDSs with Load Balancing

Similarly, in order to evaluate the configuration algorithms of multi-source RDSs with load balancing capability, we
plan to study the performance of the algorithms with analysis and simulation. We first plan to study the problem
of cost efficient placement of multiple root nodes in networks. This study will be carried out through simulation of
various placement algorithms on different network topologies. Traditionally, server placement algorithms consider
latency as the only metric. We would focus on the total costs of the results, and compare the performance of different
algorithms. In some cases, it is equivalent to the latency metric, but it is not necessarily always the case. The second
part of the study concerns the performance of algorithms for the simple configuration problem with multiple sources.
This will be conducted through simulation and analysis. We expect the performance results to be similar to those as
the single source cases because it requires a simple transformation between the multiple source cases and the single
source case. To investigate the performance of configuration algorithms for multiple source networks with dynamic
load redistribution, we plan to simulate situations when one or multiple source nodes become unavailable, and study
how different algorithms will respond to these situations by measuring how effectively the load is redistributed to the
other active sources and how will the total costs are affected.

7.3. Traffic Regulation in an RDS

The evaluation of traffic regulation in an RDS will be conducted through simulation and implementation. In the
simulation studies, we plan to modify our current simulation tool to introduce performance enhancing proxies with
the capability of regulating traffic flows from source nodes to sink nodes. An ns-2 object implementing the same
functions will be implemented for the ns-2 simulator. We plan to measure the throughput at the source and sink nodes
as well as the bandwidth utilization on the RDS links. We plan to test with different network topologies and sinks
demand distributions. For the implementation part of our studies, we plan to implement a performance enhancing
proxy with traffic flow regulation capability. It is natural to implement the performance enhancing proxy on the access
routers at the locations with end host demands. We could explore the possibility of implementation on a programmable
hardware platform [22]. However, the memory required may be prohibitively high, especially at the sink node side,
making it infeasible to fit in a port. We plan first to study resource (memory and processing power) requirements for
a performance enhancing proxy through analysis as well as simulation. It is foreseeable that a performance enhancing
proxy implemented on a router platform is able to handle a moderate number of sinks.

In order to overcome the memory limitations on access routers when the number of sink nodes is large, a perfor-
mance enhancing proxy can be implemented as a stand-alone entity. The popular open source Squid web cache proxy
system [23] available on most Unix style platforms can be used as a starting point. Codes of traffic flow regulation can
be integrated into the Squid system. We plan to use NetBSD as our platform to implement the modified Squid system
with traffic flow regulation capability.
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