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ABSTRACT 

Improvements in autonomous systems technology and a growing demand within military 

operations are spurring a revolution in Human-Robot Interaction (HRI). These mixed-initiative 

human-robot teams are enabled by Multi-Modal Communication (MMC), which supports 

redundancy and levels of communication that are more robust than single mode interaction. 

(Bischoff & Graefe, 2002; Partan & Marler, 1999). Tactile communication via vibrotactile 

displays is an emerging technology, potentially beneficial to advancing HRI. Incorporation of 

tactile displays within MMC requires developing messages equivalent in communication power 

to speech and visual signals used in the military. Toward that end, two experiments were 

performed to investigate the feasibility of a tactile language using a lexicon of standardized 

tactons (tactile icons) within a sentence structure for communication of messages for robot to 

human communication. Experiment one evaluated tactons from the literature with standardized 

parameters grouped into categories (directional, dynamic, and static) based on the nature and 

meaning of the patterns to inform design of a tactile syntax. Findings of this experiment revealed 

directional tactons showed better performance than non-directional tactons, therefore syntax for 

experiment two composed of a non-directional and a directional tacton was more likely to show 

performance better than chance. Experiment two tested the syntax structure of equally 

performing tactons identified from experiment one, revealing participants’ ability to interpret 

tactile sentences better than chance with or without the presence of an independent work 

imperative task. This finding advanced the state of the art in tactile displays from one to two 

word phrases facilitating inclusion of the tactile modality within MMC for HRI. 
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CHAPTER ONE: INTRODUCTION 

The use of technology and autonomous systems within the military continues to grow as 

the U.S. Government looks for new ways to support the Warfighter and maintain a competitive 

edge over current and future enemies. The National Defense Authorization Act for Fiscal Year 

2001 (U.S. Congress, 2001) conveys this desire, mandating the Armed Forces to “achieve the 

fielding of unmanned, remotely controlled technology such that by 2015, one-third of the 

operational ground combat vehicles of the Armed Forces are unmanned.” Released in 2007, the 

Unmanned Systems Roadmap incorporates master plans for unmanned air, ground, undersea, and 

surface systems over the next twenty-five years into a comprehensive roadmap for future 

prioritization of development and U.S. Department of Defense (DoD) needs (Office of the 

Secretary of Defense, 2007). Seamless integration of Unmanned Systems (US) with manned 

systems is a key component of the vision illustrated by this roadmap.  

As a result of the push for increased use of US’s, over 2,000 have been deployed into the 

battlefield in Afghanistan (Magnuson, 2011), supporting operations including: search and rescue, 

ordinance disposal, mine clearing, and remote targeting missions. The integration of Soldiers 

with these highly intricate systems, each equipped with their own human-machine interface, is a 

complex task. Interfaces must account for different levels of autonomy while providing 

appropriate user-feedback in an efficient manner to accomplish a variety of tasks. An increasing 

number of missions require robots to perform in more dynamic and less structured activities 

including direct interaction with people.  
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Human-Robot Interaction: From Tools to Teammates 

Human-Robot Interaction (HRI) is the interdisciplinary study of interaction dynamics 

between humans and robots. The fundamental goal for the field of HRI is developing principles 

and algorithms for robots capable of direct, safe, and effective interaction with humans (Feil-

Seifer & Matarić, 2009). Typical HRI in military operations today involves a human operator 

explicitly controlling or supervising an unmanned asset using a Human Computer Interface 

(Barnes & Jentsch, 2010). Teleoperation is the contemporary standard and therefore humans do 

not interact with a robot as a co-located team member when in a real-world dynamic operational 

environment (e.g., combat), resulting in a lack of team cohesion. In particular, teleoperating a 

robot requires the operator to withdraw his or her attention from the environment, reducing 

situation awareness, yet also adding to task requirements, thus increasing workload. Situation 

awareness is the understanding of one’s environment with varying granularities of detail and 

meaning as well as future state prediction (Endsley, 1995). Situation awareness is influenced by 

internal (e.g., self-referent cognitions) and external (e.g., changing task complexities) factors. A 

loss of situation awareness in operational military settings can also result in a loss of assets and 

failure to complete missions. Workload is a measured difference between cognitive resources 

available versus those required for completing a given task. Workload is affected by task 

requirements, meaning the number of responsibilities to complete, or by team demands, 

specifically team coordination and communication (Bowers, Braun, & Morgan, Jr., 1997). 

Overloading can result in injury and poor performance. Inclusion of a teleoperated robot further 

increases the complexities of communication by adding an additional step in the process 
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(Cosenzo, Capstick, Pomranky, Dungrani, & Johnson, 2009). That is, instead of direct 

communication to all assets, commanders must first communicate through a robotic operator. 

Although robots are critical to military operations, functioning as tools does not support human-

robot team collaboration and negatively impacts situation awareness and workload for the 

operator and the entire team (Hancock, 1996; Redden & Elliot, 2010). 

In an effort to achieve human-robot teaming, and thus maintain situation awareness and 

reduce workload, events like the DARPA Grand Challenge (DARPA, 2007) and programs such 

as the Robotics Collaborative Technology Alliance (RCTA) (U.S. Army Research Laboratory, 

2011) have been established to advance sensors and other technologies enabling the creation of 

highly autonomous robots. These automated systems will collaborate in future mixed-initiative 

teams with Soldiers, implementing flexible interaction strategies in which each agent (human or 

robot) contributes what is best-suited at the most appropriate time (Hearst, Allen, Guinn, & 

Horvitz, 1999). Improved perception and intelligence will support robotic partners that no longer 

require display-centered interfaces. Instead, robots need to receive commands and 

acknowledgement of messages just as human teams. This transaction needs to occur naturally 

and without ambiguity. To achieve that, a human-robot language needs to be developed. 

A Historical Overview of the Study of Language 

 The initial study of language, and thus communication, can be attributed to ancient 

philosophers such as Gorgias, Socrates, Plato, and Aristotle who examined the prose and context 

of rhetoric. Campbell and Burkeholder (Campbell & Burkholder, 1996) indicate that rhetoric, in 

a broad sense, “can refer to any use of symbols to influence others. That includes functions other 

than persuasion, such as interpersonal identification, confrontation, self-identification, alienation, 
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and negotiation. Rhetoric also includes forms other than written and oral discourse, such as 

gestural and visual communication, the use of space, and certain dimensions of music, dance, 

motion pictures, television programs, and painting.” The study of rhetoric laid the groundwork 

for the field of psycholinguistics to form in the 1950s.  

Psycholinguistics is a merge between psychology and linguistics that resulted from the 

logical positivist movement in philosophy (Tanenhaus, 1988). Specifically, that philosophical 

approach to language encouraged psycholinguists to systematically identify verbal behavior and 

apply the findings in a stimulus-response manner. The behaviorist approach transformed by 

Chomsky emphasized innate cognitive components of language acquisition, which were not 

necessarily observable (Chomsky, 1957; 1965). In fact, his framework is known as 

transformational grammar and focused on the generative power of grammar for combining an 

infinite number of sentence constructs. He inductively reasoned that language is innate because 

there is no way for children to learn every possible combination of words and sounds, and yet 

they spontaneously generate new sentences. Chomsky’s work spawned an era of studying the 

innateness of language acquisition, but this was broadened to include the relevance of context 

and semantics (Gleason, 2005; Tanenhaus, 1988). It was at this time that psycholinguistics 

aligned with mainstream cognitive psychology. This shift was largely due to the information 

processing approach to explaining the “black box” in the human mind. In particular, a focus on 

researching semantics, semantic memory, and natural-language processing secured 

psycholinguistics as a domain of cognitive psychology (Clark, 1973; Collins & Quillian, 1969). 

In the 1980’s and 1990’s, the floodgates were opened to all aspects of psycholinguistics, 

including phonology, morphology, syntax, semantics, and pragmatics. Technology has evolved 
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enabling the use of simulators and neuropsychological sensors to test and expand linguistic 

models, which brings us to our present day understanding of language.  

Components of Language 

 Regardless of camp, linguists, psychologists, philosophers, and psycholinguists have 

sought to decompose language into explainable terms. As a result, four core components have 

emerged. A phoneme is the first component. A phoneme is one unit of sound such as ch, s, or ph 

(Gleason, 2005, p. 20; Messer, 1994, p. 4). Similar to a phoneme is a morpheme, which is one 

unit of meaning (Gleason, 2005, p. 21; Messer, 1994, p. 148). For example, the word intended 

has two morphemes, intend and ed. The ed adds meaning of past tense. Each of these 

components, phonemes and morphemes, are extended by syntax and semantics. Syntax is the 

structure of sentences or the manner in which words are combined to form sentences (Gleason, 

2005, p. 22; Messer, 1994, p. 148). In other words, this is grammar, like the placement of nouns 

in relation to adjectives or how language is used. Semantics is the meaning of sentences that 

results from the order of the words (Gleason, 2005, p. 23; Messer, 1994, p. 93). The same 

thought can be conveyed in more than one way. “I typed a paper” and “a paper was typed by me” 

are two structures stating the same idea.  

 These four concepts seem straight forward, but not considered is the point that the same 

sentence can send two different messages. “There you have it,” can mean 1. A person is referring 

to an item and is giving it to another person, or 2. A general statement or popular phrase about a 

truth established. Without context, the absolute intent of the meaning is non-determined. 

Pragmatics is the study of language in context (Gleason, 2005, p. 23; Messer, 1994, p. 110). 

Another area to recognize is lexicology, which is the study of the vocabulary, or lexicon, 
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available in a given language (Jackon & Amvela, 2000, p. 1). Both pragmatics and lexicology 

address common language usage, and contribute to semantics and overall communication 

success.  

 The four core components, along with pragmatics and lexicology, are anticipated to be 

critical in developing HRC. Currently, a set of commonly used communications is not 

established across studies for human-robot interaction. Rules have not been investigated for 

delivery and receipt effectiveness, boundaries have not been established for modes of 

communication given particular contextual constraints, and lexicons have not been generated for 

human-robot language. These foundational components are essential for creating successful, 

effective, and efficient HRC. 

Language Development 

 The components and sub-areas of language are natural and logical. These elements apply 

to other languages, not just English. Provided their importance, the next step to implementing 

these factors into HRC is to identify the best methods for attaining these qualities. Continuing 

with the reasoning that human-human communication rules will extend to HRC, an examination 

of language development is expected to yield insight. 

Age and Milestones 

 Universal milestones have been identified through research and parental observation. It is 

likely some variation will occur for each child, but the general ages and events are highlighted in 

Table 1. 
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Table 1  
Ages with Associated Language Development Milestones, from Kalat (2008) 

Age Typical Language Abilities 

3 months Random vocalization. 

6 months More distinct babbling. 

1 year Babbling that resembles the typical sound of the family's language; probably one 

or more words including "mama"; language comprehension much better than 

production. 

1.5 years Can say some words (mean about 50), mostly nouns; few or no phrases. 

2 years Speaks in two-word phrases. 

2.5 years Longer phrases and short sentences with some errors and unusual constructions. 

Can understand much more. 

3 years Vocabulary near 1,000 words; longer sentences with fewer errors. 

4 years Close to adult speech competence. 

 

The progression of children’s attainment of communication is mostly established, but some 

factors can help or hinder the process. Parentese appears to influence and aid language 

acquisition. Parentese is the exaggeration on sentences, words, and sounds by caregivers 

(Fernald & Kuhl, 1987). Multi-Modal parentese and message content are significant contributors 

to language development. Multi-modal parentese involves verbal emphasis combined with 

motion or touch (Gogate, Bahrick, & Watson, 2000), while content includes the adult repeating 

himself or herself with new syntax and expanding what is understood from child utterances to 

complete sentences (Hoff-Ginsberg, 1990). Given this information, one conclusion is that it is 

essential for a message to be conveyed with redundancy to ensure it was received and processed 

completely. Keeping this in mind, it is advised that the creation of a human-robot language 

capitalize on MMC.  
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Learning a Second Language 

Primary language acquisition is unique and provides recommendations for HRC due to 

the strength of neuronal connections in the brain for particular syntax, semantics, and modalities. 

However, learning HRC is likely to resemble, more closely, the process of learning a second 

language. Learning a second language is easier for children than adults. In fact, attaining fluency 

in a second language is less likely to occur after the age of 12 (McDonald, 1997). A similar result 

occurs for deaf individuals learning sign language. Persons who learn sign language during 

infancy are more fluent than those who learn as adolescents or adults (Newport, 1990; 

McDonald, 1997). These findings are explained by lateralization of language finalizing between 

the ages of two and five years old (Kinsbourne & Wallace, 1974; Marcotte & Morere, 1980) and 

the need for exposure to particular phonemes by the time a child is three years old (Kowalski & 

Westen). Specifically, two locations in the left hemisphere of the brain have been identified for 

speech production, Broca’s Area, and for speech comprehension, Wernicke’s Area. These areas 

are the same for signing deaf individuals. It is interesting to note that infants who learn sign 

language and are not deaf, develop language more readily (Goodwyn, Acredolo, & Brown, 2000) 

providing additional support for a multi-modal approach to HRC. A further recommendation for 

developing a human-robot language is to match it as closely as possible to the primary language 

and modes of communication of the operator.  

Models of Communication  

At this point, the relevance of psycholinguistic principles and language development to 

that of creating human-robot language has been established. However, it is important to dig 
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deeper, beyond language production and comprehension, to that of human-human 

communication. Self-actional models view communication as one-way − a sender delivers a 

message to a receiver as seen in Figure 1 (Anderson & Ross, 2001, p. 80). This is comparable to 

the state-of-the-art for HRI, such that the operator is the sender and the robot is the receiver 

(Figure 1). 

 

 
Figure 1 Self-actional model of communication, adapted from 

Anderson & Ross (2001). 

A feedback loop extends the self-actional model (Figure 2), making it an interactional 

model (Anderson & Ross, 2001, p. 80). The argument could be made that this is actually the 

appropriate model for depicting the current state of display-centered HRI because the operator is 

able to see the robot or has a video in which he or she receives feedback. A counterargument to 

that is the robot does not actively respond to the operator, but the visual feedback is a default of 

teleoperation, or manual control, limitation. Either way, these simplified models barely brush the 

surface of the complexities involved in communication and certainly does not solve the problem 

of teleoperation. 
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Figure 2. Interactional model of communication, adapted from Anderson & Ross (2001). 

As an alternative, instead of attempting to explain the process, Berlo (1960) sought to 

illustrate significant factors of communication (Figure 3).  

 

Figure 3. Model of communication factors, adapted from Berlo (1960). 

Dance (1967), on the other hand, sought to only illuminate the communication process through a 

helical model consisting of a starting point with an infinite broadening end (Figure 4).  
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Figure 4. Helical model of 

communication processes, adapted 

from Dance (1967). 

 
In an effort to capture both the factors presented by Berlo and the process put forth by Dance, 

Barnlund (1986) developed a transactional model. This complex model, shown in Figure 5, 

conveys that each person involved in the communication is changed by the exchange and 

affected by personal (e.g., feelings, beliefs, and thoughts) and public cues (e.g., environment, 

culture) as each encodes and decodes messages. Although not every aspect of communication is 

expressed in the transactional model, it is the best working point for examining and developing 

HRC. It captures the influence that a human-robot exchange will have on a team member. It 

illustrates contextual factors and their influence on encoding and decoding messages. It also 

emphasizes the importance of bi-directional message sending and receiving for all parties 

involved in the transaction. These notions act as the basis for the need for MMC in HRI. 
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Figure 5. Transactional model of communication, adapted 

from Barnlund (1986). 

Multi-Modal Communication 

The relevance of MMC for the development of a human-robot language is established 

based on models of communication. Throughout literature, six common themes in existing MMC 

research emerge: meaning, context, natural, efficiency, effectiveness, and flexibility. Numerous 

authors use meaning and context such that multi-modal systems strive for meaning (Nigay & 

Coutaz, 1993; Kvale, Wrakagoda, & Knudsen, 2003; Raisamo, 1999), more complex 

information can be conveyed over multiple modes compared to a single mode (Bischoff & 

Graefe, 2002), and ideas can be conveyed redundantly (back up signals), non-redundantly 
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(multiple messages) (Partan & Marler, 1999; Parr, 2004). Ultimately, MMC supports multiple 

levels of complexity (Bischoff & Graefe, 2002). 

Similar is the case for the natural theme. MMC results in more robust, natural, and 

efficient communication (Mariani, 2000). It enables recognition of naturally occurring forms of 

human language and behavior (Oviatt, 2002) and combines natural inputs to convey meaning 

(Cohen & McGee, 2004). It also allows users to take advantage of natural communication modes 

(Kvale, Wrakagoda, & Knudsen, 2003). The most notable trend from literature on the natural 

theme is modalities. Modalities cited include speech, gestures, mimics, nonlinguistics, touch, 

gaze, head and body movements, facial expression, and vision (Bunt, 1998; Kvale, Wrakagoda, 

& Knudsen, 2003; Louwerse, Jeuniaux, Hoque, Wu, & Lewis; Thiran, Marqués, & Bourlard, 

2009).  

The blending of these modalities for the improvement of HRI is shown to impact 

effectiveness (how well) and efficiency (how fast) of display-centered interfaces (Parr, 2004; 

Oviatt, 2002; Oviatt, 2002; Haas, 2007; Haas & Van Erp, 2010). Although there has been 

extensive research within tactile, visual and audio modalities, there has not been work performed 

where they are used for MMC within dismounted operations (Haas & Van Erp, 2010). Lackey, 

Barber, Reinerman-Jones, Badler, and Hudson (2011) began to attack how research can address 

the gap by operationalizing how each modality can be delivered within mixed-initiative 

dismounted teams (Table 2). 
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Table 2  
HRI Communication Modalities, Adapted from (Lackey, Barber, Reinerman-Jones, Badler, & 
Hudson, 2011, p. 2) 

Modality Delivery Explicit Implicit 

Auditory Speech 

Sounds 

Language Tone, Rate, Pitch 

Visual Posture 

Facial Expression, 

Gesture 

Gait 

Social Distance 

Intentional Point 

Hand Signals 

Unintentional Body 

Language 

Intensity 

Eye Contact 

Talking with Hands 

Emotions 

Tactile Belt Vest Intentional Touching 

Patterns 

Pressure 

Patterns 

Shakiness 

 

Within this domain, and for the purposes of this study, the definition of MMC is taken from 

Lackey et al. (2011), “the exchange of information through a flexible selection of explicit and 

implicit modalities that enables interactions and influences behaviors, thoughts, and emotions.” 

