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Event Structure Semantics for Dynamic Graph Grammars

Roberto Bruni1, Hernán Melgratti2, and Ugo Montanari1

1 Dipartimento di Informatica, Università di Pisa, Italia
2IMT Lucca Institute for Advance Studies, Italia.

Abstract: Dynamic graph grammars (DGGs) are a reflexive extension of Graph
Grammars that have been introduced to represent mobile reflexive systems and cal-
culi at a convenient level of abstraction. Persistent graph grammars (PGGs) are a
class of graph grammars that admits a fully satisfactory concurrent semantics thanks
to the fact that all so-called asymmetric conflicts (between items that are read by
some productions and consumed by other) are avoided. In this paper we introduce
a slight variant of DGGs, called persistent dynamic graph grammars (PDGGs), that
can be encoded in PGGs preserving concurrency. Finally, PDGGs are exploited to
define a concurrent semantics for the Join calculus enriched with persistent messag-
ing (if preferred, the latter can be naively seen as dynamic nets with read arcs).

Keywords: Dynamic graph grammars, Event structures, Join calculus

1 Introduction

Petri nets and Graph Transformation Systems (GTSs) are two well-known models for concurrent
systems. Petri nets, conceptually simpler, had became a reference model for experimenting with
and developing new semantic approaches to concurrency, notably nonsequential processes, un-
folding constructions, event structures and algebraic models. GTSs provide a more sophisticated
and expressive framework for handling resource types, distribution, access control.

The close analogy between the two models neatly emerges when viewing Petri nets as par-
ticular GTSs over discrete typed graphs: places form the nodes of the type graph, markings are
typed graphs (whose nodes model tokens) and transitions are productions. This correspondence
has facilitated the mutual transfer of concepts and techniques, like the development of process
and unfolding semantics for GTSs obtained in [Bal00] by extending the chain of coreflections
defined for Petri nets [NPW81] to graph grammars. However, general Double Pushout (DPO)
grammars require a much more sophisticated notion of events, called inhibitor event structures
and the adjunction between unfolding and event structures breaks down to a functorial construc-
tion Eg in just one direction. A recent result [BCMR07] re-established the missing link for the
Single Pushout (SPO) approach, by defining an adjunction Ns a Es between the category of
semi-weighted SPO occurrence grammars and the category of the so-called asymmetric event
structures. The category of prime algebraic domains is equivalent to the category of prime event
structures (PES), thus all constructions can ultimately lead to PES, that offers a reference deno-
tational model of true concurrency. This is summarized in the three upper rows of Figure 1.

From the point of view of concurrency, there are two interesting extensions of Petri nets that
have been studied separately: (1) read arcs and (2) mobility. The first allow for multiple, concur-
rent read-accesses to resources, which is a very common situation in e.g. databases transactions,
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Figure 1: A recollection of event structure semantics.

concurrent constraint programming, and asynchronous systems. The second accounts for dy-
namic changes in the topology of the net, like deploying new places and transitions, that can
occur in highly dynamic environments like global computing. In the literature, Petri net seman-
tics have been extended to cope with read arcs, while the mobile extension has not received yet
a fully satisfactory assessment (some preliminary investigation is in [BM06b]).

Exploiting the analogy between nets and GTSs, here we first introduce persistent dynamic
graph grammars (PDGGs) as a suitable generalization of mobile nets with read arcs by combin-
ing dynamic graph grammars (DGGs) [BM06a] and persistent productions [BMM06]. Then we
are able to equip PDGGs with a nice event structure semantics by exploiting: (i) the encoding
of DGG in ordinary graph grammars given in [BM06a] and (ii) the coreflective event structure
semantics for persistent graph grammars (PGGs) given in [BMM06]). In DGGs, the applica-
tion of a production can release fresh types and fresh productions. The encoding in [BM06a]
enriches configurations with additional run-time typing information for the dynamically gener-
ated structure. We slightly refine it so to map PDGGs to PGGs and then show that it preserves
concurrency. The main theorem of [BMM06] has shown that the construction of the prime event
structure associated to a PGG is expressed by a chain of coreflections (see the bottom row in Fig-
ure 1), and since PGGs are node preserving, the constructions under DPO and SPO approaches
coincide. By combining all results, we obtain a concurrent semantics for PDGGs.

As a case study we present a version of the Join calculus with persistent messages, which
emerges as a rather elegant way of combining nets, read arcs, and mobility in a process calculus.
In fact, it is well-known that dynamic nets are in one-to-one correspondence with processes of
the Join calculus [BS01], and we propose persistent messages as a disciplined mean to introduce
reading primitives for multiple concurrent accesses to resources.

Structure of the paper: Section 2 recalls some important preliminaries about persistent graph
grammars, and dynamic graph grammars. Section 3 introduces PDGGs and their (concurrency-
preserving) encoding in PGGs. Section 4 describes PJoin and equips it with a concurrent seman-
tics via encoding PJoin processes in PDGGs. Some concluding remarks are in Section 5.
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Figure 2: A DPO direct derivation.

2 Background

2.1 Persistent Graph Grammars

A (directed) graph is a tuple G = 〈NG,EG,sG, tG〉, where NG is a set of nodes, EG is a set of edges
(or arcs), and sG, tG : EG→NG are the source and target functions. We shall omit subscripts when
obvious from the context. A graph morphism f : G→G′ is a couple f = 〈 fN : N→ N′, fE : E→
E ′〉 such that: s′ ◦ fE = fN ◦ s and t ′ ◦ fE = fN ◦ t.

