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Abstract 

The aim of this paper is to present a wa,y to calculate a complexity measurement of 
graph grammar specifications of reactive systems. T he basic operation that describe 
the behavior of a graph grammar is a rule application. Therefore, this operation will 
be used to characterize the tasks to be performed within a system. The complexity 
measurement defined here \vill give us the minimum number of steps that must be 
present in a computation that performs a desir.ed task. 

Keywords: gra.ph grammars, complexity. 

*Inst it uto de In formática/ CPG CC 
Universidade Federa l do Rio Grande do Sul 
e-m a il: {loreto, la ira,leil a} @inf. ufrgs . br 
This work has been pa rti a lly supported by projects QaP-For(Fapergs) , Platus (CN Pq ) and Gra phit 
(CNPct/ DLR). 



Complexity Analysis of Reactive Graph Grammars 

1. Introd uction 

Reactive systems [MP92] are a special kind of system in which everything that 
occurs is a reaction to some kind of stimulus. The ideais that the system is composed 
by a number of communicating entities that send stimulus to each other and cooperate 
in order to perform some application. Here we will call the entities by objects and 
the stimulus by messages. Reactive systems are usually concurrent because each of 
its components acts independently. Many of the most used concurrent applications 
of computers nowadays can be suitably modeled as reactive systems, for example, 
control systems and client j server applications. Due to the concurrency, distributed, 
non-deterministic and dynamic aspects of these applications, they are very difficult 
to analyze. This is specially true in case one wants to answer questions about the 
computational efforts involved in the execution of a reactive system. 

To be able to investigate a system, we must first describe it using a formal descrip
tion technique. Here we will use graph grammars [Ehr79, EHK+97] for this purpose . 
. ~ graph grammar specification of a system consists of an initial graph and a set of 
rules. The initial graph represents the initial state of the system, that is , the objects 
and messages (triggers) that are present when the system is initialized. The rules 
describe the behavior of the system. Graph grammars rely on simple but powerful 
concepts: graphs represent in a natural way the distribution of the objects in a sys
tem; each rule describes a local change , and may be applied in parallel with others 
if they are not in conflict (do not try to delete the same items); in case there are 
conflicting rules enabled, the choice of the one to be applied is non-deterministic. 

The complexity of a SfYecification j program is always related to the computational 
work. Usually, this work is measured in terms of time ou memory needed to perform 
some task. But in special kinds of systems , other units are also interesting to con
sider. For example, in distributed applications, the number of messages exchanged 
to perform some task is of great interest because in such systems the time needed 
to execute is rather consumed by communication than by CPU [Lyn96]. In general 
many complexity measurements are interesting for a particular application domain, 
but many of them are very difficult (if not impossible) to be computed. The challenge 
is always to find out a useful measurement that is possible to be computed. The 
specifica.tion of a system is an abstra.ct description of its intended implementation: 
it describes the properties the implementation has to satisfy. Complexity is one of 
these properties. If it is possible to sta.te something about the complexity of the 
system alrea.dy in the specification phase , the cost of the development will decrease 
and the generated system will be more efficient. As usual, once an implementation is 
proposed, we have to assure that this implementation satisfies ali the necessary prop
erties of the specification, including the complexity. For specification methods that 
follow the operational approach, like graph grammars , investigation about complexit.r 
measures can be very interesting for some a.pplica.tion domains, like distributed and 
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concurrent systems. 
T he investigation of complexity of para llel systems in general is usually relateel 

to an execution on a concrete architecture [Jaj97, Akl89]. What is measureel is the 
complexity of performing one or more t asks, typically the amount of time neeeleel to 
complete the execution of ali these tasks. In reactive systems like the ones studieel 
in this paper , there is a great amount of parallelism involved: each entity ma.y a.ct 
in pa.rallel with others , and the ent ity itself may perform ma.ny a.ctions in parallel. 
Moreover, ma.ny of these systems are not mea.nt to terminate, they ra.ther receive 
messa.ges, cha.nge their interna! sta.te, senel some messages in rea.ction and rema.in 
ready to receive other messages (note tha.t , ma.ybe t he task sta.rteel by the original 
messa.ge did not end with this reaction , but will continue to be performeel by t he 
other entities that received the new messa.ges) . Thus, the notion of completion of a 
task is not stra.ightforwarel. There are some questions, like Will a reaction ever be 
triggered?, that have no answer because we consider non-deterministic systems a.nd 
do not assume fairness ( and therefore in the general case a. message tha.t t riggers some 
reaction ma.y be indefini tely postponed). But there are some questions t ha.t are of 
interest in this kinel of context anel may be answereel :/s it possible that the system 
comes to a state in which a particular r·eaction is triggered?, How many steps must 
the system per.fo1'm be.fore such a state is reached ?, Is it possible that this reaction is 
triggered a number o.f times?. In this paper , we will proviele a \vay to give answers to 
these questions. Such a.nswers will be a grea.t help for the construction of elistributeel 
systems, because many of them have a reactive na.ture anel programmers can not rely 
only on tests ( the same test executed twice may yielel complete!~· elifferent results). 

The paper is structured as follows: Sect . 2. we give an introduction to graph 
grammars and in Sect. 3. we shmv how they can be useel to model reactive systems; 
in Sect. 4. we present a way to calculate a kincl of complexity measurement for reactive 
systems baseei on the a. graph grammar specification; in Sect. 5. we summarize our 
results and cliscuss the possible improvements to our approach. 

