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ABSTRACT 

Throughout the many years of research examining the various effects of automation on 

operator performance, stress, workload, etc., the focus has traditionally been on the level of 

automation, and the invocation methods used to alter it. The goal of the current study is to 

instead examine the utilization of various types of automation with the goal of better meeting the 

operator’s cognitive needs, thus improving their performance, workload, and stress. The task, 

control of a simulated unmanned robotic system, is designed to specifically stress the operator’s 

visual perception capabilities to a greater degree. Two types of automation are implemented to 

support the operator’s performance of the task: an auditory beep aid intended to support visual 

perception resources, and a driving aid automating control of the vehicle’s navigation, offloading 

physical action execution resources. Therefore, a comparison can be made between types of 

automation intended to specifically support the mental dimension  that is under the greatest 

demand (the auditory beep) against those that do not (the driving automation). An additional 

evaluation is made to determine the benefit of adaptively adjusting the level of each type of 

automation based on the current level of task demand, as well as the influence of individual 

differences in personality. 

Results indicate that the use of the auditory beep aid does improve performance, but also 

increases Temporal Demand and Effort. Use of driving automation appears to disengage the 

operator from the task, eliciting a vigilance response. Adaptively altering the level of automation 

to meet task demands has a mixed effect on performance and workload (reducing both) when the 

auditory beep automation is used. However, adaptive driving automation is clearly detrimental, 
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causing an increase in workload while decreasing performance. Higher levels of Neuroticism are 

related to poorer threat detection performance, but personality differences show no indication of 

moderating the effects of either of the experimental manipulations. The results of this study show 

that the type of automation implemented within an environment has a considerable impact on the 

operator, in terms of performance as well as cognitive/emotional state. 
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INTRODUCTION 

Modern Warfighters use and rely on increasingly complex systems to support their 

missions. The advanced functionality of these systems inherently results in greater complexity, 

but this functionality brings with it a greater need for system designers to strive for an 

appropriate match between the functionality of these systems and the operator’s needs and 

abilities. The complexity of modern technology can easily overwhelm an operator (Cummings & 

Guerlain, 2007), resulting in an overall decrease in system effectiveness rather than the desired 

increase. This decline in system effectiveness can result in injury or even death for the fielded 

Warfighter. 

More than 6,000 unmanned ground vehicles have been deployed in military operations in 

Iraq and Afghanistan (Pitts, 2009), and their numbers are expected to grow exponentially in the 

near future (U.S. Army UAS Center of Excellence, 2010). The growing popularity of unmanned 

systems is evidence of their many benefits – acting as force multipliers, extending manned 

capabilities, and allowing Soldiers to conduct their missions from relative safety (Barnes, 

Parasuraman, & Cosenzo, 2006). These tele-operational tasks are likely to become more 

prevalent as unmanned system capabilities increase and implementation costs decrease, resulting 

in a greater proportion of our military action depending upon these remote operator control 

interfaces. The operators of these unmanned systems can be placed in control of several vehicles 

simultaneously (Liu, Wasson, & Vincenzi, 2008; Saqer, Visser, Emfield, Shaw, & Parasuraman, 

2011; Squire, Trafton, & Parasuraman, 2006), or given responsibility for secondary tasks 

concurrent with their vehicle control task, which risks pushing their cognitive faculties to or 
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beyond their limits (Cummings & Guerlain, 2007). Essentially, the complexity of these 

unmanned systems are capable of generating an information stream that can quickly become 

more than the operator can handle. One simple method for reducing the cognitive load on the 

operator, while maintaining system efficiency, is to automate certain task components. 

Automation 

Automation, as defined by Parasuraman and Riley (1997, p. 231), is “the execution by a 

machine agent (usually a computer) of a function that was previously carried out by a human.” 

The widespread implementation of modern automation did not begin until the Industrial 

Revolution. In this period, technological advancements were developed specifically for the sake 

of automating tasks that were once complex human-operated responsibilities. For example, 

steam-powered engines allowed complex mechanical tasks to be performed with virtually no 

human intervention, short of continually fueling the engine. These advancements in automation 

technologies were one of the primary factors responsible for the advances in economic prosperity 

over the past two centuries, allowing for the creation of manufactured goods with far greater 

efficiency than when humans were required to perform the work. The resulting decrease in 

production costs allowed the goods to be sold at lower prices, drastically improving the 

economic standing of society as a whole. 

A similar revolution was also led by the development of modern computers. However, 

the automation of this era is “smarter” than that of the Industrial Revolution. Previously, 

mechanical devices replaced humans to perform physical labor. In our modern age, electronic 

computers are automating cognitive tasks. Initially, these were relatively simple, such as math 
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problems or other highly-structured, logic-based functions (Campbell-Kelly & Aspray, 2004). 

Recently, computer technology has sufficiently advanced to become capable of automating tasks 

in more complex domains such as aviation (Amalberti, 1999), driving (Stanton & Young, 1998), 

manufacturing (Groover, 2007), and medicine (Thompson, 1994). 

Automation in complex systems provides accuracy and speed advantages that cannot be 

achieved by a human. Therefore, automating all possible tasks would seem to lead to the best 

system with optimum performance and efficiency. However, research has repeatedly shown that 

this is not the case (Parasuraman, 1987; Sheridan, 1997). The use of automation can result in 

unexpected negative outcomes including a loss of efficiency, performance, and safety, and thus a 

thorough understanding of precisely how system characteristics influence the operator (and vice-

versa) is necessary before automation can be implemented appropriately. 

Problems with Automation 

The common thread underlying all problems with automation is that the automated 

process will never be perfectly reliable. Even relatively simple automated tasks will inevitably 

experience a failure (Parasuraman, 1987) as automated processes are nested within a larger 

system vulnerable to external influences. Therefore, the human operator needs to retain a central 

role in the system, as they must monitor and interact with the automation. This human-

automation relationship should be carefully maintained to ensure optimal system performance. 

Particular concerns are misuse, disuse, and abuse of automation (Parasuraman & Riley, 1997), 

delegation of the human operator to supervisory control (Sheridan, 1992, 1997), and skill 

degradation (Mitchell, Cummings, & Sheridan, 2004). 
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Misuse, Disuse, and Abuse 

First described by Parasuraman and Riley (1997), misuse, disuse, and abuse refer to the 

various suboptimal ways in which automation is utilized, both by operators and system 

designers. Misuse refers to the operators’ overreliance on an automated system. The operators 

develop an unrealistically high level of trust in the automation, and, as a result, fail to critically 

monitor its actions for potential failures (Parasuraman & Riley, 1997). For example, Riley (1994) 

found that nearly half of airline pilots failed to discontinue the use of an automated system after 

it committed an error that negatively impacted the performance of their task. This trend is not 

restricted to the laboratory (Young & Stanton, 2001), as incident reports have determined 

numerous fatal accidents resulting from an operator’s negligence to recognize failures in 

automated flight systems (NTSB, 1973; Mouloua, Gilson, & Koonce, 1997; Lee &  See, 2004). 

Mosier, Skitka, and Korte (1994) report that crew complacency, resulting from overreliance on 

the automated flight systems, is a factor identified in 77% of flight incident reports. 

Disuse is essentially the opposite problem of misuse, and it occurs when operators 

underestimate the reliability of automation and therefore distrust it (Parasuraman & Riley, 1997). 

Disuse can result in the implementation of automation causing an increase, rather than the 

desired decrease, in operator workload. Under these circumstances operators may choose to 

manually perform the now-automated task components in order to continually monitor the 

distrusted automation for errors (Bainbridge, 1983). Disuse is particularly problematic in systems 

with automated alerts to warn of events which have a relatively low probability of occurrence, 

but a very high cost when they do. For example, complete engine failure in an airplane is a very 

unlikely event, but when it does occur it can result in great costs from the loss of both life and 
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equipment (Netherlands Aviation Safety Board, 1992). Given the cost associated with this event, 

any automated system designed to monitor for engine failure will do so with a very lenient 

decision criteria, accepting a high number of false alarms in order to avoid a very costly miss 

(Poor, 1994). This lenient decision criteria is selected because the high number of false alarms 

are considered to have virtually no associated cost, short of the time needed for the crew to 

determine the cause for the alarm and disable it. However, repeated false alarms do in fact come 

with a greater expense. That cost is the potential disuse of a system because the operator’s trust is 

negatively affected (Parasuraman, Hancock, & Olofinboba, 1997), demonstrated by the “cry 

wolf effect” (Bliss, 1997). This disuse can lead to the operator ignoring future alarms, negating 

the purpose of the system and resulting in an increased risk probability. 

The problems with automation extend beyond the realm of the operator to the decisions 

made by system designers regarding the implementation of automation, leading to possible abuse 

(Parasuraman & Riley, 1997). Typically, automation is implemented in any task where there is 

an anticipated financial gain, through an increase in either production rate or accuracy of 

performance over that of a human operator. However, without diligent consideration of the 

impact this automation will have on the human operator, its introduction could decrease overall 

system performance. For example, if the specific functions of the automation are not known by 

the operator, they may perform actions that are incongruous or contrary to those of the 

automation, resulting in, at best, inefficiency, and at worst, a catastrophic system failure (Riley, 

1996). 
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Supervisory Control 

Another consideration is the change in control experienced by the operator. In automated 

systems, the human operator who formerly performed the now-automated task is typically 

delegated to a supervisory control position (Sheridan, 1997, 2002). Therefore, rather than 

removing the task from the operator’s responsibility, it simply changes the type of work the 

operator must perform (Edwards, 1977; Parasuraman & Riley, 1997). Specifically, the operator’s 

role becomes one of monitoring the automation for errors, and if/when the automation fails the 

responsibility of performing the task is returned to the operator. However, because the operator 

has been taken “out-of-the-loop,” and no longer maintains direct control over the task on a 

regular basis, their ability to perform is likely to degrade (Kaber, Omal, & Endsley, 1999; 

Mitchell, Cummings, & Sheridan, 2004). This is an increasingly common problem due to the 

increase of human operators delegated to supervisory control tasks as automation has become 

more prevalent (Lee & Moray, 1994). This shift, described by Hopkin (1992), is a change from 

tactical to strategic orientation, placing the operator in what is essentially a vigilance task 

(Noyes, 2009). 

Vigilance 

Vigilance, or sustained attention, is the ability of an observer to detect and respond to 

infrequent critical signals amidst non-critical events over an extended period of time (Davies & 

Parasuraman, 1982; Reinerman-Jones, Matthews, Langheim, & Warm, 2011). Research has 

consistently demonstrated that humans are particularly poor vigilance performers (Mackworth, 

1948; See, Howe, Warm, & Dember, 1995; Szalma et al., 2004; Warm, Dember, & Hancock, 

1996). This results from the counterintuitive concept that vigilance is a capacity-draining, 
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mentally demanding task (Parasuraman, Warm, & Dember, 1987; Warm et al., 1996). In other 

words, most vigilance tasks require the operator to monitor sensory information, deciding 

whether a signal is present or absent, leading to a progressive decline in performance 

(Parasuraman, 1986). The introduction of an automated system does add processing load to the 

operator because the task now requires an understanding of the automation’s functions in 

addition to the components already required for task completion. However, there are instances in 

which cognitively demanding tasks do not elicit a loss of performance; rather performance stays 

the same or can even improve (See et al., 1995). Automated systems often fall in this latter 

category as they usually require operators to complete multiple tasks simultaneously, which are 

typically cognitive in nature. 

Implementation of Automation 

Despite the aforementioned concerns presented, the history of automation has shown it 

can be effectively implemented. The goals for automation support its utility and can be 

summarized into two primary categories: reducing cost (both financial and labor hours) and 

improving performance of the system (Parasuraman, 1987; Wiener, 1984; 1985). 

While neither human nor automation can ever achieve perfectly efficient and accurate 

performance, when implemented appropriately they can work synergistically to achieve a level 

of performance greater than either are capable of individually (Hancock & Parasuraman, 1992; 

Hancock, Parasuraman, & Byrne, 1996). To accomplish this, it is critical that system designers 

take care to assign functions to both the human operator and the automation for which they are 

best suited. Fitts (1951) published his seminal function allocation list more than a half-century 
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ago (Table 1), which has since been refined by many experiments, informing system designers of 

best practices for distributing task load. Toward that end, more recent discussions have 

questioned the applicability of the original Fitts’ list in modern systems (Hancock & Scallen, 

1996; Woods, 2002) and whether such a strictly defined distribution can be appropriate across 

the variety of technologies available today (Dearden, Harrison, & Wright, 2000; Sheridan, 2000). 