Given a graph of types T , a T -typed graph is a pair 〈|G|,τG〉, where |G| is the underlying
graph and τG : |G| → T is a total morphism. A morphism between T -typed graphs f : G1→ G2
is a graph morphisms f : |G1| → |G2| such that τG1 = τG2 ◦ f . The category of T -typed graphs
and their morphisms is denoted by T -Graph. Since we work only with typed notions, we will
usually omit the qualification “typed”, and we will not indicate explicitly the typing morphisms.

In GGs the graph |G| defines the configuration of the system and its items (nodes and edges)
model resources, while τG defines the typing of the resources. Hence, the underlying graph |G|
evolves dynamically, while the type graph T is statically fixed and cannot change at run-time.

The key notion to glue graphs together is that of a categorical pushout. Roughly, a pushout
pastes two graphs by injecting them in a larger graph that is (isomorphic to) their disjoint union
modulo the collapsing of some common part. We recall that a span is a pair (b,c) of morphisms
b : A→ B and c : A→ C. A pushout of the span (b,c) is then an object D together with two
(co-final) morphisms f : B→ D and g : C→ D such that: (i) f ◦ b = g ◦ c and (ii) for any other
choice of f ′ : B→D′ and g′ : C→D′ s.t. f ′ ◦b = g′ ◦c there is a unique d : D→D′ s.t. f ′ = d ◦ f
and g′ = d ◦g. If the pushout is defined, then c and g form the pushout complement of 〈b, f 〉.

Definition 1 (DPO graph grammar) A (T -typed graph) DPO production p : (L l← K r→ R) is a
span of injective graph morphisms l : K→ L and r : K→ R. The T -typed graphs L, K, and R are
called the left-hand side, the interface, and the right-hand side of the production, respectively.
The production is called consuming if the morphism l : K→ L is not surjective.

A (T -typed) DPO graph grammar G is a tuple 〈T,Gin,P〉, where Gin is the initial (T -typed)
graph, P is a set of DPO productions.

Given a graph G, a production p : (L l← K r→ R), and a match m : L→ G, a direct derivation
δ from G to H using p (based on m) exists, written δ : G⇒p H, if and only if the diagram in
Figure 2 can be constructed, where both squares are pushouts in T -Graph: (1) the rewriting step
removes from the graph G the items m(L− l(K)), yielding the graph D (with k,b as a pushout
complement of 〈m, l〉); (2) then, fresh copies of the items in R− r(K) are added to D yielding
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H (as a pushout of (k,r)). The interface K specifies both what is preserved and how fresh items
must be glued to the existing part. The existence of the pushout complement of 〈m, l〉 is subject
to the satisfaction of the following gluing conditions [CMR+97]:

• identification condition: ∀x,y ∈ L if x 6= y and m(x) = m(y) then x,y ∈ l(K);

• dangling condition: no arc in G\m(L) should be incident to a node in m(L\ l(K)).

The identification condition is satisfied by valid matches: a match is not valid if it requires a
single item to be consumed twice, or to be both consumed and preserved.

A derivation is a sequence γ = {δi : Gi−1⇒pi−1 Gi}i∈{1,...,n} of direct derivations.
In what follows we will focus on semi-weighted GGs that enforce disambiguation in the se-

mantics by preventing the generation of “equivalent” resources carrying the same history. A
graph grammar G = 〈T,Gin,P〉 is semi-weighted if Gin is injectively typed and the target of every
production p ∈ P is injective.

In [BMM06], we have introduced a particular class of Graph Grammars, called Persistent
Graph Grammars (PGGs), which allow us to obtain a PES via a chain of coreflections. The
remaining of this section is devoted to summarise PGGs and their event structure semantics.

A type graph T is persistent if its edges are partitioned in two subsets: E+
T of persistent edges

and E−T of removable edges. In the following we assume a persistent type graph T is given.
Given a T -typed graph G, we denote by E+

G and E−G the set of edges mapped respectively to
persistent edges and to removable edges of T .

Definition 2 (Persistent graph grammar) A production p : (L l← K r→ R) is persistent if:

• node persistence: NL = l(NK) (i.e., nodes are never deleted);

• removal of removable arcs: E−K = /0 (i.e., all matched removable arcs are deleted);

• preservation of persistent arcs: E+
L = l(E+

K ) (i.e., all persistent arcs are preserved).

A (T -typed, DPO) graph grammar G is persistent if all its productions are consuming, semi-
weighted and persistent.

Theorem 1 (cfr. [BMM06]) The construction of the prime event structure associated to a per-
sistent graph grammar is expressed by the chain of coreflections in the bottom row of Figure 1.

Remark 1 The Single Pushout approach (SPO) offers an alternative to DPO. A (T -typed) SPO
production is an injective partial graph morphism q : L � R (without loss of generality, assume
that q is just the partial inclusion L∩R ⊆ R). The key difference w.r.t. the DPO approach is
that in SPO there is no dangling condition preventing a rule to be applied: when a node is
deleted by the application of a rule, then all dangling edges are also deleted as some kind of
side-effect. However, in the special case of node preserving rules, the effect of SPO and DPO
is very close: there is an isomorphism between SPO and DPO node preserving grammars that
maps each production q : L � R to pq : (L←↩ dom(q) ↪→ R). The isomorphism makes the PES
construction independent from the approach [BMM06].
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Remark 2 For PGGs, the identification condition reduces to require the matching to be injective
over removable arcs.

2.2 Dynamic Graph Grammars

In this section we describe Dynamic Graph Grammars (DGGs) and their encoding into graph
grammars as presented in [BM06a]. DGGs are graph grammars that dynamically modifies their
graph of types and their set of productions. A T -typed dynamic production takes the form:
p : (LT

l← KT
r→ GT ′) where GT ′ is a suitable (T ′-typed) dynamic graph grammar. A dynamic

graph grammar can contain any number of such productions. In order to provide the formal
definition we need the following notion of graph retyping.

