10 research outputs found

    A Multiband Low Noise Amplifier for Software Defined Radio Using Switchable Active Shunt Feedback Input Matching

    Get PDF
    Radio frequency (RF) receivers are the key front-end blocks in wireless devices such as smartphones, pagers, PDAs etc. An important block of the RF receiver is the Low-noise amplifier. It’s function is to amplify with little noise addition, the RF signal received at the atenna. Modern wireless devices for example the smartphone, incorporates multiple functionalities supported by various RF standards- GPS, Bluetooth, Wifi, GSM etc. Thus, the current trend in the wireless technology is to integrate radio receivers for each RF standard into a single system-on-chip (SoC) in order to reduce cost and area of the devices. In view of this, multiband RF receivers have been developed which feature multiband LNAs. This thesis presents the design and implementation of a multiband LNA for Software Defined Radio Applications. In this thesis, basic radio-frequency concepts are discussed which is followed by a discussion of pros and cons of various multistandard low-noise amplifier topologies. This is then followed by the design of the proposed reconfigurable LNA. The LNA is designed and fabricated in IBM 0.18um CMOS technology. It is made up of dual LC resonant tanks, one to switch between 5.2GHz and 3.5GHz frequency bands and the other, to switch between 2.4GHz and 1.8GHz bands. The input matching of the LNA is achieved using a switchable shunt active feedback network. The LNA achieves S21 of between 10.1dB and 13.43dB. It achieves an input matching (S11) between -13.44 dB and -11.97 dB. The noise figure measured ranges from 2.8 dB to 4.3 dB. The LNA also achieves an IIP3 from -7.12 dBm to -3.45 dBm at 50 MHz offset. The power consumption ranges from 7 mW to 7.2 mW

    A Concurrent Dual-Band Inverter-Based Low Noise Amplifier (LNA) for WLAN Applications

    Get PDF
    low noise amplifier (LNA); concurrent; dual-band; inverter-basedIn this paper, a two-stage concurrent dual-band low noise amplifier (DB-LNA) operating at 2.4/5.2-GHz is presented for Wireless Local Area Network (WLAN) applications. The current-reused structure using resistive shunt-shunt feedback is employed to reduce power dissipation and achieve a wide frequency band from DC to-5.5-GHz in the inverter-based LNA. The second inverter-based stage is employed to increase the gain and obtain a flat gain over the frequency band. An LC network is also inserted at the proposed circuit output to shape the dual-band frequency response. The proposed concurrent DB-LNA is designed by RF-TSMC 0.18-µm CMOS technology, which consumes 10.8 mW from a power supply of 1.5 V. The simulation results show that the proposed DB-LNA achieves a direct power gain (S 21 ) of 13.7/14.1 dB, a noise figure (NF) of 4.2/4.6 dB, and an input return loss (S 11 ) of −12.9/−14.6 dBm at the 2.4/5.2-GHz bands

    Personal area technologies for internetworked services

    Get PDF

    HIGH LINEARITY UNIVERSAL LNA DESIGNS FOR NEXT GENERATION WIRELESS APPLICATIONS

    Get PDF
    Design of the next generation (4G) systems is one of the most active and important area of research and development in wireless communications. The 2G and 3G technologies will still co-exist with the 4G for a certain period of time. Other applications such as wireless LAN (Local Area Network) and RFID are also widely used. As a result, there emerges a trend towards integrating multiple wireless functionalities into a single mobile device. Low noise amplifier (LNA), the most critical component of the receiver front-end, determines the sensitivity and noise figure of the receiver and is indispensable for the complete system. To satisfy the need for higher performance and diversity of wireless communication systems, three LNAs with different structures and techniques are proposed in the thesis based on the 4G applications. The first LNA is designed and optimized specifically for LTE applications, which could be easily added to the existing system to support different standards. In this cascode LNA, the nonlinearity coming from the common source (CS) and common gate (CG) stages are analyzed in detail, and a novel linear structure is proposed to enhance the linearity in a relatively wide bandwidth. The LNA has a bandwidth of 900MHz with the linearity of greater than 7.5dBm at the central frequency of 1.2GHz. Testing results show that the proposed structure effectively increases and maintains linearity of the LNA in a wide bandwidth. However, a broadband LNA that covers multiple frequency ranges appears more attractive due to system simplicity and low cost. The second design, a wideband LNA, is proposed to cover multiple wireless standards, such as LTE, RFID, GSM, and CDMA. A novel input-matching network is proposed to relax the tradeoff among noise figure and bandwidth. A high gain (>10dB) in a wide frequency range (1-3GHz) and a minimum NF of 2.5dB are achieved. The LNA consumes only 7mW on a 1.2V supply. The first and second LNAs are designed mainly for the LTE standard because it is the most widely used standard in the 4G communication systems. However, WiMAX, another 4G standard, is also being widely used in many applications. The third design targets on covering both the LTE and the WiMAX. An improved noise cancelling technique with gain enhancing structure is proposed in this design and the bandwidth is enlarged to 8GHz. In this frequency range, a maximum power gain of 14.5dB and a NF of 2.6-4.3dB are achieved. The core area of this LNA is 0.46x0.67mm2 and it consumes 17mW from a 1.2V supply. The three designs in the thesis work are proposed for the multi-standard applications based on the realization of the 4G technologies. The performance tradeoff among noise, linearity, and broadband impedance matching are explored and three new techniques are proposed for the tradeoff relaxation. The measurement results indicate the techniques effectively extend the bandwidth and suppress the increase of the NF and nonlinearity at high frequencies. The three proposed structures can be easily applied to the wideband and multi-standard LNA design

