
p � �

URL� http���www�elsevier�nl�locate�entcs�volume��html �� pages

A Compositional Approach to Structuring and
Re�nement of Typed Graph Grammars �

Andrea Corradini
a
Reiko Heckel

b

a Dipartimento di Informatica� Universit�a di Pisa� I������ Pisa� Italy

b Fachbereich �� Informatik� Technische Universit	at Berlin� D��
��� Berlin�

Germany

Abstract

Based on a categorical semantics that has been developed for typed graph grammars

we uses colimits �pushouts� to model composition and �reverse� graph grammar

morphisms to describe re�nements of typed graph grammars� Composition of graph

grammars w�r�t� common subgrammars is shown to be compatible with the seman�

tics� i�e� the semantics of the composed grammar is obtained as the composition of

the semantics of the component grammars� Moreover� the structure of a composed

grammar is preserved during a re�nement step in the sense that compatible re�ne�

ments of the components induce a re�nement of the composition� The concepts and

results are illustrated by an example�

� Introduction

This contribution addresses the structuring and re�nement of typed graph

grammars de�ned according to the algebraic double pushout approach ����

Typed graph grammars are introduced in ��� for the double pushout approach

�cf� ��� for a corresponding notion in the single	pushout setting
� They gener	

alize the concept of labeling graphs by providing di�erent type sets for nodes

and edges and imposing a graphical structure on it� In ��� typed graph gram	

mars have been given a categorical semantics that generalizes similar results

for PT nets in ���� Such a semantics is strongly based on the typing mecha	

nism� because non	trivial grammar morphisms could be de�ned by exploiting

the �type graphs� of the grammars� In particular three categories have been

introduced� GraGra having typed graph grammars as objects� and gram	

mar morphisms as arrows� GraTS with �typed
 graph transition systems as

objects and GraCat having small categories of �typed
 graph derivations

as objects� The main result of ��� shows that there are left adjoint functors

TS � GraGra � GraTS and DS � GraGra � GraCat to the forgetful

�
Research partially supported by the COMPUGRAPH Basic Research Esprit Working

Group n� ����

c����� Elsevier Science B� V�

Corradini and Heckel

functors U � GraTS � GraGra and V � GraCat � GraGra� respec	
tively� In particular� the functor DS associates with each typed grammar G

its derivation system DS�G
� which is a category having graphs as objects
and graph derivations as arrows� and can be considered reasonably as an �op	
erational� semantics of the grammar� Indeed� in the rest of this contribution�

by �semantics� of a grammar we shall mean its derivation system�

Graph grammars have been shown to be adequate for the speci�cation of
software systems for example in ���� and thanks to their typing mechanism�

typed grammars are even more expressive in this application �eld� However�
since real systems tend to be very large� suitable techniques for structuring

speci�cations are needed� On the other hand� large speci�cations are usually

not written from scratch� but they require a number of development steps�
In a top	down development these are re�nement steps� where an abstract
speci�cation of the system is replaced by a more speci�c one�

Any reasonable proposal of structuring mechanisms for �typed
 graph

grammars� however� should be compatible with their semantics� Operations
that �syntactically
 combine small graph grammars to build larger ones should

have semantical counterparts doing a corresponding construction for their
derivation systems� This is usually called a compositional semantics� mean	
ing the ability to construct the semantics of some composed speci�cation out

of the semantics of its components� On the other hand a re�nement step should
preserve the structure of a speci�cation� that is compatibility of structuring
and re�nement is required�

In this contribution colimits� in particular pushouts� are used as the com	

position mechanism of typed graph grammars� in the spirit of ���� Moreover�
re�nement of grammars is modeled by grammar morphisms in the reverse

direction� A very detailed example of a graph grammar specifying some oper	
ations on a list of lists is used to motivate the adequacy of these notions� The
main result shows the compatibility of structuring and semantics� as well as

of structuring and re�nement� proving in this way the compositionality of our
approach�

� Technical Background

In this section we introduce the basic notions of typed graph grammar and

grammar morphism� including their semantics� and show the existence of col	
imits in the corresponding category GraGra�� Note that� compared to the

category of typed grammarsGraGra introduced in ���� our simpli�ed category
GraGra� is obtained by restricting the allowed morphisms and by ignoring
the start graphs�

Let Graph be the category of �unlabeled
 graphs and total graph mor	
phisms and GraphP the category of graphs and partial graph morphisms�
where a partial graph morphism s � L � R is a span �i�e�� a pair of coini	

tial morphisms
 s � L
ls
�� K

rs
�� R in Graph such that ls is an inclusion�

Composition of two partial graph morphisms si � Li

li
�� Ki

ri
�� Ri� i � �� �

�

Corradini and Heckel

L1 R2

K2

r*1

l1 r1 l2 r2

l*2

K1

K

(a)

X’

X

h h*

k

Y

Y’

h’*
l*’

l* r h*

r h*’

o

o

L K Rrl

(b)

(1)
(2)

21R = L

h’ k*

Fig� �� De�nition of the functor hsi � �Graph � L� � �Graph � R��

with L� � R� is de�ned as s�� s� � L�
l��l

�

�

�� K
r��r

�

�

�� R� where K � K� is the

inverse image of K� under r�� l
�

� is the corresponding inclusion� and r�� is the

restriction of r� to K� It is well	de�ned since the inverse image squares ��
 in

Figure � �a
 �which is a special pullback
 preserves inclusions� GraphP has

extensively been studied in the algebraic single	pushout approach ��� and it is

known to be complete and co	complete�

For TG � jGraphj we denote by TG	Graph the category of TG	typed

graphs� i�e�� the comma category �Graph � TG
� where objects are typed

graphs hH�hi with h � H � TG� and a typed graph morphisms f � hH�hi �

hH �� h�

i is a graph morphism f � H � H �

such that h�

�f � h� Accordingly TG	

GraphP is the category of typed graphs and typed partial graph morphisms�

i�e� pairs of coinitial arrows L
l

�� K
r

�� R in TG	Graph where l is an

inclusion�

Each inclusion l � K � L of graphs induces a functor l� � �Graph � L
�

�Graph � K
 de�ned on objects as l��hX�hi
 � hY� h�

i� where diagram ��

in Figure ��b
 is an inverse image square� and on arrows as l��k � hX�hi �

hX �� h�

i
 � k�

� where since the square LKY �X �

of Figure ��b
 is a pullback� k�

is uniquely determined because l �h�

� h�

� k � l�� and it satis�es h
�
�

� k�

� h�

and k � l� � l�
�

� k�

� On the other hand� each total graph morphism r �

K � R induces a functor r� � �Graph � K
 � �Graph � R
 de�ned

as r��hY� h�

i
 � hY� r � h�

i on objects and r��k�

 � k�

on arrows� As a

consequence� each partial graph morphism L
l

�� K
r
�� R induces a functor

hsi � �Graph � L
 � �Graph � R
 de�ned as hsi � r� � l�� Moreover

h i � GraphP � Cat becomes a functor if we de�ne it as hGi � �Graph � G

on objects�

A typed graph rule in the double pushout sense is a typed partial graph mor	

phism where the right	hand side is injective� The class of all typed graph rules

is denoted by Rules� Then a typed graph grammar G � �TG�P� �
 consists

of a type graph TG � Graph� a set of production names P � and a mapping

� � P � Rules associating with each production name its rule� if p � P �

��p
 is also called the sort of p� A graph grammar morphism f � G� � G�

from typed grammar G� � �TG�� P�� ��
 to grammar G� � �TG�� P�� ��
 is a

pair f � �fTG� fp
 where fTG � TG� � TG� is a partial graph morphism� and

fP � P� � P� is a mapping of production names such that the sort of pro	

ductions is preserved� i�e�� ���fP �p

 � hfTGi����p

 for all p � P�� �Here the

functor hfTGi is extended to arbitrary diagrams�
 The category GraGra� has

typed graph grammars as objects and graph grammar morphisms as arrows�

Composition and identities are de�ned componentwise�

�

Corradini and Heckel

As anticipated above� the category GraGra� just introduced is a simpli	
�ed version of category GraGra of ���� because our typed grammars do not

have a start graph� and the type component fTG of grammar morphisms must
be a partial graph morphism instead of an arbitrary span �note thatGraGra�

is not a subcategory of GraGra
� It is worth stressing that the elimination of

start graphs is a necessary condition to show the co	completeness ofGraGra��

that is proved below� because otherwise a counter	example to co	completeness
can be obtained easily by adapting a similar negative result for marked PT

Petri nets ���� On the other hand� the restriction imposed on grammar mor	
phisms avoids the assumption of an �associative choice of pullbacks� made
in ��� in order to ensure the well	de�nedness of span composition� making the

overall technical treatment easier� It is still an open question whether category
GraGra� remains co	complete �and under which conditions
� if we allow for
the more general morphisms of category GraGra�

Proposition ��� The category GraGra� is �nitely co�complete�

Proof �Sketch� The empty graph grammar is initial in GraGra� because
the empty �type
 graph is initial in GraphP and the empty set �of produc	

tion names
 is initial in Set� Moreover GraGra� has all pushouts that are
constructed component	wise in GraphP and Set using the functor property

of h i� �

In ��� the free transition system of a grammar is obtained by generating all

derived productions� i�e�� all the double pushout diagrams having a produc	
tion on top� The name of a derived production contains all the information
about the double pushout� and its sort is the bottom span of the diagram� A

morphism between graph transition systems is a grammar morphism that pre	

serves derived productions� and the resulting category is denoted by GraTS�
The obvious forgetful functor U � GraTS � GraGra� that regards every

graph transition system as a graph grammar forgetting the additional struc	
ture of derived productions� has a left adjoint TS � GraGra � GraTS

associating with each grammar its free transition system� Furthermore� the

free derivation system of a grammar G is constructed by closing the set of
productions G not only under derived productions� but also under sequential
composition� The forgetful functor V � regarding every derivation system in

GraCat as a graph grammar� has a left adjoint� too� that assigns to each
grammar its free derivation system�

These results of ��� can be transferred verbatim to our simpli�ed categories

GraGra�� GraTS�� and GraCat�� where the last two are obtained from
GraTS and GraCat� respectively� by eliminating start graphs and by impos	
ing the expected restriction on arrows�

Proposition ��� �i
 The forgetful functor U � GraTS� � GraGra� has

a left adjoint TS � GraGra� � GraTS��

�ii
 The forgetful functor V � GraCat� � GraGra� has a left adjoint DS �

GraGra� � GraCat��

Proof �Sketch� The type graph component fTG of a grammar morphism is

�

Corradini and Heckel

left unchanged by the free constructions corresponding to functors TS and DS�
as de�ned in ���� as well as by the forgetful functors� Thus all the mentioned

functors preserve our restriction to partial graph morphisms� �

As a consequence GraGra� morphisms preserve direct derivations and
derivation sequences as well as independence of direct derivations �see ���
�

� Structuring of Typed Graph Grammars

One main advantage of having de�ned a category of graph grammars is that
standard categorical constructions may be used to model suitable operations

on grammars� In particular� colimits in GraGra�� that are shown to exist
in Proposition ���� can be used to compose graph grammars with respect to

common subparts� The use of colimits to model the gluing of systems with
shared subsystems is very common �and it is well motivated� for example� in

���
� and has the immediate advantage that the semantic functor is composi	
tional with respect to such operations� by general categorical results� We state
this property for pushouts �which is the kind of composition we shall use
� but

it holds for arbitrary colimits�

Proposition ��� �compositionality of semantics w�r�t� structuring�

Let G��G��G� be typed graph grammars and G� be the union de�ned as the

pushout of G�
f�
��G�

f�
�� G� in GraGra�� Then the semantics DS�G�
 of

the union coincides with the union of the semantics de�ned as the pushout of

the translated diagram DS�G�

DS�f��
�� DS�G�

DS�f��
�� DS�G�
 in GraCat��

Proof� The semantic functor DS � GraGra� � GraCat� preserves

pushouts �and all colimits
 because it is a left adjoint functor� �

We shall show now� as an example� how a graph grammar specifying some
basic operations on a list of lists can be obtained by taking the pushout of two

disjoint copies of a grammar for lists with respect to a suitable subgrammar�
Figure � shows the grammarGlist � �TGlist� fnew� ins� add�data� remove� gcg�

�list
 which implements some operations on lists of elements of a datatype D

which is not further speci�ed� According to the de�nitions� TGlist is an unla	
beled graph� thus the names written near arcs and nodes �that are depicted

as circles
 are their identities� Nodes of TGlist are the types of the basic com	

ponents of a list� while arcs describe the way they can be related� LP � for List
Pointer� is the �type of the
 pointer to a list� and can have either a nil loop
�the list does not exist
� or can point to the �rst List Element �LE
 of the

list through a fst arc� Notice that loops are depicted as rounded arcs pointing

to the node that is both source and target� A list element can either be the
last one �if it has a last loop
 or it has a next list element� and in this case

it may carry one data element� If the data is present� it is pointed by a data

arc� otherwise the list element has a null loop� A data element is simply a
node labeled by D with a dummy loop� which is not further speci�ed in this