 

Table 1. Distribution of tasks best suited for humans and machines. Adapted from 

Fitts (1951). 

Humans surpass machines in the: Machines surpass humans in the: 

 Ability to detect small amounts of 

visual or acoustic energy 

 Ability to perceive patterns of light 

or sound 

 Ability to improvise and use 

flexible procedures 

 Ability to store very large amounts 

of information for long periods and 

to recall relevant facts at the 

appropriate time 

 Ability to reason inductively 

 Ability to exercise judgment 

 Ability to respond quickly to control 

signals, and to apply great force 

smoothly and precisely 

 Ability to perform repetitive, routine 

tasks 

 Ability to store information briefly 

and then to erase it completely 

 Ability to reason deductively, 

including computational ability 

 Ability to handle highly complex 

operations, i.e., to do many different 

things at once 

 

Successful function allocation can occur only after careful consideration of the balance 

between human and system control, and an important step in that process is identifying the 

appropriate cognitive component to support. Automation is typically organized into 

classifications based on the function of human information processing that it serves to support. 

The most widely accepted classification system represents human information processing as a 

four-stage model (Parasuraman, 2000; Parasuraman, Sheridan, & Wickens, 2000): sensory 
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processing, perception/working memory, decision making, and response selection (Figure 1). 

Type of automation is classified based on the components of information processing it serves to 

support: information acquisition, information analysis, decision and action selection, or action 

implementation. 

 

Human Information Processing 

Sensory 

Processing 

 Perception/ 

Working 

Memory 

 
Decision 

Making 

 
Response 

Selection    

       

Type of Automation 

Information 

Acquisition 

 
Information 

Analysis 

 
Decision 

Selection 

 
Action 

Implementation    

Figure 1. Simple four-stage model of human information processing and types of 

automation. Adapted from Parasuraman, Sheridan, and Wickens (2000). 

 

This taxonomy consists of discrete categories of information processing stages and 

components; however, automation can support several aspects of information processing and 

exist at different levels for each of these functions. The level of automation describes the extent 

to which the automation takes control of the given function. A ten-level scale to describe the 

degree of autonomy of the system has received general acceptance (Parasuraman et al., 2000; 

Sheridan & Verplank, 1978), wherein higher levels represent greater automated control of the 

given task function (Table 2). 
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Table 2. Levels of automation of decision and action selection. Adapted from 

Parasuraman, Sheridan, and Wickens (2000). 

  The computer: 

HIGH 10 decides everything, acts autonomously, ignoring the human 

 9 informs the human only if it, the computer, decides to 

 8 informs the human only if asked 

 7 executes automatically, then necessarily informs the human 

 6 allows the human a restricted time to veto before automatic 

execution 

 5 executes that suggestion if the human approves 

 4 suggests one alternative 

 3 narrows the selection down to a few 

 2 offers a complete set of decision/action alternatives 

LOW 1 offers no assistance: human must take all decisions and actions 

Adaptive Automation 

In most traditional automated systems the type and level of automation are fixed at levels 

determined by the system designers. Some systems, such as an autopilot in an aircraft, allow the 

operator to activate or deactivate the automation at any time, providing adaptable automation 

(Opperman, 1994; Scerbo, 2001). Adaptive automation takes this concept a step further by 

dynamically altering the level of automation automatically (Hancock & Chignell, 1987). In this 

way, adaptive automation can be thought of as an additional layer of automation which 

encompasses the original system, serving to automate the operator’s decision to turn the original 

automation on or off. 

One goal of implementing adaptive automation is to avoid the problems inherent with 

static automation (misuse, disuse, skill degradation, etc.) while still reaping its benefits. As the 
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term suggests, adaptive automation allows the automated aid to be adjusted responsively to better 

meet the needs of the system, including the human operator (Rouse, 1988). Through this method, 

the automation can be kept at a relatively low level during periods of routine performance, 

allowing the operator to maintain control without risking a reduction in overall system 

performance. However, when some aspect of the task changes that increases the demand on the 

human operator, or requires their attention to be devoted entirely to one specific sub-task, the 

system will respond by increasing the level of automation in certain areas. The goal for this 

adaptation is to effectively off-load some of the demands on the operator, allowing them to focus 

on critical elements. 

The use of adaptive automation has been shown to be successful across various task 

environments. For example, Parasuraman, Cosenzo, and De Visser (2009) found the use of 

adaptive automation for a UAV control task to significantly increase operator situation 

awareness and change detection performance while reducing workload relative to both complete 

manual control as well as statically implemented automation. Adaptive automation has also been 

found to benefit the detection of system failures in a multitask flight simulation (Parasuraman, 

Mouloua, & Molloy, 1996; Parasuraman, Mouloua, Molloy, & Hilburn, 1993), an area which has 

specifically been shown to suffer from the implementation of static automation systems 

(Chambers & Nagel, 1985; Wiener, 1988). Beyond helping in the direct control of an aircraft, 

adaptive systems have also led to the reduction of workload for air traffic controllers (Hilburn, 

Jorna, Byrne, & Parasuraman, 1997; Kaber & Endsley, 2004). Although limited, adaptive 

automation has also exhibited benefits in other operational settings, such as the Rotorcraft Pilot’s 

Associate used in Army helicopters (Dornheim, 1999; Miller & Hannen, 1999). 
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The ideal implementation of adaptive automation is for the system and operator to 

develop a relationship that more closely resembles a cooperative team rather than the system 

serving as the operator’s tool (Hollnagel & Woods, 1999). For the system to be capable of 

adapting its level of automation to optimally support the operator’s needs, it must maintain an 

accurate representation of the operator’s cognitive state (Byrne & Parasuraman, 1996). It is for 

this reason that well-designed adaptive systems more closely resemble a coordinated team, in 

that effective team members understand their teammates’ cognitive and affective state in order to 

adjust their own actions, better supporting the needs of others (Entin & Serfaty, 1999; Rouse, 

Cannon-Bowers, & Salas, 1992). 

It is therefore necessary that the system maintain some representation of the operator’s 

cognitive state so that it can appropriately determine when to adjust the level of automation 

(Wickens & Hollands, 2000). This can be accomplished through multiple means. The simplest 

method is to assume the operator’s cognitive state based on external task conditions. For 

example, it can be assumed that a pilot’s mental workload is highest during takeoff and landing, 

and so the level of automation in the cockpit can be increased during these times (Parasuraman, 

Mouloua, & Hilburn, 1999). However, this method has the obvious disadvantage of being unable 

to respond unexpected increases in workload, or differences across operators in their response to 

such changes. 

An alternative is to infer the operator’s needs based on their performance, with the 

assumption that the level of automation should be increased when performance begins to degrade 

(Kaber & Riley, 1999; Kaber, Wright, Prinzel, & Clamann, 2005). However, this method is 

difficult to implement as it requires the system to know the “true” state of the world in order to 
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correctly evaluate the operator’s performance. As this is typically impossible to achieve with a 

sufficient degree of accuracy, this method typically requires the implementation of a secondary 

task generated by the system (Kaber & Riley, 1999). The operator’s performance on this 

secondary task can be monitored and used to infer the need for automation on their primary task. 

However, the implementation of this secondary task will serve as an additional source of 

cognitive demand and a distraction from the operator’s primary task, making this method of 

adaptive automation control a costly one in terms of the operator’s cognitive resources, and 

impractical in many operational settings. Given that the entire purpose of adaptive automation is 

to prevent an overloading of the operator’s cognitive faculties, any implementation which 

inherently increases the cognitive demand of the task should be avoided if possible. 

A third, and more promising, method used to infer the operator’s cognitive state is the use 

of physiological measures. Measures of brain, heart, skin, and eye activity can all be used to 

estimate the operator’s cognitive state (Kramer & Weber, 2000). This method has seen promise, 

with several researchers demonstrating its effectiveness in laboratory tasks (Bailey, Scerbo, 

Freeman, Mikulka, & Scott, 2006; Freeman, Mikulka, Pope, Prinzel, & Scerbo, 2003; Freeman, 

Mikulka, Prinzel, & Scerbo, 1999; Prinzel et al., 2003). However, this method is still not without 

its shortcomings. The primary difficulty resulting from the use of physiological measures is the 

amount of data necessary to make accurate predictions of cognitive state (Wickens & Hollands, 

2000). These measures are incapable of providing truly real-time indications of the operator’s 

mental state, as their calculations are always based on averages of data collected from some 

period of time. When averages are computed over longer time intervals, the resulting prediction 
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of the operator’s cognitive state may be more accurate, but this incurs the cost of introducing 

greater lag in the automation’s response to the operator’s needs. 

Operator Psychological Characteristics 

Stress 

There is a long-recognized relationship between stress and performance. Traditional 

models define stress in terms of the relevant stimulus (e.g. noise, temperature, time pressure, 

etc.) or the physiological response elicited by this stimulus (Cox, 1978). Although the “inverted 

U” relationship between arousal and performance is often attributed to Yerkes and Dodson 

(1908), the first specification of this function as a description of arousal effects was by Hebb 

(1955; see Hancock & Szalma, 2003). Unitary arousal theory assumes that organisms seek to 

maintain an optimal level of physiological arousal, and that this level yields maximum 

performance (Figure 2). 
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Figure 2. The “inverse U” relationship between arousal and performance. Figure 

from Hebb (1955). 

 

More recent models, such as that proposed by Hancock and Warm (1989), have described 

a more complex relationship between stress and performance (Figure 3). The updated model 

maintains the central concept that a moderate level of stress is ideal to avoid performance 

decrements associated with under- or over-arousal. However, the model departs from the 

traditional view of the stress/performance relationship in two important ways. 

First, the Hancock and Warm (1989) model recognizes that performance does not begin 

to degrade immediately when the operator’s stress level is pushed above or below a narrowly 

defined ideal range. When stress levels are only marginally above or below the operator’s 

“comfort zone”, performance will (at least initially) be maintained due to psychological 

adaptability (i.e. increased attentional resources). If stress levels are pushed further, 

psychological adaptability will eventually fail due to the lack of additional attentional resources. 

At this point, physiological adaptability can provide for the continued maintenance of 
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physiological functioning, until stress levels reach beyond the threshold of physiological 

adaptability. At this point, performance will begin to degrade dramatically as the operator no 

longer has the capacity to adapt to the continued hypo- or hyper-stress. 

Secondly, the Hancock and Warm (1989) model incorporates the concept that stress is 

not simply a component of the environment which is imposed on to the operator. Rather, an 

interaction occurs between the task/environment and the operator to determine their response to 

its particular demands. Therefore, if the performer is hyperstressed and brought out of their 

comfort zone, the psychological adaptability which is necessary for them to maintain their 

performance will itself impose additional stress on the operator. For this reason, an apparently 

static level of external task demand can cause a consistently increasing, or decreasing, level of 

operator stress and ultimately result in a failure in performance, as is particularly evident in 

vigilance tasks (Warm et al., 1996). Of particular importance to the operator’s response to task 

stress is the information rate (temporal flow) and information structure of the environment. 

Different individuals can perceive different meanings from tasks with identical information 

structures, resulting in different behaviors as well as different levels of stress. 
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Figure 3. The Hancock and Warm (1989) model of stress as it relates to 

psychological and physiological adaptability. 

 

Multidimensionality of Stress 

Matthews has further examined the relationship between performance and stress 

(Matthews et al., 2002, 1999). Rather than conceptualizing stress as a singular construct, 

Matthews developed a model consisting of three independent factors: Task Engagement 

(cognitive and energetic processes), Distress (cognitive and affective processes), and Worry 

(cognitive processes only; Matthews et al., 1999). These secondary factors are perhaps most 

easily understood through the primary factors of which they are comprised. Task Engagement 

consists of energy, motivation, and concentration; Distress consists of tension, hedonic tone, and 

confidence; and Worry consists of self-focus, self-esteem, task-relevant cognitive interference 

and task-irrelevant cognitive interference (Matthews et al., 1999). Each factor is associated with 

a core relational theme (Lazarus, 1991; Smith & Lazarus, 1990). Specifically, the Distress factor 
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is related to the theme of perceived overload of processing capacity, Task Engagement is linked 

to the theme of commitment of effort, and Worry is related to the self-evaluation theme 

(Matthews et al., 2002). 