2. Graph Grammars 

We will follow the algebraic Single-Pushout Approach to graph grammars[Li:iw90, 
Li:iw93]. The technica.l clefini t ions within this approach are elescribed using category 
theory, anel specially the approa.ch we follmv is callecl Single-Pushou t because the 
a.pplicat ion of a rule to a match is definecl as a pushout in a category of gra.phs anel 
partia! graph morphisms. 

Cla.ssica.lly, a graph grammar consists of an initial graph , representing the initial 
state of a system, a.nd a set o.f rules that can be usecl to transform the states of 
t he clescribecl system. Sta.tes are describeel by graphs. To allow more comprehensive 
representations of a sta.te using a gra.ph , typing mechanisms elescribing clifferent kincls 
of vertices anel edges may be used . There are many wa~rs to define typing mechanisms 
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for gra.phs, here we will use the concept of a typed graph \ cite{ typed}. The idea of 
a typed graph is to use a graph, ca.lled type graph, to define the possible kinds of 
vertices and edges of a system, and an actual graph is then a graph consisting of 
insta.nces of elements of the type graph. A typed graph can thus be described by a 
graph morphism relating each instance with its type. Figure 4 shows a (typed) graph 
gramma.r GG with type graph AG depicted in Figure 3, that is, and each of the other 
graph$ in Figure 4 are graphs typed over AG (the mapping is implicitly defined by 
the sa.me symbols o f vert ices and edges) . The rules specify the behavior o f the system 
in terms of local state changes. The left-hand side of the rule specifies a pattern that 
must be present in some sta te for the rule to be applied ; the right-hand side shows 
the effect of the application of the rule; and the mapping from left- to right-hand side 
describes deletion (items that are not mapped), creation (items that are not in the 
range of the mapping) and preservation (items that are mapped). In the grammar 
GG , the mapping from left- to right-hand sides of the rules is indicated by using the 
same item on the both sides to specify that the item is preserved , different índices 
inelicate that an item v .. ·as deleteel anel another one of the same type was createel. 
Graph grammar: is a tuple GG = (T , JT , N) where T is a graph, called the type 
graph, JT is a graph typed over· T. called the initial graph, N is a set of rules typed 
over T. 

3. Reactive Graph Grammars 

A reactive system as a system consisting of autonomous entities that we will call 
objects that communicate anel co~5perate with each other through m essages. Objects 
may have an interna] state anel relate to other objects within t he system. The behavior 
o f an object is elescribeel through its reactions to the receipt o f messages ( triggers). 
An object ma.y perform rna.ny (re)a.ctions in parallel. 

Here we will describe a. reactive system using a graph grammar. Therefore, we hm·e 
to ielentify within a graph gra.mmar what are t he objects , messages anel attributes, 
anel then show ho\\· to specify reactions within this formalism. The structural part 
will be moeleleel by elistinguishing elifferent kinels of vertices anel eelges within the 
graphs that moelel sta.tes of the systern (see Figure 1) . Object s anel messages will 
be moelelecl as vertices. A messa.ge must have as elestiny an object anel may ha.ve as 
arguments other objects and / or attributes of data types . An object may know other 
objects anel may have attributes of data types moeleling its interna] sta.te. This graph 
(Figure 1) can be considered as a type gra.ph for a reactive system, anel therefore we 
will call it r-eactive model graph. Note that a type graph models kinels of objects anel 
links that may be present in an actual state of the system, but sa:y nothing about the 
number of elements of each kind tha.t must be present a.t a particular sta.te. Although 
this is the desired (model) type-graph for reactive applica.tions, here we will take into 
consideration only the items in bolelface in this gra.ph. The impacts of consiclering 

112 RITA • Volume VII • Número 1 • Setembro 2000 



Complexity Analysis of Reactive Graph Grammars 

attributes will be discussed in Sect. 5 .. 

arg ~Arr 
atr 

Figure 1: Reactive l\!Iodel Graph RG 

For each specific reactive system we may have various types of objects and mes
sages t hat are relevant for that application . Thus, to build a specification for a reactive 
system using graph grammars one must first define what we call the application type
graph. This graph must be typed over the reactive model type-graph. The resulting 
structure of a. reactive graph grammar is illustra.ted in Figure 2. Forrna.lly, this struc
ture can be defined as a doubly-typed gra.ph gra.mrnar (see [Rib96b], [DROO] for the 
formal definitions). One of the advantages of defining explicit ly the model type-graph 
v,:ithin the specification is to ease the comparison among specifications with respect 
to different model graphs ( once we rela te t he model graphs, the relationships among 
the specifications can be obtained automatically) . 

.. 

Figure 2: St ructure of a ReactiYe Graph Grammar 

Example 3.1 

To model a producer f consumer application , we may define a type producer (P ) and 
a type consumer (C ). Producers may receive messages of type procluce and trnp , and 
consumers may only receive messages of type con sume . Furthermore , this graph speci
fies that producers may know consumers but not vice versa and that messages have no 
arguments . The behavior o f producer / consumer application having these kinds of entities 
will be described using a graph grammar in Example 3.2. 
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Figure 3: Application Type Graph AG 

For a reactive graph grammar we will only allow rules that consume an element 
of type message, i.e., each rule represents a reaction to the kind of message that was 
consumed. Moreover, only one message may be consumed at a time be each rule. 
Note that the system may have many rules that specify reactions to the same kind of 
message (non-determinism) , and that many rules may be applied in parallel if their 
triggers (messages) are present at an actual state (graph). Many messages may be 
generated in reaction to one message. Here we will restrict the number of generated 
messages o f the same kind to one (to allow a simpler analysis o f causality among 
rules). To make sure that a rule may be applied \vhenever its trigger is found in the 
actual state graph we vvill require that whenever a message appears in a graph, it has 
exactly all specified arguments and one destination. 