grammar� The sorts of the production names ofGlist are drawn as partial mor	

phisms in category TGlist 	Graph �instead of as spans
� where nodes belonging

�

Corradini and Heckel

new

LPnil

LP

LE

fst

last
1

1

ins

LE last

nextLE
last

LE null

1

1

remove

LP

LE

fst

LE
next

LP

fst

LELE

1

2 3

1

2

3

gc

D dummy

LE

data

LP

LE

D

data

fst

dummy

nil

next

null
last

TGlist

add-data

LEnull

Ddummy

LE

data
1

1

Fig� 	� Grammar Glist � modeling manipulation of lists�

P

S

ptr
unused

empty
TGnew

generic-new

1

1

Punused

P

S

ptr

empty Pnew

Fig�
� Grammar Gnew implementing a generic new operation�

to the domain and their images are marked with the same natural number�

The typing morphisms are indicated by labeling each item of a graph with

the name of its image in TGlist� written in italics� Production new creates an

empty list �having only one list element which carries no data and is marked

as last
 from an unused list pointer� ins inserts a new list element at the end

of a list� add�data adds a data element D to a list element carrying no data�

remove eliminates the �rst element of the list by changing the fst pointer from

LP �thus a FIFO strategy is ensured
� and leaving the skipped list element

as �garbage�� and gc performs garbage colletion deleting a list element and

the attached data� Note that since we are using the double pushout approach�

the application of a production to an occurrence morphism is subject to the

gluing conditions ���� thus production gc cannot be applied if some other arc

is connected to the LE node� because the dangling condition would not be

satis�ed� This fact guarantees that only garbage is deleted�

Now� note that productions new and add�data are isomorphic but for the

labeling� Indeed� both model the creation of a new� empty data structure �the

list in new� the unspeci�ed data in add�data
� The idea is to obtain a grammar

modeling the manipulation of lists of lists by gluing together two instances

of grammar Glist� and identifying the add�data production of the �rst with

the new production of the second� Such an identi�cation can be obtained by

considering another grammar� Gnew � depicted in Figure �� having only one

production generic�new that given an unused pointer P � creates a new empty

structure S and connect it to P through a ptr arc�

LetG�

list
be a copy of the grammar for lists of Figure �� but where all names

have a prime� Then Figure � shows the pushout in category GraGra� of the

two grammar morphisms f� �Gnew � Glist and f� �Gnew �G
�

list
� Morphisms

f� and f� are speci�ed by giving the mappings of the �various items of the

�

Corradini and Heckel

LP

LE'

D'

data'

fst'

dummy'

next'

null'
last'

LP

LE

fst

nil

next

null
last

TGlist[list]

Gnew

Glist

G'list
Glist[list]

f1

f2

empty → dummy
unused → null
ptr → data
P → LE
S → D

generic-new → add-data

empty → last'
unused → nil'
ptr → fst'
P → LP'
S → LE'

generic-new → new

LP' → LE
nil' → null

D → LE'
data → fst'
dummy → last'

new
ins

add-data = new'
remove

gc
add-data'
remove'

gc'

Plist[list]

Fig� �� A pushout diagram in category GraGra� de�ning grammar Glist�list	�

⇒
new

⇒
ins

LP

LP

LE

fst

null

LE

next

last

⇒
add-data

LP

LP

LE

fst

LPLE

next

last

LPLE'
fst' last' ⇒

ins'
LP

LP

LE

fst

LPLE

next

last

LPLE'
fst'

LPLE' last'next'next'

null'

LE

LP

fst

LE

next

last

LPLE'
fst'

LPLE'

last'

next'next'

D'

data'

dummy'

⇒
add-data'

LE

LP

fst

LE last

LPLE'
fst'

LPLE'
next'next'

D'

data'

dummy'

last'

⇒
remove

LE

LP

LE last

LE'

fst'

D'

data'

dummy'

last'

fstfst

LE'⇒
remove'

LP

fst

LE last

LE'

D'

data'

dummy'

⇒
gc

LP

fst

LE

last

⇒
gc'