By analyzing stress into three dimensions, a more thorough understanding of the 

relationship between stress and performance can be attained. Matthews and colleagues (2002) 

conducted a series of evaluations to examine how the performance of various tasks influences the 

three primary factors of stress. These findings indicated that single tasks often have different 

effects on each component (e.g. a visual vigilance task was found to decrease Engagement, 

increase Distress, and cause no significant change in Worry), and that the performance of 

different tasks result in different patterns of stress response (Figure 4). Task Engagement tends to 

be related to self-regulation, with tasks requiring high levels of short-term effort (working 

memory tasks) leading to increases in Engagement, while long, monotonous (vigilance) tasks led 

to decreases. Distress and Task Engagement were both related to the classic concept of arousal, 

which tended to increase over time, particularly in more demanding tasks. Worry consists of the 

self-evaluation and “meta-task” processes. In sustained attention, Worry tends to decrease over 

time as initial anxieties dissipate (see Szalma et al., 2004 for a more thorough discussion of the 

individual subscales of stress). 
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Figure 4. Task-induced changes in components of subjective stress resulting from 

various task types. Pound signs (#) indicate non-significant changes from baseline 

measures. Figure from Matthews et al. (2002). 

 

Application of Stress Theory to Adaptive Automation 

The established relationship between stress and operator performance makes this concept 

an important consideration for adaptive automation systems. Static automation has been shown 

to effectively reduce Distress (Funke, Matthews, Warm, & Emo, 2007) and mitigate the decrease 

in Energetic Arousal (a component of Task Engagement) caused by vigilance tasks (Hitchcock et 

al., 2003), but only limited research has investigated the influence of adaptive automation on 

subjective stress (Szalma & Taylor, 2011). However, as the theoretical foundations of stress have 

evolved, it has become apparent that this relationship is not consistent across various task types, 

or even across different individuals completing a single task (Szalma, 2008). This complexity 

makes stress a more difficult construct to utilize as a means of controlling the level of 
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automation. A stress-based adaptive automation system would inherently require the system to 

be specifically tailored to the particular tasks involved, as well as the state of individuals serving 

as operators. For these reasons, adaptive automation traditionally focuses on measures of 

operator workload rather than stress. Although stress may not be an ideal candidate to determine 

a system’s level of automation, it is still a critical element to consider when evaluating the 

automated system’s impact on the operator given its relationship with both performance and 

operator wellbeing. 

Workload and Resource Theories 

Mental workload is the cognitive component most commonly used to trigger changes in 

the level of automation in adaptive systems. While there is no single, commonly accepted 

definition of workload, those that have been proposed conceptualize workload as the degree to 

which information processing, mental effort, or cognitive resources are required for task 

performance, relative to their capacity (Eggemeier, Wilson, Kramer, & Damos, 1991; Gopher & 

Donchin, 1986; Hockey, 1997; Kramer, Sirevaag, & Braune, 1987; Moray, 1979). Theoretical 

descriptions are usually metaphorical, typically invoking comparison to a hydraulic system in 

which tasks consume the fluid (resources) stored in a tank, or in economic terms wherein the 

cognitive resources are a limited commodity, subject to the demands of the current task(s) 

(Szalma & Hancock, 2007). Early perspectives considered cognitive resources as a single pool of 

energetic capacities (Kahneman, 1973; Figure 5). In contrast, others have argued for multiple 

resource capacities (Wickens, 1980, 1984). 
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Figure 5. Kahneman's (1973) unitary resource theory. 

 

Results of dual-task studies indicated that, for specific types of tasks, little to no 

detriment was caused by the introduction of a concurrent secondary task (Kantowitz & Knight, 

1976; Wickens, 1976). For example, Wickens (1976) reported that the performance of a physical 

task was met with a degradation in the performance of a simultaneous manual tracking task 

(indicating that both rely on similar cognitive resources), while the performance of an auditory 

signal detection task caused no such degradation on the same manual tracking task. These results 

supported the multiple resource perspective that separate, unique pools of cognitive resources 



22 

 

were responsible for the performance of the auditory task and the manual tracking task, allowing 

for their simultaneous performance at levels similar to that possible when performed 

individually. 

The Four Dimension Model 

The model proposed by Wickens continues to be the most commonly accepted multiple 

resource theory, though Wickens himself conceded that it is not without its flaws (Wickens, 

2008; see also Hancock, Oron-Gilad, & Szalma, 2007). Wickens’ model is described as the Four 

Dimension (4-D) model, because it describes cognitive resources along four separate 

dimensions: stages of processing, codes of processing, modalities, and visual channels (Figure 

6). 

The stages of processing dimension divide tasks into perceptual, cognitive, and response 

phases. The codes of processing dimension separates tasks requiring spatial skills from those 

relying on verbal processes (both the perception and generation of speech). The modality 

dimension distinguishes visual from auditory perception, and for this reason is nested within the 

perceptual stage of processing, as it is not relevant for central processing or the selection and 

execution of actions. Finally, the visual channels dimension is nested within the visual modality, 

separating tasks dependent on focal vision (e.g. object recognition, reading text or symbols) from 

ambient vision (e.g. general orientation). These dimensions describe the separation of cognitive 

resources, and thus the extent to which two (or more) tasks can be completed simultaneously 

without sacrificing speed or accuracy. For example, two tasks which both utilize perceptual, 

spatial, visual, focal resources will strongly conflict with one another, but would cause virtually 

no interference with the verbal execution of actions. 
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Figure 6. The 4-D multiple resource model. Figure from Wickens (2008). 

Individual Differences 

Although research has traditionally focused on the effects of various system 

characteristics on operator performance, workload, and stress, more recent work has investigated 

the importance of the operator’s own characteristics in influencing response to automation. The 

most common trait evaluated has been trust (Lee & See, 2004), which has been found capable of 

influencing the operator’s perceptions of automated systems more so than the reliability of the 

automation itself (Merritt & Ilgen, 2008). More recent work has begun to investigate the role 

other personality characteristics play in the operator-system relationship. 

Szalma and Taylor (2011), building on previous evidence of a link between the 

personality traits Extraversion and Neuroticism with task performance (Eysenck & Eysenck, 
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1985), found these traits to influence an operator’s interaction with automated systems as well. 

Neuroticism is a person’s typical level of emotional stability, or their tendency to experience 

anxiety, anger, sadness, or guilt (Costa & McCrae, 1992), as well as the Distress and Worry 

components of stress (Matthews et al., 1999). Higher levels of Neuroticism have also been 

shown to negatively influence a person’s ability to respond to dynamic task environments (i.e. 

fluctuating levels of task demand; Cox-Fuenzalida, Swickert, & Hittner, 2004), making it of 

particular relevance for adaptive automation systems. Szalma and Taylor (2011) found operators 

with higher levels of Neuroticism performed worse on a threat detection task, and were less 

likely to agree with an automated aid’s correct recommendation. 

Extraversion is primarily an index of a person’s preference for social interaction, but is 

also sensitive to their preference for excitement and stimulation, as well as their assertiveness 

and positive affect (Costa & McCrae, 1992). Individuals higher in extraversion tend to have 

greater working memory and resource capacities, and superior divided attention, but poorer 

ability to sustain attention over time (Matthews, Deary, & Whiteman, 2003; Matthews, Jones, & 

Chamberlain, 1992). However, Szalma and Taylor (2011) found no statistically significant 

relationship between Extraversion and performance in their adaptive automation task. However, 

those higher in Extraversion were found to report higher levels of Frustration in periods of lower 

task demand than during periods of higher demand, suggesting that these participants prefer the 

more stimulating environment experienced during periods of high demand. 

Findings such as these demonstrate the importance of considering individual differences 

in personality within automated systems, as their influence can be of equal or greater 

significance than the characteristics of the automated system. For example, an ideal system could 
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respond to an operator who is particularly high in Extraversion by maintaining a higher general 

level of task demand relative to that preferred by individuals lower in Extraversion. 

Purpose of the Current Study 

Research investigating the effects of automation on operator performance, stress, 

workload, etc. have tended to focus on the level of automation and the invocation methods used 

to alter it (Wickens, Li, Santamaria, Sebok, & Sarter, 2010). Despite repeated discussion of the 

importance of appropriate function allocation to avoid automation abuse (Dearden et al., 2000; 

Fitts, 1951; Hancock & Scallen, 1996; Sheridan, 2000; Woods, 2002), laboratory research 

studies still tend to select the task component to automate somewhat arbitrarily. Traditionally, 

this could be excused given the somewhat limited assortment of tasks that could be automated 

with acceptable levels of performance in operational environments, constraining the options of 

researchers who wished to maintain external validity. However, relatively few tasks remain that 

are incapable of being automated with some degree of reliability as a result of the continuing 

development of advanced technologies. A greater understanding of the specific impact of various 

types of automation is now needed given this growth in capabilities. 

The limited research which has evaluated the impact of varying types of automation has 

done so only based on the stage of information processing they support (Parasuraman, 2000; 

Parasuraman et al., 2000), with little consideration of specific task demands. For example, there 

is evidence that operators receive greater benefit from adaptive automation applied to the 

information acquisition and action implementation stages of information processing and it has 

been argued that these effects are consistent across task types (Kaber, Perry, Segall, McClernon, 
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& Prinzel, 2006; Kaber et al., 2005). However, this generalized interpretation overlooks the 

possibility that these types of automation provided the greatest benefit because the operators 

experienced greater demands within the cognitive dimensions supporting information acquisition 

and action implementation. This alternative explanation would suggest that the type of 

automation which provides the greatest benefit to the operator cannot be universally defined, and 

is instead task-specific based on the extent to which a given task consumes mental resources of 

varying dimensions. 

Research Goals 

The traditional view of operator cognitive state is that workload and stress are 

unidimensional, but more recent work has established that these constructs are multidimensional 

(Matthews et al., 2002, 1999; Szalma et al., 2004). An operator can easily experience tremendous 

cognitive load within one specific dimension and relatively little along another. In such an 

instance, the type of automation implemented to support the operator may be critical to its 

success. The automation must be capable of supporting the relevant cognitive dimension, as 

anything that does not support this specific aspect of the task would likely provide little or no 

benefit. 

The goal of the current study is therefore to advance the scientific understanding of the 

interaction between human operators and adaptive automation systems by manipulating the type 

and level of automation in the context of changing levels of task demand. The use of multiple 

simultaneous tasks in a simulated unmanned robotic system control environment will ensure that 

participants experience demand across all potential mental dimensions (Rouse, 1977) within a 
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task that accurately reflects the type of complex task environment experienced by our current and 

future Warfighters. By focusing a particularly high level of demand within one specific 

cognitive/perceptual dimension, a comparison can be made between types of automation which 

support this mental dimension (demand-type matched automation) against those that do not 

(demand-type mis-matched automation), with the goal of improving operator performance, 

workload, and stress. An additional evaluation will be made to determine the potential benefit of 

adaptively adjusting the level of each type of automation based on the level of task demand, as 

opposed to maintaining a consistently high level of automation. 

Hypotheses to be Tested 

H1. The use of automation which specifically supports the cognitive dimension 

experiencing the greatest level of demand (demand-type matched automation) will result in 

improved levels of performance, as well as reduced workload and stress when compared to 

alternative types of automation (demand-type mis-matched). Specifically, demand-type matched 

automation is expected to result in significantly reduced levels of the Mental and Temporal 

Demand subscales of workload as well as the Distress facet of stress. 

H2. Adaptive automation, in which the level of automation adapts according to the 

current level of demand, will result in improved levels of performance and stress when compared 

to automation maintained at a consistently high level. This effect is further predicted to be 

stronger when the adaptive automation is implemented with demand-type matched automation, 

as compared to demand-type mis-matched automation. Although no prior research exists on 

which to base specific predictions regarding the stress effects, making this relationship more 
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exploratory in nature, it is predicted that the adaptive automation will increase levels of Task 

Engagement while reducing levels of Distress. 

H3. Individual differences in personality will moderate the relationship between the 

adaptability of automation variable with the dependent variables of performance, workload, and 

stress. Specifically, those higher in Neuroticism will receive less benefit from the adaptive 

automation, given their poorer ability to adapt to dynamic work environments (Cox-Fuenzalida 

et al., 2004). Conversely, those higher in Extraversion will receive greater benefit from the 

adaptive automation given their preference for more stimulating environments (Szalma & 

Taylor, 2011), which will be diminished when the automation remains at a constant high level. 
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MATERIALS AND METHODS 

Experimental Task 

The experimental task simulated the operation of an unmanned ground vehicle (UGV) 

from a remote operator control station, utilizing the Mixed Initiate Experimental (MIX) testbed 

(Figure 7; Barber et al., 2008; Reinerman-Jones, Barber, Lackey, & Nicholson, 2010). The 

mission took place in a generic Middle Eastern town, using a terrain database of the Military 

Operations in Urban Terrain (MOUT) site in 29 Palms, California. The task was completed on a 

standard desktop computer with a 22” (16:10 aspect ratio) monitor with a joystick and mouse. 

