
--r~~ &c- ~r:--f~~-..SA_;
~~e_a._: &-a__toç;:
~ ~;(_;_~~ ~+

+c:L~~

~..:_~a....<:>~~·v-o S

~flo ..(.0~.0' Oo ""' -3
Complexity Analysis of Reactive Graph
Grammars

Aline Brum Loreto *

Laira Vieira Toscani *

Leila Ribeiro *

Abstract

The aim of this paper is to present a wa,y to calculate a complexity measurement of
graph grammar specifications of reactive systems. T he basic operation that describe
the behavior of a graph grammar is a rule application. Therefore, this operation will
be used to characterize the tasks to be performed within a system. The complexity
measurement defined here \vill give us the minimum number of steps that must be
present in a computation that performs a desir.ed task.

Keywords: gra.ph grammars, complexity.

*Inst it uto de In formática/ CPG CC
Universidade Federa l do Rio Grande do Sul
e-m a il: {loreto, la ira,leil a} @inf. ufrgs . br
This work has been pa rti a lly supported by projects QaP-For(Fapergs) , Platus (CN Pq) and Gra phit
(CNPct/ DLR).

Complexity Analysis of Reactive Graph Grammars

1. Introd uction

Reactive systems [MP92] are a special kind of system in which everything that
occurs is a reaction to some kind of stimulus. The ideais that the system is composed
by a number of communicating entities that send stimulus to each other and cooperate
in order to perform some application. Here we will call the entities by objects and
the stimulus by messages. Reactive systems are usually concurrent because each of
its components acts independently. Many of the most used concurrent applications
of computers nowadays can be suitably modeled as reactive systems, for example,
control systems and client j server applications. Due to the concurrency, distributed,
non-deterministic and dynamic aspects of these applications, they are very difficult
to analyze. This is specially true in case one wants to answer questions about the
computational efforts involved in the execution of a reactive system.

To be able to investigate a system, we must first describe it using a formal descrip
tion technique. Here we will use graph grammars [Ehr79, EHK+97] for this purpose .
. ~ graph grammar specification of a system consists of an initial graph and a set of
rules. The initial graph represents the initial state of the system, that is , the objects
and messages (triggers) that are present when the system is initialized. The rules
describe the behavior of the system. Graph grammars rely on simple but powerful
concepts: graphs represent in a natural way the distribution of the objects in a sys
tem; each rule describes a local change , and may be applied in parallel with others
if they are not in conflict (do not try to delete the same items); in case there are
conflicting rules enabled, the choice of the one to be applied is non-deterministic.

The complexity of a SfYecification j program is always related to the computational
work. Usually, this work is measured in terms of time ou memory needed to perform
some task. But in special kinds of systems , other units are also interesting to con
sider. For example, in distributed applications, the number of messages exchanged
to perform some task is of great interest because in such systems the time needed
to execute is rather consumed by communication than by CPU [Lyn96]. In general
many complexity measurements are interesting for a particular application domain,
but many of them are very difficult (if not impossible) to be computed. The challenge
is always to find out a useful measurement that is possible to be computed. The
specifica.tion of a system is an abstra.ct description of its intended implementation:
it describes the properties the implementation has to satisfy. Complexity is one of
these properties. If it is possible to sta.te something about the complexity of the
system alrea.dy in the specification phase , the cost of the development will decrease
and the generated system will be more efficient. As usual, once an implementation is
proposed, we have to assure that this implementation satisfies ali the necessary prop
erties of the specification, including the complexity. For specification methods that
follow the operational approach, like graph grammars , investigation about complexit.r
measures can be very interesting for some a.pplica.tion domains, like distributed and

llO RITA • Volume VII • Número 1 • Setembro 2000

Complexity Analysis of Reactive Graph Grammars

concurrent systems.
T he investigation of complexity of para llel systems in general is usually relateel

to an execution on a concrete architecture [Jaj97, Akl89]. What is measureel is the
complexity of performing one or more t asks, typically the amount of time neeeleel to
complete the execution of ali these tasks. In reactive systems like the ones studieel
in this paper , there is a great amount of parallelism involved: each entity ma.y a.ct
in pa.rallel with others , and the ent ity itself may perform ma.ny a.ctions in parallel.
Moreover, ma.ny of these systems are not mea.nt to terminate, they ra.ther receive
messa.ges, cha.nge their interna! sta.te, senel some messages in rea.ction and rema.in
ready to receive other messages (note tha.t , ma.ybe t he task sta.rteel by the original
messa.ge did not end with this reaction , but will continue to be performeel by t he
other entities that received the new messa.ges) . Thus, the notion of completion of a
task is not stra.ightforwarel. There are some questions, like Will a reaction ever be
triggered?, that have no answer because we consider non-deterministic systems a.nd
do not assume fairness (and therefore in the general case a. message tha.t t riggers some
reaction ma.y be indefini tely postponed). But there are some questions t ha.t are of
interest in this kinel of context anel may be answereel :/s it possible that the system
comes to a state in which a particular r·eaction is triggered?, How many steps must
the system per.fo1'm be.fore such a state is reached ?, Is it possible that this reaction is
triggered a number o.f times?. In this paper , we will proviele a \vay to give answers to
these questions. Such a.nswers will be a grea.t help for the construction of elistributeel
systems, because many of them have a reactive na.ture anel programmers can not rely
only on tests (the same test executed twice may yielel complete!~· elifferent results).

The paper is structured as follows: Sect . 2. we give an introduction to graph
grammars and in Sect. 3. we shmv how they can be useel to model reactive systems;
in Sect. 4. we present a way to calculate a kincl of complexity measurement for reactive
systems baseei on the a. graph grammar specification; in Sect. 5. we summarize our
results and cliscuss the possible improvements to our approach.

2. Graph Grammars

We will follow the algebraic Single-Pushout Approach to graph grammars[Li:iw90,
Li:iw93]. The technica.l clefini t ions within this approach are elescribed using category
theory, anel specially the approa.ch we follmv is callecl Single-Pushou t because the
a.pplicat ion of a rule to a match is definecl as a pushout in a category of gra.phs anel
partia! graph morphisms.

