126 research outputs found

    The Underpinnings of Workload in Unmanned Vehicle Systems

    Get PDF
    This paper identifies and characterizes factors that contribute to operator workload in unmanned vehicle systems. Our objective is to provide a basis for developing models of workload for use in design and operation of complex human-machine systems. In 1986, Hart developed a foundational conceptual model of workload, which formed the basis for arguably the most widely used workload measurement techniquethe NASA Task Load Index. Since that time, however, there have been many advances in models and factor identification as well as workload control measures. Additionally, there is a need to further inventory and describe factors that contribute to human workload in light of technological advances, including automation and autonomy. Thus, we propose a conceptual framework for the workload construct and present a taxonomy of factors that can contribute to operator workload. These factors, referred to as workload drivers, are associated with a variety of system elements including the environment, task, equipment and operator. In addition, we discuss how workload moderators, such as automation and interface design, can be manipulated in order to influence operator workload. We contend that workload drivers, workload moderators, and the interactions among drivers and moderators all need to be accounted for when building complex, human-machine systems

    Visuo-spatial Abilities In Remote Perception: A Meta-analysis Of Empirical Work

    Get PDF
    Meta-analysis was used to investigate the relationship between visuo-spatial ability and performance in remote environments. In order to be included, each study needed to examine the relationship between the use of an ego-centric perspective and various dimensions of performance (i.e., identification, localization, navigation, and mission completion time). The moderator analysis investigated relationships involving: (a) visuo-spatial construct with an emphasis on Carroll’s (1993) visualization (VZ) factor; (b) performance outcome (i.e., identification, localization, navigation, and mission completion time); (c) autonomy to support mission performance; (d) task type (i.e., navigation vs. reconnaissance); and (e) experimental testbed (i.e., physical vs. virtual environments). The process of searching and screening for published and unpublished analyses identified 81 works of interest that were found to represent 50 unique datasets. 518 effects were extracted from these datasets for analyses. Analyses of aggregated effects (Hunter & Schmidt, 2004) found that visuo-spatial abilities were significantly associated with each construct, such that effect sizes ranged from weak (r = .235) to moderately strong (r = .371). For meta-regression (Borenstein, Hedges, Figgins, & Rothstein, 2009; Kalaian & Raudenbush, 1996; Tabachnick & Fidell, 2007), moderation by visuo-spatial construct (i.e., focusing on visualization) was consistently supported for all outcomes. For at least one of the outcomes, support was found for moderation by test, the reliability coefficient of a test, autonomy (i.e. to support identification, localization, and navigation), testbed (i.e., physical vs. virtual environment), intended domain of application, and gender. These findings illustrate that majority of what researchers refer to as “spatial ability” actually uses measures that load onto Carroll’s (1993) visualization (VZ) factor. The associations between this predictor and all performance outcomes were significant, but the significant iv variation across moderators highlight important issues for the design of unmanned systems and the external validity of findings across domains. For example, higher levels of autonomy for supporting navigation decreased the association between visualization (VZ) and performance. In contrast, higher levels of autonomy for supporting identification and localization increased the association between visualization (VZ) and performance. Furthermore, moderation by testbed, intended domain of application, and gender challenged the degree to which findings can be expected to generalize across domains and sets of participants

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers

    SPATIAL PERCEPTION AND ROBOT OPERATION: THE RELATIONSHIP BETWEEN VISUAL SPATIAL ABILITY AND PERFORMANCE UNDER DIRECT LINE OF SIGHT AND TELEOPERATION

    Get PDF
    This dissertation investigated the relationship between the spatial perception abilities of operators and robot operation under direct-line-of-sight and teleoperation viewing conditions. This study was an effort to determine if spatial ability testing may be a useful tool in the selection of human-robot interaction (HRI) operators. Participants completed eight cognitive ability measures and operated one of four types of robots under tasks of low and high difficulty. Performance for each participant was tested during both direct-line-of-sight and teleoperation. These results provide additional evidence that spatial perception abilities are reliable predictors of direct-line-of-sight and teleoperation performance. Participants in this study with higher spatial abilities performed faster, with fewer errors, and less variability. In addition, participants with higher spatial abilities were more successful in the accumulation of points. Applications of these findings are discussed in terms of teleoperator selection tools and HRI training and design recommendations with a human-centered design approach

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 292)

    Get PDF
    This bibliography lists 192 reports, articles and other documents introduced into the NASA scientific and technical information system in December, 1986