The participant was responsible for completing three separate tasks simultaneously: driving the 

vehicle along a pre-specified path, monitoring a video feed for enemy threats, and monitoring a 

map display for changes in entity locations. 
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Figure 7. The MIX testbed, with outlines overlaid to differentiate task areas. 

Driving Task 

The participants’ task was to follow a pre-defined path presented to them in the route 

map window (Figure 8). An icon representing the UGV’s current location and heading was 

always displayed in the center of this window with North always at the top of the screen. 

Participants controlled the movement of the UGV using a joystick (Logitech Extreme 3D Pro) 

and the map continuously updated to follow the vehicle as it drove through the route. The route 

consisted of a series of waypoints (represented by large dots) connected by a dotted line. 

Route Map 

Threat Detection 

Change Detection 
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Figure 8. The route map portion of the MIX testbed, enlarged to show detail. 

 

Four unique paths were used for the routes (Figure 9). There were two separate routes 

and each was used twice by reversing the start/end points. The routes had an equal number of 

turns (8 in each), with an equal number being left and right. Each route was 1.13 miles long and 

the UGV operated at a maximum speed of 2.82 mph, making each route last 24 minutes. This 

route design was implemented to balance and equate all features of the route paths in order to 

minimize the influence that the route could have on performance. 
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Figure 9. Routes used in the study. Each route is used with the start/end points 

reversed, creating a total of four unique paths. 

 

Automation could be implemented in the driving task (see Manipulations section below). 

When driving automation was engaged, the UGV drove itself along the route automatically, with 

no input from the participant necessary. The participant did maintain a limited level of 

supervisory control through the use of a “Pause” button located on the right side of the MIX 

testbed control interface. Clicking this button with the mouse while the driving automation was 

engaged caused the UGV to stop in place until the participant clicked the same button again, 

which was labeled as “Resume” when the vehicle was paused. This type of control was similar to 

that of manual driving wherein the operator released the joystick to stop the vehicle and resumed 

driving by pushing the joystick forward. 

Threat Detection Task 

As the vehicle drove along the route, a video feed from the perspective of the front of the 

UGV was displayed to the participant in the threat detection window (Figure 10). The 
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environment was populated with various stationary objects, such as buildings, trees, vehicles, 

and people. The participant’s task was to monitor the people along the route for potential threats. 

Four different categories of people were present in the environment (Figure 11): Friendly 

Soldiers, Friendly Civilians, Enemy Soldiers, and Insurgents (armed civilians). When an Enemy 

Soldier or Insurgent was visible, the participant was to identify them by clicking a button labeled 

“Threat Detect” and then clicking on the threat in the threat detection window using the mouse. 

 
Figure 10. The threat detection portion of the MIX testbed, enlarged to show 

detail. A threat (Enemy Soldier) is visible on the right in green. 
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Figure 11. Examples of characters displayed throughout the environment. From 

left to right: Friendly Soldier, Friendly Civilian, Enemy Soldier, Insurgent. 

 

The characters were presented to the participant at an average rate of 26 each minute, 

though this number could vary slightly dependent upon the speed with which the participant 

operated the UGV. Two of these 26 characters were classified as threats, resulting in a signal-to-

noise ratio of 1:12. In addition to the human characters, neutral objects (e.g. rubble piles, 

vehicles, and trees) were also presented at an average rate of 15 per minute. 

Change Detection Task 

A separate map at the bottom of the screen displayed the current location of various 

entities. Each entity was represented by an icon (Figure 12, Figure 13). Although these icons do 

convey information regarding its type and affiliation through military convention (Department of 

Defense, 2005), the participant was not trained or instructed to attend to these details. The 

participant’s task was only to monitor the presence and location of the icons, and respond when a 
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change occurred. Three types of changes occurred: Appear (a new icon was added to the 

display), Disappear (an icon was removed from the display), or Movement (an icon changed 

location). When one of these changes occurred, the participant responded by clicking the 

appropriate button (“Appeared,” “Disappeared,” or “Movement”) above the change detection 

map. 

Automation could also be implemented in the change detection task. When the 

automation was engaged, a beep alert sound was played over speakers at the moment any type of 

change occurred. The same beep sound was used regardless of the type of change that occurred. 

The beep was simply used as an alert and did not take control of the change detection task from 

the participant, as they were still required to respond whenever a change occurred. 

 
Figure 12. Icons used to represent entity positions for the change detection task. 
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Figure 13. The change detection map, enlarged to show detail. 

Manipulations 

Task Demand 

The level of task demand was manipulated at regular intervals between two levels: low 

and high. This manipulation altered the parameters of the change detection task in three ways: 

event rate, signal saliency, and working memory load. The event rate was manipulated between a 

slower rate (4 changes per minute) during low task demand and a faster rate (10 changes per 

minute) during high task demand. Both event rates are presented as averages, as the time elapsed 

between events varied within each condition to prevent the changes from occurring at expected 

intervals. Signal saliency was manipulated by adjusting the number of icons that change 

simultaneously whenever a change event occurred, with three icons changing at once during 

periods of low demand (with all three performing the same type of change – appear, disappear, 

or movement) and only one icon changing at a time for periods of high task demand. Working 

memory load was manipulated by adjusting the average number of icons present on the map at a 

single time. During periods of low task demand an average of eight icons were visible on the 
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map at once, and during periods of high task demand this number was increased to an average of 

24. The average number of icons is due to the continuous nature of the change detection task. To 

be clear, task demand condition was composed by the simultaneous occurrence of all three 

manipulations described above. 

Type of Automation 

Participants were randomly assigned to receive one of the two types of automation: 

driving automation or beep alerts, as described in the Experimental Task section. 

Level of Automation 

Each type of automation was implemented at two levels: low and high. When the 

automation was at a low level it provided no assistance, meaning the task dynamics were 

identical when the level of automation was low, regardless of the type of automation the 

participant was assigned. When the automation was at a high level, the assistance it provided 

varied as a function of the automation condition. Those participants in the driving automation 

condition had the vehicle drive itself along the route automatically, while those in the beep alert 

condition received auditory alerts whenever a change occurred on the change detection map. 

Static/Adaptive Automation 

All participants experienced their assigned type of automation in both static and adaptive 

forms. When static, the level of automation maintained a consistently high level throughout a 
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single experimental scenario. When adaptive, the level of automation fluctuated as a function of 

the level of task demand. However, the level of automation did not adjust immediately to a 

change in the level of task demand. In order to simulate the time required for an automated 

system to recognize that a change in the level of task demand had occurred, a consistent time 

delay elapsed after a change in the level of task demand before the level of automation changed 

to match it (see Experimental Scenarios section for details). 

Experimental Scenarios 

These manipulations combined to form four unique experimental scenarios, with each 

participant completing all four scenarios. Each of these scenarios lasted for 24 minutes, with 

changes to task parameters – task demand and level of automation (changes to the level of 

automation only occurred in adaptive scenarios) – occurring at three-minute intervals, dividing 

each scenario into eight blocks. 

Each participant received two static automation and two adaptive automation scenarios. 

Two scenarios, one adaptive and one static, began under low task demand, with the remaining 

two scenarios beginning under high task demand. The level of task demand always alternated 

between low and high at 3, 9, 15, and 21 minutes. For example, scenarios starting under low 

demand changed to high demand at 3 minutes, then back to low demand at 9 minutes, high 

demand at 15 minutes, and return to low demand from 21 minutes through the end of the 

scenario. Scenarios that began under high demand followed the opposite pattern. Starting 

scenarios under both low and high demand allowed for any potential influence of the order of 

task demands to be negated. 
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In the two adaptive automation scenarios, automation began at a level matched to the 

initial level of task demand (low automation for low demand, high automation for high demand). 

The level of automation then adapted to the changing level of task demand throughout the 

scenario, but with a three minute delay. For example, if the level of task demand increased from 

low to high at the three minute mark, the automation maintained a low level until the six minute 

mark, at which point it increased to a high level. The level of task demand then returned to a low 

level at nine minutes, with the automation continuing at a high level until the 12 minute mark, 

when it decreased to a low level to match the level of demand (Figure 14). 

The reason for this delay was to simulate the time needed for the system to detect a 

change in the operator’s cognitive state. Although three minutes is slightly longer than 

physiological-based metrics of cognitive state typically require to detect changes in workload, 

the delay was intentionally over-estimated. Several studies have found evidence that adjusting 

the level of automation while an operator is performing a task can have a brief negative impact 

on their performance, workload, and situation awareness (Hilburn, Molloy, Wong, & 

Parasuraman, 1993; Kaber, Wright, & Sheik-Nainar, 2006; Parasuraman, Bahri, Molloy, & 

Singh, 1991; Reinerman-Jones, Taylor, Sprouse, Barber, & Hudson, 2011), and have therefore 

recommended that the level of automation not be adjusted immediately upon detecting a change 

in operator workload. Introducing a slight delay before changing the level of automation 

provides the system with adequate time to ensure that the newly-detected state will persist, 

reducing the risk of changing the level of automation (temporarily reducing operator 

performance) to meet a fleeting level of demand, only to soon return to the original level of 

automation (again temporarily reducing operator performance). 



40 

 

 
Figure 14. The changing levels of automation and task demand for the four 

experimental scenarios. 

Measures 

Questionnaires 

Demographics 

Participants completed a demographics questionnaire to measure standard items such as 

age and gender, as well as items used to determine their experience with various technologies. 

This questionnaire was also used to ensure that the participant met the inclusion criteria: normal 

state of health, normal color vision, and no prior military experience (APPENDIX A). 
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Personality Measure 

Items from the International Personality Item Pool (IPIP; Goldberg et al., 2006) were 

used to measure the participant’s levels of Extraversion and Neuroticism, using 10 items for each 

trait presented in a fixed random order (APPENDIX B). 

Stress Measure 

The Dundee Stress State Questionnaire (DSSQ; Matthews et al., 2002) was used to assess 

the participants’ subjective stress levels following each experimental scenario. Due to time 

constraints, the short form was used, which produced measures of Task Engagement, Distress, 

and Worry. The DSSQ required a pre-test to be completed before beginning the experiment 

(APPENDIX C) and a post-test to be completed following each experimental scenario 

(APPENDIX D). 

Workload Measure 

The NASA Task Load Index (NASA-TLX; Hart & Staveland, 1988) was used to measure 

the participant’s subjective workload from each experimental scenario. The measure produced 

six workload subscales: Mental Demand, Physical Demand, Temporal Demand, Performance, 

Effort, and Frustration Level, as well as a single combined measure of global Workload. The 

global Workload measure was calculated as the weighted average of the six subscales, with each 

subscale weighted according to the number of times it was selected as the more important 

contributor in the paired comparisons section. The NASA-TLX was administered on the 

computer through a standard computer program (APPENDIX E). 
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Physiological Measures 

Electroencephalogram 

A nine channel electroencephalogram (EEG) system from Advanced Brain Monitoring 

was used to record participant brain activity (Figure 15). The system sampled at 256 Hz from F3, 

Fz, F4, C3, Cz, C4, P3, Pz, and P4 using the International 10-20 System, with references at each 

mastoid. Power spectral density analysis was used to compute values for Alpha (8-13 Hz), Beta 

(14-26 Hz), and Theta (4-7 Hz) activity at each sensor site. 

Success has been found specifically within the adaptive automation domain through the 

use of a combined ratio of EEG activity to calculate engagement (Freeman et al., 1999; Pope, 

Bogart, & Bartolome, 1995). Rather than evaluating separate bands of EEG activity 

independently, activity from four sensor sites (Pz, Cz, P3, and P4) was combined across three 

common bands [beta / (alpha + theta)] to form a single value. This engagement index is based on 

previous findings that beta activity is sensitive to increases in arousal and attention, while alpha 

and theta can detect decreases (Abarbanel, 1999), and has been shown to be capable of 

successfully manipulating the level of automation within an adaptive system (Freeman et al., 

2003). For this reason, the engagement index was calculated to evaluate the influence of the 

experimental task and manipulations on the participants’ cognitive state. 
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Figure 15. The Advanced Brain Monitoring nine channel EEG system. 