The following definition is given in a semi-formal way because the corresponding 
formal definitions , although straightforward, require a number of concepts that are 
not needed elsewhere in this paper and were therefore not introduced. 

Definition 1 Reactive, Rule. Let RG be the reactive model graph and AG be a 
finite graph typed over RG. Then a morphism r : LAG --+ RAG is a (reactive) rule 
if!" L and R are finite r is injective and the following conditions are satisfied: 

i) There is exactly one message vertex m on the left-hand side of a rule. In this 
case, m is called trigger of r, denoted by Trig(r). 

ii) The message on the left-hand side of a rule is consumed by the application of 
the rule (Trig(r·) f. dom(r)). 

iii) Messages have exactly one destination. Moreover all items in L and R must 
be connected. This latter condition is to avoid that a rule has non-local side effects. 

iv) Objects may not be deleted. 
v) A rule may not create two items (messages or objects) with the same type. 

Now we can define a reactive graph grammar. 

Definition 2 Reactive Graph Grammar. A reactive graph grammar is a 
tuple GG = (A.G,I , Rules) ';vhere AG, called the type of the grammar, is a finite 
graph typed over the reactive model graph RG, I is a finite graph typed over A.G, 
called the initial graph of the grammar, and Rules is a finite set of reactive rules 
typed over AG. 
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Example 3.2 

Figure 4 shows a graph grammar specifying the behavior of a producer/ consumer 
system. In the initial state, rules p1 and p2 are enabled (message produce triggers these 
rules). The índices 1 and 2 are used to distinguish items that are not the same, although 
having the same type. Everything that is on the left- and right-hand side of the rule will 
be preserved when the rule is applied. ltems that are on the left- but not on the right-hand 
side are deleted (consumed) , and items that are on the right- but not on the left-hand 
si de are created. 

Figure 4: Graph Grammar GG 

T he behavior of a graph grammar is given by the applications of rules to graphs 
representing the actual states of the system, starting from the initial graph. The 
applications of rules may occur in parallel if the rules do not try to delete the same 
items. Note that, if a rule preserve an item t hat is deleted by another rule , these two 
may occur in parallel. This situation corresponds to one write anel one read access 
occurring at the same time. 

To be able to apply a rule r : LAG --t RAG to a graph cAG representing the actual 
state of a system one must first find out whether the rule can be applied. This is 
clone by finding a match of the left-hand side of the rule in this actual graph. An 
application of a rule in a graph, called derivation step, deletes from the actual graph 
everything that is to be deleted by the rule and adds the items that shall be created 
by the rule. Formally, a match is described by a total (typed) graph morphism anda 
clerivation step is a pushout in the category of ( cloubly-typecl) graphs. 

LAG~R"1..G 

mJ PO lm• 

A true concurrency semantics for graph grammars can be describecl by an unfold
ing construction that gives us a partia! order of clerivation steps [Rib96a] . The un
folding construction encampasses informations about ali possible computations that 
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are described by the given graph grammar. Therefore, ,,,.e could use it to answer 
questions about the minimum length of a computation to reach some state, or the 
minimum length of computations involving a number of applications of the same rule, 
etc. However, the unfolding is usually infinite because many of the applications of 
reactive systems are not meant to terminate. Moreover, the construction is quite 
complex. In this paper we will provide means to an swer some questions about a 
grammar without having to build all possible computations. This will be done based 
on (potential) causality and conflict relationships among rules. These relationships 
have been defined in [Kor95, Rib96a, Rib98) to define axiomatizations of computa
tions of a graph grammar. Here we will give a different interpretation to them to 
describe possible computations. 

3.1 Relations Among Rules 

To characterize the class of all possible computations of a graph grammar t hree 
relationships are needed: causal dependency, conflict and weak conflict (see [Kor95, 
Rib96a, Rib98)). The third relationship (weak conflict) is needed dueto the possibil
ity of preservation of items when a rule is applied (this relationship expresses conflicts 
between preservation and deletion of items). However , the restrictions made on graph 
grammars to define reactive graph grammars ruled out the occurrence of weak con
flicts, and therefore they will not be int roduced here. But. as soon as we considered 
attributes of objects, this kind of conflict will naturally arise (see discussion in the 
conclusion). Now we will (informally) introduce the causal and conflict relationships. 

(Potential Causal) Dependency Relation ( -< ): The intuitive idea of this rela
tion is that a Tule a is a ( direct) potential cause o f a rule b if a creates som e 
item oj a type that is needed (preseTved/ deleted) by b. Note that this does not 
imply that b can only be applied after a has been applied. This is because the 
trigger of b may be present already on the initial state, or the trigger of b may 
be generated by another rule c. Therefore, we can sa:v that if a is a potential 
cause of b then there rnay be a sequence of rule applications in \vhich a. crea.tes . 
the t rigger of b. The transitive closure of -< will be denoted by -<+ . 

