
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

2016

An investigation into Off-Link IPv6 host enumeration search An investigation into Off-Link IPv6 host enumeration search

methods methods

Clinton Carpene

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Computer Engineering Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Carpene, C. (2016). An investigation into Off-Link IPv6 host enumeration search methods.
https://ro.ecu.edu.au/theses/1772

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1772

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ro.ecu.edu.au%2Ftheses%2F1772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ro.ecu.edu.au%2Ftheses%2F1772&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1772

Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

2016

An investigation into Off-Link IPv6 host
enumeration search methods
Clinton Carpene

This Thesis is posted at Research Online.
http://ro.ecu.edu.au/theses/1772

Recommended Citation
Carpene, C. (2016). An investigation into Off-Link IPv6 host enumeration search methods. Retrieved from http://ro.ecu.edu.au/theses/
1772

http://ro.ecu.edu.au
http://ro.ecu.edu.au/theses
http://ro.ecu.edu.au/thesescoll

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

An Investigation Into O↵-Link IPv6 Host
Enumeration Search Methods

by

Clinton Carpene

A thesis presented for the degree of

Doctor of Philosophy

School of Science

Edith Cowan University

Perth, Western Australia

11

th
February, 2016

Abstract

This research investigated search methods for enumerating networked devices on o↵-

link 64 bit Internet Protocol version 6 (IPv6) subnetworks. IPv6 host enumeration is an

emerging research area involving strategies to enable detection of networked devices on

IPv6 networks. Host enumeration is an integral component in vulnerability assessments

(VAs), and can be used to strengthen the security profile of a system. Recently, host

enumeration has been applied to Internet-wide VAs in an e↵ort to detect devices that

are vulnerable to specific threats. These host enumeration exercises rely on the fact

that the existing Internet Protocol version 4 (IPv4) can be exhaustively enumerated in

less than an hour. The same is not true for IPv6, which would take over 584,940 years

to enumerate a single network. As such, research is required to determine appropriate

host enumeration search methods for IPv6, given that the protocol is seeing increase

global usage.

For this study, a survey of Internet resources was conducted to gather information

about the nature of IPv6 usage in real-world scenarios. The collected survey data

revealed patterns in the usage of IPv6 that influenced search techniques. The research

tested the e�cacy of various searching algorithms against IPv6 datasets through the

use of simulation.

Multiple algorithms were devised to test di↵erent approaches to host enumeration

against 64 bit IPv6 subnetworks. Of these, a novel adaptive heuristic search algorithm,

a genetic algorithm and a stripe search algorithm were chosen to conduct o↵-link IPv6

host enumeration. The suitability of a linear algorithm, a Monte Carlo algorithm and

a pattern heuristics algorithm were also tested for their suitability in searching o↵ link

IPv6 networks. These algorithms were applied to two test IPv6 address datasets, one

comprised of unique IPv6 data observed during the survey phase, and one comprised of

unique IPv6 data generated using pseudorandom number generators. Searching against

the two unique datasets was performed in order to determine appropriate strategies for

o↵-link host enumeration under circumstances where networked devices were configured

with addresses that represented real-word IPv6 addresses, and where device addresses

were configured through some randomisation function.

i

Whilst the outcomes of this research support that an exhaustive enumeration of

an IPv6 network is infeasible, it has been demonstrated that devices on IPv6 networks

can be enumerated. In particular, it was identified that the linear search technique and

the variants tested in this study (pattern search and stripe search), remained the most

consistent means of enumerating an IPv6 network. Machine learning methods were

also successfully applied to the problem. It was determined that the novel adaptive

heuristic search algorithm was an appropriate candidate for search operations. The

adaptive heuristic search algorithm successfully enumerated over 24% of the available

devices on the dataset that was crafted from surveyed IPv6 address data. Moreover,

it was confirmed that stochastic address generation can reduce the e↵ectiveness of

enumeration strategies, as all of the algorithms failed to enumerate more than 1% of

hosts against a pseudorandomly generated dataset.

This research highlights a requirement for e↵ective IPv6 host enumeration al-

gorithms, and presents and validates appropriate methods. The methods presented

in this thesis can help to influence the tools and utilities that are used to conduct host

enumeration exercises.

ii

I certify that this thesis does not, to the best of my knowledge and belief:

i) incorporate without acknowledgment any material previously submitted for a de-

gree or diploma in any institution of higher education;

ii) contain any material previously published or written by another person except

where due reference is made in the text of this thesis; or

iii) contain any defamatory material.

Signed: . ..

Dated: ...

iii

11/02/2016

Acknowledgments

Primarily I have to thank my fiancée Laura. You have been a driving force in my life,

and have inspired me to aspire to do my best. Your continued love and support have

made this possible. To my family, thank you for always being there for me with support

and understanding when things have been rough. To list you all would require another

thesis, so I’ll just stick to the immediate family; Lee, Barbara, Brendon, Giuseppe,

Sue, Karl, and Eve. You have all given me so much in life and I am eternally grateful.

To my principal supervisor Andrew, for helping me through what is a long, frustrat-

ing, and at times more of a mental and psychological journey than a physical one, thank

you. Your blunt appraisal of my work has always been refreshing and simultaneously

soul-crushing.

To my associate supervisors, Michael and Craig. Michael you have been a great

source of wisdom about all things computing throughout my tenure. Craig, you have

given me many opportunities since I began studying at ECU, and continue to put up

with me for some reason. I cannot thank you enough.

To Eve and Laura (again), special mention must be made to your butchering of my

drafts with highlighters and other marking instruments.

To ECU and in particular the School of Science, and the Security Research Insti-

tute, thanks for giving me the opportunity to undertake this degree and conduct this

research.

Finally to Gary Hale, and Cisco systems for supporting this research through spon-

sorship, and also for providing equipment that has been used to conduct this research.

Without that support and assistance this research would simply not have been possible.

iv

Contents

1 Introduction 1

1.1 Background to the problem . 2

1.2 Purpose of the Study . 6

1.3 Research questions . 6

1.4 Hypotheses . 7

1.5 Research design . 8

1.6 Assumptions . 9

1.7 Thesis structure . 10

2 Literature Review 13

2.1 TCP/IP . 13

2.1.1 Overview . 13

2.1.2 Address types . 16

2.2 Host enumeration search algorithms . 25

2.2.1 Linear search . 26

2.2.2 Randomised search . 27

2.2.3 IPv6 IID pattern search techniques 35

2.3 Host enumeration methods . 37

2.3.1 Active enumeration methods . 37

2.3.2 Passive enumeration methods . 42

2.3.3 Comparison between IPv4 and IPv6 o↵-link host enumeration . . 46

2.3.4 Machine learning and host enumeration 48

2.4 Host enumeration applicability and purposes 52

v

2.4.1 Vulnerability assessments (VAs) 53

2.4.2 Internet research . 54

2.4.3 Network device identification . 57

2.5 Conclusion . 59

3 Research Methodology and Design 61

3.1 Appropriateness of the design . 61

3.2 Design and procedure . 67

3.2.1 Research variables . 68

3.2.2 Phase 1: Perform survey of IPv6 usage 70

3.2.3 Phase 2: Generate search algorithms 72

3.2.4 Phase 3: Develop instrumentation and experiments, and perform

pilot studies . 88

3.2.5 Phase 4: Perform experimentation 97

3.2.6 Phase 5: Data processing and analysis 105

3.3 Ethical considerations . 107

4 Results 109

4.1 Surveyed dataset . 109

4.2 Randomised dataset . 113

4.3 Linear search . 115

4.3.1 Experiment Linear-1: Zero-origin linear search 115

4.3.2 Experiment Linear-2: Stochastic linear search 118

4.3.3 Experiment Linear-3: Weighted linear search 124

4.4 Stripe search . 133

4.4.1 Experiment Stripe-1: Stochastic stripe search 133

4.4.2 Experiment Stripe-2: Zero-origin stripe search 137

4.5 Monte Carlo search . 145

4.5.1 Experiment MonteCarlo-1: Stochastic Monte Carlo search 145

4.5.2 Experiment MonteCarlo-2: Weighted Monte Carlo search 148

4.6 GA search . 158

4.6.1 Experiment GA-1: Zero-origin GA search 158

vi

4.6.2 Experiment GA-2: Stochastic GA search 163

4.6.3 Experiment GA-3: Weighted GA search 167

4.7 Pattern-based heuristic search . 173

4.7.1 Experiment Pattern-1: Pattern-based heuristic search 173

4.8 Adaptive heuristic search . 180

4.8.1 Experiment Adaptive-1: Adaptive heuristic search 180

4.9 Aggregated results . 188

4.10 Research hypotheses . 195

4.10.1 H1 : Search techniques are unable to enumerate networked devices

on 64 bit IPv6 subnetworks. 195

4.10.2 H2 : Methods that employ random sampling do not perform bet-

ter than methods that do not employ random sampling for IPv6

host enumeration. 195

4.10.3 H3 : Randomly generated interface identifiers do not a↵ect the

performance of IPv6 host enumeration search algorithms. 200

4.10.4 H4 : Search methods that employ machine learning are unable to

enumerate networked devices on 64 bit IPv6 subnetworks. 202

4.10.5 H5 : Search methods that employ machine learning do not per-

form better than search methods that do not employ machine

learning for IPv6 host enumeration. 203

5 Discussion of Findings 207

5.1 Outcomes of the research questions . 207

5.1.1 RQ1 : Can networking devices be enumerated on 64 bit IPv6

subnetworks using host enumeration techniques? 208

5.1.2 RQ2 : Are stochastic searching methods more e�cient than de-

terministic searching methods when enumerating IPv6 hosts within

a single 64 bit subnetworks? . 210

5.1.3 RQ3 : Do stochastic address allocation schemes within a single

64 bit subnetworks inhibit IPv6 host enumeration strategies? . . 211

vii

5.1.4 RQ4 : Can machine learning search methods be used to enumer-

ate devices on a 64 bit IPv6 subnetwork? 213

5.1.5 RQ5 : Are machine learning searching methods more e�cient

than non-machine learning based methods when enumerating

IPv6 hosts within a single 64 bit subnetworks? 214

5.2 Implications of research . 215

5.2.1 Host enumeration classification framework 215

5.2.2 Privacy issues with IPv6 address construction 216

5.2.3 IPv6 address classification system 217

5.2.4 IPv6 usage survey . 217

5.2.5 Significant advancements to o↵-link IPv6 host enumeration . . . 218

5.2.6 Host enumeration scenarios . 219

5.2.7 Parallel processing . 220

5.3 Critical review of the research process 221

6 Conclusion 223

6.1 Research overview . 223

6.1.1 Host enumeration problem space 223

6.1.2 Method and procedure . 224

6.2 Major conclusions and implications of research 225

6.2.1 Can networking devices be enumerated on 64 bit IPv6 subnet-

works using techniques? . 225

6.2.2 Are stochastic searching methods more e�cient than determin-

istic searching methods when enumerating IPv6 hosts within a

single 64 bit subnetworks? . 226

6.2.3 Do stochastic address allocation schemes within a single 64 bit

subnetworks inhibit IPv6 host enumeration strategies? 226

6.2.4 Can machine learning search methods be used to enumerate devices

on a 64 bit IPv6 subnetwork? . 227

viii

6.2.5 Are machine learning searching methods more e�cient than non-

machine learning based methods when enumerating IPv6 hosts

within a single 64 bit subnetworks? 228

6.3 Recommendations and future research 228

6.4 Final thoughts . 230

References 231

ix

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK

x

List of Figures

2-1 Comparison between seven layered OSI model with the four layered

TCP/IP model. 15

2-2 Global Unicast IPv6 address representation displaying the breakdown of

the distinct portions of an IPv6 address. 18

3-1 The research framework followed during the investigation outlining the

five main phases, and the associated subprocesses of the research project. 67

3-2 Phase 1: Perform Survey . 71

3-3 Phase 2: Generate search algorithms . 72

3-4 Linear search algorithm flow chart . 74

3-5 Stripe search algorithm flow chart . 76

3-6 Monte Carlo search algorithm flow chart 78

3-7 GA search algorithm flow chart . 81

3-8 Pattern-based search algorithm flow chart 84

3-9 Adaptive search algorithm flow chart . 87

3-10 Diagrammatic representation of hypothetical search operations for se-

lected algorithms tested in the experiments. 88

3-11 Phase 3: Develop instrumentation and experiments, and perform pilot

studies . 89

3-12 Flow diagram depicting the high level procedure that each experiment

adhered to. 92

3-13 Phase 4: Perform experimentation . 97

3-14 Phase 5: Data processing and analysis 105

xi

4-1 Chart of Interface Identifier frequency distribution observed from the

IPv6 survey chunked into 232 bins with the top 10 observed bins displayed.112

4-2 IID data collected in the survey was classified using an ANN classifica-

tion system into their relevant construction types. 112

4-3 Chart of IID frequency distribution observed from the pseudorandom

IPv6 generation process chunked into 232 bins with the top 10 observed

bins displayed. 114

4-4 IID data generated through the randomised process was classified using

an ANN classification system into their relevant construction types. . . 114

4-5 Probe distribution for the Linear-1 experiment pilot study. 117

4-6 Results of the ZeroOrigin linear search against the randomised dataset

(sub-experiment Linear-1a) highlighting the number of valid probes

delivered and process times per simulation. 119

4-7 Results of the ZeroOrigin linear search against the surveyed dataset

(sub-experiment Linear-1b) highlighting the number of valid probes

delivered and process times per simulation. 120

4-8 Results of the Random linear search against the randomised dataset

(sub-experiment Linear-2a) highlighting the number of valid probes

delivered and process times per simulation. 122

4-9 Results of the Random linear search against the surveyed dataset (sub-

experiment Linear-2b) highlighting the number of valid probes de-

livered and process times per simulation. 122

4-10 Probe distribution for the Linear-2 experiment pilot study. 123

4-11 Probe distribution for the Linear-3 experiment pilot study. 125

4-12 Results of the Weighted linear search against the randomised dataset

(sub-experiment Linear-3a) highlighting the number of valid probes

delivered and process times per simulation. 128

4-13 Results of the Weighted linear search against the surveyed dataset (sub-

experiment Linear-3b) highlighting the number of valid probes de-

livered and process times per simulation. 129

xii

4-14 The frequency of unique identified nodes across all simulations in the

Linear-3a experiment chunked into 232 buckets with the top 25 observed

buckets displayed. 130

4-15 The frequency of unique identified nodes across all simulations in the

Linear-3b experiment chunked into 232 buckets with the top 25 observed

buckets displayed. 132

4-16 Probe distribution for the Stripe-1 experiment pilot study. 135

4-17 Results of the Random stripe search against the randomised dataset

(sub-experiment Stripe-1a) highlighting the number of valid probes

delivered and process times per simulation. 138

4-18 Results of the Random stripe search against the surveyed dataset (sub-

experiment Stripe-1b) highlighting the number of valid probes de-

livered and process times per simulation. 139

4-19 Probe distribution for the Stripe-2 experiment pilot study. 140

4-20 The frequency of unique identified nodes across all simulations in the

Stripe-2b experiment chunked into 232 buckets with the top 25 observed

buckets displayed. 142

4-21 Results of the ZeroOrigin stripe search against the randomised dataset

(sub-experiment Stripe-2a) highlighting the number of valid probes

delivered and process times per simulation. 143

4-22 Results of the ZeroOrigin stripe search against the surveyed dataset

(sub-experiment Stripe-2b) highlighting the number of valid probes

delivered and process times per simulation. 144

4-23 Probe distribution for the MonteCarlo-1 experiment pilot study. 147

4-24 Results of the Random Monte Carlo search against the randomised data-

set (sub-experiment MonteCarlo-1a) highlighting the number of valid

probes delivered and process times per simulation. 149

4-25 Results of the Random Monte Carlo search against the surveyed data-

set (sub-experiment MonteCarlo-1b) highlighting the number of valid

probes delivered and process times per simulation. 149

4-26 Probe distribution for the MonteCarlo-2 experiment pilot study. 151

xiii

4-27 Results of the Weighted Monte Carlo search against the randomised

dataset (sub-experiment MonteCarlo-2a) highlighting the number of

valid probes delivered and process times per simulation. 154

4-28 Results of the Weighted Monte Carlo search against the surveyed data-

set (sub-experiment MonteCarlo-2b) highlighting the number of valid

probes delivered and process times per simulation. 155

4-29 The frequency of unique identified nodes across all simulations in the

MonteCarlo-2a experiment chunked into 232 buckets with the top 25

observed buckets displayed. 156

4-30 The frequency of unique identified nodes across all simulations in the

MonteCarlo-2b experiment chunked into 232 buckets with the top 25

observed buckets displayed. 157

4-31 Probe distribution for the GA-1 experiment pilot study. 160

4-32 The frequency of unique identified nodes across all simulations in the

GA-1b experiment chunked into 232 buckets with the top 25 observed

buckets displayed. 162

4-33 Results of the ZeroOrigin GA search against the randomised dataset

(sub-experiment GA-1a) highlighting the number of valid probes de-

livered and process times per simulation. 164

4-34 Results of the ZeroOrigin GA search against the surveyed dataset (sub-

experiment GA-1b) highlighting the number of valid probes delivered and

process times per simulation. 165

4-35 Probe distribution for the GA-2 experiment pilot study. 166

4-36 Results of the Random GA search against the randomised dataset (sub-

experiment GA-2a) highlighting the number of valid probes delivered and

process times per simulation. 168

4-37 Results of the Stochastic GA search against the surveyed dataset (sub-

experiment GA-2b) highlighting the number of valid probes delivered and

process times per simulation. 168

4-38 Probe distribution for the GA-3 experiment pilot study. 170

xiv

4-39 Results of the Weighted GA search against the randomised dataset (sub-

experiment GA-3a) highlighting the number of valid probes delivered and

process times per simulation. 172

4-40 Results of the Weighted GA search against the surveyed dataset (sub-

experiment GA-3b) highlighting the number of valid probes delivered and

process times per simulation. 172

4-41 Probe distribution for the Pattern-1 experiment pilot study. 176

4-42 The frequency of unique identified nodes across all simulations in the

Pattern-1b experiment chunked into 232 buckets with the top 25 ob-

served buckets displayed. 177

4-43 Results of the Pattern-based search against the randomised dataset (sub-

experiment Pattern-1a) highlighting the number of valid probes de-

livered and process times per simulation. 178

4-44 Results of the Pattern-based search against the surveyed dataset (sub-

experiment Pattern-1b) highlighting the number of valid probes de-

livered and process times per simulation. 179

4-45 Probe distribution for the Adaptive-1 experiment pilot study. 181

4-46 The frequency of unique identified nodes across all simulations in the

Adaptive-1a experiment chunked into 232 buckets with the top 25 ob-

served buckets displayed. The y axis displays the bucket number (between

0 and 232) whilst the x axis displays the count of unique IIDs observed

in the corresponding bucket. The count data was collected across all

simulations in the sub-experiment. 184

4-47 The frequency of unique identified nodes across all simulations in the

Adaptive-1b experiment chunked into 232 buckets with the top 25 ob-

served buckets displayed. The y axis displays the bucket number (between

0 and 232) whilst the x axis displays the count of unique IIDs observed

in the corresponding bucket. The count data was collected across all

simulations in the sub-experiment. 185

xv

4-48 Results of the Adaptive search against the randomised dataset (sub-

experiment Adaptive-1a) highlighting the number of valid probes de-

livered and process times per simulation. 186

4-49 Results of the Adaptive search against the surveyed dataset (sub-experiment

Adaptive-1b) highlighting the number of valid probes delivered and pro-

cess times per simulation. 187

4-50 Summary data of the results of the number of successful probes for the

experiments conducted throughout the research. 190

4-51 Summary data of the results of the number of total delivered probes for

the experiments conducted throughout the research. 191

4-52 Summary data of the results of the process completion time for the

experiments conducted throughout the research. 192

xvi

List of Tables

2.1 Current IPv6 address allocations . 18

2.2 A dissection of the major categories of host enumeration, including the

components and common methods used. 37

2.3 Comparison of four main categories of machine learning, their output

types, their learning process, and their major purposes. 49

2.4 Taxonomy of host enumeration and vulnerability scanning applications. 55

3.1 Table of the five major world views that influence contemporary research

design. 62

3.2 Research paradigms, ontologies, epistemologies, research methodologies,

and modes of inquiry. 63

3.3 Table of the algorithms designed for the study and their classification as

stochastic or deterministic in nature. 86

3.4 Table of associated software materials used for experimentation. 94

3.5 Table of associated hardware materials used for experimentation. 95

3.6 Table of instrumentation used throughout the study. 96

3.7 Table displaying the computer programs and auxiliary libraries created

for the experiments and utilised throughout the study. 96

3.8 Summary of the conditions and parameters influencing each of the linear

search algorithm’s experiments. 100

3.9 Summary of the conditions and parameters influencing each of the stripe

search algorithm’s experiments. 101

3.10 Summary of the conditions and parameters influencing each of the Monte

Carlo search algorithm’s experiments. 102

xvii

3.11 Summary of the conditions and parameters influencing each of the ge-

netic algorithm (GA) search algorithm’s experiments. 102

3.12 Summary of the conditions and parameters influencing each of the pattern-

based heuristic search algorithm’s experiments. 104

3.13 Summary of the conditions and parameters influencing each of the Ad-

aptive heuristic search algorithm’s experiments. 106

4.1 Information sources used to provide domain names as the foundation of

the survey. 111

4.2 The results from the IPv6 survey revealing the number of unique IPv6

IIDs gathered from each information source. 111

4.3 Observed IPv6 addresses from the surveyed dataset were classified using

an ANN classification system by their construction type. 111

4.4 Results from the randomly generated IPv6 dataset 113

4.5 Observed IPv6 addresses from the randomised dataset classified using

an ANN classification system by their construction type. 114

4.6 The descriptive statistics of the results for the Zero Origin Linear-1

experiment (sub-experiments Linear-1a and Linear-1b). 116

4.7 The descriptive statistics of the results for the Stochastic Linear-2 ex-

periment simulations (experiments Linear-2a and Linear-2b). 121

4.8 The descriptive statistics of the results for the Weighted Linear-3 ex-

periment simulations (experiments Linear-3a and Linear-3b). 127

4.9 The descriptive statistics of the results for the Stochastic Stripe-1 ex-

periment simulations (experiments Stripe-1a and Stripe-1b). 134

4.10 The descriptive statistics of the results for the Zero Origin Stripe-2

experiment simulations (experiments Stripe-2a and Stripe-2b). 141

4.11 The descriptive statistics of the results gathered from Stochastic Monte

Carlo simulations (experiments MonteCarlo-1a and MonteCarlo-1b). . 146

4.12 The descriptive statistics of the results gathered from the Weighted

Monte Carlo simulations (experiments MonteCarlo-2a and MonteCarlo-2b).153

xviii

4.13 The descriptive statistics of the results gathered from the Zero Origin

GA simulations (experiments GA-1a and GA-1b). 161

4.14 The descriptive statistics of the results gathered from Stochastic GA

simulations (experiments GA-2a and GA-2b). 167

4.15 The descriptive statistics of the results gathered from Weighted GA sim-

ulations (experiments GA-3a and GA-3b). 169

4.16 The descriptive statistics of the results gathered from Pattern simula-

tions (experiments Pattern-1a and Pattern-1b). 174

4.17 The descriptive statistics of the results gathered from Adaptive simula-

tions (experiments Adaptive-1a and Adaptive-1b). 183

4.18 Summary of results observed during experimentation. 193

4.19 Cumulated results from all of the experiments conducted. 194

4.20 Table of the algorithms designed for the study and their classification as

stochastic or deterministic in nature. 196

4.21 Comparison of means of successful probes, between stochastic and de-

terministic algorithms tested against the randomised dataset. 198

4.22 Comparison of means of successful probes, between stochastic and de-

terministic algorithms tested against the surveyed dataset. 198

4.23 Comparison of means of successful probes, between stochastic and de-

terministic algorithms tested against the surveyed dataset. 199

4.24 Results of hypothesis testing between the a and b sub-experiment popu-

lations for each experiment at the 95% confidence interval (i.e. ↵ = 0.05).201

4.25 Table of the algorithms designed for the study and their classification

indicating whether machine learning methods are employed or not. . . . 202

4.26 Comparison of means of successful probes and the successful probes to

process time ratio, between machine learning, and non-machine learning

algorithms tested against the randomised dataset. 205

4.27 Comparison of means of successful probes and the successful probes to

process time ratio, between machine learning, and non-machine learning

algorithms tested against the surveyed dataset. 205

xix

4.28 Comparison of means of successful probes and the successful probes to

process time ratio, between machine learning, and non-machine learning

algorithms tested against the results for both datasets. 206

5.1 Relationship between the research questions and hypotheses. 208

xx

Chapter 1

Introduction

It is increasingly commonplace for devices with varying purposes, such as computers,

cars, mobile phones, even lightbulbs and fridges, to incorporate some access to the

Internet. These devices depend on access to ever-decreasing network layer address

resources. The current network communications protocol providing these addresses,

Internet Protocol version 4 (IPv4), has almost exhausted its address supplies; with

APNIC allocating its final 8 bit address block in 2014 (APNIC, 2015). Various systems,

such as RFC-1918 private addresses (Rekhter, Moskowitz, Karrenberg, de Groot &

Lear, 1996), and forms of Network Address Translation (NAT) have been introduced

to assist in combatting the exhaustion problem. However, ultimately these measures

serve to temporarily ameliorate the problem, rather than solve it. In 1994, a new

protocol was approved to resolve the pending address exhaustion crisis; the Internet

Protocol version 6 (IPv6).

IPv6 introduces a larger address space than its predecessor, IPv4. The increase is

not insignificant, in fact the 128 bit IPv6 address space is 296 times larger than that

of IPv4. This increase in address space will provide the Internet with enough address

resources to facilitate its expansion for the foreseeable future.

However, the increased address space introduces complications in locating nodes on

a distant network using existing host enumeration techniques. In IPv6 there are enough

potential unique addresses for 264 nodes to exist on a subnetwork. Enumerating all

hosts on a network by simply probing each possible address, as is commonplace with

1

IPv4, is no longer a feasible activity. With exhaustive searching currently infeasible,

e↵orts must turn to more informed methods of enumeration.

1.1 Background to the problem

Host enumeration, also known as network discovery, host discovery or network scanning,

is the act of identifying live nodes on a computer network. Host enumeration generally

involves sending a probe, or series of probes to potential hosts on a network and

measuring responses. Host enumeration has existed for a number of years as a means

for agents to locate computers on networks. On a small network, such as a standard

24 bit IPv4 subnetwork, it may take an agent a matter of seconds to perform an

exhaustive search of the address space and enumerate all of the hosts that are active

on the network. In regards to an IPv6 network, where the recommended subnetwork

size is 64 bits long (Hinden & Deering, 2006), a similar exercise would take many years,

given current network bandwidth. To put this di↵erence in perspective, at a rate of

1,000,000 probes per second, it would take less than a second to enumerate a 24 bit

IPv4 network, whilst it would take approximately 584,942.42 years against a single 64

bit IPv6 network.

Enumerating host devices on computer networks can be scoped as either o↵-link or

on-link enumeration. On-link discovery is when a device performs host enumeration

against directly connected networks. In contrast, o↵-link refers to performing host

enumeration against a network that is not directly connected. Specifically, this occurs

when the agent performing host enumeration is on a separate link-layer broadcast do-

main to the host enumeration subject(s). O↵-link host discovery is more commonplace

across public networks, where it is often used as a tool for troubleshooting networks

problems, locating and taking census of network resources, researching vulnerabilities,

and attacking computer networks.

Host enumeration forms an important stage in vulnerability assessments (VAs) and

network security assessments. VAs serve to identify potential security vulnerabilities

in a system or group of systems by testing systems for their vulnerability to known

threats. They are routinely conducted to assess the security profile of a network or

2

organisation. VAs can be performed proactively as a defence strengthening measure, or

reactively to determine exposure to specific vulnerabilities. Common VA methodologies

generally involve a phase dedicated to conducting host enumeration to identify devices

in a network address space that are active (Braunton, 2005; McNab, 2007). A list of live

nodes serves to restrict the scope of any further e↵orts in a vulnerability assessment

to improve e�ciency. Braunton (2005) provides a security assessment methodology

that includes a phase dedicated to host enumeration. Braunton (2005) stresses the

importance of conducting a thorough and well-documented host enumeration exercise

as the foundation to a successful network security assessment.

Host enumeration techniques, and VAs also provide research opportunities. In 2014

a number of vulnerabilities were discovered in ubiquitous software packages, such as

OpenSSL, bash and schannel. The Heartbleed, ShellShock and POODLE vulnerabil-

ities were all publicly disclosed in 2014, and resulted in independent research e↵orts

conducted to determine the exposure of each vulnerability. These e↵orts provided

insight into the nature of the vulnerabilities, including longitudinal data of a↵ected

systems and remedial patching cycles.

Host enumeration techniques are often used in network support and troubleshoot-

ing. Network engineers and systems administrators commonly use network discovery

tools and techniques to determine hosts that are active on their own computer net-

works. A computer network can experience frequent connections and disconnections

of client devices. This is especially true in situations where bring your own device

(BYOD) policies are unrestrictive or in the case of Internet of Things (IoT) systems.

BYOD and IoT systems can host a large quantity of unmanaged devices. In such

situations host enumeration can be used to take a census of the devices on computer

network segments. Since host enumeration is a tool that is used to locate networked

devices it is also often leveraged by malicious agents.

Malicious agents have used host discovery for many years (G. F. Lyon, 2009) to

determine live nodes on networks when conducting penetration tests or unsolicited

VAs. Once initial discovery is complete, an agent may target those machines and

conduct an unauthorised vulnerability assessment in order to enumerate a system’s

vulnerabilities. They can then use other tools to exploit vulnerabilities to achieve their

3

goals in the attack. As an example, the aforementioned Heartbleed and ShellShock

vulnerabilities could be enumerated by performing an exhaustive search of the IPv4

Internet (or a subset thereof) using specially crafted payloads, and then recording the

response. These enumerated systems that have been confirmed to be vulnerable could

then be further exploited to gain control of those systems.

Malware developers have also used host enumeration strategies in the past to cre-

ate self-propagating worms such as the Conficker worm (Savagaonkar, Sahita, Nagab-

hushan, Rajagopal & Durham, 2005; Porras, Saidi & Yegneswaran, 2009). In such cases

an infected computer will enumerate other potentially vulnerable hosts on a network

and then attempt to transfer malware to them. These forms of worms were devastating

to IPv4 computer networks before anti-virus software saw widespread adoption. Due

to the IPv4 address space size, CPU processing power, and distributed enumeration

worms could propagate very quickly.

Due to its large address space IPv6 has earned the reputation of being infeasible

to enumerate using o↵-link host enumeration. An address space can be defined as a

range of discrete addresses. In the context of the research problem, the address space is

measured in bits. For IPv4 the address space of the entire protocol is 32 bits (approx-

imately 4.3 billion addresses), while the IPv6 address space is 128 bits (approximately

340 undecillion addresses). The address space commonly used in subnetworks in IPv4

are substantially lower than that of IPv6. Common networks in IPv4 use 24 bits for

the network portion and contain 256 possible addresses per subnet. IPv6 uses 64 bits

for the network portion of the address which provides approximately 18 quintillion

addresses per subnet. It is important to note the distinction between address types in

IPv4 and IPv6. Both protocols have portions of the address space that are designated

for public or global usage, and portions that are not for public usage. Henceforth,

unless otherwise specified the IPv6 address range under consideration in this research

is the global unicast address range (2000::/3). All publicly routable address ranges

were considered when referring to IPv4.

On-link host enumeration is trivial to conduct in both IPv4 and IPv6 domains,

since both protocols include provisions for hosts to discover their neighbours. Such

facilities are required for communications between hosts to occur at all. In IPv4 the

4

Address Resolution Protocol (ARP), allows devices to query neighbours using link-

layer broadcast frames. In IPv6, the Internet Control Message Protocol version 6

(ICMPv6), similarly to ARP, allows devices to discover their on-link neighbours. On-

link discovery is usually achieved by querying common multicast addresses, for which

each IPv6 enabled device is a member (such as the all-nodes address ff02::1). These

methods do not apply to devices on di↵erent broadcast domains since such addresses

are not routable outside their network. The ramifications of this protocol design means

that devices attempting to perform host discovery from another network must employ

di↵ering tactics.

In contrast to on-link scanning, o↵-link scanning cannot simply be accomplished

through queries to local broadcast or multicast address scopes. In such circumstances,

agents seeking to discover hosts on neighbouring networks must employ network layer

and above host discovery. O↵-link discovery methods commonly used against IPv4

systems typically include an exhaustive linear search for small target sizes (e.g. for

searching a single, 24 bit network). An exhaustive linear search is also possible (and

commonplace) when searching the wider IPv4 Internet. Target randomisation tech-

niques are often used instead to distribute the searching load evenly across the search

space. Search distribution is employed to ensure the endpoints of the search attempt do

not get overloaded with probes in the event that a single entity manages a contiguous

address block. Utilities such as nmap (G. F. Lyon, 2009) and masscan (Graham, 2013c)

employ randomisation functions to permute the entire address space randomly, rather

than sequentially.

Current methods of o↵-link host enumeration in the IPv6 domain rely upon either

performing a linear search of a subset of the address space, or targeting addresses that

are commonly used in IPv6 deployments. A number of tools have been developed

to accomplish the task of host enumeration against IPv6 networks using the limited

algorithms discussed. These tools include the hacker’s choice IPv6 suite’s alive6

program and the Chiron suite’s IPv6 scanner. These applications both attempt to

enumerate IPv6 networks through a hybrid approach of address pattern generation

and linear searching.

5

1.2 Purpose of the Study

This research aims to fill the gap in knowledge that exists surrounding IPv6 host

enumeration strategies. From the literature surrounding the topic it is evident that

the problem of enumerating nodes on an o↵-link IPv6 network is considered infeasible.

Currently there is minimal literature that provides methods for conducting o↵-link IPv6

host enumeration. Furthermore, no formal testing or validation of host enumeration

methods that do exist have been performed. This study seeks to validate existing

approaches to host enumeration, including those used against IPv4 and IPv6 networks.

The study also seeks to devise and present new, e�cient strategies that address the

problem.

The literature in the domain does suggest that the protocol’s implementation may

assist with the formulation of searching methods that target areas of the address space

e�ciently. These methods may use heuristics to determine behaviour patterns in ad-

dress allocation and exploit them to improve enumeration rates. Additionally, thus far

machine learning methods have not been applied to the problem. Machine learning may

provide another potential avenue for host enumeration search methods that have yet

to be explored. Conventional search methods rely on generating static or deterministic

target address lists. The adaptive nature of machine learning systems may improve

the e↵ectiveness of o↵-link host enumeration search methods for IPv6.

By exploring new methods to conduct o↵-link IPv6 host enumeration and test-

ing the e↵ectiveness of existing methods, this research aims to contribute validated

methods of IPv6 host enumeration. These methods serve to aid in the e↵orts of fu-

ture enumeration endeavours against IPv6 networks. It is an intended outcome of this

research that the findings and discoveries will assist in improving the landscape for

IPv6-related research e↵orts.

1.3 Research questions

The purpose of this research was to determine e↵ective means to conduct host enumer-

ation against IPv6 networks. The research questions were:

6

RQ1 Can networking devices be enumerated on 64 bit IPv6 subnetworks using host

discovery techniques?

RQ2 Are stochastic searching methods more e�cient than deterministic searching meth-

ods when enumerating IPv6 hosts within a single 64 bit subnetwork?

RQ3 Do stochastic address allocation schemes within a single 64 bit subnetwork inhibit

IPv6 host enumeration strategies?

RQ4 Can machine learning search methods be used to enumerate devices on a 64 bit

IPv6 subnetwork?

RQ5 Are machine learning searching methods more e�cient than non-machine learn-

ing based methods when enumerating IPv6 hosts within a single 64 bit subnet-

works?

1.4 Hypotheses

In order to answer the above research questions, hypotheses were formed. The primary

hypotheses underpinning the research were:

H1 “Search techniques are unable to enumerate networked devices on 64 bit IPv6

subnetworks.”

H2 ‘Methods that employ random sampling do not perform better than methods that

do not employ random sampling for IPv6 host enumeration.”

H3 “Randomly generated interface identifiers do not a↵ect the performance of IPv6

host enumeration search algorithms.”

H4 “Search methods that employ machine learning are unable to enumerate networked

devices on 64 bit IPv6 subnetworks.”

H5 “Search methods that employ machine learning do not perform better than search

methods that do not employ machine learning for IPv6 host enumeration.”

7

1.5 Research design

A quantitative study was designed and undertaken in an attempt to address the re-

search hypotheses and provide answers to the research questions. Laboratory experi-

mentation was chosen as an appropriate mode of inquiry for the research process.

The research was designed into five phases, involving:

1. Survey IPv6 usage: A survey into the real-world usage of IPv6 was conducted

as a precursor to the study, and involved conducting a DNS enumeration against

public IPv6 domain names. The survey data were used to influence the types of

algorithms that were developed. The datasets used as the target networks in the

research experiments were constructed in this phase of the research.

2. Generate search algorithms: The algorithms that would form the research’s inde-

pendent variables were designed in this phase. These algorithms drew influence

from existing host enumeration algorithms, as well as algorithms that have not

been previously applied to the problem.

3. Develop instruments and experiments, and perform pilot studies: The computer

programs that would realise the testing and measuring of the research variables

were constructed and tested in this phase.

4. Perform experiments: The research involved conducting experiments that applied

algorithms to IPv6 address datasets. Each experiment consisted of two sub-

experiments that exposed the subject algorithm to a di↵erent IPv6 dataset of

valid addresses representing a configured IPv6 network. These sub-experiments

were comprised of a number of simulations.

5. Data processing and analysis: The data collected from the experiments were

collated and processed. Analyses were performed to test the research hypotheses

using the observed results.

8

1.6 Assumptions

The author has made the assumption that the target hypothetical networks tested

in this study are statically set for the duration of search attempts. This means that

the networks do not have hosts connecting to or disconnecting from them. This dis-

tinction is important given that networks in real-world scenarios are often dynamic in

nature, especially in networks that contain user devices (such as smartphones, laptop

computers, workstations or tablets). Devices in these networks may connect and dis-

connect intermittently or sometimes permanently. This consideration was out scope for

this research, and thus convergence rates of the algorithms are not considered within

scope of this research. The datasets created to replicate IPv6 networks represent net-

works where all of the hosts are static. In real-world situations, the dynamic nature of

computer networks would warrant investigation into optimisation of algorithm conver-

gence rates. Such research could be undertaken in followup to this study.

It was also assumed that nodes on the hypothetical networks must respond to

probing attempts if they exist. E↵ectively this means that if an address is included

in the dataset, it is a live node. If an address is not included in the dataset, then it

is not a live node, and no further consideration should be taken for it. Again, in a

real-world situation there are a number of reasons why a node might not respond to a

probe request. For example, the probe may be lost during transmission, it might get

blocked by a firewall rule, or there could be unforeseen routing issues. However, these

situations were not considered to be within the scope of the research.

This research was concerned only with Global Unicast IPv6 addresses, since they

represent the publicly contactable address type o↵ered by the IPv6 protocol under

Hinden and Deering (2006), and are therefore a logical candidate for o↵-link host

enumeration. Although other address types exist, some of which are publicly accessible,

the global unicast address range are the most general type and most commonly used

within the public Internet. Other specialty address types (such as the well known

prefix, etc.) have nuances that would require specific handling (such as an increased

network mask and static network bits), and have been excluded from the scope of this

research. Additionally, the target IPv6 network(s) that experiments were conducted

9

against were 64 bit subnetworks (i.e. networks with a 64 bit network mask). 64 bits

is the recommended subnetwork size by Hinden and Deering (2006) for global unicast

networks, and was accepted as the standard size for this research.

For the purposes of the research it was assumed that the target network is bound by

a one gigabit per second network connection, and that the source of the search attempt

was bound by the same connection speed. Where appropriate for comparisons, a con-

stant transmission rate of 1,000,000 generic probes per second has been declared. The

rate of 1 million packets per second has been at least observed in Durumeric, Wustrow

and Halderman (2013b) where the authors achieved a rate of 1.4 million packets per

second, and in Graham (2013c) where 29 million packets per second were observed.

The type of probe delivery method, or the probe payload, were not considered, since

the search algorithms were the focus of the study.

1.7 Thesis structure

The remainder of the thesis is set out as follows:

Chapter Two, the Literature Review, reviews the research-oriented literature on

host enumeration within IP networks. It contextualises this literature in terms of the

problem of host enumeration across large address spaces, such as those that are greater

than 32 bits. Outcomes from the review shaped the research questions by identifying

gaps in knowledge.

Chapter Three, the Research Methodology and Design discusses the research meth-

ods and approaches used to perform the research. The main modes of inquiry are

described, along with the epistemological backing for the research. The experimental

process is discussed as well as the algorithms used to perform the host enumeration.

Chapter Four, the Results, presents the results gathered from the experiments that

were conducted during the study and the outcomes of hypothesis testing. Of particular

interest was the results of the linear search algorithms and the adaptive-heuristic search

algorithms, which displayed strong results in their search operations against networks

configured with real-world addresses.

Chapter Five, the Analysis and Discussion, explores the results gathered during the

10

research. In particular, the relationships between the results, their impact on testing

the research hypotheses, and ultimately how they serve to answer the research questions

is explored in this chapter.

Chapter Six, the Conclusions, summarises the contributions to knowledge made by

the work explored in this thesis. Finally, this chapter suggests potential avenues for

future research.

11

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK

12

Chapter 2

Literature Review

2.1 TCP/IP

2.1.1 Overview

The TCP/IP suite (also known as the Internet protocol suite) was developed in 1974

(Cerf, Dalal & Sunshine, 1974) when the need for globally interconnected networks was

first realised. The first iterations of the Internet Protocol included the internetwork

transmission control program which was described in RFC-675 by Cerf et al. (1974).

The fourth version of the TCP/IP family was ratified in 1981 in RFC-791 (Postel,

1981).

TCP/IP gained traction after being named the protocol of the ARPANet by the

US Department of Defence (DoD), a 500 node computer network, and the predecessor

to the modern Internet in 1972, and securing military adoption in the 1980s. TCP/IP

eventually became the de-facto standard networking protocol (Kessler, 2014). IPv4 is

ubiquitous and is supported on nearly every network-aware device worldwide.