Cla.ssica.lly, a graph grammar consists of an initial graph , representing the initial
state of a system, a.nd a set o.f rules that can be usecl to transform the states of
t he clescribecl system. Sta.tes are describeel by graphs. To allow more comprehensive
representations of a sta.te using a gra.ph , typing mechanisms elescribing clifferent kincls
of vertices anel edges may be used . There are many wa~rs to define typing mechanisms

RITA • Volume VII • Número 1 • Setembro 2000 111

Complexity Analysis of Rea.ctive Graph Gra.mma.rs

for gra.phs, here we will use the concept of a typed graph \ cite{ typed}. The idea of
a typed graph is to use a graph, ca.lled type graph, to define the possible kinds of
vertices and edges of a system, and an actual graph is then a graph consisting of
insta.nces of elements of the type graph. A typed graph can thus be described by a
graph morphism relating each instance with its type. Figure 4 shows a (typed) graph
gramma.r GG with type graph AG depicted in Figure 3, that is, and each of the other
graph$ in Figure 4 are graphs typed over AG (the mapping is implicitly defined by
the sa.me symbols o f vert ices and edges) . The rules specify the behavior o f the system
in terms of local state changes. The left-hand side of the rule specifies a pattern that
must be present in some sta te for the rule to be applied ; the right-hand side shows
the effect of the application of the rule; and the mapping from left- to right-hand side
describes deletion (items that are not mapped), creation (items that are not in the
range of the mapping) and preservation (items that are mapped). In the grammar
GG , the mapping from left- to right-hand sides of the rules is indicated by using the
same item on the both sides to specify that the item is preserved , different índices
inelicate that an item v .. ·as deleteel anel another one of the same type was createel.
Graph grammar: is a tuple GG = (T , JT , N) where T is a graph, called the type
graph, JT is a graph typed over· T. called the initial graph, N is a set of rules typed
over T.

3. Reactive Graph Grammars

A reactive system as a system consisting of autonomous entities that we will call
objects that communicate anel co~5perate with each other through m essages. Objects
may have an interna] state anel relate to other objects within t he system. The behavior
o f an object is elescribeel through its reactions to the receipt o f messages (triggers).
An object ma.y perform rna.ny (re)a.ctions in parallel.

Here we will describe a. reactive system using a graph grammar. Therefore, we hm·e
to ielentify within a graph gra.mmar what are t he objects , messages anel attributes,
anel then show ho\\· to specify reactions within this formalism. The structural part
will be moeleleel by elistinguishing elifferent kinels of vertices anel eelges within the
graphs that moelel sta.tes of the systern (see Figure 1) . Object s anel messages will
be moelelecl as vertices. A messa.ge must have as elestiny an object anel may ha.ve as
arguments other objects and / or attributes of data types . An object may know other
objects anel may have attributes of data types moeleling its interna] sta.te. This graph
(Figure 1) can be considered as a type gra.ph for a reactive system, anel therefore we
will call it r-eactive model graph. Note that a type graph models kinels of objects anel
links that may be present in an actual state of the system, but sa:y nothing about the
number of elements of each kind tha.t must be present a.t a particular sta.te. Although
this is the desired (model) type-graph for reactive applica.tions, here we will take into
consideration only the items in bolelface in this gra.ph. The impacts of consiclering

112 RITA • Volume VII • Número 1 • Setembro 2000

Complexity Analysis of Reactive Graph Grammars

attributes will be discussed in Sect. 5 ..

arg ~Arr
atr

Figure 1: Reactive l\!Iodel Graph RG

For each specific reactive system we may have various types of objects and mes
sages t hat are relevant for that application . Thus, to build a specification for a reactive
system using graph grammars one must first define what we call the application type
graph. This graph must be typed over the reactive model type-graph. The resulting
structure of a. reactive graph grammar is illustra.ted in Figure 2. Forrna.lly, this struc
ture can be defined as a doubly-typed gra.ph gra.mrnar (see [Rib96b], [DROO] for the
formal definitions). One of the advantages of defining explicit ly the model type-graph
v,:ithin the specification is to ease the comparison among specifications with respect
to different model graphs (once we rela te t he model graphs, the relationships among
the specifications can be obtained automatically) .

..

Figure 2: St ructure of a ReactiYe Graph Grammar

Example 3.1

To model a producer f consumer application , we may define a type producer (P) and
a type consumer (C). Producers may receive messages of type procluce and trnp , and
consumers may only receive messages of type con sume . Furthermore , this graph speci
fies that producers may know consumers but not vice versa and that messages have no
arguments . The behavior o f producer / consumer application having these kinds of entities
will be described using a graph grammar in Example 3.2.

RITA • Volume VII • Número 1 • Setembro 2000 113

Complexity Analysis of Reactive Graph Grammars

Figure 3: Application Type Graph AG

For a reactive graph grammar we will only allow rules that consume an element
of type message, i.e., each rule represents a reaction to the kind of message that was
consumed. Moreover, only one message may be consumed at a time be each rule.
Note that the system may have many rules that specify reactions to the same kind of
message (non-determinism) , and that many rules may be applied in parallel if their
triggers (messages) are present at an actual state (graph). Many messages may be
generated in reaction to one message. Here we will restrict the number of generated
messages o f the same kind to one (to allow a simpler analysis o f causality among
rules). To make sure that a rule may be applied \vhenever its trigger is found in the
actual state graph we vvill require that whenever a message appears in a graph, it has
exactly all specified arguments and one destination.

The following definition is given in a semi-formal way because the corresponding
formal definitions , although straightforward, require a number of concepts that are
not needed elsewhere in this paper and were therefore not introduced.

Definition 1 Reactive, Rule. Let RG be the reactive model graph and AG be a
finite graph typed over RG. Then a morphism r : LAG --+ RAG is a (reactive) rule
if!" L and R are finite r is injective and the following conditions are satisfied:

i) There is exactly one message vertex m on the left-hand side of a rule. In this
case, m is called trigger of r, denoted by Trig(r).

ii) The message on the left-hand side of a rule is consumed by the application of
the rule (Trig(r·) f. dom(r)).

iii) Messages have exactly one destination. Moreover all items in L and R must
be connected. This latter condition is to avoid that a rule has non-local side effects.

iv) Objects may not be deleted.
v) A rule may not create two items (messages or objects) with the same type.