Definition 3 (Graph Retyping) Given a T -typed graph G = 〈|G|,τG〉 and a morphism σ : T →
T ′ we denote by σ ·G the T ′-typed graph σ ·G = 〈|G|,σ◦ τG〉.

The set of DGGs is formally defined as follows:

Definition 4 (Dynamic Graph Grammars) The domain of dynamic graph grammars can be
expressed as the least set DGG satisfying the equation:

DGG = {(T,Gin,P) | Gin ∈GraphT ∧
∀p : (LT

l← KT
r→ GTp) ∈ P.( LT ,KT ∈GraphT ∧ T ⊂ Tp ∧GTp = (Tp,GTp ,Pp) ∈ DGG ) }

where GraphT is the set of T -typed graphs and r : ι ·KT →GTp is a morphism between Tp-typed
graphs, where ι : T ↪→ Tp denotes the obvious sub-graph injection.

Any element G = (T,Gin,P) ∈ DGG is called a dynamic graph grammar.

When P = /0, then the grammar is roughly a T -typed graph, which is statically fixed and cannot
change. Such grammars are called static. A production p is static if its right-hand side GTp is a
static grammar and Tp = T . If all productions are static, then the grammar is called shallow and
is essentially an ordinary GGs: the application of any production can neither change the type
graph nor spawn new rules.

Example 1 Figures 3 and 4 introduce a small dynamic graph grammar. Let Ta be the singleton
type graph with just one node a. Let Tg ⊃ Ta consisting of nodes a and b and two edges f : a→ b,
and g : b→ b.

Take the Ta-typed dynamic grammar Ga with the dynamic production p in Figure 3. For
simplicity, we take the inclusions as legs of the span and draw the typing (dotted lines) only
once for each item. The left-hand side of p consists of a Ta-typed graph with just one node n1,
which is preserved by the context, and the right-hand side spawns a shallow Tg-typed grammar
Gp whose initial graph has, beside n1, one additional node n2 and one arc h. The grammar Gp

itself has just one static production q ∈ Pp, illustrated in Figure 4: the left-hand side is a graph
with three nodes m0 and m1,m2, which are all preserved, and two arcs h1,h2, which are deleted,
and the right-hand side spawns the static Tg-typed grammar Gq (i.e., a graph) with one additional
arc l from m1 to m2 and type g.
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The dynamics of DGGs relies on a notion of retyping, which can be used to generate fresh
items in the type graph. In the following, when considering type graph constructions, we assume
that a standard choice of pushout objects satisfying the following requirements is available: Let
T ⊂ T ′′ and σ : T → T ′ injective, then we denote by Tσ,T ′′ the pushout object of the inclusion
ι : T ↪→ T ′′ and σ such that T ′ embeds in Tσ,T ′′ via set-theoretical inclusion ισ,T ′′ , while T ′′

embeds via an injection ρσ,T ′′ (see Figure 5(a)) that renames items in T ′′ \T with fresh names.
When σ is the inclusion T ⊆ T ′ we replace the subscripting (−)σ,T ′′ with (−)T ′,T ′′ .

Definition 5 (Fresh Graph Retyping) Let T ⊂ T ′′. Given a T ′′-typed graph G = 〈|G|,τG〉 and
an injection σ : T → T ′ we let σ ·G = 〈|G|,ρσ,T ′′ ◦ τG〉.

Definition 6 (Dynamic Retyping) Given a T -typed DGG G = (T,Gin,P) and an injective mor-
phism σ : T → T ′ we denote by σ · G the T ′-typed grammar defined recursively by letting
σ ·G = (T ′,σ ·Gin,σ ·P), with σ ·P = {σ · p | p∈P}where σ · p : (σ ·LT

l←σ ·KT
r→ ρσ,Tp ·GTp) for

any p : (LT
l← KT

r→ GTp). (Note that ρσ,Tp ·GTp is a Tσ,Tp-typed grammar and σ · p is a T ′-typed
production.)

In DGGs, productions are nested inside (the right-hand sides of) other productions, but only
top-level productions can be applied, by finding a matching of their left-hand sides into the
initial graph. When such a production p is applied, then fresh instances of the productions Pp,
nested one level below p, become available at the top-level, and can be unwound themselves in
successive steps. Given a DGG G = (T,Gin,P), a production p : (LT

l← KT
r→ GTp) ∈ P with

GTp = (Tp,GTp ,Pp), and a matching m : LT →Gin that satisfies the gluing conditions, we proceed
as follows (see Figure 5(b)):
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Figure 5: The dynamics of DGGs

• We build the pushout complement of 〈m, l〉, obtaining a T -typed graph D with morphisms
k : KT → D and b : D→ Gin.

• We build the standard type graph TT,Tp associated with σ = idT : T → T and ιp : T ↪→ Tp.
Note that ιT,Tp = ρT,Tp ◦ιp. Fresh items of the underlying graph produced by the application
of p must be typed over TT,Tp .

• We build the retyped graphs D′ = ιT,Tp ·D and K′ = ιT,Tp ·KT and take the morphism
k′ : K′→ D′ induced by k.

• We build the retyped DGG G′p = ρT,Tp · GTp = (TT,Tp ,G
′
p,P
′) with G′p = ρT,Tp ·GTp and

P′ = ρT,Tp ·Pp and take the morphism r′ : K′→ G′p induced by r : ιp ·KT → GTp .