The TCP/IP protocol suite is based upon the TCP/IP model (formally known as

DoD model (Kessler, 2014)) that uses four layers to describe communications between

nodes. These four layers are;

• The Link layer, where protocols such as Ethernet and Token Ring provide a

physical connection between devices on a network;

• The Internet layer, where protocols such as IPv4, IPv6 and IPSec allow devices

13

to communicate with each other beyond their physically connected network;

• The Transport layer, protocols such as TCP and UDP operate at this layer to

provide end-to-end connectivity between nodes, and;

• The Application layer, where protocols transmit arbitrary data between each

other. Protocols such as hypertext transfer protocol (HTTP) and simple message

transmission protocol (SMTP) exist at the application layer (Kessler, 2014).

These four layers interoperate to complete the TCP/IP model, and provide the

basis for computer networking.

The TCP/IP model is not the only framework for describing network communica-

tions. The four-layered TCP/IP model can be mapped to the Open Systems Intercon-

nection’s (OSI) seven layered networking model, as displayed in Figure 2-1. In the OSI

model there are seven layers of abstraction defined for networking communications;

• The Physical layer, where electrical signals are transferred over a medium;

• The Data link layer, which, when paired with the Physical layer, is analogous to

the Link layer in the TCP/IP model;

• The Network layer, which is synonymous to the Internet layer in the TCP/IP

model;

• The Transport layer, which is synonymous to its TCP/IP counterpart;

• Finally, the Session, Presentation and Application layers, which are all concerned

with processing arbitrary data streams, are combined to form the Application

layer’s counterpart in the TCP/IP model.

As previously stated, IPv4 and IPv6 operate at the Internet layer (layer two) of

the TCP/IP model. These protocols provide a means for abstract communications to

occur between devices over discontiguous physical networks (‘Information technology

– Open Systems Interconnection – Basic Reference Model: The Basic Model’, 1994).

IP networks are separated by boundaries known as subnetworks, which occur when

an IP network is divided into smaller IP networks through the use of a subnet mask.

14

Figure 2-1: The seven layers of the OSI model (left) are comparable with the four layers of the TCP/IP model
(right). The OSI Physical and Data link layers (layers 1 and 2, respectively), converge to form the layer 1 Link
layer in the TCP/IP model, whilst the OSI Network layer (layer 3) is synonymous with TCP/IP Internet layer
(layer 2). The transport layer is a direct translation from OSI layer 4 to TCP/IP layer 3. Finally OSI layers 5
to 7 (the Session, Presentation and Application layers) combine to form the TCP/IP model’s Application layer
(layer 4).

Subnet masks are binary streams that are applied to an IP address or network address

in order to determine a start and end point of an IP network. Subnet masks are

typically set to the binary value of one for all of the higher order bits from bit 0 until

bit n � 1 (where n is the number of network bits). The lower order bits (i.e. from

bit n to bit 31) are set to the binary value of zero. As an example, in IPv4 a typical

network size is 24 bits long. In this instance, the network’s subnet mask would be

represented as 255.255.255.0 (or 11111111.11111111.11111111.00000000 in dot-

separated binary). When applied to an IP address, using a bitwise and operation, the

result provides the network address (e.g. applying a bitwise and operation against an

IP address 192.168.1.34 and the subnet mask 255.255.255.0 results in the network

address of 192.168.1.0) (Kessler, 2014). The binary masking system allows devices

to determine the boundaries of networks in IP systems.

15

2.1.2 Address types

Devices participating in IP communications must have at least one unique IP address.

IPv4 addresses are 32 bit values while IPv6 addresses are 128 bit values. In common

presentation these values can be represented textually in many ways. It is especially

true for IPv6, whose larger address space has necessitated compression techniques in

order to reduce the size of represented addresses. IPv4 addresses can be represented as

their unsigned integer value (a discrete number between 0 and 232), or by the represent-

ation standard noted in RFC-1123 (Braden, 1989) which dictates that an IPv4 address

should be reduced to a string containing four chunks (octets), each which represents

an eight bit unsigned integer, separated by periods.

IPv6 is less straightforward. The integer representation is similar to that of IPv4,

with the only di↵erence being the number of bits that comprise the address. Whilst

the common representation for IPv6 addresses has undergone some reassessment since

it was devised in RFC-2460 by Deering and Hinden (1998), the fundamental represent-

ation has not changed. IPv6 addresses should be represented as strings separated into

eight chunks (hextets or quartets), each comprising a 16 bit hexadecimal string, sep-

arated by colons (e.g 2001:db8b:ccdd:eeff:1122:3344:5566:7777). According to

Kawamura and Kawashima (2010), leading zeroes must be dropped from each quartet,

and a collapsing scheme can be used to compress multiple quartets of consecutive zeroes.

As an example 1000:0:0:0:0:0:0:0001 would become 1::1. In order to prevent am-

biguities the collapsed notation can only appear once within an address. In cases where

there are discontiguous quartets of zeroes, collapsing will occur at the largest consec-

utive number of zero value quartets. In the case of a deadlock, the highest order set of

consecutive zeroes will be collapsed. For example 1000:0:0:1:0:0:0:1 would become

1000:0:0:1::1, and 1000:0:0:1:1:0:0:1 would become 1000::1:1:0:0:1 (Hinden,

Deering & Nordmark, 2003; Hinden & Deering, 2006; Kawamura & Kawashima, 2010).

It has been established that IPv6 addresses are discrete numbers between 0 and 2128,

and that when participating in IP networking, a node must have at least one unique

address. It is not entirely true that there are 2128 possible public IPv6 addresses. In

practice the address space has been partitioned to allow for future expansion of the

16

protocol, and reassessment of the addressing schemes. Under the current specifications

detailed in Hinden and Deering (2006), IANA (2013) and IANA (2014b) the global

unicast address space is 2000::/3, which equates to 2125 possible addresses. The

current major address space allocations for the IPv6 protocol are included in Table 2.1.

This research is concerned only with addresses in the global unicast address space, since

that is the address range that is publicly accessible, and most appropriate for o↵-link

host discovery. From this point onwards, unless otherwise specified, references to IPv6

addresses or networks will relate to subjects of the global unicast IPv6 address space.

When using IPv6 there are a number of ways that assigning unique addresses to

hosts can be achieved. A node can be configured with an IPv6 address either statefully

or statelessly. A device can be provided with an address through means that require

third party intervention (stateful addressing) or by autoconfiguring an address without

requiring third party intervention (stateless addressing). It is important to reiterate

that there are three components to an IPv6 address as defined in RFC-2460 by Deer-

ing and Hinden (1998). These components include the distinction between the global

routing prefix of the address. The global routing prefix represents the higher order

bits of an address, and can be further deconstructed to reveal the hierarchy of the

address. Internet registries exist that allocate Internet resources to clients, including

other Internet registers, and Internet service providers (ISP). There is also the distinc-

tion made for the subnet id (m) which denotes the subnetwork that an IPv6 address

is a member of. The subnet id is a subset of the network portion of an IPv6 address.

If following RFC-4291 (Hinden & Deering, 2006), the subnet id can be calculated by

64 � n. Finally, there is the Interface Identifier which is made up of the lower order

bits of the address (see Figure 2-2) calculated by 128� n�m.

The common stateful addressing schemes for IPv6 include the dynamic host con-

figuration protocol version 6 (DHCPv6) and static addressing. DHCPv6 is similar to

DHCPv4 to the extent that a server provides clients with unique addresses and other

network resources defined in DHCP option fields (such as nameservers, time servers,

etc.). Under DHCPv6 schemes, address allocation can happen using pools or through

stochastic generation. For completeness, it is worth mentioning that there is also the

Stateless DHCPv6 scheme. However, under this scheme DHCP is only used to deliver

17

Figure 2-2: Global Unicast IPv6 address representation modified from RFC-3587 (Hinden, Deering & Nord-
mark, 2003) displaying the breakdown of the distinct portions of an IPv6 address. The global routing prefix
(n bits) are the highest order bits of the IPv6 address. This can further be deconstructed to reveal the Inter-
net service provider (ISP) prefix, and any Internet registry prefixes. The subnet ID (m bits) determines the
subnetwork that an address is a part of. Finally, the Interface ID, the lowest order bits in the address, can be
calculated by 128� n�m.

Table 2.1: The currently allocated IPv6 address ranges as specified by IANA (2013)

IPv6 Prefix Prefix Allocation Notes

0000::/8 Reserved by IETF • ::1/128 is the IPv6 Loopback Address (equivalent to IPv4’s 127.0.0.1)
• ::/128 reserved for Unspecified Address
• ::↵↵:0:0/96 reserved for IPv4-mapped Address
• 0000::/96 deprecated by RFC-4291 (Hinden & Deering, 2006).
Formerly defined as the ‘IPv4-compatible IPv6 address’ prefix.
• The ‘Well Known Prefix’ (64:↵9b::/96) is used to map IPv4 addresses
to IPv6 addresses

0100::/8 Reserved by IETF • 0100::/64 reserved for Discard-Only Address Block

0200::/7 Reserved by IETF • Formerly OSI NSAP-mapped prefix, deprecated as of December 2004.

2000::/3 Global Unicast • Publicly routable IPv6 addresses

fc00::/7 Unique Local Unicast • Private IPv6 addresses, not publicly routable in the global Internet

fe80::/10 Link-Scoped Unicast • Addresses used by nodes to communicate with devices on-link. Not
routable outside origin link

fec0::/10 Reserved by IETF Formerly site-local address range. Deprecated in September 2004.

↵00::/8 Multicast • IPv6 addresses used to communicate with members of multicast
groups

information pertaining to network resources, and not address assignment itself. Nodes

participating in stateless DHCPv6 must have configured a valid IPv6 address though

some other means (Droms, 2004). As a result, this scheme has been deemed irrelevant

to the topic.

If DHCPv6 is used to lease addresses from an address pool (a range of addresses that

a server is able to provide to clients), the addresses assigned to clients will be spatially

close together (i.e. low entropy). The result of doing so reduces the entropy of the

18

leased addresses, and can, therefore provide a valid precursor to search attempts. This

situation can also occur with manual addressing, where an administrator manually

assigns an IPv6 address to a host. Whilst it is possible to do so using randomly

generated addresses, or high entropy address allocation schemes, the likelihood is that

a human is going to address hosts in a memorable fashion. This has been witnessed and

cited as a problem in works such as Narten, Draves and Krishnan (2007), where the

author makes specific recommendations against the usage of predictable addressing

schemes, instead advocating for the use of stochastic methods. Again, the entropy

of such an address scheme may be significantly lower than using stochastic address

generation methods.

Additionally, due to the standard hexadecimal string representation of IPv6 ad-

dresses it is possible to inject words comprised of hexadecimal characters into an IPv6

address. This substitution technique uses the hexadecimal characters a-f and the

numbers 0-9 to represent words natively, and via hexadecimal word substitutions. For

example, the hexadecimal string 0xcafe can be used to represent the word ‘cafe’. An

address could be constructed using the hexadecimal strings 0xdead, 0xbeef, 0xcafe

and 0xface to resemble ::dead:beef:cafe:face. This type of address construction

has been observed in real world situations, and has been used to influence search tech-

niques such as those used by THC-IPv6 (Hauser, 2014) and Chiron (Atlasis, 2014).

These techniques will be discussed in further detail in Section 2.2.

RFC-4291 (Hinden & Deering, 2006) and RFC-5952 (Kawamura & Kawashima,

2010) discuss the addressing architecture for IPv6. The subsequent changes to the

protocol expressed in RFC-5952 (Kawamura & Kawashima, 2010) alleviate some of the

concerns with the flexible approach to representing IPv6 addresses in text. Originally

there was no formal standard to how leading zeros in IPv6 quartets were represented,

and likewise, collapsing consecutive quartets was at the discretion of those using the

protocol. In particular, RFC-4291 (Hinden & Deering, 2006) provided discretion on

representation with respect to hexadecimal character’s case, inclusion of leading zeroes,

and address compression using double colon notation. As an example, under RFC-4291

(Hinden & Deering, 2006), the IPv6 address a001:77:0:77::cafe/64 could be legally

represented in, but not limited to, the following ways:

19

• a001:77:0:77::cafe/64

• a001:0077:0:77::cafe/64

• a001:077:0:77::CAFE/64

• A001:77:0:77::caFE/64

• a001:77:0:77:0:0:0:cafe/64

• A001:0077:0000:0077:0000:0000:0000:cafe/64

• a001:77::77:0000:0000:0000:cafe/64

These loose guidelines presented problems for systems that handled the textual

representation of IPv6 addresses. In particular, having loosely defined constraints to

displaying and conveying addresses caused problems with superficial parsing systems,

such as text-based search and regular expressions (Kawamura & Kawashima, 2010).

Due to the number of potential combinations of legal representations of a single ad-

dress, it was di�cult to apply pattern recognition that did not present false positive

or false negatives on edge-case addresses. The case of incorrectly handling IPv6 ad-

dress representations is not dissimilar to the problems that are still occurring with

correct handling of email addresses (Klensin, 2001, 2004). RFC-5952 (Kawamura &

Kawashima, 2010) enforced stricter control in order to reduce ambiguities with these

representations. Referring to the previous example, according to RFC-5952 (Kawamura

& Kawashima, 2010), a001:77:0:77::cafe/64 is the only legal string representation

of that address. The outcome of Kawamura and Kawashima (2010) is that there are

far fewer permutations of possible legal representations of IPv6 addresses.

The string representation of an IPv6 address in a 64 bit subnetwork has character

space in the IID for 16 hexadecimal characters. This representation uses colons to

separate groups of four hexadecimal characters (see Figure 2-2). The standard IPv4

address representation uses four period separated portions (commonly referred to as

dotted-quad or dot-separated decimal notation) containing an integer value between

0 and 255. Another method that could be used as a means by which to construct

IIDs is to embed an existing IPv4 address into an IID. The author has named the

20

approach IPv4-converted-IIDs. IPv4-converted-IIDs can be achieved by substituting

the period delimited integer representation into the colon delimited string notation of

IPv6 such that the complete IPv4 address becomes the complete IPv6 IID (for example

the 32 bit IPv4 address 192.168.1.1 would become the 64 bit IID ::192:168:1:1).

At present no o�cial documentation on this approach has been published. However,

it is not inconceivable to expect to observe such addresses in IPv6 implementations,

especially throughout the transition stages from IPv4 to IPv6. IPv4-converted-IIDs

would simplify the locating of hosts that are IPv4 and IPv6 enabled, since the host

address would be e↵ectively the same.

A transition mechanism for injecting IPv4 addresses into IPv6 addresses, named

IPv4-mapped-IPv6 addresses, also provides another way to represent addresses. Under

this scheme, which is described in RFC-6052 by Bao, Huitema, Bagnulo, Boucadair and

Li (2010), the last 32 bits of the address would be replaced with a 32 bit IPv4 address.

The string representation also reflected this change, with the last two quartets being

changed to the IPv4 period separation scheme. This particular IPv6 address format

uses a specific prefix, and does not fall within the global unicast IPv6 address range.

IPv4-mapped-IPv6 addresses, therefore, have not been considered during this research.

There are also techniques that involve using the full 32 bit IPv4 address as a portion

of the 128 bit IPv6 address. With respect to 64 bit networks, RFC-6052 (Bao et al.,

2010) defines the following format for embedding IPv4-embedded IPv6 addresses:

1. Place the complete binary IPv4 address from bits 72 to 103 of the IPv6 address.

2. Ensure the bits from 64 to 71 and from 104 to 127 are set to ‘0’.

3. Prepend the 64 bit network prefix at bits 0 to 63.

An example IPv4 address 192.168.1.1 would be converted into a valid IPv4-

embedded IPv6 address with the 64 bit IPv6 network prefix 7777:7:7:7::/64 as

follows:

1. Convert IPv4 address 192.168.1.1 into hexadecimal: c0a80101.

2. Insert address into bits 72 to 103 of the 128 IPv6 address, keeping the bits 64 to

71 and from 104 to 127 are set to ‘0’: ::c0a8:101:0.

21

3. Prepend the 64 bit network prefix 7777:7:7:7::/64 at bits 0 to 63 to complete

the address: 7777:7:7:7:c0a8:101::/64).

IPv4-mapped-IPv6 style addresses were not specifically addressed in this thesis since

at the time of writing RFC-6052 (Bao et al., 2010) was still in the proposed standard

status. This means that the standard has not been completely ratified, or accepted.

If RFC-6052 is ratified the proposed IPv4-mapped-IPv6 addresses could form a valid

feature for influencing search heuristics.

In addition to the stateful methods expressed above, host configuration can also

be conducted statelessly. The principle method used to statelessly configure IPv6 ad-

dresses is through Stateless Address Auto-configuration (SLAAC). SLAAC was defined

in Thomson and Narten (1998) and later updated in Thomson, Narten and Jinmei

(2007), where it was introduced as a facility for nodes to engage in IPv6 communica-

tions without requiring any intervention. SLAAC uses a technique to generate an IID

known as Modified EUI-64 (64 bit extended unique identifier - hereafter referred to as

EUI-64) which adapts the IEEE MAC-48 (48 bit media access control) address of the

node’s network interface into a 64 bit IID (IEEE Standards Association, n.d. Narten

et al., 2007). EUI-64 defines a standard approach to converting EUI numbers to IIDs.

Common EUIs include;

• The IEEE MAC-48 which are used commonly as hardware MAC addresses on

network interface cards;

• EUI-48, which are used as identifiers for software products; and

• EUI-64, which are typically used as Ethernet addresses in newer protocols (such

as IEEE 802.15.4) (IEEE Standards Association, n.d. Carpene & Woodward,

2012).

Carpene and Woodward (2012) demonstrates the process for creating EUI-64 IIDs

using MAC-48 addresses and standard IEEE EUI-64 addresses. The following example

conveys how a standard MAC-48 can be converted into a EUI-64 compliant SLAAC

IPv6 IID:

1. 00:aa:12:34:56:fe - Commence with a standard MAC-48 address.

22

2. 02:aa:12:34:56:fe - Flip the universal/local bit of MAC-48 (7th bit of the

highest order byte).

3. 02aa:12<-->34:56fe - Split 48 bit address at 24th bit.

4. 02aa:12ff:fe34:56fe - Pad 16 bits using 1s, with the least significant bit set to

0 (0xfffe) between bits 24 and 40 (Carpene & Woodward, 2012).

An EUI-64 address can be reverse engineered to derive the originating MAC address by

flipping the universal/local bit and then removing the 0xfffe padding. This reverses

the EUI-64 process, revealing the original source MAC-48 identifier. The process for

generating a modified EUI-64 address out of a standard IEEE EUI-64 address is simpler

still:

1. 00aa:1234:56fe:aa56 - Standard EUI-64 address

2. 02aa:1234:56fe:aa56 - Flip the universal/local bit of EUI-64 (7th bit of the

highest order byte) (Carpene & Woodward, 2012)

The resulting IID from either EUI-64 conversion method can then be su�xed to a

64 bit network prefix to complete a valid IPv6 address.

Potential privacy issues with the SLAAC IPv6 address generation process were ex-

pressed in Groat, Dunlop, Marchany and Tront (2010), Groat, Dunlop, Marchany and

Tront (2011) and Dunlop, Groat, Marchany and Tront (2011). Research was conducted

into the nature of IPv6 addressing strategies, and how those strategies can be used to

identify individual users on a network. Groat et al. (2010) and Groat et al. (2011) con-

cluded in their research that the use of permanent or semi-permanent addressing can

violate a user’s privacy, since an IID may remain static when crossing di↵erent network

boundaries. This means that users may be trackable as they participate in IPv6 com-

munications even though their network prefix might di↵er. Groat et al. (2011) validate

this theory by tracking a device throughout a university campus network through its

IPv6 IID.

In order to remediate the privacy issues exposed in Groat et al. (2010) and Groat

et al. (2011), a mitigation strategy was realised using an IPv6 address proxy system

23

known as moving target IPv6 defence (MT6D) in Dunlop, Groat, Urbanski, Marchany

and Tront (2011). MT6D is a system designed to dynamically allocate host addresses

to clients. These addresses are stochastically generated using a shared session key,

timestamp and a hashing algorithm (Dunlop, Groat, Urbanski et al., 2011). From an

outside perspective, the addresses generated from this method would be indiscernible

from the Cryptographically Generated Address defined in RFC-3972 (Aura, 2005) or

other stochastically generated addresses. From the perspective of this research, the

MT6D address construction mechanism is recognised insofar as they conform to ran-

domly generated address types.

RFC-7217 (Gont, 2014) also provides a method to address privacy issues with the

SLAAC generation method described in RFC-2462 (Thomson & Narten, 1998) and

RFC-4941 (Narten et al., 2007). The method described by Thomson and Narten (1998)

uses the following algorithm to derive a random (but stable) identifier (RID):

RID = F (Prefix,Net Iface,Network ID,DAD Counter, secret key) (2.1)

Where F () is some pseudorandom function, Prefix is the network prefix, Net Iface

is some identifier for the network interface for which the address is being computed,

Network ID an optional parameter that describes some network identifier (an example

is given as the service set identifier (SSID) for 802.11 networks), DAD Counter a

counter which is initialised as 0 and increments for each time the duplicate address

detection mechanism is triggered, and finally, a secret key of at least 128 bits that

must be initialised as a pseudorandom number (Gont, 2014).

Although Gont (2014) adheres to the recommendation of RFC-4291 (Hinden &

Deering, 2006) and expects that any address other than that beginning with binary

digits 000 to have a 64 bit network mask, the algorithm allows for arbitrarily sized

IID s to be generated by taking 128 � n bits, where n is the network size, from the

RID to use as the IID. Bits are taken from the RID starting from the least significant

bit (Gont, 2014). This results in semi-permanent addresses, that change per network

prefix, are persistent and therefore do not expire with each network prefix. This is in

contrary to the privacy extensions defined by Narten et al. (2007) in RFC-4941 which

24

are temporary addresses that are designed to be disposed of after a period interval or

conclusion of a network session. According to RFC-7217 (Gont, 2014), this address

construction method generates high entropy IIDs.

Other high entropy address construction schemes exist. Most notably are the CGAs

mentioned above, that were defined in RFC-3972 (Aura, 2005). These addresses are

constructed using the upper order bits of a device’s public key. RFC-5535 (Bagnulo,

2009) proposes a standard for Hash-Based Addresses (HBAs), which proposes that

IIDs should be constructed through cryptographic hashing. The commonality with the

cryptographically generated IIDs and those that are generated through a randomisation

function is that they all exhibit high entropy, seemingly random structures. From

an outside perspective it would seem as though this style of address would provide

resistance or protection from host enumeration strategies. However, it would depend

on the seed and algorithm used to generate the address, and with a great enough sample

size, a threat actor may be able to predict IID generation.

For the purpose of this research, any address construction types that generate high

entropy addresses are classified as stochastically generated. From the perspective of

a casual observer, there is no way to categorically determine the exact method of

construction of high entropy IIDs, since they appear to be, for all intents, random.

2.2 Host enumeration search algorithms

Host enumeration refers to the locating of networked nodes (i.e. network enabled

devices) on computer networks. Enumeration is often undertaken to determine pre-

cisely what devices are connected or communicating on a computer network. It is

important to understand the search algorithms that underpin common host enumera-

tion strategies. Although host discovery has existed for many years, with the first tools

to conduct host discovery dating back to Schemers (2012)’s fping in 1992 (currently

maintained by Schemers and Schweikert (2014)), there are few search techniques that

have been tested. The major search techniques that have historically been used for

this purpose are linear searching and randomised searching.

25

2.2.1 Linear search

The linear search algorithm (otherwise known as sequential search, brute force, or

exhaustive search) is a simple and commonly used technique for searching through

arbitrary, discrete address spaces. A linear search generally commences from the first

item in an address space, and then continues to increment until either the search

condition has been met, or the address space is exhausted. A linear search has a

worst-case performance of O(n), meaning that it scales linearly depending upon the

size of n. For large address spaces, therefore, exhaustive linear scans are ine�cient. In

such situations heuristics can be introduced in order to reduce the scope of the linear

search. This method is used by tools such as Hauser (2006)’s alive6 to restrict the

search scope to target addresses that have a higher probability of being assigned to

networked devices.

Linear searching is a popular choice for o↵-link host discovery, especially against

IPv4 networks. Most of the common tools used for host discovery implement some form

of linear search (the exception being masscan and ZMap). A likely explanation for this

is due to the simplicity of the algorithm. Linear search algorithms are uncomplicated to

implement into computer programs. Also, linear searching generally does not require

maintaining large state tables to determine where the algorithm has searched. This

information can be inferred by assessing the current address that is being searched. The

most notable examples of network enumeration tools that employ linear searching are

nmap, fping, ARP-scan, alive6 and chiron. These tools generally provide a means

for users to search a range, or multiple ranges of addresses which will be searched

sequentially.

Atlasis (2014) introduces an open source tool called the Chiron IPv6 suite con-

taining a program used to scan IPv6 addresses and networks. This scanning program

uses two main methods to enumerate IPv6 nodes; first, the program attempts to per-

form linear searches of user-specified address ranges; second, the program conducts

“smart” scanning by testing addresses using permutations of wordy su�xes, such as

face, b00c, beef, etc. (Atlasis, 2014) in a similar fashion to Hauser (2014) (see

Section 2.2.3).

26

Sequential searches can be combined within a single host enumeration attempt. In

such cases an agent may choose to target networks sequentially. Whilst only searching

specific host addresses in those networks. This strategy has been termed reverse IP-

sequential searching by Leonard and Loguinov (2010). As an example, when performed

against some IPv4 networks, an agent may choose to only target addresses one to

ten in every standard 24 bit subnetwork (so *.*.*.1-10). Such sequential search

patterns are o↵ered by tools such as nmap. A similar search in IPv6 might resemble

aaaa:1:1:0-ffff::0-ffff, which would enumerate every host address from 0 to ffff

in every network from aaaa:1:1::/64 to aaaa:1:1:ffff::/64.

Binary search (also referred to as bisectional search or logarithmic) is an algorithm

that can e�ciently locate an indexed item in a sorted array of values. Binary search

has a worst case performance of O(log n) and is e�cient at searching an ordered list or

array for a particular value (Knuth, 1998, pp. 409-417). A cursory consideration would

suggest that binary search would be a viable approach to performing IPv6 host enu-

meration as an alternative to sequential searching, but the nature of the problem defies

the algorithm. Binary search techniques are inappropriate for usage in host enumera-

tion problems because the targets are functionally independent. Performing a greater

than or less than comparison between functionally independent discrete addresses is

not logical. Consequently this algorithm was ruled out for testing in this research, as

it isn’t suited to the task of host enumeration.

2.2.2 Randomised search

Randomised searching became a desirable strategy once Internet-wide searching be-

came viable. With randomised searching, randomisation algorithms are employed to

shu✏e the order of the targets in the address space. Performing host enumeration in

this fashion has some real-world benefits. Primarily by distributing probes over the

entire address space, rather than sequentially probing hosts, the initiator of the host

enumeration exercise can avoid overloading target networks that operate sequential

resources with probes (Graham, 2013c; Durumeric, Wustrow & Halderman, 2013a),

preventing accidental denial of service (DoS) attacks. Likewise, it may also allow the

enumeration to remain covert, avoiding detection from intrusion detection systems.

27

There are also disadvantages to employing randomisation functions to host discov-

ery. A search requiring randomisation is generally going to be more computationally

expensive than a linear search. Depending on the randomisation function used, the

computational overhead could be significant. Simple randomisation techniques such as

encoding values may not add significant overhead. However, employing cryptographic

algorithms may. Additionally, with randomisation, maintaining state is an important

consideration to prevent duplication of probes, which amount to wasted probes. Again,

this problem can be solved algorithmically using permutation-based approaches (see

Section 2.2.2.1 or Section 2.2.2.4 for examples of randomised search algorithms that

require maintaining minimal state).

Finally, randomisation functions make it di�cult to target arbitrary address ranges,

or exclude addresses from search attempts. These are also mostly solved problems as

well. Excluding addresses from search e↵orts can be achieved by simply performing a

blacklist lookup prior to probing (e.g. checking that the target to be probed does not

exist in the blacklist). Targeting arbitrary ranges of addresses is more complicated and

must be specifically designed into the algorithm if it is to be achievable.

The coming sections detail the randomisation functions that have been utilised in

major host enumeration tools.

2.2.2.1 Generalised-Feistel cipher randomisation algorithm

masscan (Graham, 2013b, 2013c) is a network discovery application that is capable

of transmitting up to 25 million IPv4 packets per second (pps) on a 10 gigabits per

second (gbps) network connection Graham (2013c). Currently masscan only supports

searching the IPv4 address space, and does not support IPv6. masscan gains its per-

formance advantage by using asynchronous sending and receiving of probes, which is

to say, it will continuously send a probe (e.g. TCP SYN segments for a half-open scan)

and handle the responses (e.g. the TCP SYN/ACK segments) as they arrive. This is

contrary to how applications such as nmap operate, in that they will send a probe and

wait for a response, or the appropriate timeout period before sending the next probe.

In addition to asynchronous probing, masscan gains a performance improvement

over other utilities (such as nmap) by bypassing the underlying kernel of the operating

28

system, and delivering packets directly to the network hardware. Part of the success

of masscan comes from its reimplementation of the IP and TCP protocol stacks, from

within the application, rather than relying on the OS implementation of these pro-

tocols. By operating entirely through raw sockets, the application is able to reduce

the overhead used by these protocols by processing only packets relevant to the search

exercise and ignoring other superfluous data streams. These techniques aren’t neces-

sarily relevant to the research topic, but may influence future research strategies used

for conducting host enumeration against live IPv6 networks.

Of particular interest and relevant to this thesis is masscan’s (Graham, 2013c)

randomisation function. In order to reduce the load on target networks, masscan per-

forms an exhaustive search using a randomisation function. The function masscan

uses to randomise the order of target IPv4 addresses is based upon the cryptographic

‘Generalised-Feistel Cipher’ detailed in Black and Rogaway (2002). The modified ver-

sion of the Generalised-Feistel cipher that was used in Graham (2013b) has been re-

ferred to as the “BlackRock” algorithm. The Generalised-Feistel cipher applies a form

of encryption to indices in a range of addresses, and then applies a modulus operation

to ensure that the result is within the bounds of the address space.

The Generalised-Feistel cipher is broken into two separate algorithms; the encryp-

tion (encipher) algorithm, which is depicted in Algorithm 1 and the decryption (de-

cipher) algorithm, which is displayed in Algorithm 2. In Graham (2013b), the author

chooses to use a modified data encryption standard (DES) operation as the crypto-

graphic algorithm.

The algorithm works by performing a sequential search of the address space, but

rather than probing each address, an encryption function, outlined in Black and Rogaway

(2002) (see Algorithm 1), is applied. A set of numbers (M) between 0 and k represents

the number of targets to be probed. For each target address (m) in M , the encryption

function is applied. The resulting randomised address (c) is then checked to ensure it

exists within the address space that is being searched. If it does not exist within the

appropriate address space, the iteration continues. Otherwise the resulting encrypted

address (c), is treated as the target for the search operation, and probing is conducted.

In addition, this operation provides a cost e↵ective method of resuming a search op-

29

Algorithm Fe[r, a, b]
K

(m);
c fe[r, a, b]

K

(m);
if c 2M then

return c;
else

return Fe[r, a, b]
K

(c);
end
Algorithm fe[r, a, b]

K

(m);
L m mod a;
R m/a;
for j 1 to r do

if (j is odd) then
tmp (L+ F

j

(R)) mod a;
else

tmp (L+ F
j

(R)) mod b;
end

end
L R;
R tmp;
if (r is odd) then

return aL+R;
else

return aR+ L;
end

Algorithm 1: Generalised-Feistel Cipher adapted from Black and Rogaway (2002).
For this cipher (Fe[r, a, b]), m represents a set [0, k � 1], r is the number of rounds
used within the Feistel network, and a and b are positive numbers such that ab = k
(Black & Rogaway, 2002). These functions implement the encipher operation on the
data.

eration, provided that the last searched address is recorded along with the encryption

key. Resumption can be then accomplished by performing the deciphering operation

described in Black and Rogaway (2002) (see Algorithm 2). This operation will return

the index value that was used as the last target.

2.2.2.2 Linear congruential generator randomisation algorithm

A linear congruential generator (LCG) is a method that can be used to generate pseu-

dorandom numbers in pseudorandom number generators (PRNG). LCGs have the po-

tential to be full cycle algorithms, which is to say that they can generate every valid

discrete number between 0 and n, where n is the size of the generator.

nmap (G. F. Lyon, 2009) uses an LCG to create a range of target IP addresses,

in order to randomise the order of probing. This randomisation function is executed

30

Algorithm Fe[r, a, b]�1
K

(m);

c fe[r, a, b]�1
K

(m);
if c 2M then

return c;
else

return Fe[r, a, b]�1
K

(c);
end

Algorithm fe[r, a, b]�1
K

(m);
if (r is odd) then

R m mod a;
L m/a;

else
L m mod a;
R m/a;

end
for j r to 1 do

if (j is odd) then
tmp (L� F

j

(R)) mod a;
else

tmp (L� F
j

(R)) mod b;
end

end
R L;
L tmp;
return aR+ L;

Algorithm 2: Generalised-Feistel Cipher adapted from Black and Rogaway (2002).
For this cipher (Fe[r, a, b]), m represents a set [0, k � 1], r is the number of rounds
used within the Feistel network, and a and b are positive numbers such that ab = k
(Black & Rogaway, 2002). These functions implement the decipher operation on the
data.

when the program is invoked with the -iR switch. This LCG (which is visible in

the program’s source code in the file nbase/nbase_rnd.c (G. Lyon, 2015)) has been

adapted and is included in Algorithm 3. The magic numbers used within the source

code are explained to be constants from the Numeric Recipes book, as well as constants

from glibc and Quick C/C++ (G. Lyon, 2015). The algorithm only requires that five

variables are persistent between calls to the function in order to complete the LCG

cycle. This enables the algorithm to resume state between runtimes, provided the

State, Tweak1, Tweak2, Tweak3 variables are recorded, and the StateInit flag is set

to a boolean True value (i.e. 1).

A similar technique was used in the Witty worm’s propagation which a↵ected over

12,000 computers in 75 minutes in 2004 (Kumar, Paxson & Weaver, 2005). According

31

Data: State, Tweak1, Tweak2, Tweak3
Result: A random unsigned integer 0 n < 232

StaticStateInit 0;
// If State hasn’t been initialised, initialise it to a random 32

bit integer, along with the other tweak modifiers.

if !StateInit then
State Rand(0, 232);
Tweak1 Rand(0, 232);
Tweak2 Rand(0, 232);
Tweak3 Rand(0, 232);
// Set flag to ensure this routine is not called again

StateInit 1;

end
Output State;
State (((State⇤1664525)&0xFFFFFFFF)+1013904223)&0xFFFFFFFF ;
// Round 1: rotate Output and XOR against Tweak1 modifier

Output ((Output << 7)|(Output >> (32� 7)));
Output Output⌦ Tweak1;
// Round 2: rotate Output, subject it to an affine transform and

finally XOR against Tweak2 modifier

Output
(((Output ⇤ 1103515245)&0xFFFFFFFF) + 12345)&0xFFFFFFFF ;
Output ((Output << 15)|(Output >> (32� 15)));
Output Output⌦ Tweak2;
// Round 3: rotate Output and XOR against Tweak3 modifier

Output (((Output ⇤ 214013)&0xFFFFFFFF) + 2531011)&0xFFFFFFFF ;
Output ((Output << 5)|(Output >> (32� 5)));
Output Output⌦ Tweak3;
return Output;

Algorithm 3: The linear congruent generator used in the nmap program (specifically
in the file nbase/nbase_rnd.c) (G. Lyon, 2015; G. F. Lyon, 2009). The randomisa-
tion function makes use of magic numbers to ensure that output is random, unique
and that the LCG comes full cycle.

to Kumar et al. (2005), Shannon and Moore (2004) and Graham (2012) this randomisa-

tion technique contained a fundamental flaw in the way the LCG was used. The error

was introduced when, rather than generating a random number using 32 bits, which

would be required to guarantee the LCG would permute the entire IPv4 address space,

the authors of Witty performed a concatenation operation on two 16 bit integers. The

two 16 bit integers were acquired by taking the most significant 16 bits returned from

a PRNG function. The flaw is evident in Step 3 of the derived pseudocode for the

reverse engineered program (Kumar et al., 2005), reproduced in Equation 2.2.

32

3.dest ip rand()[0···15]||rand()[0···15]; (2.2)

By generating the randomised target IP address thusly, the authors inadvertently

reduced the address space to be targeted, and introduced duplication to the algorithm.

It can be seen from this example that care must be taken when designing and imple-

menting randomisation functions to ensure that the algorithm functions correctly.

2.2.2.3 RC4 cipher randomisation algorithm

nmap also utilises another randomisation function which involves an RC4 cipher when

the program is executed with the –randomize-hosts switch. The fourth Rivest cipher

(RC4), named after its creator Ronald L. Rivest (Rivest & Schuldt, 2014), is a cryp-

tographic stream cipher that is typically used to encrypt and decrypt arbitrary data

streams.

With this particular implementation, an array is shu✏ed in memory using the

cryptographic cipher, altering the positions of the elements. The algorithm achieves a

randomised distribution of the target addresses stored in the array. The execution of

this approach in nmap has limitations, since the randomised array of IP addresses is

maintained in resident memory throughout the runtime of the application. According

to Graham (2013a) the function that is used only allows the checking of 16,384 hosts

at a time. This approach has been criticised by Graham (2013a) and Graham (2013c)

as being inflexible and memory intensive. According to G. Lyon (2015) this algorithm

is also subject to the ‘Birthday Paradox’ which means it is susceptible to producing

duplicate addresses and that the probability of a duplication will increase with every

address checked.

2.2.2.4 ZMap’s randomisation algorithm

ZMap (Durumeric et al., 2013a, 2013b) is another high performance host discovery pro-

gram. Similarly to masscan, ZMap currently only supports searching the IPv4 protocol’s

address space. To gain a performance advantage ZMap uses raw sockets for probe gen-

eration and delivery. Using raw sockets is preferred in this case because it allows ZMap

33

to bypass the OS kernel, and prevents unnecessary lookups and checks from being

conducted. Also similarly to masscan, ZMap relies upon a randomisation function to

determine the order of address probing. The function ZMap uses relies upon the nature

of multiplicative groups and modulus arithmetic operations to achieve an exhaustive,

deterministic, non-sequential and cyclical permutation of the target address space. In

e↵ect this means that the algorithm will generate a target address list that covers every

address in the 32 bit target address space, except address 0 (ip address 0.0.0.0), in a

pseudorandom fashion.

ZMap’s randomisation algorithm can be deconstructed into the following stages:

1. Choose a prime number, slightly larger than the address space. In the case of

Durumeric et al. (2013a) the authors pick p = 232 +15 as the first prime number

above 232 (which represents the size of the IPv4 address space).

2. Calculate and select a primitive root for the prime number p using a method such

as that which is described in Weisstein (n.d.).

3. Begin with a random address in the address space. Starting from a random

point in the address space is not essential. However, when initialised with di↵er-

ent primitive roots, a randomised starting position allows for di↵erent sequence

permutations of the address space.

4. If the target address is less than the size of the address space, then probe the

target address.

5. Update the target such that Target = (Target ⇤ PrimitiveRoot) mod p.

6. If the updated target address is equal to the first address that was tested, then

the algorithm has completed a cycle and can be concluded, or the cycle can

commence again.

A modified version of the algorithm used in Durumeric et al. (2013a) is included in

Algorithm 4.

This algorithm is less computationally expensive than the Generalised Feistel al-

gorithm described in Graham (2013b), Black and Rogaway (2002). The ZMap ran-

domisation algorithm performed six times faster than the Feistel algorithm in a sample

34

Data: AddressRange, PrimitiveRoot, p, FirstTarget
Result: A cyclical, deterministic, non-sequential permutation of the address

space to be searched
AddressRange (264)� 1;
// AddressRange refers to the end address in the target address

space that is the subject of the search effort. E.g. if it is

intended to search between address 0 and address 264 exclusive,

the AddressRange would equal 264

p NextPrime(AddressRange);
PrimitiveRoot GetPrimitiveRoots(p);
FirstTarget Rand(1, AddressRange);
Target FirstTarget;
while True do

if Target AddressRange then
Probe(Target);

end
Target ((Target ⇤ PrimitiveRoot) mod p);
if Target == FirstTarget then

Break;
end

end
Algorithm 4: Adaptation of the algorithm used for the cyclical permutation al-
gorithm in Durumeric, Wustrow and Halderman (2013a). The algorithm provides a
means to randomly traverse a target address space without probing any addresses
more than a single time.

test conducted by the author, using Python-based implementations of each algorithm.

In these tests it was determined that 1000 address mutations were performed in 0.005

and 0.030 seconds for the ZMap algorithm and the Generalised Feistel algorithm re-

spectively. Similarly to the LCG and the Generalised Feistel algorithm, the algorithm

also provides a means to resume search operations that requires recording only the

FirstTarget, Target, p and PrimitiveRoot variables.

2.2.3 IPv6 IID pattern search techniques

The common hexadecimal string representation of IPv6 addresses introduces a vector

for potential patterns to occur in addresses. As mentioned in Section 8, the hexadecimal

characters 0-9 and a-f can be manipulated to create natural language words. For

example, the hexadecimal words 0xbeef and 0xb00c can be used to resemble the

words ‘beef’ and ‘book’ respectively. It has been noted that these patterns are actively

being used in address construction in real-world IPv6 deployments. Specifically these

35

patterns were identified in Carpene and Woodward (2012), where it was shown that

organisations were using these hexadecimal word substitutions in their IPv6 addressing

scheme.

The Hacker’s Choice IPv6 toolkit (THC-IPv6) is an application suite geared towards

malicious usage of the IPv6 protocol stack. In this suite a utility called alive6 can be

used to search an IPv6 network (Hauser, 2006). alive6 uses a combination of searching

common hexadecimal word substitution patterns and low range incrementation of IIDs

to significantly reduce the target address space. Also, as previously mentioned, in

conjunction with a linear search, chiron (Atlasis, 2014) also performs a ‘smart scan’

whereby it will attempt to address devices using hexadecimal word substitutions. The

search mode will take a list of hexadecimal ‘word’ strings and perform a multi-choose to

construct addresses using them. For example, if the hexadecimal words face, b00c,

beef, cafe were included it would generate IPv6 addresses of all 256 combinations of

the hexadecimal words as partially depicted below:

• ::face:face:face:face

• ::face:face:face:b00c

• ::face:face:face:beef

• ::face:face:face:cafe

• ::face:face:b00c:face

• ::face:face:b00c:b00c

• ...