Now we can define a reactive graph grammar.

Definition 2 Reactive Graph Grammar. A reactive graph grammar is a
tuple GG = (A.G,I , Rules) ';vhere AG, called the type of the grammar, is a finite
graph typed over the reactive model graph RG, I is a finite graph typed over A.G,
called the initial graph of the grammar, and Rules is a finite set of reactive rules
typed over AG.

114 RITA • Volume VII • Número 1 • Setembro 2000

Complexity Analysis of Reactive Graph Grammars

Example 3.2

Figure 4 shows a graph grammar specifying the behavior of a producer/ consumer
system. In the initial state, rules p1 and p2 are enabled (message produce triggers these
rules). The índices 1 and 2 are used to distinguish items that are not the same, although
having the same type. Everything that is on the left- and right-hand side of the rule will
be preserved when the rule is applied. ltems that are on the left- but not on the right-hand
side are deleted (consumed) , and items that are on the right- but not on the left-hand
si de are created.

Figure 4: Graph Grammar GG

T he behavior of a graph grammar is given by the applications of rules to graphs
representing the actual states of the system, starting from the initial graph. The
applications of rules may occur in parallel if the rules do not try to delete the same
items. Note that, if a rule preserve an item t hat is deleted by another rule , these two
may occur in parallel. This situation corresponds to one write anel one read access
occurring at the same time.

To be able to apply a rule r : LAG --t RAG to a graph cAG representing the actual
state of a system one must first find out whether the rule can be applied. This is
clone by finding a match of the left-hand side of the rule in this actual graph. An
application of a rule in a graph, called derivation step, deletes from the actual graph
everything that is to be deleted by the rule and adds the items that shall be created
by the rule. Formally, a match is described by a total (typed) graph morphism anda
clerivation step is a pushout in the category of (cloubly-typecl) graphs.

LAG~R"1..G

mJ PO lm•

A true concurrency semantics for graph grammars can be describecl by an unfold
ing construction that gives us a partia! order of clerivation steps [Rib96a] . The un
folding construction encampasses informations about ali possible computations that

RITA • Volume VII • Número 1 • Setembro 2000 115

Complexity Analysis of Reactive Graph Grammars

are described by the given graph grammar. Therefore, ,,,.e could use it to answer
questions about the minimum length of a computation to reach some state, or the
minimum length of computations involving a number of applications of the same rule,
etc. However, the unfolding is usually infinite because many of the applications of
reactive systems are not meant to terminate. Moreover, the construction is quite
complex. In this paper we will provide means to an swer some questions about a
grammar without having to build all possible computations. This will be done based
on (potential) causality and conflict relationships among rules. These relationships
have been defined in [Kor95, Rib96a, Rib98) to define axiomatizations of computa
tions of a graph grammar. Here we will give a different interpretation to them to
describe possible computations.

3.1 Relations Among Rules

To characterize the class of all possible computations of a graph grammar t hree
relationships are needed: causal dependency, conflict and weak conflict (see [Kor95,
Rib96a, Rib98)). The third relationship (weak conflict) is needed dueto the possibil
ity of preservation of items when a rule is applied (this relationship expresses conflicts
between preservation and deletion of items). However , the restrictions made on graph
grammars to define reactive graph grammars ruled out the occurrence of weak con
flicts, and therefore they will not be int roduced here. But. as soon as we considered
attributes of objects, this kind of conflict will naturally arise (see discussion in the
conclusion). Now we will (informally) introduce the causal and conflict relationships.

(Potential Causal) Dependency Relation (-<): The intuitive idea of this rela
tion is that a Tule a is a (direct) potential cause o f a rule b if a creates som e
item oj a type that is needed (preseTved/ deleted) by b. Note that this does not
imply that b can only be applied after a has been applied. This is because the
trigger of b may be present already on the initial state, or the trigger of b may
be generated by another rule c. Therefore, we can sa:v that if a is a potential
cause of b then there rnay be a sequence of rule applications in \vhich a. crea.tes .
the t rigger of b. The transitive closure of -< will be denoted by -<+ .

Example 3.3

In the grammar of Figure 4, we have the following direct relationships: pl -< pl,pl-<
p2,pl -< c,p2 -< p3 , p3 -< pl,p3 -< p2,p3 -< c. They can be better visualized by the
graph below, where pl -+ p2 indicates that pl -< p2. lf there is a way from p; to p;; then
p; -<+]J ;;.

116 RITA • Volume VII • Número 1 • Setembro 2000

Complexity Analysis of Reactive Graph Grammars

\)

~y~
p2~p3-- c

(Potential) Conflict Relation: The potential confiict relationship relates two rules
d and r2 that need the same type of trigger. This means t hat in any compu
tation in which one of these two rules appears, there must have been a choice
between them. But not every application of T1 is in conflict with an application
of r2 because they may try to use different copies of the trigger existing in an
actual graph.

Example 3.4

In the grammar of Figure 4 we have the potential conflict relation: p1#p2 because
both p1 and p2 have the same trigger (p1·oduce).

3.2 Semantics of Graph Grammars

The semantics of a graph grammar can be defined as the class of all computations
that can be performed using the rules of the grammar starting with the initial state.
These computations may be sequential or concurrent , giving raise to sequent ial anel
concurrent semantic models. Figure ,5(a) Illustrates a sequential derivation for a
grammar with , starting graph I . In this derivation we have a total order (<) of
derivation steps (s1 < s2 < s3) that denotes the sequence in which they have occurred
in this computation. If we make a suitable gluingt of all intermediate graphs of t his
derivation, we obtain a structure called concurrent der·ivation (Figure 5(b)) . Now,
the total order that existed in the sequential deriYation is lost , but we may define a
partia! order (-<) between the steps that describes the causali ty relation: if s1 -< s2
then s1 must occur to allow the occurrence of s2. A concurrent derivation can be seen
as an equivalence class of sequential deriYations (all possible sequentia1 derivations
corresponding to the totalizations of -< are in this class). Note that a concurrent
derivation seems very much like a graph grammar if we consider the graph C, called
core graph, as being the type of the grammar. This means that we can describe
all computations of a graph grammar using graph grammars. Of course, t he graph
grammar used to describe the semantics are a special kind of grammars (for example,
the causality relationship must be a partia! order - see [Kor95, Rib98] for the axioms
defining this class of grammars) , in which each rule corresponds to a derivation step
o f the original grammar.

t T his gluing is actua lly a coli mit of a cl iagram in the category of cloubly-typecl graphs [Kor96 ,
Rib96a].