• The pushout of k′ and r′ gives us a TT,Tp-typed graph H with d : D′→ H and h : G′p→ H.

• Finally, we build the DGG G′ = (TT,Tp ,H,P′∪ ιT,Tp ·P).

When all the above is applicable, we say that there is a direct dynamic derivation α from G

to G′ using p (based on m) and write α : G⇒p G′. A dynamic derivation is a sequence of direct
dynamic derivations starting from the initial graph.

Example 2 For the DGG introduced in Example 1, assume the initial graph of Ga is a discrete
graph G0 with one node k typed over a. The application of the production p (with the obvious
matching from n1 to k) spawns a fresh instance G1

p of Gp: the type graph becomes Tg1 and the
underlying graph becomes G1 ⊃ G0 with nodes k (typed a) and k1 (typed b1) connected by an
arc h1 (typed f1). Moreover, a production q1 is now available beside p. A second application of
p spawns another fresh instance G2

p of Gp: the type graph becomes Tg1 ∪Tg2 and the underlying
graph becomes G2 ⊃ G1 with a new node k2 and an arc h2 : k→ k2. Again, a production q2 is
now available. Similarly, p can be applied again and again (see Figure 6). However, no suitable
matching can ever be found for the application of q1, q2, etc. In fact, it is not possible to find two
arcs with the same type, say fi, and the identification condition prevents a non-injective matching
of the two arcs in the left-hand side of qi.
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Note that the type graphs syntactically appearing in G = (T,Gin,P) ∈ DGG form a finite tree
T(G) rooted in T , with parent relation given by immediate subsetting (i.e., Ti is parent of Tj iff
Ti ⊂ Tj and no Tk appears in G such that Ti ⊂ Tk ⊂ Tj) and where leaves are associated with
static grammars. We remark that each type graph Tp ⊃ T extends T with local declarations
Tp \T , whose scope is bounded by the specific production p. For simplicity, but without loss of
generality, we assume that all additional items introduced by different type graphs inside G are
named differently.

Definition 7 (Flat Type Graph) We let T(G) =
S

Ti∈T(G) Ti denote the overall flat type graph of
G, and let ιTi : Ti ↪→ T(G) denote the obvious sub-graph inclusion. Note that, by the structuring
of T(G), the type graph T(G) is just the union of all the leaves of T(G).

Similarly, all nested productions in G form the tree P(G) rooted in P with parent relation given

by immediate inclusion (i.e., the set of productions Pi is the parent of Pp iff p : (LT
l← KT

r→
(Tp,GTp ,Pp)) ∈ Pi).

Definition 8 (Flattening) Given a T -typed dynamic production p : (LT
l← KT

r→ GTp) with

GTp = (Tp,GTp ,Pp) we say that the ordinary T(G)-typed production flat(p) : (ιT ·LT
l← ιT ·KT

r→
ιTp ·GTp) is the flattening of p. We let P(G) =

S
Pi∈P(G){flat(p) | p ∈ Pi} denote the overall set of

flat productions of G. The T(G)-typed shallow grammar F(G) = (T(G), ιT ·Gin,P(G)) is called
the flattening of G.

2.2.1 Encoding DGG into graph grammars

In what follows we provide an overview of the encoding of DGG into GGs. A detailed presenta-
tion can be found in [BM06a].

The encoding of a DGG G relies on the definition of a unique type graph expressive enough
for distinguishing all the types generated dynamically by G. Such structure is called the refined
type graph and it is intuitively described as follows. Consider a chain of types T describing the
evolution of the type graph of G, i.e., a list of graph ordered by inclusions, e.g., T1⊂ T2⊂ . . .⊂ Tn,
then the evolution of the type graph is given by the refined version {[Tn]}T of the last graph in the
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Figure 7: A refined T -Typed Graph.

list. Informally, any item (i.e., node or arc) of Tn is mapped to a node in {[Tn]}T . Every graph Ti

in the chain T is also represented in {[Tn]}T by a node nTi . Moreover, any node w corresponding
to an item k of Tn has an arc tw to the node nTi if Ti is the minimal type in T that includes k. We
call Ti the type of k in T. Formally, for any k ∈ Tn, the type of k is T(k) = Ti if k ∈ Ti\Ti−1.

Definition 9 (Refined type graph) Given a type graph T and a chain of types T = T1 ⊂ . . .⊂ Tn,
with Tn = T , the refined type graph is {[T ]}T = 〈NR,ER,sR, tR〉, where:

• NR = NT ∪ET ∪{nTi |Ti ∈ T} where nTi are fresh names, i.e., the nodes of {[T ]}T are the
nodes and arcs of T plus one extra node for any type in T;

• ER = {e0,e1|e ∈ ET}∪{tw|w ∈ NT ∪ET}∪{si,i+1|0 < i ≤ n− 1} where all edge names
are fresh. Source and target functions are defined s.t. the following holds:

– e0 : sT (e)→ e and e1 : e→ tT (e), i.e., e0 connects the node e ∈ NR to its original
source in T while e1 connects e to its target;

– tw : w→ nT(w), i.e., tw connects w to the node representing its type;
– si,i+1 : nTi → nTi+1 denotes the inclusion of types Ti ⊂ Ti+1.

Example 3 Consider the type graph Tg depicted in the bottom part of the Figure 7(a). The
refined type graph for the chain Ta = {a} ⊂ Tg = Ta ∪{ f ,b,g} is shown at the bottom of Fig-
ure 7(b). The original arc f (resp. g) of Tg is represented by the homonymous “squared” node f
(resp. g) and the pair of fresh arcs f0 and f1 (resp. g0 and g1). The types Ta and Tg are represented
by the fresh nodes nTa and nTg , while the inclusion relation Ta ⊂ Tg is denoted by the arc s1,2.
Finally, for any item w, tw connects w to its type node.