• ::cafe:cafe:cafe:beef

• ::cafe:cafe:cafe:cafe

These addresses form the target list for the search attempt, and are then exhausted

sequentially. This approach to searching has not undergone rigorous testing, but shows

promise as a heuristic search method for IPv6.

36

2.3 Host enumeration methods

With an understanding of the common search strategies used within host enumeration

strategies, discussion can move to focus on the methods themselves. Host enumeration

methods can be classified into two major categories; active enumeration and passive

enumeration. Active enumeration (or direct enumeration) involves the explicit probing

of target systems, and recording responses to enumerate devices. Examples of strategies

used for direct enumeration include ping sweeps, ARP scans, Neighbour Discovery

Protocol scanning, TCP SYN scanning, etc.

Passive enumeration (or indirect enumeration) involves enumerating devices through

means that do not require the direct probing of target systems. As an example, us-

ing passive reconnaissance strategies to listen for network communications between

devices, or through querying Domain Name System (DNS) or SNMP about poten-

tial hosts. This research is primarily focused on active enumeration. However, for

completeness, passive enumeration methods are also discussed.

The two categories of enumeration, along with the components of each, and common

methods used are included in Table 2.2.

Table 2.2: A dissection of the major categories of host enumeration, active and passive enumeration, including
the components and common methods used for each.

Active enumeration Passive enumeration

Description Probes target system(s) directly,
recording responses to enumerate
devices.

Harvests information from ancil-
lary sources to enumerate devices

Components • Target address space
• Probe target
• Search algorithm
• Protocol
• Payload

• Reconnaissance subject
• Reconnaissance object
• Protocol
• Payload

Major methods ARP scanning, ICMP echo prob-
ing, ICMP NIQs, TCP port scan-
ning

Passive network monitoring, Web-
site scraping, DNS enumeration,
SNMP querying, Reconnaissance
from network services

2.3.1 Active enumeration methods

A framework describing the components of active host enumeration exercises is, thus

far, absent from the literature. This thesis o↵ers a five component model for classifying

37

active host enumeration methods. These five components to conducting active host

enumeration exercise are:

1. The target address space. The target address space is the range (or ranges) of

addresses that are valid targets for the host enumeration exercise. In the case

of this research, the target address space is a single 64 bit IPv6 subnetwork (i.e.

the network ::/64). In other host discovery e↵orts, such as those against IPv4

networks, the target address space may be di↵erent. Note that the target address

space determines whether the e↵ort is on-link or o↵-link.

2. Probe targets. Elements in the target address space range. Not to be confused

with the target address space, this refers to the delivery address of probes. The

distinction is made, since the target address may di↵er from the target address

space in cases that involve leveraging special addresses (such as the on-link meth-

ods discussed below).

3. The search algorithm. The search algorithm is the feature of the host enumera-

tion exercise that determines the order in which targets are probed. The search

algorithm can be deterministic in nature or stochastic. The commonly used al-

gorithms, such as linear searching and randomised searching, were discussed in

Section 2.2. Algorithms with potential for the task that have yet to be tested

will be discussed in Section 2.3.4.

4. The protocol. The protocol relates to the actual protocol used to deliver the

probe and receipt a response. Examples of protocols for probing include ICMP

Echo Requests, TCP SYN segments, ARP requests, etc.

5. The probe payload. Probe payload refers to the contents of the probe. In some

cases a generic payload may be used, in other cases specifically crafted payloads

may be used. The payload can be used to test for specific vulnerabilities in

services, or trigger specific responses from devices to ascertain whether a host

is alive. Examples of payloads include randomised data or specifically crafted

HTTP GET requests.

38

2.3.1.1 Address resolution protocol scanning

As previously mentioned, on-link host enumeration refers to host discovery that is

performed on a single link layer network and broadcast domain. Consequently, on-link

strategies have access to techniques that are not available to o↵-link actors. Whilst

it is feasible for on-link actors to utilise o↵-link strategies as well, there are generally

more e�cient options.

ARP is a protocol that resides at layer 1 of the TCP/IP model. It is used to map

link layer addresses to network layer addresses for communications between devices par-

ticipating in IPv4. Since link layer broadcast addresses instruct link layer networking

equipment (such as network switches) to deliver frames to all connected nodes within

a broadcast domain, this facility can be leveraged to deliver probes to all devices on a

network.

An ARP ping is an example of a technique that leverages link layer broadcasts.

Typically this method will involve a device broadcasting an ARP request query for a

target network layer address. A device who owns the requested IP address will reply to

the query with their MAC address. These replies can then be recorded to enumerate

devices. By sending consecutive ARP requests that exhaust every possible IP address

on the network, an agent can enumerate devices. The ARP ping strategy is employed

in the tool arping (Habets, 2009).

2.3.1.2 Neighbour discovery protocol scanning

NDP replaces ARP in IPv6 and provides similar facilities for determining alive nodes

on a local network, using ICMPv6 to transfer messages. Similarly to ARP, an IPv6

enabled device can solicit other devices on a network to determine who has a particular

address. In IPv6 this is accomplished through the use of ICMPv6 messages.

In particular neighbour solicitation (NS) requests can be sent by nodes to the link-

local all-nodes multicast group (ff02::1). IPv6-enabled devices will then respond

with their link-layer address. This enumeration method is one of the common methods

that the literature suggests using for on-link IPv6 host enumeration, and is utilised in

the chiron suite (Atlasis, 2014), nmap (G. F. Lyon, 2009), and THC-IPv6 suite’s alive6

39

(Hauser, 2014). There are also other multicast group addresses used by NDP that are

interesting for an agent to probe, such as the all-routers address (ff02::2), or the

all-dhcp-agents address (ff02::1:2). A full taxonomy of the link-local multicast

groups reserved by IANA for IPv6 is included in IANA (2015).

2.3.1.3 ICMP echo probing

ICMP defines a standard for probing hosts using echoes. Except where relevant to

di↵erentiate, ICMP will refer to both the ICMPv6 protocol and the Internet Control

Message Protocol version 4 (ICMPv4) protocol hereafter. By employing this strategy,

a device can send another device an echo request, and wait for the corresponding echo

reply. If the response is received in a timely fashion the device is said to be active.

Applications, such as the ping and traceroute utilities, employ this strategy to assist

in diagnostic processes. It should be noted that in real-world situations ICMP echo

probing is a relatively naive method of determining a node’s status. ICMP echo prob-

ing is considered to be unreliable due to the fact that, in some cases, ICMP packets are

outright denied by network policies which result in false negatives. Network adminis-

trators may choose to filter ICMP tra�c as a security through obscurity measure in

an attempt to hide devices on their network. Additionally, edge or perimeter devices,

such as routers and firewalls, might respond to ICMP echoes on behalf of devices on

their network, thus creating false positives. This technique is another example of se-

curity through obscurity. Finally ICMP might be rate-limited on any intermediary

device between the source and destination network nodes, providing erroneous latency

results, or causing erroneous timeouts.

One common host discovery technique that uses ICMP is the ping sweep. A ping

sweep involves sending ICMP Echo requests to a range of IP address on a network seg-

ment and recording the responses. The ICMP ping sweep (amongst other techniques)

is used in the network mapping utility nmap (G. F. Lyon, 2009). Another common

method for on-link discovery involves the network layer IPv4 broadcast address. In

IPv4 the last IP address in a network (where the host bits are all set to 1) is a reserved

address known as the broadcast address. The broadcast address delivers packets to all

addresses on a subnetwork. By sending a request to the broadcast address there is the

40

possibility that a number of, if not all of the devices on an IPv4 network will reply.

As previously mentioned, in IPv6, the all-nodes group includes all IPv6 enabled

nodes on a network. An agent can exploit this by sending probes to the multicast group

address, using for example ICMPv6 echo requests, to which each node should respond

with an echo reply. There are also other standard groups for link-local devices; the

all-routers, which can be probed in a similar fashion. These methods are utilised in

tools such as THC-IPv6’s alive6, and nmap to conduct on-link enumeration of IPv6

network nodes, and are the most e�cient means of enumeration for on-link devices.

2.3.1.4 ICMP node information queries (NIQs)

Additionally, ICMPv6 includes IPv6 NIQs which are defined in RFC-4620 (Crawford

& Haberman, 2006)) that allow on-link IPv6 devices to discover their neighbours.

The protocol could be extended to respond to public NIQs. However, it is explicitly

stated by Crawford and Haberman (2006) that this functionality should be disabled

by default. The recommendation is made due to the security implications of exposing

a potential reconnaissance interface to public IPv6 networks. The complexity of host

enumeration e↵orts would be reduced if NIQ were permitted from public networks.

As an example, an agent could send specifically crafted queries to routing devices and

record the responses of connected devices.

2.3.1.5 TCP port probing

Another technique commonly used to determine whether or not a node is alive on a

network is through service probing. Service probing refers to the act of initiating a

TCP connection (using a SYN segment) with an IPv4/6 address and a port number

and listening for SYN/ACK segments. By querying commonly used service ports (such

as the HTTP port 80, or the HTTPS port 443), or ranges of ports on a particular host

(e.g. ports 1 to 1024), an actor can increase the likelihood of discovering a live device

(Kim & Solomon, 2010).

Completing a TCP three-way handshake is not required for an agent to determine

whether a port is open or not. As a result, the final stage of the three-way handshake

(returning an ACK segment) is generally omitted. This strategy is known as SYN

41

scanning or half-open scanning (Kim & Solomon, 2010). TCP port probing o↵ers an

alternative to ICMP ping scanning when a node doesn’t respond to ping requests,

or where the intention of the enumeration attempt is to determine whether or not

devices are listening for certain services. TCP SYN probing has been successfully used

in research projects, such as those detailed in Section 2.4.2. It is commonplace for

host enumeration and VA tools to provide a facility to conduct TCP port probing.

Applications such as nmap, ZMap, masscan, and nessus allow users to perform TCP

port probing as a probing mechanism.

An agent can also perform enumeration of TCP ports on a host in an e↵ort to

determine the ports it has open or is listening on. By probing a series of ports on a

single host an agent can enumerate all of the TCP ports that are listening for connection

attempts. TCP port enumeration, whilst outside the scope of this research, is an

important component of vulnerability assessments.

2.3.2 Passive enumeration methods

Passive enumeration methods are those that do not probe the target systems them-

selves, but rather employ other means to enumerate devices. This literature review has

identified four major components to passive enumeration strategies. These components

are:

1. The reconnaissance subject. The reconnaissance subject is the systems that are

being enumerated for information. The reconnaissance subject could be a net-

work, IP address, domain name, website etc. As an example, for this research

the reconnaissance subject is the IPv6 address space ::/64.

2. The reconnaissance object. The reconnaissance object is the device or system that

is being interacted with to gain information about the reconnaissance subject.

This could be an Ethernet switch on a computer network, a DNS server, a website,

etc.

3. The protocol. The protocol relates to the actual protocol that is used or examined

to gather information about the reconnaissance subject. The protocol could be

DNS, SNMP, HTTP, or Ethernet frames or IP(v4/v6) packets.

42

4. Payload. The payload is the data that is either sent or examined from communic-

ations to gather information. For example, in a DNS enumeration, the payload

may be a list of subdomains in a query. The response payload may be the answers

from the DNS server (the A or AAAA record depending on the reconnaissance

subject). In a passive network monitoring enumeration, the payload would be

the data held within packets that are interesting to the observer.

Generally, passive enumerations strategies rely on utilising third party systems. For

example, by querying DNS servers for potential subdomains, or by passively monit-

oring network transmissions. These strategies can be used to enumerate more than

just device IP addresses or available services. Zalewski (2005) postulates that passive

enumeration could be employed to enumerate subdomains, MAC addresses, website

resources, interface names/numbers etc. According to Glassman and Kang (2012),

passive enumeration that uses only publicly available information sources to enumer-

ate information about a target is referred to as open source intelligence (OSINT).

2.3.2.1 Domain name system enumeration

DNS is used to map human readable names to computer and network resources. That is

to say that a DNS server is used to convert domain names to IP(v4/v6) addresses. DNS

uses a server-client model to provide name resolution. Under the system, a client that

knows a particular domain name for an Internet resource can query a server which will

conduct a series of lookups (potentially involving referring the request to other servers)

and return the IP number associated with that name resource. The client can then use

the IP number to make a network connection as necessary.

This name resolution mechanism can be leveraged to enumerate network resources.

If an organisation’s network devices have been named and published to public DNS,

an agent can query the public DNS for potential host records and record the responses.

The DNS enumeration strategy is made less complex when administrators use predict-

able subdomain names for their network resources (e.g. www.domain.name for a website

or mail.domain.name for a mail server).

Another method of conducting DNS enumeration relies on requesting the zone file

43

from a DNS server in the form of a zone transfer. DNS zones are files on a DNS server

that contain the DNS records (including A records for IPv4, AAAA records for IPv6,

TXT records, SRV records, etc.) for all known members of a domain. DNS allows

clients to request copies of DNS zones from servers, which, if successful, allows clients

to copy all of the DNS records a server contains about a domain.

2.3.2.2 SNMP

The simple network management protocol (SNMP) is a protocol that is used to monitor

and manage networking equipment in a computer network. SNMP provides an inter-

face for administrators to request information from devices and also issue commands to

devices. SNMP can be leveraged to enumerate devices by querying SNMP-enabled net-

work devices for information such as the device’s ARP table, which contains the known

IPv4 address to MAC address mappings. For IPv6, an agent could query a device for

the items contained in the Table ipv6IfTable (registered OID 1.3.6.1.2.1.55.1.5)

which contains information about a device’s IPv6 interfaces, including their addresses

(Net-SNMP, 2011). Furthermore, the items contained in Table ipv6NetToMediaTable

(registered OID 1.3.6.1.2.1.55.1.12) include information about network addresses

to link layer addresses for IPv6 (Net-SNMP, 2011).

2.3.2.3 Website enumeration

If an organisation has a website, information can be gathered from the website to de-

termine other nodes on the organisation’s network. As an example, by extracting any

universal resource locators (URLs) from a company’s website, an agent might discover

other subdomains or domains belonging to the company. Subdomain information can

then be used in a DNS enumeration to obtain the IP numbers for the resources. Like-

wise, any exposed database connections, or asset locations on a website could provide

further information for the agent conducting the enumeration.

2.3.2.4 Passive network monitoring

Monitoring network transmissions for unique host addresses is another form of passive

host enumeration. Passive network monitoring may be used by network administrators

44

who are performing census style surveys on their network usage, rather than actors

who wish to determine the live nodes on their networks. Polcák (2014) discusses the

use of passive means to gather information about unique hosts, and will be further

detailed in 2.4.3.

On-link network enumeration can be conducted by passively monitoring network

transmissions on a broadcast domain. Unique IP address details can be collected from

the payload of network transmissions (such as from ARP requests), or from the source

or destination addresses of communications. Passive monitoring is an appropriate

enumeration strategy against IPv4 networks. Broadcast packets, which are delivered

to all nodes in a broadcast domain, are utilised by IPv4. IPv6 is more complicated.

With IPv6, heavy usage is made of multicast groups, since the protocol does not allow

broadcasting. Subsequently, less tra�c is generated that is intended to reach all clients.

In any case, passive network monitoring is still a viable method of passive enumeration

against IPv6 networks.

Alternatively, an agent may also be able to infer nodes on a network by passively

monitoring the network communications that ingress and egress a network segment.

These network communications will contain a source and destination address corres-

ponding to a device on the local network and potentially an o↵-link device or another

on-link device. By recording the unique addresses observed, an agent can eventually

determine the live devices on a network.

A functional network requires a variety of protocols to interoperate in order to

facilitate e�cient communications. Services such as DHCP and DNS can not only

provide network resources to client devices, but also act as potential information sources

to aid in enumeration attempts. As an example, DHCP is used to provide network

resources (including network address configuration) to clients. These messages may

be listened to by an agent to discover which addresses have been allocated to clients.

Protocols such as the Cisco discovery protocol (CDP), network time protocol (NTP),

etc., may also contain information about host devices within their payload, whether

that be the addresses of servers or clients. An agent that can eavesdrop on these

messages for a period of time may be able to infer a large amount of information about

the network design and the active nodes within it.

45

This enumeration strategy requires the actor to obtain a network vantage point

that positions them between the network of interest (i.e. the reconnaissance subject)

and an egress point. A vantage point could be acquired by connecting a wire tap, an

ethernet hub, or a computer, to the computer network, or it could involve hijacking

an intermediary device on the network. Specialised devices are also available that can

perform passive network monitoring for the purpose of host discovery and identification,

vulnerability monitoring and networked device profiles and usage baselines.

2.3.2.5 Open source intelligence (OSINT)

Public information repositories also exist to catalogue website addresses, vulnerable

hosts on the Internet, and even some popular IPv4/IPv6 addresses. These online

services can also be used as a means to garner information. Some examples of such

services include the passive DNS project, WHOIS, and ShodanHQ. Toolkits such as

Maltego can be used to gather open source information from a variety of sources, in

order to enumerate network devices, as well as other information about a reconnaissance

subject (such as email addresses, phone numbers, websites, other network services,

etc.).

2.3.3 Comparison between IPv4 and IPv6 o↵-link host enumeration

At present there exists a number of methods by which to enumerate hosts within an

o↵-link IPv4 network, such as those described in Graham (2013c), Durumeric et al.

(2013a), and G. F. Lyon (2009). Leonard and Loguinov (2010) also discuss many of

the common search methods used for host enumeration in IPv4 and identify the linear

search, randomised search, and the reverse ip-sequential search as methods used to

enumerate IPv4 networks.

Of the methods available to IPv4 host enumeration, the literature suggests that the

linear search has been applied to the IPv6 realm in Hauser (2006) and Atlasis (2014),

but has yet to be validated. In addition to the linear search, IPv6 tools are available

that abuse the nature of hexadecimal numbers to search possible IPv6 addresses that

may contain hexadecimal words. Little other literature exists that addresses methods

that may apply to o↵-link IPv6 host enumeration, and the literature that is available

46

suggests that such e↵orts are futile.

These claims are discussed in Chown (2008) and Durumeric et al. (2013a). Chown

(2008) proposes that since the address space for IPv6 is so vast, it is infeasible to at-

tempt host enumeration. Durumeric et al. (2013a), elaborate further, and make specific

mention of the notion that IPv6 searching methodologies are not currently available

or mature enough to facilitate Internet-wide scanning against the IPv6 protocol. The

authors make the assumption that the strategies used in ZMap to enumerate the IPv4

address space would not su�ce when applied to the IPv6 address space.

Leonard and Loguinov (2010) also conducted research into finding the most e�cient

delivery methods for performing enumerations across the entire 32 bit address space.

With this study, the authors take into consideration known information about the

allocation of IPv4 addresses by the governing number allocation authority (IANA)

published in IANA (2014a). This allows them to eliminate areas of the address space

that are either unallocated or unused for public purposes, and create a subset of the

address space that encompasses the most appropriate target addresses. Since IPv4

does not provide the same clear distinction between the host portion of an IP address

and the network portion that IPv6 does, any host in the remaining subset is a potential

valid target. Leonard and Loguinov (2010) address two of the major problems with

host enumeration techniques; reducing the scope of the address space; and choosing

the transport medium for probes.

This study di↵erentiates significantly from the research conducted by Leonard and

Loguinov (2010) since this research is concerned with the host portion of the IPv6

address space. The IPv6 address space is not governed by the same address assignment

policies as IPv4 is. Consequently, in a single 64 bit subnet, any discrete address could

be a valid host. If the research was concerned with enumeration of IPv6 networks,

or the entire IPv6 Internet, Leonard and Loguinov (2010)’s work provides a valid

foundation for conducting the research. Secondly this research is not concerned with the

transmission mechanism for delivering probes. This research aims to provide methods

for performing host enumeration or searching large discrete spaces. The protocol or

payload used to probe or test hosts is not considered within the scope of the research.

It is apparent from the available literature on the topic that conventional approaches

47

are not appropriate for IPv6 host enumeration. Exhaustive searching (of either subnet-

works or the entire address space), as is popular and commonplace with IPv4 host enu-

meration tools and strategies, is simply not possible with current computing resources.

Any strategies that have been developed to address the problem must consider this

limitation. Hauser (2014) and Atlasis (2014) accepted this limitation, and reduced the

scope of their search e↵orts through searching a subset of the address space. Translating

IPv4 host enumeration strategies provides one such means of addressing the problem.

However, perhaps a di↵erent approach and perspective is required. Machine learning

systems may provide some recourse for IPv6 host enumeration strategies. Thus far,

learning or decision making systems have not been tested in this problem domain.

2.3.4 Machine learning and host enumeration

Machine learning systems refer to systems that learn from input data, and use this

acquired knowledge to make decisions about supplementary data. Machine learning

can be achieved using either supervised or unsupervised learning methods (scikit-learn

developers, n.d.). Under supervised learning a machine learning system is provided with

a sample of pre-classified training data, which is used to train the learning system. The

system can then be used to test against unclassified data. Unsupervised learning by

contrast, attempts to discover features in an unknown dataset, and does not require

training (Hastie, Tibshirani & Friedman, 2013).

There are four main problem domains that machine learning systems seek to as-

sist with; classification, regression, clustering and dimensionality reduction (Hastie et

al., 2013). Classification problems involve attempting to classify data into categor-

ies known in advance by features. Classification problems require supervised learning

strategies, and the outputs are discrete values. Regression problems also require su-

pervised learning strategies. Regression strategies do not output a discrete value, but

rather a continuous value. Clustering problems are akin to classification problems

in that they produce discrete outputs, except that they utilise unsupervised learning

techniques, and therefore do not require labelled data as inputs. Clustering methods

attempt to group data based on common features. Dimensionality reduction is an-

other unsupervised learning strategy that seeks to reduce the features of input data

48

to a smaller set of artificial features that retains most of the original data’s variance

(scikit-learn developers, n.d.). Dimensionality reduction can be used for exploratory

research into datasets, in order to determine strong or useful features as candidates for

the independent variables of other machine learning projects. Table 2.3 shows the four

main categories of machine learning system.

Table 2.3: Comparison of four main categories of machine learning, their output types, their learning process,
and their major purposes.

Machine learning
category

Output type Learning type Purpose

Classification Discrete class la-
bel(s)

Supervised Classifying data into known classes, or
group membership. Often used in sys-
tems that classify data, such as spe-
cies testing, email spam classifiers, etc.
(Hastie, Tibshirani & Friedman, 2013).

Regression Continuous value(s) Supervised Approximate a response from data or
make a prediction about data. Of-
ten used in prediction systems, such as
weather, stock prices, age testing, etc.

Clustering Discrete group(s) Unsupervised Clusters features together into cat-
egories, determining group membership
from unknown data. As an example,
clustering techniques have been used in
medical imaging systems to di↵erentiate
between tissue and blood, and in social
networking analysis to group members
and networks of friends or interactions
(Hastie, Tibshirani & Friedman, 2013).

Dimensionality re-
duction

Set of new features Unsupervised Reduces data features to most promin-
ent features, in an e↵ort to improve fur-
ther analysis. Dimensionality reduction
is often used in facial recognition and
image analysis systems (OTB Develop-
ment Team, 2014, pp. 555-559).

From these problem domains, one can identify areas where machine learning may

be appropriate to host enumeration. Classification of IPv6 addresses and in particular,

IPv6 IIDs has been successfully carried out by Carpene, Johnstone and Woodward (IN

PRESS). In this research a classification system was developed to classify IPv6 IIDs

into three discrete classes; EUI-64, Privacy extensions, or Manually generated. These

classes aligned with the IID generation schemes defined in de Velde, Popoviciu, Chown,

Bonness and Hahn (2008). The research tested trained naive Bayesian classifiers and

artificial neural network (ANN) and successfully classified over 95% of addresses. The

classification system could assist in host enumeration by determining the type of a

detected IID and influencing decision making about appropriate search techniques.

49

Machine learning processes could also aid in host enumeration by performing target

address generation for search algorithms.

Common machine learning systems include the ANNs, naive Bayes classifiers (NBC),

and evolutionary algorithms (EA). These systems are discussed in the coming sections.

2.3.4.1 Artificial neural networks

ANNs create a network of nodes (neurons) that correspond to the pathways in the brain

(Brownlee, 2011). In a typical Feed-Forward ANN, a number of nodes are designated

as input nodes, where data ingresses the neural network, and a number are designated

as output nodes. The output nodes represent the sink, or egress of the data after it

has traversed the neural network. The input and output nodes are then connected by

a series of weighted nodes known as the hidden layer (Yu & Tsai, 2011). These weights

are typically calculated randomly at first, and then optimised through the process of

learning.

With supervised learning, the learning process is completed by processing a known

dataset that has been correctly classified (i.e. the expected output is included with

each input), and then comparing the output data to the classification. Based upon the

di↵erences between the actual output data and the expected output data, an error value

is calculated. If the error value is acceptable, the system is considered to be trained

and can be used to test unknown datasets. If not, then the back-propagation process is

undertaken that involves retracing the steps through the neural network, and adjusting

the weights at each intermediary node until the output better reflects the expected

output (Brownlee, 2011). The network is recalculated and the error values reassessed

until satisfactory. The process of training is important in generating a useful ANN.

However, over training can also occur, and can result in potential false negatives when

testing real world datasets. Unsupervised learning uses a similar process, although

the training process varies since the network must discern input patterns without the

assistance of pre-classified data (Brownlee, 2011).

In this research, neural networks were used in a classification system that was

described in Carpene et al. (IN PRESS). Carpene et al. (IN PRESS) determined the

e�cacy of classifying IPv6 IID data into construction categories. The feed-forward net-

50

work was trained using supervised training and the back-propagation algorithm. The

ANN in Carpene et al. (IN PRESS) correctly classified 96.40% of the testing dataset,

although it took 29,398.108 seconds for the supervised training process to complete.

Once trained, testing data took 0.375 seconds. The results of the testing indicates that

the system is appropriate for classifying IPv6 IID data. The neural network classifica-

tion system has subsequently been adopted and utilised for this research.

2.3.4.2 Naive Bayesian classifiers (NBC)

NBCs use probability analysis to make decisions about data. The NBC is trained using

Bayes’ theorem, but di↵ers from conventional Bayes classifiers in that all identified

features are treated independently (Rish, 2001). As an example, classification may

reveal multiple features that comprise a result. NBCs have proven to be e↵ective

for usage in classification problems such as classifying text and diagnosing medical

conditions (Rish, 2001).

Rish (2001) conducted empirical testing on NBCs to determine the reason for ef-

ficacy. Rish (2001) determines that the characteristics of the NBC allows them to

be applied with reasonable success to problems of low noise (or low entropy), and

situations where classification classes can be reduced to a binary choice. In the real

world, NBCs have proven to be e↵ective in classification problems, most notably in

determining whether emails constitute spam (Schneider, 2003).

Carpene et al. (IN PRESS) implemented a classification system, using the multi-

nomial and Bernoulli NBCs, to classify IPv6 IIDs into classes representing their con-

struction types. The results of the classification was compared with that of an ANN.

Our prior research conclude that whilst the ANN performed classification more accur-

ately, the performance of the Bernoulli NBC was better, and the accuracy reasonably

high (94.94% accurate with a training time of 0.391 seconds and testing time of 0.449).

Although the NBC performed more e�cient classification, NBCs were not utilised in

this research in favour of the more accurate ANN-based classifier.

51

2.3.4.3 Evolutionary algorithms (EA)

Evolutionary algorithms (EA) are learning methods that are inspired by natural or-

ganic and biological processes (Yu & Tsai, 2011). A genetic algorithm (GA) is a form

of evolutionary algorithm that attempts to emulate the natural evolution of species by

performing mating, mutation and natural selection of data. The learning system begins

by accepting an initial population of members. Each member is tested for fitness by

some defined fitness function. The most fit members are then subjected to a mating

function to produce an o↵spring. The mating function generally involves a crossover

of parental attributes to produce an o↵spring candidate. A random mutation of the

o↵spring is applied. The o↵spring forms a new generation, and the process contin-

ues until some defined conclusion is met (e.g. the number of required generations is

exceeded).

EAs are often used to solve complex mathematical problems. Specifically, EAs such

as GAs have been successfully applied to many search-and-sort based problems such

as the one-max problem, the knapsack problem and the traveling salesman problem

(Brownlee, 2011). However, EAs have not been applied to the problem of host enumer-

ation. With o↵-link IPv6 host enumeration there is the potential that EAs might be

suitable for the problem. The unpredictability of EAs indicate that they may be able

to overcome some of the problems with host enumeration in such a vast address space.

That is to say that the introduction of random mutation may allow the searched target

addresses to maintain some semblance of closeness to one-another (e.g. not deviate too

far from the parent) whilst also allowing unpredictability to be introduced.

2.4 Host enumeration applicability and purposes

Host enumeration serves to aid in vulnerability assessments (VAs) as a means to locate

resources that can be checked for vulnerabilities. Beyond VA, host enumeration can be

used to locate nodes on a network for census purposes, or as an aid in troubleshooting

problems with networked devices. Additionally, host enumeration in a public scope

provides an avenue for research to be conducted. IPv4 host enumeration has generated

52

a number of significant research e↵orts and contributions to knowledge. Some of these

e↵orts are discussed in the following sections.

2.4.1 Vulnerability assessments (VAs)

VAs are exercises that agents undertake to determine the vulnerability profile of a

system. In this context, a system could be, amongst other things, an application (such

as a web-based application), a single server (a mail server, web server or database

server), or an entire network.

Braunton (2005) defines four major components to vulnerability assessments:

1. Baseline: determine and document the normal operations of the system. The

baseline must include the network baseline, including a full enumeration of net-

work devices, services, bandwidth, usage times, etc. Of the four VA components

this component is the most relevant to the research. The baseline phase defines

the host enumeration exercise that is the subject of this research;

2. Audit and assess: This phase involves performing an audit of the known assets

gathered from the baselining phase. The audit and assess phase has the assessor

detect and document discrepancies from the baseline expectations. Various tools

are available to assist with detecting, identifying and even exploiting vulnerabil-

ities in systems, some of which are included in Table 2.4;

3. Secure the environment: The secure the environment phase sees the assessor(s)

making security changes to the system in order to mitigate the detected vulner-

abilities, based upon some cost/benefit and risk analysis; and

4. Evaluate and educate: The evaluate and educate phase requires the assessor to

ensure security changes that are due to be applied are not further exposing the

system to threats. An emphasis on the education of users and administrators

is also placed. Education might include user training, lesson learned meetings,

VA debriefing or other engagement activities where stakeholders can be informed

about aspects of the VA proceedings (Braunton, 2005).

53

The first ‘baseline’ stage of the B.A.S.E (Braunton, 2005) VA methodology discusses

the use of host enumeration in an attempt to enumerate and catalogue assets. The

author places emphasis on conducting a thorough network enumeration, since rogue and

uncatalogued devices present a security threat to the owner of the network (Braunton,

2005). As can be seen from the B.A.S.E VA framework, host enumeration provides

a foundation for the entire assessment. A successful enumeration will provide the

assessment with a more complete picture of the network’s vulnerability profile.

2.4.2 Internet research

Although research surrounding IPv6 host enumeration e↵orts are not apparent in the

literature, IPv4 host enumeration has been used for a variety of research e↵orts. Spe-

cifically, recently IPv4 host enumeration has been conducted in the wake of the release

of major software vulnerabilities in common computer programs. The Heartbleed bug

that a↵ected the secure sockets layer (SSL) library OpenSSL in April, 2014, was sub-

ject to widespread scrutiny from the Internet community. Once the vulnerability was

discovered Internet-wide scans were performed to determine which hosts were vulner-

able (Durumeric et al., 2014). These findings have been published in Durumeric et al.

(2014) and reveal that approximately 55% of the Alexa top one million websites (Alexa

Internet, Inc., 2014) were vulnerable to exploitation using malformed OpenSSL heart-

beats. The author explains that the method they used to search for the Heartbleed

vulnerability was to modify the ZMap program to send the vulnerable heartbeat probe

to target devices, and then record the response (Durumeric et al., 2014). The under-

lying search technique was based upon a combination of ZMap’s randomising function

(see Section 2.2.2.4) which was used to query approximately one percent of the glob-

ally routable public IPv4 address space, as well as the Alexa top one million hosts

(Durumeric et al., 2014).

Similarly, Heninger, Durumeric, Wustrow and Halderman (2012) conducted re-

search where they performed an Internet-wide VA of weak RSA and DSA public keys.

Heninger et al. (2012) study assessed the entropy of RSA and DSA public keys, to

determine if the ostensibly random prime numbers used as seeds to the key generation

process could be factored. To conduct this research they enumerated live hosts on

54

T
a
b
le

2
.4
:
A

ta
x
on

om
y
of

h
os
t
en

u
m
er
at
io
n
an

d
v
u
ln
er
ab

il
it
y
sc
an

n
in
g
ap

p
li
ca

ti
on

s.
V
u
ln
er
ab

il
it
y
sc
an

n
er
s
ar
e
li
st
ed

al
on

g
w
it
h
th

ei
r
p
u
rp

os
e
an

d
th

e
al
go

ri
th

m
th

ey
im

p
le
m
en

t.

A
p
p
li
ca

ti
on

n
am

e
P
u
rp

os
e

IP
v
4
S
u
p
p
o
rt

IP
v
6
S
u
p
p
o
rt

n
m
a
p
(G

.
F
.
L
y
o
n
,
2
0
0
9
)

N
et
w
o
rk

sc
a
n
n
in
g
u
ti
li
ty
.
C
o
n
d
u
ct
s
h
o
st

d
et
ec
ti
on

,
a
n
d
a
n
a
ly
se
s
se
rv
ic
e
fi
n
g
er
p
ri
n
ts

to
id
en

ti
fy

a
ct
iv
e
se
rv
ic
es

a
n
d
d
et
er
m
in
e
O
S
ty
p
e.

X
X

m
a
s
s
c
a
n
(G

ra
h
a
m
,
2
0
1
3
c,

2
0
1
3
b
)

H
o
st

en
u
m
er
a
ti
o
n
u
ti
li
ty
.
P
ro
v
id
es

h
ig
h
-s
p
ee
d
en

u
m
er
a
ti
o
n
o
f
th

e
en

ti
re

IP
v
4
a
d
d
re
ss

sp
a
ce

o
r
p
a
rt
s
th

er
eo

f.
X

Z
M
a
p
(D

u
ru

m
er
ic
,
W

u
st
ro
w

&
H
a
ld
er
m
a
n
,
2
0
13

a
,
2
0
13

b
)

H
o
st

en
u
m
er
a
ti
o
n
u
ti
li
ty
.
P
ro
v
id
es

h
ig
h
-s
p
ee
d
en

u
m
er
a
ti
o
n
o
f
th

e
en

ti
re

IP
v
4
a
d
d
re
ss

sp
a
ce

o
r
a
ra
n
d
o
m

sa
m
p
le

o
f
th

e
a
d
d
re
ss

sp
a
ce
.

X

N
e
s
s
u
s
(B

ea
le
,
D
er
a
is
o
n
,
M
ee
r,

T
em

m
in
g
h
&

W
a
lt
,
2
0
0
8
)

V
u
ln
er
a
b
il
it
y
sc
a
n
n
er
.
N
es
su

s
p
er
fo
rm

s
h
o
st

en
u
m
er
a
ti
o
n
an

d
v
u
ln
er
a
b
il
it
y
en

u
m
er
a
ti
o
n

a
g
a
in
st

n
et
w
o
rk

d
ev

ic
es
.

X
X

N
i
k
t
o
(S

u
ll
o
&

L
o
d
g
e,

2
0
1
5
)

V
u
ln
er
a
b
il
it
y
sc
a
n
n
er
.
T
h
is

a
p
p
li
ca

ti
o
n
w
il
l
se
a
rc
h
fo
r
v
u
ln
er
a
b
il
it
ie
s
in

w
eb

se
rv
er
s.

X
O
p
e
n
V
A
S
(W

a
g
n
er
,
W

ie
g
a
n
d
,
B
ro
w
n
&

M
a
u
th

e,
2
0
0
9)

V
u
ln
er
a
b
il
it
y
sc
a
n
n
er
.
O
p
en

V
A
S
sc
a
n
s
h
o
st
s
fo
r
v
u
ln
er
a
b
il
it
ie
s.

T
h
e
to
o
lk
it

fe
a
tu

re
s
a

n
et
w
o
rk

en
u
m
er
a
ti
o
n
co

m
p
o
n
en

t.
X

X

55

the Internet, which they extracted the public keys from. The authors used TCP SYN

probing to determine networked devices that were communicating on either port 22

(SSH) or 443 (HTTPS). Heninger et al. (2012) used a very simple nmap search to check

the hosts. The nature of the search algorithm used for the enumeration is not discussed

in the text, so it is possible either the sequential search or one of nmap’s randomisation

functions were used during the research.

Host enumeration has also been the subject of research e↵orts to conduct censuses

of, or enumerate networked devices connected to the Internet. Previously, Heidemann

et al. (2008) conducted a complete census of the available public IPv4 address space in

2008, and was able to identify approximately 103 million live hosts. The methodology

used to scan the address space involved probing all possible addresses in a pseudoran-

dom fashion using ICMP echo probes. Similar research was conducted in 2012 with

the anonymous Internet Census (‘Internet Census 2012’, 2013).

In this census the authors identified 450 million live nodes on the IPv4 Internet.

The census was conducted using nmap and its scripting engine, and illegally exploited

vulnerable nodes on the Internet in order to continue the census. The compromised

systems were configured to execute a small binary program that helped contribute to

the scanning e↵orts. Although unpublished o�cially, the results and outcomes of this

research highlighted vulnerabilities in embedded devices operating on public networks.

Unfortunately, the ethical aspects and validity of the research are highly questionable,

even excusing the illegalities of the wide scale unauthorised computer use. Setting

those social, ethical and legal issues aside, the host enumeration strategy used in this

research involved using a distributed, exhaustive linear search across the entire IPv4

address space. The search was then repeated periodically to gain longitudinal data

about the target systems. The delivery method of probing used a combined approach

of correlating SYN scans on various common ports, such as 25, 80, 443, and sending

ICMP echo requests, and ICMP timestamp requests (‘Internet Census 2012’, 2013).

The distributed search strategy used in ‘Internet Census 2012’ (2013) could be

applied to widespread IPv6 host discovery. The strategy may not be practical when

enumerating a single subnetwork, since there might be a bottleneck at the ingress

point to that network. A bottleneck might get saturated under probing load from

56

distributed hosts. In any case, for the purpose of this research the assumption has been

made that the receiving target in the search attempt is connected to a gigabit WAN

connection. This assumption renders distributed search techniques to be impractical,

since it is possible for a single node to send and receive at that rate. Distributed search

techniques would be important in situations where multiple networks are targets for

search e↵orts, such as when searching the wider IPv6 Internet. In such a situation, the

combined bandwidth usage of the source nodes could be distributed over the target

networks, reducing the probability of saturating target connections. This thesis aims

to provide host enumeration strategies that can enable similar research to be conducted

against IPv6 networks.

2.4.3 Network device identification

Wei-hua, Wei-hua and Jun (2003) discussed using ICMP for host enumeration in the

context of IPv4. The paper’s focus is on analysing ICMP echo replies for OS finger-

printing purposes. The research presented in Wei-hua et al. (2003) varies from the

research conducted in this study, since this study is not concerned with the probing

mechanism, nor the information that can be inferred from successful probes beyond

an indication that a node is live on a network. Interestingly, Wei-hua et al. (2003)

made a number of assertions about host operating systems and their implementation

of the ICMP protocol. In particular, the authors stated that if the TTL on a packet

is set to 255, then that indicates the packet originated from ULTRIX and OpenVMS

OSs, whilst if the TTL is set to 128, then the OSs are Windows 95, 98, 98SE, or

NT. However, the paper does not provide any indication of where these conclusions

were derived from. The ICMP protocol isn’t the only means by which to enumerate

and identify devices. With IPv6 the IIDs assigned to a host, can form permanent or

semi-permanent unique identifiers.

With the introduction of Privacy Extensions for SLAAC in RFC-4941 (Narten

et al., 2007), networked nodes are able to automatically assume new IPv6 addresses

at the commencement of a network session or after a specified time interval. These

randomly generated addresses help to preserve the privacy of the networked device,

since they’re disposable, dynamically generated using stochastic methods, and only

57

temporarily active. Random address generation poses an administrative problem since

administrators may want to catalogue unique devices on their networks.

Related work by Polcák (2014) explored the problem of trying to identify all poten-

tial IPv6 addresses on a network and correlate them to unique nodes and ultimately, the

user(s) of the devices. Since a single host device participating in IPv6 communications

can assume many unique IPv6 addresses, identifying unique hosts is a management

problem that is di�cult to overcome. The author postulates that a single method is

unsuited to the task, since there are a variety of attributes that can be correlated in

order to draw a conclusion about an IPv6 address’ host identity (Polcák, 2014). Polcák

(2014) proposes a number of approaches to identifying nodes on a network, including:

• Link-ability of identities: devices can be identified by credentials extracted from

RADIUS associated with an IPv6 address to MAC address, DHCPv6, NAT or

SLAAC records to link a user account to an IPv6 address;

• Local monitoring: Type 1 identity management systems (IMSt1s) are recom-

mended for tracking user identities on a local network; Polcák (2014) described

a plugin framework for IMSt1s that would enable extraction of identity inform-

ation upon request from a client. Local monitoring would also involve tracking

local network tra�c, such as ICMPv6 requests, in order to correlate data more

conclusively; and

• Remote monitoring: For remote users (e.g. VPN users, remote access users, etc.)

Polcák (2014) recommends firstly extracting the MAC address from the IPv6

address (if possible). Analysing clock skew, and HTTP headers can also help to

fingerprint devices (Polcák, 2014).

Polcák (2014) di↵ers from our research since the research conducted in this study

is concerned with enumerating all active hosts on a network. Unlike Polcák (2014),

this research considers each unique IPv6 address to be a separate host. This assertion

is made due to it being impossible to state categorically, from an outside observer’s

perspective, whether an IPv6 address belongs to a single host or multiple hosts. From

a di↵erent vantage point (such as having assumed control of the underlying network

58

infrastructure), this information can be gleaned by recording a mapping of MAC ad-

dress and unique IPv6 address pairs, or through the other methods described in Polcák

(2014). However, such information is not available to o↵-link actors.