Explicit Communication 

As seen in the formal definition, MMC is complex and inherit is the combination of 

explicit and implicit communications required. Previously shown, Table 2 shows explicit 

communication composed of auditory, visual, and tactile modalities with respect to medium of 

delivery and examples of its use. “Explicit Communication is the purposeful conveyance of 

information through multiple modalities (i.e., audio, visual, tactile) that has a defined meaning” 

(Lackey, Barber, Reinerman-Jones, Badler, & Hudson, 2011). 
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 The auditory communication modality can be used to convey a range of explicit 

information from a sound source to a listener including commands and feedback. Its use has been 

shown to reduce operation time for discrete robotic tasks using explicit voice commands 

(Redden & Elliot, 2010). Other modalities yield better performance for continuous tasks such as 

giving directions and navigating. Research has also examined technologies for benefitting 

performance through the auditory modality. The use of specialized 3-dimensional (3-D) spatial 

audio displays as localization feedback was hampered by inaccuracies resulting from the front-

back confusion phenomenon (Haas, 2007). The front-back phenomenon occurs when a sound is 

presented directly in front of or in back of the person and he or she cannot identify the direction 

whence it came. Two additional auditory modality technologies are voice synthesis and voice 

recognition. In HRI, both can be leveraged to construct a bidirectional communication channel. 

However, in noisy operational environment, these types of technology lose their effectiveness.  

The visual modality for communication, like the auditory modality, yields a variety of 

tools for enhancing HRI. Hand signals and gestures are already widely used between persons as a 

natural method of communication (Wexelblat, 1995) and are also prominently used by 

warfighters in operation who follow the Army Field Manual (U.S. Army, 1987). It should be 

noted that visual refers to the human team members’ perception of a communication even though 

the robot might receive certain “visual” stimuli through other sensors. One-way communication 

from humans to robots can take this intuitive form by capturing hand and arm gestures based on 

computer vision (e.g., Microsoft Kinect) or accelerometer-driven input devices (e.g., data capture 

glove or Nintendo Wiimote). Accelerometer-based capturing techniques acquire less noisy data 

and can work outside the line of sight (Varcholik, Barber, & Nicholson, 2008), but require 

additional testing in multi-tasking environments. A reciprocal communication is possible from 
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robot to human and studies along that line take the form of humanoid robots (and animatronics) 

mimicking humans. Unfortunately not much research has been found on communication of this 

kind by non-humanoid robots, which are the dominant type of robots found outside of academia. 

The visual modality seems to be limited at this time for providing communications from 

the robot to the human in an operational, non-academic setting. However, the limitations from 

communication in the auditory and visual modalities can be augmented through the tactile 

modality. Tactile communications can be delivered via electromechanical stimulation of the skin 

and has been applied in robotics to tasks such as spatial orientation, navigation, and control 

(Elliot, Coovert, Prewett, Walvord, & Saboe, 2009; White, 2010).  

Tactile Communication 

Tactile communication replaces or complements some pre-existing modality using 

vibrotactile stimuli (Cholewiak & Collins, 2003; Gilson, Redden, & Elliott, 2007). Brewster and 

Brown (2004) described tactons, or tactile icons, which are structured abstract messages that 

communicate messages non-visually by tactile displays. Tactons are constructed from a range of 

parameters including: frequency, amplitude and duration of pulse, plus other parameters such as 

rhythm and location (Brewster & Brown, 2004).  

Tactors stimulate and manipulate the parameters of tactons and fall into two categories: 

inertial shakers and linear actuators (Mortimer, Zets, & Cholewiak, 2007). Inertial shakers 

employ the motion of an internal eccentric mass to produce vibration, and linear actuators 

employ a contractor that is driven against the skin (Mortimer, Zets, & Cholewiak, 2007). Linear 

actuators tend to be the most frequently used type of tactors used in tactile displays and are able 

to manipulate all tacton parameters (Cholewiak & Collins, 2003; Cholewiak, Brill, & Schwab, 
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2004). Jones and Sarter (2008) identified the optimal frequencies for perception of tactor 

vibrations to be between 150 and 300 Hz. In regards to duration, results from Kaaresoja and 

Linjama (2005) showed that participants prefer vibrotactile alerts between 50 and 200ms. Based 

on the research performed by Cholewiak et al. (2004) and a feasibility review by White (2010), 

the torso is identified as the most suitable body location to provide dismounted Soldiers with 

vibrotactile stimulation using a tactile belt or vest. 

Research has typically used tactile belt displays capable of communicating through 

vibrations in the eight cardinal and inter-cardinal zones (e.g., north, northeast, east) surrounding 

the abdomen as oriented to wearer. Due to intuitive correspondence to egocentric direction, 

tactile belts have been particularly effective in navigational tasks. Participants in such tasks 

exhibit additional agility and speed due to the freeing of the hands and eyes (Elliot, Duistermaat, 

Redden, & Van Erp, 2007). Gilson et al. (2007) developed tactons matched to visual signals 

from the Army Field Manual (U.S. Army, 1987). Participants from the study were placed into 

two groups. Participants from group one classified the signals as they were perceived, and for 

those in group two, a preparatory signal was provided in advance of the identical signals. The 

results of this experimentation revealed participants ability to learn the signals with minimal 

training time of five minutes with no significant difference in performance between groups 

(Gilson, Redden, & Elliott, 2007). Tactile communications, in general, give the added benefit of 

being covert (White, 2010), having reduced response times over visual alerts, and high reception 

during physiological stress (Elliot, Coovert, Prewett, Walvord, & Saboe, 2009; Gilson, Redden, 

& Elliott, 2007; Merlo, et al., 2006; White, 2010).  
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Purpose for the Present Studies 

Based on the extensive research performed to date, the feasibility of communication 

using a tactile display for HRI is clear (Brewster & King, 2005; Brown, Brewster, & Purchase, 

2006; Gilson, Redden, & Elliott, 2007; Merlo, et al., 2006; Pettitt, Redden, & Carstens, 2006). 

However, the research to date with tactons is limited to either directional cueing or non-

directional signaling using a limited lexicon. Moreover, tacton parameters (e.g., frequency, 

duration) are not standardized across experiments. Therefore, in order to replace or supplement 

another communication modality (e.g., visual) in MMC, tactile displays must be able to deliver 

equivalent messages. 

The goal for the current effort is to investigate the feasibility of creating a tactile 

language for HRC. Specifically, the aim is to standardize tactons previously developed from the 

literature to create a tactile language that enables HRC. By standardizing the parameters across 

tactons equally performing patterns will be identified for tactile sentence construction. Based on 

the tactons discussed in the literature, three categories of tactons can be classified: directional, 

dynamic, and static. Directional tactons represent specific direction commands within the 

environment (Elliot, Duistermaat, Redden, & Van Erp, 2007; Mortimer B. , Zets, Mort, & 

Shovan, 2011). Both dynamic and static tactons are words/commands that do not contain a 

directional component (Gilson, Redden, & Elliott, 2007). Both directional and dynamic tactons 

contain motion (alternating tactors) within the sequence and static tactons do not. Comparing 

tactons by group (e.g., directional, non-directional) will also allow for identification of 

differences in performance and workload between types of tacton. Specifically, it was expected 

that for experiment one the following would occur: 
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1.1. Participants will perform better at classifying directional tactons than dynamic and 

static tactons. 

1.2. Participants will perform better at classifying dynamic tactons than static tactons. 

1.3. Participants will have faster reaction times when correctly classifying directional 

tactons than dynamic and static tactons. 

1.4. Participants will have faster reaction times when correctly classifying dynamic 

tactons than static tactons. 

1.5. Participants will experience increased levels of workload interpreting dynamic and 

static tactons over directional tactons. 

1.6. Participants will experience increased levels of workload interpreting static tactons 

over dynamic and directional tactons. 

The purpose for experiment two was to investigate tactile sentences composed of a non-

directional tacton followed by a directional tacton based on the findings from experiment one. It 

is expected that participants will be able to interpret combinations of non-directional and 

directional tactons within a sentence structure better than chance. 
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CHAPTER TWO: EXPERIMENT ONE METHODOLOGY 

Participants 

Thirty-eight University undergraduate students (15 Male, 23 Female) between the ages of 

18 and 40 (M = 19.62, SD = 2.35) served as the experimental participants and were recruited 

using an experiment management website. The participants received credit for their psychology 

courses for completing the study. Participants were right handed (due to potential differences in 

brain physiology of left handed participants and linguistic function (Knecht, et al., 2000)), had 

normal (or corrected to normal) vision, and no prior military service. Participants were asked not 

to consume alcohol or any sedative medication for 24 hours or caffeine for two hours prior to the 

study, as these can influence their performance and perceptual sensitivity. Finally, participants 

were required to have a waistline between 34 and 50 inches to accommodate the size of the 

Tactor Belt used. The full restrictions checklist is located in APPENDIX A. 

Experiment Equipment 

The experiment required participants to view and classify tactile icons, known as tactons, 

associated with visual signals used in standard military operations (U.S. Army, 1987). A tactor is 

a single vibrating motor that delivers a tactile stimulus and a tacton represents a time-based 

sequence of one or more tactors being activated. The tactons were presented using the C-2 Tactor 

Belt with ATC 3.0 Controller from Engineering Acoustics, Inc. (Figure 6) and a custom software 

application developed for the experiment, called Tacton Presenter (Figure 7). 
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Figure 6. C-2 Tactor Belt with ATC 3.0 Controller. 

  

Figure 7. Tacton Presenter software 

application. 

 

 

The Tactor Belt contained eight individual tactors that can be activated individually or in 

combinations to implement tactons. The Tacton Presenter application activates tactons using the 
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Tactor Belt and has the ability to show a visual equivalent of each individual tactor being 

activated in addition to the name of the tacton. A video clip of a robot navigating through a geo-

typical Middle Eastern environment was also used during the experiment (Figure 8). The task 

was completed on a standard desktop computer with a 22” (16:10 aspect ratio) monitor with a 

keyboard and mouse.  

 

Figure 8. Screenshot of robot video animation. 

Experimental Design 

A repeated measures design was employed with one Independent Variable (IV) and three 

conditions. This study measured three categories of tactons: directional, dynamic, and static. 

Directional tactons represent specific direction commands within the environment (e.g., Toward 

North, Away From North). For all tactons, the duration of vibrotactile stimulation was 250ms at 

a sinusoid frequency of 230Hz, and inter-tacton interval of 200ms. These parameters were 

chosen due to the ability for participants to accurately perceive and distinguish individual tactors 
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(White, Suitable Body Locations and Vibrotactile Cueing Types for Dismounted Soldiers, 2010). 

Both dynamic and static tactons are words/commands that do not contain a directional 

component (e.g., Attention, Enemy in Sight, Move Out). Both directional and dynamic tactons 

contain motion within the sequence and static tactons do not. A motion type tacton has a 

sequence with different tactors activated at each time increment (Figure 9). 
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Figure 9. Example of motion tacton (top) and static tacton (bottom). 

Independent Variables 

Tacton Category 

Directional Tactons Category 

There were eight directional tactons: Toward North, Toward South, Toward East, Toward 

West, Away from North, Away from South, Away from East, and Away from West 

(APPENDIX B). 



25 

 

Dynamic Tactons Category 

 There were eight dynamic non-directional tactons: Attention, Danger Area, Disperse, 

Enemy in Sight, Move Out, Rally, Rush, and Take Cover (APPENDIX B). 

Static Tactons Category 

 There were eight static non-directional tactons, named: Acknowledge, Cease Fire, Fire, 

Halt, I Do Not Understand, Nuclear/Biological/Chemical Attack, Vee Formation, and Wedge 

Formation (APPENDIX B).  

Dependent Variables 

Performance Measures 

Classification Accuracy 

For each tacton presented the classification accuracy was recorded based on the 

participants’ selection from a drop-down menu. If the selection matched the tacton presented, the 

result was scored as correct, an incorrect match or “I don’t know response” was scored as 

incorrect. The final measure reported for each participant is a percentage of tactons correct out of 

the total presented. 

Reaction Time 

For each tacton presented the participant was required to press the spacebar on the 

keyboard when they recognize the tacton. The reaction time recorded was from end of stimulus 

presentation to when the participant pressed the spacebar. If the user did not press the spacebar, it 
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was marked as no-response, and the response time recorded was from end of stimulus 

presentation to when the tacton classification dialog appeared. The final measure reported is the 

median adjusted reaction time (milliseconds) for all tactons classified correctly. 

Questionnaires 

Attentional Control Measure 

A questionnaire on Attentional Control (Derryberry & Reed, 2002) was used to evaluate 

participants’ Perceived Attentional Control (PAC). The Attentional Control Survey consists of 

21 items and measures attention focus and shifting (APPENDIX C). The total score measure 

reported is the summation of each of the 21 items normalized to a scale of one to five, with one 

being low attentional control and five high. 

Spatial Ability Measure 

Participants completed a spatial ability questionnaire to measure participants’ Spatial 

Ability (SpA). The Cube Comparison Test (Ekstrom, French, Harman, & Dermen, 1976) 

requires participants to compare, in 3-minutes, 21 pairs of 6-sided cubes and determine if the 

rotated cubes were the same or different (APPENDIX D). This measure produces a total score, 

which is the number of correct comparisons minus the number incorrect. 

Workload Measure 

The NASA Task Load Index (TLX) (Hart & Staveland, 1988) was used to measure the 

participant’s subjective workload from each experimental condition. The measure produces six 

workload subscales: Mental Demand, Physical Demand, Temporal Demand, Performance, 
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Effort, and Frustration, as well as a single combined measure of Global Workload based on the 

mean of the six subscales. Each subscale is scored between 0 and 100; with 0 low workload and 

100 high. The NASA-TLX was administered on the computer through a standard computer 

program (APPENDIX E). 

Procedure 

Upon arrival, the participant was first confirmed that he or she meet the inclusion criteria. 

The participant was then provided an Informed Consent that details their rights as a research 

participant, the purpose for the study, overall procedure, source of funding for the study, and the 

potential risks associated with participation. After reviewing the Informed Consent, the 

participant turned off any cell phone or pager they had and gave them to the experimenter along 

with any watch and personal planners for the duration of the study. 

Next, the participant completed a demographics questionnaire to measure standard items 

such as age and gender, as well as items used to determine their experience with various 

technologies. This questionnaire was used to document the participant’s state of health, color 

vision, and prior military experience (APPENDIX F). After completing the demographics 

questionnaire, the participant filled out the Attentional Control Survey and Cube Comparison 

Test. Once the questionnaires were completed, the participant was fitted with the Tactor Belt, 

such that it is seated around the abdomen, and not the hips, with the belt buckle on the belly 

button.  

With the belt fitted, the participant was tested on their tactile sensitivity by activating 

each tactor on the Tactor Belt individually. This was completed to ensure that the participants 

were equated in not just their waist size, but for perception of the tactors. Before testing for 
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sensitivity, the participant was introduced and trained for the sensations generated by each tactor 

on the Tactor Belt. Each tactor was activated individually in a clockwise order starting at tactor 

one and ending at tactor eight, then counter clockwise starting at eight and ending at one. During 

this presentation, a visual equivalent was also shown to the participant with the name of the 

tactor. Each tactor activation implemented a vibration with a duration of 250 milliseconds 

consisting of a sinusoid frequency of 230 Hz and a two second Inter-Stimulus Interval (ISI) 

between each tactor presentation. 

 After introduction to the sensations generated by the Tactor Belt, the participant’s 

sensitivity was tested by classifying each individual tactor presented in a random sequence ten 

times each for a total of 80 presentations. After each individual tactor vibration, the participant 

pressed the spacebar key as soon as the tactor presented was identified. A dialog-box appeared 

two seconds after completion of tactor presentation, where the user classified the tactor perceived 

using a drop-down menu. The response time for pressing the spacebar along with the accuracy of 

the choice of the participant was recorded. There was no time limit for the participant to make a 

selection using the classification dialog. After selection of the tacton and closing the dialog-box 

using the “OK” button, the next tactor was activated one second later. Upon completion of 

sensitivity training and testing the participant was given a two-minute break with the Tactor Belt 

removed. The purpose of this break was to enable the participant’s tactile system to reset to a 

resting baseline, avoiding loss in tactile sensitivity (Vitello, Ernst, & Fritschi, 2006).  

After the break, the Tactor Belt was put back on according to previously stated protocol 

and the participant began completion of the three tacton category conditions: directional, 

dynamic, and static. Each condition comprised two training tasks and an experimental task, and 

the conditions were presented in random order. The purpose for the two training tasks was to 
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familiarize participants with the proper expected responses and to learn the tactons. In the first 

training task of a condition, each tacton and its name was presented to the participant two times 

in random order. The presentation of each tacton lasted approximately three seconds with a one 

second ISI. During the presentation, the participant was shown an animated sequence of the 

pattern, which was the visual equivalent to the given tacton on the computer screen in addition to 

the tactons’ name.  

In the second training task, the participant was provided the visual animation of the 

tacton, but did not see the tacton name during presentation using the Tactor Belt. Additionally, 

the participant was asked to classify the tactons presented using the same method as the tactile 

sensitivity test. The participant pressed the spacebar on a keyboard when they identified the 

tacton. After a pre-defined time of two seconds from the end of tacton presentation, the 

participant was asked to select the correct name (or “I don’t know”) of the tacton he or she 

experienced from a drop-down list box on the computer. The participant was given feedback, 

which included the correct answer, immediately following classification. The next tacton was 

presented one second after clicking “Continue” on the feedback window and this is called the ISI 

for the purposes of the present experiment. Each of the eight tactons within the condition were 

presented four times. The reaction time and accuracy of the selection made by the participant 

was recorded. There was no time limit for classification of the tacton and presentation of 

feedback. 

The participant next completed the experimental condition associated with the given 

training. The participant experienced each of the eight tactons ten times with an ISI of one 

second in random order and only the Tactor Belt was used to present the tacton; no visual 

animation or name was given. The visual animation of the tacton presented during the training 
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was substituted with the video of the robot driving through a geo-typical Middle Eastern 

environment. The video looped continuously during the entire experimental condition. The 

participant classified each tacton using the same dialog-box as the second training task. After the 

participant classified a tacton, the next tacton was presented one second later with no feedback. 

There was no time limit for the participant to make a classification using the dialog-box. 

Upon completion of the experimental task for a condition, the Tactor Belt was removed 

and the participant completed the NASA-TLX. The belt was put back on the participant for the 

completion of the next tacton category condition, following the same procedure of two training 

and one experimental task. After all three tacton category conditions were completed, the Tactor 

Belt was removed and the participant collected their cell phone, pager, timepiece, and planners to 

exit. 
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CHAPTER THREE: EXPERIMENT ONE RESULTS 

A summary of all ANOVAs from Experiment One is located in APPENDIX K. A 

summary of all tables describing means and standard deviations from Experiment One is located 

in APPENDIX L. 