    Organic over-the-horizon targeting for the 2025 surface fleet

    Get PDF
    Please note that this activity was not conducted in accordance with Federal, DOD, and Navy Human Research Protection RegulationsAdversarial advances in the proliferation of anti-access/area-denial (A2/AD) techniques requires an innovative approach to the design of a maritime system of systems capable of detecting, classifying, and engaging targets in support of organic over-the-horizon (OTH) tactical offensive operations in the 2025–2030 timeframe. Using a systems engineering approach, this study considers manned and unmanned systems in an effort to develop an organic OTH targeting capability for U.S. Navy surface force structures of the future. Key attributes of this study include overall system requirements, limitations, operating area considerations, and issues of interoperability and compatibility. Multiple alternative system architectures are considered and analyzed for feasibility. The candidate architectures include such systems as unmanned aerial vehicles (UAVs), as well as prepositioned undersea and low-observable surface sensor and communication networks. These unmanned systems are expected to operate with high levels of autonomy and should be designed to provide or enhance surface warfare OTH targeting capabilities using emerging extended-range surface-to-surface weapons. This report presents the progress and results of the SEA-21A capstone project with the recommendation that the U.S. Navy explore the use of modestly-sized, network-centric UAVs to enhance the U.S. Navy’s ability to conduct surface-based OTH tactical offensive operations by 2025.http://archive.org/details/organicovertheho1094545933Approved for public release; distribution is unlimited

    Investigation Of Tactile Displays For Robot To Human Communication

    Get PDF
    Improvements in autonomous systems technology and a growing demand within military operations are spurring a revolution in Human-Robot Interaction (HRI). These mixed-initiative human-robot teams are enabled by Multi-Modal Communication (MMC), which supports redundancy and levels of communication that are more robust than single mode interaction. (Bischoff & Graefe, 2002; Partan & Marler, 1999). Tactile communication via vibrotactile displays is an emerging technology, potentially beneficial to advancing HRI. Incorporation of tactile displays within MMC requires developing messages equivalent in communication power to speech and visual signals used in the military. Toward that end, two experiments were performed to investigate the feasibility of a tactile language using a lexicon of standardized tactons (tactile icons) within a sentence structure for communication of messages for robot to human communication. Experiment one evaluated tactons from the literature with standardized parameters grouped into categories (directional, dynamic, and static) based on the nature and meaning of the patterns to inform design of a tactile syntax. Findings of this experiment revealed directional tactons showed better performance than non-directional tactons, therefore syntax for experiment two composed of a non-directional and a directional tacton was more likely to show performance better than chance. Experiment two tested the syntax structure of equally performing tactons identified from experiment one, revealing participants’ ability to interpret tactile sentences better than chance with or without the presence of an independent work imperative task. This finding advanced the state of the art in tactile displays from one to two word phrases facilitating inclusion of the tactile modality within MMC for HR

    Comparing Types Of Adaptive Automation Within A Multi-tasking Environment

    Get PDF
    Throughout the many years of research examining the various effects of automation on operator performance, stress, workload, etc., the focus has traditionally been on the level of automation, and the invocation methods used to alter it. The goal of the current study is to instead examine the utilization of various types of automation with the goal of better meeting the operator’s cognitive needs, thus improving their performance, workload, and stress. The task, control of a simulated unmanned robotic system, is designed to specifically stress the operator’s visual perception capabilities to a greater degree. Two types of automation are implemented to support the operator’s performance of the task: an auditory beep aid intended to support visual perception resources, and a driving aid automating control of the vehicle’s navigation, offloading physical action execution resources. Therefore, a comparison can be made between types of automation intended to specifically support the mental dimension that is under the greatest demand (the auditory beep) against those that do not (the driving automation). An additional evaluation is made to determine the benefit of adaptively adjusting the level of each type of automation based on the current level of task demand, as well as the influence of individual differences in personality. Results indicate that the use of the auditory beep aid does improve performance, but also increases Temporal Demand and Effort. Use of driving automation appears to disengage the operator from the task, eliciting a vigilance response. Adaptively altering the level of automation to meet task demands has a mixed effect on performance and workload (reducing both) when the auditory beep automation is used. However, adaptive driving automation is clearly detrimental, iv causing an increase in workload while decreasing performance. Higher levels of Neuroticism are related to poorer threat detection performance, but personality differences show no indication of moderating the effects of either of the experimental manipulations. The results of this study show that the type of automation implemented within an environment has a considerable impact on the operator, in terms of performance as well as cognitive/emotional stat
    • …
    corecore