2.5 Conclusion

From the review of the available literature it has been determined that o↵-link IPv6

host enumeration has been scarcely researched. The available literature pertaining to

published host enumeration exercises relate, almost exclusively to IPv4 host enumera-

tion. The apparent consensus is that o↵-link host enumeration against IPv6 networks

cannot be performed successfully due to the large address space.

There is a wealth of prior research that focuses on developing and implementing

complete host enumeration strategies for IPv4, and to a lesser degree, IPv6. Very little

of the prior research focuses specifically on the search algorithms being employed.

There are validated approaches to enumerating devices on o↵-link IPv4 networks,

including through linear searching and randomised searching of the target address

space. These approaches have not been validated for usage against IPv6 networks.

This research aims to remedy this by testing the approaches against IPv6 networks.

Machine learning as an approach to host enumeration, either against IPv4 or IPv6

networks, has thus far not been applied. Machine learning has proven to be e↵ect-

ive in optimisation problems, such as the travelling salesman problem, classification

problems, and in situations where there are known-unknowns such as with clustering

problems. These attributes imply that the approaches could be used to assist with host

enumeration search operations.

59

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK

60

Chapter 3

Research Methodology and

Design

3.1 Appropriateness of the design

In order to validate the appropriateness of the research design and methodology chosen,

it is necessary to understand the world views that underpin scientific research. Creswell

(2009) identifies five main philosophical paradigms that influence the way research is

designed and conducted; positivism and post-positivism, constructivism, transformat-

ive, and pragmatism. Table 3.1 illustrates a modified taxonomy of paradigms from

Creswell (2009) that summarises the relationship between these five philosophical per-

spectives.

Associated with each of these paradigms is the ontological perspective, which ex-

plores the nature of truth, existence and reality, as well as the epistemological perspect-

ive which is concerned with how knowledge is actually created. Table 3.2 provides a

summary of the relationships between the aforementioned research paradigms, truth,

knowledge and general modes of inquiry.

Empirical research suggests that knowledge can be created from observations of

phenomena (Graziano & Raulin, 2004; Jackson, 2009). Although all empirical research

holds this foundational belief, there are subtle di↵erences between how the positiv-

ist and post-positivist research paradigms interpret this understanding. Positivists

61

Table 3.1: Table of the five major world views that influence contemporary research design (Creswell, 2009,
pp. 6).

Research paradigm (world view) Major elements of world view

Positivism • Determination
• Reductionism
• Empirical observation and measurement
• Theory verification

Constructivism • Understanding
• Multiple participant meanings
• Social and historical construction
• Theory generation

Transformative • Political
• Empowerment issue orientated
• Collaborative
• Change-orientated

Pragmatism • Consequence of actions
• Problem-centered
• Pluralistic
• Real-world practice orientated

believe that it is possible to create objective knowledge through carefully controlled

experimentation. This belief is contrary to the post-positivistic perspective which ac-

knowledges that, while the aim is to gain objective knowledge, the results may not

be free from potential bias even with careful control. However, both positivist and

post-positivist paradigms hold that there is a distinct relationship between cause and

e↵ect (Creswell, 2009). As a result the modes of inquiry used in such research rely on

comparing research subjects exposed to varying conditions (Graziano & Raulin, 2004).

Typically, empirical research involves the use of experimental processes to invoke and

observe phenomena, however survey techniques can also be applied.

62

T
a
b
le

3
.2
:
R
es
ea

rc
h
p
a
ra
d
ig
m
s
a
n
d
th

ei
r
a
ss
o
ci
a
te
d
o
n
to
lo
g
ie
s,

ep
is
te
m
o
lo
g
ie
s,

re
se
a
rc
h
m
et
h
o
d
o
lo
g
ie
s,

a
n
d
m
o
d
es

o
f
in
q
u
ir
y.

A
d
a
p
te
d
fr
o
m

C
re
sw

el
l
(2
0
0
9
),

F
ie
n
(2
0
0
2
),

M
a
ck
en

zi
e

a
n
d
K
n
ip
e
(2
0
0
6
),

D
o
n
n
a
M

M
er
te
n
s
(2
0
1
0
),

P
o
tt
er

(2
0
0
6
).

R
es
ea

rc
h

p
a
ra
d
ig
m

O
n
to
lo
g
y

E
p
is
te
m
o
lo
g
y

R
es
ea

rc
h
m
et
h
o
d
o
lo
g
y

M
o
d
es

o
f
in
q
u
ir
y

P
o
si
ti
v
is
m

A
n
y
th

in
g

th
a
t
ca

n
n
o
t
b
e
ob

se
rv
ed

ca
n
n
o
t
b
e
tr
u
e.

A
ss
u
m
es

th
at

k
n
ow

le
d
ge

is
si
m
p
ly

w
a
it
in
g
to

b
e
d
is
co
ve

re
d

Q
u
a
n
ti
ta
ti
v
e

•
E
x
p
er
im

en
ta
l

•
Q
u
a
si
-e
x
p
er
im

en
ta
l

•
S
u
rv
ey

s
a
n
d
te
st
s

P
o
st
-p
o
si
ti
v
is
m

A
b
so
lu
te

tr
u
th

ca
n

n
ev

er
b
e
fo
u
n
d

th
er
ef
o
re
,
fa
il
in
g

to
re
je
ct

a
h
y
p
o
-

th
es
is

is
th

e
m
a
in

o
b
je
ct
iv
e.

K
n
ow

le
d
g
e
is

a
cq

u
ir
ed

th
ro
u
g
h

th
e

o
b
se
rv
a
ti
o
n
o
f
p
h
en

o
m
en

a
.

Q
u
a
n
ti
ta
ti
v
e

•
E
x
p
er
im

en
ta
l

•
Q
u
a
si
-e
x
p
er
im

en
ta
l

•
S
u
rv
ey

s
a
n
d
te
st
s

C
o
n
st
ru

ct
iv
is
m

R
ea

li
ty

is
b
a
se
d
u
p
o
n
h
u
m
a
n
in
te
r-

p
re
ta
ti
o
n
.
It

is
n
o
t
li
m
it
ed

to
a
n
in
-

d
iv
id
u
a
l,

in
st
ea

d
is

co
n
st
ru

ct
ed

so
-

ci
a
ll
y.

K
n
ow

le
d
g
e
is

su
b
je
ct
iv
e
a
n
d

g
en

er
-

a
te
d

th
ro
u
g
h

th
e
in
te
ra
ct
io
n

o
f
th

e
re
se
a
rc
h
er

a
n
d
th

ei
r
su

b
je
ct
s

P
ri
m
a
ri
ly

q
u
a
li
ta
ti
ve

,
ca

n
a
ls
o

b
e

q
u
an

ti
ta
ti
v
e.

•
In
te
rv
ie
w
s

•
O
b
se
rv
a
ti
o
n
s

•
D
o
cu

m
en

t
re
v
ie
w
s

•
V
is
u
al

d
at
a
an

al
y
si
s

T
ra
n
sf
o
rm

a
ti
v
e

R
ec
og

n
is
es

in
fl
u
en

ce
o
f

p
ri
v
il
eg

e
w
h
en

d
et
er
m
in
in
g

re
a
li
ty
.

“
M
u
l-

ti
p
le

re
a
li
ti
es

a
re

sh
a
p
ed

b
y

so
ci
a
l,

p
ol
it
ic
a
l,
cu

lt
u
ra
l,
ec
o
n
o
m
ic
,
et
h
n
ic
,

g
en

d
er
,
d
is
a
b
il
it
y
a
n
d
o
th

er
va

lu
es
”

(D
o
n
n
a
M

M
er
te
n
s,

2
01

0
).

K
n
ow

le
d
g
e
is

su
b
je
ct
iv
e.

P
ow

er
a
n
d

p
ri
v
il
eg

e
h
a
s
a

h
ea
v
y

in
fl
u
en

ce
o
n

k
n
ow

le
d
ge

.

M
ix
ed

m
et
h
o
d
s

•
V
ar
ie
ty

o
f
to
o
ls
(e
.g
.
su

rv
ey

s,
ca

se
st
u
d
ie
s,

a
n
d

d
o
cu

m
en

t
re
v
ie
w
s)
.

P
ar
ti
cu

la
r
a
tt
en

ti
o
n
g
iv
en

to
av

o
id
-

in
g
so
ci
a
l
is
su

es
w
h
en

co
n
d
u
ct
in
g
re
-

se
a
rc
h
.

P
ra
g
m
a
ti
sm

T
ru

th
is

es
ta
b
li
sh

ed
b
a
se
d

u
p
o
n

w
h
a
t
w
o
rk
s
at

th
e
ti
m
e.

It
is

n
o
t

li
m
it
ed

to
th

e
ex

p
er
ie
n
ce
s
o
r
in
te
r-

p
re
ta
ti
o
n
s
o
f
th

e
in
d
iv
id
u
a
l

K
n
ow

le
d
g
e
is
g
en

er
a
te
d
fr
o
m

g
ro
u
p
s

o
f
in
d
iv
id
u
a
ls

en
g
a
g
in
g

w
it
h

th
ei
r

en
v
ir
o
n
m
en

ts
.

M
ix
ed

m
et
h
o
d
s

•
M
ay

in
cl
u
d
e

m
o
d
es

of
in
q
u
ir
y

u
se
d
in

th
e
p
o
si
ti
v
is
t
o
r
co

n
st
ru

ct
iv
-

is
t
p
a
ra
d
ig
m
s.

E
.g
.
in
te
rv
ie
w
s,

o
b
-

se
rv
a
ti
o
n
s
a
n
d

te
st
in
g
,
a
n
d

ex
p
er
i-

m
en

ts
.

63

Social constructivists hold the opinion that knowledge is dependent on individual

and social human experiences. The underlying epistemology of constructivism is that

knowledge is subjective, and that the relationship between the researcher and the

object of enquiry is what drives the generation of knowledge. Constructivist studies

generally involves human participants as the subjects of the research. As a consequence

of this belief framework, constructivist research is well suited to qualitative studies.

Research conducted may make usage of a number of modes of inquiry in order to address

a particular research problem. A study may employ surveys, interviews, document

review, observations, or visual data analysis as a means to address the research problem.

The transformative paradigm is a world view that has a social justice focus (Donna

M Mertens, 2010). The paradigm arose in response to deficiencies in social constructiv-

ism’s ability to address problems of a social or political nature. The paradigm provides a

framework for research undertakings that address problems of inequality and injustice

within societies (Donna M. Mertens, 2007). With the dynamic nature of research

problems that transformative research is posed with, a mixed methods approach is

appropriate.

A pragmatic world view assumes no single methodology or mode of inquiry is ap-

propriate in generating all knowledge. A pragmatic approach views research as inde-

pendent undertakings that should consider and utilise any approaches that best address

the primary research problem. Consequently, pragmatic research generally employs a

mixed-methods approach, combining the strengths of both qualitative and quantitative

methodologies wherever necessary.

This research was carried out from a post-positivist perspective for the development

of knowledge. It was assumed that knowledge can be inferred and acquired through the

process of experimentation and observation. Coming from a post-positivistic philosoph-

ical perspective, it was appropriate to view knowledge generation empirically. With

this epistemological backing, a quantitative research methodology was chosen to ad-

dress the research goals. The research questions could not be appropriately answered

using qualitative means, therefore the research was conducted using quantitative meth-

ods.

Experimental methods were chosen to address the research goals. Experimental

64

research involves constructing and performing experiments that invoke the occurrence

of phenomena. Changes in variables are recorded in order to produce results. From

these results, inferences and conclusions can be drawn about the nature with which

the experimental variables interact with each other. Experimental research was chosen

for the study because it was the most suitable way to address the primary research

questions of the study. In particular, this research involved applying algorithms to

solve the problem of IPv6 address space enumeration and then testing new methods

against existing methods. This distinction of measuring numerical changes necessitates

the usage of quantitative research techniques.

This research began with the following research questions:

RQ1 Can networking devices be enumerated on 64 bit IPv6 subnetworks using host

discovery techniques?

RQ2 Are stochastic searching methods more e�cient than deterministic searching meth-

ods when enumerating IPv6 hosts within a single 64 bit subnetwork?

RQ3 Do stochastic address allocation schemes within a single 64 bit subnetwork inhibit

IPv6 host enumeration strategies?

RQ4 Can machine learning search methods be used to enumerate devices on a 64 bit

IPv6 subnetwork?

RQ5 Are machine learning searching methods more e�cient than non-machine learn-

ing based methods when enumerating IPv6 hosts within a single 64 bit subnet-

works?

After considering the literature surrounding the research topic, the following hypo-

theses were then formulated. These hypotheses aim to provide answers to the research

questions posed:

H1 “Search techniques are unable to enumerate networked devices on 64 bit IPv6

subnetworks.” (answers RQ1)

H2 “Methods that employ random sampling do not perform better than methods that

do not employ random sampling for IPv6 host enumeration.” (answers RQ2)

65

H3 “Randomly generated interface identifiers do not a↵ect the performance of IPv6

host enumeration search algorithms.” (answers RQ3)

H4 “Search methods that employ machine learning techniques cannot be used to enu-

merate devices on 64 bit IPv6 subnetworks.” (answers RQ4)

H5 “Search methods that employ machine learning do not perform better than search

methods that do not employ machine learning for IPv6 host enumeration.” (an-

swers RQ5)

In order to test the hypotheses and address the primary research questions, exper-

iments needed to be developed and conducted. During the development process, three

subcategories of experimental methods were considered: natural experiments, field

experiments, and laboratory experiments. Natural experiments require performing ex-

periments in a natural setting, unadulterated by the researcher. This form of research

inquiry was not appropriate for the study, since it would require testing against live

IPv6 networks not governed by the researcher, and where the specific configurations

are largely inferred or unknown. Field experiments are similar to natural experiments

in that they require the use of live, yet artificial, situations where not all variables

are under the control of the researcher. Field experiments were considered for this

project, and preliminary research involved using this mode of inquiry. However, it

was determined that since the experiments undertaken in this research required prob-

ing networked nodes, performing the experiments against live computer systems over a

live network would incur significant and unnecessary time penalties. Additionally, since

the independent variables were the algorithms that were being applied to the problem,

live testing would have introduced uncontrollable independent variables. This would

have impacted on the repeatability and validity of the results, without providing any

benefits to the testing of the enumeration algorithms.

Laboratory experimentation with computer simulations, therefore, was the most ap-

propriate option for experimenting. A laboratory setting allowed the author to control

more aspects of the experimentation process, which increased the internal validity of

the study (Williamson & Johanson, 2013). All experiments conducted throughout the

research were laboratory experiments, where the object of inquiry was the algorithm

66

3. The developing of experiments and undertaking of pilot studies, which was con-

cerned with realising the designed algorithms into testable experiments and sub-

sequently trialling them.

4. The experimentation phase, where the experiments were conducted and the res-

ults recorded.

5. The analysis of results phase, where the data gathered in the experiments were

transformed and inspected until information was gathered.

3.2.1 Research variables

With the goal of assessing the e�cacy of various IPv6 host enumeration search strategies

in mind, the variables for the experiments were set. The common variables that un-

derlined all of the experiments performed in this study are described in this section.

3.2.1.1 Dependent variables

In an e↵ort to test the research hypotheses and answer the research questions, relevant

data were gathered from the experimentation. To this end, the following variables were

measured in each experiment during the study:

• The time, in seconds, that each search exercise took to complete.

• The number of successful probes that each simulation yielded.

In addition to the primary dependent variables above, the following variables were

measured and recorded during the experiments:

• Each valid target IPv6 address that was probed.

• The total number of probes transmitted in each simulation.

3.2.1.2 Independent variables

The independent variables for the overarching research project were the algorithms that

were applied to the problem. These algorithms were designed to test the hypotheses

of the study in order to answer the research questions:

68

• Linear search algorithm.

• Stripe search algorithm.

• Monte Carlo search algorithm.

• Pattern-based search algorithm.

• Genetic algorithm.

• Adaptive search algorithm.

3.2.1.3 Controlled variables

In order to maintain repeatability and isolate the changes in dependent variables, a

number of experimental variables were controlled. These controlled variables are as

followed:

• The surveyed list of valid IPv6 addresses that algorithms were tested against.

• The pseudo-randomly generated list of valid IPv6 addresses that the algorithms

were tested against.

• The computing equipment that were used to conduct the experiments.

• The software packages and software libraries that aided in developing instrument-

ation and performing the experiments (see Section 3.2.4.3).

• The search size for all algorithms (address 0 to address 264 exclusive).

• The maximum number of probes each search exercise could transmit. For the

purpose of this research, a ceiling on the maximum number of probes was set at

232 so as to conduct the search in an acceptable time frame. This reduced the

search space for each algorithm from 264 nodes down to 232 nodes. To put this in

perspective, at a conservative rate of 1,000,000 probes per second, searching a 232

address space would take approximately 71.6 minutes to complete. Performing

the same exhaustive search across a 264 bit address space would take 584,942.42

years. Note: for pilot studies the maximum number of probes each simulation

could transmit was limited to 10,000 probes.

69

• The delivery of probes. In real-world scenarios a number of methods may be used

to probe a host and determine if it is alive. Techniques such as TCP connect scans,

TCP SYN scans (half-open scanning) or ICMP Echo probing, amongst others

may be applied to such situations. This study chose to use a local emulation of

probing a host. The probing was conducted by performing a membership test

to see if the target host address is contained within a list of known valid host

addresses. If the host was valid (i.e. it was a member of the set of valid hosts) it

would be added to an array of detected nodes.

• The number of simulations performed for each experiment.

3.2.1.4 Compound variables

Many of the experiments conducted made use of pseudo-random number generators

(PRNGs) to provide random influences where required. There are many variables that

can influence the results when experimenting using stochastic methods. In this study

the primary compound variables pertain to the stochastic and random elements of

each algorithm. To preserve repeatability and reproducibility, important aspects of

the PRNG were influenced and recorded at the commencement and conclusion of each

experiment. Each Python program’s PRNG was seeded with a randomly selected value

obtained via the operating system’s random number source (i.e. the /dev/urandom

device on Linux and Unix systems). In the case of programs written using C the

PRNG was seeded using four bytes from the arc4random function. The starting states

of the PRNGs were recorded immediately after seeding. Additionally, the final states

of all PRNGs were recorded at the conclusion of the experiment. With this information

it was possible to accurately recreate the experiments and validate the results.

3.2.2 Phase 1: Perform survey of IPv6 usage

In the first phase of the research a survey was conducted of IPv6 usage data in real

world situations. The intention of the survey was to assess real world usage habits of

the protocol, as well as to provide valid samples to be used as the experimentation

data.

70

Figure 3-2: A breakdown of Phase 1: the survey phase of the research highlighting the subprocesses involved.
Phase 1 consisted of three major subprocesses; the gathering of IPv6 subdomains; querying the subdomains for
IPv6 AAAA host records in public DNS ; and recording the results from the DNS enumeration.

The survey was conducted over a period of 454 days. Data were collected through

the use of a passive enumeration of DNS. The DNS enumeration involved querying

public DNS servers for IPv6 AAAA host records. The requirements for the survey was

that a large number of potential subdomains were queried for AAAA records. These

subdomains were obtained from a number of sources (see Table 4.1 on page 111) over

a total of 969 intervals. The procedure used when conducting the survey is detailed

below.

1. Gather list of potential subdomains: the list of subdomains used for the DNS

enumeration attempt were first gathered from the lists of subdomains listed in

Table 4.1. Additionally, for each unique root domain name gathered, the fol-

lowing potential subdomains were also compiled into the list: ipv6.<domain>,

www.<domain>, mail.<domain>, intranet.<domain> and vpn.<domain>. These

prefixes were chosen since they are commonly used for public Internet services.

2. Each subdomain from the list was then queried for an AAAA IPv6 host record

using public DNS servers.

3. The results were gathered into a database of IPv6 addresses, along with the sub-

domain the address corresponded to, a timestamp and the source list of domains

the result originated from.

In addition to the surveyed IPv6 dataset, a randomly generated dataset was created

to test the e�cacy of the algorithms against unpredictable data. The random dataset

was constructed by using a PRNG to produce random, non-unique, integer values,

71

between 0 and 264, 50,000 times. From there a random number of IP addresses were

chosen for duplication. Duplication was performed to ensure that a subset of addresses

were not unique so weighted choices could be influenced by frequency of occurrence. A

random number of addresses between 0 and 1,000 were chosen for duplication. Each

selected address was then duplicated a random number of times between 0 and 1,000.

These datasets were used as the candidate target IPv6 networks for experimenta-

tion. The surveyed dataset represented a network with node addresses allocated in ways

representative of real world networks. The randomised dataset represented a network

where IPv6 addresses were assigned by taking advantage of high entropy allocation

schemes, such as SLAAC with privacy extensions, or CGAs.

3.2.3 Phase 2: Generate search algorithms

Figure 3-3: A breakdown of the the Phase 2: Generate search algorithms phase of research phase including
major processes involved. Phase 2 of the research involved designing and determining algorithms that would be
suitable for searching IPv6 networks. These algorithms were subsequently used within the research.

Based upon the results of the survey data, appropriate algorithms were designed

that formed the independent variables that would be tested. Each algorithm was the

subject of one or more experiments. Each experiment involved testing an algorithm

against target datasets of valid IPv6 addresses and recording the results. The al-

gorithms that were chosen to be tested during the study are now described.

3.2.3.1 Linear search algorithm

The linear search algorithm designed for the study was based upon a standard sequen-

tial search, although unlike an exhaustive search, the algorithm used in this study only

searches a limited address space. A diagrammatic representation of an example linear

72

search across a hypothetical address space is presented in Figure 3-10(a).

Since the algorithm searches a reduced scope of addresses, the algorithm, which is

depicted in Figure 3-4, requires a starting point to begin the search. The process of

the linear search algorithm designed for this research is as follows:

1. Select a start and end point such that 0 <= start point <= (264 �max probes)

where max probes is an integer representing the maximum number of probes to

deliver (in this case 232). The end point was realised such that end point =

start point+max probes

2. Probe each discrete address from start point to end point

3. Return results

The linear search algorithm can be initialised in three distinct ways; by starting

from address 0 in the address space; starting from a randomly chosen address in the

address space; or by starting from a point in the address space selected using a weighted

random choice, based upon existing weights for the entire address space (determined

in Section 3.2.5).

3.2.3.2 Stripe search algorithm

The stripe search algorithm is a modified linear search that chunks the search space

into evenly distributed searchable and unsearchable regions, an example of which is

portrayed in Figure 3-10(b). From there, a simple linear search is performed on each

chunk. The algorithm that was designed for the research is reflected in Figure 3-5.

This algorithm is loosely based upon the comb sort algorithm, which is in itself a slight

variation of the bubblesort algorithm (Lacey & Box, n.d.). Although a typical comb

sort operation would involve multiple passes over a single dataset (combing di↵erent

chunks over each pass), when translated to a search operation over the IPv6 address

space it was e�cient and prudent to perform the comb a single time.

The algorithm also derives influence from the reverse IP-sequential approach de-

scribed in Leonard and Loguinov (2010) and discussed in Section 2.2.

The process of the stripe search algorithm is as follows:

73

Figure 3-4: Flow chart depicting the major processes involved within the linear search algorithm that was
designed for this research.

74

1. Select a start and end point such that 0 <= start point <= (2bin size�n probes)

where bin size is an integer 0 <= i <= 64 and n probes is an integer representing

the number of probes to send per interval (bin) such that 0 < i <= bin size. The

end point was realised such that end point = start point+ n probes

2. Probe each discrete address from start point to end point

3. Update start and end points such that start point = start point + 2bin size and

end point = end point+ 2bin size.

4. Repeat from step 2 until all bins have been combed.

5. Return results

3.2.3.3 Monte Carlo search algorithm

The Monte Carlo search algorithm (featured in Figure 3-6) was designed to perform

an e↵ectively random search of the entire 64 bit address space. The Monte Carlo

algorithm was designed in an attempt to test Hypothesis H2 by randomly sampling

addresses from the address space. The random sampling technique is similar to that

which has been applied to IPv4 host enumeration by applications such as masscan or

zmap described in Section 2.2.2. A diagrammatic representation of a potential spread

of probes is presented in Figure 3-10(c).

The algorithm designed for this research did not permute the sequential address

space (as is the case with the Generalised Feistel algorithm posed in Graham (2013c))

instead the targets were chosen by pseudorandom choice to reduce computational over-

heads. As a result it was required that the algorithm maintain a minimal state table

of valid addresses that had been checked.

The algorithm can be broken into four major steps.

1. Pick a pseudorandom integer between 0 and 264.

2. Probe address

3. Repeat from step 1 until maximum probes have been sent.

75

Figure 3-5: Flow chart depicting the major processes involved within the stripe search algorithm that was
designed for this research.

76

4. Return the results

In experiment 1, random sampling was carried out as per the progression of the

PRNG, without influence. In experiment 2 the random sampling was influenced by

weightings that were applied to the address space. Based upon the provided weights,

the random selection would be more likely to select addresses within the heavily

weighted regions of the space. The process for determining the weights used is de-

tailed in Section 3.2.5.

3.2.3.4 Genetic algorithm

The main objective of this experiment was to determine whether applying evolutionary

algorithms, in particular genetic algorithms, to the problem of IPv6 host enumeration

was an appropriate strategy. This algorithm was posed in an attempt to test Hypo-

thesis H4 and Hypothesis H5 . Machine learning algorithms have not yet been applied

to the problem of IPv6 o↵-link host enumeration. In doing so a genetic algorithm was

generated, along with associated fitness tests, which were then applied to the dataset.

The genetic algorithm (GA) had eight main operations.

1. Generate an initial population. The method of generating the initial population

varied depending on the experiment conditions. These methods were:

E1: For Experiment 1, the organisms in the initial population were initialised to

be zeroes, meaning every organism in the starting population was 0.

E2: For Experiment 2, the initial population were randomly chosen to be an

integer such that 0 <= i < 264).

E3: For Experiment 3, the starting population was constructed by taking in-

tegers in the search space and creating parent pairs from them. The method

used to obtain parent1 (p1) and parent2 (p2) involved p = random(0 <= i <

bin size), so that parent1 = p⇤2bin size and parent2 = ((p+1)⇤2bin size)�1

where bin size was an integer 0 <= i < 64. This ensured that the parents

were the start address and end address of a particular bin in the search

space.

77

Figure 3-6: Flow chart depicting the major processes involved within the Monte Carlo search algorithm that
was designed for this research.

78

2. Generate a model organism. The model organism represents a set of alleles that

the algorithm considers perfect, and influenced how the fitness function scored an

organism. The model organism was generated pseudorandomly during the initial

population generation phase.

3. Probe each address in the population

4. Evaluate the address using a fitness function. A fitness function, described in

Algorithm 5, was used to determine the fitness score of each organism. This

fitness score influenced the likelihood that an organism would be chosen as a

candidate for breeding. The fitness function first considered the outcome of the

probing attempt.

• If the probe was successful, and the organism had not been probed before, a

fitness score of 64 was applied to the organism. This fitness score indicated

that each allele (bit) of the organism was ideal. If the organism had been

previously probed, a score of 64 ⇤ 0.9 was applied to the organism, which

indicated that most of the alleles were ideal but provoked further mutation.

This helped to discourage the algorithm from falling into a local maximum

in an e↵ort to prevent the same organism from being repeatedly created.

• If the probe failed, then each allele of the organism was compared to the cor-

responding allele of the simulation’s model organism. Where the organism’s

allele matched the model organism’s allele, the fitness score incremented by

1.

The fitness function described in Algorithm 5 accepted the following four variables

as input:

• BinaryIndividual: An array of 64 binary integer values representing the

binary digits of the IID;

• ModelOrganism: An array of 64 binary integer values representing the bin-

ary digits of the model IID;

• RealHosts: An array of unsigned 64 bit integer values representing the alive

nodes on the target network; and

79

• ValidHits: An array of unsigned 64 bit integer values representing the net-

worked nodes that have been successfully probed.

5. Once evaluated, candidate parents were chosen to mate. Selecting of candidate

parents was conducted using a tournament-style selection process that was influ-

enced by the fitness value of each parent. The most fit parents were chosen for

breeding.

6. Next the candidate parents were mated. Mating consisted of taking two candidate

parents and performing a crossover of the binary representation of the parents at

a single pseudorandomly chosen interval between bit 0 and bit 63. The output

of this function represented new o↵spring. If 0 <= mutation <= random <= 1

a mutation function was performed against the o↵spring that would flip each bit

from bit0 to bit63 with a 2% probability per bit. This process was repeated until

the required number of o↵spring per generation was achieved.

7. Repeat from step 3. with the new o↵spring population until the desired number

of generations or total probes delivered has been reached.

8. Return the results.

3.2.3.5 Pattern-based algorithm

The pattern-based algorithm takes influence from Hauser (2006) and was designed

to test Hypothesis H2 . It incorporated the common methods of IID generation that

are implemented by humans that configure networking equipment. This algorithm

exploits this lack of entropy in address generation to enable host enumeration by using

heuristics to generate targets based upon a pre-existing understanding of common

IPv6 usage patterns. The following construction patterns are being targeted with the

pattern-based algorithm:

• Low range Incremental IIDs: This category includes addresses that begin at low

numbers in the address space (e.g. ::) and increment upward.

80

Figure 3-7: Flow chart depicting the major processes involved within the GA search algorithm that was
designed for this research.

81

Data: BinaryIndividual, ModelOrganism, RealHosts, ValidHits
Result: FitnessValue
Individual BinaryArrayToInteger(BinaryInteger);
if Individual in RealHosts then

if Individual in ValidHosts then
// This node has been previously probed, return a lower

fitness value to discourage falling into a local maximum

FitnessValue 0.9 ⇤ 64;
else

// First time we have probed this node, and since the host is

alive, it is assigned a fitness value of 64

n CountElemsInArray(ValidHosts);
ValidHosts[n] Individual;
FitnessValue 64;

end

else
for i 0 to 63 do

if BinaryIndividual[i] == ModelOrganism[i] then
FitnessValue FitnessValue + 1;

end

end

end
return FitnessValue;

Algorithm 5: Pseudocode for the fitness function used within the genetic algorithm
to evaluate and score target host addresses. The function returns a continuous value
between 0 and 1 representing the fitness score of the address for each allele

82

• IPv4-converted-IPv6 addresses: These addresses include the 232 possible ad-

dresses that can be constructed by colon-separating an IPv4 address (for ex-

ample, the 32 bit IPv4 address 192.168.1.1 could be converted into the 64 bit

IID ::192:168:1:1).

• Wordy addresses: This category includes IPv6 IIDs that have been constructed

using common hexadecimal word substitutions (e.g. ::dead:beef:cafe:face).

The pattern-based algorithm generated a target list using the methods mentioned

above, and then probed each of the addresses (as depicted in Figure 3-8). The pattern-

based algorithm designed for this research deviates from the one presented in Hauser

(2006) and the alive6 program by targeting di↵erent address construction methods

such as the IPv4-converted-IPv6 style addresses.

3.2.3.6 Adaptive heuristic search algorithm

The adaptive heuristic search algorithm represents a significant portion of the contri-

bution to knowledge made by this research. This algorithm (featured in Figure 3-9 on

page 87) was designed to test Hypothesis H4 and Hypothesis H5 . The algorithm util-

ised machine learning to influence its decision making about which addresses to target.

This approach is in contrary to existing algorithms, as it harnesses information that

is known about the valid addresses it probes (such as construction classification type).

Typically, host enumeration strategies, such as those discussed in Chapter 2, construct

a deterministic list of targets at runtime rather than adjusting the target list based

upon what address types are known-knowns. This algorithm is designed to adapt to

successful and unsuccessful probes, and alter its actions accordingly. An example of

a probing pattern of the Adaptive heuristic algorithm is included in Figure 3-10(d).

The algorithm uses both passive and active host enumeration in order to improve the

probability of successfully identifying nodes on a network.

The adaptive heuristic search algorithm’s operations can be deconstructed into five

steps.

1. First, a reconnaissance operation is conducted against the target network. This

reconnaissance operation constitutes the passive enumeration strategy, and looks

83

Figure 3-8: Flow chart depicting the major processes involved within the heuristic pattern-based search
algorithm that was designed for this research.

84

to public information sources to gather any additional hosts that are readily avail-

able. The motive behind the reconnaissance is twofold, firstly it lessens the initial

target address space and increases the probability of positive results. Second, the

gathering of known data is used to influence the progression of the algorithm into

more probable areas of the address space. In the study the author used a portion

of the known dataset as the ‘results’ of the reconnaissance data. This dataset was

attained by performing a random sampling of the input dataset of IPv6 addresses

at the commencement of the experiment. The reconnaissance data di↵ered per

experiment. When performed under stochastic conditions, the reconnaissance

data were acquired by random selection without weighting, whereas in the heur-

istic experiments the data were acquired through a weighted random choice. As

described in section 3.2.5, the input data were weighted based upon the occur-

rence count of each unique IID. The data gathered from the reconnaissance phase

was transferred into a list of targets.

2. Second, the IPv6 addresses in the target list are passed through a classification

system. The classification serves to distinguish the type of interface identifier the

target IPv6 address has. This was used to determine what IID construction tech-

nique was employed in an attempt to influence the proceedings of the algorithm.

The classifier used in the study was based upon an ANN classification system

modified from Carpene et al. (IN PRESS). This classifier takes the input ad-

dress in integer format and returns a classification of either EUI-64, Incremental

or Stochastic, representing the three distinct categories of address construction

relevant to the research.

3. Next, the classified addresses are sent to separate processing functions based upon

their classification. For EUI-64 address types, the MAC address is inferred from

the modified EUI-64 constructed address as per Carpene and Woodward (2012),

Groat et al. (2010), Thomson et al. (2007). A range of discrete addresses was then

constructed using integers sharing a common MAC OUI. As noted in Carpene and

Woodward (2012) fleets of workstations or servers in corporate environments or

data centres may use network interfaces derived from a common batch of devices.

85

For incremental addresses, a simple range of discrete addresses about the target

was added to the list of hosts to test. Finally for stochastic addresses, firstly

a binary entropy test is conducted to determine if the classification is accurate,

and if it passes a number of randomly selected targets are added to the list of

hosts to test. If the binary entropy test failed, the address would be classified as

‘Unknown’ and would be passed to the same function that handled incremental

addresses.

4. Next a host address is taken from the list of hosts to probe, and the process of

probing is conducted.

5. Repeat from step 2 until the target host list has been exhausted or the maximum

number of probes to transmit has been reached. The results of the simulation

were then returned.

3.2.3.7 Algorithm classification

The host enumeration algorithms used in the research were designed to conduct search

e↵orts either stochastically or deterministically. With the exception of the adaptive

heuristic algorithm, any of the algorithms that involved random selection of targets

was classified as stochastic (as indicated in Table 3.3). Similarly, and again with the

exception of the adaptive heuristic algorithm, any algorithm that implemented a de-

terministic search pattern, was classified as deterministic (also shown in Table 3.3). The

adaptive heuristic algorithm was excluded from such classifications since it employed

both stochastic and deterministic search traits.

Table 3.3: Table of the algorithms designed for the study and their classification as stochastic or deterministic
in nature.

Stochastic Deterministic

MonteCarlo Linear

GA Stripe

Adaptive Pattern

86

Figure 3-9: Flow chart depicting the major processes involved within the heuristic adaptive search algorithm
that was designed for this research.

87

(a) Linear search algorithm. Searches the
entire search space, or part-thereof se-
quentially

(b) Stripe search algorithm. Chunks the
search space in the same fashion as a
comb, and linear searches each chunk.

(c) Monte Carlo stochastic search al-
gorithm. Randomly selects items in the
search space to test.

(d) Adaptive search algorithm. Uses
real-world IPv6 usage habits to influence
search patterns.

Figure 3-10: Diagrammatic representation of hypothetical search operations for selected algorithms tested in
the experiments. The y axes denote no delivered probe at y = 0 and a delivered probe at y = 1, the x axes
represent the address space for the search operation.

3.2.4 Phase 3: Develop instrumentation and experiments, and per-

form pilot studies

Development and pilot testing occupied the majority of the time spent during the

research process, and was revisited numerous times. The programs that were created

to run the experimentation were developed using primarily open source tools. Each

experiment consisted of a separate Python program which implemented the subject

algorithm that was being measured. The standardised data formats for the results of

the experiments were also developed in this phase. Where appropriate, validation of

experimental techniques was performed and recorded.

Standardisation of the data consisted of combining the outputted pickled pandas

88

• hex_patterns.txt: This file contained newline separated, four character strings

representing possible hexadecimal values used to construct hex words in the

pattern-based heuristic algorithm.

• ip_data_random.csv: This CSV file contained a newline separated list of IPv6

addresses that were randomly generated by the author (Section 3.2.2 and Sec-

tion 4.2 explores the process undertaken to generate these random addresses).

This input file provided the initial dataset used within the randomised experi-

ments (the a sub-experiments).

• ip_data_surveyed_complete.csv: The data contained in this CSV file consisted

of the information gathered during the survey phase.

• ip_data_surveyed.csv: This CSV file contained the IPv6 addresses gathered in

the survey. These data were taken from the ip_data_surveyed_complete.csv

file by deleting the irrelevant columns (N.B. only the ip6_address column was

retained in this file). This input file provided the initial dataset used within the

surveyed experiments (the b sub-experiments).

3.2.4.2 Output data

In order to aid with the results analysis phase of the research, a standardised approach

to outputting data were chosen for all experiments. Each experiment generated a num-

ber of output files, including result files and auxiliary metadata files. The result files

served to store the results of individual simulations, and once collated, the experiment

as a whole. The metadata files were used to store information about each experiment

for documentation purposes. The output files created for each experiment included:

• A metadata file: This file was a plaintext file that included metadata surround-

ing the experiment. Metadata recorded included the input data filename used

by the program, whether the algorithm was influenced by weights or purely

stochastic, etc., all of the command line arguments used to execute the pro-

gram (i.e. sys.argv) and all of the optional parameters used to modify the

behaviour of the computer program (these were stored in a dictionary variable

90

named options in each experiment program). This file was used to ensure that

important parameters of an experiment were recorded for repeatability.

• A series of pandas dataframes in pickled format: Pickling is the process of serial-

ising a python object into a file that can then be deserialised to its original form.

Every unique simulation stored a pickled dataframe on permanent storage upon

completion of the simulation. These dataframe objects stored the data gathered

from each simulation.

• A single pandas dataframe object in pickled format: Upon gathering data from

each simulation in an experiment, the dataframes were combined back into a

single entry to make analysis more convenient. This was performed during the

standardisation of data subprocess of the data analysis phase (see Figure 3-1).

During the development phase of the study the research computers were configured

to support the execution of the computer programs implementing the subject al-

gorithms. Throughout this phase, the programs used to execute experiments were

tested on the primary development computer, along with the compute cluster (out-

lined in Table 3.5). Figure 3-12 outlines the high level program design used in each

experiment. The major variations of each experiment occurred in the Perform Ex-

perimentation phase (Section 3.2.5), where the variables pertaining to each subject

algorithm are explored.

3.2.4.3 Materials and instrumentation

The Python programming language was chosen to develop the experiments, due to the

flexibility Python o↵ers for dealing with arbitrary data types, and also for the extensive

third-party libraries available. Attention was paid to the programmatic realisation of

the algorithms designed in Section 3.2.3. Third party libraries (such as numpy and

pandas) which utilise lower level compiled languages were implemented in order to

improve performance. Since Python uses hash tables for set and dictionary objects,

membership tests are performed in constant time (i.e. O(1)) regardless of the number of

elements in the table. Consequently, where possible, membership testing was performed

against either set or dictionary objects.

91

Figure 3-12: Flow diagram depicting the high level procedure that each experiment adhered to.

92

The computer program used to perform the search operations using the GA search

algorithm represents an exception to the above statements in that it was written using

the C programming language. This variation was required after conducting a pilot

study using an equivalent program that was written using the Python programming

language. The pilot study revealed that the Python-based GA program would not

be able to complete su�cient enough generations in an appropriate timeframe for the

research. It was measured that the Python implementation operated in O(n2) time.

However, a C-based implementation maintained an average of O(n) complexity, and

was able to complete enough generations within the research timeframe to probe the

maximum number of addresses (i.e. 232 addresses).

Computer programs and third-party software libraries were used in the experiments.

Instrumentation used to measure the changes in experiments predominantly used com-

puter programs that made use of available open source software libraries. Common

equipment and instruments were used throughout the study. The common materials

and instruments used during the experiments are listed in Table 3.4.

93

T
a
b
le

3
.4
:
T
a
b
le

o
f
a
ss
o
ci
a
te
d
so
ft
w
a
re

m
a
te
ri
a
ls

u
se
d
fo
r
ex

p
er
im

en
ta
ti
o
n
.

N
am

e
V
er
si
on

D
es
cr
ip
ti
on

P
y
th

o
n
2

2
.7
.6

T
h
e
P
y
th

o
n
2
p
ro
g
ra
m
m
in
g
la
n
g
u
a
g
e

p
y
2
-i
p
a
d
d
re
ss

2
.0

B
a
ck

p
o
rt

o
f
th

e
P
y
th

o
n
3
ip
a
d
d
re
ss

li
b
ra
ry
.
A
ll
ow

s
m
a
n
ip
u
la
ti
o
n
o
f
st
ri
n
g
,
h
ex

a
d
ec
im

a
l
o
r
in
te
g
er

re
p
re
se
n
ta
ti
o
n
o
f
IP

v
6

a
n
d
IP

v
4
a
d
d
re
ss

n
u
m
b
er
s.

n
u
m
p
y

1
.8
.0

P
er
fo
rm

a
n
ce

d
ri
v
en

n
u
m
er
ic
al

li
b
ra
ry

fo
r
P
y
th

o
n
2
(M

cK
in
n
ey

,
2
0
1
2
;
W

a
lt
,
C
o
lb
er
t
&

V
a
ro
q
u
au

x
,
2
0
1
1)

p
a
n
d
a
s

0
.1
3
.1

S
ta
ti
st
ic
a
l
a
n
a
ly
si
s
li
b
ra
ry

fo
r
P
y
th

o
n
2
.