 

Electrocardiogram 

An electrocardiogram (ECG) system was used to measure participant heart activity. A 

Thought Technology ProComp Infiniti encoder was used with an ECG-Flex/Pro sensor that 

sampled at 2048 Hz. Three electrodes were attached to the participant’s torso (Figure 16): one on 

both collar bones and one just below the sternum. 
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Figure 16. Sensor placement for the ECG system. 

 

Two measures have traditionally been derived from ECG recordings to estimate cognitive 

workload: heart rate and heart rate variability (HRV), with heart rate increasing and HRV 

decreasing with increases in workload (Byrne & Parasuraman, 1996; Vicente, Thornton, & 

Moray, 1987; Wilson, 1992). Because measures of simple heart rate can be influenced by 

extraneous factors such as physical activity, it is considered to be less diagnostic than HRV. 

HRV was calculated as the statistical variance of the elapsed time of each heartbeat across a 

series of time, with decreases in variance indicating an increase in mental workload (Prinzel et 

al., 2003). 
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Participants 

University undergraduate students served as the experimental participants and were 

recruited using an experiment management website. The participants received credit for their 

psychology courses for completing the study. Given the sensitive nature of the terrain database 

used in the UGV control task, all participants were required to be US citizens. Participants were 

also required to be right handed (due to potential differences in brain physiology of left handed 

participants), have normal (or corrected to normal) vision, and have no prior military service. 

Participants were also asked not to consume alcohol or any sedative medication for 24 hours or 

caffeine for two hours prior to the study, as these could influence the physiological response 

recorded by the EEG and ECG. 

Experimental Procedure 

Upon arrival, participants were first confirmed to be U.S. citizens through verification of 

their birth certificate, passport, or voter’s registration card. After their citizenship was confirmed, 

the participant was provided with an Informed Consent form that detailed their rights as a 

research participant, the purpose of the study, an overview of the procedure, and the potential 

risks associated with participating. 

The EEG cap was then placed on the participant. The cap was aligned using the nasion 

(the midpoint between the eyes, just above the bridge of the nose) and inion (the bump found at 

the center of the occipital bone on the back of the skull). If necessary, the participant’s hair was 

parted at the site of each EEG sensor to ensure direct contact between the sensor and the scalp. 

Conductive gel was also used to ensure proper connection and to reduce the electrical impedance 
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of the signal. In addition to the nine sensors, the system used two reference electrodes – one on 

each mastoid bone (behind the ear), which were attached directly to the participant’s skin using 

adhesive pads. Once all sensors were in place, they were tested to confirm that the electrical 

resistance of each was below 30 kΩ. 

The participant then completed the preliminary questionnaires: Demographics, DSSQ 

Pre-Test, and the Personality measure. Following these questionnaires, the researcher described 

the experimental task through a PowerPoint presentation. This training covered each portion of 

the task (driving, threat detection, and change detection) separately. Following each portion of 

the presentation, the participant completed a brief practice scenario in which they only performed 

one task at a time. After performing each task individually, the participant completed two full 

practice scenarios in which they performed all of the tasks simultaneously. 

Following these practice missions, the ECG sensors were attached to the participant’s 

collar bones and stomach using the same adhesive electrodes used for the EEG references. Once 

connected, the ECG signal was verified and the participant’s baseline physiological activity was 

recorded for five minutes. The participant was asked to relax with their eyes open while the data 

was collected. The data recorded during this period was used as a baseline to which recordings 

made during the experimental scenarios were compared, accounting for the random variation in 

individual physiological differences. 

After completing the resting baseline, the participant began their first full experimental 

scenario. The order in which all participants completed the experimental scenarios was 

counterbalanced using the Latin Square method to ensure that any influence the scenario order 

may have on performance, physiological response, or subjective workload/stress was evenly 
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distributed across all four scenarios. Likewise, the routes used for each scenario were 

independently counterbalanced using a separate Latin Square design to ensure that any benefit or 

disadvantage that may come from any single route was also equally distributed across all four 

experimental scenarios. 

After completing the experimental scenario the participant completed the DSSQ Post-

Test measure and the NASA-TLX. This pattern repeated for the remaining three experimental 

scenarios. After the fourth experimental scenario and questionnaires, the EEG cap and ECG 

sensors were removed from the participant and they were allowed to leave. The entire 

experiment lasted two hours. 
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RESULTS 

Power Analysis 

Early pilot testing suggested that automation type had a fairly strong effect on 

performance, with an average effect size (Cohen’s d) of d ≈ 1. The adaptability of automation 

exhibited medium effect sizes, averaging d ≈ 0.5. Based on these data, a power analysis 

determined that a total sample size of N = 70 (35 per automation condition) with α = .05 would 

provide sufficient power for detecting between-subject effects of automation type as well as 

within-subject effects of automation adaptability (1 – β = 0.984 in each case). 

Sample Population 

Data was collected from a total of 70 university undergraduates. However, errors 

associated with the simulation testbed as well as the physiological sensors required data from 10 

participants to be removed. Although this reduction in sample size did reduce statistical power to 

reject the null hypotheses, the remaining sample still provided adequate power to detect effects 

of both automation type and adaptability (0.967 in each case). Of the 60 participants in the final 

dataset, there were 31 females (age: M = 19.31, SD = 2.19) and 29 males (age: M = 19.78, SD = 

3.47). Of these, 29 participants received the driving automation, with the remaining 31 receiving 

the beep alert automation. A chi-square test confirmed that equivalent numbers of each gender 

were present in each experimental condition [χ
2
(1, N = 60) = 0.258, p = .611]. 
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Manipulation Check 

An evaluation of the task demand manipulation was first conducted to confirm that this 

manipulation had the desired effect on change detection performance. Performance on the 

change detection task was measured through two values: percent of changes detected and percent 

of changes correctly identified. The percent of changes detected was calculated as the number of 

changes to which the participant made a response, regardless of whether they correctly classified 

the type of change that occurred (appear, disappear, or movement), divided by the total number 

of changes presented throughout the given scenario. The percent of changes correctly identified 

was calculated as the number of changes to which the participant responded with the correct 

classification, divided by the total number of changes. 

Performance on the change detection task was collapsed across all experimental scenarios 

for periods of low and high demand separately. Repeated measure t-tests were conducted on both 

measures of change detection performance to determine the effect of the task demand 

manipulation. As expected, a significant effect of task demand was found for the percent of 

changes detected [t(59) = 15.004, p < .001], with performance significantly better under low 

demand (M = 78.74%, SD = 13.01) than high demand (M = 62.49%, SD = 18.69, d = 1.01). The 

same effect occurred for the percent of changes correctly identified [t(59) = 18.328, p < .001], 

with performance again significantly better under low demand (M = 61.97%, SD = 11.63) than 

high demand (M = 43.86%, SD = 12.74, d = 1.48). 
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Performance 

Change Detection Performance 

Both the percent of changes detected and the percent of changes correctly identified were 

evaluated through mixed-model ANOVAs using a 2 x 2 structure with variables type of 

automation (driving or beep alerts, between subjects) and automation adaptability (static or 

adaptive, within subjects). Detailed descriptive statistics are provided in Appendix F, Table 3. 

Percent of Changes Detected 

Significant main effects were found for type of automation [F(1, 58) = 50.519, p < .001] 

and automation adaptability [F(1, 58) = 79.166, p < .001]. The participants who received the 

beep alert automation performed significantly better (M = 77.95%, SD = 12.49) than those 

receiving the driving automation (M = 55.02%, SD = 12.49, d = 1.84). Participants also 

performed significantly better in scenarios with static automation (M = 70.96%, SD = 14.27) than 

adaptive automation (M = 62.00%, SD = 11.80, d = 0.684). 

A significant interaction between automation adaptability and type of automation was 

also found [F(1, 58) = 47.663, p < .001]. This effect was further evaluated by examining the 

effect of automation adaptability within each type of automation separately (Figure 17). Within 

the beep alert automation condition, a significant main effect for automation adaptability was 

found [F(1, 30) = 113.850, p < .001], with the static automation scenarios (M = 85.91%, SD = 

15.57) performing better than the adaptive scenarios (M = 69.99%, SD = 12.79, d = 1.12). Within 

the driving automation condition, the main effect for automation adaptability was not significant 

[F(1, 28) = 2.247, p = .145]. 
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Figure 17. Percent of changes detected as a function of automation type and 

adaptability. 

 

Percent of Changes Correctly Identified 

Significant main effects were found for type of automation [F(1, 58) = 24.720, p < .001] 

and automation adaptability [F(1, 58) = 56.398, p < .001]. The participants who received the 

beep alert automation performed significantly better (M = 55.02%, SD = 10.12) than those 

receiving the driving automation (M = 42.03%, SD = 10.12, d = 1.28). Participants also 

performed significantly better in scenarios with static automation (M = 51.52%, SD = 11.12) than 

adaptive automation (M = 45.53%, SD = 10.02, d = 0.566). 

A significant interaction between automation adaptability and type of automation was 

also found [F(1, 58) = 18.551, p < .001]. This effect was further evaluated by examining the 

effect of automation adaptability within each type of automation separately (Figure 18). Within 
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found [F(1, 30) = 85.003, p < .001], with the static automation scenarios (M = 59.73%, SD = 

11.25) performing better than the adaptive scenarios (M = 50.31%, SD = 10.60, d = 0.862). 

Within the driving automation condition, the main effect for automation adaptability was 

significant, though less pronounced [F(1, 28) = 4.275, p = .048]. Again, the static automation 

scenarios (M = 43.31%, SD = 10.96) were found to perform better than the adaptive scenarios (M 

= 40.75%, SD = 9.354, d = 0.251). 

 
Figure 18. Percent of changes correctly identified as a function of automation 

type and adaptability. 

 

Personality Moderation 

Responses to the IPIP questionnaire were used to calculate values for Extraversion and 

Neuroticism for each participant. These values were tested for a potential moderating effect 

between automation adaptability and performance on the change detection task using General 

Linear Model analysis. Both Neuroticism and Extraversion failed to exhibit a significant main 
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effect on either of the change detection performance metrics, and no significant moderating 

effects were found between automation adaptability and either of the personality traits (p > .05 in 

each case). 

Threat Detection Performance 

Performance on the threat detection task was evaluated using metrics developed from 

signal detection theory. Signal detection theory traditionally evaluates performance in terms of 

sensitivity and bias. Sensitivity is the ability to discriminate signals (threats) from non-signals 

(friendlies), and bias is the tendency to be lenient, conservative, or unbiased when determining if 

a signal is present. Both measures are calculated based on hit rate (the percent of threats correctly 

detected) and false alarm rate (percent of friendlies incorrectly classified as threats). 

A relatively high number of instances where no false alarms were reported required the 

use of nonparametric indices of sensitivity and bias. The index A’ was calculated to measure 

sensitivity (Craig, 1979; Szalma, Hancock, Warm, Dember, & Parsons, 2006) and βD″ for bias 

(See, Warm, Dember, & Howe, 1997; Szalma et al., 2006) using the formulas shown in Figure 

19. As with change detection performance, both of these values were evaluated through mixed-

model ANOVAs using a 2 x 2 structure with variables type of automation (driving or beep alerts, 

between subjects) and automation adaptability (static or adaptive, within subjects). Detailed 

descriptive statistics are provided in Appendix F, Table 4. 
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Figure 19. Formulas used to calculate sensitivity (A’) and bias (βD″), where h is 

hit rate and f is false alarm rate. 

 

Sensitivity 

Automation adaptability was found to have a significant effect on sensitivity [F(1, 56) = 

17.510, p < .001], with sensitivity higher with adaptive automation (M = 0.938, SD = 0.0286) 

than static (M = 0.922, SD = 0.0382, d = 0.474). The main effect for type of automation and the 

interaction were not statistically significant (p > .05 in each case; Figure 20). 

 
Figure 20. Sensitivity when detecting threats as a function of automation type and 

adaptability. 
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Bias 

Type of automation was found to have a significant effect on bias [F(1, 56) = 5.460, p = 

.023], with bias higher (more conservative) with beep automation (M = 1.000, SD = 0.0845) than 

driving automation (M = 0.948, SD = 0.0845, d = 0.615). 

