
DATA RECOVERY IN WORMHOLE ROUTING NETWORKS

IN HYPERCUBES AND MESHES

BY

Mohammad S. Alowayed

Bachelor of Science
King Saud University
Riyadh, Saudi Arabia

1989

Master of Science
Western Michigan University

Kalamazoo, MI
1993

Submitted to the Faculty of the Graduate College
of the Oklahoma State University in partial

fulfillment of the requirements for
the Degree of

DOCTOR OF PIIlLOSOPHY
December, 1997

DATA RECOVERY IN WORMHOLE ROUTING NETWORKS

IN HYPERCUBES AND MESHES

Thesis Approved:

Thesis Aa:;t;lfi~s~or=----·

~.?.~-
;

H- ~

ii

ACKNOWLEDGMENTS

All the praises and thanks be to the Al-Mighty ALLAH. This study could not have

been completed without the blessing, grace, and guidance of the Al-Mighty ALLAH.

I wish to express my deep gratitude and sincere appreciation to my major advisor

Prof. K.M. George for his supportive suggestions, constructive comments, and critical

insights throughout this thesis. My appreciation extends to my other committee members

Dr. G. Young, Dr. G. Hedrick and Dr. H. Lu for their valuable suggestions and

encouragement during the course of this project.

I would like to give my special appreciation to my parents for the love and support

they have given me over the years. I would like to thank my wife, Amal, for the sacrifice,

patience, and support during the period I have spent with her in my graduate study.

I would like to thank Abdul-Rahman Aljadhi, Hussain Alsalman, Faisal Alruhaili,

Mohammad Alahmad, Wail Alrashed, Dukhail Al-Dukhail, and Abdul-Malik Alsalman for

their support and encouragement.

iii

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION1

I.I Related Work ... 3

1.2 Thesis Outline .. 5

2. INTERCONNECTION NETWORK .. 6

2.1 Distributed vs. Shared Memory ... 6

2.2 Network Topologies ... 8

2.2.1 Hypercube ... 9

2.2.2 Mesh ... 10

2.3 Switching Techniques11

2.3.1 Circuit Switching ... 14

2.3.2 Store and Forward Switching .. , 15

2.3.3 Wormhole Switching .. 17

2.4 Virtual Channels ... 20

2. 5 Message Passing ... 22

3. ROUTING ALGORITHMS .. 27

3 .1 Deadlock, Livelock and Starvation .. 28

3.1.1 Deadlock Avoidance .. 30

iv

Chapter Page

3 .1.2 Deadlock Recovery .. 36

3.2 Deterministic Routing ... 38

3.3 Adaptive Routing .. 41

3 .3 .1 Tums Restrictions Techniques ... 42

3.3.2 Virtual Networks Technique .. 45

3. 3. 3 Escape Channels Technique ... 46

3.3.4 Adaptive Algorithms Based on Deadlock Recovery 49

3.4 Fault Tolerant Algorithms ... 51

4. FAULTRECOVERY 58

4.1 Reliable Router (RR} .. 61

4.1.1 Router Design in RR and Hardware Requirements 64

4.2 Fault-tolerant Compressionless Routing (FCR} .. 68

4.2.1 Hardware Support for Data Recovery in FCR70

4.3 Acknowledged Pipelined Circuit-Switching (APCS} 72

5. SOFTWARE BASED RECOVERY PROTOCOL75

5 .1 General Concepts of Software Recovery Protocols7 6

5.1.1 Fault Recovery Handler .. .77

5 .1.2 Absorbing Orphan Flits .. .78

5 .1.3 Resending Handler .. 78

5.2 Implementation .. 79

5.2.1 SBRP-0 .. 79

5.2.2 SBRP-1 .. 80

V

Chapter Page

5.2.3 SBRP-2 .. 84

5.3 Software Overhead in SBRP ... 85

5 .4 Comparison between the approaches of SBRP ... 86

5.5 Comparison between SBRP and other recovery protocols 87

6. SIMULATION AND PERFORMANCE ANALYSIS ... 89

6.1 Simulation Configuration .. 91

6.2 Performance Metrics .. 92

6.3 Fault-Free Performance ... 94

6.3 .1 Virtual Channels ... 96

6.3.2 Routing Algorithms ... 96

6.3.3 Traffic Patterns .. 101

6.4 Static Fault Performance .. 106

6.5 Dynamic Fault Recovery Performance ... 107

7. CONCLUSIONS ... 116

7.1 Summary ofwork .. 116

7 .2 Conclusion .. 117

7.3 Open Topics .. 119

REFERENCES .. .120

vi

LIST OF TABLES

Table Page

1 One-way message overhead ... 24

2 Comparison between SBRP protocols .. 87

3 Comparison between SBRP protocols .. 88

vii

LIST OF FIGURES

Figure Page

1 A generic multiprocessor machine connected by interconnection network 1

2 A generic node architecture .. 2

3 Shared memory and distributed memory ... -7

4 8-nodes hypercube :, ... 9

5 16-node hypercube ... 9

6 4x4 2-dimensional mesh .. 10

7 3x3x3 3-dimensional mesh .. .10

8 Router model .. 12

9 The physical connection of a uni-direction link .. .13

10 The handshaking protocol. ... 13

11 Circuit Switching ... 15

12 Store-and-Forward Switching ... 16

13 Wormhole Routing Switching .. .18

14 Format of wormhole packet in the CRAY T3D18

15 Wormhole Routing '. ··:··· 19

16 Four virtual channels share a physical channel .. 21

17 Virtual channels provide additional buffers allowing message B

to pass blocked message ... 21

viii

Figure Page

18 Message transmission and reception ... 23

19 Two Phase Messaging implementation .. 26

20 A deadlock situation involving four messages ... 29

21 Interconnection graph and dependency graph of example-1 32

22 Interconnection graph and dependency graph of example-2 33

23 Channel dependency graph of example-3 .. 34

24 The extended dependency graph of example-3 ... 35

25 Dimension Order (XY) Routing in a 2d Mesh .. 40

26 Deterministic and adaptive routing ... 42

27 Possible and allowable turns in a 2d Mesh .. 43

28 Examples of West-First Routing in a 2d Mesh ... 43

29 Possible paths from 1010 to 0101 in P-routing ... 44

30 Virtual networks for a 2-d mesh in double-y algorithms .. 46

31 Possible paths from 1010 to 0101 in Duato -routing .. 47

32 Tums in opt-y .. 49

33 Router model of Disha .. 51

34 Fault tolerant routing in a faulty hypercube .. 53

35 Usage of virtual channels in Planar algorithm .. 55

36 Routing around faulty region in Planar algorithm .. 56

37 Subnetworks in planes AO and Al used by Planar algorithm 57

38 Reliable messaging in traditional systems .. 59

39 The UTP at the flit-level ... 61

ix

Figure Page

40-a Message in RR before the fault ... 62

40-b Message in RR after the fault .. 62

41 Flow control in reliable router .. 63

42 Input controller block diagram ofRR .. 65

43 Virtual channel model ofRR ... 66

44 State diagram of the Route FSM .. 67

45 Tearing down an interrupted circuit .. 69

46 Message Padding in FCR network ... 69

4 7 Data and control lines in FCR .. _70

48 The injector network interface in FCR ... 71

49 The message receiver interface in FCR .. .72

50 Acknowledge signal in APCS ... 73

51 A message pipeline with a faulty node .. _77

52 Normal message format ... 82

53 A n-flit message fragmented to two sub-messages .. 82

54 Virtual channel module for SBRP ... 82

55 Simulated routed model. .. 90

56 Latency versus normalized load .. 95

57 Normalized throughput versus normalized load ... 95

58 Effect of virtual channel number in latency (Mesh topology).. 97

59 Effect of the number of virtual channels in throughput (Mesh topology} 97

60 Effect of virtual channel number in latency (Hypercube topology).. 98

X

Figure Page

61 Effect of the number of virtual channels in throughput (Hypercube) 98

62 Performance of routing algorithms in Mesh (Load vs. Latency}100

63 Performance of routing algorithms in Mesh (Load vs. Throughput}100

64 Performance of routing algorithms in Hypercube (Load vs. Latency} 102

65 Performance of routing algorithms in Hypercube (Load vs. Latency)..102

66 Effect of routing algorithms in latency under Transpose traffic (Mesh)104

67 Effect of routing algorithms in throughput under Transpose traffic (Mesh).. 104

68 Effect of routing algorithms in latency under Transpose traffic (Hypercube) 105

69 Effect of routing algorithms in throughput under

Transpose traffic (Hypercube) ... 105

70 Performance with static faults ... 106

71 Overall message latency in Hypercube with fault rate = 104

and message length = 12 .. 109

72 Corrupted message latency in Hypercube with fault rate = 104

and message length= 12 .. 109

73 Overall message latency in Hypercube with fault rate = 104

and message length = 1024 ... 110

74 Corrupted message latency in Hypercube with fault rate= 104

and message length = 1024 ... 110

7 5 Overall message latency in Mesh with fault rate = 10"4

and message length= 28 .. .112

xi

Figure Page

76 Corrupted message latency in Mesh with fault rate= 10-4

and message length= 28 .. 112

77 Performance of SBRP-0 under different fault rates

(Latency of overall messages) .. 113

78 Performance of SBRP-0 under different fault rates

(Latency of corrupted messages) .. 113

79 Comparison between SBRP protocols

(Latency of overall messages, message length=8). .. 114

80 Comparison between SBRP protocols

(Latency of corrupted messages, message length=8} ... 115

81 Comparison between SBRP protocols

(Latency of overall messages, message length=l28) .. .115

82 Comparison between SBRP protocols

(Latency of corrupted messages, message length=128). 115

xii

Flit

Message

Message Head

Phit

Physical channel

Virtual Channel

Virtual Path

Profitable link

GLOSSARY OF TERMS

A flit is flow control unit. It is the basic message unit upon which

flow control is performed in a pipelined network.

A message is a group of flits, consisting of a header flit that

contains routing information, data flit(s) that contain information,

and a tail flit.

A message head is the flit or flits containing routing information of

the message. Also, it might contains some control information such

as the type and the length of the message and the message sequence

number.

The amount of information that can be transferred in one channel

cycle.

A physical channel is a hardware connection between two nodes

over which data is transmitted.

A virtual channel is a logical entity associated with a physical link

used to distinguish multiple data streams traversing the same

physical channel. Multiple virtual channels are time multiplexed

over a physical channel.

A virtual path is a set of virtual links through a network that

connect source and destination nodes. The path is used to transmit

a message from source to destination.

A link over which a message moves closer to the destination.

xiii

Minimal Path A minimal path is the path that contains the minimum number of

links from a source to a destination node. Minimal path contains

only profitable links. Minimal paths are also called optimal or

profitable paths.

Deterministic Routing A routing protocol is deterministic if there is only one path

connecting any pair of nodes.

Adaptive Routing A routing protocol is adaptive if it is capable of using more than

one path from a source to a destination.

Fault-tolerant Routing A routing protocol is fault-tolerant if the message is deliverable in

a network in the presence of faults.

Misrouting

Router

Bisection

Diameter

Buffer

Channel

Latency

Sending a routing header farther away from the destination by using

unprofitable link. This is also called a nonminimal routing.

A logical block that contains a configurable switch that logically

connects input channels to output channels. Also, it performs

message routing, data pipelining and channel multiplexing.

The number of channels that must be removed to partition the

network into two equal subnetworks

The maximum distance between any two nodes in the network.

A temporary storage area in memory. Many methods of routing

messages between nodes use intermediate nodes routers' buffers to

store messages.

A point-to-point connection through which messages can be sent

The time taken to deliver a message.

xiv

Multicomputer

Node

Virtual Channel

Route

A computer in which processors can execute separate instruction

streams, can have their own private memories, and can not directly

access one another's memories. Most multicomputers are disjoint

memory machines, constructed by joining nodes via links.

Basic building block of a multicomputer. Typically a node refers to

a processor with a memory system and a mechanism for

communicating with other processors.

A logical point-to-point connection between two processors. Many

virtual channels may time share a single link to hide latency or to

avoid deadlock.

The act of moving a message from its source to its destination. A

routing algorithm is a rule of deciding, at any intermediate node,

where to send a message next.

xv

Chapter 1

INTRODUCTION

Parallel computers with hundreds or even thousands of processors are considered

the most promising technology to achieve high performance. For example, Intel is building

the "ultra" computer, which will contain 9,200 Pentium Pro Processors [68]. Nodes in a

multiprocessor machine are interconnected through a direct network (Figure 1). In

multiprocessor machine, each node has its own processor, local memory and routing

device. Each node has a direct connection to some number of other nodes. Figure 2

shows the architecture of a generic node. Distributed multiprocessor nodes do not

physically share memory. They must communicate by passing messages through the

network. Neighboring nodes may send messages to one another directly, while nodes that

are not directly connected must depend on other nodes to send messages from source to

destination. In many systems each node contains a separate router to handle

communication-related tasks .

Node

Node

..------,

Node ·························· Node

Interconnection Network

Node ····························· Node

Node

Node

Figure 1. A generic multiprocessor machine connected by interconnection network.

1

Processor Memory

External Input Channels Router

Figure 2. A generic node architecture.

Parallel architectures rely on fast inter-processor communication to exploit

concurrence in computational tasks. Low message latency and high network throughput

are necessary to exploit parallelism. Massively Parallel Processors (MPP) and Networks of

Workstations (NOW) critically depend on internal communication performanc,e[69].

Interconnection networks are used to pass messages between the nodes of concurrent

computers. However, as networks get larger, the probability of component failure

increases as well. We would like large networks to continue to operate correctly in the

presence of hardware failures. The ability of a network to reliably deliver messages in the

presence of network component failures has become an important topic.

Wormhole routing has emerged as the dominant communication mechanism in

special purpose and commercial high performance multicomputer interconnection

networks. It is being used in several multicomputers such as Cray T3D [25], The MIT J-

machine[20], Intel Paragon[26], nCUBE[27], iWarp[28], and IBM Power Parallel

Series[29]. Moreover, Wormhole routing is used in high performance LANs such as

Myrinet[70] and TNet [71]. Wormhole routing is a pipeline mechanism where data flits

(defined in chapter 2) follow the header flit. The path is tom down by the tail flit. Also

2

some parallel machines (Cray T3D [25] for example) use the concept of virtual channels

where multiple virtual links are multiplexed across a physical link.

Failures can occur on busy links or nodes and interrupt message transmission.

Since only header flit contains routing information, data flits whose progress is blocked by

a failure cannot progress. Moreover, the data flits who were in the failed node need to be

recovered. Although the message interruption due to faults are considered rare, the

current data recovery protocols impose overhead with every message. This dissertation

proposes a new recovery protocol in which overhead is attached only with the corrupted

messages. This dissertation also evaluates the performance of the current recovery

protocols and the proposed protocol. The hardware and software requirements to get

robust and fast router have been discussed.

This chapter will define the contribution of this thesis with respect to contributions

made by others. This chapter contains many terms that are defined in chapter 2.

1.1 Related Work

W. Dally et al[l] propose "Unique Token Protocol" (UTP) to handle dynamic

faults. This protocol depends on a second copy of every flit kept in preceding node and

the head flit is stored in every node spanned by the packet. Also, at the end of each

message there is a token. When a fault happens in the middle of a message the node

preceding the faulty node constructs a new message using its own copy of the message's

header. After the fault, the token becomes two tokens as a flag to distinguish between the

original message and the new message. This protocol reduces the buffer requirement in the

sender side and does not require retransmission of interrupted messages. On the other

3

hand, UTP increases the buffer requirement in the routers by requiring the head of each

message to be stored in each spanning node. Also there are two copies of each flit in the

path which means the length of each message has been doubled. This protocol is not

robust enough to handle multiple faults that occur in one message pipeline.

The main idea proposed in [2,3] is to use re-transmission mechanism to tolerate

dynamic faults. When a fault is detected, the detecting routers send kill signals both forward

and backward along the message path. These kill signals follow the virtual circuits back to

the source and destination and release reserved buffers and notify the source that the

message was not delivered and the destination to ignore the message currently being

received. The protocol proposed by Kim et al[2] requires padding extra flits at the end of

each message. Although the protocol proposed by Gaughan et al[3] does not require these

extra flits, it requires an acknowledge signal[9]. This mechanism can handle more than one

fault But re-transmitting will increase message latency and will decrease the throughput.

Control lines required by this mechanism make the hardware cost high and complicate

router's design.

Recent advances in message passing techniques show substantial improvement in

latency (see Table 1). In this research we propose a new software based recovery protocol

(SBRP). SBRP depends on control messages instead of control lines. By sending control

message to recover from faults when it happens we eliminate the need for penalizing every

message. The basic concept is when a fault happens a control message is sent to the sender

to inform it that a message have been corrupted. There is a control message for each

corrupted message. This control message is send either by the node that precedes the

faulty node in the message pipeline, by a node after the faulty node in the message

4

pipeline or by the receiver. Once the sender gets· this message it sends the reminder of the

corrupted message as a new message. The main advantage of the software protocol is that

the recovery overhead is attached only with corrupted messages.

1.2 Thesis Outline

In this dissertation, our focus is recovery protocols in wormhole routing networks.

We evaluate the current recovery protocols and explain their advantages and

disadvantages. We also propose a new recovery protocol to overcome the shortcoming of

current protocols. The requirements of the current protocols and the proposed one are

also explained thoroughly. Extensive simulation study have been conducted to evaluate all

protocols.

Chapter 2 illustrates the different aspects of interconnection networks such as

topologies, switching techniques, virtual channels, messaging layers and performance

measurements.

Chapter 3 explains the routing algorithms and the relation between the routing

algorithm and fault tolerance. The current recovery protocols are explained and discussed

in Chapter 4. The proposed protocol is illustrated in chapter 5. Chapter 6 reports the

performance evaluation and explains the simulator used in this research. The conclusions

are presented in chapter 7 together with recommendations and suggestions for further

research.

5

Chapter2

INTERCONNECTION NETWORKS

A multiprocessor architecture can be described as a set of processing elements,

PE's, and an interconnection network. An interconnection network is used to logically

connect the processors. Processors communicate between them by exchanging data

through an interconnection network. Thus, interconnection network plays a major role in

the performance of modem parallel computers. Interconnection networks have been

classified according to the network type (distributed or shared memory) and network

topology (hypercube or mesh).

2.1 Distributed vs. Shared Memory

There are two possibilities when designing a multiprocessor. A multiprocessor can

have either shared memory or distributed memory. Figure 3 shows a simple shared

memory architecture. There are k global memory modules, denoted GM. There are also n

processing elements, PE, where each PE has a local memory and a processor. The PE is

connected to the interconnection network through the network interface, NI. The

interconnecting network allows each processing element access to the global memory.

Figure 3 shows a simple distributed memory multiprocessor. The PE's perform

computations, send messages and receive messages. The interconnection network routes

6

I GM1 I· ········· ·············· I GMic I
Interconnection Network Interconnection Network

[fil] [fil]
C\ ···································C\

~ ~

[fil] ~ @ ····································@J

Figure 3 Shard Memory and Distributed Memory

messages between PE's and handle necessary allocation of network resources to transmit

messages from source to destination.

The programming model can use either a shared-memory paradigm or a message

passing paradigm. The shared memory paradigm is generally easier from a programmer

standpoint because all the data are assumed to be available in the shared memory.

However, building scaleable shared-memory multiprocessor is difficult, because access to

the global inemory modules is a bottleneck. Explicit synchronization is required to prevent

processors from reading results before they are written and from overwriting results

before they are read. Synchronization is often a costly process. As the number of

processors increases, the minimum network latency increases.

Distributed-memory multiprocessors are considered more scaleable and they

communicate faster. Therefore, most existing large-scale multiprocessor computers use

distributed memory. The message latency on a distributed-memory multiprocessor is

partially dependent on the distance between the processors, where the distance is

measured as the number of network channels that must be traversed to reach the

destination. If the program is partitioned in a good manner, a large part of messages can

be eliminated by communicating with neighboring processors.