T
h
is

li
b
ra
ry

b
ec
a
m
e
th

e
p
re
d
o
m
in
a
n
t
a
n
a
ly
si
s
to
o
l
fo
r
re
co

rd
in
g
,
m
a
n
ip
u
la
ti
n
g

a
n
d
re
p
o
rt
in
g
th

e
d
a
ta

g
a
th

er
ed

in
th

e
st
u
d
y
(M

cK
in
n
ey

,
2
0
1
2
)

sc
ip
y

S
ci
en

ti
fi
c
p
ro
g
ra
m
m
in
g
to
o
lk
it
fo
r
P
y
th

o
n
2
.
C
o
n
ta
in
s
n
u
m
er
ou

s
p
a
ck
a
g
es

u
se
d
fo
r
sc
ie
n
ti
fi
c
co

m
p
u
ti
n
g
in
cl
u
d
in
g
m
a
tp

lo
tl
ib
,

ip
y
th

o
n
,
n
u
m
p
y
a
n
d
p
a
n
d
a
s
(M

cK
in
n
ey

,
2
0
1
0
).

sc
o
o
p

P
y
th

o
n
2
co

n
cu

rr
en

t
co

m
p
u
ti
n
g
li
b
ra
ry
.
E
n
a
b
le
s
ta
sk
s
to

b
e
d
is
tr
ib
u
te
d
a
cr
o
ss

m
u
lt
ip
le

co
m
p
u
ti
n
g
re
so
u
rc
es

(H
o
ld
-G

eo
↵
ro
y
,

G
a
g
n
o
n
&

P
a
ri
ze
a
u
,
2
0
1
4
).

P
y
th

o
n
3

3
.4
.0

T
h
e
P
y
th

o
n
3
p
ro
g
ra
m
m
in
g
la
n
g
u
a
g
e.

n
u
m
p
y

1
.8
.0

P
er
fo
rm

a
n
ce

d
ri
v
en

n
u
m
er
ic
al

li
b
ra
ry

fo
r
P
y
th

o
n
3
(M

cK
in
n
ey

,
2
0
1
2
;
W

a
lt
,
C
o
lb
er
t
&

V
a
ro
q
u
au

x
,
2
0
1
1)

p
a
n
d
a
s

0
.1
3
.1

S
ta
ti
st
ic
a
l
a
n
a
ly
si
s
li
b
ra
ry

fo
r
P
y
th

o
n
3
(M

cK
in
n
ey

,
2
0
1
2
)

sc
ip
y

0
.1
3
.3

S
ci
en

ti
fi
c
p
ro
g
ra
m
m
in
g
to
o
lk
it
fo
r
P
y
th

o
n
3
.
C
o
n
ta
in
s
n
u
m
er
o
u
s
p
a
ck
a
g
es

u
se
d
fo
r
sc
ie
n
ti
fi
c
co

m
p
u
ti
n
g
in
cl
u
d
in
g
m
a
tp

lo
tl
ib
,

ip
y
th

o
n
,
n
u
m
p
y
a
n
d
p
a
n
d
a
s
(M

cK
in
n
ey

,
2
0
1
0
).

R
-S
tu

d
io

0
.9
8
.1
1
0
2

(R
S
tu

d
io
,
2
01

4
)

C
p
ro
g
ra
m
m
in
g
la
n
g
u
a
g
e

cl
a
n
g
-6
0
2
.0
.4
9

T
h
e
C

p
ro
g
ra
m
m
in
g
la
n
g
u
a
g
e.

g
cc

A
p
p
le

L
L
V
M

v
er
si
o
n
6
.1
.0

T
h
e
g
cc

C
/
C
+

co
m
p
il
er
.
U
se
d
to

co
m
p
il
e
C

co
d
e
in
to

ex
ec
u
ta
b
le

b
in
a
ry

fi
le
s.

S
im

C
L
is
t

1
.5

A
li
b
ra
ry

th
a
t
st
re
am

li
n
es

th
e
cr
ea

ti
o
n
a
n
d
m
a
n
ip
u
la
ti
o
n
o
f
li
n
ke

d
li
st
s
in

C
.

94

Table 3.5: Table of associated hardware materials used for experimentation.

Name Specifications Description

Computer • Supermicro H8QG6
• 4x AMD Opteron Processor 6274 (16
cores and 16 threads per CPU) = 64 CPU
cores total
• 16x Hyundai HMT31GR7BFR4C-H9
8Gib RAM = 128GiB RAM total

Computer used for development and test-
ing experiments.

Retina MacBook Pro • Model Name: MacBook Pro
• Model Identifier: MacBookPro11,1
• Processor Name: Intel Core i7
• Processor Speed: 2.8 GHz
• Number of Processors: 1
• Total Number of Cores: 2
• Memory: 16 GB

Primary computer used for development,
quality testing and documenting results.

Compute cluster • 534x 32 bit CPUs
• 135x Computer hosts

Primary computers used for experiments

During the perform experiments phase (phase 4) of the research, all of the Python-

based computer programs used to implement the subject algorithms were initiated in

the same way. The computer program screen was used to create a persistent terminal

session with a common name for the experiment. Then, the Python module scoop was

executed from a command line interface, to initialise the scalable computing program.

The experiment Python program and all associated arguments, were provided to scoop

as an argument, and would be launched accordingly. The screen session was then

detached to allow the process to continue execution in the background. During the

development phase, where multiprocessing capabilities were not required, the scoop

program was not always utilised. In such situations, the Python program would be

executed directly with its associated arguments. For C-based computer programs,

a similar process was observed. The computer program screen was used to create

a persistent terminal session with a common name for the experiment. A Python

program was used to execute the C program the required number of times with the

parameters for the subject experiment. This Python program managed the distribution

of processes across the available compute resources. The executed C program then ran

as a single process.

95

Table 3.6: Table of instrumentation used throughout the study.

Name Version Description

pandas 0.13.1 Pandas library for Python2. Provides data storage and analysis capabilities
(McKinney, 2012).

random 2.7.6 Python2 built in random module. Provides pseudo-random number generation
capabilities.

time 2.7.6 Python2 built in time module. Provides access to system clock for timing tasks.
Used to measure the process time of experiments.

numpy.random 1.8.0 Numpy’s random module. Provides pseudo-random number generation capab-
ilities. (McKinney, 2012; Walt, Colbert & Varoquaux, 2011)

ipython notebook 2.0.0 IPython Notebook provides a persistent journal of Python activities (Pérez &
Granger, 2007). The notebooks were used for pilot studies, as well as validation
of experimental procedures and results.

matplotlib 1.3.1 Graphing library for Python. Used to create plots out of data and results
(Hunter, 2007).

scipy 0.13.3 Scientific programming toolkit for Python. Contains numerous packages used
for scientific computing including matplotlib, ipython, numpy and pandas
(McKinney, 2010).

Table 3.7: Table displaying the computer programs and auxiliary libraries created for the experiments and
utilised throughout the study.

Experiment Program Additional libraries used

Adaptive search algorithm heuristic.py • ann.py

• ip6mangle.py

Genetic Algorithm ga • N/A

Linear search algorithm linear.py • ip6mangle.py

Monte Carlo search algorithm monte_carlo.py • ip6mangle.py

Pattern-based search algorithm pattern.py • ip6mangle.py

Stripe search algorithm stripe.py • ip6mangle.py

3.2.4.4 Pilot studies

Throughout the development cycle, and at the completion of the development of an

experiment, pilot tests were performed. Pilot testing ensured that the algorithm and

associated computer programs functioned as expected. Additionally, the results of

the pilot test served to ensure that su�cient data were being recorded and that the

experiments could be repeated.

Repeatability was ensured by running the experiment multiple times using the seed

values from the pilot test, and verifying the results were the same. This ensured that not

only could experiments be repeated, but also that if an experiment failed to conclude,

it could be resumed from a known state (reducing the overall time to completion).

Each pilot study tested the subject algorithm’s delivery of 10,000 probes in a single

96

simulation, and recorded each probed address. The recorded addresses ensured the dis-

tribution of probes across the address space reflected the expectations for the algorithm

and was able to be plotted. The results of the final pilot studies for each experiment

have been included in their relevant sections in Chapter 4.

3.2.5 Phase 4: Perform experimentation

Figure 3-13: A breakdown of the the Phase 4: Perform experimentation phase of research phase including
major processes involved.

In this phase of the research the experiments were conducted and the results re-

corded. A computer simulation method was used to test and measure the subject

algorithms. Each experiment that was conducted involved applying the subject al-

gorithm against two datasets separately. The experiments were conducted using the

randomly generated IPv6 addresses as the valid target nodes once, and then again us-

ing the surveyed IPv6 addresses as the valid host nodes. In this fashion each algorithm

was tested against an unpredictable set of targets, as well as against an emulation of a

real world IPv6 network.

Although the algorithms varied, the computer programs used in the research fol-

lowed a common format, and stored information in a common fashion (see Figure 3-12).

Each program commenced by parsing command line input parameters and establishing

global variables. During the qualified experiments concurrent computing means were

utilised, in which case the broker process would distribute tasks to worker processes on

other computers (Hold-Geo↵roy, Gagnon & Parizeau, 2014). Each experiment there-

fore utilised a number of processors to complete. Simulations were queued and pushed

to available compute resources on the parallel computing cluster for execution.

97

A number of variables were considered as constraints to the operations of the in-

dependent algorithms. The maximum total number of probes that it was deemed

acceptable or permissible for any algorithm to send was capped at 232. This number

was chosen since it represents the entirety of the IPv4 address space, which is viewed

as feasible to perform host discovery against (Graham, 2013c). Additionally, with the

exception of experiments applying the stripe search algorithm, the IPv6 host address

space (264 out of 2128) was partitioned into “buckets”, “bins” or “chunks” (these terms

are used interchangeably throughout this document) representing 232 buckets contain-

ing 232 unique addresses per bucket. The stripe search required the use of larger bins

(sized at 248 addresses per bucket or 216 buckets total), in order to allow for even

distribution of probes across the entire space, whilst still adhering to the 232 limit

on transmitted probes. Without adjusting the bucket size to suit, the stripe search

algorithm would only probe one address per bucket in the 64 bit address space. By

using 248 rather than 232 as the bucket size, the algorithm could probe 216 addresses

per bucket.

Using the data collected during the survey phase, weights were applied to each

bucket in the IPv6 address space based upon the number of collected IIDs that were

recorded for that bucket. The weighting calculation is expressed as w = 8n 2 k : n

t

,

where w represents the weights for each bucket, n represents the number of samples in

the current bucket, k represents all of the buckets and t represents the total number of

samples. This process was also applied to the randomly generated dataset to generate

weights for that dataset.

Each experiment involved performing repeated simulations under controlled con-

ditions. This served to provide large enough samples of results for each algorithm to

account for the stochastic nature of experimental parameters. Once a simulation was

completed, the results of the simulation were recorded. This consisted of the results

being added to a pandas dataframe and then pickled and committed to a secondary

storage device (i.e. a hard disk drive) as described in Section 3.2.4.2. Once the final

simulation in the experiment was completed, a metadata file with the experimental

parameters was committed to secondary storage, and the experiment was concluded.

Each experiment also consisted of two sub-experiments (sub-experiment a and sub-

98

experiment b) which modified the target dataset that the algorithm was tested against.

The sub-experiments labeled a used the randomly generated dataset of IPv6 addresses

for search operations and to generate weightings, whilst b experiments were tested

against the surveyed dataset of IPv6 addresses. All experimental conditions were con-

stant between the a and b sub-experiments other than the dataset that the subject

algorithm was tested against.

3.2.5.1 Linear search algorithm

The linear search algorithm was the subject of three independent experiments. For

each experiment, the sub-experiments a and b tested the subject algorithm against the

randomised and surveyed datasets, 100 times respectively.

1. The first experiments were conducted with the linear search algorithm starting

its search operation from the first discrete address in the target space (i.e. 0) and

then continuing to search each address until the maximum number of transmitted

probes was reached.

2. The second experiments started the search operation at a randomly chosen ad-

dress in the target address space, with the caveat that: start point+maximum probes <

264 or else start point = 264 �maximum probes.

3. Finally, the third experiments used a weighted random choice to select a start

point in the address space, based upon the weighting calculation explained in

Section 3.2.5. Again this start point was required to adhere to the above con-

straint, ensuring that the start and end points lay within the bounds of the target

address space.

The experimental parameters for the linear search algorithm’s experiments are de-

tailed in Table 3.8.

3.2.5.2 Stripe search algorithm

Next, the stripe search algorithm was tested. Stripe search was the subject of two dis-

tinct experiments. For each experiment, the sub-experiments a and b tested the subject

algorithm against the randomised and surveyed datasets, respectively, 100 times.

99

Table 3.8: Summary of the conditions and parameters influencing each of the linear search algorithm’s exper-
iments.

Experimental parameters Experiment number

1 2 3

Experiment codename ZeroOrigin Random WeightedRandom

Valid address datasets
tested

• 1a) Random dataset
• 1b) Surveyed dataset

• 2a) Random dataset
• 2b) Surveyed dataset

• 3a) Random dataset
• 3b) Surveyed dataset

Simulations per dataset 100 100 100

Start address selection
method

0 Randomly selected Selected using weighted
random choice

Max transmitted probes 4294967296 4294967296 4294967296

Number of bins (2n) 32 32 32

Addresses per bin (2n) 32 32 32

PRNG seed 32 bytes extracted from
/dev/urandom

32 bytes extracted from
/dev/urandom

32 bytes extracted from
/dev/urandom

A parameter was used to signify the point where the algorithm would originate and

conclude the search operation in each bin. It is important to reiterate that the size

of each bin that was chosen for the stripe search algorithm di↵ers from the standard

size used in other experiments. This decision was made in order to keep the maximum

number of transmitted probes to 232, and still probe a reasonable number of hosts per

interval. Without modifying the size of the buckets, the stripe search algorithm would

only probe one host per interval.

In the first experiment, the algorithm’s starting point was randomly generated

such that start point+ probes per interval < 2bin size or else start point = 2bin size �

probes per interval. Experiment 2 assigned a starting point of 0 to each simulation

that was conducted. The experimental parameters for the stripe search algorithm’s

experiments are detailed in Table 3.9.

3.2.5.3 Monte Carlo search algorithm

The Monte Carlo search algorithm was used in two sets of experiments. For each

experiment, the sub-experiments a and b tested the subject algorithm against the

randomised and surveyed datasets, 100 times respectively.

In the first set of experiments every target was pseudorandomly selected across the

entire space. In the second set of experiments, the address space was binned, and

a weighted choice was used to select candidate bins. Target addresses were chosen

100

Table 3.9: Summary of the conditions and parameters influencing each of the stripe search algorithm’s exper-
iments.

Experimental parameters Experiment number

1 2

Experiment codename Random ZeroOrigin

Valid address datasets tested • 1a) Random dataset
• 1b) Surveyed dataset

• 2a) Random dataset
• 2b) Surveyed dataset

Simulations per dataset 100 100

Start address selection method Randomly selected 0

Max transmitted probes 4294967296 4294967296

Transmitted probes per bin 65536 65536

Number of bins (2n) 16 16

Addresses per bin (2n) 48 48

PRNG seed 32 bytes extracted from
/dev/urandom

32 bytes extracted from
/dev/urandom

pseudorandomly from the selected bin. The experimental parameters for the Monte

Carlo search algorithm’s experiments are detailed in Table 3.10.

3.2.5.4 Genetic algorithm

The GA experiments tested the genetic algorithm against the surveyed and randomised

datasets during three discrete experiments. The first experiment tested the GA against

the IPv6 address datasets using an initial population of 0’s. The second experiment

applied the GA to the IPv6 address datasets using an initial population that was

generated pseudorandomly. Finally the third experiment applied the genetic algorithm

to the IPv6 address datasets using an initial population that was generated by using a

weighted random choice based upon the frequency of buckets in the dataset.

The experimental parameters for the GA search algorithm’s experiments are de-

tailed in Table 3.11.

3.2.5.5 Pattern-based heuristic search algorithm

Next, experiments were conducted that tested the pattern-based algorithm against the

target dataset. In these experiments, each sub-experiment a and b tested the subject

algorithm against the randomised and surveyed datasets, respectively, 100 times.

The pattern-based algorithm generated the target list using a variety of approaches,

firstly searching through address :: to ::100:ffff to cover low range incremental

101

Table 3.10: Summary of the conditions and parameters influencing each of the Monte Carlo search algorithm’s
experiments.

Experimental parameters Experiment number

1 2

Experiment codename Random WeightedRandom

Valid address datasets tested • 1a) Random dataset
• 1b) Surveyed dataset

• 2a) Random dataset
• 2b) Surveyed dataset

Simulations per dataset 100 100

Target address selection method Randomly selected Selected using weighted random
choice

Max transmitted probes 4294967296 4294967296

Number of bins (2n) 32 32

Addresses per bin (2n) 32 32

Number of bins to search All 1000

PRNG seed 32 bytes extracted from
/dev/urandom

32 bytes extracted from
/dev/urandom

Table 3.11: Summary of the conditions and parameters influencing each of the GA search algorithm’s experi-
ments.

Experimental parameters Experiment number

1 2 3

Experiment codename ZeroOrigin Random WeightedRandom

Valid address datasets
tested

• 1a) Random dataset
• 1b) Surveyed dataset

• 2a) Random dataset
• 2b) Surveyed dataset

• 3a) Random dataset
• 3b) Surveyed dataset

Simulations per dataset 100 100 100

Initial population selec-
tion method

Initialised to 0 Randomly selected Selected using weighted
random choice

Max transmitted probes 4294967296 4294967296 4294967296

Mutation rate 2% 2% 2%

Number of bins (2n) 32 32 32

Addresses per bin (2n) 32 32 32

Number of Generations
to breed

100000001 100000001 100000001

Number of Organisms per
Generation

100 100 100

Number of bins to search All All All

PRNG seed 4 bytes extracted from
arc4random()

4 bytes extracted from
arc4random()

4 extracted from
arc4random()

addresses.

Next, IPv4-in-IPv6 style addresses were checked. The algorithm that was used

checked every IPv4-in-IPv6 address between ::1:0:0:0 and ::255:255:255:255. The

addresses between :: and ::255:255:255 were not considered for testing through this

method for three reasons. Firstly, some of the addresses overlap with the low range

102

linear search performed previously by the algorithm. Secondly, the IPv4 addresses

between 0.0.0.0 and 0.255.255.255 (0.0.0.0/8) are reserved by IANA and have

not been made available for public usage (IANA, 2014a). The act of embedding an

IPv4 address into an IPv6 address is a convenience method for administrators to aid

in transitioning to the new protocol. It is therefore unlikely that they would translate

addresses that are not allowed to be registered. Finally, and most tellingly, without

restricting the number of probes transmitted by this method, it would exceed the

maximum number of transmitted probes. Since IPv4 is a 32 bit address space, testing

the entire IPv4-in-IPv6 space would still exhaust 232 probes, which is the maximum

number of probes an experiment was allowed to deliver. It was therefore pertinent to

limit this parameter.

Next, a list of four character hexadecimal words were permuted into 16 character

words, converted from hexadecimal to integer representation, and then probed. The

starting list contained nine unique four character words, which were combined to form

17,160 unique IPv6 IIDs.

The experimental parameters for the pattern-based search algorithm’s experiments

are detailed in Table 3.10.

3.2.5.6 Adaptive heuristic search algorithm

Only a single experiment was conducted using the adaptive algorithm. The subject

algorithm was tested against the randomised (sub-experiment a) and surveyed datasets

(sub-experiment b) respectively, 100 times. The adaptive algorithm used a classification

system to determine a course of action, after the successful probing of an address.

• For addresses that were classified as ‘EUI-64’ a range of addresses were construc-

ted within the same MAC address OUI scope in such a way that

start point = n� increment range

2
(3.1)

and

end point = n+
increment range

2
(3.2)

103

Table 3.12: Summary of the conditions and parameters influencing each of the pattern-based heuristic search
algorithm’s experiments.

Experimental parameters Experiment number

1

Experiment codename Pattern

Valid address datasets tested • 1a) Random dataset
• 1b) Surveyed dataset

Simulations per dataset 100

Start address selection method

Max transmitted probes 4294967296

Number of bins (2n) 32

Addresses per bin (2n) 32

Wordy address components • 0xcafe

• 0xdead

• 0xface

• 0xbeef

• 0xb00b

• 0x0000

• 0xffff

• 0x1337

• 0x0dad

Total wordy addresses constructed 17160

PRNG seed 32 bytes extracted from /dev/urandom

while

end point < max (3.3)

else

start point = 224 � increment range (3.4)

and

end point = max� 1 (3.5)

where n is the current target and max = 224.

• If an address was classified as ‘Incremental’ then a range calculation was used

such that

start point = n� increment range

2
(3.6)

and

end point = n+
increment range

2
(3.7)

104

Table 3.13: Summary of the conditions and parameters influencing each of the Adaptive heuristic search
algorithm’s experiments.

Experimental parameters Experiment number

1

Experiment codename Adaptive

Valid address datasets tested • 1a) Random dataset
• 1b) Surveyed dataset

Simulations per dataset 100

Start address selection method

Max transmitted probes 4294967296

Number of bins (2n) 32

Addresses per bin (2n) 32

Additional range of addresses to increment 65536

Number of “public” records gathered 100

PRNG seed 32 bytes extracted from /dev/urandom

3.2.6.1 Data cleansing and validation

The data that were collected from the experimental phase of the research were cleansed

and validated prior to undertaking analysis. The raw results collected from the exper-

imentation process included a number of superfluous attributes (such as the recorded

PRNG seed and state values) these attributes were removed from the analysis dataset.

The data that were collected were validated to confirm that the data was correct

for analysis. This involved performing type checks on the data. Since the data used

large integers to represent IPv6 addresses (i.e. greater than 64 bit integers), overflow

checking was performed to ensure that the positive integers were preserved correctly

by the data storage and analysis program.

3.2.6.2 Data analysis techniques

In order to analyse the data each sub-experiment was aggregated. This meant that

the individual simulations in a sub-experiment had their results aggregated to provide

a macro summary of the sub-experiment. Analysis of the data were conducted using

the pandas Python library, and the RStudio statistical analysis program. The pandas

library provided interfaces to conduct descriptive statistics on dataframes. These in-

terfaces were used to provide descriptive statistics on each aggregated sub-experiment.

The RStudio computer program was used to analyse the dataset and conduct inferen-

106

tial statistics.

The anticipated results of the experiments was primarily count data, representing

the number of successful probes delivered per simulation. Due to the nature of the

problem it was anticipated that the results would contain data that does not conform

to normal distribution, and that there would be the presence of zeroes in the data.

Because of these qualities of the expected results descriptive statistics were employed,

along with non-parametric inferential statistics. In particular the descriptive statistics

used included the mean, median, maximum and minimum values for the simulations

conducted in each sub-experiment.

For each of the primary research hypotheses inferential statistics were used. The

data were tested for normality using the Shapiro-Wilks test for normality, as is re-

commended by Montgomery (2009). Data that were discovered to be normally dis-

tributed would be tested using the one-sample and independent samples t-tests to test

the research hypotheses (Montgomery, 2009). If the data were discovered to be non-

parametric the Wilcoxon tests, including the ranked-signed test and the ranked-sum

test, were considered to be appropriate. This decision was made because the Wilcoxon

tests rely upon ranking of data, rather than a direct comparison of means (Montgomery,

2009; Corder & Foreman, 2011). All statistical testing for the study was performed at

the 95% confidence interval (i.e. ↵ = 0.05). In practice, the 95% confidence interval

means that a type I error (where the results are incorrectly classified as significant),

may be committed five times out of 100 (Sheskin, 2000).

3.3 Ethical considerations

This research did not involve any human or animal subjects, nor any private or identi-

fying data about computer systems or their users. The data gathered during the exper-

iment was fabricated by the author and gathered from real world, publicly accessible

sources.

Ethical approval for the orchestration of this research project was obtained from the

Edith Cowan University’s Ethics Approval board (valid between the 9th of January,

2012 until the 9th of January, 2015). All research undertaken in this study was done

107

strictly in accordance with the ethics policy governing the approval.

108

Chapter 4

Results

4.1 Surveyed dataset

The survey phase provided examples of IPv6 addresses being used in public networks

globally. These addresses served to form one of the two target networks that were

searched during the o↵-link IPv6 host enumeration experiments. The resulting dataset

of IPv6 addresses arising from the survey is referred to as the ‘surveyed dataset’. Any

figures that refer to the surveyed dataset are coloured in green. The results observed in

this phase of the research have been published in Carpene and Woodward (2014). The

survey was conducted by enumerating DNS servers for potential IPv6-enabled hosts.

Table 4.1 outlines the sources for the hostnames that were queried during the DNS

enumeration, along with the number of records each contributed to the IPv6 address

dataset. In total, 216,512 unique IPv6 addresses were gathered during the survey phase.

After the survey data was gathered some analysis was performed. During analysis

the data were transformed. First, the complete IPv6 addresses were converted into

integer values. Next the IPv6 IIDs were extracted (i.e. the 64 bit network prefix was

removed) by converting the string representation of the IPv6 address into an integer,

and then applying:

IID = IntegerIPv6Address mod 264 (4.1)

Of the 216,512 unique IPv6 addresses gathered, a total of 41,171 unique IPv6 IIDs

109

were extracted. Table 4.2 shows the unique IPv6 IIDs that were gathered from each of

the survey sources. It was apparent that the majority of IIDs collected in the survey

were contained to the first 32 bits of the 64 bit address space (120,898 out of 216,512

total observed IIDs). This can be seen in Figure 4-1. There was an even distribution

of addresses over the remainder of the address space (Figure 4-1).

After classifying the surveyed data using the ANN classification system described in

Carpene et al. (IN PRESS), it was observed that approximately half of the sampled IIDs

conformed to the incremental IID construction type (displayed in Table 4.3). It was

also clear that the incremental IID category contained few unique records. Only 12.71%

of the observed Incremental/Manually assigned IIDs were unique. This indicates that

address reuse is occurring in public IPv6 networks. It was also observed that the

stochastically generated IID category exhibited almost the same amount of unique

IIDs as the Incremental IID category (18473 and 20338 respectively). These results

and further analysis have been conducted in Carpene and Woodward (2014).

110

Table 4.1: Information sources used to provide domain names as the foundation of the survey. Against each
source are the total IPv6-enabled subdomains and IPv6 addresses extracted from the survey.

Source name Unique IPv6 ad-
dresses gathered

Unique IPv6 en-
abled subdomains
discovered

Description

Alexa Top one mil-
lion websites

151360 109276 The Alexa company posts a list of the
top one million websites daily. Each
subdomain in this list was queried and
the results collected (Alexa Internet,
Inc., 2014).

Unknown 61116 46063 These addresses were collected from
sources that were unrecorded at the
time the survey was conducted.

IPv6-Hosts list 4032 2176 A public information source providing
a list of commonly used internet ser-
vices and their IPv6 addresses (xslidian
& VersusClyne, 2014).

Australian Govern-
ment websites

4 4 List of Australian government subdo-
mains (Australia.gov.au, n.d.).

Total 216512 157519

Table 4.2: The results from the IPv6 survey revealing the number of unique IPv6 IIDs gathered from each
information source.

Source name IIDs Observed

Alexa Top one million websites 29231

Unknown 16560

IPv6-Hosts list 297

Australian Government websites 4

Total unique IIDs collected 41171

Total observed IIDs 216512

Table 4.3: Observed IPv6 addresses from the surveyed dataset were classified using an ANN classification
system by their construction type.

Classification type Unique IIDs Observed All observed IIDs (includ-
ing duplicates)

Incremental/Manually Assigned 20338 159939

Stochastic 18473 49967

EUI-64 2360 6606

111

4.2 Randomised dataset

The randomised dataset was constructed using Python’s Mersenne Twister-based PRNG

to create 50,000 unique values between 0 and 264. These addresses served to form one of

the two target networks that were searched during the o↵-link IPv6 host enumeration

experiments. The process was as follows:

1. Generate 50,000 random address values.

2. Select a random number of addresses from the dataset (between 1 and 1000).

3. Duplicate the selected address a random number of times (between 1 and 2000).

The results for the pseudorandomly generated ‘randomised dataset’ are included

in Table 4.4. Any figures that refer to the randomised dataset are coloured in blue.

Figure 4-3 displays the distribution of the randomly generated IIDs across the top ten

observed bin numbers. The distribution of addresses over the top ten bins can be seen

to be almost even.

As with the surveyed dataset, the randomly generated dataset was classified into

three IID construction categories; Incremental/Manually assigned, EUI-64 and Stochastic

IID construction. Table 4.5 displays the results of the classification process. It has been

seen that unlike the surveyed dataset, the majority of the addresses constructed were

classified as stochastically generated. The least observed address category for the ran-

domised dataset was the incrementally or manually assigned addresses.

Table 4.4: The results from the randomly generated IPv6 dataset. The number of unique IIDs that were
generated, as well as the total number (including duplicates) are included.

Source name IIDs generated

Unique IIDs generated 50000

Total observed IIDs 482812

113

4.3 Linear search

The linear search algorithm was designed to reflect the sequential search technique

that is commonly employed against IPv4 networks and resources. The experiment was

designed to test the e�cacy of the algorithm within the IPv6 protocol’s address space.

The algorithm was the subject of three main experiments; the Linear-1 experiment,

which tested the algorithm with the starting point of the sequential search at the first

address in the address space (i.e. address ::); the Linear-2, which saw the algorithm

commence search operations at randomly generated starting points within the address

space; and finally the Linear-3 experiments, which saw the algorithm commence search

operations at starting points in the address space that were chosen using a weighted

random choice operation.

The Python program linear.py was used to implement the linear search algorithm.

The program was configured to deliver a maximum of 232 probes, per simulation, to

IPv6 addresses sequentially from a designated starting address. The starting addresses

varied per experiment to align with the specifications detailed above. The program was

also configured to perform 100 simulations for each sub-experiment. The outcomes of

these experiments are detailed below.

4.3.1 Experiment Linear-1: Zero-origin linear search

The zero-origin Linear-1 experiments tested the linear search algorithm against the

randomised and surveyed datasets respectively. This experiment di↵erentiated from

the other experiments involving the linear search algorithm by specifying a starting

point of address 0 (::) and searching sequentially until the conclusion point of address

4294967295 (::ffff:ffff) for each simulation conducted. As a result, for the sub-

experiments Linear-1a and Linear-1b the linear.py program was configured to run

100 simulations each applying the linear search algorithm to the subject dataset with

the starting address for each simulation’s search operation set to 0. Consequently, the

Linear-1 experiment was deterministic and completely controlled.

A pilot study was performed prior to commencing data collection for the Linear-1

experiment to test the linear search algorithm under experimental conditions. The pi-

115

lot study tested the linear.py program and recorded the probing of 10,000 addresses

under the Linear-1 experimental conditions (defined in Chapter 3). A graph display-

ing the distribution of the recorded probes from the Linear-1 pilot study across the

address space is included in Figure 4-5. This graph provides an approximation for

how each simulation for the linear search algorithm probed target addresses during the

Linear-1 sub-experiments. From this figure it is evident that the algorithm probed

the addresses 0 (::) to 10000 (::2710) sequentially in linear time as expected. The

pilot study’s probe distribution aligned with the projected distribution for the linear

search algorithm.

The results for the zero-origin Linear-1a and Linear-1b sub-experiments are in-

cluded in Table 4.6. The Linear-1 experiment recorded the maximum, and minimum

mean number of successful probes for its sub-experiments across all of the experiments

conducted, at 16,284 and 0 successful probes for Linear-1b (see Figure 4-7(a)) and

Linear-1a (see Figure 4-6(a)) respectively.

Table 4.6: The descriptive statistics of the results for the Zero Origin Linear-1 experiment (sub-experiments
Linear-1a and Linear-1b).

Experimental parameters Experiment number

Linear-1a Linear-1b

Valid probes (/50000) (/41171)

Maximum 0 (0.0000%) 16284 (39.5521%)

Mean 0.00 (0.0000%) 16284.00 (39.5521%)

Minimum 0 (0.0000%) 16284 (39.5521%)

Median 0.0 16284.0

Total unique hosts dis-
covered

0 16284

Total transmitted probes

Maximum 4294967296 4294967296

Mean 4294967296.00 4294967296.00

Minimum 4294967296 4294967296

Median 4294967296.0 4294967296.0

Process time (Seconds)

Maximum 28049.57 53731.63

Mean 23758.54 50441.50

Minimum 6132.67 11165.95

As mentioned above, the Linear-1b sub-experiment successfully probed an average

of 16,284 valid hosts during the search operations. These results represent successful

116

probes to 39.55% of the total valid addresses for the surveyed dataset. Since the

zero-origin search performed an exhaustive search of the first 32 bits of the address

space, all of the nodes that were discovered in the Linear-1b sub-experiment were

contained in a single bucket (bucket 0), representing the first 232 addresses in the

address space. Overall this experiment saw a total of 16,284 unique IPv6 addresses

successfully probed. These addresses were the same probed across each simulation in

the sub-experiment, meaning that those 16,284 addresses were successfully probed in

each of the simulations. Unfortunately the Linear-1a sub-experiment failed to probe

a single valid host during all 100 simulations.

To confirm that the di↵erence between the counts of the two sets were significant,

the Wilcoxon Rank-Sum test was performed. The test statistic (W) from the Wilcoxon

Rank-Sum test, comparing the Linear-1a and the sub-experiment Linear-1b was

W = 0.0. The p-value for the test was p =< 0.001 while the target ↵ value was

↵ = 0.05. The results report a significant di↵erence between the ranked means of

sub-experiment Linear-1a and sub-experiment Linear-1b. This means that for this

experiment the alternative hypothesis an be accepted (i.e. that µ > µ0). It can be

concluded that there is a statistically significant di↵erence.

The average process completion time for the Linear-1a sub-experiment was 23,758

seconds, or approximately 6.5 hours (see Figure 4-6(b)). The Linear-1b sub-experiment

saw a mean process completion time of 50,441 seconds, or approximately 14 hours (see

Figure 4-7(b)).

4.3.2 Experiment Linear-2: Stochastic linear search

The stochastic Linear-2 experiment tested the linear search algorithm against the ran-

domised and surveyed datasets in sub-experiments Linear-2a and Linear-2b respect-

ively. The addresses that served as the starting points for each simulation were ran-

domly chosen during the Linear-2 experiments. As a result, for the sub-experiments

Linear-2a and Linear-2b the linear.py program was configured to run 100 simula-

tions each applying the linear search algorithm to the subject dataset with the starting

address for each simulation’s search operation set to a randomly chosen integer between

0 and 264 � 1.

118

A pilot study was performed prior to commencing data collection for the Linear-2

experiment to test the linear search algorithm under experimental conditions. The pilot

study for the Linear-2 experiment tested a sample of 10,000 sequential probes across

the target address space, commencing with the randomly chosen starting address of

8878645325884030976 (::7b37:48e2:0:0) and concluding at the address 8878645325884040975

(::7b37:48e2:0:270f). Figure 4-10 demonstrates the distribution of probes across the ad-

dress space over the duration of the pilot study. This graph provides an approximation

for how each simulation for the linear search algorithm probed target addresses during

the Linear-2 sub-experiments. It is evident from this graph that probing occurred in

linear time as expected.

The results for the zero-origin Linear-2a and Linear-2b sub-experiments are in-

cluded in Table 4.7. The Linear-2 experiments recorded the lowest mean number of

successful probes for its sub-experiments. Across all of the experiments conducted, 0

successful probes for Linear-2a and Linear2b were recorded. Since both of the sub-

experiments produced counts of zero, the samples of those populations were identical,

and therefore no significant di↵erence existed between the sets (i.e. µ = µ0).

Table 4.7: The descriptive statistics of the results for the Stochastic Linear-2 experiment simulations (exper-
iments Linear-2a and Linear-2b).

Experimental parameters Experiment number

Linear-2a Linear-2b

Valid probes (/50000) (/41171)

Maximum 0 (0.0000%) 0 (0.0000%)

Mean 0.00 (0.0000%) 0.00 (0.0000%)

Minimum 0 (0.0000%) 0 (0.0000%)

Median 0.0 0.0

Total unique hosts dis-
covered

0 0

Total transmitted probes

Maximum 4294967296 4294967296

Mean 4294967296.00 4294967296.00

Minimum 4294967296 4294967296

Median 4294967296.0 4294967296.0

Process time (Seconds)

Maximum 29048.67 57160.77

Mean 21119.28 54265.80

Minimum 6440.08 11347.68

121

The average process completion time for the Linear-2 experiment was respectable

and similar to that of Linear-1. Linear-2a recorded a mean process completion time

of 21,119 seconds, or approximately 6 hours (see Figure 4-8(a)). The Linear-2b sub-

experiment saw a mean process completion time of 54,266 seconds, or approximately

15 hours (see Figure 4-9(a)).

4.3.3 Experiment Linear-3: Weighted linear search

The weighted Linear-3 experiment tested the linear search algorithm against the ran-

domised and surveyed datasets in sub-experiments Linear-3a and Linear-3b respect-

ively. The addresses that served as the starting points for each simulation were ran-

domly chosen during the Linear-3 experiments, using a weighted random choice. The

resulting start address was the first address of a randomly chosen bin number. This

ensured that the starting and ending addresses were on a 32 bit boundary. As a result,

for the sub-experiments Linear-3a and Linear-3b the linear.py program was con-

figured to run 100 simulations each applying the linear search algorithm to the subject

dataset with the starting address for each simulation’s search operation set to a ran-

domly chosen bin number (b) between 0 and 232�1, such that the start address (start)

was calculated to be:

start = b ⇤ 232 (4.2)

A pilot study was performed prior to commencing data collection for the Linear-3

experiment to test the linear search algorithm under experimental conditions. The

pilot study for the Linear-3 experiment tested a sample of 10,000 sequential probes

across the target address space, commencing with the randomly chosen starting ad-

dress of 281560876056576 (::1:14:0:0) and concluding at the address 281560876066575

(::1:14:0:270f). Figure 4-11 demonstrates the distribution of probes across the address

space over the duration of the pilot study. This graph provides an approximation for

how each simulation for the linear search algorithm probed target addresses during the

Linear-3 sub-experiments. Similarly to the Linear-1 and Linear-2 experiments, it

is evident from this graph that probing occurred in linear time as expected.

Each simulation probed 232 sequential addresses from a starting point selected

124

through the means described above. The results for the zero-origin Linear-3a and

Linear-3b sub-experiments are included in Table 4.8. The Linear-3 experiments re-

corded the lowest mean number of successful probes for its sub-experiments. Across

all of the experiments conducted a mean of 0.49 and 8642.1 successful probes for

Linear-3a (see Figure 4-12(a)) and Linear-3b (see Figure 4-13(a)) were observed

respectively.

The results indicate that across the 100 simulations conducted for the Linear-3a

sub-experiment, a maximum of one single successful probe was recorded. The minimum

number of successful probes recorded was 0, revealing an average of 0.49 successful

probes per simulation. It was also observed that 49 unique nodes were successfully

probed across all 100 simulations. There were no common nodes probed throughout

every simulation.

Figure 4-14 lists the unique IPv6 addresses that were successfully probed through-

out the 100 simulations, chunked into 232 buckets with the top 25 observed buckets

displayed of 232 addresses. Only the top 25 buckets are included in Figure 4-14. The

frequency distribution displays an even distribution of valid probes across the address

space, indicating that at most, only a single address was detected in a bucket during

the Linear-3a sub-experiment.

By contrast, the results for the Linear-3b sub-experiment indicate that across the

100 simulations conducted, a maximum number of 16,284 successful probes observed in

a single simulation was observed. The minimum number of successful probes observed

across the simulations was 0. These results represent the third highest average number

of successful probes recorded for a sub-experiment in this research. It was observed

that 26,796 unique nodes were successfully probed across all 100 simulations. Figure 4-

15 displays the unique IPv6 addresses that were successfully probed throughout the

100 simulations, chunked into 232 buckets with the top 25 observed buckets displayed

of 232 addresses. The top 25 observed buckets are shown. The frequency distribution

displays that the majority of valid probes detected in the Linear-3b sub-experiment

were contained to the first bucket.

The results of Linear-3a and Linear-3b were compared to determine if the dif-

ference between the populations were significant. In particular whether µ > µ0. The

126

Table 4.8: The descriptive statistics of the results for the Weighted Linear-3 experiment simulations (experi-
ments Linear-3a and Linear-3b).

Experimental parameters Experiment number

Linear-3a Linear-3b

Valid probes (/50000) (/41171)

Maximum 1 (0.0020%) 16284 (39.5521%)

Mean 0.49 (0.0010%) 8642.09 (20.9907%)

Minimum 0 (0.0000%) 0 (0.0000%)

Median 0.0 16284.0

Total unique hosts dis-
covered

49 26796

Total transmitted probes

Maximum 4294967296 4294967296

Mean 4294967296.00 4294967296.00

Minimum 4294967296 4294967296

Median 4294967296.0 4294967296.0

Process time (Seconds)

Maximum 139838.82 139353.21

Mean 133798.51 132887.30

Minimum 38883.56 38336.12

di↵erence between the ranked means of sub-experiment Linear-3a and sub-experiment

Linear-3b was significant with a test statistic (W) of W = 170.0, and the p-value of

p =< 0.001. This highlights a significant di↵erence between the two groups.

The average process completion time for the Linear-3 was substantially greater

than the other two experiments involving the linear search algorithm and linear.py.

Linear-3a recorded a mean process completion time of 133,799 seconds, or approx-

imately 37 hours (see Figure 4-12(b)). The Linear-3b sub-experiment saw a mean

process completion time of 132,887 seconds, or approximately 37 hours (see Figure 4-

13(b)). The processing times for this experiment were amongst the longest recorded

times during the research.

127

‘

131

4.4 Stripe search

The stripe search algorithm was designed as an extension of the conventional linear

search algorithm. Rather than perform a conventional, exhaustive sequential search

(which is conventional with a linear search), the stripe search performed sequential

searches of chunks of the entire address space. The algorithm was the subject of two

main experiments; the Stripe-1, which saw the algorithm commence search operations

at randomly generated starting points within the first chunk of the address space; and

the Stripe-2 experiment, which tested the algorithm with the starting point of the

sequential search at the first address of each chunk in the address space (i.e. address

::).

The Python program stripe.py was used to implement the stripe search algorithm.