Manipulation Checks 

Sensitivity Test 

Analyses of the sensitivity test were conducted to eliminate participants that did not 

achieve a minimum classification accuracy score of 90% and determine the number of individual 

tactor presentations needed to evaluate participant sensitivity for use in experiment two. Based 

upon overall classification accuracy for the entire sensitivity test, one participant (Female) was 

eliminated from further analysis by not achieving a score of greater than or equal to 90%. Results 

for the sensitivity test were split into five time periods: four representing 20 tactor presentations 

each and one containing the entire sequence of 80 presentations. Mean classification accuracy 

scores for each time period indicate participant’s ability to demonstrate better than 90% tactile 

sensitivity in all time periods. A repeated measures Analyses of Variance (ANOVAs) with the 

Greenhouse-Geisser correction revealed that mean classification accuracy did not differ 

significantly between time periods, F(2.32, 81.35) = 1.86, p = .156, η2 = .05. These results 

indicate that the number of tactor presentations used within the sensitivity test can be reduced in 

future experiments. 
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Training 

A repeated measures ANOVA with Greenhouse-Geisser correction to adjust for violation 

of sphericity was performed between tacton categories and determined that the mean 

classification accuracy differed significantly between tacton categories during the second 

training task, F(1.51, 53.00) = 35.62, p < .05, η2 = .50. Post hoc tests using the Bonferroni 

correction revealed that participants classified directional tactons (M = 95.57, SD = 5.59) with 

significantly higher accuracy than dynamic (M = 75.78, SD = 17.28), with p < .05. Participants 

classified static tactons (M = 93.93, SD = 11.00) with significantly higher accuracy than dynamic 

tactons (M = 75.78, SD = 17.28) also, with p < 0.05. These differences are illustrated in Figure 

11. 
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Figure 10. Mean classification accuracy for tacton categories during training. Error bars 

in this figure represent the standard error. 

A repeated measures ANOVA with Greenhouse-Geisser correction was performed 

between tacton categories and revealed no significant difference for participant reaction time, 

F(1.16, 40.49) = 2.768, p = .099, η2 = .073. Median reaction times were chosen for this analysis 

based upon literature indicating high variability in response time data, and therefore the median 

is the best representation of this data and is used for all further reaction time analyses. 

Tacton Category Analyses 

Classification Accuracy 

A repeated measures ANOVA with Greenhouse-Geisser correction was performed 

between tacton categories and determined that the mean classification accuracy differed 
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significantly between tacton categories, F(1.69, 59.38) = 55.83, p < .001, η2 = .615. Post hoc 

tests using the Bonferroni correction revealed that participants classified directional (M = 95.42, 

SD = 7.99) tactons with significantly higher accuracy than both dynamic (M = 72.50, SD = 

24.36) and static tactons (M = 62.81, SD = 17.41), and dynamic tactons (M = 72.50, SD = 24.36) 

showed significantly better performance than static (M = 62.81, SD = 17.41), with p < .001, 

illustrated in Figure 11. 

 

Figure 11. Mean classification accuracy for tacton categories. Error bars in this figure represent 

the standard error. 

Reaction Time 

A repeated measures ANOVA was performed between tacton categories and determined 
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η2 = .149. Post hoc tests revealed that participants reacted significantly more quickly to 

directional tactons (M = 739, SD = 906) and dynamic tactons (M = 760, SD = 1247) than static 

tactons (M = 1124, SD = 967), p = .001 and p = .043. This is illustrated in Figure 12.  

 

Figure 12. Median reaction time for tacton categories. Error bars in this figure represent 

the standard error. 

Training Transfer 

A 2 (Session: Training and Experimental) x 3 (Tacton Category: Directional, Dynamic, 

and Static) repeated measures ANOVA showed a significant main effect for training transfer 

using Hotelling’s T to correct for violations of normality (F(1, 35) = 83.09, p < .001, η2 = .704), 

such that training (M =  89.10, SD = 1.28) showed better performance than experimental (M = 

79.91, SD = 2.35) sessions (Figure 13).  
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Figure 13. Classification accuracy for training and experimental sessions. Error bars in this 

figure represent the standard error. 

A significant main effect was also found for tacton category using Hotelling’s T (F(2, 34) = 

50.24, p < .001, η2 = .747), such that directional (M = 96.49, SD = 1.03) showed better 

performance than dynamic (M = 74.14, SD = 3.34) and static (M = 78.37, SD = 2.11) tacton 

categories, and static (M = 78.37, SD = 2.11) showed better performance than dynamic (M = 

74.14, SD = 3.34; Figure 14).  
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Figure 14. Combined classification accuracy for training and experimental sessions by 

tacton category. Error bars in this figure represent the standard error. 

A significant interaction was found between training transfer and tacton category using 

Hotelling’s T (F(2, 34) = 82.11, p < .001, η2 = .828), such that performance was shown to be 

better for directional (M = 97.57, SD = 5.59) and static (M = 93.93, SD = 7.99) tacton training 

than experimental directional (M = 95.42, SD = 7.99) and static (M = 62.81, SD = 17.41) sessions 

(Figure 15). 
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Figure 15. Classification accuracy for both training and experimental sessions by tacton 

category. Error bars in this figure represent the standard error. 

Workload 

A repeated measures ANOVA determined a significant difference in participants 

perceived workload for each subscale with Global Workload (F(2, 70) = 38.17, p < .001, η2 = 

.522), Mental Demand (F(2, 70) = 43.97, p < .001, η2 = .557), Physical Demand (F(2, 70) = 5.96, 

p = .004, η2 = .145), Effort (F(2, 70) = 13.76, p < .001, η2 = .282), Frustration (F(2, 70) = 23.35, 

p < .001, η2 = .400), and Performance (F(2, 70) = 18.94, p < .001, η2 = .351) between tacton 

categories. A repeated measures ANOVA with Greenhouse-Geisser correction also determined a 

significant difference in participants perceived Temporal Demand, F(1.65, 57.66) = 6.37, p = 

.005, η2 = .154. Post hoc tests revealed participants rated their Global Workload significantly 
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lower during directional tactons (M = 32.01, SD = 11.96) than dynamic (M = 49.33, SD = 15.04) 

and static (M = 51.81, SD = 12.07) tactons, with p < .001. Participants rated Mental Demand 

significantly lower during directional tactons (M = 49.44, SD = 23.48) than dynamic (M = 74.86, 

SD = 19.55) and static (M = 70.14, SD = 20.48) tactons, with p < .001. Participants rated 

Physical Demand significantly lower during directional tactons (M = 16.39, SD = 12.51) than 

static tactons (M = 25.28, SD = 18.82), with p = .001. Participants rated Effort significantly 

lower during directional tactons (M = 47.50, SD = 24.33) than dynamic (M = 64.44, SD = 19.85) 

and static (M = 66.94, SD = 17.82) tactons, with p = .002 and p < .001 respectively. Participants 

rated Frustration significantly lower during directional tactons (M = 22.64, SD = 19.29) than 

dynamic (M = 47.78, SD = 27.37) and static (M = 52.22, SD = 26.29) tactons, with p < .001. 

Participants rated Performance significantly better during directional tactons (M = 19.17, SD = 

16.97) than dynamic (M = 40.14.17, SD = 25.14) and static (M = 45.69, SD = 22.81) tactons, 

with p < .001. A post hoc test with Bonferroni correction revealed participants rated Temporal 

Demand significantly lower during directional tactons (M = 36.94, SD = 20.33) than static 

tactons (M = 50.56, SD = 20.59), with p < .001. These findings are illustrated in Figure 16. 
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Figure 16. Workload measures reported from the NASA-TLX for each tacton category. Error 

bars in this figure represent the standard error. 

Correlates of Attentional Control 

A Spearman's Rank Order correlation was run to determine the relationship between 

Attentional Control and classification accuracy for tacton categories. There was no significant 

correlation between Attentional Control and classification accuracy for directional tactons, 

dynamic tactons, or static tactons.  

A Spearman's Rank Order correlation was run to determine the relationship between 

Attentional Control and reaction time for tacton categories. There was no significant correlation 

between Attentional Control and reaction time for directional tactons, dynamic tactons, or static 

tactons. 
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Correlates of Spatial Ability 

A Spearman's Rank Order correlation was run to determine the relationship between 

Spatial Ability and classification accuracy for tacton categories. There was no significant 

correlation between Spatial Ability and classification accuracy for directional tactons. A 

significantly moderate positive correlation was revealed for dynamic tactons (rs(34) = .36, p = 

.033) and static tactons (rs(34) = .39, p = .019) and Spatial Ability. 

A Spearman's Rank Order correlation was run to determine the relationship between 

Spatial Ability and reaction time for tacton categories. There was no significant correlation 

between Spatial Ability and reaction time for directional tactons, dynamic tactons, or static 

tactons. 

Within Tacton Category Analyses 

Directional Tactons 

Repeated measures ANOVAs determined there was no significant difference for 

classification accuracy or reaction time between directional tactons. 

Dynamic Tactons 

A repeated measures ANOVA with Greenhouse-Geisser correction determined a 

significant difference in classification accuracy within the dynamic tactons category, F(5.28, 

184.67) = 4.10, p = .001, η2 = 0.105. Post hoc tests with a Bonferroni correction revealed 

participants ability to classify the Rally tacton (M = 93.61, SD = 15.33) more accurately than 

Danger Area (M = 66.39, SD = 2.64), Enemy In Sight (M = 69.17, SD = 35.81), Move Out (M = 
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65.83, SD = 39.16), Rush (M = 65.00, SD = 39.68), and Take Cover (M = 68.33, SD = 38.43), 

with p = .015, p = .003, p = .006, p = .001, and p = .027 respectively. These findings are 

illustrated in Figure 17. 

 

Figure 17. Mean classification accuracy for dynamic tactons. Error bars in this figure 

represent the standard error. 

A repeated measures ANOVA with Greenhouse-Geisser correction revealed a significant 

difference in reaction time for dynamic tactons, F(4.85, 97.06) = 3.34, p = .009, η2 = .143. Post 

hoc tests with a Bonferroni correction revealed participants reacted to the Danger Area tacton (M 

= 627.29, SD = 1012.73) more slowly than Attention (M = 279.00, SD = 1191.29) and Enemy In 

Sight (M = 216.52, SD = 1309.63), with p = .023 and p = .007 respectively. These findings are 

illustrated in Figure 18. 
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Figure 18. Reaction times for dynamic tactons. Error bars in this figure represent the 

standard error. 

Static Tactons 

A repeated measures ANOVA with Greenhouse-Geisser correction determined a 

significant difference in classification accuracy within the static tactons category, F(5.00, 

175.06) = 15.70, p < .001, η2 = .310. Post hoc tests with a Bonferroni correction revealed 

participants classified the Acknowledged tacton (M = 85.56, SD = 25.60) significantly more 

accurately than Cease Fire (M = 49.72, SD = 27.52), Fire (M = 56.39, SD = 29.29), Halt (M = 

61.11, SD = 27.23), Nuclear/Biological/Chemical Attack (M = 47.22, SD = 24.68), Vee 

Formation (M = 56.67, SD = 32.60), and Wedge Formation (M = 58.89, SD = 30.22), with p < 

.001, p < .001, p = .004, p < .001, p = .001, p < .001 respectively. Participants classified the Halt 
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tacton (M = 61.11, SD = 27.23) significantly more accurately than the 

Nuclear/Biological/Chemical Attack tacton (M = 47.22, SD = 24.68), with p = .033. Participants 

classified the I Do Not Understand tacton (M = 85.56, SD = 25.60) significantly more accurately 

than Cease Fire (M = 49.72, SD = 27.52), Fire (M = 56.39, SD = 29.29), Halt (M = 61.11, SD = 

27.23), Nuclear/Biological/Chemical Attack (M = 47.22, SD = 24.68), Vee Formation (M = 

56.67, SD = 32.60), and Wedge Formation (M = 58.89, SD = 30.22), with p < .001, p < .001, p = 

.001, p < .001, p = .001, p < .001 respectively. These findings are illustrated in Figure 19. 
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Figure 19. Classification accuracy for static tactons. Error bars in this figure represent the 

standard error. 

 A repeated measures ANOVA with Greenhouse-Geisser correction a significant 

differences in reaction time for static tactons, F(4.32, 103.68) = 3.59, p = .007, η2 = .130. Post 

hoc tests with Bonferroni correction revealed participants reacted to the Acknowledged tacton 

(M = 692.48, SD = 742.42) significantly more quickly than the Fire tacton (M = 995.44, SD = 

815.02), with p = .025. This is illustrated in Figure 20. 
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Figure 20. Reaction times for static tactons. Error bars in this figure represent the standard 

error. 
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CHAPTER FOUR: EXPERIMENT ONE DISCUSSION 

Experiment one was designed to standardize and evaluate tactons previously developed 

from the literature for future use in creating a tactile language enabling HRC. Tactons selected 

for use in this study from the literature did not include standardized parameters (e.g., frequency, 

duration) and used different methods of training. Tactons were classified into three categories 

(directional, dynamic, and static) with equated tactor parameters and compared by group for 

identification of differences in performance and workload. Classification into tacton categories 

was done to support selection of tactons and design of a tactile sentence structure. 

Manipulation checks for sensitivity showed no significant difference in classification 

accuracy between time periods of 20 tactor presentations and the entire task, therefore it is 

recommended that the sensitivity test be reduced from 80 to 40 presentations in future 

experiments. Tactor presentations were reduced to 40 rather than 20 to account for individual 

differences in sensitivity.  

Manipulation checks for the training sessions revealed directional tactons showed better 

performance than dynamic and static tactons, and static tactons showed better performance than 

dynamic. Additional analyses of training transfer revealed a significant main effect in that 

training showed better performance than the experimental sessions. In other words, participants’ 

performance dropped significantly from training to experimental sessions. It is apparent that the 

training method employed may not have adequately prepared participants for the experimental 

sessions. The training for each experimental session was composed of two parts, both including a 

visual animation representing the pattern of the tacton. It is possible participants were influenced 

more by visual than tactile patterns during training. This corresponds with findings from 
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Behrman and Ewell (2003) that showed visual training has a significant influence on tactile 

pattern recognition. Static tactons are also likely to show better classification as a visual pattern 

than dynamic tactons due to the nature of the patterns themselves, which tended to be less 

complex in terms of presentation duration and sequence of tactors. Removal of the visual 

component of training is not advised because visual training is shown to improve learning of 

tactile patterns (Behrmann & Ewell, 2003). However the utility of the tactile display can only be 

realized in a situation that allows for use independent of visual presentations. Therefore, it is 

recommended that future experiments include a third training task only presenting tactons using 

the Tactor Belt. 

Outcomes for the experimental sessions supported hypotheses one and two that stated 

directional tactons would show better performance than both dynamic and static, and dynamic 

better than static, which corresponds with participant performance found in the literature (Elliot, 

Duistermaat, Redden, & Van Erp, 2007; Gilson, Redden, & Elliott, 2007). Analyses of reaction 

time for tacton categories revealed participants responded more quickly to directional and 

dynamic tactons than static, which supports hypotheses four and five for experiment one. These 

findings taken together imply that directional and dynamic tactons are recommended for 

inclusion within a tactile language for HRC. Specifically, an important consideration when 

selecting tactons for a lexicon is using “words” comparable to other communication modalities 

in terms rate of message receipt. However, since performance during the experimental session 

differed significantly for training using static tactons, they should still be included in the next 

study to investigate this relationship in more depth. This difference in performance might be due 

to insufficient training strategies as described above. 
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Experiment one provides a foundation of understanding tacton category performance and 

reaction time, however, the question still remains regarding the syntax of a tactile language. In 

other words, investigating the feasibility of a tactile language for HRC requires leveraging 

concepts from language development described in chapter one. Specifically, the state-of-the art 

in tactile communication from the literature and experiment one demonstrate a persons’ ability to 

interpret tactile sequences equivalent to babbling at the developmental milestone for language of 

a one year old as described by Kalat (2008). The next milestone in language development is 

speaking in two-word phrases at the age of two. Therefore, the next step in the advancement of 

tactile communication is evaluating a person’s ability to interpret two-tacton sentences. Results 

from experiment one clearly show participants performed better at interpreting directional 

tactons than non-directional dynamic and static tactons, indicating a paired non-directional and 

directional sentence structure is likely to show better performance than a syntax composed of 

two non-directional tactons. Following this reasoning, the next step in tactile sentence 

development is selection of tactons from each category tested in experiment one.  

This decision is further supported by workload measures that revealed significant 

differences between tacton categories for all subscales, with participants perceiving significantly 

better Performance and lower Frustration, Mental Demand, Effort, and Global Workload during 

directional tactons than both dynamic and static, and lower Temporal Demand and Physical 

Demand between directional tactons and static. These findings supports hypothesis five that 

stated participants would perceive increased workload interpreting dynamic and static tactons 

compared to directional. No significant differences in workload were discovered between 

dynamic and static tacton categories, conflicting with hypothesis six that stated participants 



50 

 

would experience increased workload during static tactons over dynamic tactons. This is another 

reason supporting continued inclusion of static tactons in sentence construction. 

Directional tactons showed no significant differences in classification accuracy between 

tactons indicating equal performance for all eight. Therefore, the following four tactons were 

chosen for the directional component of the two-part sentence structure tested in experiment two: 

Toward North, Toward East, Toward South, and Toward West. It was determined for the 

dynamic category that the Rally tacton showed significantly better performance than the 

remaining seven tactons that showed equal performance for classification accuracy. Due to this 

finding of equal performance with the Rally tacton excluded, the four dynamic tactons selected 

for experiment two were: Attention, Enemy In Sight, Move Out, and Rush. This selection was 

based on the meaning of the labels associated with the tactons and how they pair with direction 

information. For example, the Attention and Enemy In Sight labels are different variations on 

looking in a specific direction, and Move Out and Rush are associated with motion/movement in 

a direction. Two tactons from the static category (Wedge Formation and Vee Formation) were 

selected for testing during experiment two. These tactons were selected due to equality of 

classification accuracy between participants and the labels associated with them that both 

correspond to military formations. An additional aspect of these two tactons is their tactor 

sequences are equated in that they are mirrored patterns when presented on the torso. 

Additional support for continued investigation into tactile displays as a method for HRC 

is that no significant correlation between Attentional Control and classification accuracy and 

Attentional Control and reaction time for tacton categories, indicating Attentional Control has no 

relationship with performance. This expands the utility of tactile displays to the general 

population. Further a significant moderate positive correlation was revealed between Spatial 
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Ability and classification accuracy for both dynamic and static tactons. This finding indicates a 

relationship between spatial ability and classification accuracy and re-enforces the need to 

control for left handed participants during experimentation with and development of tactile 

sequences due to potential differences in brain physiology (Knecht, et al., 2000). 

In conclusion, the goal for experiment one was to evaluate tactons from the literature 

using standardized parameters (e.g., frequency, duration) and training for development of a 

lexicon and syntax for testing the feasibility of tactile sentences for HRC. Analyses of the 

training data and experimental task results indicated the need for an additional training task when 

training participants on tactons and the need for continued investigation of static tactons. A 

tacton syntax composed of a non-directional and directional tactons is more likely to show better 

performance than two non-directional tactons and was selected as the basis for experiment two. 

The purposes of experiment two is to investigate this tactile sentence structure and was expected 

that the following would occur: 

2.1. Participants will be able to interpret tactile sentences better than chance. 

2.2. Participants will be able to interpret tactile sentences with equal performance to 

tactons presented individually. 

2.3. Participants will be able to interpret tactile sentences with equal performance with or 

without a work imperative. 

2.4. Participants will be able to interpret individual tactons with equal performance with 

or without a work imperative. 

2.5. Participants will experience equal levels of workload interpreting tactile sentences 

and individual tactons. 
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2.6. Participants will experience higher levels of workload interpreting tactile sentences 

and individual tactons with work imperative than without. 
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CHAPTER FIVE: EXPERIMENT TWO METHODOLOGY 

Participants 

University undergraduate students between the ages of 18 and 40 (M = 19.73, SD = 5.25) 

served as the experimental participants and were recruited using an experiment management 

website. The participants received credit for their psychology courses for completing the study. 