7

The main drawback of distributed-memory multiprocessors is the difficulty of

writing efficient parallel programs. In order to support communication on a distributed

memory multiprocessor, the message passing model requires the program code to

designate both the sending and receiving processor for each message. This increases the

complexity of programming on distributed-memory multiprocessors. Distributed Shared

Memory (DSM) has been proposed to address this disadvantage. In this programming

paradigm, the memory is physically distributed but logically shared. The programmer can

assume a global address space. The operating system converts memory request for non

local data into messages. Although distributed-shared memory simplifies the task of

writing parallel programs, the issue of efficient communication remains.

Our research has focused on distributed-memory multiprocessor because it has the

most efficient communication scheme. Also most of the large-scale multiprocessors use

distributed memory.

2.2 Network topologies

The topology of a network is simply the node interconnection pattern. It 1s

generally modeled as a graph where the vertices represent the nodes and the edges denote

the channels. A network topology with more channels can reduce the diameter and

average distance. However, .completely connected network is not practical. Fault-tolerant

networks must be multi-path networks. Each pair ofPE's must be connected by more than

one physical path through the network.

There are many ways to interconnect nodes in a direct network. The most popular

topologies are Hypercubes and n-dimensional meshes

8

2.2.1 Hypercube

A hypercube consists of n=2d nodes numbered O to n-1 linked together in d

dimensional cube network. Each node is assigned a d-bit binary representation lld-1 u1

uo. The relative address of two nodes a and b is the bitwise exclusive-OR, ®, of their

binary representations. The Hamming distance, H(a, b), between two nodes a and b is

the number of ones in a es> b. Two nodes a and b in a hypercube share a communication

link if and only if H(a, b)=l. The nodes of ad-dimensional hypercube correspond to all

binary strings of length d. The d neighbors of processor i are those processors j such that

the binary representation of the numbers i and j differs by exactly one bit. Figures 4 and 5

show a hypercube with n = 23 = 8 nodes and a hypercube with n = 24 = 16 nodes,

respectively.

Figure 4 8-nodes hypercube.

0001

OOll

Figure 5 16-nodes hypercube.

9

- - - -• .. • .

- - -• .. ~ .

- ... - -.. II" .. .

- ... - -.. •
Figure 6 4 x 4 2-dimensional Mesh.

Figure 7 3x3x3 3-dimensional Mesh

2.2.2 Mesh

The d-dimensional mesh has ko x k1 x k«i-2 x k«i-1 = N nodes, ki nodes along each

dimension i. Each node q is identified by n coordinates (Xo, x1, , Xn-2, Xn-i) where O <

Xi < ki . Two nodes a and b are neighbors if and only if Xi (a) = Xi (b) for all i , O< i< d,

except one, j, where xj(a) = xj(b) ± 1. Figure 6 shows a 2-dimensional mesh and Figure 7

shows 3 dimensional mesh.

10

2.3 Switching Techniques

Communication between nodes in a direct network is performed by passing

messages :from one node to another. A message may be divided into one or more equal or

variable size packets for transmission. A packet is the smallest unit of information that

contains routing and sequencing information. Since it is not feasible to provide a channel

between every pair of nodes, the channels are shared among the nodes. For some non

adjacent source-destination pairs to communicate, messages must traverse intermediate

nodes along the path :from the source to the destination.

The switching techniques determine when and how internal switches are set to

connect router inputs to outputs, and the time at which message components may be

transferred along these paths. These techniques are coupled with flow control mechanisms

for the synchronized. transfer of units of information between routers, and through routers

in forwarding messages through the network. Flow control is tightly coupled with buffer

management algorithms that determine how message buffers are requested and released,

and as a result determine how messages are handled when blocked in the network.

The architecture of a general router is shown in Figure 8 and it consists of the

following major components:

• Buffers: These are first-in-first-out (FIFO) buffers for storing messages in transit. In

the above model, a buffer is associated with each input virtual channel and each output

virtual channel(The concept of virtual channel will be explained later). In alternative

designs, buffers might be associated only with inputs or outputs.

• Switch: This component is responsible for connecting router input buffers to router

output buffers.

11

From/To local

Figure 8 Router Model (adopted from [15])

• Routing and Arbitration Unit: This component implements the routing algorithms,

selects the output link for an incoming message, and accordingly sets the switch. If

multiple messages simultaneously request the same physical output link, this

component must assign for every message a virtual channel if any available. If all

virtual channels in the requested physical channel are busy, the incomini message

remains in the input buffers or routed to other physical channel (depending on the

routing algorithm as will be explained in chapter 3).

• Link Controllers (LC): The flow of messages across the physical channel between

adjacent routes is implemented by the link controller. The link controller on either side

of a channel coordinate to transfer units of flow control.

• Virtual Channel Controller (VC): This component is responsible for multiplexing the

virtual channels over the physical channel.

• Processor Interface: This component simply implements a physical channel interface to

the processor. It consist of one or more injection channels from the processor and one

or more ejection(delivery) channels to the processor.

12

When a message first arrives at a router, it must be examined to determine the

output channel over which the message is to be forwarded (routing delay). The time

which is required to forward the message through the switch is called switch delay. This

time include the propagation delay through the switch (intra-router delay) and the

signaling rate for synchronizing the transfer of data between the input and output buffers.

The hardware protocol to transfer a flit from node A to node B is illustrated in

Figure 9. The data lines · are validated by the hand shaking signals request and

acknowledge. The acknowledge line is high when the receiving end is ready to take in

another flit. The request line is high when sending end has a data out in the data lines.

When the receiving end is ready and detects a high in the request line, it will lower the

acknowledge and simultaneously latch the data lines as shown in Figure 10.

DATA I I I I ~ I I I I -
Output Buffer Input Buffer .

Request
NODE-A- NODE-B-

Acknowledge

Figure 9 The physical connection of a uni-direction link

Acknowledge

\ __ __,/
Request __ /i , ___ / "--

···················<G>·····················<G>···················
.

Figure 10 The Handshaking Protocol

13

The switching technique defines how messages are propagated through the

network. There are three main switching techniques circuit switching, packet switching

and wormhole switching. To derive a lower bound expression for message latency, t, we

denote L for message length, Lh for head length, La for acknowledgment length, h for

number of hops, W for channel width, tr for routing time, and ts for switching time. The

phit size and flit size are assumed to be equivalent and equal to the physical data channel

width. Also, the router's internal data paths are assumed to be matched to the channel

width.

2.3.1 Circuit Switching

In circuit switching, a dedicated path is established between the source and the

destination before the initiation of data transfer. Once the data transfer is initiated, there is

no blocking of the message. Circuit switching first sends a probe (head) from the source to

the destination and returns an acknowledgment once the path is established. If the probe

encounters a busy channel, the partial path that has been established is aborted and the

probe is retried later.

There are a few advantages to circuit switching. For long messages, the message

latency is almost independent of the distance between the source and destination. In

addition, there are no storage requirements at the routers. The minimum latency for a

message that travels two hops through the network is shown in Figure 11. The formula for

the minimum message latency, t, is:

t circuit switch = t setup + t data

fsetup=h * (tr+ ts+Li/W+ts+La!W)

t data = L/W

14

The main disadvantages of circuit switching is the significant overhead needed to

.establish the path_ Since the head is transmitted to the destination and acknowledged

before any data is sent, the time to establish the path can dominate the time required to

send the message, especially when the diameter of the network is high and the messages

are short_ Moreover, a circuit requires exclusive use of all the channels on the path so

many headers can be blocked by a single circuit. Finally, having to retry blocked headers

can waste network bandwidth and reduce the network throughput.

Node

Header t..

•
Acknowledgment

111-1 ---
Data

1

Ill 2
·· .. ·· ... -~

3 II r
~--------------~-------·-------------------------) ~------~----·--·----------~ Time

Figure 11 Circuit Switching (adopted from [36])

2.3.2 Store-and-forward (Packet) Switching

As opposed to circuit switching, store-and-forward routing sends the message

before the entire path has been established_ Store-and-forward routing is implemented via

packet switching or message switching_ Packet switching divides each message into

packets and sends each packet individually, while message switching sends the entire

message as a single unit. The network treats each packet as a separate message, so from

the perspective of the network, the only difference between the two is that packet

switching has messages of fixed length_ For this reason, we use the terms message and

15

packet interchangeably. Packet switching transmits the packet header and all the packet

data to a neighboring node. The entire packet is then stored in a buffer at this node and

later forwarded to the next node in the path.

The entire packet is buffered at each intermediate node before any part of the

packet is forwarded. Therefore, the message latency is the product of the packet length

and the distance between the source and the destination. This is acceptable for small

packets on networks with relatively small diameter, however, the message latency for

large packets or for packets in large diameter networks can be unacceptable. The

minimum latency for a message that travels three hops through the network is shown in

Figure 12. The formula for the minimum message latency in store-and-forward switching,

t store-and -forward ' is:

Node t store-anc1-forward = h * (tr + t. + (Lh + L)/W)

I f======i Data

~ 2

3 II _ _____.
Total latency

-4··-~ .__ __ Time

Figure 12 Store-and-Forward (Adopted from [36])

The packets are usually too large to be placed on the router, so the packet is

transferred to processing node and stored in system memory at each intermediate router.

This increases the message latency, because the packet incurs setup overhead at each

node. Furthermore, each intermediate node has to provide system memory to store the

packets.

16

2.3.3. Wormhole Routing

As we have mentioned before the wormhole switching technique has been widely

used in the recent multicomputers. In wormhole routing, a packet is divided into

sequences of flits. A flit is the smallest unit of a packet on which flow control can be

performed. The length of a flit corresponds to the width of a network channel. A packet

consists of one or more header flits, the data flits and a tail flit to mark the end of the

packet. Wormhole routing operates, as Figure 15 illustrates, by advancing the head of a

packet directly from incoming to outgoing channel. The head is the only flit that has

routing information. As flits are forwarded the message becomes spread out across the

channels between the source and destination. It is possible for the first flit to arrive at the

destination node before the last flit of the message has left the source. Because most flits

contain no routing information, the flits in a message, must remain in contiguous channels

of the network and cannot be interleaved with flits of other messages. A packet holds a

channel from the time the header acquires the channel until the tail releases the channel.

When the header flit of a message is blocked, all of the flits of a message stop advancing

and block the progress of any other message requiring the channels they occupy[7]. The

primary drawback ef wormhole routing is the contention that can occur with even

moderate network traffic, which causes higher message latency. A packet that uses several

channels can block many messages while being transmitted. These blocked messages can

in turn block other messages, which further increases message latency and reduces the

throughput. To solve this problem the concept of virtual channel have been proposed.

Multiple virtual channels share a physical channel. Each virtual channel has a separate

buffer, with multiple messages multiplexed over a physical channel. Virtual channels

17

reduce contention because more channels are available and messages can pass the blocked

messages. Virtual channel is explained in detail in the next section. The formula for the

minimum message latency in wormhole switching(as shown in Figure 13), t wonnhole switching,

1s: t WonnholeSwitching= h *(tr+ is+ tw) + max(ts, tw) * L/W

Node

1

2

3

Head flit

t wonnhole
Time

Figure 13 Wormhole Routing Switching (Adopted from [36])

Due to channel width constraints, multiple physical channel cycles may be used to

transfer a single flit. A phit is the unit of information that can be transferred a cross a

physical channel in a single cycle. Flits represent logical. units of information but phits

represent the physical units. The relationship between the size of phits, flits and packets

differs across machines. Many machines have the phit size equivalent to the flit size as in the

IBM SP2 [37]. Alternatively, in the Cray T3D [25] each flit consist of eight 16 bit phits.

The format ofa wormhole packet in the Cray T3D is shown in Figure 14. In Cray

T3D, a phit is 16 bits and a flit consists of eight phits. A word is 64 bits and thus four phits.

A message consists of header phits and data phits. The header information may include

destination address, source address, sequence number, control information, message length

and process id.

18

I

Phit 0

Phit 1
Phit 2

Phits 3-7

Phits 8-12

Phits 13-17

Phits 18-22

HeaderPhit

HeaderPhit

HeaderPhit

WordO

Word 1

Word2

Word3

Figure 14 Format of wormhole packet in the CRAY T3D

Head Tail

~•DI •DI •DI fo1
Source Tail (1) time= a Destination

r:1
Head

•ii fo1 •III •DI
Source

(2) -time t = b Destination

'
Hear

~
.. f1Jj I 11 ma I 11 a I :: I DI

Source (3) -time t = c Destination

Tail Het

.. ~I ~ -l.o1 •DI •DI
Source 4-time t = d Destination

Figure 15 Wormhole Routing.

19

2.4 Virtual Channels

A virtual channel consists of a buffer that can hold one or more flits and associated

information. Several virtual channels may share the bandwidth of a single physical channel.

Any arbitrary algorithm can be used to allocate physical channel bandwidth among virtual

channels including random, round-robin, or priority. Adding virtual channel flow control

to a network makes more effective use of both channels' bandwidth and memory buffers

by decoupling their allocation. The only expense is a small amount of additional control

logic[7].

The virtual channel strategy allocates buffers and channel bandwidth to flits.

Because flits have no routing information, the allocation must be done in a manner that

keeps the flits associated with a particular packet together. This may be done by

associating a set of buffers and some control state (implemented by hardware) together

into a virtual channel.

A network using virtual channel flow control organizes the flit buffers associated

with each channel into several lanes as in Figure (16). The control lines decide which

virtual channel uses the physical channel at any point of time. The buffer in each lane can

be allocated independently of the buffers at any other lanes. This added allocation

flexibility increases channel utilization and thus throughput.

Adding virtual channels to an interconnection network is analogous to adding lanes

to a street. A network without virtual channel is composed of one lane streets. Adding

virtual channels to the network adds lanes to the street allowing blocked packets to be

passed. A blocked message, even one that extends through several nodes, holds only

single lane idle and can be passed using any of remaining lanes as in Figure (17-b).

20

NODE A NODE B -----------------1
I

1 VC-0 I I
I I

························1···
I I
I I
I I
I I

VC-1 1
I I
I

...... ·················r·························J.
I I

I

OUTPUT CHANNELS INPUT CHANNELS

: DATA

I I
...... ··················'··························i··············

I I
, VC-2 ,
I I
I I
I I
I I

························1···
I I
1 VC-3 1

-----------------• I-----------------

Figure 16 Four virtual channels share a physical channel

To preserve bandwidth, only those virtual channels that have a nonempty flit buffer at the

sender side and a nonfull flit buffer at the receiver side may participate in the scheduling

decision.

·CJ Destination of B

---1-tl]ii;illiiilill--+ IWll:liliia,.+----Hlillillillililll c:::::J--
CJ -

jMessage A -· j jMessage B -· j
Block

Figure 17-a Message Bis blocked behind message A while all physical channels remain idle

Destination of B

!Message_ A •I !Message B mm! Block

Figure 17-b Virtual channels provide additional buffers allowing message B to pass blocked message A

21

2.5 Message Passing

Applications on parallel machines rely on inter-node communication to transfer

data, synchronize and coordinate the parallel computation. Messaging layers on parallel

machine provide communication services· to application, implementing in software

whatever is not provided directly by the underlying hardware. Typical features include

reliable and in-order delivery of messages with flow control. Messaging layers must

provide high bandwidth with low latency and overhead, and provide these services

robustly.

The major elements of message passing latency are: 1) software: interrupt serving,

system calls, buffering and copying, 2) network interface delays: message injection,

message ejection and hardware flow control, and 3) network time: hardware latency due

to congestion, routing and data transmission[31].

The function of the messaging layer is to deliver messages between nodes. An

example of the flow of data from the location in the source node's memory to the

destination node's memory location is shown in Figure 18. Let us suppose that a user

process wants to send a message to another process on another node. Transmission of this

message is initiated via a call to a message passing procedure such as send(buf, 11Words,

dest), where bu/ contains the 11Words to be transmitted to node dest. A message packet

must be created (packetization) with a header containing information required to correctly

route the packet to its destination. Access to the network interface at the sender may not

be available immediately. Therefore, the message packet may be buffered in system

memory, copying and buffering, prior to injection into the network while the sendO call

returns to the main program. Traditionally, drivers that control messaging are available

22

...............................
...- Network ···-... -·· .. ··-

NI ··-...
.........

(,,·········· NI

'•. _ ___ ..__
··... System User

.... ·····•

CPU CPU

User
}

System /• ····· ... -·
Memory Memory

Figure 18 Message transmission and reception

through system calls (User/Kernel Transitions). Once the network interface has the

message packet, it is injected into the network, where the routers cooperate in delivering

the message to destination node interface. When the message is received at the node, there

must be some way to invoke the messaging layer software (interrupts or polled access).

Similar services are then invoked to transfer the message from the network interface into

system buffers and then to user buffers.

Early message layer implementations had the message handlers execute in the

kernel causing expensive context swaps on each call. Messages were first read from the

network into system buffers and then copied into user memory data structures. In the new

implementations, the message handler executes in the user context and have direct access

to the network interface from the user level. In addition to the substantial saving in

buffering and copying, the high overhead of frequent context switching is avoided.

Traditional message passing mechanisms incur huge overhead by going through

many operating systems layers. Also, poor hardware interface between processing

23

elements and communication network leads to inadequate performance. However, recent

advances in messaging implementation and improved network interface have reduced the

software cost of messaging significantly. One of the recent message handling mechanisms

is the Active Mechanism[17, 16]. Active Mechanism eliminates unnecessary overhead

between the processor and the network. In an active-messages interface, data transfers are

coupled with invoking a handler at the destination[l 7].Active Mechanism allows the user

to specify the address of the handler to be invoked upon message arrival. Active messages

eliminates the need to buffer data at both the source and destination.

Table 1 shows the great enhancement achieved by using such new mechanism

compared to old mechanisms.

Machine Ts Tb Cycles/msg Cycles/byte

nCUBE/2 160.0 0.45 3200 9

CM-5 86.0 0.12 2838 4

DELTA 72.0 0.08 2880 3

nCUBE/2 23.0 0.45 460 9

CM-5 3.3 0.12 109 4

J-Machine 0.9 0.04 11 0.5

Table 1 One-way message overhead. Ts is the sum of the fixed overheads of send and
receive. Tb is the injection overhead per byte. The data is adopted from [20].

The network interface, NI, is responsible for injecting and receiving messages from

the network. Packets are injected into the network by storing the destination node number

and data arguments to the NI send buffer. Messaging costs are strongly influenced by a

machine's network interface architecture. Processor involvement for message reception

increases communication overheads. In contrast, decoupling message reception from

24

processor activity produces high performance messaging. Therefore, some

implementations, Cray T3D for example, dedicate hardware for messages' operation,

decoupling data transfer from local computation[32]. The Paragon dedicates a general

purpose processor to communications and uses an identical chip as a main processor[34].

Many multiprocessor machines use the one phase (non-blocking) protocol for

messaging especially for short messages. The sending processor specifies the destination

processor, transmits message directly to the interconnection network

Figure 19 shows the four steps in two phase messaging. The source first sends a

buffer allocation message to the destination (step 1). On receiving a buffer allocation

message, the destination allocates a buffer of the appropriate size and responds with the

segment identifier (step 2). The source then initiates the transfer by splitting the message

into several packets, each of which carries the destination segment identifier (step 3). The

destination receives the data packets, reassembles them into the allocated buffer and

invokes the specified user handler on transfer completion(step 4).

Several factors cause message reception to be more expensive than sending.

Sending is synchronous to the computation whereas reception is asynchronous. Reception

involves a dispatch, while sending does not[33].

There are many implementations to send or receive messages. As a typical

example, we examine the I-Machine. On the I-Machine, a series of SEND instructions is

used to inject messages at a rate up to two 32-bit words per cycle. Each SEND appends

one or two words to the message currently being composed. The first word of the

message contains the destination address, the length of the message and the address of the

25

code to run at the destination. A bit in the SEND instruction indicates the end of the

message and completes its injection into the network[33].