The stripe.py program was configured to deliver a maximum of 232 probes, per simu-

lation, to IPv6 addresses from a designated starting address that varied per experiment

to align with the specifications detailed above. The program was also configured to

perform 100 simulations for each sub-experiment. The outcomes of these experiments

are detailed in the following sections.

4.4.1 Experiment Stripe-1: Stochastic stripe search

The stochastic Stripe-1 experiment tested the stripe search algorithm against the

randomised and surveyed datasets in sub-experiments Stripe-1a and Stripe-1b re-

spectively. The addresses that served as the starting points for each simulation were

randomlly chosen during the Stripe-1 experiments, using a weighted random choice.

The resulting start address was the first address of a randomly chosen bin number.

This ensured that the starting and ending addresses were on a 32 bit boundary. As

a result, for the sub-experiments Stripe-1a and Stripe-1b the stripe.py program

was configured to run 100 simulations each applying the stripe search algorithm to the

subject dataset with the starting address for each simulation’s search operation set to

a randomly chosen bin number between 0 and 216 � 1.

A pilot study was performed prior to commencing data collection for the Stripe-1

experiment. The pilot study for the Stripe-1 experiment tested a sample of 10,000

133

sequential probes across the target address space, commencing with the randomly

chosen starting address of 74174821276193 (::4376:2bdf:9a21) and concluding at the

address 2607449611673090 (::9:4376:2bdf:9e02). Figure 4-19 demonstrates the distri-

bution of probes across the address space over the duration of the pilot study. This

graph provides an approximation for how the stripe search algorithm probed target

addresses during the Stripe-1 sub-experiments. The striping nature of the algorithm

is evident in Figure 4-19.

Each simulation probed 232 addresses from a starting point selected through the

means described above. The results for the stochastic Stripe-1a and Stripe-1b sub-

experiments are included in Table 4.9. The Stripe-1 experiments recorded the lowest

mean number of successful probes for its sub-experiments. Across all of the exper-

iments conducted a mean of 0 successful probes for Stripe-1a (see Figure 4-17(a))

and Stripe-1b (see Figure 4-18(a)) were observed. This indicates that unfortunately

the Stripe-1 experiment failed to probe a single valid host. Since both of the sub-

experiments revealed counts of zero, the samples of the population were identical, and

therefore no significant di↵erence existed between the sets (i.e. µ = µ0).

Table 4.9: The descriptive statistics of the results for the Stochastic Stripe-1 experiment simulations (exper-
iments Stripe-1a and Stripe-1b).

Experimental parameters Experiment number

Stripe-1a Stripe-1b

Valid probes (/50000) (/41171)

Maximum 0 (0.0000%) 0 (0.0000%)

Mean 0.00 (0.0000%) 0.00 (0.0000%)

Minimum 0 (0.0000%) 0 (0.0000%)

Median 0.0 0.0

Total unique hosts dis-
covered

0 0

Total transmitted probes

Maximum 4294967296 4294967296

Mean 4294967296.00 4294967296.00

Minimum 4294967296 4294967296

Median 4294967296.0 4294967296.0

Process time (Seconds)

Maximum 30474.32 51639.36

Mean 25543.13 49003.80

Minimum 5322.36 10781.34

134

The average process completion time for the Stripe-1 was similar to that of the

Linear-1 and Linear-2 experiments. Stripe-1a recorded a mean process completion

time of 25,543 seconds, or approximately 7 hours (see Figure 4-17(b)). The Stripe-1b

sub-experiment recorded a mean process completion time of 49,004 seconds, or approx-

imately 13.5 hours (see Figure 4-18(b)).

136

4.4.2 Experiment Stripe-2: Zero-origin stripe search

The zero-origin Stripe-2 experiment tested the stripe search algorithm against the

randomised and surveyed datasets in sub-experiments Stripe-2a and Stripe-2b re-

spectively. The addresses that served as the starting points for the search operations

were set to the first address in the address space (::) for Stripe-2 experiments.

Therefore, for the sub-experiments Stripe-2a and Stripe-2b the stripe.py program

was configured to run 100 simulations each applying the stripe search algorithm to the

subject dataset with the starting address for each simulation’s search operation set to

0. Similar to Linear-1 this experiment was controlled and deterministic due to the

start address that held constant across all simulations.

A pilot study was performed prior to commencing data collection for the Stripe-2

experiment. The pilot study for the Stripe-2 experiment tested a sample of 10,000 se-

quential probes across the target address space, commencing with the randomly chosen

starting address of 0 (::) and concluding at the address (::9:0:0:3e4). Figure 4-19 demon-

strates the distribution of probes across the address space over the duration of the pilot

study. This graph provides an approximation for how each simulation for the stripe

search algorithm probed target addresses during the Stripe-2 sub-experiments. As

with the pilot study for the Stripe-1 experiment, the striping nature of the algorithm

can be seen in Figure 4-19.

As mentioned previously, 100 simulations were conducted for each of the Stripe-2a

and Stripe-2b sub-experiments. Each simulation attempted to search the address

space using 4,294,967,296 probes spread across 216 buckets (each bucket was 248 ad-

dresses wide). Although Stripe-2a did not record a single probe against a valid host,

Stripe-2b recorded one of the highest average successful probe counts across all of the

experiments conducted. During Stripe-2b an average of 4,150 successful probes per

simulation were recorded (Table 4.10). It was observed that a total of 4,150 unique

nodes were probed across all 100 simulations. These 4,150 unique nodes were probed

in every one of the 100 simulations for this sub-experiment. The breakdown of the fre-

quency of unique IPv6 addresses detected per bucket across all simulations is included

in Figure 4-20. The frequency distribution displays that the majority of valid probes

137

detected in the Stripe-2b sub-experiment were contained to the first bucket.

The populations for the Stripe-2a and Stripe-2b sub-experiments were compared

using a Wilcoxon Rank-Sum test to determine whether they di↵ered significantly. The

results highlighted a significant di↵erence between the two data sets at the 95% con-

fidence interval. The test statistic was W = 0.0, and the p-value was p =< 0.001 with

a target ↵ value of ↵ = 0.05.

Table 4.10: The descriptive statistics of the results for the Zero Origin Stripe-2 experiment simulations
(experiments Stripe-2a and Stripe-2b).

Experimental parameters Experiment number

Stripe-2a Stripe-2b

Valid probes (/50000) (/41171)

Maximum 0 (0.0000%) 4150 (10.0799%)

Mean 0.00 (0.0000%) 4150.00 (10.0799%)

Minimum 0 (0.0000%) 4150 (10.0799%)

Median 0.0 4150.0

Total unique hosts dis-
covered

0 4150

Total transmitted probes

Maximum 4294967296 4294967296

Mean 4294967296.00 4294967296.00

Minimum 4294967296 4294967296

Median 4294967296.0 4294967296.0

Process time (Seconds)

Maximum 45147.45 52169.45

Mean 27753.18 50041.92

Minimum 5316.17 10721.14

The average process completion times for the Stripe-2 experiment was similar

to that of the Stripe-1 experiment. Stripe-2a recorded a mean process completion

time of 27,753 seconds, or approximately 8 hours (see Figure 4-21(b)). The Stripe-2b

sub-experiment recorded a mean process completion time of 50,420 seconds, or approx-

imately 14 hours (see Figure 4-22(b)).

141

4.5 Monte Carlo search

The Monte Carlo stochastic search algorithm was designed to test a uniformly dis-

tributed randoml search of the 64 bit IPv6 network address space. This technique is

commonly employed in search algorithms that are used to enumerated IPv4 networks,

however has not been applied to IPv6. The algorithm was the subject of two main

experiments; the MonteCarlo-1, which saw the algorithm search randomlly chosen ad-

dresses without influence; and the MonteCarlo-2 which influenced the selection process

by binning the address space, and then weighting the bins using a weighted random

choice.

The Python program monte_carlo.py was used to implement the Monte Carlo

stochastic search algorithm. The monte_carlo.py program was configured to deliver

a maximum of 232 probes, per simulation, to IPv6 addresses aligning with the specific-

ations detailed above. The program was also configured to perform 100 simulations for

each sub-experiment. The outcomes of these experiments are detailed below.

4.5.1 Experiment MonteCarlo-1: Stochastic Monte Carlo search

The stochastic MonteCarlo-1 experiment tested the Monte Carlo search algorithm

against the randomised and surveyed datasets in sub-experiments MonteCarlo-1a and

MonteCarlo-1b respectively. For this experiment monte_carlo.py was configured to

select target addresses through the use of a pseudorandom process. A seeded Mersenne

Twister-based PRNG was employed to generate addresses between 0 and 264 � 1.

This PRNG was seeded using bytes from the experimental computer’s kernel random-

generator (i.e. /dev/urandom).

A pilot study was performed for the MonteCarlo-1 experiment prior to commencing

data collection. The pilot study for the MonteCarlo-1 experiment tested a sample of

10,000 randomlly chosen probes across the target address space. Figure 4-23 demon-

strates the distribution of probes across the address space over the duration of the

pilot study. This graph provides an approximation for how each simulation for the

Monte Carlo search algorithm probed target addresses during the MonteCarlo-1 sub-

experiments. It is evident from Figure 4-23 that there are patterns in the distribution

145

of probes across the address space - it is not indeterminably random, and is certainly

not cryptographically secure. For the purposes of this experiment these traits have

little impact since the aim of the experiment was to achieve a uniform distribution of

probes across the address space for which the pilot study demonstrates.

Each simulation probed 232 randomly selected addresses from a starting point selec-

ted through the means described above. The results for the stochastic MonteCarlo-1a

and MonteCarlo-1b sub-experiments are included in Table 4.11. The MonteCarlo-1

experiments recorded the lowest mean number of successful probes for its sub-experiments.

Across all of the experiments conducted a mean of 0 successful probes for MonteCarlo-1a

and MonteCarlo-1b were observed. This indicates that similar to the Linear-2 and

Stripe-1 experiments, unfortunately the MonteCarlo-1 experiment failed to probe

a single valid host. Since both of the sub-experiments revealed counts of zero, the

populations were identical, and therefore no significant di↵erence existed between the

samples (i.e. µ = µ0).

Table 4.11: The descriptive statistics of the results gathered from Stochastic Monte Carlo simulations (exper-
iments MonteCarlo-1a and MonteCarlo-1b).

Experimental parameters Experiment number

MonteCarlo-1a MonteCarlo-1b

Valid probes (/50000) (/41171)

Maximum 0 (0.0000%) 0 (0.0000%)

Mean 0.00 (0.0000%) 0.00 (0.0000%)

Minimum 0 (0.0000%) 0 (0.0000%)

Median 0.0 0.0

Total unique hosts dis-
covered

0 0

Total transmitted probes

Maximum 4294967296 4294967296

Mean 4294967296.00 4294967296.00

Minimum 4294967296 4294967296

Median 4294967296.0 4294967296.0

Process time (Seconds)

Maximum 219874.71 215418.31

Mean 175437.93 175111.66

Minimum 71295.43 71284.27

The average process completion times for the MonteCarlo-1 experiment were amongst

the highest recorded. MonteCarlo-1a recorded a mean process completion time of

146

175,438 seconds, or approximately 49 hours (see Figure 4-24(a)). The MonteCarlo-1b

sub-experiment recorded a similar mean process completion time of 175,112 seconds,

or approximately 49 hours (see Figure 4-25(a)). The fluctuations that can be seen in

Figure 4-25(a) are likely due to a simulation artefact whereby the computer cluster that

was used for the experimentation was over subscribed with other tasks. Unfortunately

due to the research computer cluster being a communal resource, isolated access could

not be controlled throughout the entire experimentation process. Consequently some

of the experiments’ process times were a↵ected by the increased load.

4.5.2 Experiment MonteCarlo-2: Weighted Monte Carlo search

The weighted MonteCarlo-2 experiment tested the Monte Carlo search algorithm

against the randomised and surveyed datasets in sub-experiments MonteCarlo-2a and

MonteCarlo-2b respectively. For this experiment monte_carlo.py was configured to

select target addresses through the use of a weighted-pseudorandom choice process.

The same seeded Mersenne Twister-based PRNG was employed to generate addresses

between 0 and 264 � 1 was employed for this experiment as with MonteCarlo-2. This

PRNG was also seeded using bytes from the experimental computer’s kernel random-

generator (i.e. /dev/urandom). For each probe delivered, the PRNG was used to first

select a bin for which to search using a weighted choice, and then again to select a

pseudorandom address in the bin to probe. This process was described in more detail

in Chapter 3

A pilot study was performed for the MonteCarlo-2 experiment prior to commencing

data collection. The pilot study for the MonteCarlo-2 experiment tested a sample of

10,000 pseudorandomly chosen probes across the target address space. Figure 4-26

demonstrates the distribution of probes across the address space over the duration of

the pilot study. This graph provides an approximation for how each simulation for

the Monte Carlo search algorithm probed target addresses during the MonteCarlo-2

sub-experiments. Like the MonteCarlo-1 pilot study, it is evident from Figure 4-26

that there are patterns in the distribution of probes across the address space. Again,

for the purposes of this experiment these traits have little impact since the aim of this

experiment was to achieve a near-uniform distribution of probes across the address

148

space for which the pilot study demonstrates.

150

Each simulation probed 232 pseudorandomly selected addresses from a starting

point selected through the means described above. The results for the weighted

MonteCarlo-2a and MonteCarlo-2b sub-experiments are included in Table 4.12.

Unlike MonteCarlo-1, the MonteCarlo-2 experiment recorded successful hits in

both sub-experiments. A mean number of successful hits of 1.2 was recorded for the

MonteCarlo-2a experiment (see Figure 4-27(a)). Although the minimum recorded

successful probes during a simulation was observed to be 0, the maximum was 4.

Overall the sub-experiment recorded successful probes against 119 unique IPv6 hosts.

A histogram of the successfully probed hosts across the most observed buckets of the

address space is included in Figure 4-29. It is clear from Figure 4-29 that no more than

a single address was probed per bucket.

MonteCarlo-2b faired better, with an average number of valid probes registered at

30.42 (see Figure 4-28(a)) amongst a maximum of 45, and a minimum of 15. Overall

the MonteCarlo-2b sub-experiment observed 2,914 unique hosts on the IPv6 network,

which is amongst the highest values recorded. The distribution of observed hosts across

the bucketed address space is included in Figure 4-30. From Figure 4-30 it is clear that

the majority of the uniquely discovered hosts lie in the first bucket of the address space.

To determine whether the results of the two sub-experiments were significantly

di↵erent, the Wilcoxon Rank-Sum test was applied. The test statistic was W = 0.0,

and the p-value was p =< 0.001 with a target ↵ value of ↵ = 0.05. This highlights

a significant di↵erence between the ranked means of sub-experiment MonteCarlo-2a

and sub-experiment MonteCarlo-2b.

The average process completion times for the Monte_Carlo-2 experiment were the

highest recorded, and were substantially higher than any other experiment conducted.

Monte_Carlo-2a recorded a mean process completion time of 1,038,336 seconds, or

approximately 288.5 hours (see Figure 4-24(a)). The Monte_Carlo-2b sub-experiment

recorded a similar mean process completion time of 1,318,608 seconds, or approximately

366 hours (see Figure 4-25(a)).

152

Table 4.12: The descriptive statistics of the results gathered from the Weighted Monte Carlo simulations
(experiments MonteCarlo-2a and MonteCarlo-2b).

Experimental parameters Experiment number

MonteCarlo-2a MonteCarlo-2b

Valid probes (/50000) (/41171)

Maximum 4 (0.0080%) 45 (0.1093%)

Mean 1.20 (0.0024%) 30.42 (0.0739%)

Minimum 0 (0.0000%) 15 (0.0364%)

Median 1.0 30.0

Total unique hosts dis-
covered

119 2914

Total transmitted probes

Maximum 4294967296 4294967296

Mean 4294967296.00 4294967296.00

Minimum 4294967296 4294967296

Median 4294967296.0 4294967296.0

Process time (Seconds)

Maximum 1155906.63 1449487.21

Mean 1038336.41 1318608.34

Minimum 251762.16 662446.69

153

4.6 GA search

The GA search algorithm was devised to test whether machine learning methods could

be applied to IPv6 host enumeration. Specifically the GA was chosen as a candidate

algorithm since it provided a means to combine clustered and randomised address gen-

eration strategies. The genetic algorithm was tested during three major experiments;

the GA-1 experiment, which tested the algorithm using an initial population devised

of zeroes; the GA-2 experiment, which tested the algorithm using a pseudorandomly

generated starting population as the basis for the genetic process, and the GA-3 exper-

iment; which used a weighted choice to generate parent pairs for selected bins in the

address space as described in Chapter 3.

The GA di↵ered from the other experiments since the experimental process involved

the use of programs written in C, rather than Python. This di↵erence is evident in

the average processing times of the simulations, which is lower on average than the

experiments involving Python programs. The C program ga was used to implement the

GA search algorithm. A wrapper program written in Python (titled ga_run.py) was

used to configure the ga program to deliver a maximum of 232 probes, per simulation,

to IPv6 addresses aligning with the specifications detailed above. ga_run.py was also

configured to perform 100 simulations for each sub-experiment. The outcomes of these

experiments are detailed below.

4.6.1 Experiment GA-1: Zero-origin GA search

The zero-origin GA-1 experiment tested the GA search algorithm against the random-

ised and surveyed datasets in sub-experiments GA-1a and GA-1b respectively. For this

experiment the ga program was configured to generate an initial population of zero-

value organisms (i.e. a population of :: value IPv6 addresses).

A pilot study was performed prior to commencing data collection for the GA-1 ex-

periment. The pilot study for the GA-1 experiment tested a sample of 10,000 generated

organisms. Figure 4-31 demonstrates the distribution of probes across the address space

over the duration of the pilot study. This graph provides an approximation for how

each simulation for the GA search algorithm probed target addresses during the GA-1

158

sub-experiments. It is evident from Figure 4-31 that clusters of addresses throughout

the address space were being targeted. This behaviour was anticipated and desirable

for the operation of the search algorithm.

Each simulation probed 232 addresses from an initial population generated by the

GA search algorithm through the means described above. The results for the zero-origin

GA-1a and GA-1b sub-experiments are included in Table 4.13. The GA-1a recorded a

mean number of successful hits of 0 (see Figure 4-33(a)). The GA-1b was more successful

having recorded a mean number of successful hits of 6.95 (see Figure 4-34(a)). From

GA-1b a maximum of 12 successful hits and a minimum of 3 successful hits were recorded

across all simulations. Overall the sub-experiment recorded successful probes against

156 unique IPv6 hosts. A histogram of the successfully probed hosts across the most

observed buckets of the address space is included in Figure 4-32. It can be seen in

Figure 4-32 that the located hosts were predominantly located in the first bucket of

the address space.

The Wilcoxon Rank-Sum test was applied to the results of the GA-1a and GA-1b

sub-experiments to determine whether a there was a significant di↵erence between the

populations. This test revealed that a significant di↵erence existed between the groups,

with a test statistic of W = 0.0, and the p-value was p =< 0.001 with a target ↵ value

of ↵ = 0.05. This highlights that there was a significant di↵erence between the ranked

means of sub-experiment GA-1a and sub-experiment GA-1b.

159

Table 4.13: The descriptive statistics of the results gathered from the Zero Origin GA simulations (experiments
GA-1a and GA-1b).

Experimental parameters Experiment number

GA-1a GA-1b

Valid probes (/50000) (/41171)

Maximum 0 (0.0000%) 12 (0.0291%)

Mean 0.00 (0.0000%) 6.95 (0.0169%)

Minimum 0 (0.0000%) 3 (0.0073%)

Median 0.0 7.0

Total unique hosts dis-
covered

0 156

Total transmitted probes

Maximum 4294967296 4294967296

Mean 4294967296.00 4294967296.00

Minimum 4294967296 4294967296

Median 4294967296.0 4294967296.0

Process time (Seconds)

Maximum 14866.01 14784.47

Mean 13985.10 13910.58

Minimum 12368.09 12283.55

The average process completion times for the GA-1 experiment were amongst the

lowest recorded. GA-1a recorded a mean process completion time of 13985 seconds,

or approximately 4 hours (see Figure 4-33(b)). The GA-1b sub-experiment recorded a

similar mean process completion time of 13,910 seconds, or approximately 4 hours (see

Figure 4-34(b)).

161

4.6.2 Experiment GA-2: Stochastic GA search

The stochastic GA-2 experiment tested the GA search algorithm against the random-

ised and surveyed datasets in sub-experiments GA-2a and GA-2b respectively. For this

experiment the ga program was configured to generate an initial population of pseu-

dorandomly generated organisms (i.e. a population of IPv6 addresses between 0 and

264 � 1).

A pilot study was performed prior to commencing data collection for the GA-2 ex-

periment. The pilot study for the GA-2 experiment tested a sample of 10,000 generated

organisms. Figure 4-35 demonstrates the distribution of probes across the address

space over the duration of the pilot study. This graph provides an approximation for

how each simulation for the GA search algorithm probed target addresses during the

GA-2 sub-experiments. Like GA-1, it is evident from Figure 4-35 that clusters of ad-

dresses throughout the address space were being targeted. This behaviour was, again,

anticipated and desirable for the operation of the search algorithm.

163

Each simulation probed 232 addresses from an initial population of organisms that

were pseudorandomly generated by a PRNG. The results for the stochastic GA-2a and

GA-2b sub-experiments are included in Table 4.14. Unfortunately both sub-experiments

GA-2a and GA-2b recorded a mean number of successful hits of 0. Since both of the

sub-experiments revealed counts of zero, the samples of the populations were identical,

and therefore no significant di↵erence existed between the sets (i.e. µ = µ0).

Table 4.14: The descriptive statistics of the results gathered from Stochastic GA simulations (experiments
GA-2a and GA-2b).

Experimental parameters Experiment number

GA-2a GA-2b

Valid probes (/50000) (/41171)

Maximum 0 (0.0000%) 0 (0.0000%)

Mean 0.00 (0.0000%) 0.00 (0.0000%)

Minimum 0 (0.0000%) 0 (0.0000%)

Median 0.0 0.0

Total unique hosts dis-
covered

0 0

Total transmitted probes

Maximum 4294967296 4294967296

Mean 4294967296.00 4294967296.00

Minimum 4294967296 4294967296

Median 4294967296.0 4294967296.0

Process time (Seconds)

Maximum 14412.07 14537.89

Mean 13938.12 13924.74

Minimum 12353.20 12288.42

The average process completion times for the GA-2 experiment were very similar

to that of GA-1, and were again amongst the lowest recorded. GA-2a recorded a mean

process completion time of 13,938 seconds, or approximately 4 hours (see Figure 4-

36(a)). The GA-2b sub-experiment recorded a similar mean process completion time of

13,924 seconds, or approximately 4 hours (see Figure 4-37(a)).

4.6.3 Experiment GA-3: Weighted GA search

The weighted GA-3 experiment tested the GA search algorithm against the random-

ised and surveyed datasets in sub-experiments GA-3a and GA-3b respectively. For this

experiment the ga program was configured to generate an initial population of using

167

a weighted choice process. The process resulted in a population of “parent-pair” ad-

dresses that represented the first and last addresses in selected buckets of the 64 bit

address space. This process was detailed in Chapter 3.

A pilot study was performed prior to commencing data collection for the GA-3 ex-

periment. The pilot study for the GA-3 experiment tested a sample of 10,000 generated

organisms. Figure 4-38 demonstrates the distribution of probes across the address

space over the duration of the pilot study. This graph provides an approximation

for how each simulation for the GA search algorithm probed target addresses during

the GA-3 sub-experiments. It is again evident from Figure 4-38 that clusters of ad-

dresses throughout the address space were being targeted. This behaviour was again,

anticipated and desirable for the operation of the search algorithm.

Each simulation probed 232 addresses from an initial population of organisms that

were generated. The results for the weighted GA-3a and GA-3b sub-experiments are

included in Table 4.15. Like GA-2, both sub-experiments GA-3a and GA-3b recorded a

mean number of successful hits of 0. Since both of the sub-experiments revealed counts

of zero, the samples of the populations were identical, and therefore no significant

di↵erence existed between the sets (i.e. µ = µ0).

Table 4.15: The descriptive statistics of the results gathered from Weighted GA simulations (experiments
GA-3a and GA-3b).

Experimental parameters Experiment number

GA-3a GA-3b

Valid probes (/50000) (/41171)

Maximum 0 (0.0000%) 0 (0.0000%)

Mean 0.00 (0.0000%) 0.00 (0.0000%)

Minimum 0 (0.0000%) 0 (0.0000%)

Median 0.0 0.0

Total unique hosts dis-
covered

0 0

Total transmitted probes

Maximum 4294967296 4294967296

Mean 4294967296.00 4294967296.00

Minimum 4294967296 4294967296

Median 4294967296.0 4294967296.0

Process time (Seconds)

Maximum 14032.65 13755.32

Mean 13267.52 13295.64

Minimum 11838.93 11805.93

169

The average process completion times for the GA-3 experiment were very similar

to that of GA-1 and GA-2. GA-3a recorded a mean process completion time of 13,267

seconds, or approximately 3.5 hours (see Figure 4-39(a)). The GA-3b sub-experiment

recorded a similar mean process completion time of 13,295 seconds, or approximately

3.5 hours (see Figure 4-40(a)).

171

4.7 Pattern-based heuristic search

The pattern-based heuristic search algorithm was designed to exploit known patterns

in common IPv6 address construction schemes. Similar search techniques have been

employed in IPv6 host enumeration tools that are publicly available. This search

algorithm tested the pattern-based search algorithm during a single experiment; the

Pattern-1. This algorithm used a deterministic approach to generating addresses for

targeting.

The pattern.py program was used to implement the pattern-based heuristic search

algorithm. The pattern.py program was configured to deliver a maximum of 232

probes, per simulation to IPv6 addresses. pattern.py was also configured to per-

form 100 simulations for each sub-experiment. The outcomes of these experiments are

detailed below.

4.7.1 Experiment Pattern-1: Pattern-based heuristic search

The Pattern-1 experiment tested the pattern-based heuristic search algorithm against

the randomised and surveyed datasets in sub-experiments Pattern-1a and Pattern-1b

respectively. For this experiment the pattern.py program was configured to generate

a sequence of addresses that abused the patterns that exist in IID creation, which are

detailed in Carpene and Woodward (2012) and Carpene and Woodward (2014). This

process is detailed in Chapter 3.

A pilot study was performed prior to commencing data collection for the Pattern-1

experiment. The pilot study for the Pattern-1 experiment tested a sample of 10,000

addresses. Figure 4-41 demonstrates the distribution of probes across the address

space over the duration of the pilot study. This graph provides an approximation

for how each simulation for the pattern-based heuristic search algorithm probed tar-

get addresses during the Pattern-1 sub-experiments. Figure 4-41 displays a visually

sequential search. The first phase of the pattern-based search involves an e↵ectively

sequential search, which align with the distribution presented in Figure 4-41.

Each simulation probed 4,284,760,840 addresses. The results for the Pattern-1a

and Pattern-1b sub-experiments are included in Table 4.16. Although Pattern-1a

173

Table 4.16: The descriptive statistics of the results gathered from Pattern simulations (experiments Pattern-1a
and Pattern-1b).

Experimental parameters Experiment number

Pattern-1a Pattern-1b

Valid probes (/50000) (/41171)

Maximum 0 (0.0000%) 2543 (6.1767%)

Mean 0.00 (0.0000%) 2543.00 (6.1767%)

Minimum 0 (0.0000%) 2543 (6.1767%)

Median 0.0 2543.0

Total unique hosts dis-
covered

0 2543

Total transmitted probes

Maximum 4284760840 4284760840

Mean 4284760840.00 4284760840.00

Minimum 4284760840 4284760840

Median 4284760840.0 4284760840.0

Process time (Seconds)

Maximum 261297.31 269453.58

Mean 247140.80 250607.60

Minimum 129301.73 133509.73

performed poorly; having recorded 0 successful hits across all simulations (see Fig-

ure 4-43(a)), Pattern-1b recorded a mean number of successful hits of 2,543 successful

hits (see Figure 4-43(a)). The maximum and minimum number of successful hits for

Pattern-1b were also 2,543. The sub-experiment recorded successful probes against

2,543 unique IPv6 hosts. A histogram of the successfully probed hosts across the most

observed buckets of the address space is included in Figure 4-42. It can be seen in

Figure 4-42 that almost half of the discovered hosts were located in the first bucket of

the address space.

The results of the Pattern-1a and Pattern-1b sub-experiments were tested for

significance using a Wilcoxon Rank-Sum test. This test concluded with a result of

W = 0.0, and a p-value of p =< 0.001 with a target ↵ value of ↵ = 0.05. This highlights

a significant di↵erence between the ranked means of the two sub-experiments at the 95%

confidence interval. Since Pattern-1b had a greater count of hosts discovered, it can

be concluded that Pattern-1b’s results were significantly higher than Pattern-1a’s.

The average process completion times for the Pattern-1 were amongst the highest

recorded. Pattern-1a recorded a mean process completion time of 247,141 seconds,

174

or approximately 68.5 hours (see Figure 4-43(b)). The Pattern-1b sub-experiment

recorded a similar mean process completion time of 250,608 seconds, or approximately

69.5 hours (see Figure 4-44(b)).

175

4.8 Adaptive heuristic search

The adaptive heuristic search algorithm was designed explore how machine learning can

be applied to IPv6 host enumeration. This algorithm took a multi-faceted approach

to the problem, by assessing how discovered addresses have been constructed and then

targeting those address creation methods in context. This search strategy has never

been applied to the problem thus far. The adaptive search algorithm was tested during

a single experiment; the Adaptive-1.

The adaptive.py program was used to implement the adaptive heuristic search

algorithm. The adaptive.py program was configured to deliver a maximum of 232

probes, per simulation to IPv6 addresses. adaptive.py was also configured to per-

form 100 simulations for each sub-experiment. The outcomes of these experiments are

detailed below.

4.8.1 Experiment Adaptive-1: Adaptive heuristic search

The Adaptive-1 experiment tested the adaptive heuristic search algorithm against the

randomised and surveyed datasets in sub-experiments Adaptive-1a and Adaptive-1b

respectively. For this experiment the adaptive.py program was configured to generate

a sequence of addresses and probe them. This process is detailed in Chapter 3.

A pilot study was performed prior to commencing data collection for the Adaptive-1

experiment. The pilot study for the Adaptive-1 experiment tested a sample of 10,000

addresses. Figure 4-45 demonstrates the distribution of probes across the address space

over the duration of the pilot study. Figure 4-45 provides an approximation for how

each simulation for the pattern-based heuristic search algorithm probed target ad-

dresses during the Adaptive-1 sub-experiments. It can be observed from Figure 4-45

that address probing appeared to occur in batches. This was a result of the post-hit

processing operations of the adaptive search algorithm.

180

The results for the Adaptive-1a and Adaptive-1b sub-experiments are included in

Table 4.17. The Adaptive-1a experiment probed an average of 6,553,701.6 addresses.

This was the lowest recorded average number of probes delivered across all experiments.

Of those transmitted probes, an average of 100 successful hits was observed. 100 unique

hosts were discovered during Adaptive-1a. A histogram of the successfully probed

hosts across the most observed buckets of the address space is included in Figure 4-46.

It can be seen in Figure 4-46 that almost half of the discovered hosts were located in

the first bucket of the address space. Figure 4-46 highlights that Adaptive-1a did not

see more than a single unique host per bucket discovered.

The Adaptive-1b experiment probed a higher average number of addresses than

Adaptive-1a, with 603,220,298 addresses being probed during this sub-experiment.

This was the second lowest recorded average number of probes delivered across all

experiments. Of those transmitted probes, an average of 10,218 successful hits was

observed. This translated to a total of 10,218 unique hosts being discovered during

Adaptive-1b. A histogram of the successfully probed hosts across the most observed

buckets of the address space is included in Figure 4-47. It can be seen in Figure 4-47

that almost half of the discovered hosts were located in the first bucket of the address

space. Figure 4-47 highlights that the majority of unique hosts discovered during

Adaptive-1b were located within the first bucket of the address space.

The Wilcoxon Rank-Sum test was used to compare the results of the Adaptive-1

for significance at the 95% confidence interval. This test revealed a significant dif-

ference between the two populations, with a test statistic of W = 0.0, and a p-value

of p =< 0.001 with a target ↵ value of ↵ = 0.05. This suggests that the results

of the Adaptive-1b sub-experiment are significantly greater than the results of the

Adaptive-1a sub-experiment .

The average process completion times for the Adaptive-1 were some of the lowest

recorded. Adaptive-1a recorded a mean process completion time of 1,678 seconds, or

approximately 0.5 hours which was the lowest recorded process time average across all

experiments conducted throughout this research (see Figure 4-48(b)). The Adaptive-1b

sub-experiment recorded a similar mean process completion time of 20,020 seconds, or

approximately 5.5 hours (see Figure 4-49(b)).

182

Table 4.17: The descriptive statistics of the results gathered from Adaptive simulations (experiments
Adaptive-1a and Adaptive-1b).

Experimental parameters Experiment number

Adaptive-1a Adaptive-1b

Valid probes (/50000) (/41171)

Maximum 100 (0.2000%) 10218 (24.8184%)

Mean 100.00 (0.2000%) 10218.00 (24.8184%)

Minimum 100 (0.2000%) 10218 (24.8184%)

Median 100.0 10218.0

Total unique hosts dis-
covered

100 10218

Total transmitted probes

Maximum 6553710 603268141

Mean 6553701.60 603220298.01

Minimum 6553700 603137066

Median 6553701.0 603202603.0

Process time (Seconds)

Maximum 2004.64 37656.08

Mean 1637.65 20019.73

Minimum 186.15 2201.07

183

4.9 Aggregated results

This section provides a summary of the results observed throughout all of the experi-

ments that were conducted. Figure 4-50(a) displays the average successful probes per

sub-experiment as a histogram whilst Figure 4-50(b) displays the descriptive statist-

ics of valid hits per experiment as a box and whisker plot. It is evident from the

Figure 4-50(a) that the sub-experiment with the greatest number of detected nodes

was the Linear-1b experiment. Other notable performers include the Adaptive-1b,

Linear-3b, Stripe-2b and the Pattern-1b. Figure 4-50(b) highlights that the vari-

ation between the results recorded per simulation in most of the sub-experiments was

limited. The most obvious exception to this is the Linear-3b results, which show a

stark contrast between the maximum and minimum recorded values.

Figure 4-51(a) displays the average number of delivered probes per sub-experiment

as a histogram and Figure 4-51(b) displays the descriptive statistics of the total number

of delivered probes per experiment as a box and whisker plot. Figure 4-51(a) highlights

that the majority of the simulations that were conducted delivered a similar number

of probes. The Adaptive sub-experiments were the exception, exhibiting substantially

less delivered probes on average per simulation than any of the other experiments. The

box and whisker plot for the number of probes delivered (i.e. Figure 4-51(b)) highlights

the consistency that was exhibited in delivering probes during each simulation of a sub-

experiment.

Figure 4-52(a) displays the average process completion time per sub-experiment

as a histogram and Figure 4-52(b) displays the descriptive statistics of the process

completion times per experiment as a box and whisker plot. Figure 4-52(a) highlights

the di↵erences in the process completion times for all of the sub-experiments. It is

clear from the histogram that the MonteCarlo-2 sub-experiments exhibited the highest

process times. Contrarily, the Adaptive sub-experiments recorded the lowest recorded

average process times out of all of the experiments.

To perform the required hypothesis tests for this research, the counts of the valid

hosts discovered per simulation were first tested for normality using a Shapiro-Wilks

normality test. The results of the Shapiro-Wilks test were p < 0.000 with a target

188

↵ value of ↵ = 0.05, indicating that the null hypothesis for the test (that the data

are normally distributed) can be rejected with a high degree of confidence. This im-

plies that the data does not conform to normal distribution. Table 4.18 presents the

maximum, minimum and average results for the major dependent variables (number

of successful probes, number of transmitted probes, and processing time) for each of

the sub-experiments. Table 4.19 provides cumulated totals for the major dependent

variables, as well as the total number of simulations conducted, for both of the a and

b sub-experiment types.

189

T
a
b
le

4
.1
8
:
A

su
m
m
ar
y
of

th
e
re
su

lt
s
ga

th
er
ed

th
ro
u
gh

ou
t
th

e
ex

p
er
im

en
ts
.
T
h
e
m
ax

im
u
m
,
m
in
im

u
m

an
d
av

er
ag

e
va

lu
es

fo
r
th

e
m
a
jo
r
d
ep

en
d
en

t
va

ri
ab

le
s
ob

se
rv
ed

th
ro
u
gh

ou
t

th
e
re
se
a
rc
h
(i
.e
.
th

e
n
u
m
b
er

o
f
su

cc
es
sf
u
l
p
ro
b
es
,
tr
a
n
sm

it
te
d
p
ro
b
es

a
n
d
p
ro
ce
ss
in
g
ti
m
e)

a
re

p
re
se
n
te
d
fo
r
ea

ch
ex

p
er
im

en
t.

E
x
p
er
im

en
t

S
u
cc
es
sf
u
l
p
ro
b
es

T
ra
n
sm

it
te
d
p
ro
b
es

P
ro
ce
ss

ti
m
e
(s
ec
o
n
d
s)

M
ax

im
u
m

M
in
im

u
m

A
v
er
ag

e
M
ax

im
u
m

M
in
im

u
m

A
ve

ra
ge

M
ax

im
u
m

M
in
im

u
m

A
v
er
ag

e

L
i
n
e
a
r
-
1
a

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

2
8
0
4
9
.6

6
1
3
2
.7

2
3
7
5
8
.5

L
i
n
e
a
r
-
1
b

1
6
2
8
4

16
2
8
4

1
6
2
8
4
.0

4
2
9
4
9
6
7
2
9
6

4
2
9
4
9
6
7
2
9
6

4
2
9
4
9
6
7
2
9
6
.0

5
3
7
3
1.
6

1
1
1
6
5
.9

5
0
4
4
1
.5

L
i
n
e
a
r
-
2
a

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

2
9
0
4
8
.7

6
4
4
0
.1

2
1
1
1
9
.3

L
i
n
e
a
r
-
2
b

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

5
7
1
6
0
.8

1
1
3
4
7
.7

5
4
2
6
5
.8

L
i
n
e
a
r
-
3
a

1
0

0
.4
9

4
2
9
4
9
6
7
2
9
6

4
2
9
4
9
6
7
2
9
6

4
2
9
4
9
6
7
2
9
6
.0

1
3
9
8
3
8
.8

3
8
8
8
3
.6

1
3
3
7
9
8
.5

L
i
n
e
a
r
-
3
b

1
6
2
8
4

0
8
6
4
2
.0
9

4
2
9
4
9
6
7
2
9
6

4
2
9
4
9
6
7
2
9
6

4
2
9
4
9
6
7
2
9
6
.0

1
3
9
3
5
3
.2

3
8
3
3
6.
1

1
3
2
8
8
7
.3

S
t
r
i
p
e
-
1
a

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

3
0
4
7
4
.3

5
3
2
2
.4

2
5
5
4
3
.1

S
t
r
i
p
e
-
1
b

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

5
1
6
3
9
.4

1
0
7
8
1
.3

4
9
0
0
3
.8

S
t
r
i
p
e
-
2
a

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

4
5
1
4
7
.4

5
3
1
6
.2

2
7
7
5
3
.2

S
t
r
i
p
e
-
2
b

4
1
5
0

4
1
5
0

4
1
50

.0
4
2
9
4
9
6
7
2
9
6

4
2
9
4
9
6
7
2
9
6

4
2
9
4
9
6
7
2
9
6
.0

5
2
16

9
.5

1
0
7
2
1.
1

5
0
0
4
1
.9

M
o
n
t
e
C
a
r
l
o
-
1
a

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

2
1
9
8
7
4
.7

7
1
2
9
5
.4

1
7
5
4
3
7
.9

M
o
n
t
e
C
a
r
l
o
-
1
b

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

2
1
5
4
1
8
.3

7
1
2
8
4
.3

1
7
5
1
1
1
.7

M
o
n
t
e
C
a
r
l
o
-
2
a

4
0

1
.2

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

1
1
5
5
9
0
6
.6

2
5
1
7
6
2
.2

1
03

8
3
3
6
.4

M
o
n
t
e
C
a
r
l
o
-
2
b

4
5

1
5

3
0
.4
2

4
2
9
4
9
6
7
2
9
6

4
2
9
4
9
6
7
2
9
6

4
2
9
4
9
6
7
2
9
6
.0

1
4
4
9
4
8
7
.2

6
62

4
4
6
.7

1
3
1
8
6
0
8
.3

G
A
-
1
a

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

1
4
8
6
6
.0

1
2
3
6
8
.1

1
3
9
8
5
.1

G
A
-
1
b

1
2

3
6
.9
5

4
2
9
4
9
6
7
2
9
6

4
2
9
4
9
6
7
2
9
6

4
2
9
4
9
6
7
2
9
6
.0

1
4
7
8
4.
5

1
2
2
8
3
.5

1
3
9
1
0
.6

G
A
-
2
a

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

1
4
4
1
2
.1

1
2
3
5
3
.2

1
3
9
3
8
.1

G
A
-
2
b

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

1
4
5
3
7
.9

1
2
2
8
8
.4

1
3
9
2
4
.7

G
A
-
3
a

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

1
4
0
3
2
.7

1
1
8
3
8
.9

1
3
2
6
7
.5

G
A
-
3
b

0
0

0
.0

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6

4
2
9
4
96

7
2
9
6
.0

1
3
7
5
5
.3

1
1
8
0
5
.9

1
3
2
9
5
.6

P
a
t
t
e
r
n
-
1
a

0
0

0
.0

4
2
8
4
76

0
8
4
0

4
2
8
4
76

0
8
4
0

4
2
8
4
76

0
8
4
0
.0

2
6
1
2
9
7
.3

1
2
9
3
0
1
.7

2
4
7
1
4
0
.8

P
a
t
t
e
r
n
-
1
b

2
5
4
3

2
5
4
3

2
5
43

.0
4
2
8
4
7
6
0
8
4
0

4
2
8
4
7
6
0
8
4
0

4
2
8
4
7
6
0
8
4
0
.0

2
6
94

5
3
.6

1
3
3
5
0
9
.7

2
5
0
6
0
7
.6

A
d
a
p
t
i
v
e
-
1
a

1
0
0

1
0
0

1
0
0
.0

6
5
5
3
7
1
0

6
5
5
3
7
0
0

6
5
5
3
70

1
.6

2
0
0
4
.6

1
86

.2
1
6
3
7
.6

A
d
a
p
t
i
v
e
-
1
b

1
0
2
1
8

1
0
2
1
8

1
0
2
1
8
.0

6
0
3
2
6
8
1
4
1

6
0
3
1
3
7
0
6
6

6
0
3
2
20

2
9
8
.0
1

3
7
6
5
6
.1

2
2
0
1
.1

2
0
0
1
9
.7

193

T
a
b
le

4
.1
9
:
T
h
e
cu

m
u
la
te
d
re
su

lt
s
fr
o
m

a
ll
o
f
th

e
ex

p
er
im

en
ts

co
n
d
u
ct
ed

.
A

co
m
p
a
ri
so
n
b
et
w
ee
n
th

e
d
ep

en
d
en

t
va

ri
a
b
le
s
(v
a
li
d
p
ro
b
es

tr
a
n
sm

it
te
d
,
to
ta
l
p
ro
b
es

tr
a
n
sm

it
te
d
a
n
d

th
e
p
ro
ce
ss

ti
m
e)

a
re

p
ro
v
id
ed

in
co

n
ju
n
ct
io
n
w
it
h
th

e
to
ta
l
n
u
m
b
er

o
f
si
m
u
la
ti
o
n
s
fo
r
ea

ch
o
f
th

e
su

b
-e
x
p
er
im

en
t
ca

te
g
o
ri
es

(a
a
n
d
b
su

b
-e
x
p
er
im

en
ts
).