Then, a T -typed graph is also mapped to a graph typed over the refined version of its type T .

Definition 10 (Refined T -Typed Graph) Given a T-typed graph G = 〈|G|,τG〉 and a chain T =
T1 ⊂ . . .⊂ Tn = T , the {[T ]}T-typed graph {[G]}T = 〈|H|,τH〉 is defined as:
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• NH = NG∪EG∪{nTi |Ti ∈ T}, i.e., NH has all items of G plus nodes denoting types;

• EH = {e0,e1|e ∈ EG}∪{tw|w ∈ NG∪EG}∪{si,i+1|0 < i < n−1}, where:

– e0 : sT (e)→ e and e1 : e→ tT (e);
– tw : w→ nT(τG(w)), i.e., tw connects w to the node representing its type in T, which

is obtained by using the typing morphism τG(w);
– si,i+1 : nTi → nTi+1 , for the inclusion of types.

• The typing morphism τH is defined as follows

τH(k) = τG(k) if k ∈ G τH(nTi) = nTi

τH(ei) = τG(e)i i = 0,1 τH(tw) = tτG(w) τH(si,i+1) = si,i+1

the nodes nTi and the arcs tw and si,i+1 of a refined type graph (resp., a refined T -typed graph)
are referred to as the location of the type graph (respectively, location of the graph).

Example 4 Consider the Tg-typed graph G shown in Figure 7(a). The refined version of G for
the chain Ta = {a} ⊂ Tg = Ta∪{ f ,b,g} is shown in Figure 7(b) (we omit the representation of
the obvious typing of arcs). The type graph corresponds to the refined version of Tg explained in
Example 3.

Definition 11 (Refined T -Typed DGG) Let G = (T,Gin,P) be a DGG, and T = T1 ⊂ . . .⊂ Tn,
with Tn = T be a chain of types. Then, the refined version of G is {[G]}T =({[T ]}T,{[Gin]}T,{[P]}T),
where {[P]}T = {{[p]}T|p∈P} is obtained by encoding any production p : (L l←K r→ (T ′,G′in,P

′))
in P as follows:

{[p]}T : ({[L]}T
l′←{[K]}T

r′→{[(T ′,G′in,P′)]}T⊂T ′) (1)

where morphisms l′ and r′ are the obvious extensions of l and r with the identity over the location
of the graphs.

Example 5 Consider the production p in Figure 3. Its refined version is shown in Figure 8.
Note that the type graphs correspond to the refined versions of the original type graphs, while
the left-hand-side, the interface, and the right-hand-side correspond to the refined version of the
original ones. In particular, note that the left-hand-side is typed over the refined version of Ta,
while the right-hand-side grammar is typed over the refined version of Tg. Moreover, the new
production {[q]}Ta⊂Tg created by the reduction correspond to the refined versions of the original
one q (for clarity we do not draw the typing morphism, which is the obvious one).

The refined version of a grammar G recreates the overall flat type graph T(G) as static tree
of types (see Definition 7). Any production p : (LT←KT→GT ′) is encoded by considering the
path T of T(G) leading from the root of T(G) to T . Moreover, since previous definitions can
be straightforwardly extended to consider the whole tree instead of a path, we will use {[ ]}T to
denote also the refined versions obtained by considering the tree of types T.

Definition 12 (Encoding) Let G = 〈T,Gin,P〉 be a DGG. Then, the equivalent graph grammar
JGK is defined as JGK = F({[G]}T ), where F( ) stands for flattening (see Definition 8).
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Figure 8: A refined production p.

3 Persistent Dynamic Graph Grammars

As done for GGs, we define the class of persistent DGGs by restricting the way in which re-
sources are used. In particular, we assume that any type graph T is persistent if its edges are
partitioned in two subsets: E+

T of persistent edges and E−T of removable edges. In the following
assume any type graph T being persistent. Given a T -typed graph G, we denote by E+

G and E−G
the set of edges mapped respectively to persistent edges and to removable edges of T .

Definition 13 (Persistent DGG) A DGG G is persistent if all its productions are consuming,
semi-weighted and persistent, where a production p : (LT

l← KT
r→ GTp) is persistent if all the

following conditions hold:

• node persistence: NL = l(NK);

• removal of removable arcs: E−K = /0;

• preservation of persistent arcs: E+
L = l(E+

K );
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• dynamic persistency: GTp is persistent.

Note that the three first conditions are the same as those in Definition 2. The fourth one
requires persistency to hold recursively in the right-hand side of each production.

3.1 Encoding a PDGG into a PGG

In this section we show that by starting from a PDGG we can obtain a PGG, and hence, we can
indirectly have the event structure semantics of PDGGs. The encoding is defined analogously
to the original encoding of DGGs into GGs overviewed in Section 2.2.1. The only difference
here is when encoding a production. Originally, a production p : L l← K r→ GTp is encoded as in
Equation (1). Note that for any edge e in L, the encoding generates one node e in {[L]}T , and
three edges e0,e1 and te. Nevertheless, when e is not in the image of l (that is, e is a removable
arc), the node e in {[L]}T is not preserved by {[p]}T . Therefore, we slightly modify the encoding
of productions by requiring that for any removable arc e in L, the production {[p]}T preserves the
node encoding e to guarantee node persistency. Formally,

{[p]}T : ({[L]}T
l′←{[K]}T ]G r′→{[(T ′,G′in,P′)]}T⊂T ′ ]G) (2)

where G is the subgraph of {[L]}T containing the nodes encoding the removable arcs of L (i.e.,
e ∈ E−L ) and the nodes encoding the type of removable arcs (i.e., nT(τG(e)) for any e ∈ E−L ).
Moreover, we consider l′ and r′ as the identity over elements in G.