Example 3.3 

In the grammar of Figure 4, we have the following direct relationships: pl -< pl,pl-< 
p2,pl -< c,p2 -< p3 , p3 -< pl,p3 -< p2,p3 -< c. They can be better visualized by the 
graph below, where pl -+ p2 indicates that pl -< p2. lf there is a way from p; to p;; then 
p; -<+ ]J ;;. 
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\) 

~y~ 
p2~p3-- c 

(Potential) Conflict Relation: The potential confiict relationship relates two rules 
d and r2 that need the same type of trigger. This means t hat in any compu
tation in which one of these two rules appears, there must have been a choice 
between them. But not every application of T1 is in conflict with an application 
of r2 because they may try to use different copies of the trigger existing in an 
actual graph. 

Example 3.4 

In the grammar of Figure 4 we have the potential conflict relation: p1#p2 because 
both p1 and p2 have the same trigger (p1·oduce ). 

3.2 Semantics of Graph Grammars 

The semantics of a graph grammar can be defined as the class of all computations 
that can be performed using the rules of the grammar starting with the initial state. 
These computations may be sequential or concurrent , giving raise to sequent ial anel 
concurrent semantic models. Figure ,5(a) Illustrates a sequential derivation for a 
grammar with , starting graph I . In this derivation we have a total order ( <) of 
derivation steps (s1 < s2 < s3) that denotes the sequence in which they have occurred 
in this computation. If we make a suitable gluingt of all intermediate graphs of t his 
derivation, we obtain a structure called concurrent der·ivation (Figure 5(b)) . Now, 
the total order that existed in the sequential deriYation is lost , but we may define a 
partia! order ( -<) between the steps that describes the causali ty relation: if s1 -< s2 
then s1 must occur to allow the occurrence of s2. A concurrent derivation can be seen 
as an equivalence class of sequential deriYations (all possible sequentia1 derivations 
corresponding to the totalizations of -< are in this class). Note that a concurrent 
derivation seems very much like a graph grammar if we consider the graph C, called 
core graph, as being the type of the grammar. This means that we can describe 
all computations of a graph grammar using graph grammars. Of course, t he graph 
grammar used to describe the semantics are a special kind of grammars (for example, 
the causality relationship must be a partia! order - see [Kor95, Rib98] for the axioms 
defining this class of grammars) , in which each rule corresponds to a derivation step 
o f the original grammar. 

t T his gluing is actua lly a coli mit of a cl iagram in the category of cloubly-typecl graphs [Kor96 , 
Rib96a]. 
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I si \ I s2 \ I s3 \ 

---- OUTI oun---OUT3 ~YP 
(a) (b) 

Figure 5: (a) Sequential derivation (b) Concurrent Derivation 

By a computation we mean a concurrent derivation. The length of a compu
tation n,, denoted by ln,l, is the number of steps involved in this computation. As a 
concurrent derivation is a graph grammar, the causality relationship within a com
putation ha.ve already been defined. Note tha.t the interpretation of the causality 
relationship in a computation is different than in a graph grammar: in a graph gram
mar rl -< r2 means tha.t there may be a computation in which rule r·2 depends on 
elements delivered by the applica.tion of rule rl, while in a computation sl -< s2 means 
that the deriva tion step s2 created the necessary items for the occurrence of deriva.tion 
step s2. Given a. computa.tion n, , K 8 is a subcomputation of K if a.ll steps in n,8 are 
a.lso in n, and the ca.usality rela.tionship is preserved, i.e.,, sl -<" s s2::} sl -<" s2t . 

4. Complexity of Reactive Graph Grammars 

·when considering the para.llel execution of tasks, we may have two different mea
surements: one of them is the time cost ( taking in to a.ccount that some tasks may run 
in parallel), a.nd the other .is the computa.tional effort needed to complete the task 
(that is independent of the fa.ct that some opera.tions may execute in parallel). 

To execute a graph grammars means to apply rules. Therefore it is reasonable to 
say that the complexity can be measured in terms of t he number of rule applications 
needed to perform some task, that is, a rule application is considered as a fundamental 
operation. We assume that all rule applications need similar computational effort s 
to be performed. An implementation that preserves rule applications will preserve 
the complexity of the system, that is, a corresponding notion of satisfaction of a 
specification must take rule applications into acount. This is the approach followed 
here. Here we have restricted the kind of graph grammar by using the notion of 
messages a.nd objects: in all graphs involved in a grammar each time a message 
appears, all (anel exactly) its arguments must also be present , anel each rule deletes 
exactly one message. Thus. to find out is a rule can be applied we must just finei the 
trigger message of this rule in the set of vertices of type message in the state graph . 
For practical applications, these restrictions are not a. problem (see, for example, the 

+Thi s subcomputation relation corresponds to a concurrent p refix relationsh ip between compu ta
tions. To mod el sequent ial prefixes we would have to require th at t he causali ty relationship is also 
refl ected (see [I<or96]) . 
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specification of a telephone system presenteei in [Rib96b , KR97]) . Note that, in our 
approach, each application of a rule correponds exactly to a message exchange in the 
system. Therefore, the complexity measure that we give is given in terms of number 
of exchanged messages to perform some task, that is a reasonable unit of measure for 
distributed/ concurrent systems. 

As a graph grammar is inherently non-deterministic and we do not assume fair
ness, questions like Will a rule r ever be applied?, What is the length of the biggest 
comp'utation in which a rule r appears? make no sense. What we could ask is Is 
there a computation in which the rule r is applied?, What is the length of the small
est computation in which r appears?. Moreover, as the systems we are considering 
are reactive systems, questions like How many steps ar·e necessary for the system to 
complete? h ave usually no answer beca use these systems typically are not meant to 
terminate. Therefore, we may associate completion of some task with the application 
o f some specific rule (in the producer / consumer example, 've may say that each time 
rule c is applied one cycle producej consume is finished). In this context , it is rather 
reasonable to ask questions like How many steps are necessary for a rule to execute 
a number n of times ?. The necessary number of steps characterizes the minimum 
length of computation that performs the required number of rule applica.tions. A wa.r 
to calculate this will be provided in this section. 