    Angle of Arrival Estimation Utilising Frequency Diverse Radio Antenna Arrays

    Get PDF
    The purpose of this research is to investigate a novel way of combining carrier signals that are transmitted successively over Multiple Frequencies (MF) and traditional metrics to improve AoA estimation. Every signal contains three metrics, amplitude, phase, and frequency. To achieve localisation, current systems utilise the metrics of amplitude (also known as Received Signal Strength (RSS)) and phase that resolves the AoA. However, the metric of frequency is mostly used with Orthogonal Frequency-Division Multiplexing (OFDM) to increase the number of RSS and AoA metrics, which is not optimal. This research answers two questions. Can the use of MF improve AoA estimation? Also, how can MF and traditional metrics be combined for AoA estimation? The aim is to prove that the metric of frequency can be utilised more optimally. Therefore, measurements of RSS and AoA are performed in different environments for MF. To perform these measurements, ten frequency diverse Software Defined Radios (SDRs) are employed. A novel technique to time/frequency synchronise the SDRs is developed and presented. Moreover, a ten element Uniform Linear Array (ULA) is designed, simulated and manufactured. The outcomes of this research are two novel algorithms for the MF AoA estimation of a carrier transmitter. Findings of the first algorithm show that the use of MF with the RSS metric performs equally with current systems that have a higher cost and complexity. The second algorithm that utilises MF with the AoA metric demonstrates a significant reduction in the AoA estimation error, compared to current systems. Specifically, for 50\% of the measured cases the AoA estimation error is reduced by 3.7 degrees, while for 95\% of the measured cases the AoA estimation error is reduced by 27 degrees. Hence, this research proves that MF with traditional metrics can reduce system complexity and greatly improve AoA estimation

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    System and Circuit Design Techniques for Silicon-based Multi-band/Multi-standard Receivers

    Get PDF
    Today, the advances in Complementary MetalOxideSemiconductor (CMOS) technology have guided the progress in the wireless communications circuits and systems area. Various new communication standards have been developed to accommodate a variety of applications at different frequency bands, such as cellular communications at 900 and 1800 MHz, global positioning system (GPS) at 1.2 and 1.5 GHz, and Bluetooth andWiFi at 2.4 and 5.2 GHz, respectively. The modern wireless technology is now motivated by the global trend of developing multi-band/multistandard terminals for low-cost and multifunction transceivers. Exploring the unused 10-66 GHz frequency spectrum for high data rate communication is also another trend in the wireless industry. In this dissertation, the challenges and solutions for designing a multi-band/multistandard mobile device is addressed from system-level analysis to circuit implementation. A systematic system-level design methodology for block-level budgeting is proposed. The system-level design methodology focuses on minimizing the power consumption of the overall receiver. Then, a novel millimeter-wave dual-band receiver front-end architecture is developed to operate at 24 and 31 GHz. The receiver relies on a newly introduced concept of harmonic selection that helps to reduce the complexity of the dual-band receiver. Wideband circuit techniques for millimeterwave frequencies are also investigated and new bandwidth extension techniques are proposed for the dual-band 24/31 GHz receiver. These new techniques are applied for the low noise amplifier and millimeter-wave mixer resulting in the widest reported operating bandwidth in K-band, while consuming less power consumption. Additionally, various receiver building blocks, such as a low noise amplifier with reconfigurable input matching network for multi-band receivers, and a low drop-out regulator with high power supply rejection are analyzed and proposed. The low noise amplifier presents the first one with continuously reconfigurable input matching network, while achieving a noise figure comparable to the wideband techniques. The low drop-out regulator presented the first one with high power supply rejection in the mega-hertz frequency range. All the proposed building blocks and architecture in this dissertation are implemented using the existing silicon-based technologies, and resulted in several publications in IEEE Journals and Conferences