RITA • Volume VII • Número 1 • Setembro 2000 117

Complexity Analysis of Reactive Graph Grammars

LJ - r_J_ RI L2____1]_ R2 L3 ___rl__ R3 LJ -r_I_ Rl L2 ____1]_ R2 L3___rl__ R3

I si \ I s2 \ I s3 \

---- OUTI oun---OUT3 ~YP
(a) (b)

Figure 5: (a) Sequential derivation (b) Concurrent Derivation

By a computation we mean a concurrent derivation. The length of a compu
tation n,, denoted by ln,l, is the number of steps involved in this computation. As a
concurrent derivation is a graph grammar, the causality relationship within a com
putation ha.ve already been defined. Note tha.t the interpretation of the causality
relationship in a computation is different than in a graph grammar: in a graph gram
mar rl -< r2 means tha.t there may be a computation in which rule r·2 depends on
elements delivered by the applica.tion of rule rl, while in a computation sl -< s2 means
that the deriva tion step s2 created the necessary items for the occurrence of deriva.tion
step s2. Given a. computa.tion n, , K 8 is a subcomputation of K if a.ll steps in n,8 are
a.lso in n, and the ca.usality rela.tionship is preserved, i.e.,, sl -<" s s2::} sl -<" s2t .

4. Complexity of Reactive Graph Grammars

·when considering the para.llel execution of tasks, we may have two different mea
surements: one of them is the time cost (taking in to a.ccount that some tasks may run
in parallel), a.nd the other .is the computa.tional effort needed to complete the task
(that is independent of the fa.ct that some opera.tions may execute in parallel).

To execute a graph grammars means to apply rules. Therefore it is reasonable to
say that the complexity can be measured in terms of t he number of rule applications
needed to perform some task, that is, a rule application is considered as a fundamental
operation. We assume that all rule applications need similar computational effort s
to be performed. An implementation that preserves rule applications will preserve
the complexity of the system, that is, a corresponding notion of satisfaction of a
specification must take rule applications into acount. This is the approach followed
here. Here we have restricted the kind of graph grammar by using the notion of
messages a.nd objects: in all graphs involved in a grammar each time a message
appears, all (anel exactly) its arguments must also be present , anel each rule deletes
exactly one message. Thus. to find out is a rule can be applied we must just finei the
trigger message of this rule in the set of vertices of type message in the state graph .
For practical applications, these restrictions are not a. problem (see, for example, the

+Thi s subcomputation relation corresponds to a concurrent p refix relationsh ip between compu ta
tions. To mod el sequent ial prefixes we would have to require th at t he causali ty relationship is also
refl ected (see [I<or96]) .

118 RITA • Volume VII • Número 1 • Setembro 2000

Complexity Analysis of Reactive Graph Grammars

specification of a telephone system presenteei in [Rib96b , KR97]) . Note that, in our
approach, each application of a rule correponds exactly to a message exchange in the
system. Therefore, the complexity measure that we give is given in terms of number
of exchanged messages to perform some task, that is a reasonable unit of measure for
distributed/ concurrent systems.

As a graph grammar is inherently non-deterministic and we do not assume fair
ness, questions like Will a rule r ever be applied?, What is the length of the biggest
comp'utation in which a rule r appears? make no sense. What we could ask is Is
there a computation in which the rule r is applied?, What is the length of the small
est computation in which r appears?. Moreover, as the systems we are considering
are reactive systems, questions like How many steps ar·e necessary for the system to
complete? h ave usually no answer beca use these systems typically are not meant to
terminate. Therefore, we may associate completion of some task with the application
o f some specific rule (in the producer / consumer example, 've may say that each time
rule c is applied one cycle producej consume is finished). In this context , it is rather
reasonable to ask questions like How many steps are necessary for a rule to execute
a number n of times ?. The necessary number of steps characterizes the minimum
length of computation that performs the required number of rule applica.tions. A wa.r
to calculate this will be provided in this section.

4.1 Definitions

Definition 3 Let GG =(I, T, Rules) be a graph grammar and r, 7'; E Rules, i E N.
(Direct) Causes: Cause,= {r; lr; --<r}
Cause indeperfdent rules :r1 --< r and r2 --< r are cause-independent rules if (pr'o.
r o --<+ r1 and r o --<+ r2).
Path:p = (r1 , r2 , ... , r) is a path to r i f r·1 --< r2 --< · · · --<r
Rule in path:r is in p = (r 1 , · · · , r-11) if :li E [l..n].r- ; =r
Length:!JJ! = n, if]J = (r1 , · · · , r 11)

Paths:paths(r) = {JJ IJJ is a path to r}
Cycles:cycles(r) = {p =(r·,··· , 7'11) E paths(r-)ir-, =r· and Vi E [2,n -l].r; i- r}
Feasible path:feasiblePath(r-) = {p = (r1, · · ·,r-) E paths(r)l't!c E cycles(r}IPI <!c!}
Feasible rule: f easibleRule(r) = {rl!Tl is in p and p E f easiblePath(r) }

Let c(n, r) denote the cost of n occurrences of rule r. In the following we will build
stepwise an expression that gives a minimum cost for such a computation. Consider
Cause,. the set of the direct causes of r· (i.e., r; --< r). Each occurrence of r must
depenei either on one of these causes or on messages that trigger r- that are present
already on the initial state of the graph grammar (I). \Ve are in teres teci in defining .
the smallest computation that contains n occurrences of rule r. If the trigger for
this rule is alread y on the initial graph , to apply this rule one time, there can be no
smallest path than using this trigger. Therefore, we will always use first all triggers

RITA • Volume VII • Número 1 • Setembro 2000 119

Complexity Analysis of Reactive Graph Grammars

that are present in the initial graph, and then check in which other ways we may get
the necessary trigger for r. Let n; (n ; > O) denote the number of occurrences of r
that are dependent on a rule i E Causer, and trig(r) be the number of messages that
trigger r present on the initial graph.Thus, to be able to apply r n times we need to
have n; occurrences of r; satisfying:

(4.1) '

Example 4.1

n- trig (r) = 2:::::: nr,, nr, >o
iECause,.