Participants were right handed (due to potential differences in brain physiology of left handed 

participants and linguistic function (Knecht, et al., 2000)), normal (or corrected to normal) 

vision, and no prior military service. Participants were asked not to consume alcohol or any 

sedative medication for 24 hours or caffeine for two hours prior to the study, as these can 

influence their performance and perceptual sensitivity. Finally, participants were required to 

have a waistline between 34 and 50 inches to accommodate the size of the Tactor Belt used. The 

full restrictions checklist is located in APPENDIX A. The total number of participants included 

in this study was 76, 39 Male, 32 Female, 5 without gender specified. 

Experiment Equipment 

The experiment required participants to view and classify tactons using the same Tactor 

Belt (Figure 6) and Tacton Presenter application (Figure 7) used in Experiment One. In addition 

to these items, the Mixed Initiative Experimental (MIX) testbed (Barber, Leontyev, Sun, Davis, 

Nicholson, & Chen, 2008) was used to simulate a robot navigating through a geo-typical Middle 

Eastern urban environment. The MIX testbed was used for the present experiment to simulate a 

robot operated using a joystick, or navigating autonomously following pre-defined waypoints, 
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using a video feed and route map (Figure 21). The task was completed on a standard desktop 

computer with a 22” (16:10 aspect ratio) monitor using a keyboard, joystick, and mouse. 

 

Figure 21. The MIX Testbed, video feed (top), route map 

(bottom). 

Experimental Design 

 A 2 (Syntax: Tactile Sentences and Single Tactons) x 2 (Work Imperative: Present and 

Absent) mixed design with repeated measures on Syntax was employed. The order for 
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assignment of participants to the Work Imperative (WI) group was random. All participants 

experienced both conditions of Syntax, which included Tactile Sentences (TS) and Single 

Tactons (ST), with the order randomized and balanced within WI groups (Table 3). 

 
Table 3  
Experiment Two Design 

 Work Imperative 

Syntax Present (Teleoperation) Absent (Autonomous) 

Tactile Sentences (TS) Present – TS Absent – TS 

Single Tactons (ST) Present – ST Absent – ST 

 

Independent Variables 

Syntax 

Tactile Sentences 

Tactile sentences were composed of two tactons in the order of a Non-Directional 

(Dynamic or Static) tacton followed by a Directional tacton. Six Non-Directional and four 

Directional tactons were used for a total of 24 tactile sentences. The tactons were chosen based 

on the results of Experiment One, using the best equal performing tactons. The Non-Directional 

tactons selected were: Attention, Enemy In Sight, Move Out, Rush, Vee Formation, Wedge 

Formation. The Directional tactons selected were: Toward North, Toward East, Toward South, 

and Toward West. An example of one of the possible 24 sentences is: Attention – Toward North. 

The time between tactons (inter-tacton time) was 350ms. This value was selected due to 
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recommended speech rates for audiobooks and to be within the limits of average human 

perception which ranges from 150-200 words per minute (Williams, 1998; Griffiths, 1992). 

Single Tactons 

Single tactons are those presented standalone in a randomized order. The same 10 

individual tactons selected for TS were used for ST. 

Work Imperative 

Present 

In the Present WI condition, participants were required to drive a robot using a joystick 

through a geo-typical Middle Eastern urban environment following a pre-defined route. The 

MIX testbed simulated the robot. 

Absent 

In the Absent WI condition, participants were required to watch a robot navigating 

autonomously along a pre-defined route. The MIX testbed simulated the robot. 

Dependent Variables 

Performance Measures 

The same classification accuracy and reaction time performance measures as in 

Experiment One were collected for this experiment, in addition to a confidence rating. 
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Confidence Measure 

Participants were required to rate how confident they were with their classification. For 

the ST condition they entered their confidence for one tacton, in the TS condition they entered a 

confidence value for both tactons composing the sentence. The confidence score was a seven-

point Likert-type scale with a value of one representing low, four neutral, and seven high 

confidence. 

Questionnaires 

Participants were required to complete the same questionnaires as in Experiment One. 

Procedure 

Upon arrival, the participant first confirmed that he or she met the inclusion criteria. The 

participant was then provided an Informed Consent that detailed their rights as a research 

participant, the purpose for the study, overall procedure, source of funding for the study, and the 

potential risks associated with participation. After reviewing the Informed Consent, the 

participant turned off any cell phone or pager they had and gave them to the experimenter along 

with any watch and personal planners for the duration of the study. The participant was then 

assigned to a specific WI group. 

Next, the participant completed a demographics questionnaire to measure standard items 

such as age and gender, as well as items used to determine their experience with various 

technologies. This questionnaire was used to document the participant’s state of health, color 

vision, and prior military experience (APPENDIX F). After completing the demographics 

questionnaire, the participant filled out the Attentional Control Survey and Cube Comparison 



58 

 

Test. Once the questionnaires were completed, the participant was fitted with the Tactor Belt, 

such that it is seated around the abdomen, and not the hips, with the belt buckle on the belly 

button.  

With the belt fitted, the participant was tested on their tactile sensitivity by activating 

each tactor on the Tactor Belt individually. This was completed to ensure that the participants 

were equated in not just their waist size, but for perception of the tactors. White noise with an 

amplified sinusoid frequency equal to the vibrating frequency of the tactors (230 Hz) was played 

during every task using the Tactor Belt for the present study. The White Noise eliminated any 

chance of the participant’s ability to hear tactor activation and controls for additional audio 

cueing by the Tactor Belt, which may influence the performance in the TS condition. Before 

testing for sensitivity, the participant was introduced and trained for the sensations generated by 

each tactor on the Tactor Belt. Each tactor was activated individually in a clockwise order 

starting at tactor one and ending at tactor eight, then counter clockwise starting at eight and 

ending at one. During this presentation, a visual equivalent was also shown to the participant 

with the name of the tactor. Each tactor activation implemented a vibration with duration of 250 

milliseconds consisting of a sinusoid frequency of 230 Hz and a two second ISI between each 

tactor presentation. 

 After introduction to the sensations generated by the Tactor Belt, the participant’s 

sensitivity was tested by classifying each individual tactor presented in a random sequence five 

times each, for a total of 40 presentations. After each individual tactor vibration, the participant 

pressed the spacebar key as soon as the tactor presented was identified. A dialog-box was 

presented two seconds after completion of tactor presentation, where the user classified the tactor 

perceived using a drop-down menu. The response time for pressing the spacebar along with the 
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classification accuracy was recorded. There was no time limit for the participant to make a 

selection. After selection of the tacton and closing the dialog-box using the “OK” button, the 

next tactor was activated one second later. 

After testing participant sensitivity, the participant was trained on the individual tactons 

used within both Tactile Conditions. Training for each tacton category (Directional and Non-

Directional) comprised three training tasks. The purpose for the three training tasks was to 

familiarize participants with the proper expected responses and to learn the tactons. The first 

tacton category trained was the Directional Condition, followed by the Non-Directional tacton 

category. In the first training task of a tacton category, each tacton and its name was presented 

two times in random order. The presentation of each tacton lasted approximately three seconds 

with a one second ISI. During the presentation, the participant was shown an animated sequence 

of the pattern, which was the visual equivalent to the given tacton on the computer screen in 

addition to the tactons’ name.  

In the second training task, the participant was still provided the visual animation of the 

tacton, but did not see the tacton name during presentation using the Tactor Belt. Additionally, 

the participant was asked to classify the tactons presented using the same method as the tactile 

sensitivity test with the addition of a scale to measure participant confidence. The participant 

pressed the spacebar on the keyboard when they identified the tacton. After a pre-defined time of 

two seconds from the end of tacton presentation, the participant was asked to select the correct 

name (or “I don’t know”) of the tacton he or she experienced from a drop-down box and rate 

their confidence using a sliding scale. The participant was given feedback, which included the 

correct answer, immediately following classification. The next tacton was presented one second 

after clicking “Continue” on the feedback window and this is called the ISI for the purposes of 



60 

 

the present experiment. Each of the tactons within the category was presented one time in 

random order. The reaction time, accuracy of the selection, and confidence selected by the 

participant was recorded. There was no time limit for classification of the tacton or presentation 

feedback.  

The third training task for the tacton category was performed in the same manner as the 

second training task, except the visual animation was not shown. Each of the tactons within the 

tacton category were presented one time in random order. The participant was given feedback, 

which included the correct answer, immediately following classification. The next tacton was 

presented one second after clicking “Continue” on the feedback window. After completion of the 

three Directional Tacton training tasks, the participant completed the Non-Directional tacton 

category training following the same three-part protocol. 

 After training for individual tactons was completed, the participant experienced two tasks 

to familiarize them with the Syntax conditions. In the first task the participant was presented with 

training for ST followed by TS in the second task. The stimulus presentation for both tasks 

comprised delivery using the Tactor Belt only. After a pre-defined time of two seconds from the 

end of sequence presentation, the participant was asked to select the correct name(s) (or “I don’t 

know”) of the tacton(s) he or she experienced from a drop-down box and rate their confidence 

using a sliding scale. The participant was given feedback, which included the correct answer, 

immediately following classification. There was no time limit given for classification, 

confidence rating, or presentation feedback. The accuracy, reaction time, and confidence 

selection made by the participant was recorded. The next tacton sequence was presented one 

second after clicking “Continue” on the feedback window in random order. For both the ST and 

TS training tasks, each sequence was presented one time. 
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 Participants within the Present WI group were next trained on how to drive the robot 

using a joystick with the MIX testbed simulation. The participant navigated the robot following a 

pre-defined route using a joystick for one minute. A practice task was then performed to allow 

operators to drive (Present WI group) or monitor (Absent WI group) the robot while responding 

to tactile sequences as required in the ST and TS experimental conditions. The participants in 

both WI groups were required to complete practice ST and TS classifications in the order of ST 

practice followed by TS practice. The tactile sequences were presented using only the Tactor 

Belt with no visual animation, tacton name(s), or feedback provided. The participant was 

required to press the spacebar on the keyboard when they identified the completed sequence (one 

tacton for ST, two tactons for TS). After a pre-defined time of two seconds from the end of 

sequence presentation, the same dialog box used for classification and confidence selection from 

the previous training tasks was presented. There was no time limit for classifying and rating 

confidence. The accuracy, reaction time, and confidence selection made by the participant was 

recorded. The next tactile sequence was presented one second after the participant clicked the 

“OK” button on the classification dialog-box. The participant experienced each tacton in the ST 

practice task once, and a subset of six sentences from the 24 potential tacton combinations one 

time for the TS practice task. Tactile sequences were presented in random order for both 

conditions. The six tacton combinations selected were: Attention – North, Enemy In Sight – 

East, Move Out – West, Rush – South, Vee Formation – North, and Wedge Formation – South. 

Due to the unequal number of Non-Directional and Directional tactons, a subset of six was 

selected to include one presentation of each Non-directional Tacton. 

 After robot operation and classification practice, the participant completed a ST and TS 

condition in random order with both with Present WI or Absent WI based on assigned group 
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number. Participants were presented tacton sequences using the Tactor Belt with no visual 

animation, tacton name(s), or feedback provided. Participants were required to press the spacebar 

on the keyboard when they identify each tacton sequence (one tacton for ST, two tactons for TS). 

After a pre-defined time of two seconds from the end of tacton presentation, the same dialog box 

used for classification and confidence selection from the previous tasks was presented. There 

was no time limit given for classification and confidence rating. The reaction time, accuracy, and 

confidence selection made by the participant was recorded. The next tactile sequence was 

presented one second after the participant clicked the “OK” button on the dialog-box. Within the 

ST condition, tactons were presented eight times each for a total of 80 presentations, and lasted 

approximately 20 min. For the TS condition, each tacton sequence was presented three times for 

a total of 72 presentations and lasting roughly 20 min. This approximate duration was due to 

participant variation in time to classify and rate confidence using the available dialog. 

Participants within the Present WI group were required to manually teleoperate a robot using the 

MIX testbed along a pre-defined route during tacton sequence presentation. Participants were not 

required to continue manual control of the robot using the joystick during classification with the 

dialog-box. Participants within the Absent WI group only monitored the robot navigating a pre-

defined route through the environment. The NASA-TLX was administered to participants upon 

completion of each experimental condition. 

After completing both experimental conditions, the Tactor Belt was removed and the 

participant collected their cell phone, pager, timepiece, and planners to exit. 
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CHAPTER SIX: EXPERIMENT TWO RESULTS 

A summary of all ANOVAs from Experiment Two is located in APPENDIX M. A 

summary of all tables describing means and standard deviations from Experiment Two is located 

in APPENDIX N. 

Manipulation Checks 

Sensitivity Test 

Analyses of the sensitivity test were conducted to eliminate participants that did not 

achieve a minimum classification accuracy score of 90%. Based upon overall classification 

accuracy for the entire sensitivity test, 14 participants (7 Male, 6 Female, 1 no gender specified) 

were eliminated from further analysis by not achieving a score of greater than or equal to 90%. 

Two additional participants (1 Male, 1 Female) were eliminated from further analysis for not 

completing the experiment. After all eliminations a total of 60 participants (31 Male, 25 Female, 

4 no gender specified) were included in remaining analyses. 

Training 

A repeated measures ANOVA was performed between syntax conditions (TS and ST) to 

evaluate training tasks revealing no significant difference for participant classification accuracy 

(F(1, 58) = .43, p = .516, η2 = .007) or reaction time (F(1, 58) = 1.16, p = .285, η2 = .020) for the 

final training task. A 2 (Session: Training and Experimental) x 2 (Syntax: TS and ST) mixed 

ANOVA, performed to evaluate the addition of a third training task on training transfer, showed 
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no significant main effect for classification accuracy between training and experimental sessions, 

F(1, 59) = 1.58, p = .214, η2 = .026. 

Tacton Category Analyses 

Single Tactons Sessions 

A repeated measures ANOVA was performed between tacton categories (directional, 

dynamic, and static) for comparison with results from experiment one, which showed a 

significant difference for classification accuracy during ST sessions, F(2, 116) = 4.28, p = .016, 

η2 = .069. Post hoc tests with Bonferroni correction determined participants classified directional 

tactons (M = 96.83, SD = 5.03) with better accuracy than dynamic tactons (M = 89.69, SD = 

19.20), with p = .018. This is illustrated in Figure 22. 
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Figure 22. Classification accuracy for tacton categories during ST sessions. Error bars in 

this figure represent the standard error. 

Tactile Sentences Sessions 

A repeated measures ANOVA with Greenhouse-Geisser correction was performed 

between tacton categories (directional, dynamic, and static) for comparisons with results from 

experiment one, which revealed a significant difference for classification accuracy during TS 

sessions, F(1.56, 90.29) = 7.98, p = .002, η2 = .121. Post hoc tests with Bonferroni correction 

determined participants classified directional tactons (M = 96.69, SD = 5.41) with better 

accuracy than dynamic (M = 88.72, SD = 19.11) and static tactons (M = 91.60, SD = 11.60), with 

p = .003 and p = .001 respectively. This is illustrated in Figure 23. 
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Figure 23. Classification accuracy for tacton categories during TS sessions. Error bars in 

this figure represent the standard error. 

Analyses of Tactons 

Classification Accuracy 

A 2 (Syntax: TS and ST) x 10 (Tacton: Attention, East, Enemy In Sight, Move Out, 

North, Rush, South, Vee Formation, Wedge Formation, and West) mixed ANOVA with 

Greenhouse-Geisser correction was performed to compare individual tactons between TS and ST 

sessions. No significant main effect for syntax was shown for classification accuracy during 

experimental sessions, F(1, 59) = .43, p = .513, η2 = .007. A significant main effect was revealed 

for individual tactons and classification accuracy, F(9, 187.06) = 6.17, p = .001, η2 = .086. Post 

hoc tests with Bonferroni correction determined participants classified the East tacton (M = 
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97.65, SD = 24.73) with higher accuracy than Move Out (M = 87.99, SD = 22.07), Rush (M = 

84.62, SD = 28.96), and Wedge Formation (M = 90.21, SD = 14.31) tactons, with p = .047, p = 

.042, p = .007, and p = .497 respectively. Post hoc tests with Bonferroni correction determined 

participants classified the North tacton (M = 97.41, SD = 6.00) with higher accuracy than Rush 

(M = 84.62, SD = 28.96) and Wedge Formation (M = 90.21, SD = 14.31) tactons, with p = .038 

and p = .005 respectively. This is illustrated in Figure 24. 

 

Figure 24. Mean classification accuracy for tactons across syntax conditions. Error bars in this 

figure represent the standard error. 

Confidence 

A 2 (Syntax: TS and ST) x 10 (Tacton: Attention, East, Enemy In Sight, Move Out, 
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Greenhouse-Geisser correction was performed to compare reported confidence between TS and 

ST sessions and showed no significant main effect for syntax during experimental sessions, F(1, 

59) = 1.25, p = .267, η2 = .021. A significant main effect was revealed for tactons and 

confidence, F(9, 176.39) = 6.17, p = .001, η2 = .095. Post hoc tests with Bonferroni correction 

determined participants rated higher confidence in their classification for the East tacton (M = 

96.65, SD = 0.62) than Rush (M = 6.16, SD = 1.32) and Wedge Formation (M = 6.32, SD = 1.03) 

tactons, with p = .040 and p = .048 respectively. Post hoc tests with Bonferroni correction 

determined participants rated higher confidence in their classification for the North tacton (M = 

6.66, SD = 0.62) than Move Out (M = 6.22, SD = 1.27), Rush (M = 6.16, SD = 1.32), and Wedge 

Formation (M = 6.32, SD = 1.03) tactons, with p = .039, p = .025, and p = .046 respectively. Post 

hoc tests with Bonferroni correction determined participants rated higher confidence in their 

classification for the West tacton (M = 6.65, SD = 0.59) than Rush (M = 6.16, SD = 1.32) tacton, 

p = .043. This is illustrated in Figure 25. 
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Figure 25. Mean confidence ratings for tactons across syntax conditions. Error bars in this 

figure represent the standard error. 

Syntax Analyses 

Classification Accuracy 

A 2 (Syntax: TS and ST) x 2 (WI: Present and Absent) mixed ANOVA was performed to 

investigate the impact syntax and WI had on classification accuracy. A significant main effect 

for syntax was revealed between TS and ST, (F(1, 58) = 20.75, p < .001, η2 = .263), such that ST 

(M = 92.94, SD = 10.11) showed better performance than TS (M = 87.96, SD = 15.52) for 

classification accuracy (Figure 26). No significant main effect was found for syntax between WI 

groups for classification accuracy, F(1, 58) = .32, p = .571, η2 = .006. 
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Figure 26. Mean classification accuracy of syntax conditions. Error bars in this figure 

represent the standard error. 