Automation adaptability was found to have a significant effect on bias [F(1, 56) = 5.328, 

p = .025], with bias higher (more conservative) with adaptive automation (M = 0.998, SD = 

0.0067) than static (M = 0.950, SD = 0.163, d = 0.416). 

The type of automation x automation adaptability interaction was also found to be 

significant [F(1, 56) = 5.328, p = .025]. This effect was further evaluated by examining the effect 

of automation adaptability within each type of automation separately (Figure 21). Within the 

driving automation condition, a significant main effect for automation adaptability was found 

[F(1, 28) = 5.328, p = .029], with the adaptive automation scenarios (M = 0.996, SD = 0.011) 

higher (more conservative) than the static scenarios (M = 0.900, SD = 0.232, d = 0.585). Within 

the beep alert automation condition, the main effect for automation adaptability was not 

significant. 



56 

 

 
Figure 21. Response bias on the threat detection task. 
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Responses to the IPIP questionnaire were used to calculate values for Extraversion and 
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Questionnaires 

Stress (DSSQ) 

Responses to the DSSQ were used to calculate values of Distress, Engagement, and 

Worry (Figure 22). This data was first used to evaluate the global effects of the experimental task 

using repeated-measure t-tests to compare the pre-test measures to the average value computed 

across all four experimental scenarios. Detailed descriptive statistics are provided in Appendix F, 

Table 5. Results indicated that performance of the experimental task caused a significant increase 

in Distress [M (difference) = 2.88, SD = 5.21; t(59) = -4.278, p < .001] and decrease in 

Engagement [M (difference) = 5.36, SD = 4.75; t(59) = 8.752, p < .001] relative to pre-task 

values, with no significant effect on Worry (p = .081). 

The values computed from the pre-task administration were then subtracted from the 

values obtained from each experimental scenario to account for individual variation in baseline 

stress. The resulting change scores were each evaluated through mixed-model ANOVAs using a 

2 x 2 structure with variables type of automation (driving or beep alerts, between subjects) and 

automation adaptability (static or adaptive, within subjects). 

The results indicated a significant main effect for type of automation on Worry [F(1, 58) 

= 4.465, p = .039]. The participants who received the beep alert automation reported 

significantly lower levels of Worry (M = -2.685, SD = 5.26) than those who received the driving 

automation (M = 0.250, SD = 5.38, d = 0.552). No other significant main effects or interactions 

were found (p > .05 in each case). 
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Figure 22. Stress reported from DSSQ responses as a function of type and 

adaptability of automation. 

Workload (NASA-TLX) 

The NASA-TLX produced six workload subscales: Mental Demand, Physical Demand, 

Temporal Demand, Performance, Effort, and Frustration Level, as well as a single combined 

measure of global Workload based on the weighted average of the six subscales. Each of these 

values were evaluated through mixed-model ANOVAs using a 2 x 2 structure with variables type 

of automation (driving or beep alerts, between subjects) and automation adaptability (static or 

adaptive, within subjects). The sample used for these analyses is reduced due to missing data 

from one participant in the beep alert condition (Figure 23). Detailed descriptive statistics are 

provided in Appendix F, Table 6. 
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Temporal Demand 

A significant main effect of automation type was found for the Temporal Demand 

subscale [F(1, 57) = 6.395, p = .014]. The participants who received the beep alert automation 

reported significantly higher levels of Temporal Demand (M = 64.92, SD = 21.34) than those 

who received the driving automation (M = 50.86, SD = 21.34, d = 0.659). 

Effort 

A significant main effect of automation type was found for the Effort subscale [F(1, 57) = 

10.235, p = .002]. The participants who received the beep alert automation reported significantly 

higher levels of Effort (M = 73.96, SD = 14.84) than those who received the driving automation 

(M = 61.60, SD = 14.84, d = 0.833). 

Performance 

A significant main effect was found for automation adaptability on the Performance scale 

[F(1, 57) = 6.721, p = .012]. Participants rated this scale higher (indicating that they believed 

their performance was worse) for scenarios with static automation (M = 60.95, SD = 21.08) than 

those with adaptive automation (M = 56.08, SD = 21.62, d = 0.228). 

Frustration, Mental Demand, and Physical Demand 

No significant main effects or interactions were found for the Frustration, Mental 

Demand, or Physical Demand subscales (p > .05 in each case). 
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Figure 23. Workload reported from NASA-TLX responses as a function of type 

and adaptability of automation. 

Physiological Measures 

Electroencephalogram (EEG) 

Data collected from the EEG was calculated using the engagement index (Freeman et al., 

1999; Pope et al., 1995). Rather than evaluating separate bands of EEG activity independently, 

activity across three common bands is combined to form a single value [beta / (alpha + theta)]. 

Data from sensor sites Cz, Pz, P3, and P4 was used, with each individual’s baseline value 

subtracted from their activity during the scenario to produce a change from baseline value. This 

data was evaluated through a mixed-model ANOVA using a 2 x 2 structure with variables type of 

automation (driving or beep alerts, between subjects) and automation adaptability (static or 

adaptive, within subjects). The sample used for these analyses is reduced to 55 (28 beep 

automation, 27 driving automation) due to errors in physiological data collection. Results from 
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this analysis yielded no significant main effects or interactions (p > .05 in each case). Detailed 

descriptive statistics are provided in Appendix F, Table 7. 

Electrocardiogram (ECG) 

Data collected from the ECG was used to determine heart rate variability (HRV), which 

is the statistical variance of the time period between heartbeats. Heartbeats are initially detected 

using the So and Chan method (Tan, Chan, & Choi, 2000). Baseline HRV is subtracted from the 

values calculated for each experimental scenario to account for individual variation. This data 

was evaluated through a mixed-model ANOVA using a 2 x 2 structure with variables type of 

automation (driving or beep alerts, between subjects) and automation adaptability (static or 

adaptive, within subjects). The sample used for these analyses is reduced to 57 (30 beep 

automation, 27 driving automation) due to errors in physiological data collection. Detailed 

descriptive statistics are provided in Appendix F, Table 8. 

Type of automation was found to have a significant effect on HRV [F(1, 55) = 5.336, p = 

.025]. Those receiving the beep automation had lower HRV values (M = 0.610, SD = 22.41) than 

those receiving the driving automation (M = 14.34, SD = 22.41, d = 0.613). 

The interaction between type of automation and adaptability was also significant [F(1, 

55) = 11.518, p = .001]. Further analysis revealed an effect of adaptability on HRV, the direction 

of which changed with automation type (Figure 24). For those participants who received the 

beep alert automation [F(1, 29) = 6.159, p = .019], adaptive automation resulted in higher HRV 

values (M = 3.287, SD = 21.72) than static automation (M = -2.068, SD = 22.31, d = 0.243). This 

trend was reversed for those who received the driving automation [F(1, 26) = 5.396, p = .028], 
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with static automation resulting in higher HRV values (M = 17.519, SD = 28.30) than adaptive 

automation (M = 11.160, SD = 20.51, d = 0.257). 

 
Figure 24. HRV as a function of adaptability and type of automation. Lower 

values indicate higher levels of workload. 
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DISCUSSION 

Hypothesis H1 

Summary of Results 

The proposed hypothesis was partially supported by the results. Hypothesis H1, which 

predicted that demand-type matched automation would improve performance, workload 

(decreasing Mental and Temporal Demand), and stress (decreasing Distress), was supported by 

the beep alert automation condition performing significantly better than the driving automation 

condition on both measures of change detection performance. Although no effect of automation 

type on the Worry dimension of stress was predicted, those in the beep alert automation 

condition also reported significantly lower levels of Worry than those in the driving automation 

condition. However, no significant difference was found between the two automation conditions 

on their performance of the threat detection task, or the Distress and Task Engagement 

dimensions of stress. 

Automation type was found to have a significant effect on ratings of Temporal Demand, 

but in a direction opposite from that predicted, with those in the beep alert automation condition 

reporting higher levels of Temporal Demand than those in the driving automation condition. 

Similarly, automation type also had a significant effect on HRV, but in an unexpected direction, 

with those in the beep alert automation condition having lower HRV values (indicating higher 

levels of workload) than those in the driving automation condition, indicating a performance-

workload dissociation caused by the automation type manipulation. Although no effect of 

automation type on the Effort dimension of workload was predicted, those in the beep alert 
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automation condition also reported significantly higher levels of Effort than those in the driving 

automation condition. 

Discussion 

As predicted, the beep alert automation, designed to specifically address the specific 

demands the operator is subjected to by the task, did improve their performance. Although this 

improvement in performance was limited to the change detection task, the lack of a decrease in 

performance on the threat detection task indicates that a net improvement in overall operator 

performance occurred, rather than a shifting of focus from one task to another. However, it was 

predicted that performance would improve as a result of the freeing of cognitive resources, 

which did not occur. In fact, the beep alert automation was found to significantly increase the 

Temporal Demand and Effort scales of the NASA-TLX, and decrease HRV (indicating an 

increase in workload), resulting in a performance-workload dissociation (Yeh & Wickens, 1988). 

This joint effect of improving performance while also increasing workload could be 

clarified through two potential explanations. First, the task demand could be such that the 

participants performing them fall on the lower end of the curvilinear relationship between 

workload and performance, the hypostress region of dynamic instability in Hancock and Warm's 

(1989) model. Therefore, an increase in workload would be expected to elicit a corresponding 

increase in performance. However, given the magnitude of the values reported on the various 

NASA-TLX subscales, this seems unlikely. Although entirely subjective, further evidence 

against this theory is the fact that participants frequently mentioned that they found the task to be 



65 

 

particularly difficult, indicating that they were experiencing higher than average levels of 

workload. 

Yeh and Wickens (1988) suggest that performance-workload dissociations are often the 

result of the investment of greater resources to the performance of a resource-limited task. 

Therefore, the results are more effectively explained through the cognitive-energetical model 

(Hockey, 1997; Hockey, Gaillard, & Coles, 1986). This model does not aim to reject alternative 

resource-based theories, but rather proposes the addition of compensatory effort. Hockey 

suggests that an operator’s performance on a task is not simply based on the level of workload 

they experience, but also on the actions of a higher level, goal-focused managerial system. This 

system maintains goals for both performance and cognitive/emotional well-being (i.e. workload 

and stress), and is capable of making deliberate sacrifices in one area to benefit the other (Figure 

25). For example, when an operator is met with an increase in task difficulty, they can respond 

by allowing their performance to decline to maintain their cognitive state, or increase their effort 

(subjecting themselves to greater workload and stress) to maintain performance. 
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Figure 25. Hockey’s cognitive-energetical model of compensatory effort 

(Hockey, 1997). 

 

Within this model, levels of both performance and cognitive energy devoted to the task 

are monitored continuously through feedback loops. These levels are each compared to their 

corresponding goal states, and the decision to adjust the level of effort devoted to the task is 

based on the discrepancy between the current value and goal state, with each discrepancy 

weighted based on the relative importance of its associated goal state. It is believed to be through 

this mechanism that the beep automation causes its simultaneous increase in performance and 

workload. This is achieved through the increase in saliency of change detection events caused by 

the beep alert. By making each signal more salient, the operator can more easily recognize any 

time they miss responding to one. Increasing their awareness of missed signals will inherently 

cause a corresponding decrease in their perceived performance. Therefore, given two operators 

with equivalent performance, one receiving the beep alert automation will likely believe they 

performed worse than one receiving the driving automation. By decreasing the operator’s self-
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perceived level of performance, the discrepancy from their performance goal state is increased. 

This increased discrepancy motivates them to sacrifice additional cognitive energy to elevate 

their perceived performance level closer to their goal state, explaining the beep alert automation 

condition’s higher levels of change detection performance, workload (measured by HRV), and 

subjective Effort and Temporal Demand. This theory also explains why performance was 

significantly better for those who received the beep alert automation, but subjective performance 

ratings (from the NASA-TLX subscale) were equivalent across automation conditions. 

The one effect of the automation manipulation not directly explained by the cognitive-

energetical model is the fact that those who received the beep alert automation reported 

significantly lower levels of the Worry dimension of stress than those who received the driving 

automation. Given that Worry is representative of the cognitive processes of stress (including 

self-focus, self-esteem, task-related cognitive interference and task-irrelevant cognitive 

interference), it is usually found to decline with time on task. This decline is typically most 

prevalent in the self-focus and task-irrelevant cognitive interference facets, as focus shifts away 

from the self and is devoted to the task (Matthews et al., 1999). This pattern is consistent across 

many types of tasks, including reading, card sorting, and working memory tasks (Matthews et 

al., 2002), and is evident from the participants who received the beep alert automation. However, 

the level of Worry reported from those receiving the driving automation remained unchanged 

from baseline values, a trend typically only found from the performance of visual vigilance tasks. 