Consider the graph grammar in Figure 4. Suppose we want to calculate the minimum
number of rule applications necessary to apply rule c twice , that is, we want to calculate
c(2, c) . I f there would be enough occurrences of the trigger o f c (message consume) in the
initial graph (Ini) , then the minimum number of steps would be exactly 2, corresponding
to the two applications of rule c. But in this example we have no occurrences of message
consume in the initial graph , that is , trig(c) = O. Therefore , the only way to apply
rule c is to apply first a rule that generate a message con sume. The rules that do
this are in Causec = {p1 ,p3}. Thus, to generate the two necessary triggers for c we
have the following possibilities: apply p1 twice -(np1 = 2, np3 = 0) , apply p3 twice
(n p1 = O, np3 = 2), or apply p1 and p3 once (np1 = 1, np3 = 1) . Note that , according
to equation 4.1 , in each case the sum of np1 and np3 must be 2 (because n = 2 and
trig (c) = 0).

"
In equation 4.1 we have defined the restrictions for n;. In the simpler case, when

we have all necessary triggers in t he initial graph, we have:

(4.2) n::; trig(r) a.nd c(n, r·) = n

But, if there are not enough triggers for r in the ini tial state (n < trig(r-)) ,
considering the cost of nr , occurrences of T; (to generate the missing triggers), plus
the n occurrences of T (the cost o f applying this rule the required number o f times),
we arrive at the following expression to describe the cost of applying n times rule r:

(4.3) n+
Ti EC' aus e,.

If the rule ris nota direct or indirect cause of any of the T;S (r- ~+ r;) , expression
4.3 gives us already the cost of this combination of n r, occurrences of T;.

Now suppose that T -<+ r ;, that is, t here is a chain of causally related rules from
r to T;. If we look at expression 4.3 , we may notice that the occurrences of T that
preceded T; were counted twice: one in t he term n and one in c(nr,, Ti). T herefore we

120 RITA • Volume VII • Número 1 • Setembro 2000

Complexity Analysis of Reactive Graph Grammars

must diminish these occurrences from the total amount of necessary rule applications.
Actually, we need to subtract at most one occurrence of r prior to Ti because if
there are more than one, the others must have already been subtracted when the
corresponding c(n,. ,, r i) was calculated .

We need to determine, for each i , if r'i have occurred using triggers that have
been crea.ted by some occurrence of r or not . In the first case, we must subtract the
occurrence of r needed to apply r;, a.nd in the latter case not . This will be clone via
the function rep(r, n,.,, ri)· For each i , n ,., minus the number of executions of T; that
may occur not dependent on r· gives us the number of times we shall consider.

As we are only interested in the smallest path , we will only consider paths that lead
to occurrences of r; that are smaller tha.n the sma.llest cycle conta.ining r . These pa.ths
are exa.ctly the ones belonging to f easiblePathh). The definition f easibleRule will
be used when we have a. situa.t ion in which Ti -< r -< + ri . In this case there is a.
cycle to ri (if we require tha.t all causes of ea.ch rule are ca.use-independent, then this
cycle must be unique) . Moreover, a.ny pa.th to T; tha.t conta.ins r i must be longer tha.n
the sma.llest cycle (o r equa.l, if t he path is the smallest cycle itself). The fa.ct that
r·i E feasibl eRule(r) mea.ns tha.t there is a. pa.th from r· to Ti tha.t is shorter tha.n the
smallest cycle on ri (a.nd therefore ca.n not conta.in ri)· Furthermore, we need to find
out whether such a. pa.th could ever be initiated in the considered gra.mma.r. This is
described by the existence of the necessary triggers in the initia.l gra.ph:

tr·ig(fr)
frEfeasib leRul e(,.,)- {r}

" However , we should not subtra.ct a. negative number of times. In the case we
h ave nr, < L.f,·Efeasibl eRttl e (,., J - {r} trig(fr) then the sma.llest wa.y to rea.ch a.ll n,.,
occurrences of ri does not include occurrences of , anel therefore nothing should be
subtra.cted from the result of 4.3. Thus, we obta.in

r·ep(r ,n ,. ,, ri) = {

(4 .4)

o,
max {o, n r; - L .r,·E .f easibl eRul e(!';)- {r} t rig(fr) } '

i if r~+ r i

if r-<+ r· i

Remark 1 !f r·~+ ri , all nr, occuTrences ofri did not include r , that is, the numbeT
of occurrences (between the ni 's) of ri including r· is zer-o. Conversely, if r -<+ r· i
for each i , the number of occurrences of r· i (between the n r, 's) that include r zs n, ,
rninus the ones that carne from paths that are srnaller than any containing r·. Thus ,
r ep(r, n r, r'i) represents the nurnber o f occurr-ences o f r· i dependent on r-.

RITA • Volume VII • Número 1 • Setembro 2000 121

Complexity Analysis of Reactive Graph Grammars

Example 4.2

In ou r example , to calculate c(2 , c) we found out that we need to use triggers gen- ·
erated by pl and/or p3 (see example 4.1). Thus we will have to find out whether
during the generation of these triggers the rule c was applied . This can be done us
ing equation 4.4: rep(c, n ,p1) =O and r ep(c, n ,p3) = O, for any number n (because
c ~+ p1 and c ~+ p3) . To calculate the cost of applying 2 times rule p3 , we would
have· to calculate rep(p3 , 2,p2) because p2 -< p3 and trig(p3) = O. In this case , we
have p3;+ p2 and therefore we have to calculate the feasible rules of p2 (see figure
of Example 3.3): cycles (p2) = { (p2 ,p3 ,p2) , (p2, p3,p1 ,p2) , (p2,p3 ,p1,p1,p2), . .. },
f easiblePath(p2) = { (p2) , (p3, p2) , (pl , p2)} (only paths shorter than I (p2 , p3 , p2) I =
3) , f easibleRules(p2) = {p2,p3 ,p 1} . Therefore, rep(p3 , 2,p2) = max {O , 2- (trig(p1)+
trig(p3))} = max{O, 2 - (1 +O)} = 1. This means that , if we apply rule p3 two times
depending on rule p2, one of the occurrences of rule p2 must have been dependent on an
application of p3 .