Source IT] Allocation request
Destination

[I] Response
: =+

======-------======: [TI :Extract

Figure 19 Two Phase Messaging Implementation

The J-machine implements asynchronous message reception by directly storing

messages into an on-chip queue and dispatching to the code indicated by the first word of

the message at the head of the queue[33]. A task is dispatched to handle the message in

four processor cycles. During these cycles the instruction pointer, IP, is loaded from the

message header and an address register is set to point to the new message[20].

Synchronization is provided by the ability to signal events effectively using low-latency

primitives.

26

Chapter 3

ROUTING ALGORITHMS AND FAULT TOLERANCE

The routing layer of the interconnection network implements the routing protocol

used to route messages from source to destination. The routing protocol consists of the

routing function and the selection function. The routing function provides a set of

available candidate output channels. The selection function chooses one of the candidate

channels as the outgoing channel for the message.

A routing algorithm should be able to route packets from any source node to any

destination node. Also, the routing algorithm should be able to guarantee that packets will

not block or wander across the network forever (deadlock and livelock :freedom). The

ability to route packets through alternative paths in the presence of contention or faults is

one of the most important properties of routing algorithms ..

Routing algorithms can be minimal, non-minimal, progressive, backtracking,

deterministic, partially adaptive, or fully adaptive[lO]. A routing algorithm is said to be

minimal if the path selected is one of the shortest paths between the source and destination

pair. A nonminimal routing algorithm allows packets to follow a longer path, usually in

response to current network conditions.

27

Routing algorithms can be classified as deterministic or adaptive. Deterministic

routing algorithms always supply the same path between a given source/destination pair.

Adaptive routing algorithms use information about network traffic and channel status to

avoid congested or faulty regions. Adaptive routing algorithms can be classified according

to their progressiveness as progressive or backtracking. Progressive routing algorithms

move the header forward, reserving a new channel at . each routing operation.

Backtracking algorithms allow the header to backtrack, releasing previously reserved

channels. Backtracking algorithms are mainly used for fault-tolerant routing and they are

explained in detail in [38].

3.1 Deadlock, Livelock and Starvation

In direct networks, packets usually travel across several intermediate nodes before

reaching the destination. However it may happen that some packets are not able to reach

their destination, even though there are fault free paths connecting the source and

destination nodes for every packet. A packet may be traveling around its destination node

and never reach it because the channels required to do so are occupied by other packets.

This situation is known as livelock. It can only occur when packets are allowed to follow

non-minimal paths. Thus, to avoid livelock the minimal paths only should be used.

However, using non-minimal paths some times is a must to achieve fault tolerance or to

get adaptiveness. Livelock can be prevented even with non-minimal paths being used by

limiting the number of misrouting operations.

Starvation might happen for a packet if its requests to the resources(usually

channels or buffers) are always denied and the resources granted to other packets

28

requesting them. Starvation occurs when an incorrect resource assignment scheme is used

to arbitrate in case of conflict. Starvation problem can be solved by using a fair assignment

scheme. A simple round robin scheme is enough to produce a fair use of resources. When

some packets must have a higher priority, some bandwidth must be reserved to serve the

low priority packets.

Deadlock is a situation that occurs when a set of messages get blocked forever in

the network. In such a situation, the packets hold certain resources and request for other

resources that are held by other messages involved in the deadlock configuration. Figure

20 shows a deadlock scenario in a two-dimensional mesh. Four messages are being routed

from source SI, S2, S3, and S4 to destinations DI, D2, D3, and D4, respectively. In the

illustrated figure, all the messages are waiting for a channel that will never be available,

thus resulting in a deadlock situation.

S4

D

S2

Figure 20 A deadlock situation involving four messages

29

There are three strategies for deadlock handling: deadlock prevention, deadlock

avoidance and deadlock recovery. In deadlock prevention, resources are granted to a

packet in such a way that a request never lead to a deadlock. It can be achieved by

reserving all the required resources before starting packet transmission, this leads to

wasted overhead. In deadlock avoidance, resources are requested as a packet advances

through the network. Deadlock is avoided by establishing an ordering between resources

and granting resources to each packet in decreasing (or increasing) order. In deadlock

recovery strategies, resources are granted to a packet without any check. Therefore,

deadlock is possible and some detection mechanisms are required. If a deadlock is

detected, some resources are deallocated and granted to other packets. Deadlock recovery

is used if deadlocks are rare which is the case in interconnection networks with virtual

channels[2].

3.1.1 Deadlock Avoidance

The interconnection network I is modeled by using a strongly connected directed

graph with multiple arcs, I= G(N,C) where N is the set of vertices and C the set of arcs.

The vertices of the graph represent the set of processing nodes. The arcs of the graph

represent the s.et of communication channels. More than a single channel is allowed to

connect a given pair of nodes. Bi-directional channels are considered as two unidirectional

channels. The source and destination nodes of a channel Ci e C are denoted by Si e N and

~ e N, respectively. A routing function, R, supplies a set of alternative output channels to

send a message from current node De to the destination node lld.

30

The model of deadlock avoidance relies on the concept of channel

dependency[46]. When a packet is holding a channel, and then it requests the use of

another channel, there is a dependency between those channels. If wormhole switching is

used, those channels are not necessarily adjacent because a packet may hold several

channels simultaneously. It is necessary to remove all the cyclic dependencies between

channels to prevent deadlocks. There is direct dependency from Ci to Cj if and only if Cj can

be used immediately after Ci by a message.

Dally and Sitez [46] introduce the concept of channel dependency graph which

represents the relation between channels when a specific routing function, R, is used. A

channel dependency graph D for a given interconnection network I and routing function

R, is a direct graph, D= G(C,E). The vertices ofD are the channels ofl. The arcs ofD are

the pairs of channels (Ci, Cj) such that there is a direct dependency from Ci to Cj. In [46], the

following theorem is stated.

Theorem: A routing fanction Rfor an interconnection network I is deadlock free

if! there are no cycles in the channel dependency graph D.

The formal proof of this theorem is in [46]. The basic concept of the proof is once

acyclic dependency graph is formed, a total order between channels can be obtained. The

next examples illustrate how to build a dependency graph from a routing function.

Example 1

Consider the example of a unidirectional ring with four nodes denoted ni,

i={ 0, 1,2,3} and a unidirectional channel connecting each pair of adjacent nodes. Let Ci,

i={0,1,2,3} be the outgoing channel from node ni. Figure 21-a shows the network. The

31

a b

Figure 21 Interconnection graph and dependency graph
of example 1. Adopted from [46]

routing function can be stated as follows: If the current node ni is equal to the destination

node nj then store the packet , otherwise, use Ci, j -::t= i. A packet at node no destined for n2

can reserve Co and then request c1. A packet at node n1 destined for n3 can reserve c1 and

then request c2. A packet at node n2 destined for no can reserve ei and then request C3. A

packet at node n3 destined for n1 can reserve C3 and then request Co. It is easy to see the

deadlock because every packet has reserved one channel and is waiting for a second

channel occupied by another packet. Figure 21-b shows the dependency graph of above

example. It is clear from the graph there is a cycle in the dependency graph. Therefore,

according to the above theorem the routing function of this example is not deadlock free.

Example 2

Let us consider that every physical channel Ci is split into two virtual channels, Coi

and CH, as shown in Figure 22-a. The routing function can be stated as follows: If the

current node ni is equal to the destination node nj, then store the packet, otherwise, use Coi,

if j < i or Cti, if j > i. The cyclic dependency has been removed. Figure 22-b shows the

channel dependency graph. Channel C12 is devoted to serve the messages destined for n3.

Therefore, it is not dependent on any other links. Channel cu depends on channel c12.

32

Channel c10 depends on C11 and C12. Same argument can be used for the relation between

channels Co1,Co2 and Co3, Channel Co3 depends on channels Co1 and cu to forward messages

from n3 to n1 and n2. It is clear form the graph there is no cycle dependency between

channels.

a b

Figure 22 Interconnection graph and dependency graph. Adopted from [46]

Example 3

Let us now consider the same network in Figure 22-a but with some modifications

to the routing function to give more flexibility in using channels. The new routing

function is: If the current node ni is equal to the destination node Dj, then store the packet,

otherwise, us.e either Coi, v'j :t:i or CH , for all j > i. Now, node n2 can use either Co2 or C12

to send messages to n3. Node n1 also can use either Co1 or cu to send messages to n2 or n3.

Node no also can use either Coo or c10 to send messages to n1, n2 or n3. We increase the

channel utilization but there are cyclic dependencies as it shown in Figure 23. However,

there is no deadlock. Channel C12 is devoted to serve the messages destined for n3.

Therefore, its buffers should be eventually empty. Messages in cu can be consumed by n2

or use C12. Thus, channel cu buffers should be eventually emptied. Messages in c10 or in

33

Coo can be consumed by nl or use cu. Thus, C10 and Coo buffers should be eventually

emptied. Since Coo is empty, Co3, Co2 and Co1 can be eventually emptied.

CO2

Figure 23 Channel Dependency Graph of Example 3

As it is clear from above example, deadlock can be avoided even if there are cyclic

dependencies between some channels. The key idea is to provide a path free of cyclic

dependencies to escape from cycles. There is at least one packet from each cycle that

should be able to select the escape path at the current node. The main point is to have

acyclic escape path. In order to do so, we can restrict routing function in such a way that

it only supplies channels belonging to the escape paths as routing choices. If a routing

function supplies a given set of channels to route a packet from the current node toward

its destination, the restricted routing function will supply a subset of those channels. The

restricted routing function will be referred to as routing subfunction. If R is a routing

function and RI is a routing subfunction ofR, we have Rl(x,y) c R(x,y) 'v x,y E N. The

set of channels provided by RI is Cl = Ux,y e N Rl(x,y).

Channels supplied by RI for a given packet destination will be referred to as

escape channels for the packet. However, packets can be routed by using all the channels

supplied by the routing function, R. To get a deadlock free routing, the routing algorithm

given by RI should be deadlock free. Therefore, there must be no cycles in channel

dependency channels given by RI. In other words, the channels of Cl be connected and

34

not involve in cyclic dependency. When we consider only the channels given by

subfunction, RI, we call the graph the extended channel dependency graph[l8]. The

extended dependency graph for

COl

- - - • Indirect dependency
· · · · · · ~ Direct cross dependency

--illJo- Direct dependency co
CO2

Figure 24 The extended dependency graph of example 3

the previous example is shown in Figure 24. In previous examples we consider only direct

dependency. However, other kinds of dependency could exist in wormhole routing

because the message can hold several channels simultaneously. Direct dependency, direct

cross dependency and indirect dependency are explained in [18].

The following theorem states the necessary and sufficient conditions for deadlock-

free adaptive routing.

Theorem : A connected and adaptive routing function R for an interconnection

network I is deadlock free if and only if there exists a routing subfunction RJ

that is connected and has no cycles in its extended channel dependency graph.

For proof of this theorem, the reader is referred to [18].

The widely-used approach to deadlock avoidance in wormhole routing is using

virtual channels to prevent circular wait by imposing constraints on the allocation of the

virtual channels. The main concept is to divide the virtual channels into classes (adaptive

and deterministic). A packet is first routed on the adaptive channels and is switched to the

35

deterministic channels when a possibility of deadlock arises. Some deadlock-free adaptive

routing algorithms will be discuss in section 3.3.

3.1.2 Deadlock Recovery

To achieve high degree of adaptiveness, deadlock recovery techniques do not

impose any restriction on routing functions, thereby allowing deadlocks to form. These

techniques require· a mechanism to detect and resolve potential deadlock situations. When

a deadlock is detected, one or more packets are obliged to release the buffer resources

they are keeping, allowing other packets to use them, and breaking the deadlock. The

deadlock recovery is useful if deadlocks are rare which is the case in interconnection

networks with virtual channels as been proven in [2][47].

In [4 7], the factors which effect the probability of deadlock formation have been

studied. As found in [47], the following interrelated- factors influence the probability of

deadlock formation: routing freedom, the number of blocked messages in the network and

the number of resource dependency cycles. The deadlock in interconnection networks can

be highly improbable when sufficient routing freedom is provided by the network and fully

exploited by the routing function. Routing freedom corresponds to the number of routing

options available to a message being routed at a given node within the network. It can be

increased by adding physical channels, adding more virtual channels per physical channel,

and by increasing the adaptivity of the routing function.

Blocked messages are those messages in the network which can not acquire any of

the alternative channels required to make progress at a given point of time. The number of

36

blocked messages decreases as the network's capacity to hold messages increases. Thus,

the number of blocked messages can be decreased by adding physical channels, adding

virtual channels, increasing virtual channels buffer depth and decreasing packet length. The

injection rate also effects the number of blocked messages.

As routing freedom is increased, the probability of deadlock decreases

exponentially because the number of blocked messages decrease exponentially and the

requirements needed to form a deadlock is increased exponentially. It has been found that

using 2 virtual channels with fully adaptive routing function eliminates all deadlocks in a

2-d mesh with wraparound links (tours) topology[47].

Since the deadlock occurrences are extremely rare, it is not appropriate to limit the

adaptivity of the routing algorithm to solve an infrequent event. Also assigning some

virtual channels to prevent deadlock complicates the router design and causes poor

channel utilization.

As we mentioned earlier, the deadlock recovery scheme needs deadlock detection

mechanism. A deadlock configuration often involves several packets. Thus, completely

accurate deadlock detection mechanisms are not feasible because they require exchanging

information between nodes. Therefore, less accurate heuristic mechanisms are usually

used. Deadlock detection mechanism using a time-out heuristic can be implemented. If a

header flit is blocked for longer than a certain time, it should be considered in a deadlock

situation. However, a heuristic deadlock detection mechanism may not detect deadlock

immediately and they may indicate that a packet is deadlocked when it is simply waiting

for a channel occupied by a long packet.

37

Once deadlock is detected, there are several alternative actions that can be used to

release the buffer resources occupied by deadlocked packets. Deadlock recovery

techniques can be classified as regressive or progressive[36]. Regressive techniques

deallocate resources from deadl9cked packets by killing them and resend the packet. A

packet can be killed by sending control signal that release buffers and propagate along the

path reserved by the header. After a random delay, the packet is injected again into the

network[2].

Instead of killing a deadlocked packet, progressive recovery allows resources to be

temporarily deallocated from normal packets and assigned· to a deadlocked packet so that

it can reach its destination. This technique has been used in [12] where in the router there

is an additional buffer that can be used by deadlocked packets. These buffers form a

deadlock-free lane which can be considered as a floating virtual channel shared by all

physical dimensions of a router. When a deadlock is detected, a packet is switched to the

deadlock-free lane and routed adaptively to its destination. To ensure that the special lane

is deadlock free, only one packet should be allowed to use it at any given time.

3.2 Deterministic Routing

In deterministic routing, the path from the source to the destination is completely

determined by the routing information obtained from the current address and destination

addresses. For the same pair of source and destination, all packets will follow the same

path. This method is also called oblivious routing. Deadlock is avoided in the

deterministic routing by ordering the channels that a message need to traverse. Message

traverses the channels either in ascending or in descending order. Thus, cycles are avoided

38

in the channel dependency graph.

Dimension ordered routing is a deterministic routing scheme where the routing

algorithm selects a path that traverses network dimensions in sequence. A message

traverses channels in the lowest or highest dimension with non-zero displacement until

that dimension has displacement of zero. As the message never traverses in a reverse

direction of the dimension ordering, there can not be any cycles and thereby non deadlock

can be formed.

An example of deterministic routing is the XY routing in a 2-D mesh which always

routes a message along the row, X, first and then along the column, Y. The routing

directions and the possible turns that a message can make are shown in Figure 25. The

turns clearly indicate that cycles can not be formed using the XY routing. Thus, the XY

routing is deadlock free. Examples of routing paths between two source-destination pairs

are also shown in Figure 25.

Another well-known fixed-path routing algorithm is the e-cube routing algorithm

for hypercube[60]. This algorithm routs messages in a hypercube in a fixed order of

dimensions (usually in increasing or decreasing order). The algorithm works as follows in

an n-hypercube with N = 2n nodes. Consider a source node S= Sn-i Sn.2 So and a

destination node D=dn-1dn-2 do. Assuming that the dimensions are traversed in the order

from the least significant to the most significant bit, the message from source S moves

from node to node by correcting the bits from the least-significant bit to the most

significant bit to match the bits of destination D. For example, in a 4-hypercube, messages

from S =0101 to D =1010 always follow the path 0101~ 0100 ~ 0110 ~ 0010 ~ 1010.

39

This fixed ordering of the dimensions forces the e-cube routing algorithm to select a

unique path between a given pair of nodes. The e-cube algorithm is deadlock free because

the channels are requested in specific order according to the dimension. Assume increasing

order, if a message holds the channel in direction xi in node nl and try to request the

r ····1 r···· ~
: _JL I : I

: I

' I ,...... •····
Four Turns Allowed in XY

Routing

Figure 25 Dimension Order (XY) Routing in a 2d Mesh

channel in dimension x2 in node n2, then we know that xi < x2 because in e-cube the

channel in lower dimension is requested before the channel in higher dimension. Let us

assume a deadlock situation where another message holding the channel in dimension x2

in node n2 and requesting the channel in direction x 1 in node n 1. That implies x 1 > x2

which contradicts with what we have above.

The main disadvantage of deterministic routing is that it can not respond to

dynamic network conditions. Some traffic patterns will produce bottleneck nodes and lead

to poor performance as illustrated in Figure 26. Many studies show that adaptive routing

outperforms deterministic routing [12,10]. Also when a network link or node is faulty, all

40

node pairs sharing the faulty link or node are disconnected even if alternative paths exist

in the network between them.

3.3 Adaptive Routing

With adaptive routing, the paths can be modified to avoid faulty nodes. A routing

technique is adaptive if, for a given source and destination, the path taken by a particular

packet depends on dynamic network conditions, such as the presence of faulty or

congested channels.

Adaptive routing improves both the performance and fault tolerance of an

interconnection network by providing multiple paths between a source and destination

(see Figure 26). Adaptive routing techniques can produce higher utilization of network

resources and more robust performance. Many studies show that the performance of

adaptive routing algorithm outperforms the performance of deterministic routing

algorithms especially when we have non-uniform loads. However, deadlocks may appear if

the routing algorithms are not carefully designed.

Many adaptive routing algorithms for wormhole networks have been reported in

the literature. However, they can be divided into three groups based on how they deal

with the deadlocks. The first group of adaptive algorithms avoid deadlocks by prohibiting

some of the turns (changing dimension) to avoid deadlock. In many topologies, channels

are grouped into dimensions. Moving from one dimension to another produces a tum in

the packet route. Tums can be combined into cycles. The algorithms presented in

[39,43,48,50] are examples of this group. The main advantage of this group is that it does

not require virtual channels as the case in other groups. However, this group dose not

41

...
F

I -~

I I .

I I 1111 ..
Figure 26 Deterministic and adaptive routing

provide the full adaptiveness because it prohibits some directions. Also it might form some

of unwanted traffic pattems[35]. The second group avoids deadlock by using the concept

of virtual channels to divide the physical network to a number of virtual networks. A

separate virtual network is used for each of the possible tum (or for groups of possible

turns). The algorithms proposed in [44][491(41) are examples of this group. This kind of

algorithms either require large number of virtual channels as in [49) or restrict the

adaptiveness as in [44). The third group of routing algorithms partition the virtual

channels to two partitions, adaptive partition and deterministic partition. The packets are

routed adaptively in the adaptive partition and use the deterministic partition as an escape

path if all the adaptive channels are blocked. The algorithms proposed in [18][40)(13](52]

are examples of this group. In the next sections some of these algorithms which represent

each group will be explained.