Therefore, it appears that the implementation of the driving automation changes the structure of 

the task in a way that causes it to become a sustained attention task (although other hallmarks of 

vigilance, such as reduced sensitivity and engagement over time, were not evident). This may 
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result from the fact that the driving task is the only continuous-control portion of the 

experimental scenarios. Therefore, removing this task from the operator through automation 

leaves them with only the threat detection and change detection tasks to perform, both of which 

are fundamentally signal detection processes. Sheridan (1992) specifically discusses this issue as 

a potential pitfall of the use of automation in the realm of robotic control tasks, and these 

findings offer further support for his claims. 

Hypothesis H2 

Summary of Results 

Hypothesis H2, which predicted that adapting the level of automation to the level of task 

demand would improve performance and stress (increasing Task Engagement and decreasing 

Distress), was supported by the adaptive automation scenarios performing better than the static 

automation scenarios on the threat detection task. Hypothesis H2 was also supported by the ECG 

data, which found the scenarios with static automation to have lower HRV scores than the 

adaptive automation scenarios, indicating that adaptive automation reduced the level of workload 

(for the beep alert condition only). Additionally, although no effect of automation adaptability 

was predicted for the Performance workload subscale, ratings for adaptive scenarios were 

significantly lower (indicating that participants felt they performed better) than static automation 

scenarios. 

However, support for this hypothesis had several limitations. Threat detection bias was 

only reduced by static automation for those who received the driving automation. Further, the 

effect of static automation having lower HRV scores was limited to the beep alert automation 
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condition, with participants in the driving automation condition demonstrating the opposite 

pattern. 

The expected effect of automation adaptability on the stress dimensions were not present, 

with no significant effect found for either Task Engagement or Distress. The effect of automation 

adaptability on change detection performance was reversed from expectations, with static 

automation resulting in better performance than adaptive, with this effect stronger for those in 

the beep alert automation condition than the driving automation condition. The effect on HRV 

was also reversed from expectations for the driving automation condition, with the adaptive 

scenarios resulting in lower HRV values (indicating higher levels of workload) than the static 

scenarios. 

Discussion 

The hypothesis was partially supported through the HRV findings, with scenarios in 

which adaptive beep alert automation was provided resulting in lower levels of workload than 

the static beep alert automation. It was predicted that a similar trend would follow for the driving 

automation, though to a lesser extent, but in fact those who received the driving automation 

actually exhibited higher levels of workload under adaptive automation conditions than static. 

This provides considerable support for the primary research question: that matching the type of 

automation to the type of demand being experienced is critical, particularly within an adaptive 

environment. 

However, the use of adaptive automation does not come without a cost. Adaptive 

automation led to poorer change detection performance than static automation regardless of the 
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type of automation, though the effect was stronger with the beep alert automation than the 

driving automation. For the beep alert automation, this effect is likely attributable to the nature of 

this automation. The fact that the beep alert automation elicits greater effort from the operator to 

improve their performance suggests that it is likely impossible to reduce workload without also 

reducing performance when using this form of automation. However, the implementation of 

adaptive driving automation caused a decrease in performance while also causing an increase in 

workload (relative to static driving automation). This is likely caused by the driving automation 

doing little to alleviate the mental demands imposed by the task. Although teleoperation of a 

remote vehicle can be mentally demanding under certain conditions, the vehicle operation task 

for this experiment was intentionally designed to elicit a low level of demand by using simple 

routes, with only eight turns distributed across 24 minutes and no obstacles or interference. 

Therefore, adaptively manipulating the level of the driving automation provides no benefit, with 

the fluctuations in the task environment serving only as a distraction (Reinerman-Jones, Taylor, 

et al., 2011). 

Hypothesis H3 

Summary of Results 

Hypothesis H3, which predicted that individual differences in personality (Extraversion 

and Neuroticism) would moderate the influence of automation adaptability on performance and 

stress, received no empirical support. Although no significant moderating effects were found for 

either of the personality dimensions, a significant relationship was found between Neuroticism 

and threat detection, with those higher in Neuroticism having lower sensitivity. 
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Discussion 

Although the personality measures failed to moderate the effects of automation type or 

adaptability, the effect of Neuroticism on threat detection sensitivity indicates that the task is 

sensitive to individual differences. The lack of moderation effects may simply be due to 

insufficient statistical power, as individual differences effects are traditionally fairly weak, 

requiring substantial sample sizes to find their effects (Szalma, 2009). Szalma and Taylor (2011) 

also found evidence that providing highly reliable automation may attenuate the detrimental 

impact Neuroticism has on performance, and so the use of perfectly reliable automation in the 

current study may have further reduced the strength of any potential moderating effects. 

Although unrelated to the automation manipulations, the results did provide additional support 

for prior evidence (Szalma & Taylor, 2011) that those higher in Neuroticism perform worse on 

threat detection tasks. 

Conclusions 

The use of the driving automation, unmatched to the type of demand subjected by the 

task, provided relatively little benefit to the operator, and in fact showed evidence of disengaging 

them from the task. However, the use of the beep alert automation, designed to specifically 

support the cognitive faculties under the greatest demand, significantly improved mission 

performance. Further, when the level of automation varied adaptively based on the level of 

demand imposed by the task, operator workload was reduced when provided with the beep alert 

automation, but workload actually increased for operators using the driving automation. 
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However, the use of the beep alert automation was still not ideal. The beep alert was 

intended to offload some of the perceptual demands of the task by increasing the saliency of the 

change events. This proved to be an effective method, resulting in improved change detection 

performance. However, the beep alert also caused a simultaneous increase in workload (Effort 

and Temporal Demand, specifically). The beep alert automation appeared to improve operator 

performance not through the alleviation of cognitive demands, as was expected, but rather by 

motivating the operator to sacrifice additional cognitive energy by making them more aware of 

their performance errors. Although ultimately successful in its primary goal of improving 

performance, this associated cost in operator cognitive resources is an important factor to 

consider before such an aid is implemented in any system. 

The theoretical implications of this study demonstrate that the type of automation 

implemented within an environment has a considerable impact on the operator, in terms of 

performance as well as their cognitive/emotional state. These results contradict previous theory 

which proposed that humans are best supported by automation of the action implementation 

phase of information processing (Kaber et al., 2005). It appears that such a generalized statement 

is not true across all task types, but rather the type of automation which best supports the 

operator is that which supports the cognitive dimension most burdened by their task. Providing 

automation which does not support the appropriate cognitive dimension can result in the many 

potential problems with automation (supervisory control, disengagement, skill degradation, etc.) 

without accomplishing any of its intended benefits. 
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Future Research 

Although the current study provides preliminary support for the importance of matching 

automation type to the type of demand experienced by the operator, additional research is 

necessary to ensure that this is true for all types of demand. The task used in the current study 

focused only on subjecting (and alleviating) perceptual demands. Therefore, further evaluation is 

necessary to evaluate the same concept under high levels of other types of demand, such as 

decision making or action implementation. 

Also, before a complex system can become truly adaptive to various types of demand, 

more diagnostic measures of specific types of cognitive demand must be developed. Most 

metrics of cognitive state derived from physiological measures that could feasibly be 

implemented in a real-world setting still classify workload along a single continuum, incapable 

of discriminating between various types of mental demand. However, metrics intended to 

classify general cognitive states, such as the Engagement Index, may be determined to in fact be 

measuring specific subcomponents of cognitive activity. In this study, the Engagement Index 

failed to detect differences between task manipulations of demand or automation type, despite 

these manipulations having significant effects on performance, as well as other subjective and 

physiological measures of operator state. This suggests that the Engagement Index may be 

sensitive only to specific cognitive functions, which does not necessarily invalidate its potential 

utility, but demonstrates the necessity for further research to determine exactly what cognitive 

functions it is capable of measuring. These measures must evolve dramatically before a system 

can be capable of truly understanding the operator’s cognitive state on a multidimensional level 



74 

 

in real-time, a necessary capability before the system can adapt to meet the operator’s specific 

needs. 

Finally, additional research is also needed to better understand the influence of individual 

differences (e.g. personality traits) on performance and cognitive/emotional state within an 

adaptive system. Prior research has suggested that personality plays an important role in how an 

operator interacts with automated systems, but the current study failed to find any evidence of 

this. If true, future systems can utilize knowledge of the operator’s traits, in addition to their 

fluctuating states, to better meet their specific needs. However, larger sample sizes will be 

necessary to have sufficient statistical power before a definitive conclusion can be made 

regarding the effect of these individual differences. 

Application 

This study provides further support for the multidimensionality of cognitive resources, 

and demonstrates the importance of considering these dimensions when implementing 

automation. Although this study evaluated the importance of demand-type matched automation 

within a military UGV control setting, the findings are in no way limited to the operation of 

unmanned vehicles, or even military tasks. Any complex task environment, in which more than 

one type of demand may be experienced by the operator, would benefit from matching 

automation type to the demand type currently experienced by the operator. In fact, designers of 

even relatively simple tasks, in which only a single form of demand is present, must also 

consider whether the automated assistance they provide to the operator truly supports the 

demand imposed by the task. This study provides further evidence that the traditional “automate 
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what you can” model of system design fails to support the operator. Serious consideration must 

be given to the implementation of automation if any benefit is to come of it; failure to do so risks 

employing automation which provides little to no operational advantage, or worse, actually 

impairs the operator’s ability to perform their task. 
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APPENDIX A: DEMOGRAPHICS QUESTIONNAIRE 
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Demographics Questionnaire 

 

Participant # _______    Age ______ Major ________________  Date ___________  Gender ___ 
 

1.  What is the highest level of education you have had? 

Less than 4 yrs of college ____  Completed 4 yrs of college ____  Other ____ 
 

2.  When did you use computers in your education? (Circle all that apply) 

 

Grade School  Jr. High  High School   

Technical School  College   Did Not Use 
 

3.  Where do you currently use a computer? (Circle all that apply) 
 

Home  Work  Library  Other________           Do Not Use 
 

4.  For each of the following questions, circle the response that best describes you. 

 

How often do you: 

Use a mouse?  Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Use a joystick?  Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Use a touch screen?  Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Use icon-based programs/software? 

    Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Use programs/software with pull-down menus? 

    Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Use graphics/drawing features in software packages? 

    Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Use E-mail?   Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Operate a radio controlled vehicle (car, boat, or plane)?   

    Daily, Weekly, Monthly, Once every few months, Rarely, Never 

Play computer/video games?   

    Daily, Weekly, Monthly, Once every few months, Rarely, Never 
 

5.  Which type(s) of computer/video games do you most often play if you play at least once every few months? 

 

6.  Which of the following best describes your expertise with computers? (check √ one) 

_____ Novice 

_____ Good with one type of software package (such as word processing or slides) 

_____ Good with several software packages 

_____ Can program in one language and use several software packages 

_____ Can program in several languages and use several software packages 
 

7.  Are you in your usual state of health physically?   YES          NO 

     If NO, please briefly explain: 
 

8.  How many hours of sleep did you get last night? ______ hours 
 

9.  Do you have normal color vision?  YES       NO  
 

10.  Do you have prior military service?   YES       NO       If Yes, how long __________ 
 

11.  Are you currently serving in the military?   YES      NO     

       If yes, are you off duty at the time you are participating in this study?          YES       NO  
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APPENDIX B: PERSONALITY MEASURE 
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IPIP Questionnaire 

On the following pages, there are phrases describing people's behaviors. Please use the 

rating scale below to describe how accurately each statement describes you. Describe yourself as 

you generally are now, not as you wish to be in the future. Describe yourself as you honestly see 

yourself, in relation to other people you know of the same sex as you are, and roughly your same 

age. 