Reaction Time 

A 2 (Syntax: TS and ST) x 2 (WI: Present and Absent) mixed ANOVA was performed to 

investigate the impact syntax and WI had on reaction time. No significant main effect was found 

for median reaction time between syntax, F(1, 58) = .33, p = .568, η2 = .006. A significant main 

effect was found for median reaction time for syntax between WI groups, (F(1, 58) = 4.85, p = 

.032, η2 = .077), such that participants responded more quickly without WI (M = 427.03, SD = 

487.70) than with (M = 704.35, SD = 487.70). This is illustrated in Figure 27. 
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Figure 27. Median reaction time between WI groups. Error bars in this figure represent 

the standard error. 

Confidence Measure 

A 2 (Syntax: TS and ST) x 2 (WI: Present and Absent) mixed ANOVA was performed to 

investigate the impact syntax and WI had on confidence values reported. No significant main 

effect for participant confidence was found for syntax, F(1, 58) = .09, p = .780, η2 = .001. No 

significant effect was found for participant confidence between WI groups, F(1, 58) = .03, p = 

.864, η2 = .001. 
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Workload 

A 2 (Syntax: TS and ST) x 2 (WI: Present and Absent) x 7 (Workload: Global Workload, 

Mental Demand, Physical Demand, Temporal Demand, Effort, Frustration, and Performance) 

mixed ANOVA with Greenhouse-Geisser correction was performed to provide additional insight 

into the impact syntax and WI had on performance. A significant main effect for syntax was 

revealed for participants perceived Global Workload (F(1, 58) = 11.73, p = .001, η2 = .168), 

Mental Demand (F(1, 58) = 10.89, p = .002, η2 = .158), Effort (F(1, 58) = 9.97, p = .003, η2 = 

.147), and Performance (F(1, 58) = 17.15, p < .001, η2 = .228). Participants rated their perceived 

Global Workload higher during TS (M = 45.07, SD = 19.22) than ST (M = 41.40, SD = 18.75) 

sessions. Participants rated their perceived Mental Demand higher during TS (M = 65.83, SD = 

27.73) than ST (M = 59.58, SD = 29.92) sessions. Participants rated their perceived Effort higher 

during TS (M = 61.17, SD = 29.01) than ST (M = 54.08, SD = 25.93) sessions. Participants rated 

their perceived Performance worse during TS (M = 27.58, SD = 24.71) than ST (M = 22.67, SD = 

22.76) sessions. This is illustrated in Figure 28.  
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Figure 28. Workload measures reported from the NASA-TLX by syntax. Error bars in this 

figure represent the standard error. 

A significant interaction between syntax and WI was revealed for Performance, (F(1, 58) = 9.11, 

p = .004, η2 = .136), such that participants rated performance worse during TS (M = 27.58, SD = 

24.71) than ST (M = 22.67, SD = 22.76) sessions within both WI groups. A significant main 

effect was revealed between work imperative groups for perceived Global Workload (F(1, 58) = 

17.59, p < .001, η2 = .233), Mental Demand (F(1, 58) = 17.97, p < .001, η2 = .236), Physical 

Demand (F(1, 58) = 23.53, p < .001, η2 = .289), Temporal Demand (F(1, 58) = 8.26, p = .006, η2 

= .125), and Effort (F(1, 58) = 16.30, p < .001, η2 = .219). Participants rated Global Workload 

higher with WI (M = 52.10, SD = 16.36) than without (M = 34.38, SD = 16.36). Participants 

rated Mental Demand higher with WI (M = 76.17, SD = 24.60) than without (M = 49.25, SD = 

24.60). Participants rated Physical Demand higher with WI (M = 41.67, SD = 21.69) than 
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without (M = 14.50, SD = 21.69). Participants rated Temporal Demand higher with WI (M = 

54.92, SD = 23.58) than without (M = 37.42, SD = 23.58). Participants rated Effort higher with 

WI (M = 69.75, SD = 23.26) than without (M = 45.5, SD = 23.26). This is illustrated in Figure 

29. 

 

Figure 29. Workload measures reported from the NASA-TLX by WI group. Error bars in this 

figure represent the standard error. 

Correlates of Confidence 

A Spearman’s Rank Order correlation was run to determine the relationship between 

answer confidence and classification accuracy for Syntax. A significant strong positive 

correlation was revealed between confidence classification accuracy for both TS (rs(58) = .841, 

p < .001) and ST (rs(58) = .643, p < .001) sessions. 
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Correlates of Attentional Control 

A Spearman's Rank Order correlation was run to determine the relationship between 

Attentional Control and classification accuracy for Syntax. There was no significant correlation 

between Attentional Control and classification accuracy for TS or ST sessions.  

A Spearman's Rank Order correlation was run to determine the relationship between 

Attentional Control and reaction time for tacton classifications. There was no significant 

correlation between Attentional Control and reaction time for TS or ST sessions. 

Correlates of Spatial Ability 

A Spearman's Rank Order correlation was run to determine the relationship between 

Spatial Ability and classification accuracy for syntax. There was no significant correlation 

between Spatial Ability and classification accuracy for TS or ST sessions. 

A Spearman's Rank Order correlation was run to determine the relationship between 

Spatial Ability and reaction time for syntax. A significant negative correlation was revealed 

between Spatial Ability and reaction time for both TS (rs(58) = -.283, p = .028) and ST (rs(58) = 

-.343, p = .007) syntax. 

Analyses of Sentences 

A 6 (Non-Directional Tacton: Attention, Enemy In Sight, Move Out, Rush, Vee 

Formation, Wedge Formation) x 4 (Directional Tacton: East, North, South, West) mixed 

ANOVA with Greenhouse-Geisser correction was performed for tactile sentences across WI 

groups to gain additional insight into differences in classification accuracy between syntax 

conditions, with emphasis on the pairing of non-directional and directional tactons. No 
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significant main effect was found for the non-directional component of the sentences, F(3.18, 

187.33) = 2.43, p = .063, η2 = .040. A significant main effect was revealed for the directional 

component, F(2.76, 162.89) = 3.46, p = .021, η2 = .055. Post-hoc tests with Bonferroni correction 

determined that participants classified sentences with the North tacton (M = 89.26, SD = 16.83) 

more accurately than those with the West tacton (M = 88.33, SD = 16.23), with p = .042. 
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CHAPTER SEVEN: EXPERIMENT TWO DISCUSSION 

Experiment two was designed to investigate the feasibility of tactile sentences for HRC 

using a two-word syntax composed of non-directional and directional tactons. Recommendations 

based on the results of experiment one were incorporated into the methodology to improve 

training transfer and test performance of tacton categories when combined into single or two 

word sequences. Participants were divided into two groups to measure the impact of WI on 

classification performance for further evaluation of the utility of tactile sentences in multi-

tasking environments expected in military operations. 

Manipulation checks for the training sessions revealed no significant difference in 

classification accuracy or reaction time between TS and ST training indicating participants were 

equally prepared for both syntax conditions before experimental sessions. Additional analyses of 

classification accuracy between training and experimental TS and ST conditions determined no 

significant change in performance like that found in experiment one. This finding supports the 

addition of a third training task with no visual representation as recommended in the discussion 

of experiment one. 

Analyses of tacton categories within each syntax session revealed that directional tactons 

showed better performance than dynamic tactons in both TS and ST sessions. This result 

confirms findings from experiment one. However, in both syntax conditions, dynamic tactons 

did not significantly outperform static tactons, and directional tactons only showed better 

performance than static tactons during the TS condition. This outcome suggests participant 

performance during static tactons in experiment one may have been considerably impacted by 

improper training as previously described. It is also possible that participants show better 
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performance with static tactons mixed with directional and dynamic tactons. Therefore, further 

study of static tactons for inclusion in tactile lexicons is needed. 

Analyses of individual tactons were performed between TS and ST conditions to 

understand the impact of syntax on participant performance. The results showed no significant 

difference in classification accuracy or confidence between syntax conditions, indicating that the 

participants were able to classify single and paired tacton sequences equally. Moreover, results 

for mean classification accuracy across WI groups during the TS condition (M = 87.96, SD = 

15.52) revealed participants were able to interpret paired non-directional and directional tacton 

sentences better than chance supporting the overall goal for this effort. However, analyses of 

syntax (single or sentence) determined a significant difference in classification accuracy between 

TS and ST conditions with ST showing better performance showing hypothesis two, 

classification accuracy equality between syntax conditions, as false.  

Analyses of reaction time, confidence, and workload were performed to further 

understand what factor(s) effected classification accuracy between TS and ST conditions 

resulting in unequal performance disproving hypothesis two. Results determined no effect for 

syntax on reaction time or user confidence, however perceived Global Workload was 

significantly higher during TS than ST conditions. The decrease in classification accuracy and 

increase in perceived workload while interpreting tactile sentences is therefore most likely a 

direct result of paring non-directional tactons with directional tactons. As described previously 

for TS conditions and shown in experiment one results, directional tactons exhibited better 

performance than both dynamic and static tactons. Moreover, experiment one findings showed 

perceived global workload was lower during directional than both dynamic and static. Further 

study of individual sentences grouped by non-directional and directional components revealed a 
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significant main effect between sentences with North sentences showing better performance than 

West sentences. These findings combined indicate that participants are not able to classify each 

word of a paired non-directional and directional tacton syntax equally. Therefore, an unequal 

probability of correct classification for each piece of the sentence and scoring requiring both 

parts to be correct explains the reason for overall classification accuracy being lower and 

perceived workload higher for TS than ST conditions. Following this reasoning, a next step in 

tactile sentence syntax development is comparison of a paired non-directional tacton structure 

with single tacton sequences for comparison with the syntax pairing of the present study. 

Investigation of a WI task was performed to provide understanding of its’ impact on 

classification accuracy, reaction time, and workload. Results showed no significant main effect 

for classification accuracy or user confidence between groups supporting hypothesis three and 

four, which stated classification accuracy would be equal for both syntax conditions between WI 

groups. However, reaction time was significantly increased for both TS and ST conditions when 

a WI was present. This finding is not unexpected and is consistent with the literature such that 

the addition of a secondary task increases response time of the primary task (Mohebbi, Gray, & 

Tan, 2009; Wickens & Hollands, 2000). Therefore, system developers and researchers using 

tactile communication should consider this effect when determining appropriate situational use 

of tactile communication. Understanding the impact of various secondary tasks is critical in the 

development of tactile displays to maximize utility in HRC due to requirements of users to 

perform tasks independent of messages being received. 

Perceived workload was also shown to be significantly higher with WI than without, 

supporting hypothesis six, which stated participants would experience increased workload with a 

WI than without. During experiment two the WI task was teleoperation of a robot, which is 
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primarily a physical task and may explain why no change in classification accuracy was 

exhibited. Specifically, although tactile displays employ physical contact, the signals generated 

are for communication and is a language interpretation task. Understanding language requires 

cognitive resources and plays a role in models of human cognition (Carruthers, 2002). Therefore, 

it appears that interpretation of tactile communications more closely resembles cognitive rather 

than physical tasks, and different or multiple WI tasks that are more cognitively demanding 

might show an impact on classification accuracy and should be investigated in future efforts.  

Similar to experiment one, additional support for continued investigation into tactile 

displays as a method for HRC is an absence of correlations with Attentional Control. 

Specifically, no correlation was found between Attentional Control and classification accuracy or 

Attentional Control and reaction time for syntax, indicating Attentional Control has no 

relationship with performance. This further expands the utility of tactile displays to the general 

population. In contrast to experiment one, no correlation was revealed between Spatial Ability 

and classification accuracy for syntax conditions, but a significant negative correlation was 

shown for reaction time. The differences in correlation between syntax and Spatial Ability 

compared to experiment one may be related to the way in which the tactile messages were 

categorized and presented. Specifically, performance (classification accuracy and reaction time) 

for tactons was correlated with Spatial Ability when compared with dynamic, and static 

categories in experiment one, but experiment two evaluated performance of conditions including 

all tacton categories combined or tactile sentences. Future experiments should continue to 

measure the relation of Spatial Ability and new tactons to determine if tactons leveraging spatial 

information perform better overall. Furthermore, if Spatial Ability is shown to correlate with 

classification accuracy, inclusion of mental transformation training (Rehfeld, 2006; Write, 
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Thompson, Ganis, Newcombe, & Kosslyn, 2008) for Spatial Ability may improve overall 

performance. 

Results from experiment two clearly demonstrate the ability of participants to accurately 

interpret a tactile syntax of two words better than chance. This finding moves the state-of-the-art 

in tactile communication from the developmental milestone of a one year old to a two year old 

speaking in two-word phrases (Kalat, 2008). This is a significant outcome in that using sentences 

reduces the need for an exponentially large tactile lexicon to share complex statements and 

thoughts. Future directions into tactile displays for HRC is the expansion of the tactile lexicon 

and investigating different syntax structures supporting longer phrases at the associated age of 

2.5 years of language development. A larger lexicon is needed to enable transmission of more 

information about the environment or task from a robot to a human such as named objects, multi-

step directions, and mission status. A longer or more complex syntax enables a robot to send 

phrases that may or may not include a directional component (e.g. door is open vs. door on the 

left). Enabling human-robot teaming requires reliable communication supported by MMC due to 

its redundancy and levels of communication that are more robust than single mode interactions 

(Bischoff & Graefe, 2002; Partan & Marler, 1999). Previous efforts including the tactile 

modality within MMC were restricted to discrete tactile alerts and cues (Haas, 2007) due to lack 

of a tactile language capable of transmitting multi-part messages equivalent to complex speech 

and visual signals used in the military. The two-word tactile syntax resulting from this effort 

facilitates investigation of MMC systems capable of delivering complex messages using 

combinations of auditory, visual and tactile modalities. These and future advanced MMC 

systems incorporating combinations of all modalities will support the seamless integration of 
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robots with manned systems envisioned by the U.S. DoD Unmanned Systems Roadmap (Office 

of the Secretary of Defense, 2007). 
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APPENDIX A: RESTRICTIONS CHECKLIST 
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Participant #: Date: 
  

 
Start time: 

 Restrictions Checklist 
   Answering "Yes" to questions below may prohibits participation in the study 
   

 
Yes No 

 Are you less than 18 years old?     
 Are you greater than 40 years old?     
 Have you had any caffeine in the last 2 hours?     
 Have you had any nicotine in the last 2 hours?      
 Have you had any Alcohol in the last 24 hours?      
 Have you had any sedatives or tranquilizers in the last 24 hours?     
 Have you had any aspirin, Tylenol, or similar medications in the last 24 hours?      
 Have you had any antihistamines or decongestants in the last 24 hours?      
 Have you had any anti-psychotics or anti-depressants in the last 24 hours?      
 Is your hair wet?     
 Do you have woven or artificial hair?      
 Are you pregnant?      
 Do you have any metal plates in your head?      
 Do you lack normal or corrected to normal vision?     
 Do you have a history of epilepsy or seizures?     
 Is your waistline less than 34 inches?      
 Is your waistline greater than 50 inches?      
 Do you have any impairment of your dominant arm or hand?      
 

    Answering "Left" or "Either" to questions below may prohibit participation in the study 
 

 
Left  Right Either 

Are you right handed?        
Which hand do you use to write with?       
Which hand do you use to throw a ball?        
Which hand do you hold a toothbrush with?        
Which hand holds a knife when you cut things?       
Which hand holds a hammer when you nail things?        

 

 



85 

 

APPENDIX B: TACTONS SEQUENCES 
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Tacton Parameters: 
Sinusoid Frequency: 230 Hz 
Inter-Tactor Interval: 100 milliseconds 
Tactor Vibration Duration: 250 milliseconds 
Tactor Sequence Example: (1), (4, 2), (5, 1) = Tactor 1 on for 250ms, 100ms all off, Tactors 4 
and 2 on for 250ms, 100ms all off, Tactors 5 and 1 on for 250ms, 100ms all off. 
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Category Tacton Name Tactor Sequence Source 

Directional Away from East (1), (4,2), (5,1) (Mortimer B. , Zets, Mort, & 

Shovan, 2011) 

Away from North (1), (8,2), (7,3) (Mortimer B. , Zets, Mort, & 

Shovan, 2011) 

Away from South (5), (6,4), (7,3) (Mortimer B. , Zets, Mort, & 

Shovan, 2011) 

Away from West (7), (8,6), (5,1) (Mortimer B. , Zets, Mort, & 

Shovan, 2011) 

Toward East (5,1), (4,2), (3) (White, ARL-TR-5557, 2011) 

Toward North (7,3), (8,2), (1) (White, ARL-TR-5557, 2011) 

Toward South (7,3), (6,4), (5) (White, ARL-TR-5557, 2011) 

Toward West (5,1), (8,6), (7) (White, ARL-TR-5557, 2011) 

Static Acknowledge (5,4,2,1), (5,4,2,1), (5,4,2,1) (U.S. Army, 1987) 

Cease Fire (6,5,4,1), (6,5,4,1), (6,5,4,1) (U.S. Army, 1987) 

Fire (8,5,2,1), (8,5,2,1), (8,5,2,1) (U.S. Army, 1987) 

Halt (8,6,4,2), (8,6,4,2), (8,6,4,2) (Gilson, Redden, & Elliott, 2007) 

I Do not Understand (8,6,5,1), (8,6,5,1), (8,6,5,1) (U.S. Army, 1987) 

Nuclear/ Biological / 

Chemical Attack 

(7,5,3,1), (7,5,3,1), (7,5,3,1) (Gilson, Redden, & Elliott, 2007) 

Vee Formation (8,7,3,2), (8,7,3,2), (8,7,3,2) (U.S. Army, 1987) 

Wedge Formation (7,6,4,3), (7,6,4,3), (7,6,4,3) (U.S. Army, 1987) 

Dynamic Attention (8), (1), (2), (1), (8), (1), (2), (1), (8) (Gilson, Redden, & Elliott, 2007) 

Danger Area (7), (8,7), (8,7,2), (8,7,3,2), (8,7,2), (8,7), 

(7) 

(Gilson, Redden, & Elliott, 2007) 

Disperse (8,2,1), (6,5,4), (8,2,1), (6,5,4), (8,2,1), 

(6,5,4), (8,2,1), (6,5,4), (8,2,1) 

(U.S. Army, 1987) 

Enemy In Sight (7,3), (5,1), (7,3), (5,1), (7,3), (5,1), (7,3), 

(5,1), (7,3) 

(Gilson, Redden, & Elliott, 2007) 

Move Out (5), (6,4), (7,3), (8,2), (1), (5), (6,4), 

(7,3), (8,2), (1) 

(Gilson, Redden, & Elliott, 2007) 

Rally (1), (2), (3), (4), (5), (6), (7), (8), (1) (Gilson, Redden, & Elliott, 2007) 

Rush (5), (6,4), (7,3), (6,4), (5), (6,4), (7,3), 

(8,2), (1) 

(Gilson, Redden, & Elliott, 2007) 

Take Cover (1), (4), (6), (2), (5), (7), (3), (6), (8), (4),  (Gilson, Redden, & Elliott, 2007) 
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APPENDIX C: ATTENTIONAL CONTROL SURVEY 
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For each of the following questions, circle the response that best describes you. 
 