3.3.1 Tum Restrictions Techniques

The tum model proposal in [39) provides a systematic approach to the

development of adaptive routing algorithms in meshes. Deadlock occurs because the

packets' routes contain turns that form a cycle. Deadlock can not occur if there is no

cyclic dependency between channels. The fundamental concept behind the tum model is to

42

r 11--i r ·--- ···· --i r ···· 1--i
L -1L .J. 1• -1L •... 1 L -1L •... 1
a-Eight possible turns b- Four turns allowed in

XYrouting
c- Six turns allowed in

West-First routing

Figure 27 Possible and Allowable Tums in 2D Mesh

prohibit the smallest number of turns such that cycles are prevented. Thus, deadlock can

be avoided by prohibiting enough turns to break all the cycles. In 2-D meshes there are 8

possible turns and two possible abstract cycles, as shown in Figure 27-a. The deterministic

XY (row-column) routing algorithm prevents deadlock by prohibiting four of the turns, as

shown in Figure 27-b. The remaining four turns can not form a cycle, but they do not

allow adaptiveness. However, prohibiting fewer than four turns can still prevent cycles.

For a 2-D mesh, only two turns need to be prohibited. Figure 27-c shows the six turns

allowed. The two turns prohibited are the two turns to the west. Therefore, in order to

travel west, a packet must begin in that direction. The west-first routing algorithm : route

a packet west first, if needed, and then adaptively south, east or north. Three examples for

the west-first algorithm are shown in Figure 28.

Figure 28 Examples of West-First Routing in a 2d Mesh

43

In addition to 2-d mesh networks, the tum model can be used to develop adaptive

routing algorithms for hypercubes. The P-cube algorithm is the tum model algorithm for

the hypercube. Let s=Sn-1 Sn-2 So and d=dn..1dn..2 do, be the binary representation for the

source and destination respectively. The set E consists of all the dimension numbers in

which sand d differ. The size ofE is the Hamming distance betweens and d. Thus, ie E

if Si~. Eis divided into two disjoint subsets, Eo and E1, where ie Eo if Si =O and <h=l, and

ie E1 if Si =1 and ~=O. The fundamental concept of P-cube routing is to divide the routing

selection into two phases. In the first phase, a packet is routed through the dimensions in

EO in any order. In the second phase, a packet is routed through the dimensions in El in

any order[36]. Possible paths from 0101 to 1010 in P-cube are shown in Figure 29.

1010
0101

Figure 29 Possible paths from 1010 to 0101 in P-routing

Cycles can not exist because traversing dimensions in Eo because it moves from a

node to a higher numbered node (we traverse in ascending order). To form a cycle, at

least one channel must exist from a node to a lower numbered node. In other words, if a

packet holding a channel in node n1 is requesting a channel in node n2, we can not find

another packet holding a channel in n2 and requesting a channel in n1. For similar reasons,

cycles can not exist because traversing dimensions in E1. Finally, since packets only use

dimensions in E1 after traversing all of the dimension in Eo, deadlock freedom is preserved.

44

The algorithm prohibits turns from dimension E1 to dimension Eo and this is sufficient to

prevent cycles.

3.3.2 Virtual Networks Technique

One general adaptive routing technique works by partitioning the channels into

disjoint subsets. Each subset constructs a subnetwork. Packets are routed through

different subnetworks, depending on the location of destination nodes. Figure 30

illustrates the application of this method to a 20 mesh. As Figure 30 shows, the mesh

contains an additional pair of channels added to the Y dimension. This extra pair can be

added by using the concept of virtual channels. The network can be partitioned into two

subnetworks called the + X subnetwork and the -X subnetwork, each having a pair of

channels in the Y dimension and a unidirectional channel in the X dimension. If the

destination node is to the right of the source, dx > Sx, the packet will be routed through

the + X subnetwork. If dx > Sx, the -X subnetwork is used. If dx = Sx, the packet can be

routed using either subnetwork. This double Y-channel routing algorithm is minimal and

fully adaptive. The algorithm is deadlock-free because no cyclic dependency between

channels can be made in any of the two subnetworks.

Linder and Harden[49] extend the above concept to other topologies including the

hypercube. Their method of designing adaptive routing algorithm is to create an

independent virtual channel network for each combination of directions packets that can

be routed and then overlay the virtual networks onto the physical network, dividing each

physical channel into as many virtual channels as are mapped onto it. The large number of

virtual channels is the main drawback of this method.

45

+ X subnetwork -X subnetwork

Figure 30 Virtual networks for a 2-d mesh in double-y algorithm

3.3.3 Escape Channels Technique

Dally and Aoki [13] have proposed an adaptive routing scheme based on the

concept of dimension reversal. Each physical link is divided into r+ I virtual channels,

numbered from Oto r. A packet is allocated to virtual channels using a number count of

dimensional reversals (DR). All messages are started with a DR of zero. Each time packet

is routed from Y dimension to the X dimension, a dimension reversal, the DR of a

message is incremented.

Two allocation algorithms, static and dynamic, were proposed. The static

algorithm separates the virtual channels into classes numbered zero to r, where r is the

maximum number of dimension reversals permitted. Messages with a DR < r are allowed

to route freely in only a virtual channel of class DR. If a message has a DR = r, it must be

routed in dimension-order in the virtual channel of class r. This algorithm divides the

physical network into r+ I virtual subnetworks. Every time a tum has been made the

packet is moved to the next virtual subnetwork. The move from a subnetwork to the next

subnetwork happens in specific order. This algorithm is deadlock free because no cycle

46

can be made between subnetworks. When no more subnetwork available we switch to

deterministic subnetwork which is always deadlock-free.

The dynamic algorithms allow messages to route in any direction with no limit on

the number of dimension reversals. The virtual channels are divided into two classes,

adaptive and deterministic. Messages are routed first on the adaptive channel. Whenever a

packet acquires a channel, it labels the channel with its current DR number. A message

with a higher DR can not wait for a channel labeled with a lower DR. If all channels with

equal or lower DR are occupied, a message must change to the deterministic channels and

is not allowed to use adaptive channel again. This algorithm is deadlock free because no

circular wait can be formed. The packet with high DR never waits for a channel occupied

by another packet with lower or equal DR.

1010
0101

Figure 31 Possible paths from 1010 to 0101 in Duato routing algorithm

As in the previous algorithm, Duato proposes separating virtual channels into

deterministic and adaptive partitions [18]. The packet can be routed adaptively in any

minimal path using the adaptive portion of virtual channels. If all of them are busy, route

over the deterministic channels. The packet can be routed again using the adaptive

channels. The only requirement is that the routing subfunction over the deterministic

channel must have an acyclic extended channel dependency graph.

47

For the hypercube, Duato uses thee-cube algorithm for deterministic channels and

uses Idle algorithm[IO] for adaptive channels. E-cube is a deadlock free deterministic

routing algorithm. In contrast, Idle routes over any profitable link at an intermediate node

and is not deadlock free. By combining e-cube and Idle we get a deadlock-free adaptive

routing algorithm. Figure 31 shows possible paths between O 101 and 1010 when using

Duato algorithm without deadlock. This algorithm is deadlock free because its extended

channel dependency graph has no cycles as been proven in [40].

For 2d-mesh, Duato uses the XY algorithm of deterministic channels and uses the

minimal adaptive algorithm for adaptive channels. XY is a deadlock free deterministic

routing algorithm. Minimal adaptive algorithm routes over any profitable link at an

intermediate node and is deadlock prone. By combining XY and minimal adaptive we get

a deadlock-free adaptive routing algorithm.

Schwieber and Jayasimha [53][54] used Duato's technique to propose an optimal

fully adaptive routing algorithm for meshes, opt-y algorithm. They improved Duato's

algorithm by allowing limited adaptiveness in deterministic channels. Like double-y

algorithm (explained in section 3.3.2), opt-y algorithm uses one virtual channel per

physical channel for X dimension and two virtual channels(Yl and Y2) per physical

channel for Y dimension (6 virtual channels per node). In opt-y, virtual channel Y2 can be

used adaptively without any restrictions but the use of virtual channel Yl is restricted so

it can be used as an escape channel. Double-y routing algorithm uses one of Y channels,

Yl, for packets traveling X-, and the second set of Y channels, Y2, for packet traveling

X+. To increase the adaptiveness, opt-y allows all the turns between X and Y2 channels as

well as turns between X+ and Yl channels. Tums from Yl to X- channels are prohibited.

48

Turns from X- to YI channels and 0-turns between Yl and Y2 channels are restricted.

The restricted turns are only allowed when the packet has completed its movement along

X- channels (the X-offset is zero or negative). Figure 32 shows the turns allowed by the

opt-y algorithm. Moreover, Jayasimha et al [55] propose a minimal adaptive routing

algorithm for 2-D meshes which reduce the virtual channels requirement to only 5

channels per node (double virtual channels in only in X+ direction or in X- direction).

+Yl C +x_JC-xJ Yl+ i Ylr

L-x_j l_.x_j YI+ i Y2r
2DMesh
Router +X -X

~ ~c: 4·······, yl yl +X -X :

-Yl -Yl +Y1
-Yl yl Y2l L-x i l___:x_j

~- •••••• .i

Figure 32 Turns in opt-y. Thin solid lines used for unrestricted turns. Thick sold lines are
used for restricted turns. Dotted lines are used for prohibited turns. (adopted from [54])

3.3.4 Adaptive Algorithms Based on Deadlock Recovery

As we mention in section 3.1.2 the simulation studies in[2] and [47] show that

deadlocks are extremely rare and even might not exist at all if more than one virtual

channel is available. Therefore, deadlock recovery seemed more attractive than deadlock

prevention. Devoting some virtual channels for deadlock avoidance is unjustifiable

resource wasting to solve a rare problem. In [2] and [12], routing strategies based on

deadlock recovery have been proposed. The algorithm proposed in[2] is explained in

details in chapter 4. In [12] a deadlock recovery scheme , Disha, have been proposed.

49

Disha permits unrestricted routing on all exiting virtual channels which give us true fully

adaptive routing. If none of these channels are free during this routing cycle, the packet is

blocked. After several attempts to route the packet, the router may consider that this

packet is deadlocked. A deadlocked packet is moved to the recovery path. The recovery

path is constructed from deadlock buffers which are in the center of the router and can be

accessed from all neighbor nodes. Figure 33 shows the general design of Disha router.

Deadlock buffers form a deadlock-free lane. Once a packet is considered deadlocked, it is

moved to deadlock-free lane until it reaches its destination. At any point of time, only one

packet can use the deadlock-free lane. Deadlocks can be detected with a time out. If a

packet is unable to make progress for a time duration corresponding to a time-out, it

presumes a potential deadlock situation and becomes eligible for recovery. A packet time

out does not necessarily imply deadlock; the time-out mechanism is simply sufficient

guarantee that deadlock will never occur.

Deadlock recovery mechanism provides the chance to design true fully adaptive

algorithms. When routing is not restricted, no virtual channels are dedicated to avoid

deadlocks. Instead, virtual channels are used for the sole purpose of improving channel

utilization and adaptivity. Hence, true fully adaptive routing is permitted on all virtual

channels within each physical channel. Routing restrictions on virtual channels are

completely relaxed so that no ordering among these resources is enforced. In [51], true

fully adaptive routing algorithm, Disha Routing Algorithm, been proposed based on

deadlock recovery.

50

Input queue
(Virtual Channels)

Deadlock Buffer

Figure 33 Router model of Disha

3.4 Fault Tolerant Algorithms

As the number of elements in a multicomputer increases, the likelihood of one or

more elements failing increases too. Thus system reliability becomes a key issue in the

design and implementation of large scale multicomputers. Fault-tolerant systems aim to

provide continuous operation in the presence of faults. The reliability of the

interconnection network is very important for the reliability of the whole system.

Two different types of faults are considered: node failure and communication

channel failure. When a node fails, all physical links belonging to the failed node are also

considered faulty. The failed node can no longer send or receive any messages and is

. removed from the network. When a physical link fails, all virtual channels on that

particular physical link are considered faulty also. Only node faults are considered in this

dissertation. Failures can be either static or dynamic. Static failures are known by the

system before communication starts. Dynamic failures appear at random during the

51

execution time. Static failures are considered in this section. Dynamic failures will be

discussed in chapter 4 and chapter 5. There are two fault models, coalesced fault model

and random fault model [15]. In coalesced fault models, adjacent faulty nodes are

coalesced into a fault regions. In random fault model, faults occur on random nodes and

do not form a coalesced fault region. In current multiprocessors, failures occur in a few

random nodes rather than correlated in continuous large blocks [15].

The fault-tolerant algorithms should grantee that all non faulty nodes should be

reached in the presence of a given number of faults. Routing around faulty nodes

(adaptiveness) is the key to achieve fault tolerance. But not all adaptive routing algorithms

are fault-tolerant because in some of these algorithms it reaches a point where the packet

have only one choice(path)[13], and ifit happens that one of the nodes in that unique path

is faulty then the packets who must use this path are undeliverable. However, fault tolerant

routing schemes for n-dimensional hypercube and meshes have been proposed in

[14][8][42].

In fault-tolerant algorithms, if all possible minimal paths are faulty or blocked

packet must be misrouted by using a non-minimal path. Misrouting must be controlled so

that livelock is avoided and newly introduced dependencies do not produce deadlock. A

routing function is said to be fault tolerant if for any failed node in the network, the

routing function is still connected and deadlock free [36].

In [8], every node is in one of three states, faulty, active or unsafe. Each node

knows the states of its neighbors. Unsafe node is a node with at least two faulty or

unsafe neighbors. The unsafe status of nodes serve as a warning that messages may

become trapped if routed via these nodes. Therefore the routing algorithm is structured to

52

first route a message to an adjacent non-faulty node on a shortest path to the destination.

If such a node does not exist, the message is routed to an unsafe node on a shortest path

to the destination. If no such node exists, then the message is misrouted to an adjacent non

faulty node.

In binary hypercube, every unsafe node is connected with at least one active node.

A subcube is an unsafe subcube if it contains .only unsafe or faulty nodes. The basic

concept of this fault tolerant algorithm is to avoid unsafe subcubes. As illustrated in Figure

34 (Pl and P2), the minimal path can be obtained if either the receiver or the sender is an

active node. If both of the sender and the teceiver are unsafe but in different subcubes then

also the minimal path can be obtained as in P3 in the Figure 34.

Unsafe PS

1 P3

Figure 34 Fault Tolerant Routing in a Faulty Hypercube

53

®unsafe Node
•Faulty Node

0 Active Node

In the last case, if both nodes (sender and receiver) are unsafe in the same

subcube, then the path length is no more than the minimal plus two as in P4 and PS in

Figure 34. This algorithm is connected for the hypercube topology if the number of faults

is less than n/2. To solve the deadlock problem in n-dimensional hypercube, Lee and

Hayes [8] use n+l virtual channels. However, Chiu and Wu [56] use five virtual channels

to avoid the deadlock and Su and Shin [14] use only 2 virtual channels for any dimension.

Moreover, the deadlock problem can be solved by deadlock recovery scheme as been

explained in section 3 .1.2.

Several fault tolerant algorithms have been proposed for 2-d meshes. Planar

adaptive algorithm [44] have been used for fault tolerance in n-dimensional meshes.

Instead of providing adaptivity in all dimensions, it restricts adaptivity to two dimensions

at a time. As message progresses towards its destination, it passes through a series of

adaptive two-dimensional planes and eventually reach its destination. There are two

phases in Planar adaptive routing- the high level routing and the low level routing. The

high level routing corresponds to the routing between the adaptive planes, and the low

level routing corresponds to the routing within the adaptive planes. Let A. represent the

adaptive plane between dimension di and di+1. Within each plane, the plane adaptive

algorithm acts as double-y algorithm (explained in section 3.3.2). The algorithm routes

the packet in plane A. till the distance in di is reduced to zero, then the packet is moved

to plane A.+1. In each plane, the set of virtual channels can be partitioned into two

subnetworks: the increasing subnetwork and the decreasing subnetwork. In the increasing

(decreasing) subnetwork messages only travel in increasing (decreasing) X coordinate.

The Planar algorithm is deadlock-free because no deadlock can occur within each plane

54

and no deadlock can be formed between planes because the packet traverses planes in

order. In double-y algorithm two virtual channels are needed in Y direction and one virtual

channel is needed in X direction The Planar adaptive algorithm needs three virtual

channels in every direction because every node might participate in two planes, ~ and

~+1. In Ai plane, a node uses two virtual channels in di+l dimension, and in ~+1 plane the

same node uses one virtual channel in di+1 dimension as shown in Figure 35.

•·····

~
I
I
I

I
I
I

""'

·····•
..... • Used in dimension i in Plane Ai

---+ Used in dimension i+ I in Plane Ai

-+ Used in dimension i in Plane Ai-1

- - - ~ Used in dimension i+ I in Plane Ai-ti

Figure 3 5 Usage of virtual channels in Planar algorithm

To achieve adaptiveness in n-dimensional meshes, Planar algorithm needs to

traverse n-1 planes from plane Ao to plane An-2. To achieve fault-tolerance, the routing

algorithm must route around the faulty region. When a faulty node is encountered, the

. message is routed or misrouted in the vertical direction to the top (or to the bottom) of the

faulty node as shown in Figure 36. In Planar adaptive algorithm, the misrouting in ~

plane must be done through the di+ 1 direction because it is the only direction where packet

can go in both ways using same subnetwork. Based on what we discussed so far, the

Planar algorithm can route around faulty region, however, it can not route around the

55

faults in dn-1 dimension. Therefore, to achieve fault-tolerance, Planar algorithm added one

more plane An-1 which consists of dn-1 dimension and do dimension. So, the fault in dn-1

dimension can be misrouted using do dimension.

In 2-D meshes, to get the full adaptiveness we need to have only one plane Al

where dO is the X direction and d 1 is the Y direction. But to get the fault tolerance we

need two planes Al and A1. Al is same as in the previous case and A1 will consist of d1 as

X direction and do as the Y direction. When a packet header going along do from left to

Sl

Faulty Region

Packet 2 Move to plane Al

Figure 36 Routing around faulty region in Planar algorithm

right (or from right to left) encounters a faulty region and the distance is zero in d1

direction it must route around the faulty region while it is in Al as in Figure 3 7. On the

other hand, if a packet header going along d1 from the bottom to the top and encounters a

faulty region it routes adaptively till the distance in do becomes zero then it moves to A1.

It can not go around the fault using do direction because the subnetworks in Al have only

one way in the do direction. In A1 the packet can route around the faulty region because A1

has two ways in d1 direction.

56

This algorithm is connected and deadlock free if the faulty node is not a boundary

node. Planar algorithm might not be able to route around a boundary faulty node

sometimes because the direction of a packet has to be reversed which introduces

dependency between channels and might lead to a deadlock. This problem can be solved

by marking all nodes in the same boundary row with the faulty node as unsafe and

prohibit routing to unsafe nodes. Other fault-tolerant algorithms can be found in

[45,43, 15,57,58,59].

Subnetworks in Plane Ao

Subnetworks in Plane A1
Figure 37 Subnetworks in planes AO and Al used by Planar algorithm

57

Chapter 4

FAULT RECOVERY

As parallel machines are scaled to large number of processors, the mean time

between faults in a system decreases, making fault-tolerance issues more important. A

1000 processor MPP system would be expected to fail nearly once a day [60]. Failures can

be either static or dynamic. In static faults model, as been explained in chapter 3, channels

are known to be faulty prior to routing a message header over the channel. Thus,

messages can be adaptively routed based on the fault status of a channel. In dynamic fault

model, channels can fail at any time, and may therefore interrupt a message in progress.

Since only header flit contains routing information, data flits preceding the faulty channel

are blocked and cannot be routed, thus, these flits (called orphan flits) will remain in the

network indefinitely occupying resources. Furthermore, the flits stored in the faulty node

will be lost. A fault recovery mechanism should be able to guarantee that every packet

reach its destination and no orphan flits stay in the network forever occupying resources.