4.1 Definitions 

Definition 3 Let GG =(I, T, Rules) be a graph grammar and r, 7'; E Rules, i E N. 
(Direct) Causes: Cause,= {r; lr; --<r} 
Cause indeperfdent rules :r1 --< r and r2 --< r are cause-independent rules if ( pr'o. 
r o --<+ r1 and r o --<+ r2). 
Path:p = (r1 , r2 , ... , r) is a path to r i f r·1 --< r2 --< · · · --<r 
Rule in path:r is in p = (r 1 , · · · , r-11 ) if :li E [l..n].r- ; =r 
Length:!JJ! = n, if ]J = (r1 , · · · , r 11 ) 

Paths:paths(r) = {JJ IJJ is a path to r} 
Cycles:cycles(r) = {p =(r·,··· , 7'11 ) E paths(r-)ir-, =r· and Vi E [2,n -l].r; i- r} 
Feasible path:feasiblePath(r-) = {p = (r1, · · ·,r-) E paths(r)l't!c E cycles(r}IPI <!c!} 
Feasible rule: f easibleRule(r) = {rl!Tl is in p and p E f easiblePath(r) } 

Let c(n, r) denote the cost of n occurrences of rule r. In the following we will build 
stepwise an expression that gives a minimum cost for such a computation. Consider 
Cause,. the set of the direct causes of r· (i.e., r; --< r). Each occurrence of r must 
depenei either on one of these causes or on messages that trigger r- that are present 
already on the initial state of the graph grammar (I). \Ve are in teres teci in defining . 
the smallest computation that contains n occurrences of rule r. If the trigger for 
this rule is alread y on the initial graph , to apply this rule one time, there can be no 
smallest path than using this trigger. Therefore, we will always use first all triggers 
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that are present in the initial graph, and then check in which other ways we may get 
the necessary trigger for r. Let n; (n ; > O) denote the number of occurrences of r 
that are dependent on a rule i E Causer, and trig(r) be the number of messages that 
trigger r present on the initial graph.Thus, to be able to apply r n times we need to 
have n; occurrences of r; satisfying: 

( 4.1) ' 

Example 4.1 

n- trig (r) = 2:::::: nr,, nr, >o 
iECause,. 

Consider the graph grammar in Figure 4. Suppose we want to calculate the minimum 
number of rule applications necessary to apply rule c twice , that is, we want to calculate 
c(2, c) . I f there would be enough occurrences of the trigger o f c ( message consume) in the 
initial graph (Ini) , then the minimum number of steps would be exactly 2, corresponding 
to the two applications of rule c. But in this example we have no occurrences of message 
consume in the initial graph , that is , trig(c) = O. Therefore , the only way to apply 
rule c is to apply first a rule that generate a message con sume. The rules that do 
this are in Causec = {p1 ,p3}. Thus, to generate the two necessary triggers for c we 
have the following possibilities: apply p1 twice -(np1 = 2, np3 = 0) , apply p3 twice 
(n p1 = O, np3 = 2), or apply p1 and p3 once (np1 = 1, np3 = 1) . Note that , according 
to equation 4.1 , in each case the sum of np1 and np3 must be 2 (because n = 2 and 
trig (c) = 0). 

" 
In equation 4.1 we have defined the restrictions for n;. In the simpler case, when 

we have all necessary triggers in t he initial graph, we have: 

(4.2) n::; trig(r) a.nd c(n, r·) = n 

But, if there are not enough triggers for r in the ini tial state (n < trig(r-)) , 
considering the cost of nr , occurrences of T; (to generate the missing triggers), plus 
the n occurrences of T ( the cost o f applying this rule the required number o f times), 
we arrive at the following expression to describe the cost of applying n times rule r: 

(4.3) n+ 
Ti EC' aus e,. 

If the rule ris nota direct or indirect cause of any of the T;S (r- ~+ r;) , expression 
4.3 gives us already the cost of this combination of n r, occurrences of T;. 

Now suppose that T -<+ r ;, that is, t here is a chain of causally related rules from 
r to T;. If we look at expression 4.3 , we may notice that the occurrences of T that 
preceded T; were counted twice: one in t he term n and one in c( nr,, Ti). T herefore we 
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must diminish these occurrences from the total amount of necessary rule applications. 
Actually, we need to subtract at most one occurrence of r prior to Ti because if 
there are more than one, the others must have already been subtracted when the 
corresponding c(n,. ,, r i) was calculated . 

We need to determine, for each i , if r'i have occurred using triggers that have 
been crea.ted by some occurrence of r or not . In the first case, we must subtract the 
occurrence of r needed to apply r;, a.nd in the latter case not . This will be clone via 
the function rep(r, n,.,, ri )· For each i , n ,., minus the number of executions of T; that 
may occur not dependent on r· gives us the number of times we shall consider. 