It is very hard for me to concentrate on a difficult task when there are noises around.   
 Almost never  Sometimes  Often  Always 
 
When I need to concentrate and solve a problem, I have trouble focusing my attention.    
 Almost never  Sometimes  Often  Always 
 
When I am working hard on something, I still get distracted by events around me.   
 Almost never  Sometimes  Often  Always  
 
My concentration is good even if there is music in the room around me.  
  Almost never  Sometimes  Often  Always 
 
When concentrating, I can focus my attention so that I become unaware of what’s going on in the room around me. 
 Almost never  Sometimes  Often  Always  
 
When I am reading or studying, I am easily distracted if there are people talking in the same room. 
  Almost never  Sometimes  Often  Always 
 
When trying to focus my attention on something, I have difficulty blocking out distracting thoughts. 
 Almost never  Sometimes  Often  Always  
 
I have a hard time concentrating when I’m excited about something.   
 Almost never  Sometimes  Often  Always 
 
When concentrating, I ignore feelings of hunger or thirst. 
 Almost never  Sometimes Often  Always  
        
I can quickly switch from one task to another. 
 Almost never  Sometimes  Often  Always  
 
It takes me a while to get really involved in a new task.  
 Almost never  Sometimes Often  Always  
         
It is difficult for me to coordinate my attention between the listening and writing required when taking notes during 
lectures.  Almost never  Sometimes  Often  Always 
 
I can become interested in a new topic very quickly when I need to. 
 Almost never  Sometimes  Often  Always  
 
It is easy for me to read or write while I’m also talking on the phone. 
 Almost never  Sometimes  Often  Always 
 
I have trouble carrying on two conversations at once. 
 Almost never  Sometimes Often  Always  
         
I have a hard time coming up with new ideas quickly. 
 Almost never  Sometimes  Often  Always  
 
After being interrupted or distracted, I can easily shift my attention back to what I was doing before. 
 Almost never  Sometimes  Often  Always  
 
When a distracting thought comes to mind, it is easy for me to shift my attention away from it.  
 Almost never  Sometimes  Often  Always 
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It is easy for me to alternate between two different tasks. 
 Almost never  Sometimes Often  Always  
 
It is hard for me to break from one way of thinking about something and look at it from another point of view. 
 Almost never  Sometimes  Often  Always 
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APPENDIX D: CUBE COMPARISON TEST 
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APPENDIX E: NASA-TLX 
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Figure 30. The NASA-TLX computer program. 

The participant uses a mouse to indicate their 

rating of each scale. 
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APPENDIX F: DEMOGRAPHICS QUESTIONNAIRE 
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Participant # _______    Age ______ Major ________________  Date ___________  Gender ___ 

 
1. What is the highest level of education you have had? 
Less than 4 yrs of college ____  Completed 4 yrs of college ____  Other ____ 
 
2. When did you use computers in your education? (Circle all that apply) 
 

Grade School  Jr. High  High School   
Technical School  College   Did Not Use 

 
3. Where do you currently use a computer? (Circle all that apply) 
Home  Work  Library  Other________           Do Not Use 
 
4. How many hours per day do you use a computer? ___________ 
 
5. For each of the following questions, circle the response that best describes you. 

 
How often do you: 
Use a mouse?  Daily, Weekly, Monthly, Once every few months, Rarely, Never 
Use a joystick?  Daily, Weekly, Monthly, Once every few months, Rarely, Never 
Use a touch screen?  Daily, Weekly, Monthly, Once every few months, Rarely, Never 
Use icon-based programs/software? 
    Daily, Weekly, Monthly, Once every few months, Rarely, Never 
Use programs/software with pull-down menus? 
    Daily, Weekly, Monthly, Once every few months, Rarely, Never 
Use graphics/drawing features in software packages? 
    Daily, Weekly, Monthly, Once every few months, Rarely, Never 
Use E-mail?   Daily, Weekly, Monthly, Once every few months, Rarely, Never 
Operate a radio controlled vehicle (car, boat, or plane)?   
    Daily, Weekly, Monthly, Once every few months, Rarely, Never 
Play computer/video games?   
    Daily, Weekly, Monthly, Once every few months, Rarely, Never 

 
6. Which type(s) of computer/video games do you most often play if you play at least once every few months? 
 
7. Which of the following best describes your expertise with computers? (check √ one) 

_____ Novice 
_____ Good with one type of software package (such as word processing or slides) 
_____ Good with several software packages 
_____ Can program in one language and use several software packages 
_____ Can program in several languages and use several software packages 
 

8. How many hours per day do you watch television? ________ 
 
9. How many hours per day do you spend reading? __________ 

 
10. Are you in your usual state of health physically?   YES          NO 
     If NO, please briefly explain: 
 
11. How many hours of sleep did you get last night? ______ hours 
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12. How much experience do you have with virtual environments?  
0  1  2  3  4  5 

Not at all  Mildly    Average    Highly 
 

13. What is your occupation? ______________ 
 
14. How often do you feel eye strain?  

0  1  2  3  4  5 
Not at all  Mildly    Average    Highly 

 
15. During an average work day, do you feel that you focus on near objects (about 2 meters away) more than objects 
that are far away (6 meters or more)?  

1  2  3  4  5 
          Strongly disagree     Agree      Strongly agree  



99 

 

APPENDIX G: INFORMED CONSENT EXPERIMENT ONE 
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RCTA Tactile Encoding Schemes 

Informed Consent 

Principal Investigator(s):   Daniel Barber 
    Stephanie Lackey, PhD.  
 
Sponsor:   ARL – U.S. Army Research Laboratory 
 
Investigational Site(s):  Institute for Simulation and Training 
    University of Central Florida 
    3100 Research Parkway 
    Orlando, FL 32826 

 
Introduction:  Researchers at the University of Central Florida (UCF) study many topics.  To do 
this we need the help of people who agree to take part in a research study.  You are being invited 
to take part in a research study which will include people at UCF.  You have been asked to take 
part in this research study because you are a student at UCF.  
The investigators conducting this research are Dr. Stephanie Lackey and Mr. Daniel Barber of 
the University of Central Florida’s Institute for Simulation and Training. 
 
What you should know about a research study: 

• Someone will explain this research study to you.  
• A research study is something you volunteer for.  
• Whether or not you take part is up to you. 
• You should take part in this study only because you want to.   
• You can choose not to take part in the research study.  
• You can agree to take part now and later change your mind.  
• Whatever you decide it will not be held against you. 
• Feel free to ask all the questions you want before you decide. 
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Purpose of the research study:  The purpose for this study is to determine how well tactile 
communication (i.e., communication via the sense of touch) can be learned and applied.  

What you will be asked to do in the study:  
 

First, the experimenter will complete a pre-screen checklist to make sure you qualify for 
the study.  Next an Electroencephalogram (EEG) cap will be fitted to your head for collection of 
brain activity information throughout the study. Next you will be asked to complete additional 
questionnaires and surveys including: demographics, current health status, attentional control, 
and spatial ability using a cube comparison test. You will then be presented with a tactile “belt” 
device which fits on the abdomen. Motors on the belt will vibrate to create a variety of sensations 
around the abdomen.  An example of a sensation would be a vibration starting from the navel 
moving in a clockwise direction towards your back and then towards again the front of your 
body. A computer will present different sensations through the belt and you will be asked to 
learn the meanings of each sensation.  You will be presented with three training sessions to learn 
the tactile patterns for the study. After a learning period, you will be administered a 
computerized task for classifying the sensations of the tactile patterns while watching a video of 
a truck driving through a virtual environment from the perspective of the driver.  This study is a 
within group design including 60 participants. 
 
Tactile Belt:  The tactile belt is noninvasive and can be fastened or removed easily using a 
Velcro buckle.  The belt is composed of a flat cloth tube with eight motors sewn between the 
cloth tube.  The motors will oscillate perpendicular to the skin at up to 250Hz which creates a 
“buzzing” sensation similar to a cell phone motor but is generally considered to be more intense 
and localized.  You will be told when to expect the first sensations from the tactile belt. 
 

Once you are briefed on the experimental procedures a research assistant will first fit you 
with the physiological sensing devices used in the study. Then you will fill out some pre-
questionnaires. Sensor and performance data will be gathered as you complete the research tasks 
where you will classify tactile patterns you feel from the tactile belt. 

 All of the equipment being used is noninvasive.  Additional devices used in this 
experiment will be a 10 channel Electroencephalogram (EEG) cap, which means that 9 sensors 
will measure activity in the brain and one is an Electrocardiogram (ECG) sensor that will 
measure heart rate activity. Each sensor will be custom set for each individual using its 
respective setup procedure. The following sections provide a description of the EEG and ECG 
procedures. 
 
EEG:  The EEG sensors are contained in a neoprene cap that will be placed over your head and 
adjusted by the lab technician. The conductive gel is placed on the sensor sponge, which allows 
the sensor to touch the scalp without being abrasive.    
 
     For cap placement, you will be seated in front of the computer. The researcher will take an 
alcohol swab (or equivalent if allergic) and wipe the mastoid bone (behind your ears just above 
your neck) where the sensors will touch. The research assistant will set the cap so that the front is 
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aligned with the nasium (brow ridge between the eyes) and inion (occipital bone at the back of 
the head). Once the EEG cap is in place, the research assistant will test the impedance of the 
sensors to assure that proper conductance is occurring.  

 
ECG:  There are two sensors that need to be placed on the right collar bone and the lower 

left rib bone. These sensors will be placed by you, the participant. You will take an alcohol swab 
and clean the areas where the sensors will be placed. The research assistant will attach the sensor 
to the lead and put some conductive gel on the sensor. You will then place the sensor in their 
respective place on the right collar bone or the lower left rib bone. The research assistant will 
turn on the device and check to see that the EEG and ECG sensors are receiving signal. The 
signal strength will be evaluated via software on the experimenter's computer station.  
 

When the study is over, the research assistant will help you remove all the sensors and 
give you debriefing information about the study. It is most helpful to the research being 
conducted that you answer all questions and complete all tasks to the best of your abilities, but 
you are not required to answer every question or complete every task. You will not lose any 
benefits if you choose not to complete questions or tasks. 

 
Location:  Human Performance and Neuroergonomics Lab located in room 220 of the ACTIVE 
Lab, Institute for Simulation and Training’s Partnership III building.  
 
Time required:  We expect that you will be in this research study for 2.5 hours.  

 
Funding for this study: This research study is being paid for by the U.S. Army Research 
Laboratory (ARL).   

Risks:  There are no foreseeable risks or discomforts other than those normally encountered in 
the daily lives of healthy persons. All the neurosensing equipment and the tactile-belt are 
unobtrusive, non-invasive, and have been fully tested and inspected to maintain safety. All 
electronic devices attached to the body are battery-operated and low-power.  The researchers 
performing this study have completed training on the use and safety of each of the sensors used 
in the experiment. Because of the conductance gel used in the EEG cap and the ECG sensors, 
there is a minimal possibility of skin irritation, although the gel is water-based. If this happens, 
participants are urged to notify the research assistant immediately. 

Compensation or payment:  Participants may expect to spend 3 hours performing experimental 
tasks, for which they may elect to receive course credit for the amount of time they participate. 
Maximum course credit will be 150 minutes (2.5 Sona credits) and is awarded at the discretion 
of the individual course professor. 
 
Confidentiality:  We will limit your personal data collected in this study to people who have a 
need to review this information. Data will be secured in locked cabinets at the Institute for 
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Simulation and Training (IST) and disposed of following IRB protocol, which includes the 
shredding of all documents and proper deletion of electronic information.  
 
Study contact for questions about the study or to report a problem: If you have questions, 
concerns, or complaints, or think the research has hurt you, talk to Daniel Barber at 407-882-1128, 
or by email at dbarber@ist.ucf.edu.  
 
IRB contact about your rights in the study or to report a complaint:    Research at the 
University of Central Florida involving human participants is carried out under the oversight of 
the Institutional Review Board (UCF IRB). This research has been reviewed and approved by the 
IRB. For information about the rights of people who take part in research, please contact: 
Institutional Review Board, University of Central Florida, Office of Research & 
Commercialization, 12201 Research Parkway, Suite 501, Orlando, FL 32826-3246 or by 
telephone at (407) 823-2901. You may also talk to them for any of the following:  

• Your questions, concerns, or complaints are not being answered by the research team. 
• You cannot reach the research team. 
• You want to talk to someone besides the research team. 
• You want to get information or provide input about this research.   
 

 

mailto:dbarber@ist.ucf.edu
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APPENDIX H: INFORMED CONSENT EXPERIMENT TWO 
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RCTA Tactile Sentences 

Informed Consent 

Principal Investigator(s):   Stephanie Lackey, PhD.  
 

Co-Investigator(s):   Daniel Barber 
    Florian Jentsch, Ph.D.      
 
Sponsor:   ARL – U.S. Army Research Laboratory 
 
Investigational Site(s):  Institute for Simulation and Training 
    University of Central Florida 
    3100 Research Parkway 
    Orlando, FL 32826 

 
Introduction:  Researchers at the University of Central Florida (UCF) study many topics.  To do 
this we need the help of people who agree to take part in a research study.  You are being invited 
to take part in a research study which will include 100 people at UCF.   
The investigators conducting this research are Dr. Stephanie Lackey and Mr. Daniel Barber of 
the University of Central Florida’s Institute for Simulation and Training. 
 
What you should know about a research study: 

• Someone will explain this research study to you.  
• A research study is something you volunteer for.  
• Whether or not you take part is up to you. 
• You should take part in this study only because you want to.   
• You can choose not to take part in the research study.  
• You can agree to take part now and later change your mind.  
• Whatever you decide it will not be held against you. 
• Feel free to ask all the questions you want before you decide. 
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Purpose of the research study:  The purpose for this study is to determine how well tactile 
communication (i.e., communication via the sense of touch) can be learned and applied.  
 

What you will be asked to do in the study:  
 

First, the experimenter will complete a pre-screen checklist to make sure you qualify for 
the study.  The researcher will then setup the Electroencephalogram (EEG) cap which will be 
fitted to your head for collection of brain activity. Next you will be asked to complete some 
questionnaires and surveys including: the demographics, current health status, attentional control 
questionnaire, NASA-TLX, and a cube comparison test that measures spatial ability. You will 
then be presented with a tactile “belt” device which fits on the abdomen. Motors on the belt will 
vibrate to the same degree as a cell phone to create a variety of sensations around the abdomen.  
An example of a sensation would be a vibration starting from the navel moving in a clockwise 
direction towards your back and then towards the front of your body. A computer will present 
different sensations through the belt and you will be asked to learn the meanings of each 
sensation.  You will complete training sessions in order to familiarize yourself with the tactile 
sensations. After a learning period, you will be administered a computerized task for classifying 
the tactile sensations. While completing the computerized classification task  you will also either 
drive a truck through a virtual environment or watch a video of a truck driving through a virtual 
environment; depending on the scenario you are completing at the time.   

 

 All of the equipment being used is noninvasive. Devices used in this experiment will 
include a 10 channel Electroencephalogram (EEG) cap and a tactile belt. The 10 channel EEG 
cap has 9 sensors that will measure activity in the brain and one sensor for Electrocardiogram 
(ECG) data that will measure heart rate activity. Each sensor will be custom set for each 
individual using its respective setup procedure. The following sections provide a description of 
the EEG and ECG procedures as well as the tactile belt procedures. 

 
EEG:  The EEG sensors are contained in a neoprene cap that will be placed over your head and 
adjusted by the lab technician. The conductive gel is placed on the sensor sponge, which allows 
the sensor to touch the scalp without being abrasive. The conductive gel is hypoallergenic and 
water soluble.  
 
 For cap placement, you will be seated in front of the computer. The researcher will take 
an alcohol swab (or equivalent if allergic) and wipe the mastoid bone (behind your ears just 
above your neck) where the sensors will touch. The research assistant will set the cap so that the 
front is aligned with the nasium (brow ridge between the eyes) and inion (occipital bone at the 
back of the head). Once the EEG cap is in place, the research assistant will test the impedance of 
the sensors to assure that proper conductance is occurring.  

 
ECG:  There are two sensors that need to be placed on the right collar bone and the lower 

left rib bone. These sensors will be placed by you, the participant. You will take an alcohol swab 
and clean the areas where the sensors will be placed. The research assistant will attach the sensor 
to the lead and put some conductive gel on the sensor. You will then place the sensor in their 
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respective place on the right collar bone or the lower left rib bone. The research assistant will 
turn on the device and check to see that the EEG and ECG sensors are receiving signal. The 
signal strength will be evaluated via software on the experimenter's computer station.  

 
Tactile Belt:  The tactile belt is noninvasive and can be fastened or removed easily using a 
Velcro buckle.  The belt is composed of a flat cloth tube with eight motors sewn between the 
cloth tube.  The motors will oscillate perpendicular to the skin at up to 250Hz which creates a 
“buzzing” sensation similar to a cell phone motor but is generally considered to be more intense 
and localized.  You will be told when to expect the first sensations from the tactile belt. 
 

When the study is over, the research assistant will help you remove all the sensors and 
give you debriefing information about the study. It is most helpful to the research being 
conducted that you answer all questions and complete all tasks to the best of your abilities, but 
you are not required to answer every question or complete every task. You will not lose any 
benefits if you choose not to complete questions or tasks. 
 
Location:  Human Performance and Neuroergonomics Lab located in room 220 of the ACTIVE 
Lab, Institute for Simulation and Training’s Partnership III building.  
 
Time required:  We expect that you will be in this research study for 3 hours.  

 
Funding for this study: This research study is being paid for by the U.S. Army Research 
Laboratory (ARL).   

Risks:  There are no foreseeable risks or discomforts other than those normally encountered in 
the daily lives of healthy persons. All the neurosensing equipment and the tactile-belt are 
unobtrusive, non-invasive, and have been fully tested and inspected to maintain safety. All 
electronic devices attached to the body are battery-operated and low-power.  The researchers 
performing this study have completed training on the use and safety of each of the sensors used 
in the experiment. Because of the conductance gel used in the EEG cap and the ECG sensors, 
there is a minimal possibility of skin irritation, although the gel is water-based. If this happens, 
participants are urged to notify the research assistant immediately. 

Compensation or payment:  Participants may expect to spend 3 hours participating in the 
study, for which they will receive 1 SONA credit for every hour of participation.. If the 
experiment takes longer and the participant is able to stay and complete the experiment they will 
receive extra credit in increments of 15 minutes / .25 SONA credits. Additionally if a participant 
is unable to complete the study for any reason they will receive .25 SONA credits for every 15 
minutes of study participation but will not receive less than 1 SONA credit.  
 
Confidentiality:  We will limit your personal data collected in this study to people who have a 
need to review this information. The principal investigators, co-investigators, and research 
assistants working on this project will have access to your data. Additionally, there is a 
possibility that the U.S. Army Human Research Protections Office (AHRPO) will also review 
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the records related to this study. Data will be secured in locked cabinets at the Institute for 
Simulation and Training (IST) and disposed of following UCF IRB protocol, which includes the 
shredding of all documents and proper deletion of electronic information. Please note that your 
name will not be associated with any of the data collected during this study. Once you sign the 
informed consent it will be kept in a locked cabinet separate from your data.   
 
Study contact for questions about the study or to report a problem: If you have questions, 
concerns, or complaints, or think the research has hurt you, talk to Daniel Barber at 407-882-1128, 
or by email at dbarber@ist.ucf.edu.  
 