In this chapter we will discuss the current recovery protocols. Also, the advantages and

the disadvantages of each protocol will be evaluated. The extra hardware requirements for

every protocol are discussed. A message passing system should provide reliable message

delivery. Traditional message passing systems ensure reliable delivery by keeping a copy of

58

the packet in the sender buffers until the sender gets the receiving acknowledgment from

the destination[60,63]. If the receiver does not get acknowledgment in a specific amount

of time, the packet will be considered as lost. Consequently, the sender resends the same

packet to the receiver. For example, in B-HIVE Multiprocessor [60], when a message is

entered in the transmit queue, it is marked with a timestamp. If transmission occurs

normally, the message will be received by the destination, and the sender will receive a

reply within the timeout period. If the timeout expired and the packet is considered as

lost, the sender will re-queue the message.

The IBM SP2 with Active Messaging [63] provides reliable delivery of messages

by using acknowledgment packets. Sequence numbers are used to keep track of packet

losses. Unacknowledged messages are saved by the sender for retransmissions. When a

message with the wrong sequence number is received, it is dropped and a negative

acknowledgment is returned to the sender forcing a retransmission of the missing packet

as well as subsequent packets.

Figure 3 8 shows the six steps required to send a message in traditional message

passing systems[16]. The sender sends an allocation request to the receiver (step 1), which

allocates a receiving buffer (step 2) and replies to the sender (step 3). The sender then

Source

Free SC?nding
buffe~

Destination QJ Allocation request

:~~-=------li -.0 l
--J-~----~[Il:3:·~Re:::spo:::nse::_~~----~----~----~~~All~ebuffeIB

Acknowledgment

[sl Copy to user buffeIB
aµd free receiving
bµffeIB

Figure 38 Reliable Messaging in traditional systems

59

sends the packet (step 4) and the receiver stores the packet in its receiving buffers. On the

completion of the transfer, the receiver frees up the receiving buffers (step 5) after

copying it into user buffers, and sends back an acknowledgment packet (step 6).

Since a copy of the data is maintained at the source waiting for acknowledgment

of successful reception, fault tolerance is ensured. Studies of this message transmission

scheme in [16] show that a large fraction of the end-to-end software communication cost,

about 50%, is due to buffer allocation overhead and fault-tolerance overhead.

To reduce the fault-tolerance overhead, recent message passing implementations

rely on the network to ensure reliable delivery. For example, the Message Passing

Interface, MPI, does not, provide mechanisms for dealing with failures in the

communication system[64]. Also, Illinois Fast Messaging (FM) assumes reliable delivery,

so protocols may be able to eliminate retransmission techniques to deal with lost

packets[69]. End-to-end messaging might be accomplished via an end-to-end reporting

physical network, which pairs a back-track path (using signal lines) with the corresponding

parallel transmission path. The end-to-end hardware mechanism have the advantage of

providing reliable messaging without additional message transmission and the

corresponding CPU and software overhead. The network techniques to provide reliable

delivery will be explained later in this chapter. The acknowledgment packet is not used in

recent implementations. Also, no allocation messages are needed since the messages are

sent in a pipeline fashion (like wormhole switching). Once the destination gets the header

which contains information about the packet size, the destination allocates a buffer to

store the message. In new protocols, there are no buffer allocation messages and no end

to-end acknowledgment messages.

60

There are at least three recovery protocols presented in the literature to handle

dynamic faults[l,2,3]. However, in all these protocols a substantial overhead is involved in

every message. Also, additional control lines, which complicate routers' design and

increase bandwidth requirements, are required by these protocols. Re-transmitting the

whole corrupted message is used in [2,3] to recover from faults.

Re-transmitting penalty may be significant when the average message length is

high. Recent studies on a variety of applications demonstrate a wide range of message size

from a few bytes to over 512K bytes at the application level[4]. Typical message libraries

implement some form of packetization breaking long messages down into some maximum

physical transfer size(512, 1024 bytes).

4.1 Reliable Router (RR)

Dally et al[l] propose "Unique Token Protocol" (UTP) to handle dynamic faults.

This protocol depends on a second copy of every flit kept in preceding node and the head

flit is stored in every node spanned by the packet (see Figure 39). Also, at the end of each

message there is a token. When a fault happens in the middle of a message the node

H H H H

D5' D5 DI' DI

D6' D6 D2' D2 - - - - -
D7' D7 D3' D3

TI,' TL D4' D4

•
--Token -

Figure 39 The UTP at the flit-level (adopted from [1]).

61

preceding the faulty node constructs a new message using its own copy of the message's

header. The header of the new message is tagged as a special kind of head flit (restart

head). A replica token is inserted at the first part of the message as a flag to distinguish

between the original message and the new message. The destination assembles the two

parts to get the original message. Figure 40 shows how a message is :fragmented into two

messages after a fault occurs.

Figure 40-a Message in RR before the fault

• Original Head

• DataFlit

• Unique Token

• NewHead

Bl Replica Token

Figure 40-b Message is fragmented into two sub-messages in RR after the fault

62

Reliable router uses five virtual channels to divide the physical network to three

virtual networks, minimally adaptive network, dimension-order network and fault-handling

network. A packet using minimal adaptive network is able to route to any productive

channel. The RR allocates two virtual channels to the adaptive network. A packet using

dimensional-order network is routed in strict dimension order (XY algorithm). The RR

allocates two virtual channels to the dimension-order network. A packet using fault

handling network is permitted to use non-minimal steps to avoid faulty nodes. Even a

non-minimal path is allowed, the number of turns a packet can make is restricted to avoid

deadlock. The routing algorithm tries to request a channel from all the networks

simultaneously. The routing algorithm will select a channel from minimal network if

available; otherwise a channel from dimension-order network will be selected if available;

otherwise the channel from fault-handling network will be selected.

The design drawback is that in order to keep two copies of flits all times within the

network, flow control information must make two steps to the back using separate control

lines. This is shown in Figure 41. Let us assume that node C copies a flit across to node D.

It sends a copied signal to node B. Node B will use this information to invalidate its own

copy of the flit. Reception of a copied signal will make node B send a freed signal to node

A. Node A will receive the freed information and use it as indication that node B can

receive one more flit.

,_______,,•FREED',___ ___.I• =1 _ ___. FLIT ·I __ __.
A B C D

Figure 41 Flow Control in Reliable Router (adopted from [l]).

63

This protocol reduces the buffer requirement in the. sender side and does not

require retransmission of interrupted messages. On the other hand, UTP increases the

buffer requirement in the routers by requiring the head of each message to be stored in

each spanning node. Also, there are two copies of each flit in the path, as been illustrated

in Figure 39, which means the length of each message has been doubled decreasing the

performance significantly as we will see in chapter 6 when we compare the performance of

RR with performance of other protocols. This protocol is not robust enough to handle

multiple faults that occur in one message pipeline. If two adjacent nodes fail

simultaneously, the RR can not recover the lost flits because both the original flits and the

replica flits are lost. For example in Figure 39, if node I and node 2 fail at the same time

there is no way to recover data flits DI, D2, 03 and D4.

4.1.1 Router Design in RR and hardware requirements

Figure 42 shows the Input Controller of RR. The Input Controller supports five

separate virtual channels with decoupled resources. The functionality of the Input

controller can be summarized as follows:

• It buffers flits in the FIFO module. The FIFO is divided into five separate banks, one

for every virtual channel. Each bank behaves as a regular first-in-first-out buffer with

some special state and functionality to implement retransmission in case of a fault.

• It computes the next step route of each packet based on head flit information and

current output virtual channel state. The route is stored in dedicated registers so that it

can be used by subsequent data flits. Route computation and storage resources reside

in each Virtual Channel Module.

64

• It keeps track of the virtual channel buffer size in the receiving node and stops the

corresponding virtual channel from transmitting any more flits in order to prevent

FIFO overruns.

To Xbar Allocator

i ..
I Route Multiplexer

." --------·--·-----+---4----4---1-11 Virtual
---1--.1-111 Channel

rou~ __ state,_ -- --
< < -· -· < < < -· ---· ::1,. ::1,. ::1,. ::1,. ::1,.
C: C: C: C: C:
Q) Q) Q) Q) Q) - - - - -
()
::r
Q)

() ()
::r ::r

() ()
::r ::r

::J
::J
CD -

Q) Q)
::J ::J
::J ::J
CD CD - -

Q) Q)
::J ::J
::J ::J
CD CD - -

Select

ToXbar -~
Flit Manager

- T
Data Out

FIFO

• Read VC ----
~ ~ ~ ~ ~
0 0 0 0 0
C. C. C. C. C.
C: C: C: C: C:

'rf...___1T_1f_l~I IL I I

Flit in

I

.---t Write VC

Data In
'

VC#in

Figure 42 Input Controller Block Diagram of RR

65

Flits enter the Input Controller after being received from the sending neighbor. If

the flit is a head, it is fed to the corresponding Virtual Channel Model and a copy of the

flit is stored in the FIFO bank that corresponds to the virtual channel identifier of the

incoming flit. On the other hand, if the flit type is data, it is directed to the appropriate

FIFO bank. The design computes the output channel identifier ("Route"), selects a virtual

channel and allocates the crossbar. The rest of the circuitry in the Virtual Channel Module

is mainly concerned with internal bookkeeping. Figure 43 shows the block diagram of

Virtual Channel Module. The Optimistic Router computes the address of output virtual

channel based on the message's destination and current state of output channels. It is

called optimistic because it might need to be changed if another input channel requests the

same output channel simultaneously.

Global Virtual
Channels State

"Optimistic Router"
Desti nation Output Channel

Address Address
Comoutation

XBAR .
Flit kind , Finite State Machine .

Fault

dVC Rea
(in crement)

Freed
(decrement)

(Channel State)

"Flow Control"
Number of flits in
receiving node's

huffP.r

Does the vc have
something to send

~ "Control"
• Is the virtual channel
, eligible to transmit a
flit across the crossbar

•

Figure 43 Vrrtual channel module of RR

66

To channel select

A finite state machine, Route FSM, keeps track of the virtual channel state at all

times. A simplified version of its state diagram is shown in Figure 44. When a head flit

appears, the channel state switches to either NEEDS ROUTE or ROUTED state depending

on whether the flit was actually accepted by the crossbar (Xbar Ack.). A channel is

marked as routed only when the head flit succeeds in reserving an output controller and

IDLE

Head and Xbar Ack

Figure 44 State Diagram of the Route FSM (adopted from [66])

gets transmitted across the crossbar. Otherwise, the Optimistic Router will try to

recompute a route during next 2 cycles. The virtual channel switches back to IDLE state

when a token flit goes through and the resource deallocated. If a fault occurs while the

message is Routed, the channel switches to the Backup state where internal preparation

for retransmission occurs. After 2 cycles, the channel goes back to the NEEDS ROUTE

state and starts looking for an alternative route among the non-faulty output virtual

channels.

The Flow Control Module contains a counter that is incremented each time a data

flit goes across the crossbar into the virtual channel buffer storage of the neighboring node

and gets decremented each time the neighboring node forwards a flit and frees up buffer

storage.

67

Finally, the Control Module collects information from the Optimistic Router, the

Route FSM and the Flow Control Module and decides whether it should declare the

virtual channel eligible to transmit a flit across the crossbar. The Virtual Channel Select

module selects one of eligible virtual channels to get the chance to push a flit through the

crossbar. A round robin scheduler is used to arbitrate between the eligible virtual channels.

4.2 Fault-tolerant Compressionless Routing (FCR)

The main idea proposed in [2,3] is to use re-transmission mechanism to tolerate

dynamic faults. When a fault is detected, the detecting routers send kill signals both

forward and backward along the message path (see Figure 45). These kill signals (FKILL

and BKILL) follow the virtual circuits back to the source and destination and release

reserved buffers and notify the source that the message was not delivered and the

destination to ignore the message currently being received. The protocol proposed by Kim

et al[2] requires padding extra flits at the end of each message. To ensure reliable

transmission, Fault-tolerant Compressionless Routing, FCR, requires that each message

holds its path until the last data flit reaches the destination [2]. For fault tolerance,

successful delivery of a message is granted if the message's entire data portion has been

delivered to the destination without error. Thus, the message sender must hold the tail of

the message until the last data flit is delivered. To determine whether all data flits have

reached the destination, FCR takes advantage of the compressionless property of

messages under wormhole routing. Worst case analysis can be used to determine the

maximum number of flits that can be distributed between the sender and the receiver. The

sender pads the message to ensure that all data flits reach the destination before the tail flit

68

has been injected into the network (Figure 46). The number of extra flits need to be

padded is computed as follows: extra_flits =Bea,* D where Bca,is channel capacity in flits

and D is the path length.

Source

Destination

· · · · · Control Signals flow

~ KILL signals flow

Figure 45 Tearing down an interrupted circuit. (Adopted from [3])

I H: Header D:Data P:Pad

T p p
P __ oo ····IDIHI

Source Destination

Figure 46 Message Padding in FCR networks.

When a fault is detected, both FKILL and BKILL signals are generated. FKILL

signal propagates forward along the message path. If the destination receives the signal,

the current message must be dropped. BKILL signal propagates backward along the

message path. If the sender receives the BKILL the current message must be reinjected.

When a KILL signal arrives at an intermediate node, it releases the input and output

virtual channels associated with the message and the signal propagates towards the source

(or the destination). If multiple faults occur in one message pipeline, this mechanism is

applied recursively to fault free parts.

69

DATA .
N

Control -
ode A . NodeB

Pad -
FKILL .

,. BKILL ,~

Figure 47 Data and control lines in FCR

FCR provides data recovery from dynamic faults .. However, it requires additional

hardware in the network interface and in the router. The channel interface for FCR router

is shown in Figure 47. Three new control lines (FKILL, BKILL and Pad) are introduced.

Pad signal is needed to differentiate pad flits from data flits and to indicate the end of each

message

Re-transmitting will increase message latency and will decrease the throughput.

Control lines required by this mechanism make the hardware cost high and complicate

router's design. Most importantly, FCR attaches extra flits with every message which

reduce the throughput considerably. For example, in 64-node hypercube with 2 flits

buffers a 12 flits message must be padded with extra 12 flits which means 50%

deterioration in the throughput.

4.2.1 Hardware Support For Data Recovery in FCR

Figure 48 shows a block diagram of the message injection subsystem in network

interface. It receives formatted message from a processor and sends messages. If it

receives BKILL, it restarts the sending process. The flit counter F inj has the sequence

number of the flit to be injected. The Ack signal from the router indicating that a flit was

injected resets the elapsed time counter Tetapse and increases the flit counter Fmj· The

70

BKILL signal resets the flit counter, therefore the network interface will restart the

sending process. When number of injected flits equals I.nm all counters are initialized and.

a new message picked from input queue.

Head
Data

From Processor Data
Data

Pad

Pad

Tout

'---=~Inc

Clock

..·

Data

ACK
Padsi

BK.ill

FK.ill

.......................................

Figure 48 The Injector Network Interface in FCR (Adopted from [2])

Figure 49 shows the message receiver interface in FCR. The data flits are

assembled in the interface's buffer until all data flits are arrived. The interface knows that

all data flits have arrived when the Pad signal goes high, whereupon, the message is fed to

the processor and the receiving interface is initialized to accept another message. The flit

counter, Free, is incremented every time a flit arrived and it works as a pointer to where the

next flit will be stored in the receiver buffer. When a FKILL signal goes high the flit

counter, Free, is reset which means discarding all the data flits in the receiving buffers.

71

From Router To Processor

Data Flit ------

Pad Signal

Figure 49 The message receiver interface in FCR (Adopted from 2)

4.3 Acknowledged Pipelined Circuit-Switching (APCS)

Another recovery protocol, acknowledged pipelined circuit-switching (APCS) is

proposed in [3]. Same concept of KILL signal is used in this protocol. However, padding

extra flits at the end of the message is not used here. Instead, a hardware message

acknowledgment must be transmitted from the destination to the source on completion of

message transmission (see Figure 50). The acknowledgment signal propagates through the

complementary channel. In APCS, a unidirectional virtual channel is composed of data

chanel, a corresponding channel and a complementary channel. The routing header

traverses the corresponding channel while the subsequent data flit traverse the data

channel. The complementary channel is reserved for use by acknowledgment flits, kill flits

and backtracking header flits.

72

Node

l

2

3

4
-------------' 11111

Time

Figure 50 Acknowledgment signal in APCS

This mechanism holds virtual channels until the acknowledgment signal reaches the

source via the complementary channel. Once the receiver gets the last flit of the packet, it

sends the acknowledgment signal to the sender. The acknowledgment signal propagates

backward from the receiver to the sender through the complementary channels and it frees

all the buffers (channels) res.erved for that packet. If a fault happens and interrupts a

message pipeline, the interrupted message must be resend, the reserved channels must be

released and the receiver must be informed to discard the flits which have been received

before the fault happened. In order to release the reserved network resources, the link

controller at the source end of the faulty virtual link introduces a kill flit into the

complementary virtual channel of the virtual link upstream from the fault. This kill flit

follows the complementary control circuit back to the source node. The link controller at

the destination end of the faulty virtual link introduces a kill flit into the complementary

virtual channel of the virtual link downstream from the fault. This kill flit is propagated

towards the destination node. When a kill flit arrives at an intermediate node, it releases

the input and output virtual links associated with the packet and is propagated toward the

source (or destination).

73

In this protocol, the sender waits until it received the acknowledgment signal

which increases the message latency for every message. When the message latency is

considered, this protocol has similar effect as adding extra flits in the previous protocol.

Also, the additional message acknowledgment introduces additional control flit traffic into

the system. Message acknowledgments tend to have a throttling effect on injection of new

messages[9]. Extra control lines are also needed in this mechanism.

Using the same concept, the nCUBE3 communication architecture [62] provides

an end-to-end reporting mechanism that ensures reliable messaging, whereby the sender of

a message can know quickly whether that message was delivered reliably or not. The

receiver sends status information back to the sender before the established path is broken.

The status information are sent through a back-track path with the corresponding

transmission path. The message transmission network and back-track network are

implemented as virtual network that share the same physical communication network.

74

CHAPTERS

Software Based Recovery Protocols (SBRP)

In chapter 4, we have explained and evaluated the current recovery protocols in

wormhole network. To achieve data recovery, the current recovery protocols incur an

overhead with every message. As we have explained in chapter 4, UTP doubles every

message length to be able to recover the lost flits. Also, FCR uses an end-to-end protocol

by keeping the message pipeline until the sender makes sure the receiver got all data flits.

This message length enlargement has a negative effect on system performance. Network

bandwidth is wasted by using it to transfer redundant or dummy flits. Since the faults are

infrequent events in multicomputer systems, it is unjustifiable to penalize every message

to achieve data r~covery. To enhance recovery protocol's performance, the data recovery

overhead should be linked with the fault occurrence only. The normal (fault-free)

operations should not be affected by recovery protocol. A data recovery protocol which

does not penalize every message is more appealing.

We need a data recovery protocol which neither uses an end-to-end protocol nor

requires multiple copies of data flits to exist in the same message pipeline. To achieve

data recovery, however, there should be a mechanism to compensate for the lost flits.

Since we are not in favor of keeping more than one copy of the flits in the message

pipeline, the lost flits should be re-obtained from the original sender. There are two

possible ways to inform the sender that some flits are lost and there is a need for

retransmission. The first way is to use an end-to-end protocol to inform the sender by

75

hardware acknowledgment. This approach is used in [2,3] and is discussed in detail in

chapter 4. The second way is to use regular messages to inform the sender. Using regular

messages for data recovery was not attractive in traditional systems because of the high

cost of messages and the poor communication between router's hardware and messaging

system. The low cost messages and good router interfaces in current systems make the use

of messages in data recovery more attractive. In this chapter, we will explain and evaluate

the use of control messages instead of control lines in data recovery.