Then , expression 4.3 modifies to:

(4 .5) L c(n r, ri) +
ri EC'a ,us er

If, for some i , c(nr;, r;) = oo, then this combination of n i's and r/s can never
occur , what implies that, if r can occur n t imes, it is not using this combination of
causes. In this case, expression 4 .5 assumes value oo . It is also possible that we have,
for all i , c(n.r;, r i) -:f. oo, meanin~ that, isolated , we may have n.r; occurrences of ri,but
we may have the case that it is impossible to perform them together (because, for
example, they use the same trigger). T his situation will not be considered now and
will be discussed la ter.

In case we have a cycle involving r and ri, if ri occurs at least once, r will be
enabled any number of times. The next function is used to find out \vhether it is
possible tha t ri occur at least once.

f(r i) = { ~- i f L er-<+ r; trig(cr) =O
otherwise

Thus , we can replace expression 4.5 by

122

' if L r ;EC'ouse,. f (ri) = 00

, otherwise

RITA • Volume VII • Número 1 • Setembro 2000

Complexity Analysis of Reactive Gra.ph Grammars

T his way we have characterized each combination of n,., occurrence of rule r;. As
we want to calculate the minimum cost for this computation, we now have to minimize
expression 4.6, subject to the restrictions defined in 4. 1. Then we finally reach t he
expression defining the minimum number of rule applications that are necessary in a
computation to have n occurrences of a rule r:

c(n.r) = [n { [oo
minRestr C C ost om p

' if L ,.;EC'anse,. f (r;) = 00 }

, ot herwise

, if trig(r) 2: n

, if trig(r) < n

(4.7)

with Restr· = L r;EC'ause,. n,. , = n- trig(n); n,. , 2: O
and CostComp = L r,EC'cwse,. c(n,.,, r ;) + (n- L ·r;EC'ause,. rep(r ,n,. ,, r;))

Example 4. 3

Now we ca n calculate the minimum cost of applying rule c two times. According to
the discussion in Example 4.1 , we have 3 cases to calculate the costs cA. cB and cC.
The minimum of these is the lenght of the smallest computation we are looking for :
c(2, c) = min{ c.4, cB , cC} where

cA = c(2, p1) + c(O,p3) + (2- O) = c(2 ,pl) + 2
cB = c(O,pl) + c(2,p3) + (2 - O)= c(2 ,p3) + 2
cC = c(l , p1) + c(1,p3) + (2- O) = c(1,p1) + c(1,p3) + 2

Now we have to calculate the component expressions:
c(2,p 1) = rnin {c(1,p1) + (2- rep(p1, 1,p1)) , c(1 ,p3) + (2 - rep(p1, 1,p3))}

= min{1 + (2 - 1), 2 + (2- O)}
rep(p1, 1,p1) = m ax{O, 1 - O} = 1,
f easibleRule(p1) - {p1} = 0
rep(p1 , 1,p3) = max {O , 1 - (tr·ig(p2) + trig(p3))} = max{O, 1 - (1 +O) } = O

c(2,p3)
c(1,p1)
c(1,p3)

f easibleRule(p3)- {p1} = {p2,p3}
= min{c(2,p2) + (2- rep(p3 ,p2 ,p2)) } = min{3 + (2- 1)} = 4
= c(1 ,p2) = 1 because trig(p1) = 1 = trig(p2)
= min{ c(1,p2) + (1 - rep(p3 , 1,p2))} = min{1 + (1- O)}= 2
rep(p3 , 1,p2) = ma.1: {0 , 1- trig(p2)} = max{O, O} =O,
fe asibleRule(p2) - {p3} = {p2}

T hus, we have that c(2, c) = min{2 + 2, 4 + 2, 1 + 2 + 2} = 4

Example 4 .4

Now consider the same rules , but with an empty initial graph . Then we have :
c(1,p1) = m·in{ oo, oo} = oo because we have now trig(r;) = O for ali rules r i E

{p1 ,p3 ,p2} and therefore f (p1) = f (p3) = oo .

RITA • Volume VII • Número 1 • Setembro 2000 123

Complexity Analysis of Reactive Graph Grammars

In the cost expression given above,_ we have not considered the fact that the same
two rules may need the same trigger (and are, therefore , not only in potential but
in real in conflict) . As the computation of the cost of each cause of a rule is clone
separately, we may reach a conclusion that the minimum number of steps needed is
actually smaller that the real one because of the sharing of triggers (in some cases,
there may be no computation performing the required number of steps - that is , the
cost in infinite - and our result could be a natural number) . However , there may be
cases in which there are no potential conflicts and this situation occurs. An example
would be a rule that generates the triggers for two others that both generate the
trigger for another rule. This situation is called cause-dependency (two causes of
the same rule depend on a common rule) . The cases for which the expression given
here gives an exact result (that is, for which there is actually a computation of that
minimum length) are as follows: there are no potential conflicts between the rules of
the grammar and all causes of each rule are cause-independent.

The following theorem states that if the cost expression we have defined gives
a value x for applying n times a rule r then there can be no computation of the
corresponding grammar that has n applications of rule r that has length smaller than
x. This theorem proves that , if we considera graph grammar with cause-independent
rules, we have really defined a lower bound for the computation length necessary
to have the required number of rule applications. Note that the theorem is valid
also for grammar that have conflicts, just that in this case it can be that there is
no computation having n occurrences of r that has exactly the length computed by
c(n, r).