So that you can describe yourself in an honest manner, your responses will be kept in 

absolute confidence. Please read each statement carefully, and then circle the number that 

corresponds to the value on the scale: 

 

Very Inaccurate 
Moderately 

Inaccurate 

Neither 

Inaccurate nor 

Accurate 

Moderately 

Accurate 
Very Accurate 

1 2 3 4 5 

 

1. I would describe my experiences as somewhat dull. 1 2 3 4 5 

2. I don’t talk a lot.  1 2 3 4 5 

3. I have frequent mood swings.  1 2 3 4 5 

4. I make friends easily.  1 2 3 4 5 

5. I don’t like to draw attention to myself.  1 2 3 4 5 

6. I have little to say.  1 2 3 4 5 

7. I feel comfortable around people.  1 2 3 4 5 

8. I keep in the background.  1 2 3 4 5 

9. I seldom feel blue.  1 2 3 4 5 
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10. I dislike myself.  1 2 3 4 5 

11. I often feel blue.  1 2 3 4 5 

12. I am skilled in handling social situations.  1 2 3 4 5 

13. I rarely get irritated.  1 2 3 4 5 

14. I feel comfortable with myself.  1 2 3 4 5 

15. I am not easily bothered by things.  1 2 3 4 5 

16. I panic easily.  1 2 3 4 5 

17. I am the life of the party.  1 2 3 4 5 

18. I know how to captivate people.  1 2 3 4 5 

19. I am often down in the dumps.  1 2 3 4 5 

20. I am very pleased with myself.  1 2 3 4 5 
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APPENDIX C: DSSQ PRE-TEST 
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DSSQ: Pre-test 

General Instructions 

 

This questionnaire is concerned with your feelings and thoughts at the moment. Please answer every 

question, even if you find it difficult.  Answer, as honestly as you can, what is true of you.  Please do not 

choose a reply just because it seems like the 'right thing to say'. Your answers will be kept entirely 

confidential.  Also, be sure to answer according to how you feel AT THE MOMENT. Don't just put 

down how you usually feel. You should try and work quite quickly:  there is no need to think very hard 

about the answers.  The first answer you think of is usually the best. 

 

 For each statement, circle an answer from 0 to 4, so as to indicate how accurately it describes 

your feelings AT THE MOMENT.  

 

Definitely false = 0, Somewhat false = 1,  

Neither true nor false = 2, Somewhat true = 3, Definitely true = 4 
  

1. The content of the task will be dull. 0 1 2 3 4 

2. I feel relaxed 0 1 2 3 4 

3. I am determined to succeed on the task. 0 1 2 3 4 

4. I feel tense. 0 1 2 3 4 

5. Generally, I feel in control of things. 0 1 2 3 4 

6. I am reflecting about myself. 0 1 2 3 4 

7. My attention is directed towards the task. 0 1 2 3 4 

8. I am thinking deeply about myself. 0 1 2 3 4 

9. I feel energetic. 0 1 2 3 4 

10. I am thinking about something that happened earlier today. 0 1 2 3 4 

11. I will find the task too difficult for me.  0 1 2 3 4 

12. I will find it hard to keep my concentration on the task. 0 1 2 3 4 

13. I am thinking about personal concerns and interests. 0 1 2 3 4 

14. I feel confident about my performance. 0 1 2 3 4 

15. I am examining my motives. 0 1 2 3 4 

16. I feel like I could handle any difficulties I encounter. 0 1 2 3 4 

17. I am motivated to try hard at the task. 0 1 2 3 4 

18. I am thinking about things important to me. 0 1 2 3 4 

19. I feel uneasy. 0 1 2 3 4 

20. I feel tired. 0 1 2 3 4 
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APPENDIX D: DSSQ POST-TEST 
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DSSQ: Post-test 

General Instructions 

 

This questionnaire is concerned with your feelings and thoughts while you were performing the task. 

Please answer every question, even if you find it difficult.  Answer, as honestly as you can, what is true of 

you.  Please do not choose a reply just because it seems like the 'right thing to say'. Your answers will be 

kept entirely confidential.  Also, be sure to answer according to how you felt WHILE PERFORMING 

THE TASK. Don't just put down how you usually feel. You should try and work quite quickly:  there is 

no need to think very hard about the answers.  The first answer you think of is usually the best. 

 

 For each statement, circle an answer from 0 to 4, so as to indicate how accurately it describes 

your feelings WHILE PERFORMING THE TASK.  

 

Definitely false = 0, Somewhat false = 1,  

Neither true nor false = 2, Somewhat true = 3, Definitely true = 4  
  

1. The content of the task was dull. 0 1 2 3 4 

2. I felt relaxed. 0 1 2 3 4 

3. I was determined to succeed on the task. 0 1 2 3 4 

4. I felt tense. 0 1 2 3 4 

5. Generally, I felt in control of things. 0 1 2 3 4 

6. I reflected about myself. 0 1 2 3 4 

7. My attention was directed towards the task. 0 1 2 3 4 

8. I thought deeply about myself. 0 1 2 3 4 

9. I felt energetic. 0 1 2 3 4 

10. I thought about something that happened earlier today. 0 1 2 3 4 

11. I found the task too difficult for me.  0 1 2 3 4 

12. I found it hard to keep my concentration on the task. 0 1 2 3 4 

13. I thought about personal concerns and interests. 0 1 2 3 4 

14. I felt confident about my performance. 0 1 2 3 4 

15. I examined my motives. 0 1 2 3 4 

16. I felt like I could handle any difficulties I encountered. 0 1 2 3 4 

17. I was motivated to try hard at the task. 0 1 2 3 4 

18. I thought about things important to me. 0 1 2 3 4 

19. I felt uneasy. 0 1 2 3 4 

20. I felt tired. 0 1 2 3 4 
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Figure 26. Part 1 of the NASA-TLX computer program. The participant uses a 

mouse to indicate their rating of each scale. 



87 

 

 

Figure 27. Part 2 of the NASA-TLX computer program. The participant is 

presented with all possible pair-wise comparisons of the six scales (a total of 15). 
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APPENDIX F: DESCRIPTIVE STATISTICS
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Table 3. Change detection values. 

Measure Condition Adaptability N Mean 
Std. 
Error 

Extraversion Correlation Neuroticism Correlation 

r p N r p N 

Percent 
of 

Changes 
Detected 

Beep 
Static 31 85.907 2.561 -.075 .693 30 .130 .493 30 

Adaptive 31 69.991 2.118 -.101 .596 30 .056 .770 30 

Driving 
Static 29 56.019 2.648 -.132 .495 29 .070 .720 29 

Adaptive 29 54.011 2.190 -.089 .648 29 -.185 .337 29 

Percent 
of 

Changes 
Correctly 
Identified 

Beep 
Static 31 59.732 1.995 -.197 .296 30 .039 .838 30 

Adaptive 31 50.312 1.799 -.143 .450 30 .025 .896 30 

Driving 
Static 29 43.305 2.063 -.099 .611 29 .012 .951 29 

Adaptive 29 40.752 1.860 -.136 .481 29 -.209 .276 29 

 

Table 4. Threat detection values. 

Measure Condition Adaptability N Mean 
Std. 
Error 

Extraversion Correlation Neuroticism Correlation 

r p N r p N 

Sensitivity 
(A') 

Beep 
Static 29 .929 .007 -.076 .695 29 -.406 .029 29 

Adaptive 29 .943 .005 .238 .214 29 -.377 .044 29 

Driving 
Static 29 .915 .007 .103 .595 29 -.145 .452 29 

Adaptive 29 .933 .005 .118 .543 29 -.039 .842 29 

Bias 
(βD’’) 

Beep 
Static 29 1.000 .000 * * * * * * 

Adaptive 29 1.000 .000 * * * * * * 

Driving 
Static 29 .900 .030 -.234 .223 29 -.085 .660 29 

Adaptive 29 .996 .001 -.090 .642 29 -.096 .620 29 

* Correlations cannot compute because bias values are constant   
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Table 5. Stress (DSSQ) values. All values are reported as change from baseline. 

Measure Condition Adaptability N Mean 
Std. 
Error 

Extraversion Correlation Neuroticism Correlation 

r p N r p N 

Distress 

Beep 
Static 31 2.597 .970 -.012 .951 30 .206 .274 30 

Adaptive 31 3.371 1.020 .000 .999 30 .082 .667 30 

Driving 
Static 29 2.879 1.003 -.082 .671 29 -.136 .481 29 

Adaptive 29 2.655 1.055 .140 .470 29 .073 .708 29 

Engagement 

Beep 
Static 31 -4.919 .988 -.094 .621 30 .099 .603 30 

Adaptive 31 -4.000 .912 -.073 .702 30 .051 .789 30 

Driving 
Static 29 -6.500 1.021 .170 .377 29 .195 .310 29 

Adaptive 29 -6.155 .942 .017 .931 29 .155 .423 29 

Worry 

Beep 
Static 31 -2.726 1.043 -.199 .292 30 .327 .078 30 

Adaptive 31 -2.645 .952 -.256 .172 30 .315 .090 30 

Driving 
Static 29 .621 1.078 -.446 .015 29 .256 .180 29 

Adaptive 29 -.121 .984 -.287 .131 29 .199 .301 29 
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Table 6. Workload (NASA-TLX) values. 

Measure Condition Adaptability N Mean 
Std. 
Error 

Extraversion Correlation Neuroticism Correlation 

r p N r p N 

Total 
Workload 

Beep 
Static 30 69.372 1.920 .401 .028 30 -.059 .757 30 

Adaptive 30 69.328 1.896 .361 .050 30 -.108 .569 30 

Driving 
Static 29 66.328 1.953 .172 .373 29 .161 .403 29 

Adaptive 29 63.868 1.928 .031 .875 29 .164 .395 29 

Physical 
Demand 

Beep 
Static 30 39.667 4.045 .086 .653 30 .263 .160 30 

Adaptive 30 40.500 4.313 .004 .983 30 .378 .039 30 

Driving 
Static 29 29.483 4.114 .078 .689 29 -.383 .040 29 

Adaptive 29 32.328 4.387 .042 .829 29 .006 .976 29 

Temporal 
Demand 

Beep 
Static 30 64.583 4.240 .374 .042 30 .150 .428 30 

Adaptive 30 65.250 3.953 .368 .045 30 .055 .773 30 

Driving 
Static 29 53.190 4.312 .230 .229 29 .047 .810 29 

Adaptive 29 48.534 4.021 .346 .066 29 .067 .729 29 

Performance 

Beep 
Static 30 57.167 3.848 .345 .062 30 .041 .829 30 

Adaptive 30 52.167 3.948 .211 .263 30 .121 .525 30 

Driving 
Static 29 64.741 3.914 -.063 .747 29 .118 .541 29 

Adaptive 29 60.000 4.015 -.309 .103 29 .122 .529 29 

Effort 

Beep 
Static 30 72.833 3.143 .494 .006 30 -.211 .262 30 

Adaptive 30 75.083 3.151 .184 .332 30 -.294 .115 30 

Driving 
Static 29 61.034 3.197 .107 .580 29 .018 .925 29 

Adaptive 29 62.155 3.205 .080 .680 29 -.066 .732 29 

Frustration 

Beep 
Static 30 53.833 4.545 .333 .072 30 .193 .308 30 

Adaptive 30 53.917 4.364 .173 .361 30 .260 .165 30 

Driving 
Static 29 55.345 4.622 .185 .336 29 .002 .992 29 

Adaptive 29 52.069 4.438 .318 .093 29 .039 .841 29 

Mental 
Demand 

Beep 
Static 30 81.917 2.488 .005 .977 30 -.129 .496 30 

Adaptive 30 81.667 2.718 .095 .618 30 -.109 .567 30 

Driving 
Static 29 80.172 2.530 .030 .877 29 .258 .177 29 

Adaptive 29 78.362 2.764 .075 .698 29 .216 .260 29 
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Table 7. EEG Engagement Index values. All values are reported as change from baseline. 

Measure Condition Adaptability N Mean 
Std. 
Error 

Extraversion Correlation Neuroticism Correlation 

r p N r p N 

EEG 
Engagement 

Index 

Beep 
Static 28 1.549 .385 .211 .264 30 -.183 .332 30 

Adaptive 28 1.184 1.705 .186 .324 30 -.309 .097 30 

Driving 
Static 27 .866 .392 -.213 .267 29 .034 .862 29 

Adaptive 27 3.046 1.737 .160 .408 29 -.051 .795 29 

 

Table 8. ECG Heart Rate Variability (HRV) values. All values are reported as change from baseline. 

Measure Condition Adaptability N Mean 
Std. 
Error 

Extraversion Correlation Neuroticism Correlation 

r p N r p N 

ECG 
HRV 

Beep 
Static 30 -2.068 4.623 .013 .946 29 .077 .690 29 

Adaptive 30 3.287 3.862 -.129 .504 29 .158 .413 29 

Driving 
Static 27 17.519 4.873 .178 .375 27 .008 .970 27 

Adaptive 27 11.160 4.071 .217 .276 27 .064 .752 27 
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