5.1 General Concept of Software Recovery Protocols

The duties of any data recovery protocol can be summarized as follows:

• The receiver gets the whole message without any missing flits.

• The receiver gets at most one copy of the whole message or any part of it.

• Any orphan flits must be removed :from the buffers.

• All the buffers and channels which were reserved by a corrupted message must

be released.

Messages can be used instead of control lines to inform the sender that a message

has been corrupted and a whole message or a part of it need to be resend. As illustrated in

Figure 51, let us assume that the faulty node is B, the node following B in the message

path is A and the node preceding B in the message path is C. The recover request (RRQ)

must be sent by one of the nodes who can know that a fault occurs (C, A or the receiver).

A recover request (RRQ) is a small message which has at least the original (corrupted)

message id and might have other information depending on the protocol used.

76

Since a tail flit of the cormpted message will never go through the reserved path

between node A and the receiver, the reserved channel will not be released forever.

Faulty

Q····················c 0
B A Receiver

Figure 51: A message pipeline with a faulty node.

Therefore, node A must inject a tail (we will call it non final tail NFT) to release the

reserved channels. Once the receiver gets the NFT, it knows that a fault happened and will

act according to the specific protocol. The receiver either ignores the currently received

message in case of whole message retransmission or waits for the remainder of the

message in case of partial message retransmission.

To get rid of orphan flits and release the reserved channels between node C and

the sender, node C must continue to absorb the orphan flits until it gets a tail flit. Node C

will get a real message tail or a virtual tail which is injected by the sender. Once the

sender gets RRQ of a message while it still injecting its data flits, the sender stops the

injection of any data flits and injects a tail flit to release the reserved channels.

5.1.1 Fault Recovery Handler

Fault Recovery Handler (FRH) is a special handler executed by one of the

participating nodes to respond to fault occurrence. This handler is executed by either node

A, C or the receiver depending on the version of recovery protocol being used. The job of

this handler is to collect information about the corrupted message. This information

77

include the message id, sender id and receiver id. Also, some version of the protocol might

need other information as will be explained later in this chapter. After collection of such

information, the FRH embeds them in a message and sends it to the sender.

5.1.2 Absorbing Orphan Flits

The orphan flits are the flits of the corrupted message located between the faulty

node and the sender. These flits can not be forwarded to the receiver because the path

which they must follow is not a valid path anymore. Allowing these flits to stay forever

occupying network resource is not acceptable. There should be a mechanism to remove

these flits :from the network. The only node who is capable to remove the orphan flits is

the node which precedes the faulty node (node C in Figure 51). Node C can absorb all the

flits intended to the faulty node. The absorption can be done by receiving the flit in the

virtual channel's receiving queue and clearing the queue immediately. The absorbtion

process stops when a tail flit arrives.

5.1.3 Resending Handler

Once the recovery message reaches the source, the source must resend the

corrupted message or part of it. We have two cases. The first case when the source is still

injecting the rest of the corrupted packet. In this case, the sender restarts injecting the

packet starting from the first flit as in SBRP-0 and SBRP-2 or starting from a specific flit

as in SBRP-1. In the second case, the recovery message arrives after the sender finish

injecting the rest of the corrupted message. In the second case, a specific handler must be

invoked to reload the message from system buffers. In some systems, however, the

message buffers are deallocated immediately after the packet is injected in the network.

78

SBRP requires that a message waits in system buffers until the message delivery is

granted. The waiting time has no effect on messages' latency.

5.2 Implementation

In this section we describe three approaches of SBRP: SBRP-0, SBRP-1 and

SBRP-2. All three approaches use messages to handle data lost due to nodes' fault.

However, they differ in the way they handle the fault occurrence. In the first two

approaches, SBRP-0 and SBRP-1, the node preceding the faulty node in the message

pipeline, node C in Figure 51 sends the retransmission request to the sender. In SBRP-0

the sender sends the whole message again. In SBRP-1, however, the sender sends only

part of the message as we will explained later. In the third approach, SBRP-2, the

receiver sends the retransmit request after it receives a non-final tail. The following three

sub-sections describe these three approaches.

5.2.1 SBRP-0

The direct way to recover flits lost is to ask the original sender to resend the whole

message again. As in Figure 51, node C sends recover request to the sender. Node C

needs to know the original message sender and the message id. Therefore, this approach

requires a copy of a message's head is kept in every virtual channel.

In case node B goes down and corrupts a message pipeline, the actions taken by

the nodes ofFigure 51 are as follows:

Node A

Inserts a NFT flit at the end of the sub-message.

79

NodeC

• Absorbs all non-head flits routed to the faulty node.

• Sends a retransmission request to the sender.

Sender node

After receiving retransmission request from node C, the sender performs

the following tasks:

• Inserts a tail flit in the path of corrupted message in order to

release the reserved channels.

• Retransmits the whole corrupted message again.

Receiver node

• After receiving a NFT, the receiver ignores the message currently

rece1vmg.

SBRP-0 requires that each virtual channel keeps a copy of the head of the

message currently using it. This requirement is also used in RR [I] as was explained in

chapter 4. Node C invokes the Fault Recovery Handler (FRH). The FRH needs to get the

message id, source and destination from the head's copy. A recovery message of two

fields, message id and message destination, plus a head and tail is composed in node C

and is sent to the sender. Once the sender gets the recover message, it invokes the

resending handler RSH to resend the corrupted message again.

S.2.2 SBRP-1

In this approach, as suggested in[l], an interrupted message can be broken down

into two sub-messages. Both sub-messages have the same header but the headers will

80

differ in one field only to distinguish between the original head and the new head. The first

sub-message consists of the original header and the flits that passed through the faulty

node without being corrupted. The second sub-message is constructed by the source node

after receiving the fault-handler message. We extend this concept by giving a sequence

number for each head of all sub-messages. This sequence number is used by the

destination to re-construct the original m~ssage even in case of the message being broken

down into more than two sub-messages. The cost of this sequence number is few bits in

the message head. Number of these bits equals to logi(number of possible sub-messages)

which normally is small

5.2.2. l Definitions

Beside the terminology from the literature, we need the following:

• Non-Final Tail (NFT):

In case of message fragmentation, a non-final flit indicates the end of a sub

message. This tail comes at the end of each sub-message except the last one.

• Sub-message serial number field (SSNF):

In case of fragmentation, this field in a message's head shows the serial

number of each sub-message. Without fragmentation, the field value is zero.

The sender increments this field by one every time it generates a sub-message.

• First flit's sequential number (FSN1

This is a flit embedded after the head of a sub-message to show the

sequential number of the first data flit in a sub-message (sin Figure 53).

The receiver needs this value to deal with possible duplicates of flits. The

cause of the duplication is described later.

81

• Maximum flits capacity between two nodes (Max (i, j))

= Number of nodes between i and j * Buffer capacity per node

jTail loata-n r·································1oata-l !oata-0 Heado

Figure 52 Nonnal Message Format

INFT loata-m 1····························· loata-1 loata-O Heado
a- First Sub-message

ITail loata-n I ·····························1Data-s I FSN Head1
b- Second Sub-message

Figure 53 A n-flits message fragmented to two sub-messages

This approach requires that each virtual channel keeps a copy of a message's

head. Moreover, each virtual channel keeps track of the number of flits that have passed

through it belonging to the current message. Such counter can be added easily to the

current router designs. Figure 54 shows how the RR router can be modified to get such

counter. The length of this counter depends on the maximum packet size.

Global Virtual
Channels Sta_

· , "Optimistic Router"
Destination Output Channel

Address . Address
Computation

Does the vc have

XBAR
something to send

To channel --I "Control" ,
select

Flit kind Finite State Machine·. ' Is the virtual channel ,
(Channel State) eligible to transmit a

Fault • • flit across the crossbar ,

ReadVC
(increment) "Flow Control"

Number of flits in
receiving node's ·

Freed
,.

buffer
(decrement)

"Flit Counter''
Number of flits

Flit Kind (Tail)'
passed

Reset

Figure 54 Virtual channel module for SBRP

82

In case node B goes down and corrupts a message pipeline, the actions taken by the

nodes ofFigure 51 are as follows:

Node A

Inserts a NFT flit at the end of the sub-message.

NodeC

• Absorbs all non-head flits routed to the faulty node.

• Sends a retransmission request (containing message id, sub-message

serial number and the sequential number of the last flit received) to

the sender.

Sender node

After receiving retransmission request from node C, the sender performs

the following tasks:

• Inserts a tail flit in the path of corrupted message in order to

release the reserved channels.

• Changes the head by incrementing SSNF by one.

• Computes the FSN.

• Retransmits the remainder of the corrupted message.

FSN is computed as follows :

Assume that last flit passed the faulty node ism. Node C does not know the value

of m and does not know how many flits were in the faulty node. Therefore, the sender

must assume the maximum possible flits between node C and node A, Max(C, A). Thus,

the retransmission must start with a value less than or equal m+ 1. The sequential number

of first flit, s, is obtained as

83

s = Last flit passed node C - Max(C, A).

It is clear that s ::;; m+ 1. When s < m+ 1 duplicate flits will reach the receiver.

5.2.3 ~JJlll'-2

In SBRP-1 and SBRP-0, the resend request is sent immediately after the fault

occurrence. But in SBRP-2 the resend request is sent by the receiver when it gets the

NFT. Once the receiver gets the NFT, it invokes the recover handler. The recover handler

gets the message id and number of received flits and sends a recover message to the

original sender. Unlike the SBRP-1 approach, SBRP-2 does not require any extra

hardware cost.

In case node B goes down and corrupts a message pipeline, the actions taken by

the nodes ofFigure 51 are as follows:

Node A

Inserts a NFT at the end of the sub-message.

NodeC

Absorbs all non-head flits routed to the faulty node.

Receiver node

After receiving a NFT, the receiver sends a retransmission request

(containing message id, sub-message serial number and the sequential

number of the last flit received) to the source.

Sender node

After receiving retransmission request from the receiver, the sender does

the following:

84

• Inserts a tail flit in the path of corrupted message in order to release

the reserved channels.

• Retransmits the remainder of the corrupted message after changing

the head by incrementing the SSNF by one.

SBRP-2 does not handle the case when the message's head is corrupted. This special

case can be handled as whole message lost in upper layers.

5.3 Software Overhead in SBRP

Recent advances in messaging implementation and improved network interface

have reduced the software cost of messaging significantly[69]. Also, direct communication

between the processor and the network interface saves instructions and bus transfers. For

example, in the j-machine a single instruction, SEND, appends the contents of two

processor registers to a message. Composing and injecting a four word message takes

only 4 clock cycles in j-machine[9].

In SBRP, a retransmission request(message) is generated after a fault detection.

The overhead with generating a control message in SBRP includes the following :

• Getting the information about corrupted message· from the router. This

information includes VC flit counter and message's head. Router's

instructions can be used to load these values from router registers to

processor registers. Two load instructions are needed. The total cost of this

step, L, equals 2 * load's CPI. We assume that each load instruction cost

one clock cycle.

85

• Fixed overhead for send (T,).

• Injection overhead (Tw).

• Network latency (N).

• Fixed overhead for receive (Tr),

• Receive overhead (To),

Total overhead = L +T, + Tw+ Tr+ T0 +N. Based on I-machine

measurements[IO], T, =7 cycles, Tw =I• Message Length, Tr= 5 cycles,

To=7•1 Message Length I 2 l. The length of control message is 4 words (two

data words, head and tail).

Total overhead = 2 + 7 + 4 + 5 + 14 + N

= 32+N

The value of N will be provided by the simulator.

· Based on the reported measured iimes for active message implementation [17], the

software overhead was I 00 simulator cycles which includes both the actual system

software overhead and the network interface overhead[3 l].

5.4 Comparison between the three approaches of SBRP

Table 2 illustrates the different requirements of the three approaches of SBRP.

Since SBRP-2 does not requires any flit counter or head copy, it has the lowest

requirement. Therefore, the current routers can be easily modified to implement SBRP-2.

SBRP-0 does not require the flit counter but it requires the head copy and the sender

must resend the whole message again. SBRP-1 requires the head copy and the flit counter

but only part of the message need to be resend.

86

Requirements SBRP-0 SBRP-1 SBRP-2

Flits counter No Yes No

Head's copy in every node in the path Yes Yes No

Resends whole message again Yes No No

Resends only part of the message No Yes Yes

Tolerates head loss Yes Yes No

Table 2 Comparison between SPRP protocols

5.5 Comparison between SBRP and other recovery protocols

Table 3 summarize the differences between SBRP and current recovery protocols.

The significant advantage of SBRP over the current recovery protocols is the recovery

overhead is attached only with the corrupted messages. All the recovery protocols

including SBRP require additional hardware. The compressionless protocol requires

special control lines and requires also a special router design to enable the router to resend

the messages again in case of message corruption. The Reliable Router (RR) , SBRP-0

and SPRP-1 requires a copy of the message head to be saved in all the nodes in the

message path. Moreover, SPRP-1 requires a flit counter for every virtual channel.

Although the SBRP does not incur overhead in fault-free environment, it needs

help from Network Interface. SBRP requires the Network Interface (NI) to invoke the

Recovery handler once the fault happens. Also, SBRP assumes the NI has the ability to

latch the values of the router's registers. Resending the message again requires also NI

help.

87

Requirements SBRP Reliable Router Compressionless

Attaches overhead with every No Yes Yes

message

Requires control messages Yes No No

Requires control lines No Yes Yes

Handles multiple faults Yes No Yes

Requires software fault handler Yes No No

Keeps the message in the sender's Yes No Yes

buffer until delivery is insured

Retransmits whole message No No Yes

Table 3 Comparison between SBRP and other protocols

88

Chapter 6

SIMULATION AND PERFORMANCE ANALYSIS

We designed a simulator to implement wormhole interconnection networks. The

purpose of the simulator is to study the performance of wormhole networks, analyze the

effect of network traffic and the impact of design parameters, and to evaluate the

performance of the proposed recovery protocol. Developing an analytical model for

performance evaluation of wormhole routing is difficult because of the multiple and

simultaneous resource possessions as well as the blocking during the pipelined routing.

Moreover, adaptive routers have complex behavior which depends on network status. Due

to the difficulty of accurate analytic modeling, router performance is evaluated via

simulation [67][44].

The router model used in the simulation is shown in Figure 55. The design

configuration ancJ assumptions are described in the next sub section. Number of input

inject buffers is equal to number of virtual channels per physical channel. Each virtual

channel requires a counter to record the number of flits in the corresponding input buffer

on the receiving node. When a positive (negative) acknowledgment arrives for a virtual

chanel, the counter that corresponds to it is incremented (decremented). In this thesis we

consider hypercube and 2-d mesh topologies even though the proposed protocol is

applicable to all other topologies.

89

~

Message Injection,
queues

Input
Channels

Input queue
(Virtual Channels

Switch

Channel Mappings

Network Interface

Output queue

Virtual Channels

~~BI I •I 11 -~D--+ Arbitratio

llili+~ ..
Counters & status

registers

111 rf--.'5=bB. . a : Arb1tratio _..__.

l 11: Ii+~ . Co trol ines
Counters & status

re&isters

Figure 55 Simulated Router Model

Input Controller of node ''j"

I I t I I
111 Jt+

rrrr1
I I I I I

Input Controller of node "k"

6.1 Simulation Configuration

The following assumptions are made in the simulation:

1- A node can generate messages of fixed length destined for any other node. Traffic is

uniformly-distributed unless otherwise specified.

2- A message arriving at its destination node is eventually consumed.

3- Wormhole routing is used. So, once a queue accepts the first flit of a message, it must

accept the remainder of the message before accepting any flits from another message.

Also, a message may occupy several channels simultaneously.

4- The crossbar switch in the router allows multiple messages to traverse a node

simultaneously without interference. It takes one clock cycle to transfer a flit from an

input buffer to an output buffer regardless router's design parameters.

5- There are two separate unidirectional channels between any two adjacent nodes.

6- Each virtual channel uses one input buffer. Each buffer can store only a single flit.

7- Multiple messages can be sent simultaneously between a processor and the

corresponding router.

8- All flits reaching a destination are consumed simultaneously.

9- Transferring a flit between two nodes via a physical channel takes one unit of time.

I 0-A round robin scheduling policy is used to arbitrate the multiple request in physical

links. Virtual channels, who are ready to send a flit, are the only ones who compete to

get access to the physical channel. Blocking messages and messages waiting to be

routed do not consume any channel bandwidth.

91

11- The route taken by a message depends on its destination and the status of output

channels. If all the alternative output channels are busy the message header is not

required to wait on any predetermined channel. Instead, it waits on the input channel

buffer. It is repeatedly routed until it is able to reserve a channel, thus getting the first

channel that becomes free.

12- Each node knows its neighbors' state (i.e. faulty or not faulty). Also, there is no

message :from or to the faulty nod.e.

13- If a node is a faulty node, all its input and output physical channels are marked as

faulty. Each physical channel has a fault status bit.

6.2 Performance Metrics

The most important performance metrics of an interconnection network are latency

and throughput. Latency is the time elapsed since the message transmission is initiated

until the message is received at the destination node. Hardware latency is defined as the

time elapsed since the message header is injected into the network at the source node until

the last unit of information is received at the destination node. The queuing time at the

source node is added to the latency. When the messaging layer is being considered, latency

is defined as the time elapsed since the system call to send a message is initiated at the

source node until the system call to receive the message returns control to the user

program at the destination node. In this thesis, we consider the hardware latency for all

messages except for recovery messages as will be explained in section 6.3. Latency is

measured in time units. We will use the simulator clock cycle as the unit 9fmeasurement.

92

Throughput is the maximum amount of information delivered per time unit. The

normalized throughput is equal to the number of messages received over the number of

messages that can be transmitted at the maximum load. The maximum load is derived by

considering the fact that 50% of uniform random traffic crosses the bisection plane of the

network[l4]. Thus, if a network has a bisection bandwidth B flits/cycle, it can inject a

maximum of 2B flits/cycle. An optimal routing algorithm can handle such a load without

saturation. The bisection width B is equal to 2n and 2n for n-ditnensional hypercube and

n x n meshes, respectively.

The evaluation of interconnection networks requires the definition of

representative work models. The work model is basically defined by three parameters:

distribution of destination (traffic pattern), injection rate and message length.

The distribution of destination indicates the destination for the next message at

each node. The most frequently used distribution is the uniform one. In this distribution,

the probability of node k sending a message to node j is the same for all k and j. The

uniform distribution makes no assumption about the type of computation generating the

messages. In the study of interconnection networks, it is the most frequently used

distribution. There are other kinds of destination distributions like bit-reversal, perfect

shuflle, butterfly, matrix transpose and complement [36].

For synthetic workloads, the injection rate is usually the same for all the nodes. In

most cases, each node is chosen to generate messages according to uniform distribution

within an interval. Other possible distributions include bursty traffic and trace from parallel

applications. The normalized load is equal to the number of messages generated over the

number of messages that can be transmitted at the maximum load.

93

Message length can also be modeled in different ways. In most simulation runs,

message length is chosen to be fixed [36]. Also, message length can be computed

according to a normal distribution or a uniform distribution within an interval. The

selected message length distribution should be representative of intended applications, if

there is any. Obviously, application traces should be used if available. In this thesis, we use

fixed message length. However, message length varied from one run to another in order to

study the effect of message length.

6.2 Fault - Free Performance

In this section, we analyze the performance of wormhole networks on hypercubes

and two dimensional meshs under different design parameters and different traffic

conditions. The effect of adding more virtual channels and using adaptive algorithms are

evaluated. Also, We evaluate the performance under different traffic patterns. All the

graphs in this chapter show the relation between the input load and latency and

throughput. The input load can be measured as the number of messages or flits injected in

a unit of time or can be measured as a fraction of maximum load.

The latency curve generally takes the shape shown in Figure 56. Latency increases

slowly first and then more rapidly, approaching a vertical asymptote at network saturation.