As we are only interested in the smallest path , we will only consider paths that lead 
to occurrences of r; that are smaller tha.n the sma.llest cycle conta.ining r . These pa.ths 
are exa.ctly the ones belonging to f easiblePathh). The definition f easibleRule will 
be used when we have a. situa.t ion in which Ti -< r -< + ri . In this case there is a. 
cycle to ri (if we require tha.t all causes of ea.ch rule are ca.use-independent, then this 
cycle must be unique) . Moreover, a.ny pa.th to T; tha.t conta.ins r i must be longer tha.n 
the sma.llest cycle (o r equa.l, if t he path is the smallest cycle itself). The fa.ct that 
r·i E feasibl eRule(r ) mea.ns tha.t there is a. pa.th from r· to Ti tha.t is shorter tha.n the 
smallest cycle on ri (a.nd therefore ca.n not conta.in ri)· Furthermore, we need to find 
out whether such a. pa.th could ever be initiated in the considered gra.mma.r. This is 
described by the existence of the necessary triggers in the initia.l gra.ph: 

tr·ig(fr) 
frEfeasib leRul e( ,., )- {r} 

" However , we should not subtra.ct a. negative number of times. In the case we 
h ave nr, < L.f,·Efeasibl eRttl e ( ,., J - {r} trig(fr) then the sma.llest wa.y to rea.ch a.ll n,., 
occurrences of ri does not include occurrences of , anel therefore nothing should be 
subtra.cted from the result of 4.3. Thus, we obta.in 

r·ep(r ,n ,. ,, ri) = { 

( 4 .4) 

o, 
max {o, n r; - L .r,·E .f easibl eRul e(!'; )- {r} t rig(fr ) } ' 

i if r~+ r i 

if r-<+ r· i 

Remark 1 !f r·~+ ri , all nr, occuTrences ofri did not include r , that is, the numbeT 
of occurrences (between the ni 's) of ri including r· is zer-o. Conversely, if r -<+ r· i 
for each i , the number of occurrences of r· i (between the n r, 's) that include r zs n, , 
rninus the ones that carne from paths that are srnaller than any containing r·. Thus , 
r ep(r, n r, r'i) represents the nurnber o f occurr-ences o f r· i dependent on r-. 
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Example 4.2 

In ou r example , to calculate c(2 , c) we found out that we need to use triggers gen- · 
erated by pl and/or p3 (see example 4.1). Thus we will have to find out whether 
during the generation of these triggers the rule c was applied . This can be done us
ing equation 4.4: rep(c, n ,p1 ) =O and r ep(c, n ,p3) = O, for any number n (because 
c ~+ p1 and c ~+ p3) . To calculate the cost of applying 2 times rule p3 , we would 
have· to calculate rep(p3 , 2,p2) because p2 -< p3 and trig(p3 ) = O. In this case , we 
have p3 ....;+ p2 and therefore we have to calculate the feasible rules of p2 (see figure 
of Example 3.3): cycles (p2) = { (p2 ,p3 ,p2) , (p2, p3,p1 ,p2) , (p2,p3 ,p1,p1,p2), . .. }, 
f easiblePath(p2) = { (p2) , (p3, p2) , (pl , p2)} ( only paths shorter than I (p2 , p3 , p2) I = 
3) , f easibleRules(p2) = {p2,p3 ,p 1} . Therefore, rep(p3 , 2,p2) = max {O , 2- (trig(p1 )+ 
trig(p3))} = max{O, 2 - (1 +O)} = 1. This means that , if we apply rule p3 two times 
depending on rule p2, one of the occurrences of rule p2 must have been dependent on an 
application of p3 . 

Then , expression 4.3 modifies to: 

(4 .5) L c(n r, ri ) + 
ri EC'a ,us er 

If, for some i , c(nr;, r;) = oo, then this combination of n i's and r/s can never 
occur , what implies that, if r can occur n t imes, it is not using this combination of 
causes. In this case, expression 4 .5 assumes value oo . It is also possible that we have, 
for all i , c(n.r;, r i) -:f. oo, meanin~ that, isolated , we may have n.r; occurrences of ri,but 
we may have the case that it is impossible to perform them together (because, for 
example, they use the same trigger). T his situation will not be considered now and 
will be discussed la ter. 

In case we have a cycle involving r and ri, if ri occurs at least once, r will be 
enabled any number of times. The next function is used to find out \vhether it is 
possible tha t ri occur at least once. 

f(r i) = { ~- i f L er-<+ r; trig(cr ) =O 
otherwise 

Thus , we can replace expression 4.5 by 

122 

' if L r ;EC'ouse,. f (ri) = 00 

, otherwise 
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T his way we have characterized each combination of n,., occurrence of rule r;. As 
we want to calculate the minimum cost for this computation, we now have to minimize 
expression 4.6, subject to the restrictions defined in 4. 1. Then we finally reach t he 
expression defining the minimum number of rule applications that are necessary in a 
computation to have n occurrences of a rule r: 

c(n.r) = [ n { [ oo 
minRestr C C ost om p 

' if L ,.;EC'anse,. f (r;) = 00 } 

, ot herwise 

, if trig(r) 2: n 

, if trig(r) < n 

(4.7) 

with Restr· = L r;EC'ause,. n,. , = n- trig(n); n,. , 2: O 
and CostComp = L r,EC'cwse,. c(n,.,, r ;) + (n- L ·r;EC'ause,. rep(r ,n,. ,, r;)) 