E
x
p
er
im

en
ta
l
p
a
ra
m
et
er
s

E
x
p
er
im

en
t
n
u
m
b
er

R
a
n
d
o
m
is
ed

d
a
ta
se
t
(a

su
b
-e
x
p
er
im

en
ts
)

S
u
rv
ey

ed
d
a
ta
se
t
(b

su
b
-e
x
p
er
im

en
ts
)

V
a
li
d
p
ro
b
es

(/
5
0
0
0
0
)

(/
4
1
1
7
1
)

T
o
ta
l
va

li
d
p
ro
b
es

1
0
1
6
9

4
1
8
7
4
4
6

M
ax

im
u
m

10
0
(0
.2
%
)

16
28

4
(3
9.
55

%
)

M
ea

n
8.
47

(0
.0
2%

)
34

89
.5
4
(8
.4
76

%
)

M
in
im

u
m

0
(0
%
)

0
(0
%
)

M
ed

ia
n

0.
0

8

T
ra
n
sm

it
te
d
p
ro
b
es

T
o
ta
l
se
n
t
p
ro
b
es

4
7
2
4
0
9
9
0
0
0
0
0
0

4
7
8
37

6
5
0
0
0
0
0
0

M
ax

im
u
m

42
94

96
72

96
42

94
96

72
96

M
ea

n
39

36
74

90
00

.0
39

86
47

10
00

.0

M
in
im

u
m

65
53

70
0

60
31

37
06

6

M
ed

ia
n

42
94

96
72

96
42

94
96

72
96

P
ro
ce
ss

ti
m
e

T
o
ta
l
p
ro
ce
ss

ti
m
e

1
7
3
5
7
1
6
0
0

2
1
4
2
1
19

0
0

M
ax

im
u
m

11
55

90
6.
63

14
49

48
7.
21

M
ea

n
14

46
43

.0
1

17
85

09
.8
8

M
in
im

u
m

18
6.
15

22
01

.0
7

T
o
ta
l
n
u
m
b
er

o
f
si
m
u
la
ti
o
n
s

1
2
0
0

1
2
0
0

194

4.10 Research hypotheses

This section addresses the five primary research hypotheses that were defined in Chapter 1.

4.10.1 H1 : Search techniques are unable to enumerate networked

devices on 64 bit IPv6 subnetworks.

Hypothesis H1 asserted that search techniques would not be able to enumerate net-

worked devices on standard 64 bit IPv6 subnetworks. In order to test this hypothesis 24

distinct experiments were conducted against two hypothetical 64 bit IPv6 subnetworks.

The null hypothesis posed no devices would be enumerated for each search operation

(i.e. H10 : µ = µ0). The results of the experiments disproved the null hypothesis

and provided support for the alternative hypothesis that search techniques are able to

enumerate networked devices on 64 bit IPv6 subnetworks (i.e. H11 : µ > µ0).

The non-parametric One-Sample Wilcoxon Signed-Ranked Test with a target ↵

value of ↵ = 0.05. The Wilcoxon Signed-Ranked Test is appropriate for comparing

means of samples in cases where a population, or sample of a population does not

conform to a normal distribution (Corder & Foreman, 2011). The null hypothesis for

the test stated that the ranked means of the collected data were equal to 0. The

test completed with the test statistic V = 413, 600 and a p-value of p < 0.001. This

indicates that in this test the null hypothesis can be rejected with a high degree of

confidence and the alternate hypothesis that the ranked mean is greater than 0, can

be accepted. From these results it is evident that devices are able to be enumerated

on 64 bit IPv6 subnetworks using host enumeration techniques.

4.10.2 H2 : Methods that employ random sampling do not perform

better than methods that do not employ random sampling for

IPv6 host enumeration.

Hypothesis H2 asserted that search methods that employ random sampling techniques

provide no performance benefit over those that do not employ random sampling for

IPv6 host enumeration. Search methods that employ randomisation are commonplace

in IPv4 host enumeration strategies because they provide a means to distribute probing

195

load across the entire address space during Internet-wide searches. Such methods had

not been tested with IPv6 host enumeration prior to this research. To address this

hypothesis the experimentation process tested algorithms with stochastic properties,

as well as those with deterministic properties.

The results of the algorithms that employed random sampling were compared to

those search algorithms that did not employ random sampling. A null hypothesis was

defined for this test that there was no significant di↵erence between the results of

the stochastic algorithms against the deterministic algorithms (i.e. H20 : µ = µ0).

The alternative hypothesis indicated that there was a di↵erence between the data in

each level, and that the deterministic algorithms performed greater than the stochastic

algorithms (i.e. H21 : µ > µ0).

The experiments that involved the use of random sampling search techniques, or

whose operations were unpredictable, and therefore were categorised as stochastic, as

well as those that involved the use of deterministic search techniques and therefore were

categorised as deterministic, are included in Table 4.20 (extracted from Chapter 3).

Table 4.20: Table of the algorithms designed for the study and their classification as stochastic or deterministic
in nature.

Stochastic Deterministic

MonteCarlo Linear

GA Stripe

Adaptive Pattern

Table 4.21 illustrates the results of the deterministic algorithms compared to the

stochastic algorithms for the randomly generated dataset. Similarly, Table 4.22 illus-

trates the results of the deterministic algorithms compared to the stochastic algorithms

for the surveyed dataset. Finally, Table 4.23 highlights the comparison between all

of the sub-experiments that utilised random sampling (i.e. the stochastic search al-

gorithms) against those that did not (i.e. the deterministic search algorithms) for both

the a and b sub-experiments.

In order to determine whether the di↵erences between the populations is statistically

significant inferential statistics were applied to:

• The results of the a sub-experiments.

196

• The results of the b sub-experiments.

• The combined results of both sub-experiments (a and b).

The results were unremarkable from either the stochastic or deterministic categories

when applied to the randomly generated dataset, as is evident in Table 4.21. A visual

comparison of means for the a sub-experiments indicates that a di↵erence between the

stochastic and deterministic search algorithms is not apparent. To determine whether

there was a statistically significant di↵erence between the two groups, the one-tailed

Wilcoxon Rank-Sum test was applied. The Wilcoxon Rank-Sum test is appropriate

for non-parametric hypothesis testing involving comparing two independent variables

(Corder & Foreman, 2011). This test compared the distribution of di↵erences between

the two groups, and determined whether a di↵erence existed at the 95% confidence

interval. The Wilcoxon test passed with a test statistic W = 139, 790 and a p-value

of p = 1. This indicates that there is no significant di↵erence between the stochastic

search algorithms and the deterministic search algorithms where the algorithms were

applied to the randomly generated dataset (i.e. the a sub-experiments). With this

result, there is su�cient evidence to accept the null hypothesis that the results of the

deterministic group are not significantly greater than the results of the stochastic group

(i.e. that µ µ0).

Contrarily, the comparison of the di↵erences for the b experiments indicates that

a potential di↵erence between the results of the stochastic search algorithms and the

deterministic search algorithms exists. Again, to confirm whether this di↵erence was

statistically significant at the 95% confidence interval, the one-tailed Wilcoxon Rank-

Sum test was applied. The Wilcoxon test passed with a test statistic of W = 236, 740

and a p-value of p < 0.001 highlighting that the results of the deterministic search

algorithms are significantly greater than those of the stochastic search algorithms ap-

plied to the surveyed dataset (i.e. that µ > µ0). It is possible to confidently reject the

null hypothesis in this instance and conclude that the deterministic search algorithms

performed better than the stochastic search algorithms when applied to the surveyed

dataset.

Finally the combined results of all of the deterministic search algorithms were com-

197

Table 4.21: A comparison of means of successful probes, between algorithms that employed random sampling
and deterministic algorithms tested against the randomised dataset. The Wilcoxon Rank-Sum test statistic and
p-Value indicate a significant di↵erence between the populations does not exist.

Algorithm type Experiment number Successful probes

Deterministic

Linear-1a 0.00

Linear-2a 0.00

Linear-3a 0.49

Pattern-1a 0.00

Stripe-1a 0.00

Stripe-2a 0.00

Stochastic

Adaptive-1a 100.00

GA-1a 0.00

GA-2a 0.00

GA-3a 0.00

MonteCarlo-1a 0.00

MonteCarlo-2a 1.20

Test statistic 139790

p-Value 1

Table 4.22: A comparison of means of successful probes, between algorithms that employed random sampling
and deterministic algorithms tested against the surveyed dataset. The Wilcoxon Rank-Sum test statistic and
p-Value indicate a significant di↵erence between the populations is present.

Algorithm type Experiment number Successful probes

Deterministic

Linear-1b 16284.00

Linear-2b 0.00

Linear-3b 8642.09

Pattern-1b 2543.00

Stripe-1b 0.00

Stripe-2b 4150.00

Stochastic

Adaptive-1b 10218.00

GA-1b 6.95

GA-2b 0.00

GA-3b 0.00

MonteCarlo-1b 0.00

MonteCarlo-2b 30.42

Test statistic 236740

p-Value <0.001

pared against the results of the stochastic search algorithms to determine if a significant

di↵erence existed between the groups. Again, the one-tailed Wilcoxon Rank-Sum test

198

was employed to test the null hypothesis that µ = µ0, and to provide support for the

alternative hypothesis that µ > µ0 and that the di↵erence was significant at the the

95% confidence interval. The Wilcoxon test passed with a test statistic of W = 748, 720

and a p-value of p = 0.026 highlighting that the results of the deterministic search al-

gorithms are significantly greater than those of the stochastic search algorithms when

applied to the combined results of the randomised and surveyed datasets (i.e. that

µ > µ0). It is possible to confidently reject the null hypothesis in this instance and

conclude that the deterministic search algorithms performed better across all of the

experiments that were carried out.

Table 4.23: A comparison of means of successful probes between algorithms that employed random sampling,
against those that employed deterministic algorithms across both datasets. The Wilcoxon Rank-Sum test
statistic and p-Value indicate a significant di↵erence between the populations is present.

Algorithm type Experiment number Successful probes

Deterministic

Linear-1a 0.00

Linear-1b 16284.00

Linear-2a 0.00

Linear-2b 0.00

Linear-3a 0.49

Linear-3b 8642.09

Pattern-1a 0.00

Pattern-1b 2543.00

Stripe-1a 0.00

Stripe-1b 0.00

Stripe-2a 0.00

Stripe-2b 4150.00

Stochastic

Adaptive-1a 100.00

Adaptive-1b 10218.00

GA-1a 0.00

GA-1b 6.95

GA-2a 0.00

GA-2b 0.00

GA-3a 0.00

GA-3b 0.00

MonteCarlo-1a 0.00

MonteCarlo-1b 0.00

MonteCarlo-2a 1.20

MonteCarlo-2b 30.42

Test statistic 748720

p-Value 0.026

199

Overall the null hypothesis for Hypothesis H2 been accepted, and it can be con-

cluded that stochastic search methods are inappropriate for o↵-link host enumeration

against 64 bit subnetworks.

4.10.3 H3 : Randomly generated interface identifiers do not a↵ect the

performance of IPv6 host enumeration search algorithms.

Hypothesis H3 asserted that networks consisting of randomly generated IPv6 IIDs

would a↵ect the performance of IPv6 host enumeration search algorithms. To address

this hypothesis, a comparison between the results of the a and b sub-experiments has

been conducted. As mentioned in Chapter 3 the a sub-experiments applied the subject

algorithm (the independent variable) against the dataset that was constructed using

pseudorandom methods. This dataset was constructed to replicate an IPv6 network

that used stochastic address generation strategies, such as the SLAAC with privacy ex-

tensions, HBAs, or CGA-based IID construction schemes. Similarly, the b experiments

tested the subject algorithm against the dataset that was gathered from real-world

survey data. This dataset was used to replicate a hypothetical network that had been

configured with a variety of address types, including incremental assignment, modified

EUI-64-based SLAAC, randomised allocation, and pattern-based configuration.

For each of the experiments conducted, the number of successful probes of all

of the sub-experiments were compared. These comparisons were conducted using an

Wilcoxon Rank-Sum test, to test the H30 null hypothesis that the ranked sums were

the same for each sub-experiment (i.e. that H30 : µ = µ0). The results of the Wilcoxon

Rank-Sum test, highlighting the significance at the confidence interval of 95% (i.e. that

p < 0.05) for each experiment are included in the corresponding experiment’s results

section above, and are summarised in Table 4.24 below.

It was observed that out of the 12 major experiments conducted, only five failed to

display a significant di↵erence between the ranked sums of the a and b sub-experiments.

From this, an overall comparison of the successful probes for both groups (i.e. sub-

experiments a and b) across all of the experiments was compiled and tested. This was

performed to determine whether a significant di↵erence exists between the two groups.

200

Table 4.24: Results of hypothesis testing between the a and b sub-experiment populations for each experiment
at the 95% confidence interval (i.e. ↵ = 0.05). The test statistic for the Wilcoxon Rank-Sum test is included,
along with the corresponding p-value for the test.

Experiment number Test statistic p-Value

Linear-1 0 p<0001

Linear-2 2525 1

Linear-3 170 p<0001

Stripe-1 2525 1

Stripe-2 0 p<0001

MonteCarlo-1 2525 1

MonteCarlo-2 0 p<0001

GA-1 0 p<0001

GA-2 2525 1

GA-3 2525 1

Pattern-1 0 p<0001

Adaptive-1 0 p<0001

Again, the Wilcoxon Rank-Sum test was chosen to test the null hypothesis that there

is no di↵erence at the confidence interval of 95% (i.e. that p < 0.05) between the

ranked sums of sub-experiments a and sub-experiments b across all of the experiments.

The results of this test concluded with a p-value of p < 0.001 and a test statistic of

W = 387541.0, indicating that the null hypothesis can be rejected and that a significant

di↵erence exists between the ranked sums of both groups. From the results it is clearly

evident that the sub-experiments that targeted the network of stochastically generated

addresses performed worse than those that targeted the network that was configured

with real-world addresses.

The null hypothesis has therefore been rejected in this case. There was a significant

di↵erence identified between the two IPv6 address datasets. The experiments that

searched the randomly allocated IPv6 address dataset performed significantly worse

those that searched the surveyed dataset. This indicates that randomly generated

addresses do negatively impact on the performance of IPv6 host enumeration search

algorithms.

201

4.10.4 H4 : Search methods that employ machine learning are unable

to enumerate networked devices on 64 bit IPv6 subnetworks.

Hypothesis H4 was concerned with identifying whether machine learning algorithms

and methods could be used to enumerate devices on IPv6 subnetworks. The null

hypothesis posed that machine learning methods are unable to enumerate any devices

(i.e. H40 : µ = µ0). The results of the experiments were used to disprove the null

hypothesis and provide support for the alternate hypothesis that machine learning

search techniques are able to enumerate networked devices on 64 bit IPv6 subnetworks

(i.e. H41 : µ > µ0). In order to disprove the null hypothesis, the results from the

experiments that employed machine learning strategies, were compared against an

expected result of 0. Table 4.25 displays the search algorithms that were classified as

machine learning-based, and those that were not.

Table 4.25: Table of the algorithms designed for the study and their classification indicating whether machine
learning methods are employed or not.

Machine learning Non-machine learning

GA Linear

Adaptive Stripe

MonteCarlo

Pattern

The non-parametric One-Sample Wilcoxon Signed-Ranked Test was used to test

the hypothesis with a target ↵ value of 0.05. The null hypothesis for the test stated

that the ranked means of the collected data were equal to 0. The test completed with

the test statistic V = 45, 150 and a p-value of p < 0.001. This indicates that in this test

the null hypothesis can be rejected with a high degree of confidence and the alternate

hypothesis that the ranked mean is greater than 0, can be accepted. Based upon these

results, it can be concluded that machine learning techniques can be used to enumerate

device on IPv6 networks.

202

4.10.5 H5 : Search methods that employ machine learning do not per-

form better than search methods that do not employ machine

learning for IPv6 host enumeration.

Hypothesis H5 was concerned with identifying whether machine learning algorithms

and methods could perform better than non-machine learning methods for IPv6 host

enumeration. In this context a higher number of successful probes indicates better

performance. The null hypothesis posed that machine learning methods do not perform

better than non-machine learning techniques for the task. In order to disprove the null

hypothesis, the results from the experiments that employed machine learning strategies,

were compared against those that didn’t.

Table 4.26 highlights the results of the machine learning algorithms compared

against the non-machine learning algorithms for the randomly generated dataset (i.e.

the a sub-experiments). Similarly, Table 4.27 displays the results of the machine learn-

ing algorithms compared against the non-machine learning algorithms for the surveyed

dataset (i.e. the b sub-experiments). Finally, Table 4.28 reveals the results of the ma-

chine learning algorithms compared against the non-machine learning algorithms across

all of the sub-experiments. In order to test the hypothesis and determine whether ma-

chine learning algorithms perform better than non-machine learning algorithms when

applied to IPv6 host enumeration, comparisons were made between:

• The results of the a sub-experiments.

• The results of the b sub-experiments.

• The combined results of both sub-experiments (a and b).

A visual observations of the groups for this test (available in Table 4.26) indicates

that a di↵erence between the two populations is present. In order to determine whether

the results between the identified groups di↵ered significantly at the 95% confidence

interval (i.e. p < 0.05), the Wilcoxon Rank-Sum test was used. When applied to the a

sub-experiments, the Wilcoxon test passed with a test statistic of W = 181850 and a

p-value of p < 0.001 indicating that a significant di↵erence between the two populations

exists. The results for this test are included in Table 4.26.

203

Comparing the results from the sub-experiments performed against the surveyed

dataset between the machine learning and non-machine learning categories reveals no

visible di↵erence between the groups. To determine whether a statistically signific-

ant di↵erence between the data exists at the 95% confidence interval (p < 0.05), the

Wilcoxon Rank-Sum test was employed. This test also failed with a test statistic of

W = 129270 and a p-value of p = 1 indicating that the results of the machine learning

experiments are not significantly greater than the results of the non-machine learning

experiments.

Finally, the results of all of the sub-experiments were tested. The data that were

gathered from the sub-experiments that employed machine learning techniques, com-

pared to those that did not employ machine learning techniques were tested to determ-

ine whether a statistically significant di↵erence existed between the groups. Again, the

Wilcoxon Rank-Sum test was used to determine whether the ranked sums of the two

groups were di↵erent at the 95% confidence interval (i.e. p < 0.05). The outcome of

this test again failed to highlight a significant di↵erence between the two populations,

with a test value of W = 629410 and a p-value of p = 0.776.

The tests performed against the collected data failed to reveal a significant di↵er-

ence between the results of the two independent groups; the algorithms that employed

machine learning and those that did not employ machine learning. From the results

of testing the hypothesis H5 the null hypothesis must be accepted. It can therefore

be concluded that the algorithms that employed machine learning did not provide any

performance benefit over the algorithms that did not employ machine learning for IPv6

host enumeration.

204

Table 4.26: A comparison of means of successful probes, and the successful probes to process time ratio,
between experiments that employed machine learning and non-machine learning algorithms tested against the
randomised dataset. The outcome of the Wilcoxon Rank-Sum test is included, and highlights a significant
di↵erence between the two populations at the 95% confidence interval.

Algorithm type Experiment number Successful probes

Machine learning

Adaptive-1a 100.00

GA-1a 0.00

GA-2a 0.00

GA-3a 0.00

Non-Machine learning

Linear-1a 0.00

Linear-2a 0.00

Linear-3a 0.49

Pattern-1a 0.00

Stripe-1a 0.00

Stripe-2a 0.00

MonteCarlo-1a 0.00

MonteCarlo-2a 1.20

Test statistic 181850

p-Value <0.001

Table 4.27: A comparison of means of successful probes, and the successful probes to process time ratio,
between experiments that employed machine learning and non-machine learning algorithms tested against the
surveyed dataset. The outcome of the Wilcoxon Rank-Sum test is included, and highlights a lack of a significant
di↵erence between the two populations at the 95% confidence interval.

Algorithm type Experiment number Successful probes

Machine learning

Adaptive-1b 10218.00

GA-1b 6.95

GA-2b 0.00

GA-3b 0.00

Non-Machine learning

Linear-1b 16284.00

Linear-2b 0.00

Linear-3b 8642.09

Pattern-1b 2543.00

Stripe-1b 0.00

Stripe-2b 4150.00

MonteCarlo-1b 0.00

MonteCarlo-2b 30.42

Test statistic 129270

p-Value 1

205

Table 4.28: A comparison of means of successful probes, and the successful probes to process time ratio,
between experiments that employed machine learning and non-machine learning algorithms against the results
for both datasets. The outcome of the Wilcoxon Rank-Sum test is included, and highlights a lack of a significant
di↵erence between the two populations at the 95% confidence interval.

Algorithm type Experiment number Successful probes

Machine learning

Adaptive-1a 100.00

Adaptive-1b 10218.00

GA-1a 0.00

GA-1b 6.95

GA-2a 0.00

GA-2b 0.00

GA-3a 0.00

GA-3b 0.00

Non-Machine learning

Linear-1b 16284.00

Linear-1a 0.00

Linear-2b 0.00

Linear-2a 0.00

Linear-3b 8642.09

Linear-3a 0.49

Pattern-1b 2543.00

Pattern-1a 0.00

Stripe-1b 0.00

Stripe-1a 0.00

Stripe-2b 4150.00

Stripe-2a 0.00

MonteCarlo-1a 0.00

MonteCarlo-1b 0.00

MonteCarlo-2a 1.20

MonteCarlo-2b 30.42

Test statistic 629410

p-Value 0.776

206

Chapter 5

Discussion of Findings

This chapter explores the relationship between the results of the experiments carried

out in this study, the research hypotheses and the research questions. The primary

research hypotheses were first introduced in Section 1.4. The experiments described in

Chapter 3 were used to test the research hypotheses. The outcomes of the hypothesis

testing from Chapter 4 served to answer the research questions described in Section 1.3.

The implications of how these results shape the landscape about the research topic are

also discussed in this chapter.

5.1 Outcomes of the research questions

The primary research questions that guided the research project were:

RQ1 Can networking devices be enumerated on IPv6 64 bit subnetworks using host

enumeration techniques?

RQ2 Are stochastic searching methods more e�cient than deterministic searching meth-

ods when enumerating IPv6 hosts within a single 64 bit subnetwork?

RQ3 Do stochastic address allocation schemes within a single 64 bit subnetwork inhibit

IPv6 host enumeration strategies?

RQ4 Can machine-learning search methods be used to enumerate devices on a 64 bit

IPv6 subnetwork?

207

RQ5 Are machine-learning search methods more e�cient than non-machine learning

based methods when enumerating IPv6 hosts within a single 64 bit subnetwork?

After testing the primary hypotheses of the research using the experiments outlined

in Chapter 3, the results were used to provide answers to the research questions. The

relationship between the research questions and the hypotheses is displayed in Table 5.1

Table 5.1: Table displaying the relationship between the primary research questions and the hypotheses.

Research question Corresponding hypothesis

RQ1: Can networking devices be enumerated on IPv6
64 bit subnetworks using host enumeration techniques
in a timely manner?

H1: Search techniques are unable to enumerate net-
worked devices on 64 bit IPv6 subnetworks.

RQ2: Are stochastic searching methods more e↵ective
than deterministic searching methods when enumer-
ating IPv6 hosts within a single 64 bit subnetwork?

H2: Methods that employ random sampling do not
perform better than methods that do not employ ran-
dom sampling for IPv6 host enumeration.

RQ3: Do stochastic address allocation schemes within
a single 64 bit subnetwork inhibit IPv6 host enumer-
ation strategies?

H3: Randomly generated interface identifiers do not
a↵ect the performance of IPv6 host enumeration
search algorithms.

RQ4: Can machine learning search methods be used
to enumerate devices on a 64 bit IPv6 subnetwork?

H4: Search methods that employ machine learning
are unable to enumerate networked devices on 64 bit
IPv6 subnetworks.

RQ5: Are machine learning search methods more e�-
cient than non-machine learning based methods when
enumerating IPv6 hosts within a single 64 bit subnet-
work?

H5: Search methods that employ machine learning do
not perform better than search methods that do not
employ machine learning for IPv6 host enumeration.

5.1.1 RQ1 : Can networking devices be enumerated on 64 bit IPv6

subnetworks using host enumeration techniques?

The literature surrounding this topic, as discussed previously in Section 2.3, supports

the notion that IPv6’s address space is too vast to enumerate e�ciently. Under RFC-

4291 (Hinden & Deering, 2006), a standard IPv6 subnetwork size is defined as being 64

bits long. This translates to over 18 quintillion unique addresses per subnet. At a rate

of 1 million packets per second, would take 584,942.42 years to exhaustively enumerate

a 64 bit subnetwork. Hypothesis H1 sought to test the notion that IPv6 networks are

not susceptible to host enumeration, and asserted that networked devices on 64 bit

IPv6 subnetworks are unable to be enumerated using search techniques. To test this

hypothesis the combined results of all 24 sub-experiments were considered in H1.

From the results of the experiments conducted, the null hypothesis for Hypothesis

208

H1 was rejected at the 95% confidence interval (i.e. ↵ = 0.05), indicating that it

is possible to enumerate devices on an IPv6 subnetwork. In particular, throughout

this research it was observed that a mean of 1749 successful probes were transmitted

per sub-experiment. These results represents 3.5% of the total number of configured

nodes for the randomly generated dataset, and 4.25% of the total number of configured

nodes for the surveyed dataset. Considering the scope of the problem, these results

are remarkable, and represent a significant finding for the research. Furthermore,

the maximum number of successful probes discovered during a single simulation was

16,284 during the Linear-1b sub-experiments which represented 39.55% of the total

configured hosts on the surveyed dataset. The outcomes of the hypothesis testing high-

light that host enumeration is possible against o↵-link 64 bit IPv6 subnetworks. This

finding provides a firm foundation for the expansion of further research into potential

IPv6 host enumeration search techniques and methods, and contradicts the accepted

position that IPv6 host enumeration is futile.

According to Jara, Ladid and Skarmeta (2013) and Zanella, Bui, Castellani, Van-

gelista and Zorzi (2014), IPv6 is positioned to see significant usage in IoT systems.

IoT systems typically include a large number of network-connected sensors (in excess

of 300, according to Zanella et al. (2014)), making IPv6 an appropriate choice for net-

work level communications. O↵-link host enumeration has an impact on the security

of the connected devices in IoT systems on IPv6 networks. The ability to locate nodes

on a network exposes nodes to potential attack even with an address space as vast as

a standard IPv6 subnetwork. It has been observed that IPv6 devices are not entirely

secure from o↵-link host enumeration. Although the large address space does a↵ord

devices more protection than equivalent IPv4 networks from host enumeration, the

means by which addresses are constructed can reduce the protection significantly.

209

5.1.2 RQ2 : Are stochastic searching methods more e�cient than

deterministic searching methods when enumerating IPv6 hosts

within a single 64 bit subnetworks?

The literature review process revealed two major categories of search algorithms used

for conducting host enumeration in IPv4; using linear search to sequentially enumerate

the target address space, or using some randomisation function to enumerate the target

address space in a non-sequential fashion. To determine whether the approaches can

translate e↵ectively to the IPv6 address space, the outcomes of Hypothesis H2 must

be considered.

Hypothesis H2 suggested that search techniques that utilise random sampling do

not perform better than those that don’t. The null hypothesis for Hypothesis H3 was

accepted in light of the results of this research. That is to say that the results strongly

suggest that random sampling approaches are not appropriate for searching 64 bit IPv6

subnetworks. It was observed that the majority of the algorithms that depended on

random sampling failed to produce significant or meaningful results. In the majority of

the experiments, the purely stochastic methods failed to yield a single successful probe

throughout all simulations. The exception to this was the Adaptive-heuristic search

algorithm, which successfully managed to enumerate an average of 10,218 hosts from

the surveyed dataset.

The results of the sub-experiments involving the linear search algorithms against

the surveyed IPv6 dataset validate that host enumeration strategies used in the IPv4

realm are valid strategies to use against IPv6 networks. Out of all of the experiments

conducted, the linear search algorithm performed the strongest on average. This is

evidenced by the results of Linear-1b and Linear-3b, which successfully enumerated

an average of 16,284 and 8,642 nodes respectively. These results show that the linear

search strategy is still a valid enumeration strategy against IPv6 networks. The time

constraints of conducting an exhaustive search, however, need to be acknowledged. As

is suggested by the literature and supported by the results of this research, with current

computing resources, it would certainly be infeasible to conduct an exhaustive search

against an IPv6 network. Not only would it be infeasible with respect to the time

210

costs associated with the exercise, an exhaustive search of the address space might not

reveal all of the hosts on the network. Hosts on a computer network may connect and

disconnect many times throughout the lifespan of a search operation.

These findings rule the Monte Carlo method out from being a candidate for IPv6

host enumeration strategies. Other strategies, such as using LCGs or generalised Feistel

algorithms (such as those employed by zmap and masscan) would not be recommended

approaches to enumerating an o↵-link, 64 bit IPv6 network. Instead it would be recom-

mended to focus on deterministic search methods (such as the Linear search or Stripe

search algorithms), or search techniques that exploit predictability or repeating pat-

terns in IPv6 addresses (such as the Pattern-based heuristic search algorithm). Despite

being classified as stochastic, the adaptive-heuristic search method performed partic-

ularly well and is a recommended candidate algorithm for usage in host enumeration

exercises.

Stochastic search methods have been used in IPv4 host enumeration strategies as

a mechanism to randomly sample the address space, as well as to distribute the load

of searching. The density of public IPv4 address allocation and usage enable random

sampling search methods to operate e↵ectively, since the majority of the relatively

small address space is utilised. The same is not true for IPv6. The public IPv6 address

space is sparsely populated when compared to IPv4’s public address space. In relation

to IPv6 search e↵orts, this research has shown random sampling to be ine↵ective. The

problem can be likened to the ”needle in a haystack” problem, except on a much larger

scale.

5.1.3 RQ3 : Do stochastic address allocation schemes within a single

64 bit subnetworks inhibit IPv6 host enumeration strategies?

Stochastically generated IIDs are a proposed solution to address the privacy issues that

have been identified with IPv6 address construction methods. In particular, perman-

ent or semi-permanent IIDs can be used to track devices even as they roam amongst

di↵erent networks. Additionally, with SLAAC generated addresses that conform to the

modified EUI-64 construction scheme, the link layer address of a device is derivable from

211

the IPv6 address. Currently privacy extensions for SLAAC are recommended to mit-

igate the risk of exposing potentially identifiable information (in particular a device’s

MAC address), to the wider public Internet. Other methods of generating randomised

addresses, such as hash-based addresses, or cryptographically generated addresses, have

also been proposed to address the privacy concerns arising from deterministic address

construction schemes. Hypothesis H3 was concerned with determining whether these

proposed stochastically generated IIDs provide protection against host enumeration in

IPv6 networks.

As was expected, in light of the literature, the research failed to disprove the null

hypothesis of Hypothesis H3. The majority of experiments that targeted the network

configured with randomly generated addresses failed to yield any significant results.

The maximum number of hosts discovered on the network configured with randomly

generated addresses was 100, or 0.2% of the total configured devices on that network.

This is in contrast to 39.55% of devices that were discovered on the network that was

configured to reflect real-world addresses, which represents a significant portion of the

configured addresses. It can be concluded, therefore, that stochastic address allocations

schemes do inhibit o↵-link IPv6 host enumeration strategies.

The observations made from the research align with the available literature that

suggest that it would be di�cult to locate addresses that use randomisation func-

tions to generate IIDs. Since the generation of secure addresses can be likened to a

cryptographic problem, cryptographic approaches are required to resolve it. The ap-

proaches used with HBAs and CGAs are therefore appropriate. That is provided that

the randomisation function is correctly implemented, and in the case of PRNG-based

solutions, seeded appropriately. This caveat is to reduce the opportunity for patterns,

or other deterministic features to arise from the address construction process, which

would reduce the security of the approach. This finding does reinforce the notion that

good privacy and protection from o↵-link host enumeration e↵orts can be achieved by

using stochastic means to generate IIDs. However, randomised address construction

should not be the only defence measure employed. Such an approach should be taken

as a part of a complete defence in depth strategy.

212

5.1.4 RQ4 : Can machine learning search methods be used to enu-

merate devices on a 64 bit IPv6 subnetwork?

Machine learning systems have thus far not been applied to the problem of host enu-

meration, let alone specifically against IPv6 systems. This research has pioneered the

approach. The adaptive and GA algorithms used machine learning in order to influence

their search patterns, whilst the other algorithms tested did not. The adaptive search

algorithm employed a decision making system in order to critically assess each dis-

covered address and alter its search approach accordingly. Discovered addresses were

classified, and then further targets were added for searching based upon the outcome

of the classification.

The GA search algorithm used an evolutionary process to ‘breed’ potential search

candidates. Target addresses were subject to fitness testing to determine whether they

were strong candidates for further breeding. This strategy was chosen since it was

expected that the algorithm would probe addresses in clusters throughout the address

space. It was shown through the various pilot studies for the algorithm that there

was a tendency for the GA to group targets throughout the address space. Like the

adaptive search algorithm, the GA represents a novel approach to host enumeration

that had not been attempted prior to this study.

To determine whether machine learning search methods could be used to enumerate

devices on IPv6 subnetworks, Hypothesis H4 was devised and tested. Hypothesis H4

asserted that machine learning methods cannot be used to enumerate devices on IPv6

subnetworks. The test revealed that at the 95% confidence interval, the results of

the machine learning experiments were significantly greater than 0. Consequently,

the null hypothesis was rejected, and the alternative hypothesis that machine learning

search techniques could be used to enumerate devices on 64 bit IPv6 subnetworks was

accepted.

The GA performed poorly overall, successfully probing a maximum of 0 out of

50,000 nodes against the randomised dataset and a maximum of 12 out of 41,171

possible nodes to probe against the surveyed dataset (0.03% of the possible hosts on

the network). By contrast, the adaptive algorithm performed better than the majority

213

of the algorithms tested, ranking second overall by average successful probes. The

algorithm successfully enumerated on average 10,218 hosts on the surveyed network

(or 24.8% of possible hosts on that network), and 100 hosts on the randomly generated

dataset (or 0.2% of possible hosts on that network).

It was observed from this research that machine learning algorithms can be used to

enumerate hosts on an IPv6 network. Machine learning approaches have been success-

fully applied to a number of computer science problems. The results of this research

highlight that machine learning techniques should be considered for further research

into emerging host enumeration algorithms.

5.1.5 RQ5 : Are machine learning searching methods more e�cient

than non-machine learning based methods when enumerating

IPv6 hosts within a single 64 bit subnetworks?

To answer this research question, Hypothesis H5 was tested. Hypothesis H5 asserted

that machine learning methods were not more e↵ective than non-machine learning

methods for IPv6 host enumeration purposes. The null hypothesis for Hypothesis

H5 was accepted since there was no statistically significant di↵erence between the

algorithms that employed machine learning and those that did not employ machine

learning at the 95% confidence interval.

Although a lack of statistical di↵erence indicates that machine learning approaches

did not perform better than non-machine learning approaches during this study, there

is still potential for machine learning in IPv6 host enumeration. The adaptive search

algorithm, for example, successfully enumerated an average of 10,218 hosts across all

simulations conducted across the surveyed dataset. It also successfully enumerated an

average of 100 hosts against the randomly generated dataset. These results ranked

amongst the highest recorded results throughout the research.

The machine learning domain shows promise for host enumeration, however has

not been fully explored by this research. Further development into machine learn-

ing approaches for host enumeration is required to improve the performance of the

algorithms.

214

5.2 Implications of research

This research has made a number of significant contributions to knowledge. These

contributions are noted in the coming sections.

5.2.1 Host enumeration classification framework

A classification system for host enumeration strategies was introduced in Chapter 2.

Two major categories of host enumeration were identified: active and passive enumera-

tion. Active enumeration involves strategies that involve the direct probing of systems

in order to enumerate devices. Examples of active enumeration include TCP SYN

scanning, ICMP ping sweeps, or ARP ping sweeps. Within the active enumeration

category, a five component framework for active host enumeration methods was in-

troduced. The five major components identified for active host enumeration methods

were:

• The target address space: the address(es) or range of addresses that are to be

probed during the host enumeration exercise. This forms the object of interest

for the host enumeration.

• Probe targets: The delivery addresses of the probes. Usually the same as the

target address space, but in certain situations may di↵er (e.g. when querying

IPv6 local multicast groups to enumerate o↵-link nodes, or when targeting link

layer addresses when using ARP ping to enumerate devices).

• The search algorithm: the order by which targets are probed. Typically the

search algorithm is either sequential or uses some randomisation function.

• The protocol: the protocol that is used to probe the target address(es) and

measure the response. For example TCP SYN segments, ICMPv6 echo requests,

or ARP requests.

• The probe payload: the data attached to the probe. In some cases, for vulner-

ability testing or malicious activities, payload may be included in the probe to

trigger a response on a target. As an example, the Shellshock vulnerability in

215

2014 could be exploited by sending malformed Bash strings as the payload (in

particular the User Agent string) in HTTP requests. In other cases the payload

may simply be arbitrary data.

Passive enumeration involved conducting host enumeration without directly probing

the target system (i.e. the reconnaissance subject). This can be achieved through

strategies such as passive network monitoring, querying ancillary network services (e.g.

DNS, SNMP, etc.) or looking at DHCP leases or ARP/NDP tables. Within the passive

enumeration category four major components were identified:

1. The reconnaissance subject: The target of interest to the enumeration exercise.

This could be network, website, domain name, host address, etc.

2. The reconnaissance object: The system that is under observations for determining

live hosts. For example, in a DNS enumeration the DNS server being queried

would be the reconnaissance object.

3. The protocol: The protocol refers to the underlying protocol being used against

the reconnaissance object to enumerate devices. Continuing with the DNS enu-

meration example, the protocol would be the DNS protocol.

4. The payload: The information that is being examined to gain information about

the reconnaissance subject (such as enumeration of devices). For example, the

DNS requests and responses containing valid IP addresses.

5.2.2 Privacy issues with IPv6 address construction

This research highlighted potential privacy issues with IPv6 address construction that

could be used to monitor activities of device owners. The research identified that three

classes of address construction could be inferred without any context or prior knowledge

of how an address was formed. These classes were;

• EUI-64 addresses (or SLAAC addresses without privacy extensions) which in-

cluded IIDs that had undergone the modified EUI-64 process to convert a 48 bit

link-layer MAC address into a 64 bit IPv6 IID.

216

• Incremental or statically assigned addresses, which included addresses that were

low range numbers, or included hexadecimal word substitution, or conformed to

an assignment policy specified by an administrator.

• Randomised addresses (or SLAAC with privacy extensions), which included ad-

dresses that have been cryptographically generated or are indistinguishably ran-

dom.

These findings were published in Carpene and Woodward (2012) and the identified

classes formed the basis for the classification system that was developed for this re-

search.

5.2.3 IPv6 address classification system

A classification system developed during the course of this study (which has been pub-

lished in Carpene et al. (IN PRESS)) provides evidence that machine learning systems,

such as ANNs and naive Bayesian classifiers, can be used to classify IPv6 address IID

construction. This classification system utilised machine learning algorithms to de-

termine whether IPv6 IIDs were constructed using modified EUI-64, a randomisation

function, or whether they had be assigned using an incremental or static addressing

scheme.

Such a classification system has potential benefits for usage, not only in IPv6 host

enumeration search strategies, but with other systems that process IP addresses, such

as IDS, IPS and security information and event management (SIEM) systems. IPv6

address classification could be used to provide metrics for detection and classification

of threat actors for alerted activity in threat detection systems.

5.2.4 IPv6 usage survey

The first phase of the research (Phase 1: Perform survey of IPv6 usage) involved a

passive host enumeration survey of public DNS services to gather IPv6 addresses. It was

revealed that despite recommendations and best practices from authorities such as the

IETF, the majority of collected addresses from public information sources conformed

to the incremental or statically assigned address class. This exercise represented novel

217

research that shed light on the real-world usage habits of IPv6. The IPv6 survey

research was published in Carpene et al. (IN PRESS).

5.2.5 Significant advancements to o↵-link IPv6 host enumeration

This research marks the first empirical study conducted that tests the e�cacy of various

host enumeration algorithms against IPv6 networks. The literature surrounding the

topic suggests that the address space is too vast to feasibly enumerate. However, whilst

tools have been developed for the task this marks the first formal research conducted

about the topic.

The e↵ectiveness of multiple host enumeration algorithms were compared to de-

termine which algorithms are candidates for host enumeration exercises against IPv6

networks. Algorithms that are currently employed during IPv4 host enumeration exer-

cises were tested for their e�cacy in IPv6 host enumeration. An empirical comparison

and analysis of host enumeration search methods has thus far not been conducted, and

constitutes a significant contribution to knowledge from this research. This analysis

revealed that some search methods are not suited to IPv6 host enumeration. In partic-

ular, stochastic, or randomised search algorithms failed to enumerate any meaningful

quantity of hosts during the experiments. The deterministic algorithms performed

substantially better overall, implying that e↵orts should be directed towards them for

further development of search algorithms.