Beyond a saturation message rate, A.sat no steady state solution for network latency exists.

At higher message rates, latency grows without bound[19].

Beyond the saturation point, A> A.sat, network performance is described by the rate

of accept traffic (throughput). Figure 57 shows a plot of throughput versus normalized

94

load. Below the saturation point, the curve is the straight line 1.. a= A . Beyond the

saturation point, the curve has a constant value, A a= A.sat-

Latenc
cycles

Normalized
-----------,..... t--- Load 0,.)

Figure 56 Latency versus normalized load (Adopted from [19])

Normalized
Throughput

Normalized ,.__----------~--~ Asst Load (A.)

Figure 57 Normalized throughput versus normalized load (Adopted from [19])

95

6.2.1 Virtual Channels

Figures 58, 59, 60 and 61 show the effect of the number of virtual channels in

networks performance. Figures 58 and 59 show the relation between normalized input

load and message latency and throughput, respectively, in.-a.~7 x 7 mesh. Figures 60 and 61

show the same for 16 nodes hypercube. The plots show the performance enhanced as the

number of virtual channels increase. As we have mentioned in chapter 2, virtual channels

increase throughput by multiplexing more than one packet over one physical channel.

However, studies in [72] show that adding virtual channels complicates router design. By

adding one virtual channel, the time needed to route the flits through the router increases

by30%.

6.2.3 Routing Algorithms

As we have discussed in chapter 3, adaptive routing algorithms utilize the network

bandwidth more efficiently than deterministic routing algorithms and give more flexibility

to avoid faulty or congested regions. In this section, we investigate the performance of

different routing algorithms using our simulator. For two dimensional meshes we simulate

several routing algorithms. For the deterministic routing, the XY algorithm is simulated.

For the partial adaptive routing, the West-First routing algorithm is simulated. For the

fully adaptive routing, Double-Y, Duato and Disha routing algorithms are implemented.

We also simulated the true fully adaptive routing algorithm (TFAR) without any

mechanism for deadlock avoidance or recovery. For all algorithms, we use two virtual

channels.

96

i
l
~
>,
u
C

~

'S a. .c = :::,
e .c
I-

1
l
0 z

800

700

600

500

400

300

200

100

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-+-1 vc
-2vc
--.-4vc

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Nonnalized Applied Load

Figure 58 Effect of the number of virtual channels on message
latency (7*7 Mesh, ML= 28)

-+-1 vc
-2vc
--.-4vc

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Nonnalized Applied Load

Figure 59 Effect of the nnumber of virtual channels on
throughput (7*7 Mesh, ML=28)

97

300

250

1200
l

i:: -+-vc=1
-vc=2
-+-vc=3

50

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Nonnalized Applied Load

Figure 60 Effect of the number of virtual channels on message
latency (16 node Hypercube, ML=8)

0.1 0.2 0.3 0.4 0.5

Nonnalized Applied Load

0.6 0.7

Figure 61 Effect of the number of virtual channels on
throughput (16 node Hypercube, ML=8)

98

-+-vc=1
-vc=2
-+-vc=4

As we mentioned in section 3.3.2 Double-Y uses only two virtual channels in y direction

and one virtual channel in x direction. To utilize all the virtual channels, we simulated two

independent subnetworks using three virtual channels. The first subnetwork uses two

virtual channels in y direction and one virtual channel in x direction. The second

subnetwork uses two virtual channels in x direction and one virtual channel in y direction.

The packets are directed randomly to one of the two subnetworks. Once a packet is

directed to a subnetwork it can not switch to the other subnetwork. We called this

implementation Double-Double-Y. In [44], the same concept is used but for fault

tolerance where the second subnetwork is used only to avoid faulty regions.

Figures 62 and 63 show the performance of the above algorithms under uniform

traffic. From the plots we note that the deterministic algorithm gives equal performance

to the partial adaptive algorithms' performance under uniform traffic in mesh. The reason

is that with uniform traffic, the load is uniformly distributed. Also from the plots we note

that the deterministic algorithm gives better performance than the partial adaptive

algorithm's performance (West-First) under uniform traffic in mesh. That is because West

First causes more traffic congestion in one part of network and hence lead to early

saturation[74]. Double.-Y gives the worst performance because it does not utilize the

second virtual channel in x direction. Moreover, Double-Y does not provide flexibility in

virtual channel selection where each message is assigned a specific virtual channel

depending on its direction. Although Double-Double-Y utilizes all virtual channels, it does

not show good performance, because each packet must select a specific channel and must

wait if it is busy even though all other virtual channels in same direction are free. TF AR

gives good performance under light loads. However, under high loads the deadlocks

99

500

450

400

350

t' 300

~ 250
200

150

100

50

0
0.1

0.6

0.5

'S !' 0.4
f
j 0.3 ...

0.2

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized Applied Load

Figure 62 Performance of routing algorithms
(Message Latency)

(Uniform traffic, Mesh 7*71 ML=28, VC=4)

-+-west-first
-Deterministic
__,._ Double-Double-Y

-*-Minimal

-Duato
-+-Disha
--r-Double-Y

-+-west-first

- Deterministic
-6--Double-Double-Y

-*-Minimal

-Duato

-+-Disha
--r-Double-Y

o_...,_~~+--~--+~~--~~--~~+-~~+--~---1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized Applied Load

Figure 63 Performance of routing algorithms
(Throughput)

(Uniform traffic, Mesh 7*71 ML=28, VC=4)

100

deteriorate the performance. Disha algorithm which uses deadlock recovery mechanism

shows good performance. However, with high number of deadlocks in high load it could

not handle all deadlocks and hence causes performance deterioration.

For hypercube, Figures 64 and 65 show the performance of a deterministic routing

algorithm (ecube), the partial adaptive algorithm (p-cube), Duto' s algorithm, the fully

minimal adaptive algorithm and the Minimum-congested algorithm. In the fully minimal

adaptive algorithm, the packet goes in a direction which might bring it closer to the

destination. To take care of possible deadlocks in minimal adaptive algorithm, a deadlock

recovery algorithm is used as in [12]. In Minimum-congestion algorithm, the routing

algorithm selects the least loaded link between all possible minimal paths. From the graphs

we note that the performances of deterministic and adaptive algorithms are almost the

same under uniform traffic. However, when the network is near the saturation level the

adaptive algorithm gives better performance because it avoids blocked links by selecting

another physical link, if any. The Minimum congested algorithm shows the best

performance in high load rate because it selects the least congested links which almost

makes all links' load equal.

6.2.2 Traffic Patterns

In this section, we investigate the effect of traffic patterns (distribution of

destination) in routing algorithms' performance. The traffic patterns take into account the

transformation that are usually performed · in parallel algorithms. In some parallel

algorithms, there is no specific traffic pattern. However, other parallel algorithms

(especially parallel numerical algorithms) show a specific pattern where the destination

101

200...-~~~~~~~~~~~~~...-~~~-,

180

160

140

>, 120
u
C 100

~ 80

60

40

-+-ecube
-Adaptive

20L__.. __-..-==.-==1====-~
_,._minimum congestion

"""*""J>-CUbe
-Duato

0-4-~--+~~-1-~~+-~-+~~-i-~~1--~--1

0.1

0.5

0.45

0.4

'!ii 0.35
Q.
.c
!r 0.3
e .c
t- 0.25

0.2

0.15

0.1
0.1

0.15 0.2 0.25 0.3 0.35 0.4 0.45

Normalized Applied Load

Figure 64 Perfonnance of routing algorithms
(Message Latency)

(Unifonn traffic , 16-node Hypercube, ML=81 VC=2)

0.15 0.2 0.25 0.3 0.35 · 0.4 0.45 0.5

Normalized Applied Load

-+-ecube
-adaptive
,. minimum congestion

"""*""p-cube
-Duato

Figure 65 Perfonnance of routing algorithms
(Throughput)

(Unifonn traffic, 16-node Hypercube, ML=8, VC=2)

102

node for the message generated by a given node is always the same. To evaluate both

., ·,r\ --.;- ~

cases, we use two different traffic loads which are described below.

Random (Uniform): Each node sends messages with equal probability to all other

nodes. The uniform distribution makes no assumption about the type of computation

generating the messages. The uniform distribution provides an upper bound on the mean

internode distance because most computations exhibit some degree of communication

locality [36].

Dimension-revenal (Transpose): Each node sends messages to the node with

address of reversed dimension index. In two dimensional networks, node (x,y)

communicates with node (y, x). In hypercube, the binary address of the node is split into

halves, and these halves are swapped (if the dimension of the hypercube is odd, then the

middle bit remains unchanged). For example, the node with binary address (11100)2

communicates only with the node whose binary address is (00111)2•

Figures 66 and 67 show the performance of three different routing algorithms in

two-dimensional mesh wormhole network under the dimension-reversed (transpose)

traffic pattern. Figures 68 and 69 show the performance of three routing algorithms in

hypercube wormhole network under the transpose traffic pattern. In 2-d mesh, under the

dimension-reversed (transpose) traffic pattern, the fully adaptive routing and Duato

algorithms have the best performance. Dimension-reversal creates significant congestion

under dimension-order (XY) routing in 2-d mesh. In hypercube, under transpose traffic

pattern, the deterministic algorithm (ecube) shows very low performance. Also,

dimension-reversal creates significant congestion under dimension-order (ecube) routing

in hypercube.

103

., Fully Adaptive

-West-First
-1&-XY
-*'-Duato
-4-Double-Y

0.1 0.2 0.3 i 0.4 0.5 0.6 0.7 0.8

Nonnallzed Applied Load

Figure 66 Effect of routing algorithms on message latency (7*7
mesh, ML=281 VC=2, Transpose)

0.8

0.7

l 0.6

f 0.5 ..
~ 11 0.4
~ J 0.3

· 0.2

0.1

0
0.1 0.2 0.3 0.4 0.5

Normalized Apply LCNld

0.6 0.7 0.8

., Fully Adaptive

-West-First
....,._xv
-*-Duato
-4-Double_Y

Figure 67 Effect of routing algorithms on throughput
(7*7 mesh; ML=28, VC=2, Transpose)

104

>,
u
C
II

!§

300

250

200

150

-+-ecube
100

-Adaptive

-6-Duato
50

0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Nonnalized Applied Load

Figure 68 Performance of routing algorithms under transpose
traffic. (Message Latency)

(16- Hypercube, ML=8, VC=2)

0.5

0.45

0.4

0.35

>, 0.3
u
i 0.25 -la ..,

0.2
-+-ecube

0.15
-adaptive

0.1 -6-Duato

0.05

0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Nonnalized Applied Load

Figure 69 Performance of routing algorithms under transpose
traffic. (Throughput)

(16-node Hypercube, ML=8, VC=2)

105

6.3 Static Fault Performance

The existence of faults in network causes performance deterioration because it

decreases routing freedom and makes some links congested. Figure 70 shows the

performance of 49-nodes 2-d mesh with one fault and two faults. Fault free performance is

shown as a reference.

0.1 0.2 0.3 0.4

Normalized Applied Load

Figure 70 Performance with static faults
(Mesh 'r7, ML=28, VC=4)

106

-+-No Faults

-One Fault
......_.Two Faults

0.5

6.4 Fault Recovery Performance

In this section, we compare the effect of different recovery mechanisms on

network performance. we compare software based recovery protocol (SBRP-1) with

compressionless protocol[2] and reliable router scheme[l]. As we have mentioned in

chapter 4, the reliable router scheme doubles the message size to achieve fault recovery

(see Figure 39). The compressionless protocol enlarges the original message length by

padding extra flit at the end of every message. In compressionless protocol, the final

message length is computed as follows:

Message Length = Bcap * D + L + 2 * Mrms * Bcap

where D: Distance to destination in hopes

L: Original message length.

Bcap : Depth of channel buffer (Bcap = 1 in our simulation)

Mmis: Maximum number of misrouted allowed.

Because we use the fault tolerant algorithm explained in section 3.4, we might

need to misroute once to go around a faulty node. Therefore, Mmis equals 1 for hypercube

and mesh. For a 12-flit message which needs five hopes, the new length is 5 + 12 + 2 = 19

flits.

All simulations are run on 4 virtual channels(VC). We present our result with

different message lengths (ML) to study the effect of message length on protocols'

performance. We use transit fault model to study the performance of software based

recovery protocol. Different fault rates (10-4 , 10·5 and 10-6 fault/node/cycle) have been

107

used during the simulation. The fault rate of 10-4 fault/node/cycle is considered very high

because in 16 nodes multicomputer it means a fault happens every 625 clock cycles. For

reference, the figures also show the performance of a fault-free network.

Figure 71 compares the message latency in SBRP with compressionless

protocol[2] and reliable router scheme[l]. From Figures 71 and 72 , it is clear that the

SBRP outperforms all other protocols. The overall message latency of SBRP is almost

identical to the message latency of fault-free environment, because SBRP does not alter t

he latency of uncorrupted messages. Moreover, the latency of corrupted messages

does not effect the overall latency because the number of corrupted messages is small

compared to the total number of messages. The latency graphs of the corrupted messages

only are shown in figure 72. The Reliable Router and Compressionless protocols give

better performance than SBRP in low injection rate because of the high cost of software

overhead. However, in high injection rate, SBRP shows better performance because the

cost of enlarging message length in Reliable Router and compressionless protocols is

larger than the cost of software overhead in SBRP. Results in Figures 71 and 72 are

obtained in 64-node hypercube with 12 flits message length and 104 Fault Rate(FR).

To show the performance oflong messages, Figures 73 and 74 show the latency of

overall messages and corrupted messages, respectively, for 1024 flit messages. SBRP

gives better performance in long message environments too. However, the overhead

caused by padding extra flits decreases in compressionless protocol. Figure 74 shows that

the effect of not transmitting whole message is in long messages environment. Figures 7 5

and 76 show the latency of overall messages and corrupted messages for 28 flit messages

in 49-node 2d-mesh.

108

350

300

j'250

~
C

~150

100

350

300
'ii'
.!! 250

~
-200
f
~ 150

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Injection Rate

Figure 71 Overall message Latency

64-node Hypercube, VC=4,ML=12,FR=10-4

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Injection Rate

Figure 72 Corrupted Messages Latency

64-Hypercube, VC=4, ML=12, FR=1 o-4

109

-e-Fault-Free

--iE-SBRP-1

--<>- Compressionless

-b-Reliable Router

-0-Fault Free

-X-SBRP-1

--<>- Compressionless

-b-Reliable Router

3000---~~~~~~~~~~~~~~~~~~~--,,__f-+~~~---,

vi

2800

2600

2400

.! 2200

~
- 2000 I 1800

1600

--0-Fault-free

-6-SBRP-1

-I--Compressionless

1-----
1400 L----1s---
1200 L-----0----
1000 +-~~~~~--1,--~~~~~-+~~~~~~-+-~~~~~----4

1/250

3500

1/200 1/150

Injection Rate

Figure 73 Overall Message Latency

ML=1024,FR=1 o"", 16-Hypercube, VC=4

--0-Fault-Free

-6-SBRB-1

-I--Compressionless

1soo L------.!!r--__ _

1/100 1/50

1000-t-~~~~~~---~~~~~~---~~~~~~---~~~~~--1

1/250 1/200 1/150

Injection Rate

Figure 7 4 Courrupted Message Latency

ML=1024,FR=104 , 16-Hypercube,VC=4

110

1/100 1/50

Also, we investigate the effect of different fault rates. When the fault rate

increases, the number of corrupted messages is increased. The latency of corrupted

messages is high due to the software overhead. Consequently, when we have more

corrupted messages we expect to have worse performance. Figures 77 and 78 show the

latency of overall messages and the latency of corrupted messages in SBRP-0 under three

different fault rates 10-4, 10·5 and 10-6 (fault/node/cycle). Fault-free latency is also shown

as a reference. As the Figure 77 illustrates, messages in I 0-4 fault environment have the

highest latency.

Finally, we compare the performance of SBRP-0, SBRP-1 and SBRP-2. Figures

79 and 80 show the latency of overall message and the latency of corrupted messages,

respectively, for short messages (8-flit messages). Figures 81 and 82 show the same for

long messages (128-flit messages). SBRP-1 has the best performance because the resend

request is initiated immediately after the fault occurs and the original sender resends only

part of the corrupted message. SBRP-2 outperforms SBRP-0 in long message

environment because it does not resend the whole message as SBRP-0 does. However, in

short message environment, SBRP-0 gives better performance because the whole message

resend overhead is small. As in SBRP-1, SBRP send the resend request directly after the

fault happens. On the other hand, the resend request is sent by the receiver when it gets

the (NFT).

111

600

500

400

I 300

200

100

0
0.1

600

500

400

t'
~ 300

200

100

0
0.1

0.2 0.3 0.4 0.5 0.6 0.7

Inject Rate

Figure 75 Overall message latency in 7*7 mesh

ML=28,FR=1 O""' ,VC=4

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Inject Rate

Figure 76 Corrupted message latency in 7*7 mesh
ML=28,FR=10""',vc=4

112

-+-fault-free
--R-SBRP-1

--6-Compresionless

~RR

-+-fault-free
--R-SBRP-1

--6-compressionless

~RR

2000---~~~~~~~~~~~~~~~~~~--.--.

1800

1600

1400

>, 1200
u

~ 1000
800

600

=~~~~
0+-~~~-1-~~~........-~~~--~~~--~~~--1

0.1 0.2 0.3 0.4 0.5 0.6

Normalized Applied LQad

-+-fsult-free

-FR=10-4
--6-FR=10-5

~FR=10-6

Figure 77: Performance of SBRP-0 under different fault rates
(Latency of overall messages)

1000

900

800

700

>, 600
u
C 500 .!!
j

400

300

200

100

0

(Uniform traffic ,16-Hypercube, ML=128, VC=4)

-+-fsult-free

-FR=10-4
--6-FR=10-5
~FR=10-6

0.1 0.2 0.3 OA 0.5 0.6

Normalized Applied LQad

Figure 78: Performance of SBRP-0 under different fault rates
(Latency of corrupted messages)

(Uniform traffic , 16-Hypercube, ML=128, VC=4)

113

160

140

120

100
>,
u
C 80 .!I
j

60

40

20

0

300

250

200

>,
u
i 150
~

100

50

0
0.1

-+-fsult-free

-SBRP-0
-.-ssRP-1

~SBRP-2

0.1 0.2 0.3 0.4 0.5 0.6

Nonnalized Applied Load
Figure 79: Comparsion between SBRP protocols (Overall

Message Latency)
under uniform traffic (16-Hypercube, ML=8, VC=4)

-+-fsult-free

-SBRP-0

-.-sBRP-1

~SBRP-2

0.2 0.3 0.4 0.5 0.6

Nonnalized Applied Load

Figure 80: Comparsion between SBRP protocols (Latency of
Corrupted Messages)

under uniform traffic (16-Hypercube, ML=8, VC=4)

114

1800

1600

1400

1200

t' 1000

~ 800

600

400

200

0

0.1

1000

900

800

700

t' 600

~ 500

400

300

200

100

0
0.1

0.2 0.3 0.4 0.5 0.6

Normalized Applied Load

Figure 81: Comparsion between SBRP protocols
(Latency of Overall Messages)

under uniform traffic (16-Hypercube, ML=128, VC=4)

-+-fault-free
-9-SBRP-1
_.,_SBRP-0

~SBRP-2

-+-fsult-free
-9-SBRP-1
_.,_SBRP-0

~SBRP-2
0.2 0,3 0.4 0.5 0.6 ,..__ ___ _,

Normalized Applied Load

Figure 82: Comparsion between SBRP protocols
(Latency of Corrupted Messages)

under uniform traffic (16-Hypercube, ML=128, VC=4)

115

Chapter 7

CONCLUSIONS

This chapter summarizes the contributions of this dissertation, and present overall

conclusion and recommendations. We conclude with some suggestion for future research.