Theorem 4 .. 1 Let GG = (I , T , Rules) be a gmph gmmmar in which all causes of
each rule are cause-independent and "" be a computation o f GG with 1""1 = m, m 2: 1. If
"" contains n occurrences o f derivation steps using rule r , then, for· all subcomputations
""' of"" that also has n occurr-ences ojr , we have c(n , r·)::; 1""'1·

Pmof. In case n =O, then for any r- E Rules , n ::; tr-ig(r-) and therefore c(n , r-) =O,
what implies that c(n , r-)::; 1"" '1 , for all subcomputation ""of ""'· The proof for n 2: 1
will be by induction on m = 1""1· Let Cause,.= {cr-lcr-< r} .

IB: Let K be a computation of GG with IKI = 1. If "" contains n occurrences of
derivation steps using rule r-, then n ::; 1 because IKI = 1. In this case n = 1
because by assumption n 2:: 1, and therefore the computation K must consist
of one derivation step using rule r because it has only one derivation step.
Moreover, if this derivation step was possible, then trig(1·) 2: 1. Then we have
n ::; tr-ig(r-) , what implies that c(n, r-)= n = 1 and therefore c(n , r-) = 14

IH: For any computation K of GG with IKI ::; m . If "" contains n occurrences of
derivation steps using rule r- , then, for all subcomputations K

1 of "" that also
have n occurrences ofr , we have c(n,r-)::; IK'I·

124 RITA • Volume VII • Número 1 • Setembro 2000

Complexity Analysis of Reactive Graph Grammars

IS: Let r;, be a computation with lr;,l = m + 1. Let r;,' be a subcomputation of r;, that
has n occurrences of rule r .

Case 1 Sv,ppose trig(r) 2: n. In this case c(n, r) = n . Any computation r;,' that
has n occurrences of rule r must consist of at least n derivation steps, that is
Ir;,' I 2: n = c(n , r) .

Case 2 Suppose trig (r) > n and r i(+ r. Let r 1 , r-2 , ... TJ E Cause,. . The com
pv.tation r;, contains n occur-rences o f r·ule r , each one preceded by r·;, i = l..j. Let
n,. , (n,. , > O) be the number· o f times that r- occurs in r;, depending on a rule r i.
Then L r;EC'ause,. n,., +trig(r) = n. As trig(r) < n and n >O, r;, has at least one
occur-rence ofr whose trigger- was not in the initial graph. Thus, there must be an
7' i(+ r such thattrig (r) f. O, and we must have L r;EC'ause,. f (r;) f. oo. Besides,

as r i(+ r by assumpt·ion, c(n , r-) = min { (n- L r·; ECause,. r-ep(r,n,., ,r-i)) } , sub
ject to n r, > O and L r; EC'ause" n ,. , = n-tr-ig(1·). For each Ti, with nr, f. O, con
sider· the smaller subcomputation K; o f r;, that contains the n ,., occurrences o f r;.
Using the induction hypothesis for K;~r;,;! < lr;,'l ~ lr;,l because K; does not con
tains the occur-r-ences ofruler-) , we obtain c(n ,., r-;) ~Ir;,;!, i= l..j . Ther-efor·e we

can conclude that L r;E C'ause,. c(n,.,1';) ~ Lr;ECause.- lr;,il· As, by assumption,
the causes of each r·ule of the grammar· ar·e cause-independent, all subcornputa

tions Ki do not shar·e common r-esour-ces, and thus L -r;EC:ause,. lr;,fi ~ lr;,' l - n ,
and this implies that n + L r;EC'ause,. c(TI,., , r-i) ~ Ir;,' !. As we ar·e considering
the rninimum o f all cornbinations in the definition o f c(n , r-), we m ·ust h ave that

c(n, r) ~ Ir;,' I·

Case 3 Suppose trig(r-) > n and r i(+ r. Following the same reasoning as
the latter case, we may identify the 1·; and n,. , o f a computation r;, and con

clude that Lr;EC'ause, f (r;) f. oo . In this case, this means that c(n,r-) =

minRestr {L ,., EC' a use,. c(n,.,, r-;) + (n- Lr;EC'ause,. r ep(1·, n ,., , r;))} , wher-e R estT
= L r;EC'ause" n ,., = n - tr·ig(n) ; n r, 2: O. The induction hypothesis gives us
c(nr, ' r ;) -:::; Ir;,; I, i= 1, .. j and thus L r;ECauser c(nr,' r;) ~ Lr;EC'ause,. Ir;,;!. Th e
subcomp·utat'ions r;,i aTe independent by assumption, but ther-e may be occur
r-ences of r· in one of these subcomputations (in at most one because if mor-e
than one have occurr-en ces of r than the gramrnar- is not cause-independent).
Thes e occurr-ences have alr·eady been consider-ed in the cor-r-esponding c(nr,, ri)
and rnust ther-efor·e be subtracted. By r·ernar-k 1, 1·ep(T, n,.,, 1';) r·epr-esents the
nurnber- of occun·ences (between the nr, 's) of r-; dependent on r. So we get

L r ; EC a us e,. c(n r, r;) ~ L ,·; EC'aus e,. '"'i I ~ Ir;,' I- (n- L r;EC'ause,. rep(r , n ,., ' r;)).

Thís implies Lr;EC'ause,. c(n,.,r;) + (n- Lr;ECatLse,. r ep(r,n,.,r;)) ~ ir;,'l· As
we ar-e considering the rninirn-um o f all cornbinations in the definition o f c(n , r-) ,
we rnust have that c(n,r) ~ lr;,'l·

D

RITA • Volume VII • Número 1 • Setembro 2000 125

Complexity Analysis of Reactive Graph Grammars

5. Conclusion

In this paper we have defined a special kind of graph grammar that is suitable
for the specification of reactive systems and have presenteei a way to calculate the
complexity of these grammars. This complexity is measured in terms of number of
rule applications.