A number of novel approaches to searching a 64 bit IPv6 subnetwork were presented

in this research project. The adaptive heuristic host enumeration algorithm represents a

novel approach to host enumeration and a significant contribution to knowledge made

by this research. The algorithm incorporates both active and passive enumeration

strategies, as well as machine learning to improve the probability of identifying hosts.

This approach has, thus far, not been attempted as a strategy for enumeration. The

algorithm (described in Chapter 3) first conducts passive enumeration of the target

address space. The addresses that are gathered from the passive enumeration are

classified using a machine learning classification system, to determine how the address

IIDs were constructed. Based upon the classification results of each address, new

targets are computed, and compiled into the target address list, for searching.

218

Additionally, the use of machine learning and decision making constructs for host

enumeration is a novel approach to the problem that was tested during this research. As

mentioned above, the adaptive heuristic search algorithm employed machine learning

in order to classify addresses, as well as to influence its search operations. A genetic

algorithm was also tested that employed machine learning. The genetic algorithm used

an evolutionary process to generate target addresses and probe them. It was discovered

that machine learning systems can be e↵ective for use in host enumeration. This

foundational research paves the way for future studies to expand upon, and improve the

applicability of machine learning search algorithms for o↵-link IPv6 host enumeration.

5.2.6 Host enumeration scenarios

In addition to the contributions to knowledge detailed above, the following real-world

applications of the research findings are presented. The findings of this research influ-

ence the approach that should be taken when applying host enumeration to real-world

IPv6 networks. The findings have identified recommended approaches for host enumer-

ation, depending on the information that is available to the initiator of the enumeration

exercise.

5.2.6.1 Blind search

In real-world scenarios actors would have access to varying amounts of information

when performing host enumeration. For example, an attacker targeting a public net-

work with disclosed public services may have access to information such as DNS records

for nodes. On the contrary, a network administrator on an entirely private network may

have no additional information available other than the protocol (e.g. IPv6 or IPv4)

that the network uses. Blind searching refers to situations where additional context or

information about the target is not available, e↵ectively leaving the agent blind.

In a situation where an actor has no prior knowledge about the target IPv6 net-

work, nor any prior information about common protocol usage (such as those tested in

stochastic settings), the linear search provides the best chance for locating networked

nodes. However, if the nodes in the search space are randomly distributed, the results

of this study show that there is e↵ectively no chance of locating such addresses. At this

219

point, the actor should consider alternative avenues for locating nodes in the address

space.

5.2.6.2 Context-aware search

Context aware searching refers to situations where an actor has access to resources,

such as public DNS, for reconnaissance purposes when performing host enumeration.

Unlike blind searching, context-aware searches leverage any available information in

order to improve the probability of discovering the reconnaissance subject’s networked

devices.

It has been shown from this research that combining passive and active enumeration

strategies can produce good results from o↵-link IPv6 host enumeration exercises. The

results of the Adaptive-1 (experiments Adaptive-1a and Adaptive-1b) imply that

search methods that employ passive and active enumeration methods, in conjunction

with machine learning form a robust strategy for host enumeration.

In a real-world situation it would be recommended to incorporate passive and act-

ive methods into a host enumeration exercise in order to increase the likelihood of

discovering hosts.

5.2.7 Parallel processing

The study has also displayed the benefits of parallel processing systems in conducting

time-consuming research. Parallel processing was used successfully to conduct trials in-

volving applying di↵erent algorithms to the test datasets. By executing the simulations

for an experiment in parallel, the total cost of the time to complete the simulations

was reduced considerably.

The total processing time for the recorded search operations carried out during the

study was 387,783,500 seconds. This means that approximately 12.3 years of processing

time was consumed throughout this research. Without parallel processing capabilities

the research could not have been as extensive, since the time costs would have been

far too great to overcome.

220

5.3 Critical review of the research process

This research has revealed a number of significant findings relating to IPv6 and host

enumeration. In particular o↵-link host enumeration search algorithms have been de-

vised and tested, which will pave the way for future research into host enumeration.

There are aspects of the research that would have been done di↵erently if the oppor-

tunity was presented. In particular rather than focus on the search algorithms, I would

have tested a variety of complete host enumeration strategies against live systems. Al-

though the decision was made to focus on the search algorithms it would have been

rewarding to contribute a host enumeration toolkit to the research community. In any

case converting the search algorithms that were developed for this research into live

scanning tools and testing them in a natural environment is a logical progression to

this work.

Additionally, the decision was made to utilise the Wilcoxon ranked tests to test

the research hypotheses. This decision may have a↵ected the research outcomes, since

the Wilcoxon Signed-Ranked test is 95% as e�cient as the independent samples t-test

(Sheskin, 2000). If the data were normally distributed the one-sample t-test would

have been chosen over the Wilcoxon Signed-Ranked test. Likewise the independent

sample t-test would have been chosen over the Wilcoxon Ranked-Sum test. Overall,

the decision to use the Wilcoxon tests was made because the data were non-parametric

and the tests were deemed appropriate.

Another decision that was made that may have a↵ected the research process was

the decision to use Python to create the experimental computer programs. This de-

cision was made early on in the research process, since it was simple to realise the

algorithms designed for the experiments into Python code. Throughout the pilot stud-

ies the Python programs performed acceptably. It wasn’t until testing with the actual

experimental parameters (such as 232 probes to transmit) that the extent of the time

costs became apparent. Even considering the programs were executed on parallel sys-

tems some of the experiments took weeks to complete. The process completion times

were also potentially impacted by the load on the clustered computer system. Large

di↵erences between the maximum and minimum processing times of simulations were

221

evident in the results. It is likely that these di↵erences arose from variations in the

number of tasks being concurrently performed on the clustered computer system. In

the future I would more carefully manage the performance of the system conducting

the experiments, to ensure that there is no impact on the results.

If I had to perform the research again, I would have chosen to prototype the design

of the algorithms using Python, and then use a lower level language such as C or Julia to

write all of the programs for conducting the actual research. I would be more mindful

of the limitations of a programming language or other materials, when conducting

research in the future.

222

Chapter 6

Conclusion

6.1 Research overview

This thesis sought to identify appropriate algorithms to use in IPv6 host enumeration

search strategies. The research also included testing and validating existing techniques

for host enumeration for their applicability to IPv6 host enumeration. The testing

included techniques that are used against the IPv4 and IPv6 protocols. In particular,

this research was concerned with identifying e↵ective search methods for enumerating

an o↵-link 64 bit subnetwork. Appropriate strategies for performing host enumeration

have been established for application to IPv4 networks (both on and o↵-link), as well as

on-link enumeration for IPv6 networks. This research topic was identified in Chapter 1,

where it was explained that while there are appropriate and accepted methods for on-

link host enumeration against IPv6 networks, the same cannot be said for o↵-link

enumeration.

6.1.1 Host enumeration problem space

The literature surrounding the topic has suggested that the address space is too vast to

conventionally search using exhaustive methods. The results of this research support,

and provide evidence for this claim. It is, with current computational resources, it

is too expensive to conduct an exhaustive enumeration of an IPv6 network. Due to

these assertions, little attention has been paid to o↵-link IPv6 host enumeration in the

literature.

223

Whilst three major categories of search techniques have been presented for o↵-

link IPv6 host enumeration, no reported testing has been conducted to determine the

e�cacy of said techniques. These three categories of search algorithm are; linear (se-

quential) search, randomisation functions, and pattern-heuristic searching. The linear

search technique is commonly used with IPv4 host enumeration tools, and has also

been applied to IPv6 host enumeration tools. Randomisation techniques have also

been used in IPv4. However, tools that support randomised search in IPv6 are not

available. Finally, pattern-heuristics rely on techniques that exploit predictable ele-

ments of the IPv6 addressing schemes (such as low range incremental assignments, or

hexadecimal word injection) to target predictable addresses. Even though these meth-

ods have been inferred from available tools designed to perform the host enumeration

task, little information is available that has undergone peer review.

6.1.2 Method and procedure

The study was conducted in five phases. First, a passive host enumeration survey was

conducted into the usage habits of IPv6 in real-world scenarios. A DNS enumeration

exercise was chosen to conduct the survey. The results were then used to determine the

types of algorithms that could be developed and applied to the search problem. The

survey phase also provided the IPv6 addresses that formed the target network devices

for search experiments.

Second, the subject host discovery algorithms were generated. A total of six unique

algorithms were chosen as the subjects of the controlled, laboratory-based experiments.

These algorithms were the; linear search; Stripe search; Monte Carlo search; Pattern-

based heuristic search; Adaptive heuristic search; and GA search algorithms. These

algorithms were designed to perform searches of the target address space in varied

ways.

Third, the experiments were developed. The experimental process and accompa-

nying computer programs were constructed in this phase. The experiments consisted

of testing a search algorithm against two IPv6 address datasets. Because of this,

each experiment was split into two sub-experiments (an a and b sub-experiment) that

tested the subject algorithm against the randomly generated and surveyed IPv6 ad-

224

dress datasets respectively. The research assumed testing against two target 64 bit

IPv6 subnetworks; one where nodes were configured with addresses that were allocated

at random, and one where nodes were configured with addresses that were allocated

to resemble real world addressing schemes. As such, each experiment was performed

against two datasets of valid addresses, one generated stochastically and one generated

from the survey phase of the study.

Fourth, the experiments were performed. Each experiment was run on a cluster of

computing devices that shared processing resources. The computer programs written

in phase 3 were executed in parallel on the computer cluster. The parameters used to

control each sub-experiment are detailed in Chapter 3.

Finally the results were gathered from the experiments and analysed. The inform-

ation gained from the analysis served to provide the answers to the research questions,

as well as suggest further recommendations in light of the study.

6.2 Major conclusions and implications of research

6.2.1 Can networking devices be enumerated on 64 bit IPv6 subnet-

works using techniques?

The consensus across the literature is that o↵-link enumeration is not feasible to conduct

against IPv6 networks. According to Hinden and Deering (2006), a standard IPv6

subnetwork should be 64 bits long, leaving 64 bits for possible host addresses. At a

rate of 1,000,000 generic probes per second, an exhaustive enumeration of a 64 bit

subnetwork would take 584,942.42 years. It has been suggested that IPv6 networks are

not susceptible to o↵-link host enumeration. In contrast on-link enumeration can be

achieved with little di�culty in IPv6 due to link-local discovery techniques involving

multicast groups. Whilst the research supports that an exhaustive enumeration is

infeasible, it has been demonstrated that devices on IPv6 networks can be enumerated

by o↵-link actors.

It was observed that if hosts within an IPv6 subnetwork have been configured

using pattern-based, or wordy IPv6 addresses, some degree of host enumeration can

225

be successfully employed. Likewise, if the address space uses low range incremental

interface identifiers, there is little di↵erence between performing host discovery against

an IPv6 network and an IPv4 network. O↵-link IPv6 host enumeration is possible and

viable. However, this research has shown that it is not as comprehensive as it can be

against IPv4 networks. It is expected that deterministic methods of host configuration

will become increasingly less common as the security and privacy issues associated with

such methods are exposed.

6.2.2 Are stochastic searching methods more e�cient than determ-

inistic searching methods when enumerating IPv6 hosts within

a single 64 bit subnetworks?

IPv4 host enumeration strategies often employ randomisation functions to achieve an

even distribution of probes across the entire address space. Randomisation and per-

mutation functions attempt to prevent overloading distant networks that are spatially

close together. The e↵ectiveness and applicability for the usage of target randomisa-

tion functions in IPv6 host enumeration strategies was tested and validated. It was

observed that overall the randomisation functions failed to produce any meaningful

results, and therefore the stochastic methods of searching were not appropriate for

the problem. The deterministic methods performed better overall, and are therefore

the recommended approach to developing host enumeration search algorithms for IPv6

searching.

6.2.3 Do stochastic address allocation schemes within a single 64 bit

subnetworks inhibit IPv6 host enumeration strategies?

IPv6 introduces a number of address allocation schemes designed to create high en-

tropy host addresses for IPv6 devices. These schemes, including privacy extensions for

SLAAC, hash-based addresses and CGAs, aim to protect hosts from host enumeration

attempts, as well as prevent the personally identifiable information from being leaked

through IPv6 addresses. This security through obscurity measure is claimed to improve

the privacy of users and devices since they are less susceptible to active o↵-link enu-

226

meration. This research validated these claims by testing the o↵-link host enumeration

search algorithms against two networks, one which was configured using high entropy

IIDs, and one that used IIDs gathered in a passive enumeration exercise, represent-

ative of the common usage of the protocol. The results of the experiments indicate

that the high entropy addresses provide significant protection from active o↵-link host

enumeration.

It is the recommendation of this thesis that operating systems adopt high entropy

addressing as the primary means for allocating IPv6 IIDs, rather than using modified

EUI-64 IIDs, or sequential addressing. Having IIDs distributed randomly throughout

the address space complicates host enumeration to the point of infeasibility, and the

protection it o↵ers is not insignificant. However, for network administrators there is a

requirement to ensure that adequate inventory is maintained. This means that systems

like DNS, IP address management systems and, if required, DHCPv6 servers must be

su�ciently utilised. This will assist in easing the administrative burden of locating

devices with semi-permanent or even permanent high entropy addresses on an IPv6

network.

6.2.4 Can machine learning search methods be used to enumerate

devices on a 64 bit IPv6 subnetwork?

Machine learning techniques have, thus far, not been applied to the problem of host

enumeration. This research sought to determine whether machine learning techniques

could be successfully applied to the problem. The research tested a GA as well as

a decision system that utilised artificial neural networks, in an e↵ort to answer the

research question.

It was discovered that machine learning systems can be e↵ective at enumerating

hosts on IPv6 networks, and that they are also e↵ective at classifying IIDs based

upon how they were constructed. The adaptive heuristic algorithm performed better

than almost all of the other algorithms tested, and highlights that machine learning

systems can be used successfully in host enumeration search algorithms. The GA did

not perform so admirably, and it was concluded that the approach is inappropriate for

227

search operations without significant changes.

6.2.5 Are machine learning searching methods more e�cient than

non-machine learning based methods when enumerating IPv6

hosts within a single 64 bit subnetworks?

Although machine learning-based search algorithms were able to enumerate devices

on o↵-link IPv6 subnetworks, the algorithms that did not employ machine learning

performed better overall. It was concluded that non-machine learning search algorithms

are a more appropriate choice for most IPv6 host enumeration scenarios. Despite this

finding the adaptive heuristic search algorithm did perform remarkably well.

Further research is required to improve the performance of machine learning search

methods for o↵-link IPv6 host enumeration. Particular focus on the GA may aid in

improving the search algorithm’s ability to locate nodes in known-unknown situations.

6.3 Recommendations and future research

From the findings, it is recommended that network administrators wishing to pro-

tect their networked devices from unsolicited o↵-link IPv6 host enumeration attempts

should make use of high entropy (randomly generated or CGA-based) IPv6 addresses.

These addresses o↵er the most security against host enumeration attempts, as evid-

enced by the results of this research.

Additionally, the usage of IPv4-in-IPv6 style addresses, incremental IIDs, wordy

addresses, or other predictable address construction methods greatly increases suscept-

ibility to o↵-link IPv6 host enumeration e↵orts. For administrators who wish to ensure

their devices can be enumerated through host enumeration methods it is recommended

that predictable address construction means are used.

Although it was not addressed specifically in this research, it is important to note

that one can maintain a high degree of privacy and mitigate host enumeration tech-

niques with a combination of high entropy IID assignments, and a su�cient IP address

management system, in addition to proper DNS management.

Future research could see the algorithms tested in this research employed against

228

live networked devices in a field experiment. Section 3.2 explained why lab experiments

were chosen to over field or natural experiments for this study. Now that the algorithms

have been developed and tested in a purely controlled environment, the natural pro-

gression is to test their e↵ectiveness in an uncontrolled, live environment. In particular,

the adaptive, pattern-based heuristic, stripe search and linear search algorithms have

shown great potential as candidates for real-world testing.

These algorithms could be used to aid in similar research e↵orts such as ‘Internet

Census 2012’ (2013) and Heidemann et al. (2008) as well as provide a means for con-

ducting vulnerability assessments of Internet-based devices in a similar vein to Heninger

et al. (2012) and Durumeric et al. (2014).

This research also succeeded in providing a sample of a small scale passive host

enumeration of IPv6 addresses using a DNS enumeration. This research can be of use

in determining how IPv6 is being utilised in the real world by agents that provide

public services. The DNS enumeration is expected to be expanded, and form part of

ongoing longitudinal research into IPv6 usage patterns. The machine learning address

classification system will play an important role in future studies of this nature.

In addition, the IID classification system developed for this research may aid in

defensive detection systems such as IDSs or SIEMs. Such systems could employ the

technology to assess the address construction class of the actor that activities originate

from. This data could assist in providing insight into how threat actors are utilising

IPv6 for malicious purposes, and therefore improve detection and response strategies

for such events.

Similarly, another potential avenue for research that has arisen from this study

is to consider the host enumeration attempts from the destination’s perspective, and

determine the search method that is being employed. This research could aid in the

early detection and prevention of malicious tra�c entering a network. The research

data could also be used to determine whether there are other search strategies being

employed in the real world that have yet to be published.

Finally, passive enumeration strategies are an area of potential future research for

IPv6 systems. There is an abundance of information that can be correlated from

passive monitoring of network transmissions. When combined with active enumeration,

229

a comprehensive enumeration strategy may be achievable against IPv6 networks.

6.4 Final thoughts

This thesis has demonstrated that host enumeration is possible in IPv6 networks. It is

not safe to assume that deploying IPv6 provides inherent protection against IPv6 host

enumeration exercises, especially in critical systems.

The best search algorithms to use are the Linear search, Adaptive search, Pattern

search and Stripe search algorithms. These algorithms produced the most positive

results, and performed better than the other algorithms that were tested. Further

improvements to the fitness function and operations of the GA could see that as another

viable alternative. However, it did not perform well during this research.

IPv6 is an emerging technology and one that has the potential to shape the land-

scape of network communications for many years to come. More research is required

to ensure this protocol meets the needs of its users.

230

References

Alexa Internet, Inc. (2014, October). Top 1,000,000 sites (updated daily). Retrieved

October 2, 2014, from http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

APNIC. (2015, January). IPv4 exhaustion details. Retrieved January 5, 2015, from

http://www.apnic.net/community/ipv4-exhaustion/ipv4-exhaustion-details

Atlasis, A. (2014, September). Chiron - An All-In-One Penetration-Testing Framework

for IPv6. In Brucon. Ghent. Retrieved from http://u.jimdo.com/www64/o/

sfc6326db↵511243/download/m5145a98b92fd412c/1417096039/AAtlasis Brucon5x5

2014.pdf

Aura, T. (2005, March). Cryptographically Generated Addresses (CGA). RFC 3972

(Proposed Standard).

Australia.gov.au. (n.d.). A to z list of government sites. Retrieved October 28, 2014,

from http://www.australia.gov.au/directories/australian-government-directories/

a-to-z-list-of-government-sites

Bagnulo, M. (2009, June). Hash-Based Addresses (HBA). RFC 5535 (Proposed Stand-

ard).

Bao, C., Huitema, C., Bagnulo, M., Boucadair, M. & Li, X. (2010, October). IPv6

Addressing of IPv4/IPv6 Translators. RFC 6052 (Proposed Standard).

Beale, J., Deraison, R., Meer, H., Temmingh, R. & Walt, C. V. D. (2008, May). Nessus

network auditing (2nd). Syngress Publishing.

Black, J. & Rogaway, P. (2002). Ciphers with arbitrary finite domains. In B. Preneel

(Ed.), Topics in cryptology — ct-rsa 2002 (Vol. 2271, pp. 114–130). Lecture Notes

in Computer Science. Springer Berlin Heidelberg. doi:10.1007/3-540-45760-7 9

231

Braden, R. (1989, October). Requirements for Internet Hosts - Application and Sup-

port. RFC 1123 (INTERNET STANDARD).

Braunton, G. (2005, September). B.A.S.E. - A Security Assessment Methodology (White-

paper No. GSEC Practical Assignment Version 1.4b, Option 1). SANS Insti-

tute. Retrieved December 8, 2014, from http://www.sans.org/reading- room/

whitepapers/auditing/base-security-assessment-methodology-1587

Brownlee, J. (2011, January). Clever algorithms: nature-inspired programming recipes

(1st). LuLu.

Carpene, C., Johnstone, M. &Woodward, A. (IN PRESS, December). The e↵ectiveness

of classification algorithms on IPv6 IID construction. International Journal of

Autonomous and Adaptive Communications Systems, Vol. 7 (4).

Carpene, C. & Woodward, A. (2012, December). Exposing potential privacy issues with

IPv6 address construction. In 10th australian information security management

conference. Perth: Edith Cowan University Security Research Institute.

Carpene, C. & Woodward, A. (2014, December). A survey of IPv6 address usage in the

public domain name system. In M. Johnstone (Ed.), The Proceedings of 12th Aus-

tralian Information Security Management Conference (ISBN 978-0-7298-0718-0,

pp. 91–99). School of Computer & Security Science. Joondalup, WA: Edith Cowan

University Security Research Institute.

Cerf, V., Dalal, Y. & Sunshine, C. (1974, December). Specification of Internet Trans-

mission Control Program. RFC 675.

Chown, T. (2008, March). IPv6 Implications for Network Scanning. RFC 5157 (Inform-

ational).

Corder, G. W. & Foreman, D. I. (2011). Nonparametric statistics for non-statisticians:

a step-by-step approach. Wiley. doi:10.1111/j.1751-5823.2010.00122 6.x

Crawford, M. & Haberman, B. (2006, August). IPv6 Node Information Queries. RFC

4620 (Experimental).

Creswell, J. W. (2009). Research design: qualitative, quantitative, and mixed methods

approaches (3rd). California: Sage Publications, Inc.

de Velde, G. V., Popoviciu, C., Chown, T., Bonness, O. & Hahn, C. (2008, December).

IPv6 Unicast Address Assignment Considerations. RFC 5375 (Informational).

232

Deering, S. & Hinden, R. (1998, December). Internet Protocol, Version 6 (IPv6) Spe-

cification. RFC 2460 (Draft Standard).

Droms, R. (2004, April). Stateless Dynamic Host Configuration Protocol (DHCP) Ser-

vice for IPv6. RFC 3736 (Proposed Standard).

Dunlop, M., Groat, S., Marchany, R. & Tront, J. (2011, February). The good, the bad,

the ipv6. In Communication networks and services research conference (cnsr),

2011 ninth annual (pp. 77–84). IEEE. doi:10.1109/CNSR.2011.20

Dunlop, M., Groat, S., Urbanski, W., Marchany, R. & Tront, J. (2011, November).

MT6D: A Moving Target IPv6 Defense. In Military communications confer-

ence, 2011 - milcom 2011 (pp. 1321–1326). Baltimore, MD: IEEE. doi:10.1109/

MILCOM.2011.6127486

Durumeric, Z., Kasten, J., Adrian, D., Halderman, J. A., Bailey, M., Li, F., . . . Payer,

M. et al. (2014). The matter of heartbleed. In Proceedings of the 2014 conference

on internet measurement conference (pp. 475–488). ACM. Retrieved February

17, 2015, from https://jhalderm.com/pub/papers/heartbleed-imc14.pdf

Durumeric, Z., Wustrow, E. & Halderman, J. A. (2013a, August). ZMap: Fast Internet-

wide scanning and its security applications. In Proceedings of the 22nd usenix

security symposium (usenix security 13). Washington, D.C.: USENIX. Retrieved

from https://www.usenix.org/conference/usenixsecurity13/technical-sessions/

paper/durumeric

Durumeric, Z., Wustrow, E. & Halderman, J. A. (2013b, August). Zmap internet scan-

ner. Retrieved May 13, 2014, from https://github.com/zmap/zmap

Fien, J. (2002, June). Advancing sustainability in higher education. Advancing sustain-

ability in higher education: issues and opportunities for research, 3 (3), 243–253.

doi:10.1108/14676370210434705

Glassman, M. & Kang, M. J. (2012). Intelligence in the internet age: the emergence

and evolution of open source intelligence (osint). Computers in Human Behavior,

28 (2), 673–682. doi:10.1016/j.chb.2011.11.014

Gont, F. (2014, April). A Method for Generating Semantically Opaque Interface Iden-

tifiers with IPv6 Stateless Address Autoconfiguration (SLAAC). RFC 7217 (Pro-

posed Standard).

233

Graham, R. (2012, October). Randomizing port scans, part two. Errata Security. Re-

trieved July 4, 2013, from http://blog.erratasec.com/2012/10/randomizing-port-

scans-part-two.html

Graham, R. (2013a, December). Masscan: designing my own crypto. Retrieved May

13, 2014, from http://blog.erratasec.com/2013/12/masscan-designing-my-own-

crypto.html

Graham, R. (2013b, September). Masscan: mass IP port scanner. Retrieved August

29, 2014, from https://github.com/robertdavidgraham/masscan

Graham, R. (2013c, September). Masscan: the entire Internet in 3 minutes. Errata

Security Blog. Retrieved May 13, 2014, from http://blog.erratasec.com/2013/

09/masscan-entire-internet-in-3-minutes.html

Graziano, A. M. & Raulin, M. L. (2004). Research methods: a process of inquiry. (5th).

Pearson Education Group.

Groat, S., Dunlop, M., Marchany, R. & Tront, J. (2010). The privacy implications of

stateless IPv6 addressing. In Proceedings of the sixth annual workshop on cy-

ber security and information intelligence research (52:1–52:4). CSIIRW ’10. Oak

Ridge, Tennessee, USA: ACM. doi:10.1145/1852666.1852723

Groat, S., Dunlop, M., Marchany, R. & Tront, J. (2011). IPv6: nowhere to run, nowhere

to hide. In Proceedings of the 2011 44th hawaii international conference on system

sciences (pp. 1–10). HICSS ’11. Washington, DC, USA: IEEE Computer Society.

doi:10.1109/HICSS.2011.258

Habets, T. (2009). Arping v2.15. Retrieved January 23, 2015, from http://github.com/

ThomasHabets/arping

Hastie, T., Tibshirani, R. & Friedman, J. (2013, January). Data mining, inference, and

prediction (2nd). The elements of statistical learning. Springer.

Hauser, V. (2006). Attacking the IPv6 Protocol Suite. In Pacsec 2005. The Hacker’s

Choice. Retrieved from https://www.thc.org/papers/vh thc-ipv6 attack.pdf

Hauser, V. (2014, December). THC-IPv6. Retrieved December 31, 2014, from https:

//www.thc.org/thc-ipv6/

234

Heidemann, J., Pradkin, Y., Govindan, R., Papadopoulos, C., Bartlett, G. & Bannister,

J. (2008). Census and survey of the visible internet. In Proceedings of the 8th acm

sigcomm conference on internet measurement (pp. 169–182). ACM.

Heninger, N., Durumeric, Z., Wustrow, E. & Halderman, J. A. (2012). Mining your

Ps and Qs: detection of widespread weak keys in network devices. In Usenix

security symposium (pp. 205–220). Bellevue, WA: USENIX. Retrieved from https:

//www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/

heninger

Hinden, R. & Deering, S. (2006). IP Version 6 Addressing Architecture. RFC 4291

(Draft Standard).

Hinden, R., Deering, S. & Nordmark, E. (2003, August). IPv6 Global Unicast Address

Format. RFC 3587 (Informational).

Hold-Geo↵roy, Y., Gagnon, O. & Parizeau, M. (2014). Once you SCOOP, no need

to fork. In Proceedings of the 2014 annual conference on extreme science and

engineering discovery environment (p. 60). ACM. Retrieved from https://code.

google.com/p/scoop/

Hunter, J. D. (2007, June). Matplotlib: a 2D graphics environment. Computing In

Science and Engineering, 9 (3), 90–95. doi:10.1109/MCSE.2007.55

IANA. (2013, February). Internet protocol version 6 address space. Retrieved February

17, 2015, from http://www.iana.org/assignments/ipv6- address- space/ipv6-

address-space.xhtml

IANA. (2014a, October). Internet Protocol Version 4 Address Space Registry. Retrieved

February 17, 2015, from http : / /www . iana . org / assignments / ipv4 - address -

space/ipv4-address-space.xhtml

IANA. (2014b, May). IPv6 Global Unicast Address Assignments. Retrieved Febru-

ary 17, 2015, from http://www.iana.org/assignments/ipv6- unicast- address-

assignments/ipv6-unicast-address-assignments.xhtml

IANA. (2015, February). IPv6 Multicast Address Space Registry. Retrieved February

17, 2015, from http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-

multicast-addresses.xhtml

235

IEEE Standards Association. (n.d.). Guidelines for 64-bit Global Identifier (EUI-64).

IEEE.

Jackson, S. (2009). Research methods and statistics: a critical thinking approach (3rd).

Belmont, CA: Cengage Learning.

Jara, A. J., Ladid, L. & Skarmeta, A. (2013, September). The internet of everything

through IPv6: an analysis of challenges, solutions and opportunities. Journal of

Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications

(JoWUA), 4 (3), 97–118.

Kawamura, S. & Kawashima, M. (2010, August). A Recommendation for IPv6 Address

Text Representation. RFC 5952 (Proposed Standard).

Kessler, G. (2014, November). An overview of TCP/IP protocols and the internet. Gary

Kessler Associates.

Kim, D. & Solomon, M. (2010, November). Fundamentals of information systems se-

curity. Burlington, MA: Jones & Bartlett Learning.

Klensin, J. (2001, April). Simple Mail Transfer Protocol. RFC 2821 (Proposed Stand-

ard).

Klensin, J. (2004, February). Application Techniques for Checking and Transformation

of Names. RFC 3696 (Informational).

Knuth, D. E. (1998). Art of computer programming, volume 3: sorting and searching,

the (2nd). Addison-Wesley.

Kumar, A., Paxson, V. & Weaver, N. (2005). Exploiting underlying structure for de-

tailed reconstruction of an Internet-scale event. In Proceedings of the 5th acm

sigcomm conference on internet measurement (pp. 33–33). IMC ’05. Berkeley,

CA, USA: USENIX Association.

Lacey, S. & Box, R. (n.d.). A fast easy sort. Retrieved January 6, 2015, from http:

//cs.clackamas.cc.or.us/molatore/cs260Spr03/combsort.htm

Leonard, D. & Loguinov, D. (2010). Demystifying service discovery: implementing an

internet-wide scanner. In Proceedings of the 10th acm sigcomm conference on

internet measurement (pp. 109–122). ACM. doi:10.1145/1879141.1879156

Lyon, G. (2015, January). Nmap SVN source code repository. Computer Program.

Retrieved from https://svn.nmap.org/

236

Lyon, G. F. (2009). Nmap Network Scanning: The O�cial Nmap Project Guide to

Network Discovery and Security Scanning. USA: Insecure.

Mackenzie, N. & Knipe, S. (2006). Research dilemmas: paradigms, methods and meth-

odology. Issues in educational research, 16 (2), 193–205.

McKinney, W. (2010, July). Data structures for statistical computing in python. In

Proceedings of the 9th python in science conference (scipy 2010) (pp. 51–56).

Austin, Texas.

McKinney, W. (2012, November). Python for data analysis: data wrangling with pandas,

numpy, and ipython. Sebastopol, CA: O’Reilly Media, Inc.

McNab, C. (2007, November). Network security assessment: know your network. O’Reilly

Media.

Mertens, D. M. [Donna M.]. (2007, July). Transformative paradigm: mixed methods

and social justice. Journal of Mixed Methods Research, 1 (3), 212–225. doi:10 .

1177/1558689807302811

Mertens, D. M. [Donna M]. (2010, April). Philosophy in mixed methods teaching:

the transformative paradigm as illustration. International Journal of Multiple

Research Approaches, 4 (1), 9–18. doi:10.5172/mra.2010.4.1.009

Montgomery, D. C. (2009). Design and analysis of experiments (7th). Hoboken, NJ:

Wiley.

Narten, T., Draves, R. & Krishnan, S. (2007, September). Privacy Extensions for State-

less Address Autoconfiguration in IPv6. RFC 4941 (Draft Standard).

Net-SNMP. (2011, May). IPv6MIB. Retrieved January 20, 2015, from http://www.net-

snmp.org/docs/mibs/ipv6MIB.html

Information technology – Open Systems Interconnection – Basic Reference Model: The

Basic Model. (1994). ISO. Retrieved from http://www.iso.org/iso/catalogue

detail.htm?csnumber=20269

Internet Census 2012. (2013). Retrieved February 17, 2015, from http://internetcensus2012.

bitbucket.org/paper.html

OTB Development Team. (2014, September). The orfeo tool box software guide. CNES.

237

Pérez, F. & Granger, B. E. (2007, May). IPython: a system for interactive scientific

computing. Computing in Science and Engineering, 9 (3), 21–29. doi:10.1109/

MCSE.2007.53

Polcák, L. (2014). Challenges in identification in future computer networks. In Icete

2014 doctoral consortium (pp. 15–24). Wien, AT: SciTePress - Science and Tech-

nology Publications. Retrieved from http://www.fit.vutbr.cz/research/view pub.

php?id=10516

Porras, P., Saidi, H. & Yegneswaran, V. (2009, March). An analysis of conficker’s logic

and rendezvous points. SRI International. Menlo Park, CA. Retrieved February

20, 2015, from http://mtc.sri.com/Conficker/

Postel, J. (1981, September). Internet Protocol. RFC 791 (INTERNET STANDARD).

Potter, S. (2006). Doing postgraduate research (2nd). London: Sage.

Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G. J. & Lear, E. (1996, Febru-

ary). Address Allocation for Private Internets. RFC 1918 (Best Current Practice).

Rish, I. (2001). An empirical study of the naive bayes classifier. In Ijcai 2001 workshop

on empirical methods in artificial intelligence (Vol. 3, 22, pp. 41–46). doi:10.1.1.

330.2788

Rivest, R. L. & Schuldt, J. C. N. (2014, October). Spritz—a spongy RC4-like stream

cipher and hash function. Presented at CRYPTO 2014 Rump Session. Retrieved

February 20, 2015, from http://people.csail.mit.edu/rivest/pubs/RS14.pdf

RStudio. (2014). RStudio: integrated development environment for R (version 0.98.1102).

Computer Program. Boston, MA. Retrieved January 21, 2015, from http://www.

rstudio.org/

Savagaonkar, U., Sahita, R., Nagabhushan, G., Rajagopal, P. & Durham, D. (2005). An

os independent heuristics-based worm-containment system. Retrieved February

20, 2015, from http : / / vxheaven . org / lib /pdf /An%20OS%20Independent%

20Heuristics-based%20Worm-containment%20System.pdf

Schemers, R. (2012, October). Fping. Retrieved February 20, 2015, from http://fping.

org/

Schemers, R. & Schweikert, D. (2014, May). Fping. Retrieved February 20, 2015, from

http://fping.org/

238

Schneider, K.-M. (2003). A comparison of event models for naive bayes anti-spam e-

mail filtering. In Proceedings of the tenth conference on european chapter of the

association for computational linguistics - volume 1 (pp. 307–314). EACL ’03.

Stroudsburg, PA, USA: Association for Computational Linguistics. doi:10.3115/

1067807.1067848

scikit-learn developers. (n.d.). Machine learning 101: general concepts. Retrieved Janu-

ary 31, 2015, from http://www.astroml.org/sklearn tutorial/general concepts.

html

Shannon, C. & Moore, D. (2004, July). The spread of the witty worm. Security Privacy,

IEEE, 2 (4), 46–50. doi:10.1109/MSP.2004.59

Sheskin, D. J. (2000). Parametric and nonparametric statistical procedures (Second).

Florida: Chapman & Hall/CRC.

Sullo, C. & Lodge, D. (2015). Nikto. CIRT.net. Retrieved February 17, 2015, from

https://github.com/sullo/nikto

Thomson, S. & Narten, T. (1998, December). IPv6 Stateless Address Autoconfigura-

tion. RFC 2462 (Draft Standard).

Thomson, S., Narten, T. & Jinmei, T. (2007, September). IPv6 Stateless Address Auto-

configuration. RFC 4862 (Draft Standard).

Wagner, J.-O., Wiegand, M., Brown, T. & Mauthe, C. K. (2009, January). OpenVAS

Compendium (1st). Germany: Intevation GmbH.

Walt, S. v. d., Colbert, S. C. & Varoquaux, G. (2011, March). The numpy array: a

structure for e�cient numerical computation. Computing in Science and Engin-

eering, 13 (2), 22–30. doi:10.1109/MCSE.2011.37

Wei-hua, J., Wei-hua, L. & Jun, D. (2003, August). The application of ICMP protocol

in network scanning. In Parallel and distributed computing, applications and tech-

nologies, 2003. pdcat 2003. proceedings of the fourth international conference on

(pp. 904–906). IEEE. doi:10.1109/PDCAT.2003.1236446

Weisstein, E. W. (n.d.). Primitive root. MathWorld–A Wolfram Web Resource. Re-

trieved February 20, 2015, from http://mathworld.wolfram.com/PrimitiveRoot.

html

239

Williamson, K. & Johanson, G. (2013). Research methods: information, systems and

contexts (1st). Prahran, VIC: Tilde University Press.

xslidian & VersusClyne. (2014, October). IPv6 hosts. Retrieved February 20, 2015, from

https://code.google.com/p/ipv6-hosts/

Yu, Z. & Tsai, J. (2011, January). Intrusion detection: a machine learning approach

(3rd). Series in electrical and computer engineering. Imperial College Press.

Zalewski, M. (2005). Silence on the wire: a field guide to passive reconnaissance and

indirect attacks. San Francisco, CA, USA: No Starch Press.

Zanella, A., Bui, N., Castellani, A., Vangelista, L. & Zorzi, M. (2014, February). In-

ternet of things for smart cities. Internet of Things Journal, IEEE, 1 (1), 22–32.

doi:10.1109/JIOT.2014.2306328

240

Glossary

ANN Artificial neural network. A type of machine learning system that simulates the

human brain. 49, 50, 51, 85, 110

ARP Address Resolution Protocol. A network-layer discovery protocol used within

IPv4 to resolve link-layer addresses. 4, 13, 26, 36, 37, 38, 39, 44, 45

BYOD Bring your own device. A policy relating to the use of arbitrary unmanaged

personal devices on corporate networks. 3

CGA Cryptographically Generated Address. A method for generating IPv6 addresses

with cryptographic properties that is defined in RFC-3972 (Aura, 2005). CGAs

use a portion of the host’s public key to enable the addresses to be authenticated

by other devices. 23, 25, 72, 200, 212, 226

DNS Domain name system. A system used to map IP numbers to host names. 37,

42, 43, 44, 45, 46, 70, 71, 109, 224, 228, 229

GA Genetic algorithm. An evolutionary computing algorithm that simulates biolo-

gical evolutionary processes. xvii, 77, 91, 101, 102, 158, 159, 163, 167, 169, 213,

224, 227, 228, 230

HBA Hash-Based Address. A method for generating IPv6 addresses with crypto-

graphic properties that is defined in RFC-5535 (Bagnulo, 2009). HBAs apply a

cryptographic hashing function to generate a visually random address. 25, 200,

212

241

host enumeration The act of locating active nodes on a computer network. 1, 52,

223, 224, 225, 226, 227, 228, 229, 230

ICMPv4 Internet Control Message Protocol version 4. A messaging protocol used

within IPv4 for communications at TCP/IP layer 2 and OSI layer 3. 40

ICMPv6 Internet Control Message Protocol version 6. A messaging protocol used

heavily within IPv6 for communications at TCP/IP layer 2 and OSI layer 3. 4,

40, 41, 58

IID Interface Identifier. The host portion of an IPv6 address. According to RFC-4291

(Hinden & Deering, 2006), the IID should be 64 bits long. xi, xii, xv, xviii, 17,

20, 22, 23, 24, 25, 36, 49, 50, 51, 57, 80, 85, 89, 109, 110, 113, 130, 132, 142, 156,

157, 162, 173, 177, 184, 185, 200, 211, 212, 216, 217, 218, 226, 227, 228, 229

IoT Internet of Things. An emerging technology that involves autonomous machine-

to-machine communications. 3

IPv4 Internet Protocol version 4. An OSI layer 3, TCP/IP Layer 2 networking pro-

tocol. IPv4 uses 32 bits to address network nodes. i, 1, 2, 3, 4, 5, 13, 14, 15, 16,

18, 20, 21, 26, 28, 29, 31, 33, 34, 38, 40, 44, 45, 46, 47, 52, 54, 55, 56, 57, 223,

225, 226

IPv6 Internet Protocol version 6. An OSI layer 3, TCP/IP Layer 2 networking pro-

tocol. IPv6 uses 128 bits to address network nodes. i, ii, vii, viii, xi, xvii, 1, 2, 4,

5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 35, 36,

38, 39, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 64, 65, 66, 67, 68,

69, 70, 71, 72, 73, 77, 80, 83, 85, 86, 89, 90, 94, 97, 98, 101, 102, 103, 109, 110,

113, 115, 116, 126, 133, 137, 145, 152, 158, 159, 163, 173, 176, 180, 195, 200, 201,

202, 203, 204, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,

223, 224, 225, 226, 227, 228, 229, 230

NAT Network Address Translation. A mechanism to map many network addresses to

one or many network addresses. Prominently used with IPv4 to prevent exhaus-

tion of the address space resources. 1, 58

242

NDP Neighbour Discovery Protocol. IPv6’s discovery protocol used to enable com-

munications between IPv6 enabled devices. 36, 39

NIQ Node Information Query. An ICMP message type that requests information from

another IP enabled device.. 37, 41

SLAAC Stateless Address Auto-configuration. A method defined in RFC-2462 (Thom-

son & Narten, 1998) for devices to generate their own unique IPv6 addresses

statelessly. 22, 23, 24, 57, 58, 200, 211, 216, 217

subnetwork An IP network that has been divided. The term is used interchangeably

with subnet. 1, 14, 17, 20, 26, 38, 40, 47, 56, 223, 225

VA Vulnerability assessment. A VA is used to assess a system for vulnerabilities to

threats. i, 2, 3, 41, 52, 53, 54

243

	An investigation into Off-Link IPv6 host enumeration search methods
	Recommended Citation

	Edith Cowan University
	Research Online
	2016

	An investigation into Off-Link IPv6 host enumeration search methods
	Clinton Carpene
	Recommended Citation