IRB contact about your rights in the study or to report a complaint:    Research at the 
University of Central Florida involving human participants is carried out under the oversight of 
the Institutional Review Board (UCF IRB). This research has been reviewed and approved by the 
IRB. For information about the rights of people who take part in research, please contact: 
Institutional Review Board, University of Central Florida, Office of Research & 
Commercialization, 12201 Research Parkway, Suite 501, Orlando, FL 32826-3246 or by 
telephone at (407) 823-2901. You may also talk to them for any of the following:  

• Your questions, concerns, or complaints are not being answered by the research team. 
• You cannot reach the research team. 
• You want to talk to someone besides the research team. 
• You want to get information or provide input about this research.   
 

Once all of your questions about the study have been answered and if you want to continue your 
participation in this study please sign below.  
 
The researcher will then take this entire informed consent and place it in a locked cabinet 
separate from your data. You will be given another copy of the exact same informed consent for 
you to keep.  
 
 
_______________________________________  
Participant printed name    
 
_______________________________________   _________ 
Participant signature       Date 
 
_______________________________________   _________ 
Signature of person obtaining consent     Date 
 
 
_______________________________________    
Printed name of person obtaining consent     
 
 

mailto:dbarber@ist.ucf.edu
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APPENDIX I: IRB APPROVAL LETTER EXPERIMENT ONE 
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APPENDIX J: IRB APPROVAL LETTER EXPERIMENT TWO 
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APPENDIX K: ANOVA TABLES FOR EXPERIMENT ONE 
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Table 4  
ANOVA of Classification Accuracy for Sensitivity Test 

Source df MS F p 

Sensitivity Sphericity Assumed 4.000 

2.324 

2.500 

1.000 

140.000 

81.349 

87.483 

35.000 

20.321 

34.972 

32.520 

81.285 

10.946 

18.838 

17.517 

43.785 

1.856 

1.856 

1.856 

1.856 

.121 

.156 

.153 

.182 

Greenhouse-Geisser 

Huynh-Feldt 

Lower-bound 

Error (Sensitivity) Sphericity Assumed 

Greenhouse-Geisser 

Huynh-Feldt 

Lower-bound 

 

Table 5  
ANOVA of Training Classification by Tacton Category 

Source df MS F p 

Type Sphericity Assumed 2.000 4902.341 35.622 .000 

Greenhouse-Geisser 1.514 6474.694 35.622 .000 

Huynh-Feldt 1.568 6251.852 35.622 .000 

Lower-bound 1.000 9804.683 35.622 .000 

Error (Type) Sphericity Assumed 70.000 137.622 
  

Greenhouse-Geisser 53.001 181.762 
  

Huynh-Feldt 54.890 175.506 
  

Lower-bound 35.000 275.243     
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Table 6  
ANOVA of Training Reaction Time 

Source df MS F p 

Category Sphericity Assumed  2.000 1970896.148 2.768 .070 

Greenhouse-Geisser  1.157 3407718.946 2.768 .099 

Huynh-Feldt  1.171 3365190.343 2.768 .098 

Lower-bound  1.000 3941792.296 2.768 .105 

Error (Category) Sphericity Assumed 70.000  712091.586 
  

Greenhouse-Geisser 40.485 1231220.626 
  

Huynh-Feldt 40.997 1215854.895 
  

Lower-bound 35.000 1424183.172     

 

Table 7  
ANOVA of Classification Accuracy for Tacton Categories 

Source df MS F p 

Type Sphericity Assumed 2.000 10092.318 55.834 .000 

Greenhouse-Geisser 1.697 11896.638 55.834 .000 

Huynh-Feldt 1.774 11378.054 55.834 .000 

Lower-bound 1.000 20184.635 55.834 .000 

Error (Type) Sphericity Assumed 70.000 180.755 
  

Greenhouse-Geisser 59.383 213.070 
  

Huynh-Feldt 62.090 203.782 
  

Lower-bound 35.000 361.510     
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Table 8  
ANOVA for Reaction Time by Tacton Category 

Source df MS F p 

Category Sphericity Assumed 2.000 1679067.120 6.119 .004 

Greenhouse-Geisser 1.646 2039972.678 6.119 .006 

Huynh-Feldt 1.717 1956038.526 6.119 .006 

Lower-bound 1.000 3358134.241 6.119 .018 

Error (Category) Sphericity Assumed 70.000  274392.863 
  

Greenhouse-Geisser 57.616  333371.988 
  

Huynh-Feldt 60.088  319655.483 
  

Lower-bound 35.000  548785.726     

 

Table 9  
ANOVA for Training Transfer 

Effect F df 

Error 

df p η2 

Training Transfer Pillai's Trace 83.089a 1.000 35.000 .000 .704 

Wilks' Lambda 83.089a 1.000 35.000 .000 .704 

Hotelling's Trace 83.089a 1.000 35.000 .000 .704 

Roy's Largest Root 83.089a 1.000 35.000 .000 .704 

Category Pillai's Trace 50.238a 2.000 34.000 .000 .747 

Wilks' Lambda 50.238a 2.000 34.000 .000 .747 

Hotelling's Trace 50.238a 2.000 34.000 .000 .747 

Roy's Largest Root 50.238a 2.000 34.000 .000 .747 

Training Transfer * Category Pillai's Trace 82.106a 2.000 34.000 .000 .828 

Wilks' Lambda 82.106a 2.000 34.000 .000 .828 

Hotelling's Trace 82.106a 2.000 34.000 .000 .828 

Roy's Largest Root 82.106a 2.000 34.000 .000 .828 

a. Exact statistic, b. Computed using alpha = .05, c. Design: Intercept Within Subjects Design: Training Transfer + Category + 
Training Transfer * Category 
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Table 10  
ANOVA of Classification Accuracy for Directional Tactons 

Source df MS F p 

Tacton Sphericity Assumed 7.000 105.556 1.969 .06  

Greenhouse-Geisser 3.703 199.518 1.969 .108 

Huynh-Feldt 4.196 176.092 1.969 .099 

Lower-bound 1.000 738.889 1.969 .169 

Error (Tacton) Sphericity Assumed 245.000   53.617 
  

Greenhouse-Geisser 129.618 101.345 
  

Huynh-Feldt 146.861 89.446 
  

Lower-bound 35.000 375.317     

 
Table 11  
ANOVA of Reaction Time for Directional Tactons 

Source df MS F p 

Tacton Sphericity Assumed 7.000     69874.071 2.076 .047 

Greenhouse-Geisser 3.301  148174.109 2.076 .101 

Huynh-Feldt 3.686  132704.969 2.076 .093 

Lower-bound 1.000  489118.497 2.076 .159 

Error (Tacton) Sphericity Assumed 245.000  33658.677 
  

Greenhouse-Geisser 115.534  71376.183 
  

Huynh-Feldt 129.002   63924.624 
  

Lower-bound 35.000 235610.739     
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Table 12  
ANOVA of Classification Accuracy for Dynamic Tactons 

Source df MS F p 

Tacton Sphericity Assumed 7.000  3358.730 4.086 .000 

Greenhouse-Geisser 5.276  4456.033 4.086 .001 

Huynh-Feldt 6.323  3718.320 4.086 .001 

Lower-bound 1.000 23511.111 4.086 .051 

Error (Tacton) Sphericity Assumed 245.000    821.995 
  

Greenhouse-Geisser 184.668   1090.543 
  

Huynh-Feldt 221.307    909.999 
  

Lower-bound 35.000   5753.968     

 
Table 13  
ANOVA of Reaction Time for Dynamic Tactons 

Source df MS F p 

Tacton Sphericity Assumed 7.000 464649.660 3.337 .003 

Greenhouse-Geisser 4.853 670244.379 3.337 .009 

Huynh-Feldt 6.596 493122.524 3.337 .003 

Lower-bound 1.000 3252547.619 3.337 .083 

Error(Tacton) Sphericity Assumed 140.000 139247.647 
  

Greenhouse-Geisser 97.056 200860.909 
  

Huynh-Feldt 131.916 147780.483 
  

Lower-bound 20.000 974733.532     
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Table 14  
ANOVA of Classification Accuracy for Static Tactons 

Source df MS F p 

Tacton Sphericity Assumed 7.00 8286.855 15.695 .000 

Greenhouse-Geisser 5.00 11597.459 15.695 .000 

Huynh-Feldt 5.94 9772.519 15.695 .000 

Lower-bound 1.00 58007.986 15.695 .000 

Error (Tacton) Sphericity Assumed 245.00 527.978 
  

Greenhouse-Geisser 175.06 738.905 
  

Huynh-Feldt 207.75 622.633 
  

Lower-bound 35.00 3695.843     

 

Table 15  
ANOVA of Reaction Time for Static Tactons 

Source df MS F p 

Tacton Sphericity Assumed 7.000 587628.742 3.594 .001 

Greenhouse-Geisser 4.320 952149.430 3.594 .007 

Huynh-Feldt 5.386 763669.027 3.594 .004 

Lower-bound 1.000 4113401.195 3.594 .070 

Error (Tacton) Sphericity Assumed 168.000 163506.218 
  

Greenhouse-Geisser 103.683 264933.182 
  

Huynh-Feldt 129.273 212488.984 
  

Lower-bound 24.000 1144543.528     
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Table 16  
ANOVA for Workload Measures by Tacton Category 

Source Measure df MS F p 

Category Performance Sphericity Assumed 2.0 7046.528 18.942 .000 

Greenhouse-Geisser 1.949 7231.851 18.942 .000 

Huynh-Feldt 2.000 7046.528 18.942 .000 

Lower-bound 1.000 14093.056 18.942 .000 

Frustration Sphericity Assumed 2.0 9161.343 23.353 .000 

Greenhouse-Geisser 1.957 9362.661 23.353 .000 

Huynh-Feldt 2.000 9161.343 23.353 .000 

Lower-bound 1.000 18322.685 23.353 .000 

Mental 

Demand 

Sphericity Assumed 2.0 6579.398 43.969 .000 

Greenhouse-Geisser 1.931 6813.022 43.969 .000 

Huynh-Feldt 2.000 6579.398 43.969 .000 

Lower-bound 1.000 13158.796 43.969 .000 

Physical 

Demand 

Sphericity Assumed 2.0 803.704 5.958 .004 

Greenhouse-Geisser 1.801 892.641 5.958 .006 

Huynh-Feldt 1.892 849.401 5.958 .005 

Lower-bound 1.000 1607.407 5.958 .020 

Temporal 

Demand 

Sphericity Assumed 2.0 1690.509 6.373 .003 

Greenhouse-Geisser 1.647 2052.285 6.373 .005 

Huynh-Feldt 1.718 1967.716 6.373 .005 

Lower-bound 1.000 3381.019 6.373 .016 

Effort Sphericity Assumed 2.0 4028.704 13.762 .000 

Greenhouse-Geisser 1.871 4306.400 13.762 .000 

Huynh-Feldt 1.973 4084.232 13.762 .000 

Lower-bound 1.000 8057.407 13.762 .001 

Mean Sphericity Assumed 2.0 4185.886 38.173 .000 

Greenhouse-Geisser 1.845 4538.687 38.173 .000 

Huynh-Feldt 1.942 4309.872 38.173 .000 

Lower-bound 1.000 8371.772 38.173 .000 

Error 

(Category) 

Performance Sphericity Assumed 70.0 372.004 
  

Greenhouse-Geisser 68.206 381.788 
  

Huynh-Feldt 70.000 372.004 
  

Lower-bound 35.000 744.008 
  

Frustration Sphericity Assumed 70.0 392.295 
  

Greenhouse-Geisser 68.495 400.916 
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Huynh-Feldt 70.000 392.295 
  

Lower-bound 35.000 784.590 
  

Mental 

Demand 

Sphericity Assumed 70.0 149.636 
  

Greenhouse-Geisser 67.600 154.950 
  

Huynh-Feldt 70.000 149.636 
  

Lower-bound 35.000 299.272 
  

Physical 

Demand 

Sphericity Assumed 70.0 134.894 
  

Greenhouse-Geisser 63.026 149.822 
  

Huynh-Feldt 66.234 142.564 
  

Lower-bound 35.000 269.788 
  

Temporal 

Demand 

Sphericity Assumed 70.0 265.271 
  

Greenhouse-Geisser 57.660 322.040 
  

Huynh-Feldt 60.139 308.770 
  

Lower-bound 35.000 530.542 
  

Effort Sphericity Assumed 70.0 292.751 
  

Greenhouse-Geisser 65.486 312.930 
  

Huynh-Feldt 69.048 296.786 
  

Lower-bound 35.000 585.503 
  

Mean Sphericity Assumed 70.0 109.656 
  

Greenhouse-Geisser 64.559 118.898 
  

Huynh-Feldt 67.986 112.904 
  

Lower-bound 35.000 219.312     
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APPENDIX L: SUMMARY OF ALL TABLES FOR EXPERIMENT ONE 
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Table 17  
Classification Accuracy Scores for Sensitivity Test 

Time Period M SD 

Sensitivity Part One 96.11 5.36 

Sensitivity Part Two 96.53 5.05 

Sensitivity Part Three 97.36 4.05 

Sensitivity Part Four 98.06 3.64 

Sensitivity Overall 97.05 3.12 

 

Table 18  
Classification Accuracy for Training 

Tacton Category M SD 

Directional 95.57 5.59 

Dynamic 75.78 17.28 

Static 93.93 11.00 

 

Table 19  
Classification Accuracy for Tacton Categories 

Tacton Category M SD 

Directional 95.42 7.99 

Dynamic 72.50 24.36 

Static 62.81 17.41 
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Table 20  
Median Reaction Time for Tacton Categories 

Tacton Category MS SD 

Directional 739 906 

Dynamic 760 1247 

Static 1124 967 
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Table 21  
NASA-TLX Workload Scales by Tacton Category 

Workload Scale Tacton Category M SD 

Performance Directional 19.17 16.97 

 Dynamic 40.14 25.14 

 Static 45.69 22.81 

Frustration Directional 22.64 19.29 

 Dynamic 47.78 27.37 

 Static 52.22 26.29 

Mental Demand Directional 49.44 23.48 

 Dynamic 74.86 19.55 

 Static 70.14 20.48 

Physical Demand Directional 16.39 12.51 

 Dynamic 23.61 22.51 

 Static 25.28 18.82 

Temporal Demand Directional 36.94 20.33 

 Dynamic 45.14 23.95 

 Static 50.56 20.59 

Effort Directional 47.50 24.33 

 Dynamic 64.44 19.85 

 Static 66.94 17.82 

Global Directional 32.01 11.96 

 Dynamic 49.33 15.04 

 Static 51.81 12.07 
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Table 22  
Classification Accuracy for Dynamic Tactons 

Tacton M SD 

Attention 78.89 32.32 

Danger Area 66.39 42.63 

Disperse 72.78 39.18 

Enemy In Sight 69.17 35.82 

Move Out 65.83 39.16 

Rally 93.61 15.34 

Rush 65.00 39.68 

Take Cover 68.33 38.43 
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Table 23  
Reaction Times for Dynamic Tactons 

Tacton M SD 

Attention 279.00 1191.29 

Danger Area 672.29 1012.73 

Disperse 260.14 1267.79 

Enemy In Sight 216.52 1309.63 

Move Out 439.67 1227.89 

Rally 388.05 1111.80 

Rush 503.48 1097.34 

Take Cover 366.00 1297.64 
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Table 24  
Classification Accuracy for Static Tactons 

Tacton M SD 

Acknowledged 85.56 25.60 

Cease Fire 49.72 27.52 

Fire 56.39 29.29 

Halt 61.11 27.23 

I Do Not Understand 86.94 22.91 

Nuclear/Biological/Chemical 
Attack 47.22 24.68 

Vee Formation 56.67 32.60 

Wedge Formation 58.89 30.22 
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Table 25  
Reaction Time for Static Tactons 

Tacton M SD 

Acknowledged 692.48 742.42 

Cease Fire 1025.56 730.60 

Fire 995.44 815.02 

Halt 829.76 735.12 

I Do Not Understand 632.32 780.54 

Nuclear/Biological/Chemical 
Attack 1046.44 911.15 

Vee Formation 931.32 816.47 

Wedge Formation 851.60 784.74 
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APPENDIX M: ANOVA TABLES FOR EXPERIMENT TWO 
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Table 26  
ANOVA of Classification Accuracy and Reaction Time for Training 

Source df MS F p 
Syntax Accuracy Sphericity Assumed 1.00 37.019 .428 .516 

Greenhouse-Geisser 1.00 37.019 .428 .516 
Huynh-Feldt 1.00 37.019 .428 .516 
Lower-bound 1.00 37.019 .428 .516 

RT Sphericity Assumed 1.00 54570.675 1.162 .285 
Greenhouse-Geisser 1.00 54570.675 1.162 .285 
Huynh-Feldt 1.00 54570.675 1.162 .285 
Lower-bound 1.00 54570.675 1.162 .285 

Syntax * Group Accuracy Sphericity Assumed 1.00 1.481 .017 .896 
Greenhouse-Geisser 1.00 1.481 .017 .896 
Huynh-Feldt 1.00 1.481 .017 .896 
Lower-bound 1.00 1.481 .017 .896 

RT Sphericity Assumed 1.00 79361.633 1.691 .199 
Greenhouse-Geisser 1.00 79361.633 1.691 .199 
Huynh-Feldt 1.00 79361.633 1.691 .199 
Lower-bound 1.00 79361.633 1.691 .199 

Error(Syntax) Accuracy Sphericity Assumed 58.00 86.501   
Greenhouse-Geisser 58.00 86.501   
Huynh-Feldt 58.00 86.501   
Lower-bound 58.00 86.501   

RT Sphericity Assumed 58.00 46944.469   
Greenhouse-Geisser 58.00 46944.469   
Huynh-Feldt 58.00 46944.469   
Lower-bound 58.00 46944.469     
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Table 27  
ANOVA for Tacton Categories for Single Tacton Sessions 

Source df MS F p 
Category Sphericity Assumed   2.000 814.207 4.283 .016 

Greenhouse-Geisser   1.908 853.450 4.283 .018 
Huynh-Feldt   2.000 814.207 4.283 .016 
Lower-bound   1.000 1628.413 4.283 .043 

Category * Group Sphericity Assumed   2.000 145.549 .766 .467 
Greenhouse-Geisser   1.908 152.564 .766 .462 
Huynh-Feldt   2.000 145.549 .766 .467 
Lower-bound   1.000 291.098 .766 .385 

Error(Category) Sphericity Assumed 116.000 190.105   

Greenhouse-Geisser 110.666 199.267   

Huynh-Feldt 116.000 190.105   

Lower-bound 58.000 380.210     

 

Table 28  
ANOVA for Tacton Categories for Tactile Sentences 

Source df MS F p 
Category Sphericity Assumed   2.000 977.081 7.981 .001 

Greenhouse-Geisser   1.557 1255.380 7.981 .002 
Huynh-Feldt   1.619 1206.807 7.981 .001 
Lower-bound   1.000 1954.163 7.981 .006 