Lemma 1 J K preserves behaviour, persistency, consumption and semi-weightedness.

Proof. (Sketch)
Behaviour: The proof follows as for the original encoding of DGGs in GGs in [BM06a], by

showing that any reduction step that applies a production p in the original grammar corresponds
to a reduction step on the encoded grammar obtained by applying the encoded version of the
original production p.

Persistency: Moreover, {[p]}T is persistent when p is such because nodes are now persistent,
and for edges we have that:

• Edges e0, e1, and te are removable if e is removable. Otherwise they are preserved.

• Type inclusion edges si,i+1 are preserved.

Semi-weighted: (i) Since the initial graph is injectively typed and the encoding does not add
multiple elements with the same type, then the initial graph of the encoded grammar is injectively
typed. (ii) Similarly, since productions are injective, the encoding produces injective productions.

Consumption: The proof follows by noting that the encoding preserves the name of edges, but
the arcs connecting the name of an edge to its attachment points are actually consumed. Hence,
if p is a rule of a PDGG, then it is consuming, and hence there is at least one deleted edge.
Therefore the encoded form of p consumes at least two arcs.

Hence, this slightly variation of the encoding gives an equivalent PGG for any PDGG.
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Lemma 2 The encoding J K preserves concurrency.

Proof. (Sketch) We prove that the encoding J K preserves the shift equivalence. This follows
from the fact that for any two productions p and q that are sequentially independent (i.e., they
are not in conflict) in a PDGG G, then the corresponding rules in JGK are also sequentially in-
dependent. This is proved by showing that the information added by the encoding of p and q
corresponds to the location of the types and the names of edges, which will be always preserved
by both generated rules.

4 Persistent Join

This section illustrates the use of PDGG for modelling a version of the Join calculus enriched
with persistent messages, called Persistent Join (PJoin). Persistent messages are guaranteed not
to be consumed after being produced [PSVV06], and hence are naturally useful for modelling
situations like persistent, monotonic global stores such as in concurrent constraint programming.
The syntax of PJoin relies on an infinite set C of names for consumable messages ranged over by
c,d, . . ., and a set P of names for persistent messages ranged over by p,q, . . .. We write x,y,z, . . .
to range over C∪P. The syntax of PJoin is given by the grammar

P ::= 0 | x〈y〉 | def D in P | P|Q D ::= J .P | D∧D J ::= x〈y〉| J|J

A basic form of processes is an asynchronous emission of a message y on channel x, which
is written x〈y〉. The input is performed by local definitions x1〈y1〉| . . . |xn〈yn〉 . P that is enabled
when every channel xi contains a message (in this case the names yi denote the formal parameters
of the input to be substituted in P with the actual content of the messages).

Example 6 The following process illustrates the definition of a constant that can be read con-
currently, and two concurrent accesses to it. We indicate persistent names by underlining their
definitions.

P = def read〈k〉 |val〈v〉. k〈v〉 in val〈c〉 |read〈k1〉 |read〈k2〉

The definition read〈k〉|val〈v〉. k〈v〉 introduces two private channels: read and val. The mes-
sage val〈c〉 to the persistent channel val sets the actual value c of the constant, while the messages
read〈k1〉 and read〈k2〉 request the value of the constant.

The occurrences of x and y in the message x〈y〉 are free. Differently, x and y occur bound in
P = def x〈z〉|y〈z′〉.P1 in P2 by the local definition D = x〈z〉|y〈z′〉.P1. Of course, the parameters
z and z′ occur bound in D, but not in P2. The sets of free and bound names of P are written
respectively f n(P) and bn(P). Moreover, x and y are the defined names of D (written dn(D)).
We denote with cbn(P) and pbn(P) the sets of consumable and persistent bound names of P.
Similarly, cdn(D) and pdn(D) are the consumable and persistent defined names of D. We write
J1|J2 meaning that all defined names in J1 are consumable while all defined names in J2 are
persistent.
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The semantics of the PJoin is given with the reflexive chemical abstract machine model [FG96].
In this model a solution is roughly a multiset of active definitions J .P and messages x〈u〉 (sepa-
rated by comma). Moves are distinguished between structural �, which heat or cool processes,
and reductions →, which are the basic computational steps. The multiset rewriting rules for
PJoin are as follows:

0 �
P | Q � P,Q

D ∧ E � D,E
def D in P � Dσdn(D), Pσdn(D) (range(σdn(D)) globally fresh)

J1|J2 .P, (J1|J2)σ → J1|J2 .P, J2σ, Pσ

Structural moves are identical to the Join calculus, and allow for the rearrangement of terms
inside a solution. In particular, a term denoting a process with local definitions can be represented
by two terms (one for the definitions and other for the process) only when the locally defined
ports are renamed by fresh names (this rule stands for the dynamic generation of new names).
The only difference between Join and PJoin is in the unique reduction rule that can be applied
when the solution contains a reaction J1|J2 .P and an instance (J1|J2)σ of the Join pattern J1|J2:
when such a match is found, the consumable messages J1σ are removed from the solution, while
persistent messages J2σ are kept. Moreover, a suitable instance of the guarded process Pσ is
activated. We require σ to substitute persistent (resp. consumable) names by persistent (resp.
consumable) names. We will write P 7→ P′ for P �∗ Q→ Q′ �∗ P′.