    Characterisation and Modelling of Indoor and Short-Range MIMO Communications

    Get PDF
    Over the last decade, we have witnessed the rapid evolution of Multiple-Input Multiple-Output (MIMO) systems which promise to break the frontiers of conventional architectures and deliver high throughput by employing more than one element at the transmitter (Tx) and receiver (Rx) in order to exploit the spatial domain. This is achieved by transmitting simultaneous data streams from different elements which impinge on the Rx with ideally unique spatial signatures as a result of the propagation paths’ interactions with the surrounding environment. This thesis is oriented to the statistical characterisation and modelling of MIMO systems and particularly of indoor and short-range channels which lend themselves a plethora of modern applications, such as wireless local networks (WLANs), peer-to-peer and vehicular communications. The contributions of the thesis are detailed below. Firstly, an indoor channel model is proposed which decorrelates the full spatial correlation matrix of a 5.2 GHzmeasuredMIMO channel and thereafter assigns the Nakagami-m distribution on the resulting uncorrelated eigenmodes. The choice of the flexible Nakagami-m density was found to better fit the measured data compared to the commonly used Rayleigh and Ricean distributions. In fact, the proposed scheme captures the spatial variations of the measured channel reasonably well and systematically outperforms two known analytical models in terms of information theory and link-level performance. The second contribution introduces an array processing scheme, namely the three-dimensional (3D) frequency domain Space Alternating Generalised Expectation Maximisation (FD-SAGE) algorithm for jointly extracting the dominant paths’ parameters. The scheme exhibits a satisfactory robustness in a synthetic environment even for closely separated sources and is applicable to any array geometry as long as its manifold is known. The algorithm is further applied to the same set of raw data so that different global spatial parameters of interest are determined; these are the multipath clustering, azimuth spreads and inter-dependency of the spatial domains. The third contribution covers the case of short-range communications which have nowadays emerged as a hot topic in the area of wireless networks. The main focus is on dual-branch MIMO Ricean systems for which a design methodology to achieve maximum capacities in the presence of Line-of-Sight (LoS) components is proposed. Moreover, a statistical eigenanalysis of these configurations is performed and novel closed-formulae for the marginal eigenvalue and condition number statistics are derived. These formulae are further used to develop an adaptive detector (AD) whose aim is to reduce the feasibility cost and complexity of Maximum Likelihood (ML)-based MIMO receivers. Finally, a tractable novel upper bound on the ergodic capacity of the above mentioned MIMO systems is presented which relies on a fundamental power constraint. The bound is sufficiently tight and applicable for arbitrary rank of the mean channel matrix, Signal-to-Noise ratio (SNR) and takes the effects of spatial correlation at both ends into account. More importantly, it includes previously reported capacity bounds as special cases

    Deteção espetral de banda larga para rádio cógnitivo

    Get PDF
    Doutoramento em TelecomunicaçõesEsta tese tem como objetivo o desenvolvimento de uma unidade autónoma de deteção espetral em tempo real. Para tal são analisadas várias implementações para a estimação do nível de ruído de fundo de forma a se poder criar um limiar adaptativo para um detetor com uma taxa constante de falso alarme. Além da identificação binária da utilização do espetro, pretende-se também obter a classificação individual de cada transmissor e a sua ocupação ao longo do tempo. Para tal são exploradas duas soluções baseadas no algoritmo, de agrupamento de dados, conhecido como maximização de expectativas que permite identificar os sinais analisados pela potência recebida e relação de fase entre dois recetores. Um algoritmo de deteção de sinal baseado também na relação de fase de dois recetores e sem necessidade de estimação do ruído de fundo é também demonstrado. Este algoritmo foi otimizado para permitir uma implementação eficiente num arranjo de portas programáveis em campo a funcionar em tempo real para uma elevada largura de banda, permitindo também estimar a direção da transmissão detetada.The purpose of this thesis is to develop an autonomous unit for real time spectrum sensing. For this purpose, several implementations for the estimation of the background noise level are analysed to create an adaptive threshold and ensure a constant false alarm rate detector. In addition to the binary identification of the spectrum usage, it is also intended to obtain an individual classification of each transmitter occupation and its spectrum usage over time. To do so, two solutions based on the expectation maximization data clustering, that allow to identify the analyzed signals by the received power and phase relation between two receivers, were explored. A signal detection algorithm, also based on the phase relationship between two receivers and with no need for noise estimation is also demonstrated. This algorithm has been optimized to allow an efficient implementation in a FPGA operating in real time for a high bandwidth and it also allows the estimation of the direction of arrival of the detected transmission
    corecore