74 research outputs found

    A Compositional Approach to Structuring and Refinement of Typed Graph Grammars

    Get PDF
    Abstract Based on a categorical semantics that has been developed for typed graph grammars we uses colimits (pushouts) to model composition and (reverse) graph grammar morphisms to describe refinements of typed graph grammars. Composition of graph grammars w.r.t. common subgrammars is shown to be compatible with the semantics, i.e. the semantics of the composed grammar is obtained as the composition of the semantics of the component grammars. Moreover, the structure of a composed grammar is preserved during a refinement step in the sense that compatible refinements of the components induce a refinement of the composition. The concepts and results are illustrated by an example

    Processes and unfoldings: concurrent computations in adhesive categories

    Get PDF
    We generalise both the notion of non-sequential process and the unfolding construction (previously developed for concrete formalisms such as Petri nets and graph grammars) to the abstract setting of (single pushout) rewriting of objects in adhesive categories. The main results show that processes are in one-to-one correspondence with switch-equivalent classes of derivations, and that the unfolding construction can be characterised as a coreflection, i.e., the unfolding functor arises as the right adjoint to the embedding of the category of occurrence grammars into the category of grammars. As the unfolding represents potentially infinite computations, we need to work in adhesive categories with "well-behaved" colimits of omega-chains of monos. Compared to previous work on the unfolding of Petri nets and graph grammars, our results apply to a wider class of systems, which is due to the use of a refined notion of grammar morphism

    A Category Theoretical Approach to the Concurrent Semantics of Rewriting: Adhesive Categories and Related Concepts

    Get PDF
    This thesis studies formal semantics for a family of rewriting formalisms that have arisen as category theoretical abstractions of the so-called algebraic approaches to graph rewriting. The latter in turn generalize and combine features of term rewriting and Petri nets. Two salient features of (the abstract versions of) graph rewriting are a suitable class of categories which captures the structure of the objects of rewriting, and a notion of independence or concurrency of rewriting steps – as in the theory of Petri nets. Category theoretical abstractions of graph rewriting such as double pushout rewriting encapsulate the complex details of the structures that are to be rewritten by considering them as objects of a suitable abstract category, for example an adhesive one. The main difficulty of the development of appropriate categorical frameworks is the identification of the essential properties of the category of graphs which allow to develop the theory of graph rewriting in an abstract framework. The motivations for such an endeavor are twofold: to arrive at a succint description of the fundamental principles of rewriting systems in general, and to apply well-established verification and analysis techniques of the theory of Petri nets (and also term rewriting systems) to a wide range of distributed and concurrent systems in which states have a "graph-like" structure. The contributions of this thesis thus can be considered as two sides of the same coin: on the one side, concepts and results for Petri nets (and graph grammars) are generalized to an abstract category theoretical setting; on the other side, suitable classes of "graph-like" categories which capture the essential properties of the category of graphs are identified. Two central results are the following: first, (concatenable) processes are faithful partial order representations of equivalence classes of system runs which only differ w.r.t. the rescheduling of causally independent events; second, the unfolding of a system is established as the canonical partial order representation of all possible events (following the work of Winskel). Weakly ω-adhesive categories are introduced as the theoretical foundation for the corresponding formal theorems about processes and unfoldings. The main result states that an unfolding procedure for systems which are given as single pushout grammars in weakly ω-adhesive categories exists and can be characetrised as a right adjoint functor from a category of grammars to the subcategory of occurrence grammars. This result specializes to and improves upon existing results concerning the coreflective semantics of the unfolding of graph grammars and Petri nets (under an individual token interpretation). Moreover, the unfolding procedure is in principle usable as the starting point for static analysis techniques such as McMillan’s finite complete prefix method. Finally, the adequacy of weakly ω-adhesive categories as a categorical framework is argued for by providing a comparison with the notion of topos, which is a standard abstraction of the categories of sets (and graphs)

    Event Structure Semantics for Dynamic Graph Grammars

    Get PDF
    Dynamic graph grammars (DGGs) are a reflexive extension of Graph Grammars that have been introduced to represent mobile reflexive systems and calculi at a convenient level of abstraction. Persistent graph grammars (PGGs) are a class of graph grammars that admits a fully satisfactory concurrent semantics thanks to the fact that all so-called asymmetric conflicts (between items that are read by some productions and consumed by other) are avoided. In this paper we introduce a slight variant of DGGs, called persistent dynamic graph grammars (PDGGs), that can be encoded in PGGs preserving concurrency. Finally, PDGGs are exploited to define a concurrent semantics for the Join calculus enriched with persistent messaging (if preferred, the latter can be naively seen as dynamic nets with read arcs)

    Permutation Equivalence of DPO Derivations with Negative Application Conditions based on Subobject Transformation Systems: Long Version

    Get PDF
    Switch equivalence for transformation systems has been successfully used in many domains for the analysis of concurrent behaviour. When using graph transformation as modelling framework for these systems the concept of negative application conditions (NACs) is widely used -- in particular for the specification of operational semantics. In this paper we show that switch equivalence can be improved essentially for the analysis of systems with NACs by our new concept of permutation equivalence. Two derivations respecting all NACs are called permutation-equivalent if they are switch-equivalent disregarding the NACs. In fact, there are permutation-equivalent derivations which are not switch-equivalent with NACs. As main result of the paper, we solve the following problem: Given a derivation with NACs, we can efficiently derive all permutation-equivalent derivations to the given one by static analysis. The results are based on extended techniques for subobject transformation systems which have been introduced recently

    Complexity analysis of reactive graph grammars

    Get PDF
    The aim of this paper is to present a way to calculate a complexity measurement of graph grammar specifications of reactive systems. The basic operation that describe the behavior of a graph grammar is a rule application. Therefore, this operation will be used to characterize the tasks to be performed within a system. The complexity measurement defined here ,vill give us the minimum numbei:· of steps that must be present in a computation that performs a desir_ed task

    Matrix Graph Grammars

    Full text link
    This book objective is to develop an algebraization of graph grammars. Equivalently, we study graph dynamics. From the point of view of a computer scientist, graph grammars are a natural generalization of Chomsky grammars for which a purely algebraic approach does not exist up to now. A Chomsky (or string) grammar is, roughly speaking, a precise description of a formal language (which in essence is a set of strings). On a more discrete mathematical style, it can be said that graph grammars -- Matrix Graph Grammars in particular -- study dynamics of graphs. Ideally, this algebraization would enforce our understanding of grammars in general, providing new analysis techniques and generalizations of concepts, problems and results known so far.Comment: 321 pages, 75 figures. This book has is publisehd by VDM verlag, ISBN 978-363921255
    • 

    corecore