7.1 Summary of Work

Our work in this dissertation can be divided to four main parts:

1- Developing a sophisticated wormhole network simulator to emulate the function of

actual router and network interface in a parallel machine. Message initiation, formatting,

injecting, buffering and queuing have been implemented. Message routing also

implemented including path selection, virtual channel reserving and releasing, and input

buffers and output buffers mapping. Also arbitrating more than one virtual channel on a

physical channel is designed. Status registers and flit counters also have been considered.

Our simulator gives us an useful tool to study interconnection networks with

different topologies and with different design parameters. For example, different traffic

patterns can be used with any selected message injection rate. Also, number of virtual

channels or message length can be selected. Finally, our simulator gives many statistics

like average message latency, throughput, blocking times and number of generated flits.

2- Simulating and studying many types of routing algorithms. We have implemented

deterministic, partially adaptive and adaptive routing algorithms for both mesh and

hypercube topologies. Moreover, fault tolerant algorithms also were implemented.

3- Chapter 3 of the dissertation is dedicated to study and to evaluate the data recovery

protocols presented in available literature in interconnection networks. We found that all

116

current recovery protocols incur substantial overhead with every single message to

achieve data recovery. Taking into consideration that faults occurrence is rare, attaching

fault recovery overhead with every message deteriorating fault-free performance.

Moreover, all current recovery protocols need special hardware requirements.

4- To overcome the drawbacks of current recovery protocol, we propose a software

based recovery protocol (SBRP) which does not affect the performance of fault-free

performance. To recover from faults, SBRP uses control software messages instead of

hardware acknowledgment. Recovery control messages are used only when a fault

happens. Corrupted message is recovered by sending a control message to the original

sender. Once the original sender gets the control message, it resends the corrupted

message or part of it. We implement three versions of SBRP (SBRP-0, SBRP-1,

SBRP-2). SBRP-2 has the minimum hardware requirements where SBRP-1 has the

maximum requirements. They also differ in recovery process steps.

7 .2 Conclusions

Since the message latency is the main obstacle to achieve high performance in the

massive parallel processors (MPP) and even in the network of workstations (NOW), a lot

of research have been conducted to reduce the required time to exchange messages

between nodes. Traditional message passing systems incur huge overhead by calling

operating system handlers and by using multilevel buffering. On the other hand, recent

message passing systems achieve low latency messaging by eliminating unnecessary

buffering.

117

Reliable delivery is one of the main requirements provided by the interconnection

networks. Most of network systems use an end-to-end protocol to guarantee reliable

delivery. In an end-to-end protocol, the sender waits until it gets an acknowledgment from

the receiver. Traditional systems use software acknowledgment messages which increase

the network traffic. Recent systems use control lines to send hardware acknowledgment.

In general, end-to-end recovery protocols incur overhead with every message.

What current recovery protocols do by increasing every message latency makes the

cost of data recovery very high. Since the probability of fault occurrence is low and the

number of messages which corrupted by the fault is low, a data recovery protocol should

not effect normal operations. Message latency of normal (fault-free) message should not

be increased to solve a rare problem. The data recovery protocol must be invoked in fault

occurrence only.

In this dissertation we propose a new recovery protocol (SBRP). SBRP is not an

end-to-end protocol. Therefore, SBRP does not penalize every message. In case of fault

occurrence only, SBRP invokes a special handler to resend the corrupted messages. Only

the latencies of corrupted messages have been increased. Because SBRP depends on

sending control messages, the recovery overhead is high. However, the high overhead is

attached with corrupted messages only, if any. Our simulation studies show good

performance of SBRP even with high fault rate environments.

Although SBRP shows good performance, it needs hardware and software

requirements. SBRP may require additional hardware support like flit counters, special

registers to save header information or some changes in control logic of router's finite

state machine. Also, SBRP requires network interface help to send control messages and

118

to resend corrupted messages. However, the great gain on performance might justify all

the requirements.

7 .3 Open Topics

In this dissertation we explained the general hardware and software requirements

of SBRP. However, integrating current recovery protocol including SBRP in current

routers' design needs more studies. The communication between router and network

interface needs to be more efficient. New designs should provide bi-directional

information exchange between router and network interface.

All current recovery protocols are implemented to recover messages in one-to-one

messages environment. Recovery process in collective communication [65] like one-to-all

or all-to-all have not addressed yet.

Most of current recovery protocols do not address fault recovery in real time

systems. A real time system is required to deliver the expected service in a timely manner

even in the presence of failures. A fault-tolerance policy should be implemented to recover

from faults within the time limit (deadline).

119

References

1- W. Dally, L. Dennison, D. Harris, and T. Xanthopopulus, "Architecture and
Implementation of the Reliable Router," Proceedings of Hot Interconnects II, Palo
Alto, CA, IEEE Comput. Soc., August 1994.

2- J. Kim, Z. Liu and A. Chien, "Compressionless Routing a Framework for Adaptive
and Fault Tolerant Routing," in IEEE Transactions on Parallel and Distributed
Systems, Vol. 8, no. 3, March 1997.

3- P. Gaughan, B. Dao, S. Yalamanchili and D. E. Schimmel. "Distributed Deadlock-Free
Routing in Faulty, Pipeline k-ary n-cube," IEEE Transactions on Computers, Vol. 45,
no. 6, June 1996.

4- J. Kim and A. Chien. "Network Performance Under Hybrid Traffic Loads," Journal of
Parallel and Distributed Computing, Vol. 28, no. 1, July 1995.

5- J. Kim and A. Chien. " The Impact of Packetization in Wormhole-Routed
Networking," In Proceeding of Parallel Architectures and Languages Europe 93,
Munich, Germany, June 1993.

6- V. Karamcheti and A. Chien. "Do Faster Routers Imply Faster Communication?" In
Proceedings of Parallel Computer Routing and Communication Workshop. Seattle,
Washington, University of Washington, May 1994.

7- W. Dally. "Virtual-Channel Flow Control," IEEE Transactions on Parallel and
Distributed Systems, Vol. 3, no. 2, March 1992.

8- Tze C. Lee and John P. Hayes. "A Fault-Tolerant Communication Scheme for
Hypercube Computers," IEEE Transactions on Computers, Vol. 41, no. 10, October
1992.

9- V. Dao, J. Duato, and S. Yalamanchili, "Configurable flow control mechanism for
fault tolerant routing," Proceedings of the 22°d International Symposium on Computer
Architecture (ISCA), Santa Margherita Ligure, Italy, ACM SIGARCH, June 1995.

120

10- P. Gaughan and S. Yalamanchili" Adaptive Routing Protocols for Hypercube
Interconnection networks," Computer, Vol. 26, no. 5 , May 1993 .

11- Ni and P. McKinley. "A Survey of Wormhole Routing Techniques m Direct
Networks," Computer, Vol. 26, no. 2, February 1993.

12- Anjan K. V. and T. M. Pinkston. "An Efficient Faulty Adaptive Deadlock Recovery
Scheme: DISHA," Proceedings of the 22nd International Symposium on Computer
Architecture (ISCA), Santa Margherita Ligure, Italy, ACM SIGARCH, June 1995.

13- W. Dally and H. Aoki. "Deadlock-Free Adaptive Routing in Multicomputer Networks
Using Virtual Channels," IEEE Transactions on Parallel and Distributed Systems, Vol.
4, no. 4, April 1993.

14- C. Su and K. Shin. "Adaptive Fault Tolerant Deadlock-Free Routing in Meshes and
Hypercubes," IEEE Transactions on Computer, Vol. 45, no. 6, June 1996.

15- Y. Suh. B. Dao. J. Duato and S. Yalamanchili "Software Based Fault-Tolerant in
Pipeline Network," In Proceedings of the 24th International Conference on Parallel
Processing, Oconomowoc, Wisconsin, Pennsylvania State University, August 1995.

16- V. Karamcheti and A. Chien "Software Overhead in Messaging Layers: Where Does
the time go?," In Proceedings of ASPLOS-VI, San Jose, CA, October 1994.

17- T. von Eicken, D. Culler, S. Goldsten and K. Schauster." Active Messages: A
Mechanism for integrated Communication and Computation," Proceedings of the
International Symposium on Computer Architecture, Gold Coast, Australia, ACM
SIGARCH, June 1992.

18- J. Duato. "A Necessary and Sufficient Condition for Deadlock-Free Adaptive Routing
in Wormhole Networks," IEEE Transactions on Parallel and Distributed Systems, Vol.
6, no. 10, October 1995.

19- W. Dally. "Network and Processor Architecture for Message-Driven Computers," in
VLSI and Parallel Computation. R. Suaya and G. Birtwhistle, Eds., Morgan
Kaufinann, Los Altos, CA 1990.

20- M. Noakes, D. Wallach and W. Dally. " The J machine Multicomputer: an
Architecture Evaluation," Proceedings of the 20th International Symposium on
Computer Architecture, San Diego, CA, ACM SIGARCH, May 1993.

121

21- P. Nuth and W. Dally. "The I-Machine Network," Proceedings of the International
Conference on Computer Design: VLSI in computer and Processors, Cambridge, MA,
IEEE Comput. Soc., October 1992.

22- W. Dally et al. "The Message-Driven Processor: A Multicomputer Processing Node
with Efficient Mechanism," IEEE Micro, Vol. 12, no. 2, April 1992.

23- D. Talia. "Message-Routing systems for Transputer-Based Multicomputers" IEEE
Micro, Vol. 13, no. 3 June 1993.

24- Y. Tsai and P. McKinley. "A Broadcast Algorithm for All-Port Wormhole-Routed
Tours Networks" IEEE Transactions on Parallel and Distributed Systems, Vol. 7, no.
8, August, 1996.

25- Cray Research, Inc. CRAY T3D System Architecture Overview, 1993.

26- Intel Scaleable System Division. Intel Paragon Systems Manual. Intel Corporation,
http://www.ssd.intel.com/paragon.html.

27- nCUBE3 Processor Overview. nCUBE, http://www.ncube.com/products/cpu.html.

28- S. Broker et al "Supporting systolic and memory communication in iWarp."
Proceedings of the 17th Annual International Symposium on Computer Architecture,
Seattle, WA, ACM SIGARCH, May 1990.

29- C. B. Stunkel et al. "The SP-I High Performance Switch," Proceeding of Scaleable
High Performance Computing Conference, Knoxville, TN, IEEE Comput. Soc., May
1994.

30- L. Choi and A. Chien. "Integrating Networks and Memory Hierarchies in a
Multicomputers Node Architecture" Proceedings of the 8th International Parallel
Processing Symposium, Cancum, Mexico, IEEE Comput. Soc., April 1994.

31-B. Dao, S. Yalamanchili and J. Duato. "Architecture Support for Reducing
Communication Overhead in Multiprocessor Interconnection Networks" Proceedings
of the Third International Symposium on High Performance Computer Architecture,
San Antonio, TX, IEEE Comput. Soc., February 1997.

32- V. Karamcheti and A. Chien. "A comparison of Architectural Support for Messaging
in the TMC CM-5 and the Cray T3D" Proceedings of the 22nd International
Symposium on Computer Architecture (ISCA), Santa Margherita Ligure, Italy, ACM
SIGARCH, June 1995.

122

33- E. Spertus et al. "Evaluation of Mechanisms for Fine-Grained Parallel Programs in
the I-machine and CM-5," Proceedings of the 20th Annual International Symposium on
Computer Architecture, San Diego, CA, ACM SIGARCH, May 1993.

34- D. Culler, L. Liu, R. Martin and C. Yoshikawa. "Assessing Fast Network Interface,"
IEEE Macro, Vol. 16, no. 1, February 1996.

35- R. Boppana and S. Chalasani . "A comparison of adaptive wormhole routing
algorithms," Proceedings of the 20th International Symposium on computer
Architecture, San Diego, CA, ACM SIGARCH, May 1993.

36- J. Duato, S. Yalamanchili and L. Ni. "Interconnection Networks: An Engineering
Approach," www.ee.gatech.edu/users/sudha

37- Stunkel et al.," The SP-2 High Performance Switch," IBM System Journal, Vol. 34,
no. 2, 1995.

38- Gaughan, B. V. Dao and S. Yalamanchili. "A Family of fault-tolerant routing
protocols for direct multiprocessor network," IEEE Transactions on Parallel and
Distributed Systems, Vol. 6, no. 5, May 1995.

39- C. Glass and L. Ni, "The Tum Model for Adaptive Routing," Journal of ACM, Vol.
41, no. 5, September 1994.

40- J. Duato. "Deadlock free adaptive routing algorithm for multicomputers: Evaluation
of a new algorithm," Proceedings of the 3rd IEEE Symposium on Parallel and
Distributed Processing, Dalas, TX, ACM, December 1991.

41- Z. Liu and A. Chien. "Hierarchical Adaptive Routing: A framework for Fully
Adaptive and Deadlock-Free Wormhole Routing," In Proceedings of the 6th IEEE
International Symposium on Parallel and Distributed Processing, Dallas, TX, IEEE
Comput. Soc., October 1994.

42- J. Kim and K. Shin. "Deadlock-Free Fault-Tolerant Routing in Injured Hypercubes,"
IEEE Transactions on Computer, Vol. 42, no. 9, September 1993.

43- C. Glass and L. Ni. "Fault-Tolerant Wormhole Routing in Meshes," In Proceedings of
23rd International Symposium on Fault-tolerant Computing, San Diego, CA, ACM
SIGARCH, June 1993.

123

44-A. Chien and J. Kim. "Planar-Adaptive Routing: Low-cost Adaptive Networks for
Multiprocessors" in Proceedings of the 19th International Symposium on Computer
Architecture, Gold Coast, Australia, ACM SIGARCH, May 1992.

45- R. Boppana and S. Chalasani. "Fault-Tolerant Wormhole Routing Algorithms for
Mesh Networks," IEEE Transactions on Computer, Vol. 44, no. 7, July 1995.

46- W. Dally and C. Seitz. "Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks," IEEE Transactions on Computer, Vol. C-36, no. 5, May
1987.

47- T. Pinkston and S. Wamakulasuriya. "On Deadlock in Interconnection Networks," in
Proceedings of International Symposium on Computer Architecture, Denver,
CO,ACM SIGARCH, June 1997.

48- Q. Li. "Minimum Deadlock-Free Message Routing Restrictions in Binary Hypercube,"
Journal of Parallel and Distributed Computing, Vol. 15, no. 2, June 1992.

49- D. Linder and J. Harden. "Wormhole Routing for k-ary n-cubes". IEEE Transactions
on Computers, Vol. 40, no. 1, January 1991.

50- C. Cunningham and D. Avresky. "Fault-Tolerant Adaptive Wormhole Routing in
Two-Dimensional Meshes," In Proceedings of the First International Symposium on
High Performance Computing Architecture, IEEE Comput. Soc., Raleigh, NC,
January 1995.

51- Anjan V. , T. Pinkston and J. Duato. "Generalized Theory for Deadlock-Free
Adaptive Wormhole Routing and its Application to Disha Concurrent," The 10th
International Parallel Processing Symposium, Honolulu, HI, ACM SIGARCH, April
1996.

52- C. Su and K. Shin. "Adaptive Deadlock-Free Routing in Multicomputers Using Only
One Extra Virtual Channel," International Conference on Parallel Processing,
Syracuse, NY, CRC press, August 1993.

53- L. Schwieber and D. Jayasimha. " A Universal Proof Technique for Deadlock-Free in
Interconnection Networks," In 7th Annual ACM Symposium on Parallel Algorithms
and Architectures, Santa Barbara, CA, ACM SIGARCH July 1995.

54- L. Schwieber and D. Jayasimha. "Optimal Fully Adaptive Minimal Wormhole Routing
for Meshes," Journal of Parallel and Distributed Computing, Vol. 27, no. 1 , May
1995.

124

55- D. Jayasimha et al. "A foundation for Designing Deadlock-Free Routing Algorithms in
Wormhole Networks," In Symposium on Parallel and Distributed Processing, New
Orleans, LA, IEEE Comput. Soc., October 1996.

56- G. Chiu and S. Wu. " A Fault-Tolerant Routing Strategy in Hypercube
Multicomputers," IEEE Transactions on Computers, Vol. 45, no 2, February 1996.

57- J. Duato. "A Theory of Fault-Tolerant Routing in Wormhole Networks, " The
International Conference on Parallel and Distributed Systems, Hsinchu, Taiwan, Nat.
Chiao Tung Univ., December 1994.

58- J. Upadhyay, V. Varavithya, and P. Mohaparta. "An Efficient Fault-Tolerant Routing
Scheme for Two Dimensional Meshes," The First International Symposium on High
Performance Computer Architecture, Raleigh, NC, IEEE Comput. Soc., January
1995.

59- Y. Boura and C. Das. "Fault-tolerant Routing in Mesh Networks," The International
Conference on Parallel Processing. August 1995.

60- B. Harry et al. "A Fault-Tolerant Communication System for the B-HIVE Generalized
Hypercube Multiprocessor," Third Conference on Hypercube Concurrent Computers,
Pasadena, CA, ACM press, January 1988.

61- D. Grunwald and D. Reed. "Networks for Parallel Processors: Measurements and
Prognostications," Hypercube Multiprocessor" Third Conference on Hypercube
Concurrent Computers, ACM press, January 1988.

62- "nCUBE3 processor Overview". nCUBE corporation, http://www.ncube.com/
products/cpu.html. accessed March 1997.

63- C. Chang, G. Czajkawski, C. Hawblitzel and T. Eicken. "Low-Latency
Communication on the IBM RISC System/6000 SP," Proceedings of Supercomputing,
Pittsburgh, PA, ACM SIGARCH, November 1996.

64- MPI report. Http:// www.msc.anl.gov/mpi/mpi-report.

65- P. McKinley and D. Robinson. "Collective Communication in Wormhole-Routed
Massively Parallel Computers," Computer, Vol. 28, no. 12, December 1995.

125

66- W. Dally et al. "Architecture and Implementation of the Reliable Router," In the
Proceedings of Hot Interconnects II, IEEE Comput. Soc., August 1994.

67- P. Mohapatra, "Wormhole Routing Techniques in Multicomputer Systems," Iowa
State Univ. TR-ACAR-95-01.

68- News Track. Communication of the ACM. March 1997.

69- S. Pakin, V. Karamcheti and A. Chien. "Fast Messages: Efficient, Portable
Communication for Workstation Clusters and MPPs," IEEE Concurrency, Vol. 5, no.
2, April-June 1997.

70- N. Boden et al. "Myrinet: A Gigabit-per-Second Local Area Network," IEEE Micro,
Vol. 15, no. 1, February 1995.

71- R. Horst. "TNet: A Reliable System Area Network," IEEE Micro, Vol. 15, no. 1,
February 1995.

72- K. Aoyama and A. Chien. "The Cost of Adaptivity and Virtual Lanes in a Wormhole
Router," Technical Report, Department of Electrical Engineering, University of Illinois
at Urbana Champaign, 1994.

126

Thesis:

VITA

Mohammad S. Alowayed

Candidate for the Degree of

Doctor of Philosophy

DATA RECOVERY IN WORMHOLE ROUTING
NETWORKS IN HYPERCUBES AND MESHES

Major Field: Computer Science

Biographical:

Personal Data: Born in Arras, Saudi Arabia, on August 25, 1966, the son of
Saleh Alowayed and Fatima Alhazza.

Education: Graduated from Alfisal secondary school, Riyadh, Saudi Arabia in
1983. Received Bachelor of Science degree in Computer Engineering from
King Saud University, Riyadh, Saudi Arabia in 1989. Received Master of
Science degree in Computer Science from Western Michigan University in
July 1993. Completed the requirements for the Doctor of Philosophy degree
with a major in Computer Science at Oklahoma State University in December
1997.

Experience: Employed by Alahssa Technology College as a teaching faculty
(August 1989 - February 1991) and (August 1993 - Jan 1994)

Professional Memberships: IEEE computer society, and ACM.