Example 4. 3 

Now we ca n calculate the minimum cost of applying rule c two times. According to 
the discussion in Example 4.1 , we have 3 cases to calculate the costs cA. cB and cC. 
The minimum of these is the lenght of the smallest computation we are looking for : 
c(2, c) = min{ c.4, cB , cC} where 

cA = c(2, p1) + c(O,p3) + (2- O) = c(2 ,pl ) + 2 
cB = c(O,pl) + c(2,p3) + (2 - O)= c(2 ,p3) + 2 
cC = c( l , p1 ) + c(1,p3) + (2- O) = c(1,p1) + c(1,p3) + 2 

Now we have to calculate the component expressions: 
c(2,p 1) = rnin {c(1,p1) + (2- rep(p1, 1,p1)) , c(1 ,p3) + (2 - rep(p1, 1,p3))} 

= min{1 + (2 - 1), 2 + (2- O)} 
rep(p1, 1,p1) = m ax{O, 1 - O} = 1, 
f easibleRule(p1) - {p1} = 0 
rep(p1 , 1,p3) = max {O , 1 - (tr·ig(p2) + trig(p3))} = max{O, 1 - (1 +O) } = O 

c(2,p3) 
c(1,p1) 
c(1,p3) 

f easibleRule(p3)- {p1} = {p2,p3} 
= min{c(2,p2 ) + (2- rep(p3 ,p2 ,p2 )) } = min{3 + (2- 1)} = 4 
= c(1 ,p2) = 1 because trig(p1) = 1 = trig(p2) 
= min{ c(1,p2) + (1 - rep(p3 , 1,p2))} = min{1 + (1- O)}= 2 
rep(p3 , 1,p2) = ma.1: {0 , 1- trig(p2)} = max{O, O} =O, 
fe asibleRule(p2) - {p3} = {p2} 

T hus, we have that c(2, c) = min{2 + 2, 4 + 2, 1 + 2 + 2} = 4 

Example 4 .4 

Now consider the same rules , but with an empty initial graph . Then we have : 
c(1,p1) = m·in{ oo, oo} = oo because we have now trig(r;) = O for ali rules r i E 

{p1 ,p3 ,p2} and therefore f (p1 ) = f (p3) = oo . 
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In the cost expression given above,_ we have not considered the fact that the same 
two rules may need the same trigger ( and are, therefore , not only in potential but 
in real in conflict) . As the computation of the cost of each cause of a rule is clone 
separately, we may reach a conclusion that the minimum number of steps needed is 
actually smaller that the real one because of the sharing of triggers (in some cases, 
there may be no computation performing the required number of steps - that is , the 
cost in infinite - and our result could be a natural number) . However , there may be 
cases in which there are no potential conflicts and this situation occurs. An example 
would be a rule that generates the triggers for two others that both generate the 
trigger for another rule. This situation is called cause-dependency (two causes of 
the same rule depend on a common rule) . The cases for which the expression given 
here gives an exact result (that is, for which there is actually a computation of that 
minimum length) are as follows: there are no potential conflicts between the rules of 
the grammar and all causes of each rule are cause-independent. 

The following theorem states that if the cost expression we have defined gives 
a value x for applying n times a rule r then there can be no computation of the 
corresponding grammar that has n applications of rule r that has length smaller than 
x. This theorem proves that , if we considera graph grammar with cause-independent 
rules, we have really defined a lower bound for the computation length necessary 
to have the required number of rule applications. Note that the theorem is valid 
also for grammar that have conflicts, just that in this case it can be that there is 
no computation having n occurrences of r that has exactly the length computed by 
c(n, r ). 

Theorem 4 .. 1 Let GG = (I , T , Rules) be a gmph gmmmar in which all causes of 
each rule are cause-independent and "" be a computation o f GG with 1""1 = m, m 2: 1. If 
"" contains n occurrences o f derivation steps using rule r , then, for· all subcomputations 
""' of"" that also has n occurr-ences ojr , we have c(n , r·)::; 1""'1· 

Pmof. In case n =O, then for any r- E Rules , n ::; tr-ig(r-) and therefore c(n , r- ) =O, 
what implies that c(n , r- )::; 1"" '1 , for all subcomputation ""of ""'· The proof for n 2: 1 
will be by induction on m = 1""1· Let Cause,.= {cr-lcr-< r} . 

IB: Let K be a computation of GG with IKI = 1. If "" contains n occurrences of 
derivation steps using rule r-, then n ::; 1 because IKI = 1. In this case n = 1 
because by assumption n 2:: 1, and therefore the computation K must consist 
of one derivation step using rule r because it has only one derivation step. 
Moreover, if this derivation step was possible, then trig(1·) 2: 1. Then we have 
n ::; tr-ig(r-) , what implies that c(n, r-)= n = 1 and therefore c(n , r-) = 14 

IH: For any computation K of GG with IKI ::; m . If "" contains n occurrences of 
derivation steps using rule r- , then, for all subcomputations K

1 of "" that also 
have n occurrences ofr , we have c(n,r-)::; IK'I· 
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IS: Let r;, be a computation with lr;,l = m + 1. Let r;,' be a subcomputation of r;, that 
has n occurrences of rule r . 

Case 1 Sv,ppose trig(r) 2: n. In this case c(n, r) = n . Any computation r;,' that 
has n occurrences of rule r must consist of at least n derivation steps, that is 
Ir;,' I 2: n = c(n , r ) . 