Category * Group Sphericity Assumed   2.000 3.761 .031 .970 
Greenhouse-Geisser   1.557 4.832 .031 .942 
Huynh-Feldt   1.619 4.645 .031 .947 
Lower-bound   1.000 7.521 .031 .861 

Error(Category) Sphericity Assumed 116.000 122.424   

Greenhouse-Geisser 90.285 157.293   

Huynh-Feldt 93.918 151.207   

Lower-bound 58.000 244.847     
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Table 29  
ANOVA for Training Transfer 

Source df MS F p 
TrainingTransfer AccuracySingle Sphericity 

Assumed 
  1.000 426.576 6.355 .014 

Greenhouse-
Geisser 

  1.000 426.576 6.355 .014 

Huynh-Feldt   1.000 426.576 6.355 .014 
Lower-bound   1.000 426.576 6.355 .014 

AccuracySentences Sphericity 
Assumed 

  1.000 .250 .002 .964 

Greenhouse-
Geisser 

  1.000 .250 .002 .964 

Huynh-Feldt    1.000 .250 .002 .964 
Lower-bound   1.000 .250 .002 .964 

Error(TrainingTransfer) AccuracySingle Sphericity 
Assumed 

59.000 67.121   

Greenhouse-
Geisser 

59.000 67.121   

Huynh-Feldt 59.000 67.121   

Lower-bound 59.000 67.121   

AccuracySentences Sphericity 
Assumed 

59.000 119.083   

Greenhouse-
Geisser 

59.000 119.083   

Huynh-Feldt 59.000 119.083   

Lower-bound 59.000 119.083     
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Table 30  
ANOVA for Classification Accuracy and Confidence of Individual Tactons by Syntax 

Source df MS F p 
Syntax Accuracy Sphericity Assumed 1.000 62.139 .432 .513 

Greenhouse-Geisser 1.000 62.139 .432 .513 
Huynh-Feldt 1.000 62.139 .432 .513 
Lower-bound 1.000 62.139 .432 .513 

Confidence Sphericity Assumed 1.000 .443 1.253 .267 
Greenhouse-Geisser 1.000 .443 1.253 .267 
Huynh-Feldt 1.000 .443 1.253 .267 
Lower-bound 1.000 .443 1.253 .267 

Error(Syntax) Accuracy Sphericity Assumed 59.000 143.692   
Greenhouse-Geisser 59.000 143.692   
Huynh-Feldt 59.000 143.692   
Lower-bound 59.000 143.692   

Confidence Sphericity Assumed 59.000 .354   
Greenhouse-Geisser 59.000 .354   
Huynh-Feldt 59.000 .354   
Lower-bound 59.000 .354   

Tacton Accuracy Sphericity Assumed 9.000 2236.150 5.533 .000 
Greenhouse-Geisser 3.171 6347.540 5.533 .001 
Huynh-Feldt 3.372 5969.080 5.533 .001 
Lower-bound 1.000 20125.354 5.533 .022 

Confidence Sphericity Assumed 9.000 4.197 6.169 .000 
Greenhouse-Geisser 2.990 12.635 6.169 .001 
Huynh-Feldt 3.167 11.928 6.169 .000 
Lower-bound 1.000 37.775 6.169 .016 

Error(Tacton) Accuracy Sphericity Assumed 531.000 404.171   
Greenhouse-Geisser 187.064 1147.280   
Huynh-Feldt 198.924 1078.876   
Lower-bound 59.000 3637.538   

Confidence Sphericity Assumed 531.000 .680   
Greenhouse-Geisser 176.391 2.048   
Huynh-Feldt 186.849 1.934   
Lower-bound 59.000 6.123   

Syntax * Tacton Accuracy Sphericity Assumed 9.000 57.272 1.045 .403 
Greenhouse-Geisser 5.371 95.961 1.045 .393 
Huynh-Feldt 5.972 86.307 1.045 .396 
Lower-bound 1.000 515.447 1.045 .311 

Confidence Sphericity Assumed 9.000 .123 1.449 .164 
Greenhouse-Geisser 5.149 .215 1.449 .205 
Huynh-Feldt 5.699 .195 1.449 .198 
Lower-bound 1.000 1.109 1.449 .233 

Error(Syntax*Tacton) Accuracy Sphericity Assumed 531.000 54.801   
Greenhouse-Geisser 316.913 91.820   
Huynh-Feldt 352.364 82.582   
Lower-bound 59.000 493.205   

Confidence Sphericity Assumed 531.000 .085   
Greenhouse-Geisser 303.767 .149   
Huynh-Feldt 336.259 .134   
Lower-bound 59.000 .765     
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Table 31  
ANOVA for Classification Accuracy, Reaction Time, and Confidence for Syntax 

Source df MS F p 
Syntax Accuracy Sphericity Assumed 1.000 741.922 20.750 .000 

Greenhouse-Geisser 1.000 741.922 20.750 .000 
Huynh-Feldt 1.000 741.922 20.750 .000 
Lower-bound 1.000 741.922 20.750 .000 

RT Sphericity Assumed 1.000 30210.133 .330 .568 
Greenhouse-Geisser 1.000 30210.133 .330 .568 
Huynh-Feldt 1.000 30210.133 .330 .568 
Lower-bound 1.000 30210.133 .330 .568 

Confidence Sphericity Assumed 1.000 .003 .078 .780 
Greenhouse-Geisser 1.000 .003 .078 .780 
Huynh-Feldt 1.000 .003 .078 .780 
Lower-bound 1.000 .003 .078 .780 

Syntax * Group Accuracy Sphericity Assumed 1.000 37.969 1.062 .307 
Greenhouse-Geisser 1.000 37.969 1.062 .307 
Huynh-Feldt 1.000 37.969 1.062 .307 
Lower-bound 1.000 37.969 1.062 .307 

RT Sphericity Assumed 1.000 27060.033 .295 .589 
Greenhouse-Geisser 1.000 27060.033 .295 .589 
Huynh-Feldt 1.000 27060.033 .295 .589 
Lower-bound 1.000 27060.033 .295 .589 

Confidence Sphericity Assumed 1.000 .006 .154 .696 
Greenhouse-Geisser 1.000 .006 .154 .696 
Huynh-Feldt 1.000 .006 .154 .696 
Lower-bound 1.000 .006 .154 .696 

Error(Syntax) Accuracy Sphericity Assumed 58.000 35.756   

Greenhouse-Geisser 58.000 35.756   

Huynh-Feldt 58.000 35.756   

Lower-bound 58.000 35.756   

RT Sphericity Assumed 58.000 91580.743   

Greenhouse-Geisser 58.000 91580.743   

Huynh-Feldt 58.000 91580.743   

Lower-bound 58.000 91580.743   

Confidence Sphericity Assumed 58.000 .038   

Greenhouse-Geisser 58.000 .038   

Huynh-Feldt 58.000 .038   

Lower-bound 58.000 .038     
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Table 32  
ANOVA for Classification Accuracy, Reaction Time, and Confidence for WI Groups 

Source df MS F p 
Intercept Accuracy 1.00 981766.008 3159.473 .000 

RT 1.00 38400847.408 80.723 .000 
Confidence 1.00 5045.330 4372.421 .000 

Group Accuracy 1.00 100.833 .324 .571 
RT 1.00 2307136.008 4.850 .032 
Confidence 1.00 .034 .029 .864 

Error Accuracy 58.00 310.737   
RT 58.00 475709.713   
Confidence 58.00 1.154     
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Table 33  
ANOVA for Workload by Syntax 

Source df MS F p 
Syntax MentalDemand Sphericity Assumed 1 1171.875 10.892 .002 

Greenhouse-Geisser 1 1171.875 10.892 .002 
Huynh-Feldt 1 1171.875 10.892 .002 
Lower-bound 1 1171.875 10.892 .002 

PhysicalDemand Sphericity Assumed 1 30.000 .240 .626 
Greenhouse-Geisser 1 30.000 .240 .626 
Huynh-Feldt 1 30.000 .240 .626 
Lower-bound 1 30.000 .240 .626 

TemporalDemand Sphericity Assumed 1 .833 .008 .931 
Greenhouse-Geisser 1 .833 .008 .931 
Huynh-Feldt 1 .833 .008 .931 
Lower-bound 1 .833 .008 .931 

Effort Sphericity Assumed 1 1505.208 9.969 .003 
Greenhouse-Geisser 1 1505.208 9.969 .003 
Huynh-Feldt 1 1505.208 9.969 .003 
Lower-bound 1 1505.208 9.969 .003 

Frustration Sphericity Assumed 1 630.208 3.029 .087 
Greenhouse-Geisser 1 630.208 3.029 .087 
Huynh-Feldt 1 630.208 3.029 .087 
Lower-bound 1 630.208 3.029 .087 

Performance Sphericity Assumed 1 725.208 17.154 .000 
Greenhouse-Geisser 1 725.208 17.154 .000 
Huynh-Feldt 1 725.208 17.154 .000 
Lower-bound 1 725.208 17.154 .000 

Global Sphericity Assumed 1 403.443 11.726 .001 
Greenhouse-Geisser 1 403.443 11.726 .001 
Huynh-Feldt 1 403.443 11.726 .001 
Lower-bound 1 403.443 11.726 .001 

Syntax * Group MentalDemand Sphericity Assumed 1 25.208 .234 .630 
Greenhouse-Geisser 1 25.208 .234 .630 
Huynh-Feldt 1 25.208 .234 .630 
Lower-bound 1 25.208 .234 .630 

PhysicalDemand Sphericity Assumed 1 30.000 .240 .626 
Greenhouse-Geisser 1 30.000 .240 .626 
Huynh-Feldt 1 30.000 .240 .626 
Lower-bound 1 30.000 .240 .626 

TemporalDemand Sphericity Assumed 1 120.000 1.083 .302 
Greenhouse-Geisser 1 120.000 1.083 .302 
Huynh-Feldt 1 120.000 1.083 .302 
Lower-bound 1 120.000 1.083 .302 

Effort Sphericity Assumed 1 175.208 1.160 .286 
Greenhouse-Geisser 1 175.208 1.160 .286 
Huynh-Feldt 1 175.208 1.160 .286 
Lower-bound 1 175.208 1.160 .286 
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Frustration Sphericity Assumed 1 91.875 .442 .509 
Greenhouse-Geisser 1 91.875 .442 .509 
Huynh-Feldt 1 91.875 .442 .509 
Lower-bound 1 91.875 .442 .509 

Performance Sphericity Assumed 1 385.208 9.111 .004 
Greenhouse-Geisser 1 385.208 9.111 .004 
Huynh-Feldt 1 385.208 9.111 .004 
Lower-bound 1 385.208 9.111 .004 

Global Sphericity Assumed 1 51.130 1.486 .228 
Greenhouse-Geisser 1 51.130 1.486 .228 
Huynh-Feldt 1 51.130 1.486 .228 
Lower-bound 1 51.130 1.486 .228 

Error(Syntax) MentalDemand Sphericity Assumed 58 107.593   
Greenhouse-Geisser 58 107.593   
Huynh-Feldt 58 107.593   
Lower-bound 58 107.593   

PhysicalDemand Sphericity Assumed 58 124.828   
Greenhouse-Geisser 58 124.828   
Huynh-Feldt 58 124.828   
Lower-bound 58 124.828   

TemporalDemand Sphericity Assumed 58 110.848   
Greenhouse-Geisser 58 110.848   
Huynh-Feldt 58 110.848   
Lower-bound 58 110.848   

Effort Sphericity Assumed 58 150.984   
Greenhouse-Geisser 58 150.984   
Huynh-Feldt 58 150.984   
Lower-bound 58 150.984   

Frustration Sphericity Assumed 58 208.024   
Greenhouse-Geisser 58 208.024   
Huynh-Feldt 58 208.024   
Lower-bound 58 208.024   

Performance Sphericity Assumed 58 42.277   
Greenhouse-Geisser 58 42.277   
Huynh-Feldt 58 42.277   
Lower-bound 58 42.277   

Global Sphericity Assumed 58 34.406   
Greenhouse-Geisser 58 34.406   
Huynh-Feldt 58 34.406   
Lower-bound 58 34.406     
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Table 34  
ANOVA for Workload by WI Group 

Source df MS F p 
Intercept MentalDemand 1 471880.208 390.028 .000 

PhysicalDemand 1 94640.833 100.593 .000 
TemporalDemand 1 255763.333 229.992 .000 
Effort 1 398476.875 368.203 .000 
Frustration 1 189210.208 113.338 .000 
Performance 1 75751.875 69.409 .000 
Global 1 224326.527 418.864 .000 

Group MentalDemand 1 21735.208 17.965 .000 
PhysicalDemand 1 22140.833 23.533 .000 
TemporalDemand 1 9187.500 8.262 .006 
Effort 1 17641.875 16.302 .000 
Frustration 1 1300.208 .779 .381 
Performance 1 460.208 .422 .519 
Global 1 9421.901 17.593 .000 

Error MentalDemand 58 1209.864   
PhysicalDemand 58 940.833   
TemporalDemand 58 1112.055   
Effort 58 1082.220   
Frustration 58 1669.432   
Performance 58 1091.386   
Global 58 535.560     
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Table 35  
ANOVA of Classification Accuracy for Sentences 

Source df MS F p 
NonDirectional Sphericity Assumed   5.000 2619.772 2.427 .035 

Greenhouse-Geisser 3.175 4125.622 2.427 .063 
Huynh-Feldt 3.377 3879.274 2.427 .059 
Lower-bound 1.000 13098.859 2.427 .125 

Error(NonDirectional) Sphericity Assumed 295.000 1079.584   
Greenhouse-Geisser 187.325 1700.131   
Huynh-Feldt 199.221 1598.614   
Lower-bound 59.000 5397.921   

Directional Sphericity Assumed 3.000 590.497 3.464 .018 
Greenhouse-Geisser 2.761 641.644 3.464 .021 
Huynh-Feldt 2.910 608.775 3.464 .019 
Lower-bound 1.000 1771.491 3.464 .068 

Error(Directional) Sphericity Assumed 177.000 170.462   
Greenhouse-Geisser 162.891 185.227   
Huynh-Feldt 171.686 175.738   
Lower-bound 59.000 511.386   

NonDirectional*Directional Sphericity Assumed 15.000 276.961 1.309 .189 
Greenhouse-Geisser 9.850 421.765 1.309 .223 
Huynh-Feldt 11.984 346.669 1.309 .208 
Lower-bound 1.000 4154.422 1.309 .257 

Error(NonDirectional*Directional) Sphericity Assumed 885.000 211.559   

Greenhouse-Geisser 581.155 322.168   

Huynh-Feldt 707.047 264.805   

Lower-bound 59.000 3173.384     
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Table 36  
Classification Accuracy for Individual Tactons 

Syntax Tacton M SD 
TS Attention 90.83 24.92 

East 96.76 5.90 
Enemy In Sight 92.36 17.65 
Move Out 87.64 22.42 
North 97.31 6.90 
Rush 84.04 29.09 
South 96.94 6.89 
Vee Formation 93.61 13.92 
Wedge Formation 89.58 13.25 
West 95.74 7.26 

ST Attention 90.21 25.12 
East 98.54 4.66 
Enemy In Sight 95.00 15.64 
Move Out 88.33 23.11 
North 97.50 6.83 
Rush 85.21 30.66 
South 95.00 11.78 
Vee Formation 92.50 19.82 
Wedge Formation 90.83 18.54 
West 96.25 7.39 
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Table 37  
Confidence Scores for Individual Tactons 

Syntax Tacton M SD 
TS Attention 6.55 0.97 

East 6.59 0.71 
Enemy In Sight 6.49 1.02 
Move Out 6.23 1.28 
North 6.67 0.62 
Rush 6.16 1.33 
South 6.60 0.68 
Vee Formation 6.33 1.07 
Wedge Formation 6.30 1.10 
West 6.60 0.68 

ST Attention 6.52 1.19 
East 6.71 0.58 
Enemy In Sight 6.49 0.99 
Move Out 6.21 1.31 
North 6.66 0.66 
Rush 6.16 1.41 
South 6.63 0.66 
Vee Formation 6.48 0.94 
Wedge Formation 6.34 1.02 
West 6.70 0.57 
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Table 38  
Classification Accuracy, Reaction Time, and Confidence for Syntax Sessions and WI Groups 

  M SD 
Accuracy TS WI Absent 89.44 17.25 

WI Present 86.49 13.71 
Total 87.96 15.52 

Accuracy ST WI Absent 93.29 11.74 
WI Present 92.58 8.36 
Total 92.94 10.11 

Reaction Time TS WI Absent 457.92 486.25 
WI Present 705.20 618.51 
Total 581.56 565.51 

Reaction Time ST WI Absent 396.15 565.13 
WI Present 703.50 442.96 
Total 549.83 526.73 

Confidence TS WI Absent 6.50 0.87 
WI Present 6.46 0.66 
Total 6.48 0.77 

Confidence ST WI Absent 6.50 0.85 
WI Present 6.48 0.68 
Total 6.49 0.77 
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Table 39  
Workload for Syntax Sessions and WI Groups 
Workload Subscale WI Group M SD 
Mental Demand TS Absent 52.83 31.64 

Present 78.83 14.60 
Total 65.83 27.73 

Mental Demand ST Absent 45.67 33.65 
Present 73.50 16.98 
Total 59.58 29.92 

Physical Demand TS Absent 14.50 17.88 
Present 40.67 26.48 
Total 27.58 26.00 

Physical Demand ST Absent 14.50 17.49 
Present 42.67 28.37 
Total 28.58 27.34 

Temporal Demand TS Absent 36.50 28.17 
Present 56.00 23.02 
Total 46.25 27.33 

Temporal Demand ST Absent 38.33 25.10 
Present 53.83 22.19 
Total 46.08 24.75 

Effort TS Absent 47.83 32.58 
Present 74.50 16.83 
Total 61.17 29.01 

Effort ST Absent 43.17 28.54 
Present 65.00 17.52 
Total 54.08 25.93 

Frustration TS Absent 37.83 35.40 
Present 46.17 26.22 
Total 42.00 31.17 

Frustration ST Absent 35.00 34.72 
Present 39.83 24.69 
Total 37.42 29.96 

Performance TS Absent 23.83 23.84 
Present 31.33 25.39 
Total 27.58 24.71 

Performance ST Absent 22.50 24.42 
Present 22.83 21.40 
Total 22.67 22.76 

Global Workload TS Absent 35.56 19.45 
Present 54.58 13.64 
Total 45.07 19.22 

Global Workload ST Absent 33.19 19.86 
Present 49.61 13.46 
Total 41.40 18.75 
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Table 40  
Classification Accuracy for Tactile Sentences by Non-Directional Component 

Non-Directional Sentences M SD 
Attention 90.00 25.06 
Enemy In Sight 91.39 17.63 
Move Out 85.83 23.18 
Rush 82.78 29.27 
Wedge Formation 90.56 15.83 
Vee Formation 87.22 14.51 
 

Table 41  
Classification Accuracy for Tactile Sentences by Directional Component 

Directional Sentences M SD 
East 88.06 16.83 
North 89.26 15.68 
South 88.33 16.23 
West 86.20 15.99 
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