Example 7 The process introduced in Example 6 behaves as follows

P = def read〈k〉 |val〈v〉. k〈v〉 in val〈c〉 |read〈k1〉 |read〈k2〉
� read〈k〉 |val〈v〉. k〈v〉 , val〈c〉 |read〈k1〉 |read〈k2〉
�∗ read〈k〉 |val〈v〉. k〈v〉 , val〈c〉 , read〈k1〉 , read〈k2〉

At this point the system may reduce in two different ways. One alternative is the firing of the
unique reaction read〈k〉 |val〈v〉. k〈v〉 with the messages val〈c〉 and read〈k1〉, and by producing
the message k1〈c〉, i.e.,

P 7→ read〈k〉 |val〈v〉. k〈v〉 , val〈c〉 , k1〈c〉 , read〈k2〉.

Note that val〈c〉 is preserved while read〈k1〉 is consumed. Similarly, the system may evolve
by firing the same reaction with the messages val〈c〉 and read〈k2〉. In this way,

P 7→ read〈k〉 |val〈v〉. k〈v〉 , val〈c〉 , k2〈c〉 , read〈k1〉.

We remark that such reductions can be computed concurrently since the message val〈c〉 in-
volved in both reductions is always preserved, i.e.,

Differently, consider a variant of P in which val〈v〉 is a consumable channel.

P′ = def read〈k〉 |val〈v〉. k〈v〉 |val〈v〉 in val〈c〉 |read〈k1〉 |read〈k2〉

In this case, the firing of the reaction read〈k〉 |val〈v〉.k〈v〉 |val〈v〉 does not preserve the origi-
nal message on the port val. Instead, it consumes the message and produces a new one. Hence,
the accesses read〈k1〉 and read〈k2〉 cannot be served concurrently, but only in a serialised way.
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Example 8 This example illustrates the dynamic features of PJoin which are exploited for
creating constants. In particular, the following definition is used for creating fresh constants that
can be read concurrently.

D = new〈w〉 . def read〈k〉 |val〈v〉. k〈v〉 in val〈c〉 |w〈read〉

The idea is that any message to the port new will create a new constant with value c, which
will be read by accessing a fresh port read. (For simplicity, we create all constants with the same
value c, but it would be possible to write a slightly more complex process that allows to set an
arbitrary initial value). Then, the following process

Q = def D in new〈k1〉 |new〈k2〉

may be rewritten as follows

Q �∗ D, new〈k1〉,new〈k2〉

By firing D with new〈k1〉, we obtain

Q 7→ D, def read〈k〉 |val〈v〉. k〈v〉 in val〈c〉 |k1〈read〉, new〈k2〉
�∗ D, read〈k〉 |val〈v〉. k〈v〉, val〈c〉, k1〈read〉, new〈k2〉

By firing D again with new〈k2〉, we obtain

D, read〈k〉 |val〈v〉. k〈v〉, val〈c〉, k1〈read〉, new〈k2〉
→ D, read〈k〉 |val〈v〉. k〈v〉, val〈c〉, k1〈read〉, def read〈k〉 |val〈v〉. k〈v〉 in val〈c〉 |k1〈read〉
�∗ D, read〈k〉 |val〈v〉. k〈v〉, val〈c〉, k1〈read〉,read′〈k〉, val′〈v〉. k〈v〉, val′〈c〉, k1〈read′〉

Note that the heating of the solution renames the ports read and val by the fresh names read′

and val′, which assures any firing of D to produce fresh instances of local names.

PJoin processes as DGGs. The encoding for PJoin is analogous to the encoding of Join pre-
sented in [BM06a]. For simplicity we assume definitions with different scopes not to share
defined names. Any process P is encoded as a DGG GP = 〈TP,Gin,Q〉. Generally speaking, a
channel x is encoded as a node nx but the fact that the channel is named x is denoted by an arc
x : nx→ nx. If node nx corresponds to x and ny to y, then a message x〈y〉 is represented with an
arc nx → ny. Any firing rule J . P will be encoded as a production. More formally, the initial
type graph TP is shown in Figure 9(a), where fn(P)∪bn(P) = {c1, . . . ,ck, p1, . . . , pl}. TP has two
nodes c and p standing respectively for consumable and persistent channels, four arcs mcc, mcp,
mpc, mpp for denoting different kinds of messages, where the subindexes indicate the type of
involved channels, one arc ci for each consumable name in fn(P)∪bn(P), and one arc p j for any
persistent name in fn(P)∪bn(P). We call the context of P the TP-typed graph CP with one node
cci and one arc ci : cci → cci for each consumable name ci ∈ fn(P)∪bn(P), and one node ppi and
one arc pi : ppi → ppi for each persistent name pi ∈ fn(P)∪ bn(P). Then, the initial graph Gin

and the set of productions Q of GP = 〈TP,Gin,Q〉 are defined by structural induction as follows:

• [P = 0]. Gin = CP is the empty graph and Q = /0.
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Figure 9: Join processes as Dynamic Graph Grammars.

• [P = x〈y〉]. The encoding of a message depends on the type of involved names. There are
four possibilities. If x is consumable and y persistent, then Gin = CP∪{mcp : cx→ py} is
the graph shown in Figure 9(b), with the typing morphism mapping cx into c, py into p,
and being the identity on the remaining arcs. Remaining cases are analogous. When x = y,
Gin = CP∪{mcc : nx→ nx} is as in Figure 9(c). In all cases Q = /0.