Case 2 Suppose trig ( r) > n and r i(+ r. Let r 1 , r-2 , ... TJ E Cause,. . The com
pv.tation r;, contains n occur-rences o f r·ule r , each one preceded by r·;, i = l..j. Let 
n,. , (n,. , > O) be the number· o f times that r- occurs in r;, depending on a rule r i. 
Then L r;EC'ause,. n,., +trig(r) = n. As trig(r ) < n and n >O, r;, has at least one 
occur-rence ofr whose trigger- was not in the initial graph. Thus, there must be an 
7' i(+ r such thattrig (r) f. O, and we must have L r;EC'ause,. f (r;) f. oo. Besides, 

as r i( + r by assumpt·ion, c(n , r-) = min { (n- L r·; ECause,. r-ep(r,n,., ,r-i)) } , sub
ject to n r, > O and L r; EC'ause" n ,. , = n-tr-ig(1·). For each Ti, with nr, f. O, con
sider· the smaller subcomputation K; o f r;, that contains the n ,., occurrences o f r;. 
Using the induction hypothesis for K;~r;,;! < lr;,'l ~ lr;,l because K; does not con
tains the occur-r-ences ofruler-) , we obtain c(n ,., r-;) ~Ir;,;!, i= l..j . Ther-efor·e we 

can conclude that L r;E C'ause,. c(n,.,1';) ~ Lr;ECause.- lr;,il· As, by assumption, 
the causes of each r·ule of the grammar· ar·e cause-independent, all subcornputa

tions Ki do not shar·e common r-esour-ces, and thus L -r;EC:ause,. lr;,fi ~ lr;,' l - n , 
and this implies that n + L r;EC'ause,. c(TI,., , r-i) ~ Ir;,' !. As we ar·e considering 
the rninimum o f all cornbinations in the definition o f c( n , r- ), we m ·ust h ave that 

c(n, r) ~ Ir;,' I· 

Case 3 Suppose trig(r- ) > n and r i(+ r. Following the same reasoning as 
the latter case, we may identify the 1·; and n,. , o f a computation r;, and con

clude that Lr;EC'ause, f (r;) f. oo . In this case, this means that c(n,r-) = 

minRestr {L ,., EC' a use,. c(n,.,, r-;) + ( n- Lr;EC'ause,. r ep(1·, n ,., , r;))} , wher-e R estT 
= L r;EC'ause" n ,., = n - tr·ig(n) ; n r, 2: O. The induction hypothesis gives us 
c(nr, ' r ;) -:::; Ir;,; I, i= 1, .. j and thus L r;ECauser c(nr,' r;) ~ Lr;EC'ause,. Ir;,;!. Th e 
subcomp·utat'ions r;,i aTe independent by assumption, but ther-e may be occur
r-ences of r· in one of these subcomputations (in at most one because if mor-e 
than one have occurr-en ces of r than the gramrnar- is not cause-independent). 
Thes e occurr-ences have alr·eady been consider-ed in the cor-r-esponding c(nr,, ri) 
and rnust ther-efor·e be subtracted. By r·ernar-k 1, 1·ep(T, n,.,, 1';) r·epr-esents the 
nurnber- of occun·ences (between the nr, 's) of r-; dependent on r. So we get 

L r ; EC a us e,. c(n r, r;) ~ L ,·; EC'aus e,. '"'i I ~ Ir;,' I- ( n- L r;EC'ause,. rep(r , n ,., ' r;)). 

Thís implies Lr;EC'ause,. c(n,.,r;) + (n- Lr;ECatLse,. r ep(r,n,.,r;) ) ~ ir;,'l· As 
we ar-e considering the rninirn-um o f all cornbinations in the definition o f c( n , r-) , 
we rnust have that c(n,r) ~ lr;,'l· 

D 
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5. Conclusion 

In this paper we have defined a special kind of graph grammar that is suitable 
for the specification of reactive systems and have presenteei a way to calculate the 
complexity of these grammars. This complexity is measured in terms of number of 
rule applications. 

Graph grammars have been used to specify a variety of systems [EHK+97], but 
nevertheless almost no research have been made to investigate the complexity of 
the specified systems (usually complexity issues were only regarded to build tools 
for graph grammars that had to cope with the graph isomorphism problem to find 
matches for rules) . Although we h ave considered only a restricted class of graph 
grammars, this work can be a starting point in a theory of complexity of graph 
grammar specifications. Graph grammars can be considered as a generalization of 
Petri nets [KR96]. Therefore, it would be interesting to investigate to what extent 
the theory of Petri nets concerning complexity and related issues could be compareci 
to our approach, and also which results for Petri nets (as a special case of graph 
grammars) can be achieved. 

A relevant improvement of our approach (important for practical applications) 
would be to consider gra.ph grammars with attributes (data types) and also read 
only / write access to attributes as a condition for the application of rules. This would 
have t he impact that the causali ty and conflict relationships are no longer enough to 
characterize the computations of a graph grammar, we need a further relationship 
called weak conflict (see [Kor96, Rib98, KR98]). Moreover , in this case, a rule may 
depend not only on its trigger but also on a particular value of an attribute, thus, 
it is potentially dependen't~ on ali other rules that create that trigger and on ali that 
may change the value of that attribute. The reasoning about the minimum length of 
possible computations in this case becomes much more involved. 

Another issue for further research is to investigate the minimum time cost in such 
systems. One can use the causality and conflict (and possibly also weak conflict) 
relationships to reason about which rules may be applied in parallel and thus get a 
minimum time necessary to perform a rule a number of t imes . 

The work developed here isto be implemented within a tool called PLATUS, that 
is an environment for specification anel simulation of reactive systems baseei on graph 
grammars currently under development [CR98, CR99, CMROO] . 
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