LP

fst

LE

last

LP

nil

Fig� �� A sample derivation for grammar Glist�list	�

type graph� and of the only production� the required commutativity properties

can be checked easily� The right part of the �gure shows the grammarGlist�list	

resulting from the pushout� and the two injection morphisms from the compo	

nent grammars� The type graph TGlist �list	 is de�ned only up to isomorphism�

and the injections are speci�ed only for the items for which they are not the

identity� The productions of Glist�list 	 are not depicted but only their names

are listed� they can be obtained from the corresponding productions in the

component grammars� by changing the labels of the graphs items according

to the injection morphism� Note that Glist�list 	 has seven productions �and not

eight
 because productions add�data and new� are identi�ed by the pushout

construction� as expected�
Figure � shows a sample derivation in grammarGlist �list	� showing the e�ect

of the various productions� Such a derivation belongs to the derivation system

DS�Glist�list 	
� which is a small category that can be obtained� by Proposition

���� as the pushout in category GraCat� of functors DS�f�
 � DS�Gnew
�

DS�Glist
 and DS�f�
 � DS�Gnew
� DS�G�

list

�

� Re�nement of Typed Graph Grammars

The graph grammar morphisms introduced in Section � are quite general�

In our view� it is not yet completely clear what is the relationship between

�

Corradini and Heckel

cgc-remove

GC

LE

fst

LE
next

4

2 3

LP
1

GC

LE

fst

LE

4

2 3

LP
1

gc

cgc

D dummy

LE

data

GC

GC

gc

1

1

LP

LE

D

data

fst

dummy

nil

next

null
last

TGlist
cgc

GC

gc

Plist
cgc

new ins add-data

Fig� � Grammar G
cgc

list
� a re�nement of Glist implementing centralized garbage col�

lection�

two grammars when there exists a morphism f � G� � G�� except that all

the derivations of G� can be mapped to corresponding derivations of G��

In this section we will show with an example that� at least in certain cases�

such a morphism indicates that G� is a re�nement of G�� in the sense that

it implements the same functionalities� but the involved data structures are

more complex� Clearly� not all grammar morphisms correspond to re�nements

in this sense� For example� grammar Gnew cannot be considered at all as a

�re�nement� of Glist� The following de�nition narrows the class of grammar

morphisms eligible as re�nements� accordingly with the informal requirements

just given�

De�nition ��� �re�nement morphisms� Given a graph grammar mor�

phism r � �rP � rTG
 � G�� G�� we say that G� is a re�nement of G� if both

the partial graph morphism rTG � TG� � TG� and the function rP � P� � P�
are surjective� In this case r is called a re�nement morphism�

Surjectivity guarantees that G� has all the functionalities of G�� but since

morphisms rTG can be partial� it may handle more re�ned data structures�

We consider G� as a re�nement of G� and not vice versa� in order to allow

the re�nement of one type of G� by several ones of G� �in case that fTG is

not injective
�

As an example� we present grammar Gcgc

list
� which is a re�ned version of

grammarGlist where centralized garbage collection is implemented� in the sense

that a pointer is kept to each list element that becomes garbage� Figure �

shows the new grammar� The type graph is obtained by adding to TGlist a

node named GC� and an arc named gc pointing to node LE� The productions

new� ins� and add�data are identical to the corresponding ones forGlist� and are

not depicted� There is an obvious morphisms r � Gcgc

list
� Glist which forgets

node GC and arc gc of TG
cgc

list
� maps production names cgc�remove and cgc to

remove and gc� respectively� and is the identity on the other names� In fact�

if from productions cgc�remove and cgc we remove all items labeled by GC

and gc� we obtain the productions remove and gc of Glist � Morphisms r is

clearly a re�nement� because it is surjective� Let us show now that this notion

of re�nement is compatible with the structuring mechanisms of the previous

section� We have the following easy result �that holds not only for pushouts�

but also for arbitrary colimits
�

Proposition ��� �compatibility of structuring and re�nement�

Consider the diagram of Figure � �a� in category GraGra�� where G� is

�

Corradini and Heckel

G1G0

G2 G3

f2

f1

r0

G'1G'0

G'2 G'3

f2'
r1

r3r2

(a)

f1'

GlistGnew

G'list Glist[list]

f2

f1

r0

Glist
r

r*
r'

cgc

G'list
cgc Glist[list]

cgc

Gnew
cgc

(b)

f1'

f2' LP

LE'

D'

data'

fst'

dummy'

next'

null'
last'

LP

LE

fst

nil

next

null

last

TGlist[list]

GC
gc

gc'

(c)

cgc

Fig� �� �a� Compatibility of structuring and re�nement� �b� An example� �c� The

type graph of the resulting grammar�

LE

LP

fst

LE

next

last

LPLE'
fst'

LPLE'

last'

next'next'

D'

data'

dummy'

GC

LE

LP

fst

LE

LPLE'
fst'

LPLE'
next'

D'

data'

dummy'

last'

last

GC
gc

⇒
cgc-

remove LE

LP

LE

LE'fst'