• [P = def J1 . P1 ∧ . . .∧ Jn . Pn in P′]. Let GP′ = 〈TP′ ,G′in,Q
′〉 be the encoding of P′, then

GP = 〈TP,CP∪G′in,Q
′∪

S
1≤i≤n{ri}〉, where TP ⊇ TP′ (because Ji . Pi may contribute free

names not present in P′) and each ri encodes Ji . Pi. Assuming GPi = 〈Ti,Gini ,Qi〉 and
the general shape for patterns Ji = c1〈d1〉| . . . |ck〈qk〉|p1〈d′1〉| . . . |pl〈q′l〉 (to expose all com-
binations of consumable and persistent names), then ri is shown in Figure 9(d), where
G′Pi

= 〈Ti ∪TP,G′ini
,Q′i〉 extends GPi over the type graph Ti ∪TP with G′ini

being the union
of Gini and the items preserved by the production, and with Q′i being the suitable retyping
of Qi. The self-loop arcs naming the nodes d j, d′j, q j, and q′j are not included in rule ri

because the actual name of formal parameters is not known a priori and it will be provided
by valid matchings. Moreover, the left-hand-side and the interface contain a node nyh and
an arc yh for any free name yh of Pi not bound in Ji. In this way the context of the initial
graph of GPi is bound to the names of the left-hand-side of the production. Note that the
production preserves all persistent messages, since the edges of type mpc and mpp are kept,
while consumable messages are removed, because edges of type mcc and mcp are deleted.

• [P = P1|P2]. Let GP1 = 〈T1,Gin1 ,Q1〉 and GP2 = 〈T2,Gin2 ,Q2〉 be the encoding of P1 and P2,
then the initial graph is the pushout object of the span CP∪Gin1 ←↩ CP ↪→CP∪Gin2 , and Q
is the union of Q1 and Q2 (upon production retyping over TP).

Given a PJoin process P, it might be the case that GP is not persistent. This may happen when
P yields non-consuming (e.g., containing a definition p〈x〉 . P, with p persistent) or non semi-
weighted (e.g., J . x〈y〉|x〈y〉) productions. However, such situations can be checked by a static
analysis of processes.
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In particular, processes considered in our examples yield persistent grammars.

Example 9 Consider the process Q introduced in Example 8, the PDGG encoding the behaviour
of Q is shown in Figure 10. The initial type graph is depicted in 10(a): (i) nodes p and c are the
types of persistent and consumable channels respectively, (ii) edges mcc, mcp, mpc and mpp are
the types of edges encoding messages, (iii) edges c, k1 and k2 are the free names of Q, and (iv)
edge new is the type of the unique defined name of Q.

Figure 10(b) shows the initial graph, which contains the nodes and edges corresponding to the
three free names of Q, i.e., c, k1 and k2, and the unique defined name new. Moreover, the initial
graph contains the edges m1

cc and m2
ccrepresenting the two initial messages new〈k1〉 and new〈k2〉.

The encoding of D is in Figure 10(c). The graph on the left-hand side requires a message on
port new (arrow mcc). Moreover, it contains the node cc and the edge c that matches the name c
occurring free in the guarded process of D. The names c and new act as binders in the right-hand
side of the production GPi , which is detailed in Figures 10(d), 10(e), and 10(f). The type graph of
GPi adds to the initial type graph (in Figure 10(a)) the edges describing the names read, w, and val
of the guarded process of D. The initial graph of GPi is shown in Figure 10(e), which encodes the
messages val〈c〉 and w〈read〉 of the guarded process of D. It is worth noting that the initial graph
contains also a new edge named w attached to the node cw. In this way, an existing channel is
associated with a new name, a kind of local alias for that channel. Finally, the unique production
of GPi is shown in Figure 10(f). For simplicity, the right-hand of the production shows only the
initial graph as we omit the type graph, which adds only the edges k : c→ c and v : c→ c. In this
case, the right-hand side is static, i.e., adds no productions.

The following result hold up to aliasing of names, i.e., by removing aliasing from grammars.

Proposition 1 For any PJoin process P we have:

• If P 7→ P′ using Ji .Pi, then ∃Q s.t. GP⇒pi GQ and Q �∗ P′;

• If GP⇒pi G′, then ∃P′ s.t. P 7→ P′ using Ji .Pi and G′ = GP′ .

When GP is persistent, we can combine the results discussed in Sections 2 and 3 to flatten the
PDGG GP into the PGG JGPK, and then take the PES semantics Ep(Up(JGPK)) (see Figure 1).

Example 10 The PDGG GP associated with the PJoin process P of Example 6 yields a PES with
just two concurrent events (say eread(k1) co eread(k2)). Differently, the PDGG GP′ associated with
P′ introduced in Example 7 would yield four events: e′1st(k1)

and e′1st(k2)
denoting respectively the

fact that the first served request is read〈k1〉 or read〈k2〉, and similarly e′2nd(k1)
and e′2nd(k2)

for the
second served request; where the causal and (immediate) conflict relations are shown below:

e′1st(k1) #

�

e′1st(k2)

�

e′2nd(k2)
e′2nd(k1)
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Figure 10: Join processes as Dynamic Graph Grammars.

5 Conclusions

In this paper we propose PDGGs as a convenient model for concurrent reflexive systems. In
fact PDGGs can be encoded in ordinary PGGs preserving concurrency, and PGGs admit a nice
prime event structures semantics defined via a chain of adjunctions. Moreover, the case study
of PJoin shows that PDGGs can allow for a more convenient representation of mobile calculi
w.r.t. PGGs as evident by comparing the encoding in Section 4 with the one of ordinary Join in
PGGs given in [BMM06]. In particular, here there is a more tight and neat connection between
concepts: rules as productions (and not hyperarcs as in [BMM06]), channels as types (partitioned
in persistent and consumable, with the behaviour defined by the corresponding productions) and
messages as resources (typed accordingly the subject and object names).
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