Graph grammars have been used to specify a variety of systems [EHK+97], but
nevertheless almost no research have been made to investigate the complexity of
the specified systems (usually complexity issues were only regarded to build tools
for graph grammars that had to cope with the graph isomorphism problem to find
matches for rules) . Although we h ave considered only a restricted class of graph
grammars, this work can be a starting point in a theory of complexity of graph
grammar specifications. Graph grammars can be considered as a generalization of
Petri nets [KR96]. Therefore, it would be interesting to investigate to what extent
the theory of Petri nets concerning complexity and related issues could be compareci
to our approach, and also which results for Petri nets (as a special case of graph
grammars) can be achieved.

A relevant improvement of our approach (important for practical applications)
would be to consider gra.ph grammars with attributes (data types) and also read
only / write access to attributes as a condition for the application of rules. This would
have t he impact that the causali ty and conflict relationships are no longer enough to
characterize the computations of a graph grammar, we need a further relationship
called weak conflict (see [Kor96, Rib98, KR98]). Moreover , in this case, a rule may
depend not only on its trigger but also on a particular value of an attribute, thus,
it is potentially dependen't~ on ali other rules that create that trigger and on ali that
may change the value of that attribute. The reasoning about the minimum length of
possible computations in this case becomes much more involved.

Another issue for further research is to investigate the minimum time cost in such
systems. One can use the causality and conflict (and possibly also weak conflict)
relationships to reason about which rules may be applied in parallel and thus get a
minimum time necessary to perform a rule a number of t imes .

The work developed here isto be implemented within a tool called PLATUS, that
is an environment for specification anel simulation of reactive systems baseei on graph
grammars currently under development [CR98, CR99, CMROO] .

References

[Akl89] S. Akl, The design and analysis of parallel algorithms, Prentice Hall , 1989.

[Cl\'IR96] A. Corradini , U. Montanari , anel F. Rossi, Graph processes, Fundamenta
Informaticae, Yol. 26 , no. 3/ 4, 1996, 241 - 265.

126 RITA • Volume VII • Número 1 • Setembro 2000

Complexity Analysis of Reactive Graph Grammars

[CMROOJ B. Copstein, M. Móra and L. Ribeiro , An environment fo r formal modeling
and simulation for graph grammars, 33rd Annual Simulation Symposium,
2000, pp. 74- 82.

[CR98] B. Copstein and L. Ribeiro, Specifying sirnulation models using graph gram
mars, 10th ESS European Simulation Symposium And Exhibition, 1998,
pp. 60- 64.

[CR99] L. Ribeiro and B. Copstein, Compositional Construction of Simulation
Models using Graph Grammars, International V/orkshop and Symposium
AGTIVE - Applications of Graph Transform ation with Industrial Rele
vance, Lecture Notes in Computer Science, vol. 1779, 2000 , pp . 87- 94.

[DROO] F. Dotti and L. Ribeiro , Specification of Mobile Code Systems using Graph
Grammars, Formal Methods for Open Object-based Systems IV (S. Smith
and C. Talcott , eds.), Kluwer Academic, 2000, pp. 45- 64.

[EHK+ 97] H. Ehrig , R. Heckel, M. Korff, M. Lowe, L. Ribeiro , A. Wagner , and
A. Corradini , Algebraic appr-oaches to graph transformation II: Single
pushout approach and comparison with double pushout appr-oach, The
Handbook of Graph Grammars, Volume 1: Foundations, \Vorld Scientific,
1997, pp. 247- 312.

[Ehr79]

[Jaj97]

[KR96]

[KR97]

[KR98]

[Kor93]

H. Ehrig, Introduction to the algebraic theory of graph grammars , 1st
Graph .,Grammar Workshop , Lecture Notes in Computer Science, vol. 73
(V. Claus, H. Ehrig, and G. Rozenberg, eds.), 1979, pp . 1- 69.

J. Jaja, An intr-oduction to parallel algorithms, Addison-\Vesley, 1997.

M. Korff and L. Ribeiro , For·mal relationships between gra ph grarnrnars
and Petrí nets, Lecture Notes in Computer Science, vol. 1073, Springer ,
1996. pp. 288- 303.

~1. Korff and L. Ribeiro , Graph grammars for· the specification of con
current systems, IX SBES Brazilian Symposium on Software Engineering,
1997, pp. 199- 214.

1\!I. Korff and L. Ribeiro-Korff, True concunency=interleaving + weak con
fiict , Eletronic Notes in Theoretical Computer Science, vol. 14, 1998.

M. Korff, Single pushout transformations of generalized graph structures,
Tech. Report RP 220 , Federal University of Rio Grande do Sul , Porto
Alegre, Brazil , 1993.

RITA • Volume VII • Número 1 • Setembro 2000 127

Complexity Analysis of Reactive Graph Grammars

[Kor95]

[Kor96]

[Low90]

[Low93]

[Lyn96]

[MP92]

[Rib96a]

[Rib96b]

[Rib98]

128

M. Korff, True concurrency semantics for single pushout graph transjorma
tions with applications to actor systems, Informa.tion Systems - Correctness
a.nd Reusa.bility (R. J. Wieringa. a.nd R. B. Feenstra., eds.) , World Scientific,
1995, pp. 33- 50.

l\1. Korff, Generalized graph structure grammm·s with applications to con
current object-oriented systems, Ph.D. thesis, Technical University of
Berlin , 1996.

M. Lowe, Extended algebraic graph transfor·mations, Ph.D. thesis, Techni
ca.l University of Berlin, 1990.

M. Lowe, Algebraic approach to single-pushout graph transformation, The
oretica.l Computer Science, vol. 109, 1993, 181- 224.

N. Lynch, Distributed algorithms, Morgan Kaufmann, 1996.

Z. i\1anna and A. Pnueli , The Temporal Logic of Reactive and Concurrent
Systems, Specification, Springer, 1992.

L. Ribeiro , Para llel composition and unfolding semantics of graph gram
mar·s, Ph.D. thesis, Technica.l University of Berlin , 1996.

L. Ribeiro, A telephone system 's specification using graph grammars, Tech.
Report 96-23 , Technical University of Berlin , 1996.

L. Ribeirq;-Korff, Occurrence graph grammars , 5th WoLLIC Interna.tional
Workshop on Logic, La.nguage, Information and Computation, 1998, pp.
92- 100.

RITA • Volume VII • Número 1 • Setembro 2000