D'

data'

dummy'

last'

fstfst

LE'

last
GC

gc gc'

⇒
cgc-

remove' LP

fst

LE

LE'

D'

data'

dummy'

last
GC

gc'

⇒
cgc

LP

fst

LE

last

GC

⇒
cgc'

Fig� �� A sample derivation using centralized garbage collection�

the pushout object of f� and f�� and ri � G�

i
� Gi are compatible re�ne�

ment morphisms� for i � �� �� � �i�e�� the top and left squares commute�� Then

there is a unique re�nement morphism r� � G
�

� � G� making all the diagram

commute� where G�

� is the pushout object of f �

� and f �

��

Proof �Sketch� The existence and uniqueness of morphism r� follows by

the universal property of pushouts� The fact that it is surjective both on

productions and on the type graph follows by the surjectivity of the other

re�nement morphisms and by the fact that the injections in the pushout object

G� are jointly surjective� �

As an example� let us show how grammarGlist �list	 can be re�ned to a gram	

mar G
cgc

list�list	 implementing centralized garbage collection� by just specifying

the re�nement of the component grammars� In the diagram of Figure � �b
� the

front square is the pushout of grammars of Figure �� r is the re�nement mor	

phisms presented above� and r�
is a similar morphism relating disjoint copies

of the same grammars� Furthermore� grammar Gcgc
new is obtained by adding to

TGnew a single node called GC in the type graph� morphisms f �

� and f �

� are like

f� and f�� but they additionally map the GC node of TGcgc
new to the GC and

GC �
nodes of TG

cgc
list and TG

cgc�

list � respectively� By Proposition ��� there exists

only one grammar morphism r� from the pushout object of f �

� and f �

�� G
cgc

list�list	�

to Glist �list	 such that the diagram commutes� and moreover r� is a re�nement�

Figure � �c
 shows the type graph of grammar G
cgc

list�list	� and Figure � shows

a derivation for that grammar that re�nes the second part of the derivation

of Figure �� Note that there are still two distinct rules for garbage collection�

but both use the same GC	labeled node� that can be considered as a global

repository for pointers to garbage data�

�

Corradini and Heckel

� Conclusions and Future Work

After summarizing the categorical semantics of graph grammar proposed in
���� we discussed the use of colimits in the category of graph grammars as a
structuring mechanism for the speci�cation of large grammars� showing that

the categorical semantics is automatically compositional with respect to such

mechanism�Furthermore� we showed that certain morphisms of grammars may
be interpreted as a re�nement relation �where the source grammar re�nes the

target one
� and proved that such notion of re�nement is compatible with the
structuring mechanisms�

Our notion of re�nement applies to the data of the speci�cation� i�e� the

type graph� while the re�nement of operations �rules
 is more or less �xed

by the data re�nement� To model operation re�nement one has to map a
single rule to a derived rule� representing a compound operation� This however

requires more general graph grammar morphisms� Moreover� one may ask that
the re�ned grammar implements more functionalities� as in the case of the

inheritance relation among classes in object oriented systems� In this case it

would be no more true that a derivation in the source grammar can always be
mapped to a derivation in the target grammar� We believe that this could be
modeled by allowing in a graph grammar morphism a partial function among
productions�

References

��� A� Corradini� H� Ehrig� M� L�owe� U� Montanari� and J� Padberg� Typed graph

grammars and their adjunction with categories of derivations� submitted for
publication�

�	� A� Corradini� U� Montanari� and F� Rossi� Graph processes� to appear in
Fundamenta Informaticae� �����

�
� J�A� Goguen� A categorical manifesto� Math Struc Comput Sci � �������

��� H� Ehrig and R� Bardohl� Speci�cation techniques using dynamic abstract data

types and application to shipping software� Proc� of the International Workshop
on Advanced Software Technology� ����� ������

��� H� Ehrig� Introduction to the algebraic theory of graph grammars� in V� Claus�
H� Ehrig� and G� Rozenberg �Eds�� Proceedigs of the �st International Workshop

on Graph Grammars and Their Application to Computer Science and Biology�
Lecture Notes in Computer Science �
� ����� ����

�� M� Kor��Graph�interpreted graph transformations for concurrent object�oriented

systems� submitted for publication�

��� M� L�owe� Algebraic approach to single�pushout graph transformation� Theoret
Comput Sci ��� ����
� ����		��

��� J� Meseguer and U� Montanari� Petri nets are monoids� Information and

Computation� �� ������ ��������

��

