Characterisation and Modelling of Indoor and
Short-Range MIMO Communications

Michail Matthaiou

A thesis submitted for the degree of Doctor of Philosophy.
The University of Edinburgh.
November 2008



Abstract

Over the last decade, we have witnessed the rapid evolutibtultiple-Input Multiple-Output
(MIMO) systems which promise to break the frontiers of carti@nal architectures and deliver
high throughput by employing more than one element at thmestritter (Tx) and receiver (Rx)
in order to exploit the spatial domain. This is achieved @nsmitting simultaneous data
streams from different elements which impinge on the Rx wd#ally unique spatial signatures
as a result of the propagation paths’ interactions with theosinding environment. This thesis
is oriented to the statistical characterisation and moagbf MIMO systems and particularly
of indoor and short-range channels which lend themselvdstagra of modern applications,
such as wireless local networks (WLANS), peer-to-peer atdoular communications.

The contributions of the thesis are detailed below. Firsttyindoor channel model is proposed
which decorrelates the full spatial correlation matrix & 2 GHz measured MIMO channel and
thereafter assigns the Nakagamidistribution on the resulting uncorrelated eigenmodes Th
choice of the flexible Nakagamir density was found to better fit the measured data compared
to the commonly used Rayleigh and Ricean distributionsadi the proposed scheme captures
the spatial variations of the measured channel reasonadllyand systematically outperforms
two known analytical models in terms of information theonddink-level performance.

The second contribution introduces an array processingmehnamely the three-dimensional
(3D) frequency domain Space Alternating Generalised Bgpien Maximisation (FD-SAGE)
algorithm for jointly extracting the dominant paths’ pareters. The scheme exhibits a satisfac-
tory robustness in a synthetic environment even for closeparated sources and is applicable
to any array geometry as long as its manifold is known. Therélym is further applied to the
same set of raw data so that different global spatial parmsef interest are determined; these
are the multipath clustering, azimuth spreads and intpedéency of the spatial domains.

The third contribution covers the case of short-range comoations which have nowadays
emerged as a hot topic in the area of wireless networks. The foeus is on dual-branch

MIMO Ricean systems for which a design methodology to aehrmeaximum capacities in the
presence of Line-of-Sight (LoS) components is proposedielher, a statistical eigenanalysis
of these configurations is performed and novel closed-ftamdior the marginal eigenvalue
and condition number statistics are derived. These forenale further used to develop an
adaptive detector (AD) whose aim is to reduce the feagililitst and complexity of Maximum

Likelihood (ML)-based MIMO receivers.

Finally, a tractable novel upper bound on the ergodic capadithe above mentioned MIMO
systems is presented which relies on a fundamental powstreamt. The bound is sufficiently
tight and applicable for arbitrary rank of the mean channatrix, Signal-to-Noise ratio (SNR)
and takes the effects of spatial correlation at both ends actount. More importantly, it
includes previously reported capacity bounds as specsasca
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Chapter 1
Introduction

The rapid advances of wireless communications over thedlestdes in conjunction with the
design of upcoming mobile networks have necessitated timgpEhensive understanding of the
dynamic radio propagation mechanisms and characterigtlus demanding task can normally
be accomplished by conducting radio channel measuremaias/éd by the extraction of the
path’s parameters and the development of accurate charmmulsn On these grounds, the first
goal of this thesis is the propagation modelling of modedoor radio systems operating at the
5 GHz band. The second goal is related to short-range conuations and particularly with
the development of high throughput optimised architest@®well as with the investigation of
the most important eigencharacteristics and derivatiomowtl ergodic capacity bounds. This
introductory chapter covers the state-of-the art in thexaewireless communications and,
further, addresses the open research challenges that bagttated the key motivations for
the present Ph.D. work. Section 1.1 discusses the evolofianireless communications with
a view to the limitations of traditional configurations are tbenefits of employing multiple
antennas at both terminals. Section 1.2 explores the katiwsinces in indoor communications
while Section 1.3 is dedicated to short-range propagatimh @otential future applications.
Section 1.4 summarises the author’s contributions to theédiemulti-antenna systems. Finally,

Section 1.5 gives a general outline of the remainder of thsih

1.1 Evolution of wireless communication technology

When Guglielmo Marconi back in 1901 signalled the letter &toss the Atlantic, from Eng-
land to Newfoundland, he never envisaged what his inverdaand lead to. The evolution of
wireless communications continued through the yearsiedtiey the development of semicon-
ductor technology, advances in integrated circuit teabgyland the research in information
theory as well as in digital signal processing, in the cantig search for higher system ca-
pacity, improved usability and bandwidth efficiency. In tihear future, wireless networks are
expected to provide a plethora of high-quality servicedgdsoice, video, networking) be-

tween different users and multiple sources of informatidtimately, the convergence between
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decentralised wired and wireless technologies (subné&syawill allow operators or content
providers, and eventually customers, to enjoy the compiletetionalities and resources of the
network towards the direction of ubiquitous communicagiomhis means that users will be
able to receive the same service through different accesgories regardless of the devices

they will be utilising.

Many communication systems nowadays are based on cormah8ogle-Input Single-Output
(SISO) architectures, where both the transmitter (Tx) awkiver (Rx) are equipped with a
single antenna. However, irrespective of the modulatiath @ding scheme employed, it has
been shown that for a finite bandwidth and given Signal-tesdl&atio (SNR), these systems
set a fundamental upper limit on the data rate (usually refieio aschannel capacifyand thus
are inconvenient to support the future demanding apptinati Throughout this thesis, capacity
is adopted as the appropriate metric for quantifying thdgoerance of wireless systems; in
general, channel capacity refers to the maximum achieddiie rate that can be transmitted
over the channel with asymptotically small error probajailFrom an information theory point

of view, Shannon defines channel capacity as the maximumutdial informatiod [2].

A considerable number of researchers over the globe supimrthe solution for high through-
put resides in the use of millimetre wave frequencies (60 @htzbeyond) because of the mas-
sive bandwidth available for dense wireless local commativos (7 GHz of unlicensed spec-
trum) and the lower interference levels [3]. Another vergrsiicant motivation for exploiting
this band is the fact that the wavelength becomes very shsutch high frequencies, leading to
devices of reduced size and making feasible the integrationany antennas and transceivers
into a single chip. Nevertheless, this technology is stilensive due to the extreme accuracy
required for constructing small-scale radio frequency )(Réuipment and for developing so-
phisticated signal processing algorithms; what's morestneorrent commercial applications
are located at the microwave band. Recently, there has beércieasing design interest to
decrease the feasibility cost of today’s 60 GHz technologyiding cheap, low-power silicon
germanium chips [4]. In any case though, due to the excegsitleloss (quadratic increase
with frequency) and the oxygen absorption present at 60 @z15 dB/km), most practical
platforms deploy high-gain directive antennas that ruleroultipath propagation by focusing
energy on a certain direction, specifically intended fordiy®int-to-point applications with a

coverage area of a few meters (0 m).

1This definition is valid for the usual case of memoryless cdleds) i.e. each channel realisation is independent
of the previous one.
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The most promising candidates for fulfilling the increasofgmand for enhanced data rates
within a fixed limited bandwidth are the so-called Multiplgaut Multiple-Output (MIMO)
systems which make use of multiple antenna elements at betfft and Rx. It has been
theoretically shown that these systems offer benefits whickar beyond those of traditional
configurations by fully exploiting the scattering enviroant; in fact, under specific propaga-
tion conditions, i.e. high multipath richness, MIMO caggayrows linearly with the mini-
mum number of transmit and receive antennas [5, 6]. Thisagphboost is achieved by the
simultaneous transmission in time and within the same &aqu interval of orthogonal, non-
interfering data streams which are conveyed through thebbshed spatial subchannels be-
tween the two ends. The differentiation at the Rx happenisdrspatial domain and is possible
since each multipath impinging on it has experienced asefieomplex propagation interac-
tions with the surrounding environment and therefore earda unique spatial signature. Given
this high practical importance of MIMO technology, the kegtivation of this thesis is to study
in depth the performance of indoor and short-range MIMOaystthat are expected to support
forthcoming high-speed (well above 100 Mbits/s) Wirelessdl Area Networks (WLANS).

1.2 Indoor wireless communications

The first part of the thesis focuses on the area of indoor conications which has been ex-
tensively explored over the last decades following theaasmg demand for high-speed data
transmission over medium ranges. Current indoor WLAN systeperate mainly at the 2.4
and 5.2 GHz bands as standardised by either the Institutéeofrieal and Electronics Engi-
neers (IEEE) 802.11 protocol or its European counterpargaly the High PErformance Radio
LAN (HIPERLAN) protocol defined by the European Telecomnuations Standards Institute
(ETSI) Broadband Radio Access Network (BRAN). In detaig tREEE 802.11a protocol op-
erates at 5.2 GHz and is able to deliver data rates as high dbhd/s within the operation
range of a so-called hotspot or access point (approxim&tely in an indoor propagation en-
vironment¥ [7]. Likewise, the IEEE 802.11n consensus standard, whsctuirently under
development and due to be finalised in June 2009, has alsdisgdbe usage of this band
for WLAN applications introducing the application of MIM@d¢hnology along with a wider
operation bandwidth (40 MHz instead of 20 MHz as in IEEE 802)1 The objectives of this

protocol are a raw data rate of up to 600 Mbits/s (when foumelats are employed at both

2please note that this technology is widely known as Wirekgslity (Wi-Fi).
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IEEE Carrier Channel | Maximum Indoor
protocol || frequency | bandwidth| datarate | oper. range
802.11a|| 5GHz 20 MHz | 54 Mbits/s 35m
802.11b|| 2.4GHz | 20 MHz | 11 Mbits/s 38m
802.11g|| 2.4GHz | 20 MHz | 54 Mbits/s 38 m
802.11n|| 2.4/5 GHz| 40 MHz | 600 Mbits/s 70 m

Table 1.1: Basic characteristics of the IEEE 802.11 family of protecol

ends) along with a coverage radius of approximately 70 mg8ine experts claim that these
revolutionary benefits will eventually convince the majprof modern commercial users to
abandon cable access networks technology. The main spéicifis of the most known IEEE
802.11 protocols are tabulated in Table 1.1.

Apart from WLAN services, a hew innovative technology prees to replace last-mile wired-
access networks and provide broadband Internet to emengangets that have no broadband
access. With a theoretical maximum data rate of 75 Mbitsdsmaaximum transmission range
of 50 Km, the Worldwide Interoperability for Microwave Acge (WiIMAX) protocol is re-
garded as an economically viable solution for seamlessiange delivery of information. The
associated IEEE 802.16d standard, finalised in 2004 for+tié &Hz frequency band, is suit-
able for fixed wireless access but lacks mobility support Bihce then, various amendments
were proposed which evolved to the latest IEEE 802.16e atdndiming to support nomadic
mobility [10]. This mobile WIMAX scheme is planning to use MO technology to improve
coverage and exploit the Non Line-of-Sight (NL0S) propagathat exists in the vast majority
of practical radio channels. Interestingly, most cousti@élow higher power output levels in
the upper 5 GHz band (5.725-5.850 GHz) than in the lower 5 Gitelg, making the former
more attractive to WIMAX applications. Though originallyesigned for point-to-multipoint
topologies in which a base station (BS) distributes traffionany subscriber stations mounted
on rooftops, WIMAX is also anticipated to provide users wittobadband connectivity over
huge indoor areas such as transportation halls, shoppilig, migport lounges and many more;
this is the key difference between WiMAX and the 802.11 hotspvhich offer a moderate

coverage and are convenient for allowing a home or office Rsdtmect to the Web [11].
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1.3 Short-range wireless communications

The second part of this thesis covers the area of short-remmenunications where the two ends
are not spaced far apart and the link is dominated by a nangatkterministic Line-of-Sight

(LoS) component. While the conventional applicationsudel peer-to-peer communications,
fixed wireless access and Bluetooth, an emerging techndlagyecently attracted considerable
research and industry interest. This is the field of vehicolathe-road communications which
hold the promise of great improvements in both the efficienictthe transport systems and the

safety of all road users.

The automotive industry strives decisively to develop aeh®/LAN technology suitable for
vehicle-to-vehicle (VTV) and vehicle-to-roadside (VTR)annels. The so-called Dedicated
Short-Range Communications (DSRC) protocol is designedaik in parallel with cellular
communications by providing high data rates with a low latebetween vehicles and from
vehicles to fixed infrastructure units. The official spentrallocation for DSRC was completed
in 1999 by the American Federal Communication Commissioiclvidesignated 75 MHz of
bandwidth, partitioned into seven 10 MHz channels, at tBeGHz Intelligent Transportation
System (ITS) frequency band. It has also being standardiséioke IEEE 802.11p protocol (due
to be ratified in April 2009) which is essentially an amendingfithe IEEE 802.11a protocol
adjusted for low overhead operations in the DSRC spectr@h Hpart from the DSRC band-
width that is half of the 802.11a bandwidth, the remaininggital layer specifications, such
as the modulation scheme, frame structure and trainingesegs, are almost identical [13].
Nevertheless, while IEEE 802.11a has been designed fooind.AN applications in a low-
mobility environment, IEEE 802.11p is expected to operat time-selective channels where
vehicles are moving with speeds as high as 120 miles/h awed affvider coverage of up to
1000 m.

The DSRC applications are usually classified into safetyremmdsafety with higher priority be-
ing given to the former category following the steadily ieasing need for zero-accident road
journeys and minimisation of the tremendous cost causeddffyctcollisions. In 2006, road
accidents accounted for 39,000 deaths within Europe whitae U.K. alone this number was
3,172. According to the World Health Organisation (WHO)adcaccidents cause the death
of 1.2 million people annually worldwide, making it the satle biggest killing cause in the
world, while by 2020 road deaths are predicted to becomehtine killing cause. Road traf-

fic injuries cost low-income and middle-income countriesaeen 1% and 2% of their gross
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national product which represents more than the total dgweént aid received by these coun-
tries [14]. While different factors contribute to vehicleashes, such as mechanical problems
and bad weather, driver behaviour is considered to be tligrnig@ause of more than 90 percent
of all road accidents. In fact, the inability of drivers taot fast to emergency situations can
potentially cause chain collisions where an initial crasfollowed by secondary crashes [15].
This is the main reason behind extending ITS technology fietysapplications that include
among others: intersection collision avoidance, roadistagports, alerts for approaching emer-
gency vehicles and lane departure, forward obstacle deteahd avoidance as well as sudden

halt warnings.

Apart from safety applications, a variety of more demandipglications have emerged which
range from high-speed networking and video streaming toilmabmmerce and Web surfing.
Due to the high spectral efficiency requirements these egipins impose, the use of multiple
antenna elements seems sensible, thereby bringing MiM@odagy to the field of vehicular
communications. An illustrative graph showing the futufevehicular communications with

full availability, connectivity, flexibility, and transpancy between road users is seen in Fig. 1.1.

Figure 1.1: A future deployment scenario of vehicular communicati@ositesy of [16]).
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1.4 Key contributions

The main contributions of this work are now summarised dsvid:

e A novel statistical-based indoor channel model that cagtthie fading variations of each
spatial eigenmode separately and assigns the flexible ldakag distribution to each of
them [17, 18]. The model yields an excellent fit with a set obmeed data and system-
atically outperforms two analytical reference models tieate recently been proposed in

the corresponding literature.

e A powerful unconstrained technique for generating indeleeh Nakagami» envelope
deviates for arbitrary values of the corresponding shaparpeters. The method is con-
structed upon the well knowrejection/acceptanceéechnique and overcomes the defi-

ciencies of all similar techniques and in parallel offeremarkable accuracy [19].

e A new maximum likelihood (ML) high-resolution array pros@sy technique namely, the
three-dimensional (3D) frequency domain-Space Altengatceneralised Expectation
Maximisation (FD-SAGE) algorithm is devised for estimatithe multipath parameters
in both temporal and spatial domains [20]. The scheme isdéurtised to characterise an
indoor MIMO channel by means of clustering, azimuth disjperand inter-dependency

of the spatial domains [21].

e For the case of dual-braneWTR MIMO Ricean configurations, a maximum near-ffeld
LoS capacity criterion is formulated as a function of theriearwavelength, transmit-
receive separation distance and inter-element spacingg® c@pacity of systems that
follow this criterion is not only benefited by the presencestwbng LoS components but

is normally greater than the capacity offered by the usugléigh channels [22].

e Taking into account the high practical usability of dual MIMRicean systems (small
setup size and low implementation cost), a detailed dtalstigenanalysis is carried
out and novel closed-form formulae are derived for the aigkre and condition number

densities [23]. These expressions are subsequently ussmhsruct an adaptive detec-

*Throughout the thesis, the terdual-branchor simply dual will stand for MIMO systems with two transmit
and two receive antenna elements.

“Hereafter, the terrmear-fieldwill express the close-in region of an antenna where the langlistribution is
dependent upon the distance from the source and the waveaagating as spherical wavefronts. On the contrary,
thefar-field is the region outside the near-field where the angular digion is independent of the distance from
the source and the waves are propagating as plane wavefronts



Introduction

tor (AD) which switches between the robust but computatigrexpensive ML and the

suboptimal Zero Forcing (ZF) detector [24].

e A novel ergodic capacity upper bound for dual double-cater MIMO Ricean systems
is derived based on a fundamental power constraint; themuapplicable for arbitrary
rank of the deterministic mean channel matrix and arbit@&KR and, more importantly,
includes previously reported analytical bounds as speeisgs [25]. The tightness of the

bound is also analytically determined for asymptoticadiy land high SNRs.

1.5 Organisation of the thesis

An outline of the remainder of this thesis is given in thistsst

Chapter 2 covers the principles of wireless propagation and subsetyupresents the funda-
mental properties of the promising MIMO technology. Moregihe area of channel modelling
is reviewed while the main characteristics of each modehagklighted. A categorisation of
all models, with regard to which features the model's designtends to reconstruct, is also

performed.

Chapter 3 proposes a novel spatial channel model based ofK#raunen-L&ve Transform
(KLT) which is validated through a set of measurement datthatcarrier frequency of 5.2
GHz. The scheme decomposes the MIMO correlation matrix asidias a Nakagami: fading
distribution to each resulting uncorrelated eigenmodee Mlodel’'s performance is assessed by
means of mutual information and link-level performance wehiés superiority, in comparison

with two reference models, is clearly demonstrated.

Chapter 4 introduces an array processing algorithm for extractindtipath channel param-
eters. In particular, the 3D FD-SAGE algorithm is employadconjunction with the serial
interference cancellation (SIC) technique to identify doeninant paths and estimate their key
parameters. Apart from validating the scheme robustneasymthetic environment, a detailed
characterisation of the previously mentioned measuredrads conducted in the double di-

rectional domain using the SAGE framework.

Chapter 5 suggests a straightforward criterion for achieving highR/WIIMO capacities in the
presence of a LoS component. The sensitivity of the proposatiguration is investigated un-

der optimal and suboptimal positioning and orientationditions. Secondly, the eigenstatistics
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of dual MIMO Ricean channels are analytically assessed mséd-form formulae are derived
which are validated through Monte-Carlo simulations. Ehsstistical results are finally ap-
plied to the detection stage of MIMO receivers so that an ADegeloped that can minimise

the implementation cost and complexity of most practical-bdsed testbeds.

Chapter 6 derives a novel upper bound on the ergodic capacity of duatiadly correlated
MIMO Ricean systems that includes previously reported biswas special cases. Apart from
being remarkably simple and efficient, the bound is appleéfdr any arbitrary rank of the LoS
component and system SNR. Its tightness is analyticalljuated and asymptotic closed-form
expressions for the error of the bound are presented whielverified through Monte-Carlo

simulations.

Chapter 7 forms a summary of the most important conclusions drawn ftbis thesis and

proposes several research paths for future work.



Chapter 2

MIMO wireless systems and
background of channel modelling

The medium responsible for the transmission and recepfiofarmation signals between two
antennas in space is widely known as the wireless propagatiannel. According to [26],
there is a key difference between the radio channel and thygagation channel. In partic-
ular, the latter does not take into account the antennarpat&nd this means that isotropic
antennas are assumed at both sides. The radio channel thmligtles both array responses
and therefore is described by a non-directional channglorese. In this chapter, the funda-
mental concepts and background for statistically modglarMIMO propagation channel are
assessed. The remainder of this chapter is organised as$oliSection 2.1 presents a sum-
mary of the basic multipath propagation mechanisms andfestations experienced in typical
wireless channels. In Section 2.3, the foundations of MIM€Ghhology are outlined along
with an investigation of the trade-offs between MIMO featur Also, a brief derivation of the
very useful capacity formula is presented. In Section 2d,gdrinciples of multi-dimensional
channel modelling are introduced with a view to double dioe@l propagation. Section 2.5
focuses on the current state-of-the-art in the area of MIM@&noel modelling; classification of
the channel models into relevant categories is also prdvadieng with the key characteristics

of each model. Finally, Section 2.6 concludes the chaptgisammarises the key findings.

2.1 Basic multipath propagation mechanisms

In a wireless channel, the interaction of the transmittgghali with the physical environment
as it travels towards the Rx creates multiple propagatedefsants; a phenomenon usually
referred to asnultipath propagation Multipath propagation occurs due to three basic mecha-
nisms, namelyeflection diffraction, andscattering In Fig. 2.1, an illustrative figure shows the
mechanisms causing multipath effects in an indoor enviemmThe impact of each of these

mechanisms on the received signal is outlined below.

10
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Reflection

Scattering

Figure 2.1: Basic propagation mechanisms in an indoor wireless channel

Transmissiorcorresponds to the direct route between the Tx and Rx; ifishismobstructed,
free-space LoS propagation takes place. In the case ofucbstirLoS (OL0S) transmission
through walls and ceilings, it has been found that the patieir loss, as defined by Rice in [27],
is a function of the construction materials of a buildingilding orientation with respect to the
Tx, internal layout, floor height and the percentage of wimslan a building [28]. The main
effect of OLoS transmission is that the direct componentgrae/much closer to the power of
the diffracted and reflected components.

Reflectionoccurs when a propagating electromagnetic wave impinges apsurface with di-
mensions much larger than the wavelengthf the wave. In an outdoor environment, reflec-
tions are created by the surface of the earth and buildingtevirtn an indoor environment,
reflections are mostly caused by floors, walls, ceilings amditure [29]. The roughness of

surface defines the type of reflection according to:

e Specular reflectiomccurs when the surface is smooth and ideally infinite. Therimng
wave splits up into reflected and transmitted (refractedjesavhose magnitudes can be
computed via Fresnel’'s formulae. The main characteridtispecular reflection is that
the directions of the incident and reflected waves are the seith respect to the surface
normal on the same plane. While there are no perfectly flatr&imdte surfaces, specular
reflection is a good approximation if the surface is suffitietarge in wavelengths (i.e.

larger than the cross-section of the first Fresnel zone) ahtbo rough compared ta.

11
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¢ Diffuse reflectioroccurs when the surface has a degree of roughness and teissdhie
incoming ray to be spread in a broad range of non-speculactiins and further re-
duces the energy in the specular direction. The severityffoisé scattering is dependent
on both the surface roughness and incidence angle. A ¢rdiigéace roughnes§’, is

determined by the Rayleigh criterion which is given as [30]

4mo cos
C, = ———
A

(2.1)
whereo is the standard deviation of the surface irregularities @iglthe angle of inci-
dence with respect to the normal of the surface. In gendralsurface is considered to
be smooth and thus specular reflection dominates whes 0.1; in such a case, waves
reflected from the surface encounter only small relativesptghift with respect to each
other. ForC, > 10 though, highly diffuse reflection dominates and the spetyula-
flected wave is small enough to be neglected given that wafkested from the surface
exhibit a relatively large phase shift. An illustrative grashowing the different types of

reflection can be seen in Fig. 2.2.

Scattered
wave

Specular Scattered
direction wave

Smooth Rough Rougher

Figure 2.2: The effect of surface roughness on the type of reflectiorpfaddrom [30]).

Diffraction occurs when a radio path is obstructed by either a surfadétisasharp irregulari-
ties (edges) or a dense body with dimensions that are lang@a&@d to)\, causing secondary
waves to be formed behind the obstructing body [29]. Thisypheenon originates from Huy-
gen’s principle which states that all points on a wavefrarttas point sources of secondary
wavelets; these wavelets are eventually combined to peducew wavefront in the direc-
tion of propagation [29, 30]. Diffraction is often termedaslowing because the diffracted field
can reach the Rx even when shadowed by an impenetrable cimstr{31]. In outdoor en-
vironments, diffraction usually occurs via propagatiooward hills or over rooftops while in
the indoor environment, diffraction normally occurs viapagation around door openings and
corners. The power loss associated with this propagati@ctet usually very high compared

to that of reflection.

12
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Scatteringoccurs when a radio wave impinges on any surface with dimessdf the order of

A or less, causing the reflected energy to spread out in alitibres. In an urban environment,
typical obstructions that yield scattering are foliagenjaposts and road signs while in indoor
environments the primary scatterers are walls and furif2®]. Henceforth, the term scatterer

will describe any obstacle that causes a change to theidineat a propagating wavefront.

2.2 Basic multipath propagation manifestations

At this point, the reader is reminded that multipath prop@gacan also be characterised by

means ofpath loss(Pl) andfading A brief description of these phenomena is provided below.

2.2.1 Pathloss

Path losscan be defined as the ratio of the received to transmitted pdwéact, it expresses

the diminution of the received powei. with distanced as

P.(d) = By (j‘i) (2.2)

wheren,, is the so-called PI factor ang, the reference power, dependent on the transmitted
power, frequency and antenna gains, at a known distdndeor free-space propagation, =

2 but becomes larger for other more complicated cases. Inrgertte more cluttered an
environment is the higher the valuef. The Pl also depends on the operating frequency; the
authors in [32] compared the path losses for 1.7 GHz and 60dadshowed that the difference

is greater than 45 dB. The differencefy (31 dB) partially explains the result. The rest of the
difference is due to the higher penetration loss of materaid the stronger reflections and

diffractions at higher frequencies. An excellent reviewPbinodels can be found in [33, 34].

2.2.2 Slow and fast fading

The superposition of all impinging waves at the Rx gives ttséuctuations in the amplitude
and phase of the received signal, commonly known as muitifgaling, which is also distance
dependent. A further classification can be made in two caegoamelylarge scale(or slow

fading or sometimeshadowing andsmall scale fadingor fast fading.

13
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Large scale fadingefers to the slow long-term variation of the local mean algtrength as a
mobile terminal (MT) moves over tens of wavelengths. Thentehadowing is indicative since
typically these changes are due to the changes in visilblitthe appearance/disappearance
of shadowing objects on the signal paths. In outdoor enwimts, it is mainly caused by
prominent terrain contours (for instance hills, forestsildings) while in indoor propagation,
it occurs due to the blocking effects of large objects suchvaks and furniture [31]. The
envelope of a slow-fading signal has been found to followgadormal distribution especially

in outdoor environments [29].

Small scale fadingxpresses the dramatic short-term changes in the signalogevas a MT
moves over small distances. This rapid fluctuation can bibatitd to the incoherent summa-
tion of a large number of independent rays coming from akctions with random phases (as
a result of different path lengths) which can add either trocively or destructively. Fig. 2.3
illustrates an example of the path loss, small and largeegading phenomena as a function of
the distance travelled by a MT.

1 Path loss

Signal power (dB)

log(distance)

Figure 2.3: Fading manifestations vs the distance travelled by a MTrtesy of [35]).

For the statistical description of fast fading envelopbsed main distributions have been pro-
posed, namely Rayleigh, Ricean and NakagamiRayleigh fading can model multipath sit-
uations when there is no direct LoS between the Tx and Rx anthttoming waves have ap-

proximately equal amplitudes. The probability densitydiion (PDF) of the signal’s envelope

14
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r is then given by [36]

r r2
p(r) = e exp ~552 ) r>0 (2.3)

where £ {r2} = 202 is the distance-average power of the received signal. Foreht of
the thesis, the notatioR {-} will refer to the expectation operation. Under these cood#
the phase of the received signal is uniformly distributedir27). In practice, however, there
is occasionally a dominant incoming wave which can be eitheoS component or a strong
specular wavefront. In such a case, the envelope of theveztaignal follows the Ricean
distribution according to [36]

p(r) = % exp (—@) Iy (b—2> , 72>20,A>0 (2.4)

g g

g

with b being the peak amplitude of the dominant signal &{d) the modified Bessel function
of first kind and zero order. The Ricedk-factor controls the ratio of powers of the free-
space signal and the scattered waves, Ke= b*/202; when K = 0 the Ricean distribution

degenerates to a Rayleigh distribution.

The Nakagamin distribution [37] has also attracted considerable reseamterest since it
yields a satisfactory fit for various measured channels avede range of frequency bands [38,

39]. The corresponding PDF is
2
p(r) _ <E>m T2m716*mr2/9’ r 2 O (25)

whereI'(-) expressing the Gamma function afid= E {r?} > 0 is the average power. The

Nakagami fading figuren, indicating the severity of fading, is determined as

> - (2.6)

N | —

Both Ricean and Nakagami- distributions have two shape parameters and behave approxi
mately equivalently near their mean value. Whenr= 1 the Nakagami distribution reduces to

Rayleigh distribution while forn = 0.5 it reduces to the one-sided Gaussian distribution.
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2.2.3 Flat and frequency-selective fading

Another distinction is usually made to the type of fadinghwiégard to the so-calletbherence
channel bandwidth The coherence bandwidth, which is inversely related totitne delay
spread of the channel, indicates the minimum frequencyrapa at which the attenuation
of the amplitudes of two frequency components becomes ddated. The decorrelation is
usually defined as the point where the correlation coeffidietween the fading envelopes at

the two frequencies is reduced from unity to 0.9 or 0.5.

On this basisflat fading occurs when the coherence bandwidth is larger than the Ldtidw
of the signal. Therefore, all frequency components of tigmali will experience the same
magnitude of fading. On the other hariskquency-selective fadiragcurs when the coherence
bandwidth of the channel is smaller or of the order of the badth of the signal. Under these
circumstances, two frequency components that are far agpdrience substantially different

attenuations.

2.3 Fundamentals of MIMO technology

2.3.1 Background of MIMO systems

The potential of employing multiple antennas at both endsraflio link in order to improve the
channel throughput was sparked by the pioneering work ot&nn 1987 [40]. Surprisingly,

it was not until mid-90s that two breakthrough papers by Rg¢5] and Telatar [6] separately
investigated this promising technology in detail. Bothhaws showed that MIMO systems
have the unique ability to turn multipath propagation, liguzgarded as a serious hindrance
in wireless communications, into an advantage for increpsihe spectral efficiency. Under
independent Rayleigh fading conditions, MIMO systemsrofféinear capacity increase that
is proportional to the minimum number of receiyé and transmit’V antenna elements, i.e.
min {M, N}.

The boost in spectral efficiency offered by an ideal MIMO systwas firstly demonstrated
in [5], where an architecture called BLA%&long with a reconstruction algorithm and a cod-
ing/decoding scheme were devised. The most attractiveirteatf MIMO systems is their

ability to simultaneously transmit individual (orthogdndata streams from each antenna el-

!BLAST: Bell Labs Layered Space Time.
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ement; in the literature, this feature is widely knownspstial multiplexing(SM) [41]. The
number of orthogonal multiplexed streams depends on th@speoperties of the surrounding

environment and is upper limited byin {M, N'}.

Another feature of MIMO systems &patial diversitywhich is a means to combat fading by
exploiting multiple uncorrelated replicas of the trandedtsignal. Diversity occurs when the
antenna spacing is high enough so that independent sigtied pee created, resulting in a
reduced variation of the received signal's power. Divgrsgduces the probability that all
branches are in a deep fade simultaneously and thus it ee$dhe error rate performance
(channel hardening). MIMO techniques permit the spatigédity to be exploited at both

sides of the radio link with the maximal diversity gain beihg/V.

However, there is an inherent trade-off between SM and apdiversity. This means that
increasing the diversity advantage comes at the expensecoéaking the SM gain, and vice
versa. In fact, the authors in [42] showed that the divensitytiplexing trade-off achievable
by a system is a more fundamental measure of its performdwacejast its maximal diversity
gain or its maximal multiplexing gain alone. Generally, tgimal trade-off is determined by
system requirements such as the desired data rate andlitgliabtransmission. High data
rates can be achieved by employing multiplexing to full extehile high reliability benefits

from diversity [43].

Smart antenna systems, which use an antenna array at a sitjlenake use dfeamforming
in order to increase the average SNR and suppress intecteffeom other users by steering
energy into desired directions. Likewise, for MIMO systebeamforming may be applied at
the Tx and/or the Rx side. The more directive a channel is ipleehn its beamforming gain.
For pure LoS conditions with only one path present, the makioeamforming gain\/ N is
obtained, albeit at the expense of an increased spatialabon that diminishes the beneficial
effects of spatial diversity. Finally, it should be undedd that full beamforming excludes full
diversity or multiplexing and the same is true for full diggy and beamforming/multiplexing;

however, full multiplexing excludes beamforming wheregasniy reduces diversity.
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2.3.2 General structure of MIMO systems

Let us now consider a general MIMO system equipped Wittransmit andM < N receive
antenna elements. For such a scenario, the transmitteal sign < CN*1 can be modelled as
a signal vector

x(t) = [x1(t), z2(t) ..., xn ()] (2.7)

wherex,, (t) is the signal emitted by the-th transmit antenna element apff denotes trans-

position. Similarly, the received signal vectpft) € CM*! is modelled as

y(t) = [y1(t), y2(t) ..., yn(£)]" . (2.8)

Then, the input-output complex relationship can be sudlgineritten as

y(t) = !\/E/H(tﬂ')x(t — T)dT] + n(t) (2.9)

wherep is the average SNR per branch at the Rx arfd) is the noise plus interference term.
The elements of the channel impulse response mEikfix 7) € C** describe the response
between then-th receive and the-th transmit element. The channel matrix, containing all

complex response coefficients, is then written as

Chn(tr) he(tT) - han(tT) |
H(t) 7—) _ h21 (.t, 7') h22 (.t, 7') '. . thFt, T) (210)
i hMl(t,T) hMQ(t,T) hMN(t,T) |

wherer corresponds to the delay index. For the flat-fading caserewthe channel is non-zero

only forr = 0, (2.9) becomes

y(t) = \/%H(t)x(t) + n(t). (2.11)
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2.3.3 MIMO capacity

For the derivation of MIMO capacity formula, let us considiee case where the Tx is con-

strained to its total poweF; regardless of the number of antennas, i.e.

whereQ = E {xx'} is the input covariance matrix;]” denotes the Hermitian transpose
andtr(-) returns the trace of a matrix. The common assumption thaglreents oh(¢) are
independent and identically distributed (i.i.d-)CN (0, 1) complex variables is introduced and

then the noise covariance matdix{nn” } = I,,, with I; the (M x M) identity matrix.

As was remarked in the introductory chapter, for memorytdsmnels, capacity represents the
maximum mutual information. Following (2.11), the mutuafiarmation! (x; (y, H)) between

the inputx and the outpug can be written &
I(x;(y,H)) = H (y|H) - H (y|x,H) = H (y[H) - H (n[H). (2.13)

In general H (A|B) stands for the conditional entropy between the random bisa(RVs)A
and B. Given a covariance matriQ, circularly symmetric complex Gaussian variaSlese
entropy maximisers and therefore it is sensible to assigndistributiorf to the input signal
x [6]. Then, the received signal is in turn a circularly symrisetomplex Gaussian variable
with covariance matris {yy’ } = £HQH? +1,,. Substituting this relationship into (2.13),

the mutual information of a random MIMO channel becomes
_ N H
I =log, (det ( LHQH" + IM)) : (2.14)
Hence, the instantaneous capacitpf an(M x N) MIMO channel with Gaussian inputs is [6]

R (det (%HQHH + IM)) (2.15)

where the maximisation is performed over a set of positicesami-definite Hermitian matrices

Note that the channel is fully described with inpuand output(y, H) = (Hx + n, H).

3A circularly symmetric complex Gaussian variabledenoted by: ~ A (0, 02), is a complex R = z + jy
where bothz andy are i.i.d.~ N(0, 5%/2).

“The differential entropy of a complex Gaussian vectarith covarianceQ is given bylog, (det(meQ).
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Q satisfying (2.12). The ergodic capacity (or the expectatibC') then reads

C= oo, P {1og2 (det (%HQHH + IM))} (2.16)

where the expectation is taken with respect to the randomreianatrixH. To the best of the
author’s knowledge, no explicit closed-form solution fbetmaximisation ove® exists in the
literature. In his seminal work though, Telatar showed thén the channel matrix has i.i.d.
~ N(0,1) entries and no channel state information (CSl) is availablne Tx, it is optimal
to use a uniform power distribution with a transmit covadammatrix@Q = Iy. Under these
conditions, a Rayleigh fading channel is modelled with sigfit physical separation between
the transmit and receive antenna elements. This approaghg@n the well known formula for
the ergodic MIMO capacity [5, 6]

C = By {1og2 (det (IM + %HHH)) } . (2.17)

For the remainder of this thesis, the above equation willdeiu However, it should be made
clear that this formula is based on the isotropic propertefi.i.d. complex Gaussidd where

the ergodic capacity is achieved with covariance matrixiig There is a misconception on
this issue since many researchers define the ergodic cgpaeispective of the distribution of
the channel matrix, according to (2.16). This discreparay lze attributed to the difficulty in

deriving the optimum matrixQ when the channel is not i.i.d. complex Gaussian [44].

The ergodic capacity is evidently maximised wriér{HHH} = NI,;. In physical terms, this
corresponds to a system with orthogonal MIMO subchannedsaarapacity equivalent to that

of M independent SISO channels as

Crnaz = Mlogy(1 + p). (2.18)

On the other hand, the minimum ergodic capacity is obtaine(Ef{HHH} = N1, where
1,7 is an(M x M) all-one matrix. This corresponds to an entirely correldii¥1O system and

the associated capacity is equivalent to that of a SingetlMultiple-Output (SIMO) system

Cmin = logy(1 + Mp). (2.19)

SWhenM > N, M should be replaced witly andHH? with HZ H. This holds true thanks to the fundamental
determinant propertylet (I + AB) = det (I + BA).
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In order to get a solid insight into the advantages of MIMOteyss, a graph showing the com-
plementary cumulative distribution functions (CCDFs) apacity, for different numbers of
Tx/Rx elements and a fixed SNR= 20 dB, is depicted in Fig. 2.4. The channel matrix is
assumed to have i.i.d. Rayleigh fading entries. Clearlgacay exhibits a linear increase with
the number of antenna elements thereby validating the rateméoned theoretical background.
Finally, when perfect CSl is available at both ends, smattecation strategies have been pro-
posed, like thevater filling theorem so as to maximise capacity [45]. The main concephbteh
this scheme is to allocate the highest amount of power tottbagest spatial subchannels. An
investigation of MIMO capacity bounds, under differentiasptions about the available CSI
at both the Rx and Tx, can be found in [46, 47].
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Figure 2.4: Capacity CCDFs of different i.i.d. Rayleigh MIMO channels.

2.4 Multi-dimensional channel modelling

In MIMO channels, the selectivity in time and frequency damacomes with the selectivity
in a third dimension, that is space. Taking into account thatangular (spatial) distribution

of energy is a key issue when modelling MIMO channels, we gndith the so-calledlouble
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directional description. The terms double directional indicate thatgspatial characterisation
is carried out at both ends of the link whereas a non-direationodel accounts merely for the

temporal spreading.

2.4.1 Principles of double directional propagation

In Fig. 2.5, a rich scattering MIMO channel consisting of tiplé propagation paths is shown.

scatterer

N elements ™

— Direct (LoS)
-------- Indirect (NLoS)

Figure 2.5: The concept of double directional propagation in MIMO chelsn

In general, each multipath component (MPC) can be identliiedneans of its Time of Ar-
rival (ToA), Direction of Arrival (DoA), Direction of Depaure (DoD) and complex amplitude.
Then, the communication between a Tx located;aand a Rx located &g, in the 3D space
may be expressed as the superpositio, @hpinging paths, leading to thdouble directional

impulse responsi26, 48]
L
h (T, 77,7, Q0 Q) = ) Bed (T — 70)5( — Qi) 5(Qy — Q). (2.20)
=1

In the above equationy,, 7, € 4, €2, , are the complex amplitude, ToA, DoA, DoD of the
¢-th MPC respectively and(-) is the delta Dirac function. For the sake of simplicity, the

polarisation selectivity has been excluded from the aiglyBhe spatial angl€2; is uniquely
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determined by the azimuth, and elevation); which are the spherical coordinates on a sphere

of unit radiu$,

Q; 2 [cos(¢y) sin(ty), sin(ey ) sin(y ), cos ()] . (2.21)

In realistic wireless channels though, the positions ohlibe Tx and/or Rx and surrounding
scatterers are not fixed but may change with time. This alesesathe disappearance of MPCs
and the appearance of new interactions. In this light, a ngeresral version of (2.20) can
be obtained for time-variant channels where the number o€MRs well the corresponding

parameters are varying with time

L(t)
h(t, 7,9, Q Z Be()3(T — 70(1))8(Qs — QL o(£))0(Ry — Qpp(t)). (2.22)

Following the distinction between the radio and propagatbannel as defined in [26], we can
easily conjecture that (2.22), which describes the lagigsumes isotropic radiators at both ends
of the link.

2.4.2 Double directional propagation and MIMO channel matrix

While the double directional response (2.20) is indicatiffehe underlying propagation mech-
anisms, the MIMO channel matrix can describe the responsigelen each pair of transmit
and receive elements given a specific antenna configuratioiandwidth. A direct conjunc-

tion (for time-invariant channels) between these two frawor&s is achieved via the relation-

ship [49]
/// T, Q) G ()

Gr () f(r — 7)dr' dS2,.d2 (2.23)

wherer; ) expresses thgth transmit element coordinates afig(€2,) is the transmit antenna
pattern. The same notation holds for the receive side thr¢lg subscript:),.. Finally, f(7) is
the combined impulse response of both antennas. From (2t23)eader sees that the impulse

response needs to be known between all possible pairs sfhtitand receive elements [49].

5The DoAQ, is defined likewise.
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2.5 Review of MIMO channel models

In recent years, the area of MIMO channel modelling has ghadensive research interest
since an accurate model can in principle predict the prajaganechanisms and ultimately
make possible the integration of MIMO technology into rkfal-applications. This section
provides a survey of the most important developments intiba af MIMO channel modelling.
Following the concept in [50], channel models are classifigal physicalandanalytical mod-
els. The former are independent of antenna configuratianteriaa pattern, number of antenna
elements, array geometry, polarisation) and system batidwvhile analytical models char-
acterise the channel impulse response between individaagrit and receive antennas in a

mathematical way without explicitly accounting for wavepagation.

2.5.1 Physical models

Physical models are supported by the principles of elecigratic wave propagation and orig-
inate from the early days of cellular radio when only the sigamplitude distributions and
Doppler spreads could be investigated. Following the rapwmlution of wireless communica-
tions, these models became far more sophisticated in codendompass additional features
such as the time delay spread, angular statistics, joitilalifons between delay/angular do-
mains and many more. In any case though, the great majorithesh are built upon the
fundamental principles of cellular radio models [51]. Fhgsmodels can be further classified

into deterministic geometry-based stochastiodnon-geometrical stochastimodels [49, 50].

2.5.1.1 Deterministic physical models

In deterministic models, the environment (positions of Rx,and scatterers) is prescribed in a
fixed (deterministic) way and thereafter the fundamentakWll's equations are solved using
one of the widely known methods of electromagnetism (Metbb¥oments, Finite Differ-
ence Time Domain Method, Finite Element Method). Natuyahg accuracy of deterministic
models is strongly dependent on the accuracy and detaileo$ite-specific representation of
the propagation medium. The main drawback of determiniaticiels is that they require large
amounts of computer resources (both memory and procesgiey if different channel situa-
tions are to be studied, as well as a detailed descriptiomuflation environments that is often

time-consuming and impractical.
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The most known deterministic models are the ray tracing @gorithms [52, 53], constructed
upon the Geometrical Optics (GO) theory in order to accoantte signal’s interactions with
the surrounding environment. RT techniques try to assesprbpagation characteristics such
as path loss, reflection, diffraction and scattering. G@tyeelies on the so-called ray approx-
imation which is valid when the wavelengths of the propagatvaves are much smaller than
the dimensions of the environment obstacles; this is the faamost urban propagation prob-
lems. The ray approximation suggests that multipath prapag can be expressed as a tube of
rays, each of them corresponding to a piece-wise linear@athecting two terminals [50]. In
RT algorithms, the positions of both terminals as well asrtfaimum number of successive
interactions, usually referred to as the prediction ordes,specified by the user. Apart from the
environment’s geometry, the electromagnetic parametarsaterials and the speeds of moving
objects (cars, buses) also need to be inserted as input gnanto the model at the generic iter-
ation. Yet, RT models are only representative of the comsitlenvironment and thus, multiple

runs are required to obtain a comprehensive set of diffggeogagation environments.

2.5.1.2 Geometry-based stochastic physical models

The plethora of geometry-based stochastic channel mo@8E£s) makes the detailed de-
scription of them a non-trivial task. Hence, the focus wil @n the most innovative models
(some dating back to 70s) given that the majority of the restagtually variations of them.
In a GSCM, the location of the scatterers is chosen stodadigtiassuming a certain PDF and
the model is derived from the position of the scatterers phyapg the fundamental laws of

reflection, diffraction and scattering. The main GSCM adsgas were summarised in [54] as

e An immediate projection onto physical reality is availalsiace the important param-
eters (like scatterer locations) are usually determinezbrating to simple geometrical

considerations.

e Most effects are implicitly reproduced; for instance, snsahle fading is created by the
superposition of waves from individual scatterers whileADand delay drifts caused by

MT movement are implicitly included.

¢ All information rests a priori in the distribution of scatégs; hence, dependencies of the
power delay profile (PDP) and angular power spectrum (APS)addurther complicate

the model.
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e Tx/Rx and scatterer movement as well as shadowing and thiafgliearance of propa-
gation paths can be easily implemented; this allows fousioh of long-term channel

correlations in a straightforward way.

An initial modelling approach was introduced by Lee in 19%5][who suggested the even
placement of scatterers on a circle (ring) around the MT tmljot the spatial correlation be-
tween signals received by two sensors. This approach id wdden the BS is elevated and not
obstructed by local scattering, as usually occurs in madigcSince then, different extensions
have been proposed with the most significant reported ingB, The simplicity and easy im-
plementation of the one-ring model makes it remarkablyas&ghence, it has also been applied
to multi-antenna element systems, as a number of recenicptibhs indicates [58—-61]. The
extension to account for frequency-selective MIMO chasyahd thus enable the accurate sim-
ulation of the highly promising Orthogonal Frequency Diers Multiplexing (OFDM) MIMO
systems, was recently published in [62]. A uniformly distiied disk of scatterers around the
MT is another model describing scattering especially in meellular environments where the
BS antenna is mounted above rooftops and thus no scatteringsofrom locations near it. The
idea of placing the scatterers within a circle was motivdtgdakes’ work [63] and adopted by
many research groups which subsequently extracted thel&aggectrum [64], joint TOA/DoOA
distribution [51], APS [65] and finally the delay spread andADdistribution [66]. Different
types of scatterer distributions, such as Rayleigh [67] amglsided Gaussian [68], have also

been reported.

If a microcellular environment is to be examined then thefarm placement of scatterers
within an ellipse, whose foci are the BS and the MT, yields mima@ced fit [69]. Under these
conditions, antenna heights are relatively low and theesfzattering is likely to occur in the
vicinity of both the BS and MT. A space-time generalisatidrttes model for SIMO chan-
nels can be found in [70] while the extension to wideband Mibtannels in [71]. It should be
pointed out that both one-disk and elliptical models allowe path-loss exponent to be defined
so that scatterers with longer delays suffer larger attemuiaHowever, they are both deficient
for indoor environments where the scatterers are diseibatl over the 3D volume and thus
it is impossible to obtain any information about their dmttion and further multiple (rather

than single) reflections occur [72].

It is also worth noting a special class of GSCMs, namely the-tiwg models which are ap-

propriate for mobile-to-mobile communications espegiathen neither the Tx nor the Rx are
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elevated but both are surrounded by a large number of loedtesers. Early work on SISO
systems is outlined in [73, 74] while further work on MIMO $gs1s, focusing on either the
space-time correlation or space-time-frequency coimldtinctions, can be respectively found
in [75, 76] and [77, 78]. A geometrical two-ring model for tWwdTs, separated by distance

and moving with velocities;; andz,. respectively, is shown in Fig. 2.6.

~ V><
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~
v

R, d R,

Figure 2.6: The geometrical two-ring model forax 2 MIMO channel with local scatterers
distributed on rings with radiz; and R,..

All the above considerations (apart from the two-ring my@eé based on the assumption that
only single scattering occurs. In physical reality thougtultiple-scattering is prevalent es-
pecially for micro- and picocells; for instance, in micrdsemost of energy is waveguided
through street canyons exhibiting multiple reflectiong ps in indoor environments [54]. A
potential solution lies in the use efjuivalent scattererahose positions and pathloss are cho-
sen appropriately to artificially generate a certain delag BoA [79]. While this alternative is
sufficiently effective for SISO antenna systems, it becoowesplicated for MIMO where once
the location of a scatterer is fixed (with respect to the @esrarameters of an impinging path),
the DoD from the Tx is implicitly described as well [50]. Orese grounds, Molisch devised
a generic model for outdoor microcells and macrocells by lmoing stochastic placement of
scatterers with simplified semi-RT to simulate the doublettecing and a mixed geometri-
cal/stochastic process to account for waveguiding andadiibn [80]. As a matter of fact, the
model, which is substantially based on the European Cotiperi the field of Scientific and
Technical research (COST) 259 directional channel modH|, [8mbodies a wide variety of
propagation effects, namely, LoS propagation, single anbkt scattering, scattering via far

clusters, waveguiding, roof-edge diffraction, largelscariations and moving scatterers.
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2.5.1.3 Non-geometrical stochastic physical models

The non-geometric stochastic models describe paths froro Bx by statistical parameters
only, without reference to the geometry of the physical emvinent. They are also named
empirical models since they are based on experimental bfaggeneral, they are very useful for
a posteriori simulation purposes [82]. A further distinctiis usually made with respect to the

clustering of MPCs as follows.

Extended Saleh-Valenzuela modelThe first comprehensive statistical channel model, specif
ically for an indoor multipath environment, was proposedajeh and Valenzuela (SV) in [83].
The authors observed that MPCs tend to arrive at the Rx ineskisr bundles. Hereafter, clus-
ters are defined as an accumulation of MPCs with similar teed@md angular characteristics,
namely ToAs, Azimuth of Arrivals (AoAs) and Azimuth of Depares (AoDs). The formation
of clusters is related to the building structure while the G&Rwithin a cluster are formed by
multiple reflections from objects in the vicinity of the Tx@Rx. Both the power of MPCs
within a cluster as well as the average cluster power follomegponential decay over time.
Moreover, the arrival times were described by two Poissatgsses corresponding to the ar-

rival time of clusters and of MPCs within clusters.

The SV model was later extended into the spatial domain 8C&ind dynamic SIMO channels
by Spencer [84] and Chorgg al. [85], respectively. While the authors in [84] assumed that t
spatial and temporal domains are independent the auth@sjishowed that this assumption
is invalid for LoS scenarios; in such an environment, pathiging at the Rx with short delays
have arelatively large angular range whereas paths agrivith longer delays have angles very
similar to the LoS direction thereby leading to the depeiglaat the two domains. A key con-
clusion drawn from both models is that MPCs within a clustéiofv a Laplacian distribution.
A further extension to the SV model for the MIMO case was aqushed by Wallace and
Jensen in [86]. From experimental data, the authors obdearlustering phenomena at both
ends of the link. Then, the narrowband double directionaglutse response, arising frofd,

clusters and.. MPCs within a cluster, can be succinctly written as

L.—1K.—1

! D Bred(dr — ok — Gere)S(br — ok — dpie)  (2.24)

h (b, ér) = VLK, =0 k=0

where®; and ®,. are the mean transmit and receive azimuthal angles witkr:n cluster;

¢+ e aNdg,. 1o are the transmit and receive angle of thiéa MPC in thek-th cluster respectively,
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which also has a complex amplitude given/fy. The average-ray power in each cluster was
assumed to be constant so that = A (0, |37|). In addition, the mean DoD and DoA (cluster
centres) are uniformly distributed ové, 27) while a zero-mean Laplacian PDF with standard

deviationo is assigned to the MPCs within each cluster at both ends
1 —|\/§¢k//0'|
1) = —¢€ . . 2.25

If a wideband model is desired, (2.24) can be simply rewritie

Le—1K.—1
h(T,d1, ¢r) = 7;7 Z Z Bred (T — The — Tre)6 (Pt — Poke — Pte)
CC =0 k=0
X0(¢pr — Prk — Drke) (2.26)

whereT}, is the arrival time of the:-th cluster (determined by a Poisson process) ands
the arrival time of the/-th MPC measured from the beginning of cluste(determined by a
second Poisson process). It is noteworthy that the studjustering effects in temporal and
spatial domains is nowadays regarded as a hot topic in wgalemmunications. The papers
cited above as well as the results presented in [87], whiohodstrated the harmful impact of
clustering on channel capacity, triggered a great amouintefest for these topics. Numerous
publications have been documented dealing with clustetifization and cluster distributions,
most of them by the groups at Technical University of Vienhdl{) and Aalborg University
(AAU); the interested readers are referred to [88-91] amuthgrs.

Zwick model: Zwick et al.[72] investigated an indoor channel which is basically elctarised
by reflections rather than diffuse scattering and the nurabsignificant MPCs is higher. Their
model disproves the formation of clusters when the operatiandwidth is high, based on
the experience drawn from previous measurements (see fifRjederences therein). The key
equation of the model reads for the directional, time-varfeequency-dependent response as

L(t)
H(t, f, 2, Q) = Y Ty(t)e 72 O65(Q; — Q4())6(Q — (1)) (2.27)
/=1

whereI',(¢) is the full polarimetric matrix whose entries contain thedes and depolarisation
of all scattering processes (reflections, transmissioiffsactions, etc.) of the/-th wave. The
rest of notation is consistent to that of (2.22). The chanesgbonse between all transmit and re-

ceive elements can be easily obtained by introducing theesbhifts of all MPCs, according to
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the relative position of the antenna elements. Furtherntbesappearance and disappearance of
paths over time is modelled by a genetic marked Poisson gso€énce a MPC has been gener-
ated (birth) its properties are updated until it dies offgt#g. Deterministic ray tracing tools are
employed for producing the huge data sets required for tgsgtal evaluation of the model
parameters [92, 93]. The main mpdel's advantage is thatibles the transition between LoS
and OLoS configurations in an easy manner by modelling thedom§ponent separately from
all other MPCs. Consequently, all environments can be ntedieising the same framework
instead of employing different burdensome techniques. &aw the relatively large number
of frequency-dependent site-specific parameters that twebd defined and the fact that the

time-dispersion of each separate MPC is neglected are thredreavbacks of this model.

2.5.2 Analytical models

In the previous section, physical models were studied; miegkess, it turns out that for system
design, MIMO simulations and design of space-time codealyical models are preferred as

they are able to capture the channel matrix from a mathealatiewpoint.

2.5.2.1 Correlation-based analytical models

The correlation-based analytical models have been cansttwpon the first and second order

statistics of a MIMO channel. According to [94], the full $iahcorrelation matrix
Ry £ By {vec (H) vec(H)} € CMN*MN (2.28)

wherevec(-) stacks the columns of a matrix into a vector, can completelscdbe the spa-
tial behaviour of the MIMO channel since it contains the nalittorrelation complex values

between all channel matrix elements. The one-sided ctiorlenatrices are also defined as

R, £ Eu{(H'H)"}eCN (2.29)
R, 2 Fy{HH"}c MM (2.30)

A direct physical interpretation of the elementsRfj is not possible though and thus different
approximations ofRyg have been proposed that rely either on a separability agsamipe-

tween the transmit/receive correlation matrices or on ahgosition in the eigen/beam-space.
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l.i.d. Rayleigh model The i.i.d. Rayleigh model was the initial scheme for assgsthe
performance of MIMO channels and went on to become the mashuan analytical tool for
the design of space-time codes. The entries of the channgixnaae assumed to be i.i.d.
zero-mean complex Gaussian variables with unit variategeby corresponding to a spatially
white MIMO channel. These channels occur when the antenacirggs and/or the the angu-
lar spreads are high enough to induce independent fadimg ¢patial correlation) and a large
number of multipaths impinge on the Rx from all directionisert, the correlation matrix be-
comes proportional to the identity matrix. In practice tgbuthe spatial subchannels are rarely

uncorrelated due to the limited angular spreads and arza&g Si

In the same way, the presence of a strong LoS coherent comipmagy violate the assumption
of Rayleigh fading causing the channel statistics to be &iadstributed instead. In this case,
the channel matrix consists of a spatially deterministecsgiar componeri, , which contains

the free-space responses between all antenna duets, amtbar&ayleigh-distributed compo-

nentH,, which accounts for the scattered signals. The LoS MIMO cbbhmodel then reads

as [95]
/| K [ 1

Kronecker model: The so-called Kronecker model was evaluated by the groupAat as

a contribution to the IST-SATURNinitiative to model narrowband NLoS propagation [94].
The extension of the narrowband model to the wideband casgerdormed in [96] where the

authors assumed that the delay bins in the PDP are indepesuthus applied the Kronecker
model to each tap. The model simply claims that the spatiakladion matrix can be well

approximated by the Kronecker product of the one-sidedetation matrices according to

1
- . 2.32
Ru tr(Rr)Rt®R (2.32)

where ® returns the Kronecker product of two matrices. Then, it igdt to show that the

channel matrix may be modelled as

T
Higon — R1/2H,, (Rtl/ 2) (2.33)

1
Vir(R,)

1/2 - ae1/2 (o1/2)\
where(-)'/* denotes any matrix square root fulfillirig. (RT ) = R,. Yu et al.[96],

"Information Society Technology-Smart Antenna Technologyniversal Broadband Wireless Networks.
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have proved that for systems with three or less transmit aoéive antennas, aggregate statis-
tics, like average capacity, can be precisely predictedveits simplicity (operations on
vec(H) are replaced by matrix manipulations #F) and the fact that it allows for indepen-
dent array optimisation at Tx and Rx, the scheme has becomdgrdor MIMO simulations.
However, Kronecker models enforce the spatial correlgpiaperties at both ends to be sepa-
rable; that is all DoDs couple into all DoAs with the same popmfile, and vice versa. Then,
the joint APS is assumed to be the product of the DoA and DoDepepectra, which produces
artifact paths lying at the vertical and horizontal intetsens of the real DoD and DoA spectral
peaks [97]. These artifacts increase the apparent diydrsitdecrease the apparent capacity
since they take away energy from all real paths that do ndtltbe intersection points so that
the overall power is kept constant. These undesired impics of the Kronecker model can
be clearly seen in Fig. 2.7 where both the normalised medsamd modelled angular power
spectra of ar8 x 8 indoor MIMO channel at 5.2 GHz have been plotted, with rezend
transmit inter-element spacings @b\ and0.4\ respectively (a detailed discussion on the in-
vestigated measurement campaign is given in Section 3.tignWarger antenna arrays are used

(improved angular resolution) the model’s performanceagaificantly impaired [97, 98].
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Figure 2.7: Joint angular power spectrum for a measured (left) and atsstnt MIMO channel
based on the Kronecker model (right).

Weichselberger model The so-called Weichselberger (or eigenbeam) model allesithe de-
ficiencies of the Kronecker model by considering the jointrelation structure of both ends

and consequently the average coupling between the spabahannels is effectively mod-
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elled [99]. This implies that the correlation propertiegta Tx and Rx are modelled jointly.

The eigenvalue decomposition of the transmit and receinelkation matrices yields

R, = UAUM (2.34)
R, = U,AUZ (2.35)

where A; is a diagonal matrix containing the positive, real-valuggesvalues oR; and the
columns of the unitary eigenbasls; correspond to the eigenvectors at the Tx. The same
nomenclature holds for the Rx side. The coupling betweenltreends is determined by
the power coupling matriX2yeichsel Whose positive and real-valued coefficienigeichselm,n
specify the mean amount of energy coupled from dh#h transmit eigenvector to thex-th
receive eigenvector. The structure @f,cichseliS heavily dependent on the spatial arrangement
of scatterers and determines all the fundamental featdradMiMO channel, i.e. number of
multiplexed data streams, degree of diversity and beanifgrmain. An excellent description
of how the structure of2yeichseliS related to the surrounding spatial environment exisf99h.
Mathematically speaking, the power coupling matrix can ibectly obtained from the transfer
matrix H as

Queichsei= P { (UYHU;) © (UTH'U) } (2.36)

where® returns the element-wise Schur Hadamard multiplicatiossuining that the eigen-
basis at the Rx is independent of the transmit weights anel wecsa, the key formula of the
model reads as

Hyeichsel= U, (ﬁweichseIQ HW) u! (2.37)

whereﬁweichse| expresses the element-wise square rod2@fichset While the model neces-
sitates the spatial eigenbases at one side to be alwaysrtiefeaany spatial weight at the
other side, the eigenvalues may differ. Despite the fadt the eigenbases are undoubtedly
influenced by the spatial structure of the transmit signhls, less restrictive assumption for
the eigenvalues improves drastically the attained acgurétte Kronecker model is intuitively
considered as a special case of the sophisticated Weiehgettframework obtained with the
rank-1 coupling matriXuyeichsel = A+ A7, whereX, and ), are vectorised versions &, and

A, respectively.

Apart from its increased complexity, the main drawback &f Weichselberger scheme lies in

the estimation of the joint APS since the multipath envireninis occasionally not rendered
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accurately; this may lead to a rather blurred version of tRSAAlthough more robust than the
Kronecker model with systems employing more than four amsnthe model still faces diffi-
culties in capturing the spatial variations [98]. This ghoming is again illustrated by plotting

the measured and modelled joint APS for a different measeneiscenario (see Fig. 2.8).
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Figure 2.8: Joint angular power spectrum for a measured (left) and atsstit MIMO channel
based on the Weichselberger model (right).

Structured model: To the best of the author's knowledge, this is the latestyéinal MIMO

channel model and in essence represents an extension okibbadberger model to three di-
mensions, namely the receive-transmit-delay space [108]based on the notion of structured
vector modes, initially introduced in [43], and recasts Mi&1O channel matrix as a tensor to
account for correlation in all domains and especially befweelay bins in the PDP. Assuming

Ny delay bins, the model’s key equation is given by
Hstruct= W x1 U, x2 Uy x3 Uy (2.38)

whereUy is the eigenbasis of the delay correlation matiix,e CM*N*Ns is g tensor whose
entries reflect the wideband power coupling between the twis andA4 x,, M denotes the-th
mode tensor product between a tengoe C1 <2 *InxIn and a matrixM € C’/»*I», Sim-

ilar to the Weichselberger model, the structured model datsissume independence between
scatterers at the Tx and Rx and hence it systematically dotpes the Kronecker model as two
different measurement campaigns revealed [100]. The maekels also a greater robustness

as its estimated capacity error remains relatively unchdrasg the array sizes get larger.
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2.5.2.2 Propagation-based analytical models

Virtual channel representation: The so-called virtual channel representation (VCR) is a
tractable linear model, valid for uniform linear arrays (Ri), initially prompted by the limited
resolution in the spatial signal sp&dé01]. The main idea is that the finite number of antennas
represent nonetheless a discrete sampling in the apexanaids which are directly related to
the angular domains via a Fourier transform (FT). The useloé¥plains why the model can
be applied merely to ULA configurations as the sampling needs uniform in the aperture
domains [82]. The angular range at both ends is partitionéal fixed, predefined directions
which are determined by the spatial resolution, that is the and inter-element spacings of
the arrays. Please note that the latter characteristictaffdso the degree of mutual coupling
which distorts the array response and needs to be minimisied @an array perturbation ma-
trix [102]. The model is virtual in the sense that it does mqiresent the real directions but only

the contribution of the channel to those fixed directionse kéy formula of the model reads as
Hyir = Jer (ﬁvirt © HW) A? (2.39)

where A, and A, are the channel independent discrete Fourier transfornT {Diatrices of
size(M x M) and (N x N) respectively. The columns of these orthonormal matrices co
stitute steering vectors into the directions of virtual l@sg As anticipatedﬁvm is again the
element-wise square root of(&/ x N) matrix 2yix whose entries reflect the power coupling
between then-th virtual transmit angle and thex-th receive virtual angle. In this case, the
coupling matrix is obtained through (2.36), by using thedefened DFT matriced, and A,
instead of the eigenbas&s. andU; respectively. The author emphasises that the VCR and the
Weichselberger models represent in essence differemeeaiges of the modelling domain; the

former is modelled in beamspace while the latter in eigecspa

Its straightforward geometrical projection makes the nhadther appealing while the struc-
ture of ﬁ\,m provides an insightful interpretation of the scatterintpefs on the multiplexing
gain and level of diversity. The VCR model yields a betterrfitéarms of joint APS compared
to Kronecker and Weichselberger schemes, particularha faigh number of antenna elements
(enhanced spatial resolution and therefore higher nunitsteering directions) [49]. However,
it struggles considerably when it comes to measure the &rgodl outage mutual information

metrics; this is a side-effect of the abrupt spatial pantiti To be more precise, the underlying

8Note that the VCR model might be qualified as correlatiorebass well.
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model assumption of uncorrelated fading is problematicesisny scatterer lying between two
virtual angles is anticipated to induce correlated fading tb sidelobe effects. In the worst
case scenario, a MPC at the middle of a fixed partition is niedddy four equal-powered,

independently-fading components and we eventually end ittpmore MPCs than the mea-
sured channel really has [49]. To sum up, the VCR does ndndissh between scatterers

which are separated by less than the angular resolution.

Finite scatterers model The main motivation for developing this model has been tie®ty

of double directional propagation, as described in Se@idn Assuming narrowband transmis-
sion, that is the signal bandwidth is narrow compared withdterall coherence bandwidth of
the channel, the delay of each path can be disregarded. Tfteenhannel response is the su-
perposition of a finite number df waves each connected to a specific AoA, AoD and complex

amplitude. Following (2.20), the channel matrix reads @38]1
L
Hinite = » _ ar(¢r,0)8e8f" (d1,0) = A:BLAL . (2.40)
=1

In the above equatiom,. (¢, /) anda.(¢; ¢) are the steering vectors at Rx and Tx corresponding
to the/-th MPC. By concatenating the steering vectors for all DoBsDs), the( M x L) matrix
A, (or the(N x L) matrix A;) is obtained. The diagonal matrB; = diag(51, 52, - -, 5L)

contains the complex gains of all paths.

M elements

LA

Figure 2.9: lllustration of the finite scatterers model showing exarapé&(a) single scattered
paths, (b) doubly reflected paths, and (c) split components.

The finite scatterers model not only accounts for single andbty scattered components (paths
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(a) and (b) respectively in Fig. 2.9) but also for split coments (path (c) in Fig. 2.9) which
may have a single AoD but subsequently split, resulting im ttwmore AoAs (and vice versa).
Therefore, it may be regarded as a generalised version of @8€Ms which can deal only
with single and doubly scattered components [79, 80]. Thizvatéon of (2.40) was based on
the assumption that the transmit and receive elements eat ithcoupled isotropic radiators.
Deviations from these unrealistic conditions can be easihgstigated by multiplying with
appropriate transformation matrices [104]. Summaristhg,main differences compared with
the VCR model are:

e The finite scatterers model allows for arbitrary number oD&a@and AoAs regardless of

the number of transmit and receive antenna elements.

e It can be applied to any antenna geometry (after appropmat@pulations) and thus it is

not restricted to single-polarised ULASs.

e The model is not linear ip, , and¢; ;.

Distributed scatterers model The so-called distributed scatterers model was develapas-
sess the performance of outdoor MIMO systems and suggedglgeés for achieving subchan-
nel orthogonality and hence high channel capacity [105fthBlee Tx and Rx are surrounded
by a set ofS actual near-field scatterers whose extent from the hor¢@xis is denoted ab,

and D, respectively. The value o is assumed to be large enough to induce random fading
while the arrangement of scatterers follows no certaingpattMoreover, the angular spreads
of the reflected waves arg ando,.. The inter-element distance at Tx and Rx is expressed as
d; andd,.; the scatterers at the receive side can be seen as a vintaalodiS elements between
the Tx and Rx with an average element spadiy. /S. The propagation scenario described

above has been plotted in Fig. 2.10.

The MIMO channel transfer function is then given by

H,,RY%  H, R/ (2.41)

T 12
Hps = R 05,2D,/S o ,di

\/g or,dr

whereﬁ is a normalisation factor anH,, ., Hy,; are i.i.d. Rayleigh fading matrices of size

(M x S)and(S x N), respectively whereasg is the angular spread for the virtual array

tan(os/2) = D/ R. (2.42)
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Figure 2.10: lllustration of the distributed scatterers model showihg angular spreads.

The deterministic matriceR., 4,, R, 2p, /5 Ro, 4, control the spatial correlation seen from
the Tx, virtual array and the Rx, respectively. The degreeafelation is governed by the
angular spread and inter-element distance since high angpfteads and element separations
reduce correlation leading to high-rank (HR) channel roasi If the correlation matrix at one
end is low-rank (LR), then from (2.41) the MIMO channel isalsR. The opposite though
is not always true. In some cases, fading may be uncorrekttémbth sides of the link, i.e.
R,, 4, = In andR,, 4, = Iy but the MIMO channel rank remains poor. This unusual
phenomenon is known as tlkeyholeeffect. Conceptually, the rank of the channel matrix is
by definition determined by the rank of the correlation maaf the virtual arrayR,; »p, /s-
When the distanc® is large compared to the product b and D,. the channel rank eventually
drops. This may occur in specific roof-top diffraction sceos where a vertical-base antenna
is employed. Other physical examples of keyholes includeasia keyhole in a metal screen,
a modal keyhole in a waveguide or a hallway where only one ni®geesent [106]. Under
these circumstances, the elements of the channel matridistréouted according to a double

Rayleigh distribution which fades twice as often as a stah&ayleigh distribution [105].

Maximum entropy model: This model was developed on the grounds of statisticalemiee

in order to attribute a joint probability distribution todlthannel transfer matrix. By using the
theorem of maximum entropy the authors in [44] demonstréitedl a modelling framework
can be easily created out of the state of knowledge availakie choice of distribution with
the greatest entropy, and only this, guarantees that unkmnaf@ermation is not introduced. For
expressing the prior knowledge statistically and estintgathe parameters of the model, the
principles of Bayesian probability theory were also emplibyln order to achieve consistency,

regardless of the application of the model, the followingpaxwas defined:
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If the prior informationI; which is the basis for channel moddl, is equivalent to the prior
informationI, of channel modeH-, then both models must be assigned the same probability
distribution f(H;) = f(H2).

This axiom originates from the fundamental principle ttHat problem can be solved in more
than one way the outcomes should be consistent. In its bsbadesion, the model assumes

knowledge of the following

e Number of stationary scatterers at the transmit and recsilesS; and.S, respectively.

Velocities of Tx and Rxy; andz; respectively.

¢ AoD from transmit antennato scattereyj denoted ag ;; and carrying powePZ-tj.

AoA from scattereti to receive antennadenoted ag, ;; and carrying power’/.

The S, x S; delay matrix linking each DoA to each DoD, written as

e I2mfTi1 p—i2mfmie .. e—i2mfTs,
e I2mfTa1  p—i2mfT2e .. o—i2mfT2s,

D(f) = ) ) _ ) (2.43)
e I2mfTs, 0 o=i2TfTs 2 L. e I27f TS, sy

The response of a time-variant frequency selective MIMQhaleathen has the following struc-

ture

Hye(t, f) = ALt PT3(1) (B(t, f) © D(f)) P2 (1) As(t, f). (2.44)

Sy St

with P’“%(t) = diag(x/Pl (t),...,\/Ps, (t)) being the received power matrix and in accor-
dancePt%(t) = diag(x/Pl(t), ooy Ps, (t)) is the transmit power matrix. It was shown that
a Gaussian i.i.d. distribution with zero mean and unityamce should be assigned®i, f)

since it is the solution of the consistency argument and mises entropy.

The goodness of this model was tested using the data fromabatideband outdoor and an
indoor measurement campaign, performed at frequencied @Bz and 5.2 GHz with a band-
width of 100 MHz. The model yields a satisfactory compliaircéerms of capacity especially
at 2.1 GHz. The main advantage of this approach is its fleiilsince every new piece of

information on the environment can be straightforwardigarporated in a consistent way.
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2.5.3 Standardised models

A brief review of the most important standardised modelgldshed by several international
organisations, is now provided. The aim to give the readés\& uf recent and ongoing channel
modelling activities. It should be noted though, that theselels are not intended to enhance

understanding of MIMO propagation characteristics.

2.5.3.1 3GPP spatial channel model

The 3rd Generation Partnership Project (3GPP) systent$patial channel model (SCM) has
been designed for the simulation of third-generation netg/m urban and suburban macrocells
as well as in urban microcells. It is noteworthy that a liekdl SCM has also being developed
for the purpose of calibration, where taps with differenage are assumed independent and can
be fully characterised by their spatial parameters, i.guéar spread, APS, AoA/AoD [107].
The model structure and simulation methodology are idehfwr all these environments but
the input parameters, like delay spread, angular spreadis@iorth, are different [50]. The
provided implementation is a tap-delay line model wheréngap consists of several subpaths
which share the same delay but have different directiongrofeh and departure. Adding up
these different subpaths (which all have deterministic laoges but random phases) leads
to Rayleigh or Ricean fading. In [107], a parameter table been given which lists all the
important parameters, such as number and power of pathsuiapdthis and spatial parameters.
The system bandwidth is normally assumed to be 5 MHz, but tamsion to larger bandwidths

was proposed in [108], where a wideband SCM is adopted.

The core of the link-level 3GPP MIMO model is a Kronecker madaich provides a direct link
between the rank dRy; and capacity and, more importantly, requires a low numbenuit
parameters [109]. It also introduces spatial and spatigpteal separability at all three levels,
namely cluster, link and system levels. On the other harel SiBM [108] was also proposed
by the 3GPP for both link- and system-level simulations. 1hd] though, it was shown that
SCM shows the spatial separability at the link and systeraldewbut not at the cluster level
since its spatial correlation is related to the joint AoA[Adistribution. Likewise, the spatio-
temporal separability is observed for the SCM only at thdesyslevel. To summarise, the
simpler Kronecker model can capture only the average spatiporal properties of MIMO
channels while SCM, though more complex, provides a deeységhit into the variations of

different MIMO realisations.
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2.5.3.2 |EEE 802.11n channel models

This set of models, developed by the High Throughpout Taslu@wwithin the IEEE 802.11n
Working Group, have been designed for indoor WLANS at botm@ & GHz with an oper-
ating bandwidth of 100 MHz [111]. They essentially représamimproved and standardised
version of the SV model with overlapping clusters in the gelamain [82]. Six canonical en-
vironments (A to F) are modelled including, flat-fading,idestial, small office, typical office,
large office and large open space. For each of the six envieatsnthe TGn model specifies a
different set of simulation settings. Typically, the numbéclusters varies from 2 to 6 for dif-
ferent indoor scenarios while the overall root mean squéred) delay spread ranges between
0 (flat-fading) and 150 ns.

In general, these models are a combination of the Kronegkamoach along with the cluster
modeling framework as given in [83, 84]. More specificallyeach time instant, the full spa-
tial correlation matrix R, is approximated using (2.32); the correlation matricesaah delay
tap, R} andR/., are obtained by the APS and angular spreads at the Tx an@#pegatively. In
order to determine the latter two characteristics, theltesd [83, 85] have been adopted and,
consequently, the APS of tligh tap is modelled by a Laplacian distribution whose spiisad
equal to the cluster spread. This is consistent with thetseeptesented in [112], where it was
clearly demonstrated that the instantaneous tap azimu#iagps slightly less than the cluster
spread with the difference becoming smaller as the chararelwidth decreases. On a similar
basis, taps are assigned a truncated Laplacian distnibuiith the mean AoA and AoD being
uniformly distributed ovef0, 2r). The cluster azimuth spread is normally selected in thegang
20°—40° and is correlated with the delay spread. The temporal charam@tions are char-
acterised by means of the Doppler spectrum, which consisis’loell-shaped” part with low
Doppler frequency and an optional additional "horn” peak érger Doppler frequency. The
latter is caused by vehicle movements which mostly occuarigd-space environments (model

F). As additional options, path-loss modeling and pol&iess have also been treated in [111].

2.5.3.3 WINNER channel model

The IST-Wireless World Initiative New Radio (WINNER) projehas been developed by a
consortium of 41 partners which aimed to define radio int&féechnologies needed for a
ubiquitous radio system concept as well as radio networkltmies and deployment concepts

for the provision of a ubiquitous coverage area [113]. Thelehds inherently related to 3GPP
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but a wider bandwidth of up to 100 MHz is used in both 2 and 5 GEguency ranges. This is
achieved through the SCM-Extended (SCME) model by introduthe so-called intracluster
delay spread, which is zero in the original SCM [114]. The elambvers six different indoor
and outdoor propagation environments, particularly, ordomall office, indoor large hall, urban
microcell, urban small macrocell, suburban macrocell andlf{115] with the key parameters

of each environment being extracted from several realriBmsurement campaigns.

The modelling approach is based on a generic sum-of-sidsisnodel where the double direc-
tional characteristics, delay, polarisation and complapl#ude of each MPC are considered.
The clusters are defined independently in DoA and DoD domeamadsthis assumption signif-
icantly simplifies parameter extraction and coefficientegation [115]. The key model’s fea-
tures are the modelling of cross-correlation between laggte parameters (i.e. delay spread,
AoA/AoD spread and lognormal shadowing), the inclusion @hpsation effects via & x 2)
polarimetric matrix and finally, the consideration of elgoa in indoor environments [50]. A
more detailed discussion on the model characteristicsgaldth a MATLAB implementation

of it are available in [113].

2.5.3.4 COST 259/273/2100 channel models

The COST project is a European research initiative whicthuthes COST 259 (1996-2000)
in the field of “Flexible personalised wireless communioas” [81] and similarly COST 273
(2001-2005) in the field of “Towards mobile broadband mudtiia networks” [116]. Both
subprojects aimed to develop efficient and generalised retinnel models suitable for mod-
ern MIMO communications. It should be noted that 3GPP ancEIB&2.11n can be regarded
as special cases of COST models (though with different patemnsettings) [50].

According to [50], the COST 259 directional model was thet fir@del which explicitly in-
vestigated the complex relationships between BS-MT digtadelay dispersion and angular
spread. The model relies on the key notiongxternalandglobal parametersThe former are
fixed for a simulation run and include the following featusthe simulation environments
among others: frequency band, average BS-MT distanceagwdreight of BS and MT anten-
nas and average building heights and separations. The paftemeters must be extracted by
exhaustive real-life measurement trials since their siéspe describe the propagation condi-
tions of eachradio environmentin fact, they are sets of pdfs and/or statistical momentbef

stochastic parameters. For instance, the number of vislbkters is normally modelled via a
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Poisson process. More importantly, global parametersigeomecessary information for the
appropriate design of communication systems with regarngractical issues like modulation
scheme, burst length, coding scheme etc. We also reflectd parameterswvhich are basi-
cally random realisations of the global parameters and ssaraed to remain constant within
a small local area of the order of tensgftherefore they can only describe the instantaneous
channel conditions. The main advantage of the COST 259 niodteht it can handle the con-
tinuous motion of the MT across different radio environnseaid return as output the double
directional impulse response, as the one given in (2.20)hotough discussion on the most
important aspects of the COST 259 model can be found in [1Qf]the other hand, there are
two fundamental deficiencies of the COST 259 framework. Tist dine is the assumption of
stationary scatterers which implies that time variatioresaitributed only to the MT movement.
Secondly, delay attenuations are modelled as complex @auR¥'s which, in practice, means

that a relatively high number of MPCs should be present dt datay bin.

The COST 273 approach represents an extended version ofaB& @59 one since 18 differ-
ent radio environments are now considered (compared tant8)ding some scenarios of high
practical interest nowadays, such as peer-to-peer conuatioms and fixed wireless access.
The COST 273 employs the same generic channel model forpEbtgf environments that is
also identical to that of COST 259 for macrocells; this isgn#icant distinction to the COST
259 model, which used different generic models for pico¢nai and macrocells. The simula-
tion parameters have also been updated to comply with thenedtfons drawn from a plethora
of recently available double directional MIMO campaignd§l The key methodology of
COST 273 is to model the mean angles and delays of clusteredayejrical considerations,
while the intracluster spreads and small scale fading magxpeessed by either a geometrical
approach or a tapped delay line representation. Howevéndisant discrepancy exists when
it comes down to the modelling of multiple interactions. @nthese circumstances, the con-
cept oftwin clustersis introduced so that each cluster is divided into a clusteresponding
to the BS side and one at the MT. The angular dispersion at BSVanh are independently
modelled while the two clusters have the same scattergituisbns and long-term behaviours
(twins). These two representations are connected via aledstochastic cluster link delay
which is the same for all scatterers within a cluster. Thik lilelay guarantees realistic path
delays while the placement of the cluster is defined by thelangluster statistics as seen from
the BS and MT, respectively [50].
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The latest COST initiative, is the COST 2100 project (2036 in the field of “Pervasive
mobile & ambient wireless communications” [118] which ajnasnong others, to bring to-
gether various aspects of mobile-to-mobile communicattorsupport future telematics appli-
cations, such as improved navigation mechanisms and infoent services [119, 120]. Other
subworking groups explore the design of compact antenrtersgsfor terminals, localisation
in ultra-wideband systems, and establishment of referehemnel models that will include
diffuse scattering interactions and investigate the temidmehaviour caused by moving scat-
terers [118].

2.6 Summary

The goal of this chapter has been twofold. Firstly, the belsaracteristics of radio propagation
were described as they are essential in order to comprehentature of wireless channels. As
anticipated, MIMO channels are also governed by these wellvkk mechanisms with the only
difference lying in the reciprocity of propagation (douldectional) due to the multiple an-
tenna elements at both sides of the radio link. Secondlingakto account that practical mea-
surements are cumbersome and unique for each environrhentdin focus was on channel
models that are tractable statistical tools for capturingtimath propagation and interactions
with the surrounding environment. Apart from reviewing thiea of channel modelling, the
author classified models with regard to which feature thégtes intends to capture (double-
directional propagation or impulse response) and detexththe models’ limitations. To sum
up, this chapter outlines the scope and represents a stepfmne for the remainder of the

thesis.
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Chapter 3

Stochastic modelling of MIMO
channels using the spatial eigenmodes

In the previous chapter, the author reviewed the most impbenalytical MIMO channel mod-
els whose disadvantages necessitate the development ataypreeral framework able to cap-
ture the spatial activity with finer detail. This chapterg®ats a new stochastic indoor model,
which originates from the widely known KLT, and is consteattupon the eigendecomposi-
tion of the full correlation matrix. It is shown that the clmeh matrix can be modelled by the
superposition of the spatial eigenmodes experiencingpegent Nakagami» fading. The
model is derived based on measurement data collected atiardaequency of 5.2 GHz in
an indoor environment under a range of propagation comditioThe Nakagamir distribu-
tion offers a good fit with the measured data and furthermbi® more flexible compared to
the commonly employed Rayleigh distribution. The remairafethis chapter is organised as
follows: In Section 3.1, a MIMO measurement campaign cdraet in an office environment
is described. Section 3.2 outlines the foundations of tive aealytical model and offers a
physical interpretation of the spatial parameters thatisa it. In Section 3.3, the choice of
the Nakagamin distribution for modelling the fluctuations of the measuesdelopes is clari-
fied. In Section 3.4, a novel method for generating independakagamis: deviates based on
the rejection/acceptance technique is proposed. The ggsdind efficiency of the proposed
method are subsequently demonstrated in depth. In SecBothg performance of the stochas-
tic model is evaluated using the measured data and compatiedwe well known analytical
models reported in the literature. Finally, Section 3.6dodes the chapter and summarises

the key findings.

3.1 Indoor measurement campaign

An indoor measurement campaign was carried out in the Edat&Engineering Building within

TUV, in an area with many office partitions (highly clutteredvironment). The heart of the
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measurement setup was the RUSK ATM MEDAV vector channel deuoperating at a centre
frequency of 5.2 GHz [121]. The sounder was probed at 193-ggpied frequency bins cov-
ering the 120 MHz of operating bandwidth with a dynamic ranfgypically 35 dB. The two
ends were synchronised via an optical fibre [43, 49]. The nreasents were repeated at 128
temporal snapshots in order to enhance the output SNR. mnehhad to be static during one
such snapshot and for this reason the campaign was condatctéght to ensure stationarity.
By averaging over all snapshots the receive SNR was inaldase0 - log(128) = 21 dB the-
oretically to values up to 50-60 dB; however, the signal wiisimation ability remains limited

by the dynamic range of the sounder.

The Rx was mounted on a wooden tripod at a height of 1.5 m andogega ULA of eight
vertically-polarised printed dipoles with an inter-elemelistance ofl, = 0.4\. Two dummy
elements were also used. Each single antenna had a 3 dB h#wamwidth of about20°.
Prior to any DoA estimation process, the physical receivayawas fully calibrated in order
to remove the undesired effects of electromagnetic mutoipling between the antenna ele-
ments, amplification errors, non-identical element respsrand other array imperfections and
this was accomplished using the method described in [102]thé& Tx, an omni-directional
sleeve antenna was moved on ax20 rectangular grid with element spacingsdf= 0.5)\.

By considering a virtual eight-element ULA on each row, akstumber of13 x 10 = 130
spatial realisations of th8 x 8 MIMO transfer matrix is acquired. Hence, a total set of
130 x 193 = 25,090 space and frequency realisations per measurement sceragiobtained.
For the present study, 24 different Rx locations were inigagtd in several offices while the Tx
was positioned at a fixed position in the hallway. In orderdguare the whole azimuth domain
activity, the Rx was steered to three different broadsideations spaced bi20° (D1, D2 and
D3) leading to the generation of 72 data sets, i.e. comlanatof Rx positions and directions.
Hereafter, each data set will be denoted via the Rx locatmhbsoadside direction, e.g. 2D3.
Please note that most office rooms were sparsely furnishétdwgoden and metal furniture
(computers, chairs, tables). The doors between the hatweythe rooms were also wooden or

glass-filled [49]. The measurement layout along with the étations are depicted in Fig. 3.1.

3.2 Derivation of the spatial MIMO channel model

Prior to pursuing the statistical description of a new atiedy model, it would be wise to

justify the reason behind developing one more scheme inr@adl saturated area. At this
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Figure 3.1: Layout of the measurement environment and Rx locationsn(faden [49]).
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point, the reader should be reminded that a common assumipticonstructing a correlation-
based model is that the channel follows a zero-mean compdes$tan distribution; then, the
second-order statistics suffice for its spatial descriptio such a case, any channel realisation
can be generated by the full spatial correlation matrix fegent to the covariance matrix)
according to

vec (H) = Rifvec (Hw) . (3.2)

This model is a valid formalism only when the channel staistre jointly Gaussian though this
rarely holds in practice. A potential solution for captyithe non-normality is to decorrelate
the spatial subchannels and model the marginal behavioeadf decorrelated subchannel
separately. This approach is essentially a KLT which has lea¢ensively used in numerous
applications that span image compression to seismologycantputer graphics in order to
decorrelate multi-element data using the eigendecomeosiif the correlation matrix [122].

At a next stage, the assumption of Rayleigh fading may beedldy assigning a different

fading distribution.

Let's assume now a flat-fading MIMO channel with transmit and)M receive antenna ele-
ments. The eigendecomposition Bfyy, defined in (2.28), into a sum of rank-1 matrices is

given by
MN

Ru = > Mauuf (3.2)
k=1

where)\;, are the real non-zero ordered eigenvalges> Xy > ... > Ay > 0) anduy con-
tain the corresponding eigenvectors which are by definittmrtually orthogonal and have
unit norm. The number of non-zero eigenvalues determings e rank ofRy which is
upper bounded bW/ N. The eigenvectony, can be reshaped column-wise into the matrix
U, = unvec(uy) € CM*N which will be referred to hereafter as tieth eigenmode From

a physical viewpoint, eigenvalues specify the degree afrdity offered by the channel while
eigenmodes, commonly representing a linear combinatigragagation paths, are indicative

of the SM ability [99]. Likewise, the channel matrix may beadeted as

MN

Hinoa = Y _ g[kv/ MUk (3.3)
k=1

From (3.3), it can be readily inferred that the PDF¢dk] expresses the fading variations of

the channel. In fact, the fading coefficienis:] are i.i.d. complex RVs satisfying the key
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relationshipE, {g[m|g*[n]} = d,n, Whered,,, is the Kronecker delta function. The validity

of (3.3) can be easily checked by calculating the correfati@trix of Hyoq as

MN MN

E, {Vec(Hmod)vec(Hmod)H} = Z Z \/Tk\/)‘—nuk’unHEg {glklg*[n]}
=1 n=1
i
k=1

It should be noted that the second-order moment of the facledficientsg[k] is assumed to

be the same for alt so that the eigenvalues, reflect the power of each eigenmode.

3.3 Nakagamim fading characteristics

The resulting uncorrelated eigenmodes of the proposednethamodel (3.3) are now assigned
a Nakagamin fading process that, as was mentioned in Chapter 2, yieldgsdatory fit with
empirical data for various measured channels. The noreth{isnity power) Nakagami» PDF

of the fading envelope is given by
p(r) = —m™r*™ e r > 0. (3.5)

The Nakagami fading figurex[k] (1 < k < M N) is estimated directly from the measured data

according to

E{|ukHvec(H)|2}2

E {{|ukHvec(H)|2 -F {‘ukHveC(H)‘Q}}Q}
M >

E{{|ukHvec(H)|2 - )\k}Q} -

An example indicating the excellent fit of the Nakagamidistribution with the distribution of

(3.6)

N | —

a measured fading envelope is depicted in Fig. 3.2 (locdtio8). Please note that the param-
eters of the Ricean fit were obtained by directly applying a étimator to the raw data. This
aggregate statistical metric shows the poor match of thewanty used Rayleigh distribution

while the Ricean distribution fits reasonably well excepihia tails of the measured data. Sim-

ilar trends were observed at most of the considered casefurther justify the choice of the
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average std min max H smallest MSE
Rayleigh | 2.38 x107* | 1.72 x 1073 | 5.59 x 10~" | 5.32 x 1072 5.79 (%)
Ricean 4.95x107° | 1.28 x 1074 | 5,53 x 1077 | 4.72 x 1073 21.81 (%)
Nakagamim | 3.81 x 107° | 1.23 x 107* | 4.65 x 1077 | 4.18 x 1073 72.40 (%)

Table 3.1: MSE characteristics of three CDF fitting distributions.

Nakagamim distribution, the Mean Squared Error (MSE) of these threelciate cumulative
distribution function (CDF) fits across the whole data sas heen computed; the key charac-
teristics are tabulated in Table 3.1. The acronym std stéordbe standard deviation of a RV.
The average and standard deviation measures indicatenthatakagamin fit yields a rather
good accuracy and substantially outperforms the Rayleigbyfian order of one magnitude
while it remains robust and experiences the lowest maximusitMOn the basis of which dis-
tribution best fits the measured data set, the smallest MS&®at72.40% of the cases when
a Nakagamim fit is employed thereby confirming its improved performanoenpared to the

other two reference distributions (right-hand column odbl€éa3.1).

1 T T T T T T T
Measured data ‘
09 - - - Nakagami fit ]
ok | =7 7 Rlcea_n fadmg 1
Rayleigh fading
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CDF

0.4
0.3
0.2

0.1

P | | | | | | |
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Measured fading envelope

Figure 3.2: CDF of a measured fading envelope in comparison with Nak&ganRayleigh
and Ricean distributions (location 1D3).

50



Stochastic modelling of MIMO channels using the spatiaérigodes

3.4 Generation of independent Nakagamin envelope deviates

This section suggests an unconstrained method for the afemeof independent Nakagami-
m envelope deviates based on tlegection/acceptance techniqi#23]. Please note that the
generation of independent NakagamiRVs may in general offer an insight into the charac-
terisation of practical systems operating in slowly vagyiakagamim fading environments.
Surprisingly, few results have been reported covering traputer simulation of independent
Nakagamim fading [36, 124, 125].

The so-calledbrute force metho@36] considers the square root of a sum of squares ziro-
mean identically distributed Gaussian RVs and leads to abkaki distribution withm = p/2;
yet, this scheme is limited to integer and half-integer galafm. The authors in [124] showed
that the product of a square-root beta process and a complessizn process forms an accurate
approach but unfortunately is valid only for valuesrof< 1. Theinverse methogroposed

in [125] is sufficiently accurate for arbitrary values of but requires the computation of a

different set of coefficients for each value.

The initial attempt to apply the rejection/acceptance metim order to generate independent
Nakagamim samples was recently addressed in [126] but lacks a unifqnpnoach for the
whole range ofn values. In particular, the authors suggest the use of ditlediolded-Gaussian
(0.5 < m < 1.0) or the Gaussiammf > 1.0) PDFs as hat functions, resulting in the achieved
efficiency being strongly dependent on the corresponditegval (65.75% and 66.67% respec-
tively); an additional option to select different cons&fwhich were determined empirically)
enchanced the efficiency for particular rangesro{see Tables | and Il in [126]). This was
achieved by applying the rejection scheme only in the codfiegion0 < z < 4 since for
high values of the envelopeandm > 1 the tails of the considered scaled Gaussian PDF may
fall below the tails of the Nakagamiz PDF. In this light, a simple technique with no constraints
on the range of shape parameters is proposed in this sectimh wvercomes the inadequacies

of the above mentioned schemes and yields an excellentaaycur

3.4.1 Rejection method

The rejection method requires the selection of a compafisoction (usually referred to as the
hat function)f(r) that has finite area and satisfies the inequadlity) > p(r) with p(r) being

the original PDF. In the present case, a second-order ivaosk/nomial function is proposed
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as the hat function and therefore

e = g ()t o
_ AVQ
) = e (3.8)

An illustrative graph of the two functions under investigatis shown in Fig. 3.3.
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Figure 3.3: Rejection method for generating random Nakagamdeviates using an inverse
polynomial function.

The determination ofA and B is an inter-dependent problem which can be solved with an

iteration method. Taking into account that the maxima of&nd (3.8) should coincideit is

2m—1
2m

a single pointy = r,,;,,, without crossing (minimum distance). In other words,

trivial to show thatB = 2

. The scaling factor4, is set such that the curves intersect at

AVQ
Q — BVQropin + T?m-n
Q — BVQrmin + i
VQ

'The maximum of a Nakagami PDF occurs-at 4/ 21—1 and that of the hat function at= B/2.

= p(Tmin) = (3.9)

A=

P(Tmin)- (3.10)
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In order to find the position of minimum distance between t@ ¢urves, the derivative of their

difference needs to be set equal to zero which results inalleing equation

lim i (f(r)—mp(r)) =0 (3.11)

T—=Tmin d’l”

or

5 d (Q — BVQrpin + 7“72mn) p(Tmm) ( ) 0 (3 12)
- = —p(r) | =0. ,
T—=Tmin dT Q — B\/ﬁT‘ + T2 b

For the ease of computation, the above equation is writtemimore compact form

tim L (M _p@«)) 0 (3.13)

r—=Tmin dr a(r)

wherea(r) = Q — BvV/Qr + r2. Then, itis trivial to show that

diia(r) = 2r— BVQ (3.14)
T mr2
dirp(r) = Zy [(Qm— 1) — 2 a ] : (3.15)

After some easy manipulations of (3.13), we end up with

d 2m — 1) — 2mr2 . /Q
P(Fmin)  lim —a(r):—a(rmm)p(rmm)<( m = 1) = 2/ );» (3.16)
T —Tmin dT r
9 2
) lir%indiia(r):—a(rmin) [(2m—1)— ’?{ } = (3.17)

2mrd
7m;;mm — 2mBTf’nm/\/§ — 72 in T 2mBrminVQ + (1-2m)Q =

m
('rmz‘n - \/ﬁ) (Tmm + \/ﬁ) <2mg”m — Qm%mm +2m — 1) =0. (3.20)

The last quadratic term of the product has a discriminanagdrequal to zero, which results in

Fin (wmin - B\/ﬁ) - (Q — BV pin + r?mn) <% —(2m— 1)) ~  (3.18)
0

= (3.19)

a negative value forl for all m > 2/3. This, however, makes the hat function negative since
the denominator in (3.8) is always positive. Hence, only walé positive solution exists at

rmin = V. Substituting the above solution into (3.10), the follogvirelationship comes up

2m™

A=@= Bl

e >0. (3.21)
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For the generation of independent samples from (3.8) theréevmethod is introduced [123];
firstly, the indefinite integral of (3.8) is computed returgithe closed-form function
1 QTT*B
— Q
2A tan <m>
4 — B2

u = /f(r)dr = (3.22)

A random sample of is now generated via the inverse function of (3.22) whicllseas

. @ ( 1= B tan (L‘;BQ) +B> (3.23)

| | . N 2atn (225)
with « denoting a RV distributed uniformly in the range————-  iET |-

The above limits express respectively the minimum and maminof (3.22) forr € [0, +o0),

and define also the efficiency of the rejection method; in, fawtir difference represents by
definition the area below (). The generated sampleis accepted only if a random sample,
uniformly distributed in the area und¢i(r), lies also undep(r). The pseudocode employed

throughout the rejection scheme is summarised in Algorithm

Algorithm 1 Rejection method for generating Nakagamideviates

1: Determine the values of and B of the hat function with an iterative procedure.

2: for + = 1 to Number of sampledo

2Atan~1 —B
3: Generate a uniform RV in \/49;24?) : \/4‘4”32] :
4: Generate a sample ofaccording to (3.23).
5: Estimate the value of the hat functigitr) through (3.8).
6: Estimate the value of the Nakagami Pp) through (3.7).
7: Generate a uniform R¥' in the total area undef(r), i.e. [0, f(r)].
8: if u' < p(r)then
o: acceptr
10: else
11: rejectr
12: end if

13: end for

54



Stochastic modelling of MIMO channels using the spatiaérigodes

3.4.2 Performance evaluation

After generating2? random samples of using (3.23), the algorithm’s performance was tested
from different perspectives. In Fig. 3.4, the theoreticadl simulated Nakagamiz PDFs are
depicted for four different values afi assuming) = 1; the attained accuracy is remarkably
high, thereby verifying the choice of the rejection schermeagowerful and straightforward

technique for generating random deviates.

3 T T T T T T
m=0.5
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Figure 3.4: Theoretical (curves) and simulated (stars) NakagamPRDFs for four arbitrary
values ofim using the rejection method(= 1).

As far as the method’s efficiency is concerned, this is diyedlated to the value of then
parameter. For high values of, the tails of (3.7) decay faster than those of (3.8); thismsea
that the relative difference between the two functions uredenparison grows and this causes
the achieved efficiency to decrease. In any case thoughffibiercy in the common range of

interest 0.5 < m < 2.5) rests above 65%, as Fig. 3.5 indicates.
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Figure 3.5: Efficiency of the rejection method as a function ofihéactor.

3.5 MIMO channel model validation

The indoor campaign described in Section 3.1 provided tloessary amount of data for val-
idating the analytical MIMO model of (3.3). The model is assa by means of information
theory as well as link-level performance. The measuredetation matrix is firstly computed
using all space and frequency realisations and thereadtmmdposed in order to obtain the spa-
tial eigenmodes; as a next step, 090 synthetic channel realisations are generated according
to (3.3) so that the measured and simulated ensembles asarit@ It should be noted that
the spatial fading coefficients were generated accordingiio= r[k| exp (jo[k]), whereg[k]

is a random phase distributed uniformly[ih 27). The uniform phase assumption was found
to be valid even for large values of the-factor (i.e. non-Rayleigh conditions) and thanks to

its intrinsic simplicity was incorporated throughout theadysis.

2ltwas found that a further increase in the ensemble sizedtidignificantly affect the variance of the estimators.
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3.5.1 Information theory performance

A common policy in the capacity analysis of all measured MIMi@nnels is to remove the
path-loss effects and have unity energy on average [96].rdntijpe, a system with perfect
power control is simulated whose performance is assessiepp@mdently of the average SNR.
On this basis, both ensembles are normalised so that thera:iolns‘f{HHHQF} = MN is
fulfilled, where||-|| - corresponds to the Frobenius norm. The instantaneousitg@ssuming

perfect CSl at the Rx but no knowledge at the Tx, reads
_ P e i
C_b&@mOM+NHH)> (bits/s/Hz) (3.24)

and the ergodic capacity is evaluated following (2.17). BMNR p was set equal to 20 dB
to ensure that is well below the measured SNR after beingageer across all the temporal
shapshots. The expectation operation was performed oer ¢ith measured data or the fading
realisations ofy[k]. In Fig. 3.6, three different models are compared, nametyNakagami,
Weichselberger and VCR models; the modelled ergodic chpiaglotted against the measured

ergodic capacity for each of the 72 scenarios under invesbig.
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Figure 3.6: Ergodic capacity for three different channel models vensigasured ergodic ca-
pacity. The dashed line corresponds to the points of no riogelrror.
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Please note that the Kronecker model has not been includi ifollowing analysis since it
is a special case of the Weichselberger model and yieldsfandnperformance for the great
majority of cases [43, 49, 98]. From this figure, it is cleaslyservable that the proposed model
holds a smaller modeling error than the Weichselberger moadese mismatch increases with
decreasing capacity, for all the scenarios under investigiain particular, a 2.2 dB improve-
ment was achieved in the MSE from -9.72 to -11.93 dB. The VCHRehsystematically over-
estimates the modelled capacity as a result of the artifggaleration of MPCs discussed in
Chapter 2; in this case, the MSE is as high as 8.81 dB disgjasie rather poor fit of the
specific model. These results are in reasonable agreeménthaise presented in [49, 98].
The good fit of the Nakagami model can be partially attributethe presence of strong OL0S
components at the majority of Rx locations due to its inhehegher flexibility compared to
the more restricted Rayleigh and Ricean distributions. theiowords, for the corresponding
eigenmodesn > 1 and therefore the fluctuations of the signal strength redarepared to

Rayleigh fading.

Traditionally, the ergodic capacity is a metric of the amboohaverage error-free information
transmitted; however, a key issue in the design of multeana systems is the outage capacity
usually regarded as a more fair measure of the probabiliguotessful transmission within a
given time frame. The% outage capacit¢’,,. 4 is the capacity that is guaranteed i90—q) %
of the cases

Prob[C < Cout,q) = ¢%. (3.25)

In order to calculate the outage capacity a precise knowledghe CDF of the R\ is re-
quired. For a specific Rx location (22D1) the measured ancetresticapacity CDFs are plotted
in Fig. 3.7 where it is shown that the Nakagami fading modeldg the best fit; at the 10% out-
age capacity the proposed scheme deviates by 1.64 bitsiditzthe Weichselberger and the
VCR models by 2.36 and 3.91 bits/s/Hz respectively. In &afuitthe slope of the capacity
CDF is directly related to the notion of diversity, i.e. tlediability of the radio link for a given
confidence interval. All modelled curves are steeper thamikasured curve, thereby overes-
timating the achieved diversity, but the proposed modelaiemsufficiently robust and offers
the best accuracy again. Similar conclusions can be drawm the whole set of data after

estimating the 10% outage capacity (see Fig. 3.8).
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In terms of the estimation MSE, the performance gain is 2B%¥rdm -1.65 dB to -3.86 dB

compared to the model implemented by Weichselberger. Asipated, the predefined steering
angular directions make the VCR framework unable to cagiie€s lying between them and
this gives rise to overestimated statistics. In this case,MSE is 9.83 dB demonstrating a

dramatic degradation of 13.69 dB compared to the Nakagameirse.

3.5.2 Link-level performance

The analysis presented in the previous section was based wricamation theory approach
which used channel capacity as a criterion for testing thmsigess of fit for all MIMO models.
In order to conduct a concise comparison study though, theéelmbperformance should be
investigated from a link-level perspective as well. Assogna SM transmission strategy, a
linear Minimum Mean Squared Error (MMSE) detector is comsadl which can minimise the
overall error caused by noise and mutual interferénc&he uncoded transmitted signal is
modulated using BPSK (Binary Phase Shift Keying) modutati@eferring back to the input-
output MIMO relationship (2.11), the estimated transngnsil vectork is [128]

X =w-y, wherew = argminE{Hwy—xHQ} (3.26)
and thus the following closed-form expression is obtained
% =HY (HH? + NoIy) -y (3.27)

where N, is the noise power. The Bit Error Rate (BER) is measured bytiog the number
of erroneously detected symbols and divide this number thightotal number of transmitted
symbols, assuming that the entries of the noise tern%ar‘é’(o, 1) RVs. The BER curves for
a single measurement scenario (location 15D3), in whiclddminant eigenmode has an
factor equal to 5.3, are depicted in Fig. 3.9. All channel gisdend to underestimate the BER
with the proposed model yielding an enhanced accuracycisglyein the high SNR region.
For instance, performance gains of 6% at 20 dB, of 12% at 30raBoAmore than 28% at 35
dB over the Weilscelberger scheme were noticed. The VCR faibpproximate the empirical

BER leading to an irreducible underestimation.

2A more detailed discussion on SM detection algorithms isigin Chapter 5.
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Figure 3.9: BER performance of measured and modelled channels (loca&d3).

The so-called BER mismatch is finally explored at a target SINEO dB against the Nakagami
m-factor of the dominant eigenmode (c.f. Fig. 3.10). In gahdhe BER mismatch is defined
as the absolute difference between the measured and thdledoBER at a predefined target
SNR. Please note that while there is no dependency between-thctor and the Weichsel-
berger/VCR models, their direct mapping offers a deepdgimsnto the estimation accuracy
of all schemes as a function of the critical parameterTo this end, a key observation to be
made is that the distribution of the values clearly confirms the assumption of Nakagami fad-
ing while a significant portion of them lies well beyond theital unity value. The proposed
model has again a superior performance, compared to thengédierger scheme, for the vast
majority of measured scenarios (68 out of 72 scenarios) thighMSEs bein@.24 x 107°
and4.47 x 10~° respectively, expressing a 3 dB improvement. Once aganV®R model
deviates significantly from the actual BER and the output NESIBrger by more than an order
of magnitude 7.96 x 10~%). It is noteworthy that the relative difference of modelstimators

is higher when more than one eigenmode experiences purdigddai fading (. > 2).
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3.6 Summary

In this chapter, a novel spatial-based analytical modebleas devised using the data from an
indoor measurement campaign conducted at 5.2 GHz. Folgpttie formalism of the KLT,
the scheme decorrelates the spatial subchannels and ntbdilsnarginal behaviour sepa-
rately. This approach not only provides a reasonable phaysiterpretation but also relaxes
the stringent condition of joint Gaussian channel stasstA deeper analysis of the measured
data revealed that the fading envelopes of the vast majofitiye spatial eigenmodes follow a
Nakagamim distribution rather than a Rayleigh or Ricean distributiéior the generation of
Nakagamim RVs the rejection technique is introduced with a seconeoirtverse polynomial
function serving as the hat function. The method is accuratarbitrary values ofn andf2,
thus indicating its high flexibility. By assigning the indamlent Nakagamis fading process
on each eigenmode, the performance of the proposed schemtestad from two different
perspectives (information theory and link-level) and camngal it with the sophisticated Weich-
selberger and suboptimal VCR models. It was shown that tHed&mi model outperforms

the former by approximately 2.2 dB in the case of ergodic amdge capacity and by 3 dB in
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terms of BER mismatch. On the other hand, the VCR yields &raibor fit in all cases leading

to intolerable errors.

The only disadvantage of the proposed scheme lies in iteased complexity burden which
is generally a crucial issue in the choice of the most appmioprchannel model. While the
VCR and the Weichselberger models require respectivélyy = 64 and M N + M (M —

1) + N(N — 1) = 176 real parameters to be specified, the complexity order of thiealyami
scheme is equal to that of the full correlation model, (MN)2 = 4096. However, in terms
of processing time a modest increase of 45% was observed @h@H& Pentium, making the
model rather appealing when an enhanced accuracy is deBioeegxample, if a MIMO Rx is
to be simulated for a quasi-statichannel with reasonable data packet lengths1(symbol),
the proposed channel model can be applied to generate tin@elhfar each separate frame
and increase drastically the achieved accuracy withoujrfgiant sacrifice in the simulation
time. Ultimately, the scheme can be deployed as a framewoidscribing different scenarios
operating at the 5 GHz frequency band, e.g. WLANSs, fixed wsgland peer-to-peer commu-
nications. It can also be used as a tractable tool for thelatioo of MIMO systems, design of

space-time codes and construction of optimum spatialifiljeat both ends.

3A quasi-staticchannel is wide sense stationary, i.e. its statistics nemamstant during the entire transmission.
In general, the quasi-static channel assumption is a goatkthfior users that are stationary or moving very slowly
relative to the rate of communication.
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Chapter 4

A high-resolution array processing
algorithm for channel characterisation

For the construction of efficient physical channel modelwel as the optimum design and re-
alistic performance evaluation of multi-antenna systeargetailed knowledge of the statistical
distributions of the multipath parameters is required.sTihvolves multi-dimensional practical
measurement trials followed by the joint extraction of eli#int propagation characteristics in
the corresponding domains, i.e. ToA, DoA, DoD, Doppler treacy, polarisation, complex
path gain, etc. This is usually accomplished by high-regmiuarray signal processing algo-
rithms applied directly to the raw measurement data. In¢hegpter, a ML frequency domain
estimation algorithm is devised, namely the 3D FD-SAGE @ilgon which can reliably char-
acterise a wireless channel. The scheme is based on a Si€ygtfar both detecting the paths
and estimating their corresponding parameters. The rateaiof the chapter is organised as
follows: Section 4.1 covers the most known parameter esiimalgorithms that have been
reported over the last decades. Section 4.2 elaboratesedaritdiamentals of the Expectation-
Maximisation (EM) and SAGE algorithms as well as on theirlmagions to channel charac-
terisation. In Section 4.3, the kernel of the 3D FD-SAGE &thm is discussed for a far-field
propagation scenario where a finite number of plane wavemgepn the Rx. The algorithm’s
performance is evaluated in Section 4.4 for a syntheticrenment and in Section 4.5 for a
measured environment. In Section 4.6, the intrinsic defaies of the SAGE framework are

addressed. Finally, Section 4.7 concludes the chapterantharises the key findings.

4.1 Parameter estimation techniques

The quintessential goal of channel characterisation igléification of MPCs in conjunction
with the estimation of their parameters in both temporal apdtial domains. As a further
step, we can obtain a geometrical projection of the signial&ractions with the surrounding

environment and thereafter work out the dominant propagatiechanisms. The computation
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of the paths’ parameters implies the use of parameter estimi@chniques which are globally

classified into two main categories hamedggectral-base@ndparametric methodglL29].

4.1.1 Spectral-based methods

The key idea is to generate the spectrum of the parameter umgsstigation and then the
locations of the discrete peaks are recorded as the pamaestimates. The main advantage of
these techniques is that they are simple and require nosx¢éememory requirements. The
spectral-based techniques can be further classifiedbgdionforming techniquesdsubspace-
based methodsThe classical definition of beamforming states that anyasteuld be steered
in one direction at a time so that the output power is measuhedsteering locations which
result in maximum power yield the parameter estimates, AgA. Different beamforming
schemes have been implemented with the most known andhtfaaigard being theBartlett

or conventionalbeamformer [130] and th€apon’s beamformefl31]. While both schemes
(and their alternatives) are reasonably simple their perémce is strongly dependent on the
array aperture and the system SNR. In highly scattered @mwvients with correlated sources,
they fail to capture all multipath activity. The author pirout that two signals are correlated
when their correlation coefficient is non-zero while theg aopherent when their correlation
coefficient is one. According to [129], two signals are c@meiif one is a scaled and delayed

version of the other.

These intrinsic deficiencies of beamforming techniques tayartially eliminated through
the use of subspace methods. These methods rely on the desiGorpof the input covariance
matrix into a signal and a noise subspace and the most welrkischeme is MUlItiple Signal
Classification (MUSIC) algorithm [132, 133], which outpanris the beamformers and satisfies
the two basic criteria of estimation theorgonsistencyandefficiency. Although the MUSIC
spatial spectrum is not a true spectrum, it exhibits peakbenvicinity of the true DOAs. A
comprehensive analysis of the algorithm’s performancebeafound in [134]. A performance
measure of Bartlett, Capon’s and MUSIC methods can be sd&g #h1, where the normalised
spectra generated by these methods are shown. A ULA with ereents and inter-element
distance equal td /2 was used in the simulation and the SNR was set to 20 dB. The true

directions of arrival are-10° and0°.

1An estimate is consistent if it converges to the correcteatien the number of observations tends to infinity.
2An estimator is statistically efficient if it asymptoticplhttains the Cramér-Rao (CR) lower bound.
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Figure 4.1: Normalised power spectra of Bartlett (dash-dotted), Cadashed) and MUSIC
(solid) methods vs DoA. The true directions of arrival are0° and0°.

Undoubtedly, Bartlett and Capon’s beamformers fail to kesdoth signals; MUSIC though
returns two distinct peaks. The crucial advantage of MUSItBat, in contrast to beamformers,
it yields statistically consistent estimates. On the otfeerd, the performance enhancement of
MUSIC is achieved at a considerable cost in computationaldruas the search is carried out
across the whole parameter space. Moreover, when the arobdata or the SNR is low it
can hardly resolve closely spaced signals. In the limitiagecof coherent signals, MUSIC'’s
advantages vanish and the estimates are inconsistent. eftdtsolution for mitigating the
undesired effects of correlated signals lies in thevard-backwardaveraging (FB) [135] or
spatial smoothindSS) [136] techniques. Their key concept is to split theyaiméo a number

of overlapping subarrays which induce a random phase mbolland hence decorrelate the
signals. Nevertheless, these techniques are practigabljcable only to ULA geometries and
further they inevitably reduce the effective aperture @f #iray since the subarrays are smaller

than the original array [129].

66



A high-resolution array processing algorithm for chanrtedracterisation

4.1.2 Parametric methods

The shortcomings of spectral-based techniques dictaedi¢lielopment of the more robust
parametric methods which directly estimate the paramdtarterest without first computing
a spectrum, albeit at the expense of an intensive compleXityis is a result of the multi-
dimensional search required to determine the paths’ paeseA classification is usually

made for parametric techniques irdobspace-based approximaticeasdML methodg129].

4.1.2.1 Subspace-based approximations

The subspace-based methods constitute the first classfamtlilg of parametric methods; they
offer similar statistical performance as ML methods butlass complex. In the specific case
of ULAs, high-resolution algorithms can be directly apdlieading to an enhanced accuracy.

A brief overview of the most important techniques in now pdad.

ESPRIT: Since its formal derivation in 1985 [137], the so-callediistion of Signal Param-
eters via Rotational Invariance Techniques (ESPRIT) &lgorhas been widely deployed for
DoA estimation, harmonic analysis, frequency estimatiay estimation, and combinations
thereof [138]. The scheme may be considered as a counterpdre MUSIC algorithm ex-
panded in the signal subspace rather than in the noise stédsporeover, it is more robust
and far less complex since the solution is essentially gimeriosed form and no numerical
search through all possible steering vectors is needed.h®wdntrary, the ESPRIT estima-
tors are unbiased only if the antenna arrays used fulfil thet siondition of two identical and
translationally invariant subarrays (shift-invarianeg)d hence the scheme is applicable to cer-
tain topologies (in practice ULAs and their combination#) different configurations are to
be employed, such as circular arrays, special modificati@esl to be performed in order to
transform the circular array into a virtual array with urifio linear structure. Furthermore, it is
noted that like MUSIC, ESPRIT cannot handle correlated pane-processing techniques, as

the ones reported above for the MUSIC algorithm, are reduire

Unitary ESPRIT : The so-called Unitary ESPRIT [139] is applicable to spedifiray geome-
tries, namely centro-symmetric arrdyand is based on the transformation of the complex data
matrix to a real matrix of the same size and involves only-uedlied calculations throughout.

The resulting algorithm performs better in terms of coretbsources compared to the conven-

3An array is called centro-symmetric if its element locatiare symmetric with respect to the centroid and the
complex radiation characteristics of paired elementstaesame.
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tional ESPRIT algorithm, but when more two correlated sesrare present it fails to maintain

the rank of the signal covariance matrix and hence, a SSigodis still required.

Root MUSIC: The Root-MUSIC (RMUSIC) is basically a polynomial-roajiversion of the
conventional MUSIC algorithm [140]. When only small sangédee available, RMUSIC yields
a superior performance and also has a lower failure rate lémety spaced sources. Like-
wise, the algorithm was initially applied only to ULA configions although recently a novel
scheme was introduced which processes the data in the alspare domain and is applicable
for any array geometry. The so-called Element-Space RMUWEGrithm provides asymptoti-

cally optimal AoA estimation and has very good statisticaffprmance [141].

RARE: The rank reduction estimator (RARE) is a relatively newegigpace-based estimation
method for multi-dimensional harmonic retrieval problem&wo variants have been devel-
oped so far, namely the root RARE (r-RARE) [142] and the spé®ARE (s-RARE) [143].
The former exploits its rooting-based implementation dredrich Vandermode structure in the
measurement data to improve the estimation performancso, Ahe r-RARE is a search-free
algorithm and thus its computational cost is substantiallyer than that of the s-RARE. How-
ever, both schemes are susceptible to array orientatianserhich noticeably deteriorate the
output accuracy. This problem has been addressed in [14&aithe proposed modified RARE

is more robust in terms of DoA estimation and exhibits a penémce close to the CR bound.

4.1.2.2 ML methods

In general, ML techniques, which are built upon the stat#dtproperties of the ray paths, are
optimal and experience a superior performance even in theSiHR region or when the data
ensemble is small. In addition, they offer a high degree béistness and flexibility with regard
to the array geometry they can be applied to. Two differestiagptions about the transmit

signals lead to two different versions which are outlinetbisg129].

Deterministic ML : The deterministic ML (DML) method poses no assumptionsualize ray
paths. The complex gains are modelled as arbitrary detéstigisequences while the noise as
a stationary Gaussian white random process. Then, theastinparameters are obtained by

solving a multi-dimensional minimisation problem whiclusually computationally expensive.

Stochastic ML: The stochastic ML (SML) method models the complex pathgagstationary,

temporally white Gaussian RVs. It is interesting to note tha model is applicable even if
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the signal waveforms are not Gaussian but still requirescaaustive numerical search while it
shows a better accuracy than the corresponding DML metlea]{29] and references therein),
with the difference being pronounced for small numbers déana elements, low SNR and

highly correlated signals.

4.2 Principles of the EM and SAGE algorithms

4.2.1 The EM algorithm

One of the most known DML approaches is the EM algorithm wihiels initially formulated
by Dempsteret al. in [145] as a general method for maximising likelihood fuoos that
arise in various statistical estimation problems. The Elfbathm supplements the observed
measurements which aiecompleteor have missing values with@mplete datapace whose
relationship to the parameter space facilitates estimattm EM scheme is comprised of two
steps: an Expectation step (E-step) and a Maximisation(stegiep); the former calculates the
expectation of the complete-data log-likelihood, using thirrent estimate of the parameters
and conditioned upon the observations, while the latterimi@es the expectation with respect

to all the unknown parameters. These two steps are iteratiiiccanvergence is reached.

4.2.2 The SAGE algorithm

The main motivation for introducing the SAGE algorithm i tllow convergence rate of the
classical EM scheme due to its simultaneous update proeddd6]. The SAGE algorithm
generalises the idea of data augmentation to simplify cdatipms of EM algorithm and im-
prove the convergence rate [147]. This is done by breakingndbe sequential maximisation
problem into several smaller ones and using EM to updatedhenpeter subset associated with
each reduced problem while keeping the estimates of theingmgygparameters fixed. Still, the
derivation of the algorithm relies on the key notionsaoimplete (unobservablendincom-
plete (observablejlata. However, the mapping from complete to incomplete watdlowed
to be random rather than deterministic as occurs within thie[E45]. To sum up, the SAGE
algorithm yields a faster convergence rate along with acedwcomplexity. Last but far from
least, a crucial advantage of both the EM and SAGE scheméstighey can be applied to
any arbitrary antenna geometry provided that the array folahis fully available and further

require no spatial smoothing for resolving correlated sesr
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4.2.3 Application to the problem of channel characterisatn

The original application of the EM algorithm for estimatitige parameters of superimposed
signals in white Gaussian noise can be found in [149]. Thdicain of the SAGE algo-
rithm to the problem of channel characterisation was oaliyninvestigated by Fleurgt al.

in [150] and [151], where time-invariant and time-varianM® channels respectively were
studied. Their study was performed exclusively in the tinoendin and the sounding signal
consisted of an infinite train of rectangular pulses moduldiy a pseudo-noise sequence. An
extension to MIMO systems has been presented in [152]. thdase, both ends of the link
were equipped with RF switches whose timing structure whectsl so that the MIMO sub-
channels are sounded sequentially. This technique rethacdweare costs and effort for system
calibration. The overall sounding of the propagation clemvas performed in a time-division
multiplexed mode. The broadest version of these schemebedound in [153], where the

authors considered an extra selectivity domain, i.e. saton.

On the other hand, the main motivation for applying the SAGIo@Ethm in the FD can be
attributed to the operation of the commonly used RUSK vect@nnel sounders of MEDAV
company [121]. In such a case, the Tx is probed by a multi-t@tgiency excitation signal and
the sounder output represents the complex frequency respdihe initial development of the
FD-SAGE algorithm has been presented in [154] for a dynamdoar SIMO channel where
the Rx was in motion. However, this model did not account fuyldar spread at the transmit
side. In this thesis, the aforementioned approach in tleisitrhas been extended to encompass

the double directional information.

4.3 The 3D FD-SAGE algorithm

The general problem of interest is stated as follows. Letsiene a finite numbef;, of specular
wavefronts impinging on the Rx, i.e. all signal sources al$aggthe scatterers are located in the
corresponding far-field regions. The transmitted signatlebds assumed to be narrowband and
thus time delays between elements of the arrays can be apyated by phase shifts. For the
sake of simplicity, only horizontal propagation is cons@&teand therefore the elevation angle
is discarded. This assumption does not have a significardétrgn the estimation of azimuth
as long as the elevation is confined withid0° [150]; in fact, the elevation incidence is very

likely to lie within this range when the Tx and Rx are mountétha same heights. Under these
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conditions, the channel transfer function can be modele@ianilar to (2.40))

L
H(f,m.n) = Bear(¢ro)af (¢1.0) exp (—j2n7ef) (4.2)
=1
with f, m,n representing the selectivity in frequency, receive anddmat spatial domains
respectively. For clarity, the spatial dependency is degppnd all the path parameters are
concatenated in a vectéy = |7, bre, bre, Be]. By consideringN; frequency bins, the noise-

corrupted transfer function at thieth frequency bin withl < £ < Ny, is given as

L
H(k) =Y S(k;6,) + N(k). (4.2)
=1
In the above equation, the elements of {dé x N) matrix N(k) are independent complex
zero-mean white Gaussian noise processes with unit spheight. The contribution of each

path reads as
S(k; 0¢) = Beay (dr,0)a) (Gr.e) exp (=52m7e fi)- (4.3)

Referring to (4.2) the channel responkEk), is identified as the incomplete data and is related

to the complete dat&’,(k), according to

L
H(k) = > Y(k) (4.4)
/=1
where
Y (k) = S(k;0;) +peNy(k) £=1,... L. (4.5)

In the SAGE context, it is optimal to sgf = 1 since empirical evidence shows that this choice
leads to a fast convergence of the algorithm even in the @arigtion steps [146, 151]. During
the E-step the complete data of the¢h path is estimated; this can be done using either the
Parallel Interference Cancellation (PIC) or the SIC scheiihough the former is commonly
used in conjunction with the SAGE algorithm in the time domaine latter yields more stable
and robust performance in the frequency domain [154]. Thiae@ncept of the SIC technique

is to order the waves with respect to their received powerdastending order; thereafter, paths
are estimated and cancelled successively from the recelvadnel response. By doing that,
the effects of interference caused by the strong MPCs areved) otherwise they are likely to

lead to inaccurate estimates for the low power MPCs. Whemihiépath activity is high, the
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PIC scheme can be unstable and diverge from the solutioeciedly in low SNR scenarios.
Furthermore, the PIC scheme is laborious since it requitesahole set of waves in order to
compute the updated estimates. The E-step of the 3D FD-SAgaEtam then becomes
A~ A Zil A~
Yo(k;0') =H(k) - Y S(k; ;). (4.6)
=1
The coordinate wise updating procedure for obtaining tharpaters@” of each wave based on

all previous estimate® reads as (M-step)

N ~ —~ ~ 12
7 = argmqé_lx{ z(T, ¢;7€,¢2,€;Yg(k;9/) } 4.7)

N N —~ ~ 12
¢y = arg Hé)aX{ 2(77, v, Gt 0s Yo(k; 0') } (4.8)

N N —~ ~ 12
31 = axgumc{[o67, 8 Taths )]} @9)

't
r—— L (@f’, &, & Yok é’)) (4.10)
M-N-N; 0 Pt

wherez (1, ¢, ¢+; Y,) is the so-called cost (or correlation) function; in genetia¢ cost func-
tion originates from the fundamental concept of ML techeigjwhile at each optimisation stage

its peak corresponds to the expected parameter value [[iB]e present case, it is given by

2(r, ¢, 0 Ye) 2 afl(¢,)U* © Yeas(dr)
Ny

= al(¢) Y PTIOY(k)aj (). (4.11)
k=1

The termU* expresses the conjugate of the calibrated periodic mutig-frequency excitation
signal [121]. The execution of this update process once eefime iteration cycle of the 3D
FD-SAGE algorithm while at thg-th iteration step the parameters of the path pmod(L)+1
are re-estimated. The parameter estimates are sequeatialicyclically updated until conver-
gence is attained. The complex amplitude is then computéukasutput signal normalised by
the total energy. As for any other iteration method, the @ilgom converges when the differ-
ence between two successive estimators becomes smaliea firadefined threshold. Typical
thresholds of 0.5 ns arnl1° for the delay and angular domains have respectively beah ase

sufficiently small iteration steps.
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4.3.1 Initialisation of the SAGE algorithm

It is well established that the convergence of any iterateminique to a global maximum is
strongly dependent upon the initial conditions. Again,ithalisation procedure is based on a
successive cancellation scheme with the iteration gtegnging from{—(L — 1),...,0}. By
starting with the pre-initial settiné’ = [0,...,0] for ¢ = 1,... L, the initial estimates for the

ToA and AoA were computed according to

2

7 = argmax{ Y0 >IN 0 (k;07) (4.12)
m=1n=1 | k=1
N Ny 2
3 — arg max all eI 27 fey n(k; 9" 4.13
Ore=argmax e ) r<¢r>k21 (k3 0") (4.13)

It should be underlined that at the initialisation of thth wave the estimates related®o> ¢
remain equal t0 0, i.ed’ = [6},...,6, ,,0,...,0]. From (4.12) and (4.13) it can be conjec-
tured that the ToA is calculated via coherent summationsacall antenna elements while the

AOA via coherent summation across only the transmit element

4.3.2 Determination of the model order-SIC technique

A critical issue in the area of parameter estimation alpani is the determination of the model
order or, in other words, the number of impinging signald treaabove the noise floor. This
is widely referred to as the detection problem and has betmsixely addressed over the last
decades. Two information theoretic criteria are usuallylolged thanks to their simplicity: the
Akaike information criterion (AIC) [155] and the minimum sleriptive length (MDL) [156].
The main drawback of these schemes is that they almost sellahen highly correlated signals
are present. Further, they are mostly applicable to scenarmere the number of signals is less
than the number of antenna elements. In realistic wirelbasmels though, both assumptions
are usually violated. The same observations infer from,[26jere real-life MIMO measure-

ment data was used and it turned out that these informat&orekic criteria are insufficient.

In order to circumvent these constraints, the detectioflpro has been incorporated within
the initialisation stage; the SIC technique is appliedluhg detected paths have power levels
relative to the strongest path below a threshold. This ddieebe a constant value for synthetic

environments or the dynamic range of the sounder for medstirannels.
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4.4 Performance evaluation of the 3D FD-SAGE algorithm

The performance of the 3D FD-SAGE algorithm is firstly evéhabin a synthetic environment
by means of Monte-Carlo simulations. Here a predefined nummbenpinging plane waves
with known parameters is used. For generating a rich saagt@ropagation scenario, a high
number of MPCs and an extended delay range to account fordhgla long-delayed echoes
are needed. The Tx employed a ULA witli = 8 elements with an inter-element distance of
d; = A\/2 while the Rx an eight-element Uniform Circular Array (UCAJjttva radius of\ /2.

For these two configurations, the array responses are

a,(0r) exp(jmosm),...,exp(jmos(@— ))] (4.14)

ar(¢) = [L,exp(j2mdcos(¢y)), ... exp (j2mdy(N —1)COS(¢t)) (4.15)

The number of frequency bins was set equalMp = 193 with an operating bandwith of
240 MHz to provide a satisfactory resolution in the tempa@ain (4.16 ns). The complex
amplitude,3,, was assumed to be an independent zero-mean complex GaRssiahile the
ToA, 7y, was randomly and independently chosen from a uniformidigion in [0, 800] ns
similarly, the azimuth DoAg, ,, and DoD,¢; ;, were chosen from a uniform distribution in
[0,180]°. Finally, white complex Gaussian noise was added to thesfieamatrix, according
to (4.2) with an input SNR of 20 dB. The actual as well as tha@reged paths’ parameters
are tabulated in Table 4.1 and Table 4.2, respectively. dvident that the algorithm yields
a remarkable accuracy for the great majority of paths. Agipatted, paths will be precisely
estimated only when their characteristics differ by themsic resolution of the corresponding
domain. The ToA estimates are more precise than the angstianaes due to the increased
resolution of the temporal domain; this accounts also fetdbes of the temporal cost functions

to be narrower and is also consistent with the results pteden [148, 154].

Apart from the operating SNR, the algorithm’s performargheavily dependent on the number
of paths lying within the dynamic range. For higher valued.ahe arrays fail to accurately
capture all MPCs due to their finite aperture. To furtherifughis statement, the root-mean
squared errors (RMSE) of all the paths’ parameters as aitumof . has been computed with

the results being shown in Table 4.3.
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Path | Actual ToA, | Actual AoA, | Actual AoD, | Actual power,
no.t | mns] Sre [] 1o [°] |8e|” [dB]
1 515.45 35.05 107.08 -21.69
2 302.88 40.66 47.19 -23.16
3 649.26 30.72 108.51 -24.42
4 426.26 40.97 128.01 -24.72
5 280.58 78.42 39.91 -25.23
6 751.20 55.99 21.13 -27.90
7 700.75 166.20 53.41 -28.33
8 440.12 77.43 57.38 -29.77
9 497.98 33.26 76.35 -31.69
10 469.63 162.87 91.41 -31.93
11 166.19 176.35 15.39 -32.61
12 240.99 78.99 47.24 -34.21
13 376.73 20.01 144.18 -36.06
14 184.39 46.45 5.25 -38.90
15 675.44 73.56 167.19 -41.85

Table 4.1: Actual channel parameters fdr = 15 paths.

Path | Estimated ToA,| Estimated AoA,| Estimated AoD,| Estimated power
no. 7 [ns] Sre [°] Bre ] |3 [? [dB]
1 515.53 35.06 107.01 -21.75
2 302.84 40.82 47.18 -23.13
3 649.25 30.68 108.49 -24.41
4 426.24 40.92 128.00 -24.71
5 280.56 78.42 39.88 -25.22
6 751.17 55.93 21.13 -27.88
7 700.74 166.16 53.38 -28.32
8 440.14 77.45 57.39 -29.76
9 497.99 33.18 76.24 -31.71
10 469.62 162.76 91.45 -31.96
11 166.18 175.77 15.54 -32.60
12 240.97 78.97 47.32 -34.22
13 376.75 20.11 144.14 -36.04
14 184.37 46.31 4.04 -38.84
15 675.47 73.58 166.85 -41.94

Table 4.2: The 3D FD-SAGE estimated channel parameterdfer 15 paths.
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No. of paths L || RMSE ToA, [ns]| RMSE AoA, [°] | RMSE AoD,[°] |
10 0.07 0.34 0.91
20 0.13 0.85 1.36
30 1.73 2.67 8.12
40 12.5 5.04 9.51
50 473 14.6 19.4

Table 4.3: RMSEs of simulated SAGE parameters.

4.5 Channel characterisation in the double directional domin

The performance of the 3D FD-SAGE algorithm is now assesgeubbt-processing the raw
data obtained from the indoor measurement campaign desciib Section 3.1. While the
algorithm has been developed on the joint spatio/tempamalain, the limited sounder’s delay
resolution of 8.3 ns allows a very limited path separatioe. (ipath length difference equals
2.49 m or approximately 43 wavelengths at 5.2 GHz) in theyddtamain and therefore only

the joint AoA/AoD domain is investigated.

Following [88], 150 random realisations of the measui®d8) channel transfer matrikd were
selected and for each realisation the SAGE algorithm iswgeec This value not only allows a
fair comparison with the results presented in [88] but aksiisfies the tradeoff between a low
computational burden and a sufficiently large subset of #ta dnsemble (25,090 realisations
in total). Besides, a further increase in the subset sizefowasl to lead to no dramatic changes

in the final estimation results (less th@° in all cases).

At the initialisation stage, the SIC technique was employetil the signal's power became
smaller than -20 dB relative to the strongest peak so thatatinant MPCs in the received
signal could be extracted. Please note that the study pgezsanthe following section is per-
formed in terms of multipath clustering, azimuth dispensiand inter-dependency between the

azimuth domains.

45.1 Cluster identification

The next step of channel characterisation involved cludgastification on the joint AoA/AoD
spatial domain based on the SAGE estimates. Unfortunatedywidely used clustering al-

gorithms require that the number of clusters is specifiednieyuser which is inappropriate in
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the considered case [157]. As in [85], the author resortati¢aise of non-parametric kernel
density estimates (KDEs), which are flexible and robustjdmtly identifying the clusters. In

general, KDE techniques are employed for associating a gtnmom-parametric estimate of the
unknown PDF with an arbitrary collection of observationsr Bivariate data points, the two

~

dimensional (2-D) KDEf (x4, x2) is given by

Np

7 1 1 T1—T1; Ty — Ty,
= — K : : 4.16
flave) =5 Z} hhy < b ho > (419

where N,, denotes the number of random observatidG§y, y) is the kernel function and,

and hy are the kernel widths (or bandwidths) of the two dimensiohke smoothness of the
estimator is primarily determined by the selection of thenkéwidths and also by the choice
of the kernel function. For the ease of computation, a batariGaussian kernel function is

introduced where

1 o3 + 23
K(x1,x9) = %exp{— ! 5 2}. (4.17)

The concept of bandwidth selection has recently gainediderable attention since if the val-
ues ofh; andhy are too large, we end up with oversmoothing phenomena wigictove the
key features of the underlying distribution. An excelleatiew of the most frequently used
methods can be found in [158]. While there is no overall besthmd for automatic bandwidth
selection, the direct-plug-in (DPI) method, originallyoposed in [159], was adopted due to the

following advantages

e It yields optimal asymptotic performance, that is the astotip rate isz_l/Q.

e For large sample sizes the strength of the plug-in estingators.

On the other hand, a potential disadvantage rests in thiedigtisensitivity of the PI bandwidth
to the choice of the so-called auxiliary bandwidths whichymesult in bias instability [160].
Taking into account that the weaker components may havegitdgl influence on the calcu-
lation of statistical spreads but can introduce unavoelastors when calculating PDFs such
as for the number of clusters, only td¢, = 1000 AoA/AoD pairs exhibiting the largest gain
amplitudes were used through the cluster identificatiorcgse. In order to get an understand-
ing of the identification proce$sa scatter plot showing the joint AoA/AoD SAGE estimates

is depicted in Fig. 4.2(a) (location 24D2). The correspagdjoint density plot after being

“The software implementation of KDE was obtained from [1].
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processed by the two-dimensional (2D) KDE technique caneea & Fig. 4.2(b) with the
circles corresponding to the identified clusters. The reade observe that clusters become
far more obvious after the KDE procedure and can be easibriohrted by visual inspection.
The estimated number of clusters is tabulated in Table 4lifns 2-4); a mean number of
6.875 is found compared to 8.8 in [88]. This difference camthébuted to the constraint of no
overlapping clusters imposed by the authors therein wtiaklaxed in the present work. This
limitation may generally lead to an overestimation of thentber of clusters since in realistic

channels clusters are not always clearly separated anefdnerthey are likely to overlap.

4.5.2 Global parameters of the spatial domains

In this section, the main focus is on the global spatial patens and the effects these have on
the ergodic capacity. The first comprehensive study of athrdispersion can be found in [161]
and its extension in [162]. The authors considered diffecantdoor scenarios and examined
the level of temporal and azimuth dispersion as well as tigeedeof correlation between them.
Similar work was also reported in [163], [164] and [165]. Hmwer, all these studies were
limited to the joint spatio-temporal dispersion and therefdisregarded the spatial activity
at the transmit side. Recently, the dispersion experiemtatie Tx in an outdoor-to-indoor
channel has been addressed [166], but the authors focugbé onira-cluster (within clusters)
properties which implies that the formulation of a broadeaitnel description was beyond their

scope.

4.5.2.1 Angular dispersion

It is widely known that the beneficial effects of MIMO techagl can be severely limited

by spatial correlation at both ends of the radio link, thathis signal correlation between the
antenna elements [59]. The degree of spatial correlatiomvégsely related to the spatial dis-
persion usually characterised by the rms azimuth spreadthe root second central moment
of the APS

L L 2
S Pyy(0) - du(0)? (z Poll)- w)
¢t rms — = - =L (418)
’ L 7 2
3 Pal (E P, <e>)
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(a) Scatter plot of MPCs AoA-AoD as obtained from the SAGEo&tpm.
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(b) Joint density distribution after being processed by2Ha KDE with the red circles showing the
identified clusters.

Figure 4.2: Cluster identification using the 2-D KDE procedure (locati@®4D?2).
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whereP,, (¢) is the power of thé-th MPC in the transmit APS. The same notation holds for the
receive side. The obtained CDFs for a LoS (17D1) and an NL692) location can be seen
in Fig. 4.3(a) and Fig. 4.3(b), respectively. A lognormadtdbution is fitted to the empirical
data and plotted for comparison since it was found that ildgiean accurate match for the
great majority of the considered scenarios. This impli@s$ the azimuth spread can be directly

described by the density

_ ! _(nz— )
flx) = P exp < 207 ) (4.19)

where iy = E{In(¢t,rms)} andoy = std{In(¢¢,ms)}. It should be remembered that the
lognormal distribution is also adopted by different stand@kation bodies, such as 3GPP and
COST 273, as an effective means to model global azimuth dpif@@7, 116].

From Fig. 4.3, the reader can notice the excellent fit for tlhéd Apread while the AoD spread
exhibits a slight deviation from the lognormal CDF, espkgitor the NLoS case. This can be
attributed to the so-called transmit bimodal angular distion which occurs at all Tx loca-
tions close to the Rx (locations 13-16) and violates thelsimgpde assumption that lies behind
the power normality on the exponential scale. In physicahgg the OLoS component and the
back-wall reflections contribute to the creation of two saparegions (modes) across the trans-
mit spatial domain; this phenomenon is clearly illustrateéig. 4.4 where an AoD histogram
for location 14D3 has been plotted. At the Rx though, due édhiilghly cluttered environment
in which it is situated, this effect becomes very weak andefoee the AoAs are more evenly

distributed across the azimuth domain.
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(b) NLoS location close to the Rx (16D2).

Figure 4.3: Empirical azimuth rms spreads and best fit lognormal distidns for two differ-
ent Rx locations.
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Figure 4.4: Histogram of measured AoDs for location 14D3 showing theobliah distribution
across the transmit azimuth domain.

4.5.2.2 Correlation between the angular domains

A correlation study was also performed in order to inves@gahether the mechanisms leading
to spatial dispersion at the two ends are similar. The dpatiaelation coefficient between the

azimuth spreads was calculated for each measurement &ceoeording to

150

Z (th,rms(p) - at,rms) (¢r,rms(p) - Er,rms)

=1
Povsr = | = . Pone €[0,1] (4.20)
150 _ 9 150 _ 2
Zl ((bt,rms (p) - ¢t,rms) Zl (Qbr,rms (p) - ¢r,rms)
p= p=

whereEt,rms, E,ﬂmms are the average values of the transmit and receive azimwthdprespec-
tively. All obtained values are shown in Table 4.4 (colum#E3). Analysis of the measurement
results revealed a high correlation at LoS (17) and OLoStioesa (13D1, 14D3, 23D3, 24D3)
where the Tx-Rx distance is low and the Tx faces th&. Rbhis is anticipated since the direct

dominant component is followed by multiple reflections whadl follow a similar route thereby

SFor illustrative purposes, the values obtained at LoS lonatare depicted in heavy-gray coloured cells while
the Tx facing the Rx cases in light-gray coloured cells.
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leading to a high correlation. The dependency of the spdtatains in the LoS case can be
regarded as a counterpart of the high correlation betweesphtio-temporal domains (again
under LoS conditions) as documented in [85, 165] (for motaitéeplease see Section 2.5.1.3).
On the contrary, at the vast majority of NLoS locations thendwnt path vanishes and the
degree of correlation is relatively low; under these cirstances, the propagation mechanisms
have become far more complex (multiple-order reflectioffatition and scattering) and the

impinging paths follow different routes reducing the degemcy of the two domains.

As far as the mean azimuth spread is concerned, a numbeleoésting conclusions can been
drawn. Firstly, the LoS and OLoS locations exhibit the lotaispersion, indicating a lower
spatial decorrelation, as the dominant paths mask theegedttvaves making them lie within
the noise region; that is, the lower power paths are not @abér and hence did not contribute
to the global azimuth spread. The Rx locations in the vigioitthe outer wall (such as 9D1,
12D1, 16D1, 18D1, 18D2, 20D1, 22D1, 22D2, 25D2) yield verghhvalues of AoA spread
because of the weak high-order waves which bounce off thewwuding walls. For the AoD
dispersion, its large values at locations 14-16 are dueetditmodal energy distribution as was
previously mentioned. In general, the receive azimuthaspie higher than the transmit spread
at 51 out of the 72 considered scenarios (71.8% of the caBleg)A0OA spread ranges between
11 and 56 degrees whereas the AoD spread between 10 and Feslegdne explanation
suggests that the transmitted energy is confined within @meground the direct Tx-Rx path
while the received multipath activity is spread over the lgrazimuth domain. This means that
the transmitted waves create a single or at most two clustetsr the bimodal conditions and
hence the values of the transmit spread are normally lowaer those of the receive spread.
In any case though, the obtained values are well above thereperted in the corresponding
literature from measurements at a base station mounteceaiooitops [161, 162]; this is a

direct consequence of the low antenna heights and closginutg of local scatterers.

4.5.2.3 Effects on ergodic capacity

In Fig. 4.5 and Fig. 4.6, the ergodic capacity, as calculbie@.17), has been plotted against the
spatial parameters of interest, i.e. the azimuth spreadghencorrelation coefficient between
them. Normally, low angular spreads cause a decrease in Milffacity since they diminish
the advantages of multipath propagation causing the rafikiency of the channel matrix [59].

Clearly, a consistent observation can be made for the medsiata set under investigation; the
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Rx No. of clusters Er,rms [O] Et,rms [O] P, br
locat.| D1 | D2 | D3 || D1 D2 D3 D1 D2 D3 D1 D2 D3

1 4 6 5 219 44.2| 26.2| 23.3| 21.2| 22,5 0.13| 0.17| 0.36
2 6 6 7 21.0| 46.9| 29.8| 28.6| 23.7| 19.7 | 0.08| 0.35| 0.57
3 5 8 7 15.3| 42.3| 44.4|| 28.3| 23.3| 30.3|] 0.17| 0.21| 0.11
4 5 8 8 30.4|50.2| 26.2| 26.3| 26.2| 19.6| 0.27| 0.01| 0.58
5 6 7 6 11.4| 45.2| 35.0|| 32.3| 27.4| 26.9|| 0.25| 0.11| 0.23
6 6 7 7 40.1| 40.8| 295 28.1| 24.8| 23.9| 0.42| 0.19]| 0.48
7 6 7 9 34.2139.9| 275 31.3| 24.8| 23.3| 0.06| 0.52| 0.56
9 7 8 8 50.8|33.9| 278 31.1| 25.1| 26.1| 0.21| 0.26| 0.21
10 8 6 | 10 || 21.4|52.6| 37.3|| 20.3| 17.2| 17.5]] 0.52]| 0.30| 0.12
12 7 7 8 4341 19.1| 195 17.9| 17.0| 15.7 | 0.23| 0.14| 0.32
13 7 7 7 11.6| 54.6 | 50.1|| 17.0| 45.6 | 31.8|| 0.61| 0.22 | 0.25
14 7 8 7 27.2| 47.1]| 13.0| 45.3| 51.2| 33.8| 0.53| 0.05| 0.51
15 7 7 6 29.8| 37.0| 27.8| 40.6 | 47.8| 42.5|| 0.33| 0.03| 0.15
16 9 6 7 45.1| 31.4| 23.6|| 47.1| 48.5| 49.3| 0.42| 0.16| 0.18
18 7 7 9 56.8| 49.0| 30.3|| 15.4| 12.4| 16.3 || 0.35| 0.66 | 0.40
19 4 | 10| 4 265(515| 311 145| 15.6| 11.2| 0.58| 0.37| 0.63
20 5 7 7 42.6| 34.3| 23.3|| 25.8| 22.6| 27.2| 0.11| 0.48]| 0.12
21 10| 9 4 33.9(43.2| 21.3| 22.9| 27.8| 26.0|| 0.03| 0.33| 0.34
22 5 9 9 43.3| 47.6| 30.1|| 22.6| 26.2| 24.6| 0.14| 0.15]| 0.12
23 9 8 9 40.3| 43.5| 26.1 || 21.1| 25.4| 23.7 | 0.33| 0.03| 0.70
24 7 6 4 |1 40.8| 39.4| 15.2( 33.6| 29.3| 28.2 | 0.23| 0.31| 0.79
25 5 7 3 34.1|46.9| 21.2| 34.0| 39.6| 38.1| 0.38| 0.17| 0.22
26 5 8 8 40.8| 37.1| 24.0] 31.8| 37.9| 39.1| 0.41| 0.04| 0.34

Table 4.4: Spatial characteristics at all Rx locations and orientasonThe heavy and light-
gray colored cells correspond to LoS and OLOS locationsaetyely.
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effects of azimuth spread on capacity are more pronouncéiteateceive side where

T, rms

andC behave in a more correlated way tr’@}ms andC do. From a statistical viewpoint, the
correlation betweep, ..., andC is 0.5518 while between, ,.,,, andC is 0.1574.
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Figure 4.5: Ergodic capacity as a function of the mean rms azimuth s;srégdms andET,Tms.

This trend may be attributed to the fact that the values ofstrat azimuth spreads are slightly
misleading due to either the bimodal distribution or nealdfiscattering effects which artifi-
cially increase them. This means that high transmit spreaelsiot always indicative of high
multipath activity and therefore do not always lead to lafggMO capacities. Similarly, an
increase in dependency between the spatial domains leads$ettrease in the ergodic capacity.
The relatively small number of deviations from this gendrahd can be attributed to strong
OLoS components which raise the total received power lewgldi the same time, contribute
to a high degree of correlation. For practical systems,elamggular spreads have a beneficial
effect on MIMO capacity by enriching the SM potential (highember of orthogonal subchan-
nels) while independence of the two angular domains leads timprovement in the spatial
diversity of the MIMO link (high reliability).
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Figure 4.6: Ergodic capacity as a function of the spatial correlatioretf@ientpy, 4, .

4.6 Limitations of the SAGE algorithm

So far, only the advantages offered by the SAGE algorithneHaeen addressed. However,
there are some concomitant deficiencies of this frameworiktware summarised below. The
first shortcoming lies in the identification of the diffuseatiering phenomena which occur
when the MPCs are closely distributed around a local regiomiing a cluster of rays with very
similar temporal characteristics and small angular sprddee author restates herein the fun-
damental point-source assumption which suggests thaathe channel can be regarded as the
superposition of a finite number of specular propagatiohgatiowever, realistic radio chan-
nels contain not only concentrated propagation paths, lsotan amount of MPCs resulting
from distributed diffuse scattering. When the size of thestdr is smaller than the resolution
of the corresponding domain, the MPCs within a cluster carbagesolved and only the nom-
inal direction is tracked; when the cluster size is largemtlthe intrinsic system’s resolution,
only a few dominant MPCs will be identified. In both cases tilguhe contributions of MPCs
within a cluster are not fully removed and thus the updategss is prone to interference from

residual energy from the detected components (error patjzay [167].
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The alleviation of this problem has been addressed sepaiatfl68], where it was shown
that the direction estimates are RVs whose distributioreddp only on the angular spread of
the diffuse scattering, and in [169], where a multivariatewdar complex normal distribution
was assigned to the diffuse scattered paths. The authoeirtlseiggest the use of the so-called
RIMAX algorithm [170, 171] which is essentially an iteragiWIL parameter estimation scheme
based on both multi-dimensional conjugate gradient seardtsequential parameter update. In
comparison with SAGE, its complexity is drastically redd@specially if the number of paths
is smaller than the number of samples and, furthermore,dheergence speed is enhanced as
the parameter-wise search is replaced by the faster nanlgradient search [116]. The esti-
mation results are the deterministic multi-dimensionabpzeters of the specular propagation
paths as well as the parameters of a simplified model for tifieséi scattered MPCs. The En-
hanced SAGE (E-SAGE) scheme is an alternative which estgraily the nominal parameters
of the cluster and its spreads [172]. However, the paramdtereach of the MPCs within a
cluster cannot be estimated due to the limited fundamestalution of the algorithm. This
technique yields better phantom path discrimination askié$ the spread of each cluster into
account when implementing the E-step and therefore théuelpower difference between the

strongest path and the phantom paths is increased (enhsigoed cancellation).

The assumption of far-field conditions may not be always metractice especially for termi-

nals mounted at low heights (for instance in peer-to-peatmanications). In this case, local
scatterers are more densely distributed around the telsnieading to near-field scattering,
i.e. spherical instead of plane waves are created. In aaimiknner, plane waves imping-
ing on a sharp edge are expected to propagate as cylindiftalcted wavefronts in the 3D

space. Due to the high power loss associated with this pedjprgmechanism though (see
Section 2.1), its impact on the performance of estimatigor@hms becomes significant only

when the diffracting body is in the RX’s vicinity.

From a computational point of view, a limitation exists iretBIC technique which is subject
to interference from the uncancelléd+ 1 path as well as the residual components from the
previous paths that are not totally removed from the totapomse. This may lead to inac-
curate estimates due to power imbalance. Finally, the cexitgllevel of the SAGE scheme,
particularly that of the M-step, necessitates the use oerefficient approaches as the one de-
scribed in [173]. Due to the iterative nature of the algarithapplying it to the estimation of

superimposed signals can be time consuming and impracliballong processing time whilst
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awaiting convergence, especially in multi-dimensionalgbems, turns out to be the main algo-

rithm’s drawback.

4.7 Summary

The design and performance planning of MIMO systems posesraquisite, that is the pre-
cise knowledge of the multipath parameters in differenectlity domains. In this chapter,
a new multi-dimensional version of the FD-SAGE algorithns lieen presented. The chan-
nel model under consideration consists of an finite numbeglarfie waves whose temporal
and angular parameters need to be defined in the frequencgidorfihe SIC technique has
been incorporated in both the initialisation and the ediinastages, following previous stud-
ies which demonstrated its higher reliability comparedhe PIC approach in the frequency
domain. By generating a synthetic environment the perfoceaf the SAGE algorithm was
tested; apart from its excellent accuracy, the schemesoéfdrigh degree of flexibility for any
antenna geometry and plus it remains robust in the presdrumerelated sources in contrast to
the majority of array signal processing algorithms. Newelgss, paths are resolved only when

their characteristics differ by the intrinsic resolutiohtiee temporal and spatial domains.
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Using a set of raw measurement data, a detailed charatimniss an indoor MIMO channel
was also carried out in the joint AoA/AoD domain. Lower disgpen and higher correlation
occur when a LoS is present or when the Tx faces the Rx and #itende between them is
low (OL0S propagation) while for NLoS Rx locations, the disgion is larger and in turn the
two spatial domains are decorrelated. The transmit bimadgular distribution is another
interesting phenomenon that artificially increases the Apiead at Rx locations close to the
Tx. The common belief that high angular spreads contribatbigh MIMO capacities was
verified while the independence of the two azimuth domaimsnseto have a positive impact

on capacity performance.

Finally, the fundamental limitations of the SAGE framewavkre addressed in the last part
of this chapter since they should always be taken into addauhe physical interpretation of

the algorithm’s output. Summarising, this sophisticatetsion of the SAGE algorithm can be
used to work out the propagation conditions of most prakticeeless channels and ultimately

aid the planning of multiple-antenna systems.

89



Chapter 5

Statistical characterisation of
dual-branch MIMO Ricean systems

While the previous two chapters were devoted to the modgklind characterisation of in-
door MIMO systems, the present chapter covers the area afstr@e communications which
have recently emerged as a hot topic in the area of wirelesgonies. In the interesting case
of VTR propagation, the presence of a LoS component is hitikdyy especially if the road

traffic is sparse and hence there are no obstacles betweemdlemds; this means that the fad-
ing statistics of the channel matrix entries are not Rayldigt Ricean instead. The first aim of
this chapter is to devise a dual-branch architecture aldeliwer high MIMO throughput under

these LoS conditions. Secondly, a detailed statisticareigalysis of these dual-branch MIMO
architectures is performed, based on the principles ofaanihatrix theory. The outputs of this
analysis are thereafter used to construct an AD that offdrastic reduction in the complexity
and implementation cost of practical MIMO receivers. Thaaander of the chapter is organ-
ised as follows: In Section 5.1, a design methodology for-op8mised MIMO systems is

proposed that overcomes the problem of reduced multipdeg@in in LoS conditions with the

derived criterion being adapted to a VTR propagation séen&@ection 5.2 elaborates on the
eigenvalue and condition number statistical propertieduafl-branch MIMO Ricean systems
for which closed-form formulae are derived and validateal Mionte-Carlo simulations. Sec-
tion 5.3 exploits these analytical results to develop tleeemhentioned AD for the usual case
of SM-MIMO systems. Finally, Section 5.4 concludes the ¢tbapnd summarises the key

findings.

5.1 LoS-optimised MIMO systems for VTR communications

While it is greatly accepted that a single LoS path is optifioalSISO systems since it en-
hances their performance with respect to multipath comulj these results can not be straight-

forwardly extended to the MIMO case. Generally, LoS propiagdimits the beneficial effects
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of MIMO technology because the channel matrix is normallykrdeficient due to the linear
dependence of the LoS’ rays phases on the receive elemendetdil, it has been found that
in most LoS scenarios the communication subchannels henesaidentical responses and the
differentiation of the received signals at the MIMO detettecomes difficult due to the reduced
multiplexing gain between the different pairs of transnnitl@eceive elements [174-176]. Con-
sequently, an unavoidably high percentage of erroneouetiycted transmitted signals occurs.
Over the last years though, research in the field of shogeasommunications revealed that
high capacities are still achievable in LoS by appropriaisifoning of the antenna elements
so that the LoS rays become orthogonal [177-179]. This mi@tsubchannel orthogonality,
which is a key condition for capacity maximisation, can beiewed as long as special antenna
geometries are employed at both the Tx and Rx [105]. The miaaddantage of the above
cited papers though, is the fact that they were tied to fixedroanication systems where both
terminals are static. Thus, in this section, these resuit®gtended to account for the case of
DSRC where a moving car is communicating with a fixed roadsitie under these circum-
stances, a LoS-optimised architecture is devised assuthaigooth ends are equipped with
two-element ULAs. The model's equation for MIMO Ricean ahels (2.31) is now rewritten

for the sake of continuity

K 1
H=,—H — _H,. 5.1
Kil v TV g 6.1)

In the case of free-space propagation, the complex entfigeaeterministic componeri,

are of the forme=7kdmn /4, . wherek = 2r/) is the wavenumber corresponding to the

carrier wavelength\ andd,, ,, is the distance between a receive element {1,2} and a

transmit element. € {1,2}. Assuming, without loss of generality, isotropic radist@nd

negligible differences in the path-losses the normalised-§pace matrix component becomes
o—dkdiy  p—jkdis

H = . 5.2
ST pikden pmikdas ®-2)

5.1.1 Maximum LoS MIMO capacity criteria

For a purely deterministic channdl(= H| ), the instantaneous capacity is also deterministic

and depends exclusively on the distances between the antdements whereas the corre-
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sponding formula is
_ P H
C = log, (det (12 n 2HLHL)) . (5.3)

As was indicated in Section 2.3.3, the instantaneous dgpachaximised wheddH = 2I,.
For the deterministic case, that is the eigenvalues of ti® ¢arrelation matrixt' = H H{?
become equal and therefore we end up with perfectly orthalghttMO spatial subchannels,

i.e. full-rank matrix. In [178], it was shown that this cotidn is satisfied when
A +
|d1,1 — d2,1 + dgyg — d1,2| = (27“ + 1) 5, rel’ (54)

whereZ " is the set of positive integers. In physical terms, the astitieerein concluded that
the sum of path differencgsgl; ; — do2,1) and(dz 2 — d; 2) needs to be an odd integer multiple
of a half wavelength. While the capacity maximisation ciie (5.4) is expressed as a func-
tion of distances between the antenna elements, in prastam&kward since it disregards the
array geometries and orientations. A more tractable doitetan be derived by considering the
geometry depicted in Fig. 5.1 which is basically a top viewhaf propagation scenario under
consideration, with the car moving on a straight trajectalyng they-axis and both arrays
being placed perpendicular to the ground. The distancedsgihe two arrays on theandy
axes are respectively: anddy whereas the constant height difference is gived:asA side
view of the same scenario is illustrated in Fig. 5.2; an agtation by an anglé has been
conducted around thg-axis in order to make the array origins lie on the same ax@ ease
the post-processing. The coordinates of all elements wilnd to the new coordinate system
z'yz’ have also been included. The inter-element distances spectvelys; at the Tx andss

at the Rx. The distance between the first element of each &rray

D = \/da? + dy? + dz2 (5.5)

while the rotation anglé can be defined as
Vdx? + dy?
cosf — 5 (5.6)
dz

i = —. T
sin 0 D (5.7)
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[ J

dx

X

Figure 5.1: Top view of a vehicle-to-roadside propagation scenario.
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S~ [D-s,s1né, 0, s,cosd]

Figure 5.2: Side view of a vehicle-to-roadside propagation scenarith \®ielement ULAS at
both ends.
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The Euclidean distances between all antenna pairs are lgywen

dii=D (5.8)
dw::¢u)+5ﬁm9f+«ﬁcwef (5.9)
dyy = /(D = spsin0)? + (s5.cos 0)? (5.10)
dos = /(D + (51— 3) sin0)? + ((s1 — 52) cos )2, (5.11)

As a next step, a Taylor series approximation is introduceatdler to simplify the above set of

eqguations
V2
D+p)P+1v2 = (D+p) |1+ ——
(D + ) (Dt 1+ 5
I/2
~ (D —_. 5.12

This approach is sufficiently accurate as lond Bs+ M)2 > v; this holds true for all practical
systems wherd is of order of meters whiley, s, are typically of order of centimetres. Then,

the Euclidean distances become

dip=D (5.13)
) (s1cosf)?
dio~D 0+ —F— 5.14
Y §, prupapy7) (®-14)
. (s9 cos 0)2
doy1 = D — sysinf + (5.15)

2(D — sysiné)
((s1 — s2) cos 0)?
(D + (s1 — s2)sinf)’

dao~ D+ (s; — s2)sinf + 5 (5.16)

A further simplification is easily achieved if the denomimat in (5.14)—(5.16) are approxi-
mated by2D. Once more, the error introduced is negligible. By replgdis.13) and modified
(5.14)—(5.16) into (5.4), the simplified maximum capacityerion can be written as

1 D
~ +
S$189 & A (7“ + 5) oo " ezZ". (5.17)

This formula is now a function of the inter-element distas)Cex-Rx distance, orientation of the
arrays and carrier frequency. In general, larger distagqeires larger antenna spacings while
higher frequency requires smaller antenna spacings. Fed feequency and Tx-Rx distance,

the arrays can be designed so that subchannel orthogoisaditiained.
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5.1.2 Capacity variations

Although the derived criterion is simple, it does not takiiaccount possible deviations from
the optimum values which are always present in realistipagation environments due to either
design inaccuracies or positioning displacements. Winadse, most practical applications are
designed to operate within a coverage area rather than eetfived points. In this section, the
capacity of configurations fulfilling the criterion (5.18)tested under a range of more practical
conditions, such as the displacements from optimal postiand the presence of multipath

scattering.

5.1.2.1 Displacement effects

For the assumed scenario, the receive array is not fixed aga@fispposition but its location
changes constantly with the car motion. The performancén@fproposed scheme is firstly
evaluated by means of displacement from an optimal poirtiwian area of interest. Let's
assume the optimal point to occur whén = 5 m, dy = 0 anddz = 2 m (Dopt = 5.3852 m
andfop: = 21.8°). These are typical values of a short-range peer-to-peggagation scenario
where one terminal is mounted well below rooftops. The ealii' S frequency is 5.9 GHz and
the SNRp is set to 20 dB. Using the solution of equal inter-elementcsga the minimum
optimal spacing for the full-rank model (i.e. the solutid(®.17) forr = 0) returnss; = so =
39.85 cm. At this point, capacity reaches its maximum value whifiax = 21logy (1 + p) =

13.32 bits/s/Hz. The LoS component of this optimised configurat

opt 0.8384 + j0.5451  0.9074 — j0.4202
H = . (5.18)
0.0160 — 70.9999 0.8384 + 50.5451

with the two eigenvalues aF°P* being equal to 2. The sensitivity of the proposed orientattio
displacements from the optimal point on the- y plane can now be addressed. The considered
area is determined & < D, < 15 mand-50 < D, < 50 m whereD,, D, are the
displacements on the corresponding axes. The variatioogpz(city are illustrated in Fig. 5.3.

It is easily seen that the system capacity is highly semsttivdisplacements in the direction
of y-axis whereas it seems to be less susceptible to displa¢gnmethe direction ofr-axis
(smaller dynamic range). As anticipated, when the car isipgsby the infrastructure unit

(D, = 0) the largest capacity values are observed. For the rargje< D, < 20 m, which

1The subscriptept, suboptandconvrespectively stand for optimal, suboptimal and converti@onfigurations.
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Figure 5.3: Capacity variation against displacement on the- y plane.
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corresponds to a total area4ff x 15 = 600 m?, the proposed scheme delivers high capacities
and outperforms the i.i.d. Rayleigh system which yields @odic capacity of 11.4 bits/s/Hz

at the same operating SNR.

5.1.2.2 Scattering effects

So far, only a deterministic channel has been consideredarttlis reason free-space prop-
agation is the only propagation mechanism. This assumiidairly valid for short ranges
where the LoS component is expected to dominate over théessatpaths (high-factor).

In practice though, some degree of scattering is alwayseptedue to the interaction of the
transmitted signal with the physical environment as itetaowards the Rx. For a multipath
MIMO channel, the channel matrBl becomes a stochastic fading process making capacity be-
come a RV as well. A total set of 50,000 Monte-Carlo real@siofH is acquired from (5.1)
using the same fixed optimum settings for the LoS ma‘t’f’fﬁt as before. The effects of the-
factor on channel capacity are depicted in Fig. 5.4(a). Rerspecific full-rank geometry, the
monotonic capacity increase with ttié-factor as well as the enhanced diversity performance
(steeper CDF curves) are of paramount significance. In thit,behaviour contradicts the
common belief that higheK -factors, which induce stronger deterministic componelead

to higher correlation and thus lower capacity; in strong laoBditions the proposed config-
uration systematically outperforms most conventionah@éectures. These results are in line
with those presented in [177-179]. To shed some light orpiésromenon, a conventional LR
architecture withs; = so = 0.5\ and arrays in the far-field region, is also examined. This
implies that the LoS signals propagate as plane wavefrohtsw/phases are highly correlated

and therefordH” = 21,. The LoS matrix component then becomes

0.8384 + j0.5451  0.8272 — j0.5618
HOo™ = . (5.19)
—0.1653 + j0.9862 0.8384 + 50.5451

whereas the eigenvalues &°" are (4,4,08 x 107°). A completely inverse trend is now
observed in Fig. 5.4(b) with the presence of a LoS path clingedff the MIMO advantages.

In the low K -factor regime though, the capacity performance of botkesys becomes identical
while in the limit ({\( — —oo dB) the LoS component vanishes and we end up with a pure i.i.d.
Rayleigh channel, regardless of the antenna element @usitiOn the other hand, in the limit

(K — oo dB), the conventional configuration degenerates into desipgth MIMO link.
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Figure 5.4: Capacity CDFs of two stochastic MIMO channets= 20 dB).
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As a next step, the dynamic evolution of capacity is studigairafor different values of the
K -factor and the obtained results are shown in Fig. 5.5. AdiiHactor increases the dynamic
range of capacity increases too; figr> 10 dB the ergodic channel capacity is able to reach its
maximum value and becomes more robust to displacementsdptimum locations. On the
other hand, foX < 0 dB the system performance is unaffected by the car motiorakudgets
closer to the ergodic Rayleigh capacity which implies thatlenefits of LoS-optimised arrays

are minimised.
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Figure 5.5: Sensitivity of ergodic capacity to displacements on:ithe y plane for different
values of the'-factor.

5.2 Eigenanalysis of dual-branch MIMO Ricean systems

The impact of eigencharacteristics on MIMO performancelfe®me evident from the previ-
ous section and has been widely recognised over the last gsavell. For instance, the eigen-
values of HH" reflect the power of each multiplexed data stream and therefi@ inherently
related to MIMO capacity [5, 6] and further constitute a rieetsf multipath richness [180].
For this reason, the main objective herein is the deternoinaif the eigenvalue profile which

includes among others the marginal eigenvalue and conditimber distributions.
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5.2.1 Eigenvalue statistics

Since the introduction of MIMO technology, an extensive amtoof research effort has been
devoted to the study of eigenvalue statistics (see [6, 44;184] among others) which gov-
ern a variety of MIMO features spanning from SM ability to eligity order and error per-

formance [185-188]. Apart from the eigenvalue statistarsequally important metric is the
condition number commonly defined as the ratio of the lartgeste smallest eigenvalue. In the
MIMO context, the condition number indicates the multipatihness of the channel [189] and
it has also been shown to drastically affect the detectiofopeance in SM systems [190, 191].
Hence, a detailed knowledge of the eigenvalue as well aseofdhdition number statistics is
highly desirable since it will facilitate the efficient claaterisation of the promising MIMO

technology and the design of future communication networks

All the above cited papers make use of random matrix theodypamticularly of the theory of
random complex Wishart matrices, established by the pramg&vork of James [192]. In the
usual scenario of Rayleigh fading the channel matrix estigve zero mean and, consequently,
the tractable class of central (zero-mean) Wishart marammes up for which all ordered
joint/marginal eigenvalue CDFs and PDFs are known in clésed (see for instance [193] and
references therein). On the other hand, the presence op#oeilar component in Ricean chan-
nels violates the zero-mean condition but despite thettjwal relevance few results have been
documented on the eigenvalue statistics of Ricean chanmkls fact can be attributed to the
difficulty in manipulating hypergeometric functions witlvéd matrix arguments of non-central
Wishart matrices compared to the one matrix argument ofraeWishart matrices [192]. For
example, following the fundamental guidelines introdubgdKhatri [194], the PDF and CDF
of the largest eigenvalue of an arbitrary size non-centrehéft matrix were derived in [187]
and thereafter were used to analyse the performance of nahwatip combining systems. Like-
wise, the marginal PDF of an unordered eigenvalue was dakiivEL95] along with the ergodic
mutual information in explicit form. On the other hand, bésm the joint eigenvalue distri-
butions, different insightful results have been reportedhie literature. To be more precise,
the authors in [196] explored the moment generating functib capacity whereas in [197]
the main focus was on the higher-order moments of capacityo,An [198] tight upper and
lower bounds on the ergodic capacity of correlated MIMO Ritehannels were presented. For
the dual case under consideration, exact density andhiistn capacity functions for rank-1

MIMO Ricean channels were derived in [199], through the deced joint eigenvalue PDF.
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To the best of the author’'s knowledge, the first investigetidealing with the ordered marginal
distributions of the smallest and largest eigenvalues dfllIRicean channels were separately
addressed in [200], [185] and [201]. The former proposeduge of invariant polynomials
which, in the author’s opinion, made the overall analysisessively complicated and further it
merely considered the marginal CDFs; what's more, theiigion of the smallest eigenvalue
was given in an integral non-analytical form. In [185], mugmpler CDF expressions were
expressed but, at the same time, the PDF densities were leddeh asymptotic first-order
expansions which are, by definition, accurate only whenitpengalues tend to zero. The latter
paper recently studied the marginal eigenvalue PDFsjrgjditom the joint eigenvalue PDF,
but the derivation of final closed-form expressions, whisé authors acknowledge as quite
involved, was beyond the scope of the paper. Summarisiagpiears that no tractable closed-
form formulae for the ordered marginal eigenvalue PDFs aadlable in the literature. For the
rest of this chapter, the symbel CA/(X,Y) will stand for a complex normally distributed
matrix with meanX and covarianc&’. The entries of arfm x n) matrix X are denoted as

{X};;wherei =1,...,mandj = 1,...,n and the all-zergm x n) matrix as0, .

5.2.1.1 Review of dual non-central Wishart matrices

When a dual Ricean system is assumed, (thex 2) complex normal random matri¥ is
distributed according t&l ~ CN(M, X ® Iy). The matrixX = oI is the correlation matrix
containing the variances’ of the entries oH on its main diagonal. The instantaneous MIMO
correlation matrix is defined @& = HH¥ and is said to follow the complex non-central
Wishart distribution with two degrees of freedom and nontaity matrix Q2 = X~ 'MM¥#
commonly denoted a®V ~ CW3 (2,2, 02)2. Let's now consider a scaled version'W, that
isW = X-'W. SinceW is a(2 x 2) Hermitian matrix, it has two real ordered eigenvalues

w1 > wq > 0, whose joint PDF is given by [192]

2

f(wy,ws) = exp [— Z()" + w;)

i=1

oF1 (22, W) (wy — ws)” (5.20)

whereA = (A1, A\2) contains the real ordered eigenvaluestbfind, in turn,w = (wq, ws)
while 0151(.; .,.) Is the complex hypergeometric function of two matrix argmtse A conve-

nient version ofF, (2; X\, w) for the case of two transmit and two receive antenna elements

. 2t should be noted that iIM = 022 SO thatQ = 024-, a complex central Wishart matrix is obtained, i.e.
W ~ CW2(2,%).
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was given by Gross and Richards [202] as

det (0F1 (1; wi)\j))

By (2, w) = 5.21
ofi ) (A1 = A2) (w1 — wo) (5.21)

with o F (s + 1; z) being the classical hypergeometric function [203]
oF1 (s + 1;3) = sla™/%1I, (2vz) . (5.22)
Regarding the statistical characteristicstbfin (5.1), it can be inferred tha¥l = KLHHL
while ¥ = 1 _T,. Then, it is trivial to show that the Wishart matr® = HH follows

K+1

the distributionW ~ CW, (2, KLHIQ, KHLH{{) and in turn the associated LoS version of

interestW = (K + 1)W.

5.2.1.2 Marginal eigenvalue PDFs

In this section, the marginal PDFs of the smallest and largeenvalue of dual non-central

Wishart matrices are derived. The starting point of theofelhg analysis is the work presented
in [185] where the marginal CDFs of all ordered eigenvaluesandom size complex non-

central Wishart matrices were derived. These explicitlteaapply for non-centrality matrices

of arbitrary rank and are rewritten herein for the ease oféfaeler. The following mathematical

derivation is exclusively performed in the matrix domairdaconsequently, the eigenvalue
PDFs cannot be simply obtained after differentiating thdeF€DOMore interestingly, it is shown

the derived formulae, which are given in matrix form as wedn be efficiently evaluated and
easily programmed thanks to the compact matrix sizes. Tmheith, in the general case of a
(m x n) MIMO system withm < n, the marginal CDF of the smallest eigenvalug of W

is [185] o)

Fy, () =1— det (B(0))’ x> 0. (5.23)
The entries of the matri® (x) are succinctly given by
[®@)}s; = Qurn-2ir1min (V24,V22) (5.24)

whereQ),, (v, z) is the Nutall Q-function, originally defined in [205, Eq. ($@ccording to

z* + 92] I,(yz)dz. (5.25)

Qp,q(% z) :/ xP exp [— 5
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The CDF of the largest eigenvalug of W reads as

_ det (S(a))

Fy, (z) = m,

x> 0. (5.26)

Likewise, the entries of the matr&(z) are

{E(fv)}” = Qm+n—2i+1,m+n ( 2, 0)
_Qm+n72i+1,m+n (\/ 2)\3', @) . (527)

Whenm = n = 2, the following simplified expression for the entries ®{x) is obtained
(proof given in Appendix A.1)

(20 +2) Q (v/2A), V2z) + V2z exp [=(\; + )]

{@@)} ;=9 x4 Vv2Ah (2 ij)Jr\/ﬁfo(? ij) ,  fori=1 (5.28)

A(z)

where the Marcun® function is defined a§(a,b) = [,~ zexp [—“25—952] Iy(az)dz. Please
note that similar simplified expressions for the margingleevalue CDFs have been investi-
gated in [204], though the authors evaluated the Nupadls an infinite series of polynomial

terms which introduce higher computational requiremente marginal PDF is now given by

det (®(w2))

Pl = ger a(0))

tr (@71 (wa) ¥ (w2)) U(ws). (5.29)

In the above equatiorlJ(-) is the unit step function while the entries of tf& x 2) matrix

¥ (w,) contain the derivatives df® ()}, ; with respect tar and are given by

— (1 + )\j) I (2 )\ng) + %A(wg)

{‘Il(wQ)}iJ = 6_(>\j+w2) +2\//\jw2[1 (2\//\jw2) + )\j[g (2\/)\jw2) , fori =1 (530)
—In (24/Ajw2) , fori =2.

The marginal CDF of the largest eigenvalue can again be extracted from [185, Theorem 2],
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based on [185, Eq. (20)], as

_ det (5())

Py, (z) = m,

x>0 (5.31)

with the entries of the matri€(z) being (please see again Appendix A.1)

{E(az)} o (2)\j+2)Q(\/2/\j,0) _{(I)(x)}i,j7 fori =1 (5 32)
v Q (v/2X4,0) = Q (v/2Xj,V2z), fori = 2. '
In a similar manner, we can obtain the marginal PDkvpfas
fu (w1) = %tr (—Efl(wl)\If(wl)) U(wy). (5.33)

The proof is given in Appendix A.2. Clearly, the PDFs of boitpemvalues have been expressed
as the product of exponentials with modified Bessel funstiofithe first kind and Marcung

functions which can be easily applied to the performancéyaisaof MIMO systems.

5.2.2 Condition number statistics

The distribution of the condition number is now explored ahased-form formulae for its
PDF and CDF are introduced as a weighted sum of polynomialfileWthe seminal work
of Edelman [206] revealed the significant importance of thedition number as a metric of
the matrix ill-condition, it was limited to the case @ x 2) central Wishart matrices with
unit variance. The work presented by Ratnaragahl. [207] extended these results to account
for matrices of random size and with arbitrary variance hilk did not allow for non-zero
mean Wishart matrices. It is also worth noting an intergstipproach to model the temporal
transition probabilities of the condition number using d@éirstate Markov process [208]; more
interestingly, it was shown that the CDF of the logarithmha tondition number can be very
well approximated via a gamma variable. Yet, the analyssagain limited to Rayleigh-fading
MIMO channels. This implies that the contribution of thi€isen can be regarded as a broader

framework of the above cited papers [206—208].

Generally speaking, the condition number is a metric of thenael rank or, in other words, of
how invertible a given matrix is; a condition number closet® indicates a well-conditioned
matrix with almost equal eigenvalues. On the contrary, astindition number gets larger the

matrix rank drops and eventually degenerates into a ranlttixn Its importance in the area of
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MIMO communications has been demonstrated in [189-191Jngnathers. In the considered

case, the condition number of the scaled MIMO correlatiotrimdV can be expressed as

p=L> (5.34)
w2

From an information theory point of view, the impact of thenddion number on MIMO ca-
pacity can be seen in the following equation, which retuhasihstantaneous channel capacity

assuming CSI at the Rx and no knowledge at thé [5k

log, ((1 n %) (1 v %)) (5.35)
= log, ((1 + %) (1 + %)) (5.36)

wherea = 2(1 + K)/p. From (5.36), it is evident that there is no analytical ooethe

C

mapping between MIMO capacity and the condition number. él@ their inter-dependency
can be numerically evaluated; in Fig. 5.6 this inter-depewg is illustrated for an SNR of 20
dB*. This graph verifies the notion that high-rank channels,oar tondition numbers, yield
high capacities and vice-versa. From the previous disonssiis apparent how essential the
determination of the statistical characteristics of thaditon number is; ultimately, the SM
performance of MIMO channels could be analytically preglicend appropriate space-time
codes could be designed. In order to get a deeper undenstgritie density and distribution
functions of the condition number are now studied for twdedént cases; the distinction is

based on the associated LoS eigenvalues and, in partionlarhether these are identical.

5.2.2.1 Case 1\ # \o)

This first category represents any conventional MIMO comfiian, with no constraint on the
rank of the LoS channel matrix, that offers two distinct ramre LoS eigenvalues; > .. Itis
shown that the PDF of, f.(z), can then be expressed as a weighted summation of polyreomial

given by

()\1+)\2 Z_l R k+n+3) k\n kyn
f:2) = Z > ol 1 1 DS x| 6.37)
k=

3pPlease note that this capacity formula relies on an equakptansmission policy where the Tx splits the power
uniformly across all subchannels. This scheme, though piitnal, has been shown to be robust for maximising
the capacity of the worst fading correlation matrix, or tecalled “maxmin” property [196].

4A more detailed discussion on the simulation settings isigexl in Section 5.2.3.
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Figure 5.6: Capacity evolution as a function of the condition numhes(20 dB, K = 5 dB).

with the Gamma function being rewritten for the case of aeget index a$'(n) = (n—1)!. A
detailed proof is given in Appendix A.3. In order to reduce tligh computational complexity
inserted by the infinite double summation of the above eqoatnly a truncated subset of

terms may be considered according to

()‘1+)\2 Ks N k_i_ _|_3)
€ n n n
f2(2) ~ ZZ G e M) (639)

The values ofK; and N, are chosen so that a further increase in the number of cagftii
holds negligible impact on the final outcome (less than 0.%¥wben consecutive steps). It
was empirically found that to fulfill this prerequisite withe minimum number of termdy
and N, should be set to the same value. In fact, by adopting thisoagprthe asymptotic result
is approximated well with; = N, = 20. This observation is verified in Fig. 5.7, where the
evolution of the double summation against the number of $efim N, is depicted, for four

arbitrary values ot.
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Double summation output
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Figure 5.7: Convergence of the double summation in (5.38) for four reiffievalues of the
condition numbet.

The corresponding CDF af, F,(z), is related to the PDF via the well known relationship

@ = [ £ (5.39)

since by definitionz > 1. By substituting (5.37) into (5.39) and taking into accotiré Dom-
inated Convergence Theorem which states that the summatidrintegration can be inter-

changed, the following equation is obtained after somectalgebraic manipulations

~utde) Z T (k 41+ 3)
_¢ n kyn _ ykyn
E@) =55 M;) e X = A
y /x L B /1 Zk+1 B /I Zk N /1 Zk
o (z+1)k+n+3 o (z+ 1)k+n+3 o (z+ 1)kFnt3 o (z+ 1)ktnt3

(5.40)

For the integrals involved in (5.40), a tractable represto in terms of scalar hypergeometric
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functions is available in [203, Eqg. (3.194)]

u tH uu+1

wheres Fy (o, 3;v; u) is the classical Gaussian hypergeometric function defind@03, Eq.

(9.14)]. The CDF of the condition number eventually becomes

~ith) T (k +n+ 3)
. € L kEyn kyn
E@) =38 kzo Z_O T2 [Mz - Wl]

X {1{“*1”“*”*3(9;) - If’k+”+3(x)} (5.42)

where

a+1

+
1

Y

(
(

—_

> oFi(bya+ 10+ 2;—y)

a+1>2F1 (by,a+1l;a+2;-1). (5.43)

5.2.2.2 Case 2\ = \2)

As was reported in Section 5.1, this is a special class offspety designed LoS configurations
with extensive practical interest since it offers two eqei@genvalues and thus delivers high
capacities in the presence of strong deterministic compisnén the case of equal eigenvalues
though, the(\; — \2) term in the denominator of (5.21) becomes zero making théysisa
invalid; in order to circumvent the division by zede I'Hopital’'s rule is employed to get a
solution for the limit(A\; — \2). Following this approach, the ordered eigenvalue distigiou

f (w1, w9) becomes [201]

flwy,wy) = AIJ/Qe_le(uq,—-ua)e_(w1+“”)
x <\/w_111 (2 Alwl) Iy (2 Ale)
= vk (2v/2qws ) o (2v/Xwr ) > (5.44)

In Appendix A.3, it is shown that the PDF of the condition nienbas the form

Nk+n+4)
—2A k+1 n
7z(Z) 1 g E k'n' k 1 (Z 1)k o] (z —Zz ) (5.45)
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The similarity between the infinite double summations imedlin (5.37) and (5.45) is apparent
and hence the finite subset approximation can be again uséds Icase, a similar convergence
check, as the one performed for (5.38), revealed that thieelto, = N, = 15 approximates
the asymptotic solution reasonably well. As far as the domdinumber CDF is concerned,
the concept for deriving an analytical expression is eyati same as in (5.39)—(5.43). Thus,
it is straightforward to show that for the case of equal Logeaivalues the condition number

cumulative density reads as

L(k+n+4)
—2\ ZZ k42, k+n+4
() = e (k!In))2(k +1) x {Il (@)

. I?+1,k+n+4(x) o If+1,k+n+4( )+In k+n+4( )} (546)

5.2.3 Numerical results

In this section, the theoretical analysis presented ini@ecb.2.1 and 5.2.2 is validated through
a set of simulations. In order to allow the formulation of agel framework, a suboptimum
HR configuration is used henceforth but all the presentedlteeare readily extensible to the
ideal case of equal eigenvalues. Referring back to (5.1 Famn 5.2, the inter-element spacings

may be expressed as
A(D + 6d)

2cos? 6 (5.47)

51 = S9 =

wheredd is the deviation from the optimum solution. The simulatieftisgs for the LoS chan-
nel component ardd;; = do 2 = D = 5.3852 m} and {d;2 = 5.25 m,dz; = 5.53 m}. The
spatial deviatiorid is assumed to be -0.3852 m and the carrier frequency 5.9 GHe.L9S

matrix component then becomes

ot 0.8384 +j0.5451  0.9411 +j0.3380 | (5.48)
—0.5123 — j0.8588 0.8384 + j0.5451

Assuming a Riceatls factor of 5 dB, the eigenvalues 6°“*°P* can be easily computed and
thereafter concatenated into the vectot= (7.0336, 5.6155). After generating 50,000 random
Monte-Carlo realisations of the channel matkikaccording to (5.1), the accuracy of the ana-

lytical marginal eigenvalue CDFs/PDFs is respectively destrated in Figs. 5.8(a) and 5.8(b).
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Figure 5.9: Condition number CDF and PDF of a dual non-central Wishartrixa
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The analytical curves, as obtained from (5.23), (5.31) &29), (5.33) respectively, are over-
laid with the simulator outputs with the theoretical and giation results being in remarkable
agreement for both cases. Similarly, the quality of the il expressions for the condi-
tion number (5.38) and (5.42) is investigated in Figs. 5.8fad 5.9(b) where once more the

agreement between simulation and theory is excellent.

5.3 Adaptive detection for SM-MIMO systems

In this section, a potential practical application of theyious mathematical derivations is pro-
posed, by means of an AD suitable for SM systems. The mainvatmn for suggesting such
a scheme is to reduce the implementation cost of MIMO deteatithin most testbeds. We
recall that the optimal detector for SM MIMO systems is the Blktector which minimises
the error probability when all data vectors are equallyliikeut, at the same time, is compu-
tationally prohibitive [127]. One way to alleviate the egs&e complexity of ML detectors is
to settle for sphere decoding techniques, such as the Fokealgorithm proposed in [209],
whose complexity, under certain assumptions, is polynbmighe problem size. In [210], it
was shown that when the SNR is high the expected number chitiges required by the sphere
decoder is roughly cubic in the number of transmit antenoaa §mall problem size. However,
the authors in [211] proved that for any arbitrarily fixed S overall complexity of sphere
decoders does not grow as a polynomial function of the prolsize but as an exponential func-
tion instead. What's more, when ill-conditioned channalsus, the computational complexity
of sphere decoding schemes increases to a significant ¢x8£jt On the other hand, different
suboptimal techniques exist which span from the linear Zteaer to nonlinear techniques
such as Ordered Successive Interference CancellationQ)J312]; the former is the simplest
detection technique but causes a systematic performamgadigion and further is unable to
exploit all of the available diversity. Its main disadvaggdies in its poor performance when

channels with large condition numbers occur.

From the previous discussion, it is evident that an AD whichld switch between a ML and
a ZF scheme, depending on the instantaneous channel omsdits of vital importance since
it will allow the efficient integration of MIMO systems inta@ctical applications by simplify-
ing their feasibility. A similar concept of adaptive MIMOatmsmission has been investigated
by various research groups during the last years (the sitedlereaders are referred to [213—

215] among others) and essentially goes back to the fundaidiversity-multiplexing trade-
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Figure 5.10: A general SM-MIMO system.

demux

off [42]. As far as the author’'s knowledge goes, the first MIM@aptive scheme for the receive
side was recently presented in [216]. The authors howevesidered merely a Rayleigh chan-
nel, which leads to central complex Wishart matrices, artdiglight the formulation of a gen-

eralized framework is not possible. The proposed schenageslthe assumption of Rayleigh
fading to account for the commonly experienced LoS propagand, consequently, embodies

the model of [216] as a special case.

5.3.1 Detection schemes for SM systems

In this section the two reference detection schemes, nafitend ML detectors, are reviewed
and thereafter the concept of the novel AD is explored. Adl tbllowing investigations are
based on a SM-MIMO transmission scheme, such as the widgijoged V-BLAST [212], in
which the data is divided into a number dfblocks, equal to the number of transmit elements,
that are then simultaneously emitted (see Fig. 5.10). ARtkethe main goal is to differentiate
the data blocks originating from each of the transmit eleimea that the transmitted signals are
efficiently recovered. This differentiation is made pobsitue to the (ideally) unique spatial

signature acquired by each data block as a result of the gadijpa path from the Tx to the Rx.
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5.3.1.1 ZF detection

The simplest linear MIMO detector is the ZF receiver, whdre teceived signal vectay
is multiplied by the Moore-Penrose pseudoinveEsé of the channel matri¥ to obtain an

estimated transmit signal vect&pr as follows
%7zr = HHx + Hn. (5.49)

The computational complexity of ZF includes an exhaustearch through thé) symbols in
the constellation of the modulation technique fotimes and thus it is of the order 6f(Q V).
However, the low complexity of the ZF receiver comes at thpesse of noise amplification
which induces irreducible errors. In fact, as the numberaigmit and receive antennas grows

with no bound, the noise amplification tends to infinity [217]

5.3.1.2 ML detection

An alternative detector is the optimal ML detector which e#ns robust and yields the best per-
formance among all detection techniques [127]. Assumingkylikely, temporally uncoded

transmit symbols, this receiver chooses the vetthiat solves the following expression
S = argmin [y - Ht||5 . (5.50)

The optimisation is performed through an exhaustive seavehn all possible vector symbols.
This implies that the complexity of the ML detector grows erpntially with the number of
transmit antennas i.0(Q"), making the scheme infeasible for large antenna configursti

and constellation sizes.

5.3.1.3 Adaptive detection

Given the aforementioned deficiencies of both detecti@tegjies, the need of a detector which
can adaptively switch between them in order to enhance tioe performance and minimise
the computational cost is strengthened. The AD uses ZF wieendndition number is below
a predefined threshold defined and ML detection otherwise. KEly idea is to employ the ZF

detector only for well-conditioned channels (low conditioumbers) and let the ML deal with
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the ill-conditioned channels (high condition numbershtiStically speaking,

R )A(ZF if z <K
XAD = _ (5.51)
xvL  If 2 > k.
The threshold: affects the complexity of the proposed schemesfet 1, we getkap = xmL
and complexity equals that of ML detection whereas o~ oo we havexap = Xzr. In
general, the probability of ZF calls is Préb < x} = F.(x) = p, and therefore the average

AD complexity g becomes

9=pQN+(1—p)QY, 0<p. <L (5.52)
N~ N—,——
ZF calls ML calls

The percentage of complexity reduction, compared to th#te@ML detector, is

N _ N
QQN I _ o <1 - W) . (5.53)

An illustrative graph, indicating the significant complgxadvantage by employing the AD
for a fixed number of transmit elementd’ (= 2), can be seen in Fig. 5.11. Obviously, the
reduction is more pronounced for greater sizes of the syralpdiabet and higher number of
ZF calls. As an example, for the commonly employed 16-QAM uatation and forp,, = 0.6,
the complexity is reduced by more thaa%.

5.3.2 AD performance evaluation

The AD performance is now investigated for two different grtrical LoS models, namely
the suboptimum HR configuratidﬂlf“b"pt presented in Section 5.2.3 and the conventional LR
configurationH{°"* given in Section 5.1.2.2 with antenna spacing9)&f\. The K-factor
was again set to 5 dB and therefore the eigenvalues of thex ahfiguration2<°"* become

A = (12.649,0.0001) thereby indicating the matrix ill-condition. For both geetrical models
under investigation, 50,000 random Monte-Carlo realisetiof the channel matrid are gen-
erated according to (5.1) and a 16-QAM modulation schemen@®yed. From Fig. 5.6, it is
inferred that whenx < 6.46 the instantaneous capacity of the HR channel is greaterithah
bits/s/Hz (Rayleigh capacity). On this basis, a lower thoés of x = 5 has been adopted as a
reasonable indicator of the channel rank and multipathngsk. In Fig. 5.12, the BER curves

are depicted for three different detection schemes, na#igl\L and the proposed AD.
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Figure 5.11: Percentage of complexity reduction of the AD as a functiooooftellation size
and probability of ZF calls (two transmit antennas).

As expected, highek -factors lead to significant performance enhancement fayardesigned
following the suboptimum HR model. On the other hand, for Malues of K -factor (below

0 dB) the channel approaches the i.i.d. Rayleigh channe&ctaistics which corresponds to
a rich-scattering environment; in this region, the BER esnare approximately identical in
both systems and the benefits of LoS-optimised arrays argmisied. In order to get a better
understanding, the main AD performance characteristiedasulated in Table 5.1 where the
radically different trends of the two configurations aredigaobservable. The application of
the detection scheme has a noticeable impact only on the Hiely in fact, a significant per-
centage of ZF calls occur for all values of thefactor with a consequent complexity reduction
of up to 83.35%. The reader can also acknowledge the steatsase op, as K gets higher
since the channel becomes full rank and delivers two appratdly equal eigenvalues. In the
LR casep, is always below 29.43% and further is inversely proportldnahe K -factor. This
phenomenon can be attributed to the ill-condition of cotiesal architectures which degener-
ate eventually into a rank-1 channel due to the increasedmdigmce of the LoS rays’ phases.
Consequently, foil > 5 dB the number of ZF calls is too low to exploit the adaptivigniefits

and a complexity identical to that of a ML detector inevitatakes place.
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Figure 5.12: BER curves for three different detection strategies (16viQriodulation).
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Suboptimum HR LoS channel Conventional LR LoS channel

Analytical | Simulated| Compl. || Analytical | Simulated| Compl.
K -factor prob.,p. | prob.,p. | reduction| prob.,p. | prob.,p, | reduction
K =-10dB | 0.2992 0.3150 26.18% 0.2943 0.3132 25.75%
K =-5dB 0.3203 0.3380 28.02% 0.2801 0.3002 24.51%
K =0dB 0.4372 0.4403 | 38.25% 0.2052 0.2241 17.95%

K =5dB 0.7499 0.7501 65.61% 0.0536 0.064 4.69%

K =10dB 0.9526 0.9620 | 83.35% - - -

Table 5.1: AD performance characteristics for two different LoS chelrmodels as a function
of the K -factor.

5.4 Conclusions

In this chapter, the case of short-range propagation wasidemred where a hon-fading compo-
nent dominates the wireless channel. Contrary to the contmbef, LoS MIMO channels are
not always rank deficient; in fact, they can deliver capasitinuch higher than Rayleigh (rich
scattering) channels do, with appropriate positioninghef &antenna arrays. A tractable crite-
rion to achieve subchannel orthogonality was devised ferctse of dual-branch VTR MIMO
systems with the proposed optimised configuration remgirebust even when large displace-
ments occur. The beneficial effects of tRefactor were verified and it was concluded that the
presence of strong specular components stabilises thatidkmakes the proposed configura-

tion outperform the conventional architectures used naysdh wireless communications.

The eigenstatistics of the above mentioned dual systems sidysequently analytically as-
sessed with the derived closed-form formulae being vaidhrough Monte-Carlo trials. In

general, the eigenvalue and condition number statistegeny useful tools for determining nu-
merous MIMO characteristics, ranging from SM ability andaatic capacity to symbol error
and detection performance. To further indicate the use&drof this statistical analysis, an AD
was developed whose kernel was a hard-decision conditiatbattbased criterion. The dra-
matic decrease in terms of complexity, compared to the stipated ML detector, makes this
adaptive scheme applicable to the majority of modern praktieceivers. For LoS-optimised
architectures, the attained performance was shown to ls®mahly good especially for high
values of theK -factor. On the contrary, the scheme’s advantages diminfsn it is applied

to conventional antenna configurations since the channebnmginherently rank deficient and

therefore yields a deteriorating performance with theeasingk -factor.
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Chapter 6

Novel capacity upper bound for
dual-branch MIMO Ricean systems

One of the most interesting topics in the theoretical anslgbwireless networks, is the deter-
mination of upper capacity bounds or, in other words, of theximum achievable error-free
data rate. In this chapter, a novel analytical upper boundhenergodic capacity of dual-
branch MIMO Ricean systems is derived based on a fundampoatr constraint. The main
advantages of the proposed bound are its low complexity ladact that is applicable for ar-
bitrary rank of the LoS component and system SNR. The mattiemhéormulations presented
hereafter are using elements of non-central complex Wishatrices and non-central complex
quadratic forms. A comprehensive insight into the tightnefsthe bound is also provided where
itis demonstrated that as the SNR tends to zero the boundrsscasymptotically tight; at high
SNRs, the offset between empirical capacity and the prabbsand is analytically computed
which implies that an explicit asymptotic capacity expr@ssan ultimately be obtained. The
remainder of the chapter is organised as follows: In Sediidn a detailed literature review
is performed with the open problems and the chapter conivibsl being highlighted. In Sec-
tion 6.2, some basic definitions related to quadratic forragaen along with the double-sided
correlated MIMO Ricean channel model used throughout tlgten. Section 6.3 presents new
upper capacity bounds for different categories of MIMO egss. In Section 6.4, the tightness
of the novel bounds is explored while the numerical resulésgiven in Section 6.5. Finally,

Section 6.6 concludes the chapter and summarises the kaygind

6.1 Relations to previous and concurrent work

Taking into account the tractability in manipulating hygeometric functions with only one
matrix argument, it becomes more than expected that therityapbrelated studies documented
in literature consider the common case of Rayleigh fading. Frayleigh fading conditions, a

plethora of results dealing with capacity bounds is avéldbr various scenarios, spanning
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from uncorrelated fading to double-sided spatial corieta(see for instance [5, 6, 218-220]
and references therein among others). On the other handficggtly fewer publications fo-
cusing on MIMO Ricean channels have been reported with thst mgportant being found
in [195, 196, 198, 221-232]. More specifically, in [221] thstdbution of the ergodic capacity
for i.i.d. rank-1 Ricean fading channels was explored atHigia-SNR regime. In [195], ex-
plicit closed-form expressions for the ergodic capacityeygresented via infinite series while
in [196], capacity statistics (mean and second-order monvegre expressed in integral form
for arbitrary rank of the mean channel matrix. An interegtepproach is reported in [222]
where upper and lower numerical bounds were derived for.ilte icase, assuming that the
Tx has knowledge of statistical properties of the fadingcpss but not of the instantaneous
CSI. The first analytical bounds on MIMO Ricean capacity caridund in [223—-225], where
the assumption of uncorrelated fading at both ends was edoph [226, 227], these results
were extended to account for spatial correlation at a siagté of the MIMO link. The more
general case of double-sided spatial correlation was adédein [228, 229], using elements of
quadratic form theory. The main characteristic of the abated papers ([223—-229]) though,
is that they are limited to the case of rank-1 LoS matrices.memntioned before, while this
condition may occur quite often in reality, as a result of #xeessive correlation of the LoS’
rays phases, at the same time is not sufficiently generas gitimits the applications of MIMO

technology to conventional configurations.

To the best of the author’'s knowledge, the derivation of capdoounds in the general case of
arbitrary-rank mean matrices, has been separately asises@30], [231] and [198]. The for-
mer paper proposed a very tight lower bound on the ergodiaagpof semi-correlated MIMO
Ricean channels after decomposing the channel correlatédrix into non-central Wishart sub-
matrices and thereafter applying the bounding technigigégnadly proposed in [220]. In [231],
the authors relied on the expected values of elementarytifunsc of complex non-central
Wishart matrices to come up with an efficient capacity upmemia of semi-correlated MIMO
Ricean channels. The latter paper represents so far the geoexal approach in the associ-
ated area since it derives several lower and upper boundsass all different types of spatial
correlation. However, the paper’'s general upper boundvisrgias an infinite summation of
Hayakawa polynomials of one matrix argument, which the ansttacknowledge as quite in-
volved and computationally inefficient. It is also worth ntiening the work presented by
Lozanoet al. [232], who considered the high-SNR capacity offsets in ptdeestablish the

key effect of the so-called power offset on MIMO performan&e sum up, it appears that no
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tractable analytical results exist in the literature fag tipper bound of double-sided correlated

MIMO systems in Ricean fading with arbitrary-rank of theefetinistic component.

On these grounds, in the present chapter, using some rezsiitsron the theory of Wishart
matrices and quadratic forms, a novel and efficient uppentdaun the ergodic capacity of dual-
branch MIMO systems is firstly derived based on a fundameytaler constraint. In order to
formulate a broad framework, the effects of spatial cotretaare considered at both ends and,
more importantly, the rank of the mean channel matrix isvadid to be arbitrary. In fact, the
following analysis is carried out for both conventional LRdeoptimised HR configurations, as
initially defined in Chapter 5. The tightness of the boundis® anvestigated in detail and it is
clearly shown that as the SNR tends to zero the bound becosyagpéotically tight while, at

infinitely high SNRs, the offset from true capacity is analglly determined as well.

6.2 Multivariate statistics definitions and channel model

Let's assume that then x n) complex matrixX, with m < n, is distributed according to
X ~ CNypn(M, X ® ), whereX € C"™*™ and® e C"*" are positive definite Hermitian
matrices. Then, the matri® = XAX, with A € C"*", is said to be a non-central matrix-
variate quadratic form denoted & ~ CQ,, (A, X, ¥, M). In [198] and [228], the PDF
of Q was expressed through complex Hayakawa polynomials of tatsixrarguments which
are very difficult to calculate numerically. A more tractablersion of the associated PDF
as a product of hypergeometric functions, can be found i3,[2y. (5)]. Please note that
non-central quadratic forms degenerate into non-centigh&vt matrices whe®@ = I,, and
when eitherA = I,, or A is idempotent with rank? > m [198, 234]. The following theorem
returns thevth moment of the determinant ¢2 x 2) complex quadratic forms. Please note
that hereafter the symbotkt and| - | will be interchangeably used to denote the determinant

operator. Finallyetr(-) is a shorthand notation fexp(tr(-)).

Theorem 1l:Let Q ~ CQz2(I2, 3, ¥, M). Then, thevth moment of its determinan@Q| is
given by

fg(U + 2)

702) 1F1 (—v;2,-0) (6.1)

E(Q[] = [=¥[°

where® = MM andM = X ~1/2M.
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Proof: The proof begins by expressing the determinanQof CQs »(I2, 3, ¥, M) as

E[det (Q)"]

B [det (xx)"]
= B [det (51/2XX151/2) "]
— et (%) B [det (XX")"| 6.2)
where the complex normal matriX is distributed according to
X ~ CN (ML I © ®). (6.3)
Using a result from [228] through the aid of the Cauchy-Bifoemula, it can be shown that
XX ~ W, (2,9,0) (6.4)
and the expectation of the determinant in (6.2) can now bleiated through [198, Theorem 1]

to obtain

E [det (XXH)“} — det (W)Y [M

B2) ctr(®) Fy (v + 2;2; ©) (6.5)

where the following property for the determinant of the prodof square matrices has been
used
det (CD) = det (DC). (6.6)

The proof concludes after introducing the well known Kummeation for hypergeometric

functions of one matrix argument [235]

VFy (a;b;S) = etr(S) Fy (b— a;b; —S) . (6.7)

It should be pointed out that the above theorem is applicablg to (2 x 2) quadratic forms

since for matrix sizes ofm x n), a finite summation over a collection 6f ) subsets needs to
take place. The interested readers are referred to [228] tietailed discussion. A simplified
formula can now be obtained for the first-order moment of teminant after applying the

determinant representation of the hypergeometric functio
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Corollary 1: Forv =1, (6.1) reduces to

E[Q| = 2|27 <1 + %tr(@) + %det (@)) . (6.8)

Proof: The authors in [198] showed that for any square mdiix C™*™, its hypergeometric

function F (c; d; B) can be expressed according to

det (1151 (c=m-+j;d—m+7;b;) bgfl)

1Py (¢;d; B) = (6.9)
Hi<j(bj - bi)
whereby, bs, ..., by, is the set of non-zero eigenvalues Bf After taking into account the
following properties for the scalar hypergeometric fuons
~ 1 9
1F1(—2,1;Z) = 1—22+§Z (610)
~ 1
1Fi(-1,2,2) = 1-— 52'2 (6.11)
it is trivial to show that for the dual case under considerati
~ 1
1F1(—-1;2,-©) = 5(2+91 + 02 + 60105) (6.12)

wheredy, 6, are the eigenvalues @. The proof concludes after recalling that the sum and
product of the eigenvalues return the trace and the detamhiof a matrix, respectively. It
is noteworthy that the same result can be drawn if we reptabenhypergeometric function
Fy (—1;2; —0) via its zonal polynomials, as originally proposed in [23#Haamended for
the MIMO case in [231, Appendix I].

With regard to the MIMO channel model under consideratibe, éffects of spatial correlation
at both ends can be easily incorporated into the i.i.d. Riceadel given in (5.1). To be more

precise, the MIMO transfer channel matrix can now be reamiticcording to

K 1
H = ,/K—HHL + 4 /K—HR}/QHWRtm. (6.13)

As was highlighted in Chapter 2, this Kronecker-type of niligig is inherently simple and
sufficiently accurate when a small number of antenna is u8eJd Most importantly, it is the

most common correlation structure model used in the vastrityapf related publications [198,
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220, 231]. Clearly, the channel matrix is distributed adoay to

H ~ CNas (\/K/(K FOH,(K+1)7'R, ® Rt) . (6.14)

It should be noted that for optimised configurations theatéf®f spatial correlation are rather
weak due to the increased antenna spacings. However, inltbwihg analysis the presence of
correlation is considered for the fairness of comparisaifn wonventional configurations (more

details are given in Section 6.5).

6.3 Ergodic capacity upper bounds

In this section, novel expressions for the upper bound abdicycapacity based on a power
constraint are derived. Let's assume firstly that the Rx leafept CSI while the Tx knows nei-
ther the statistics nor the instantaneous CSI; then theumipower allocation ergodic capacity
reads [5, 6]

c = E[logQ (det (IﬁgHHH))}. (6.15)

6.3.1 Double-sided correlated Ricean and Rayleigh fading

In the general case of double-sided correlated Riceandagihere the channel matrix is dis-
tributed according to (6.14), the MIMO correlation matvW = HH” exhibits non-central

quadratic form distribution with the following properties

W ~ Qs (IQ,RT/(K +1),Re, VE/(K + I)HL) . (6.16)

The following theorem returns an upper bound on the ergaaiacity of a double-sided corre-

lated dual MIMO Ricean system.

Theorem 2:The ergodic capacity in bits/s/Hz of 2x 2) double-sided correlated MIMO Ricean
channel with mean matri KLHHL, receive correlation matrixKX + 1)~'R,. and transmit

correlation matrixR; is analytically upper bounded by

2
C < log, (1 2o+ %) (6.17)
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where the parameteris given as

Y = (K + 1)2R,||R| <1 + %tr(@) + %det (@)) (6.18)

with
H

© = KRIR-V2H H Y (R;W) (6.19)

Proof: An alternative way to express the ergodic MIMO capacity i®tigh the real positive
eigenvaluesoy, wo Of W which, in practice, represent the power carried by eachiamib-

channel. Then, (2.16) can be rewritten as

C=5log, (145m) (1+ 2a) | (6.:20)

Expanding (2.17), to get

U:E[log2 <1—|—g(@1—|—@2)+p£det (W)ﬂ (6.21)

Taking into account thdbg(-) is a concave function and making use of the Jensen'’s ind¢yguali

the following result is obtained
2
— p . - p —
< Lt r
C < log,y <1 + 2E (w1 + wa] + 1 E [det (W)] >
2
_ P W
— log, <1 +20+ 58 [det (W)} ) (6.22)
The second line follows from the widely used power constrain
E[|H|Z] =4 (6.23)

or equivalently,

E [tr (HH)] = B |tr (W) | = B[ + @] = 4. (6.24)
The upper bound in (6.17) follows immediately after introohg Corollary 1 and simplifying.

As was mentioned in Chapters 3 and 5, the key normalisati¢® 238) has been widely adopted
into the capacity characterisation of MIMO systems [5, &,281]. With regard to the novel

upper bound derived in (6.17), two important remarks shieédnade. The first one is that the
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bound is strictly applicable to dual-branch configuratisimee for larger MIMO setups we end
up with a series of eigenvalue cross-products that areentesdter expanding (2.17). Secondly,
by inspection of (6.17) it can be inferred that the propoggaen bound is rather simple as it just
requires the computation of the elementary functions ddetdifferent deterministic matrices
(R, Rt and®) only once. Comparatively, the bound in [198, Eq. (66)] fduitkary rank of

the LoS component relies on an infinite summation of Hayakaohganomials and therefore is

hard to evaluate either analytically or numerically.

In the case of double-sided correlated Rayleigh fadikg=€ 0), the channel matrix is dis-
tributed according td ~ CN 2 (02, R, ® R;) and the upper bound in (6.17) reduces to

2
C < log, (1 iyt %\RrRt|> (6.25)

which is in perfect agreement with the bound derived in [H§, (25)].

6.3.2 Uncorrelated Ricean and Rayleigh fading

For the sake of brevity, the case of single-side correlaigsoomitted in this chapter since the
derivation is based on exactly the same concept as befoszefline, let's now consider the spe-
cial case of both ends exhibiting uncorrelated i.i.d. Rictaling. Under these circumstances,

the channel matrix is distributed according to

K 1
H~ H I I, ]. .2
CN2,2< o1 L’K+12® 2) (6.26)

Corollary 2: The ergodic capacity in bits/s/Hz of(a x 2) uncorrelated MIMO Ricean channel
with mean matri KLHHL and receive correlation matriR,. = ﬁb is analytically upper
bounded by

2
C < log, (1 2o+ %) (6.27)

where = (1+ 2K + 0.5K%det (T)) /(K + 1)? andT = H_ Hf.
Proof: This corollary is a consequence of (6.17) after taking irtcoant that® = KT for the
case of uncorrelated fading at both ends. Furthermore ldshihattr (K'T) = Ktr (T) and

given that the entries of the deterministic LoS componertrisnare unit-amplitude complex

exponentials, it is trivial to show that (T) = 4. Likewise, the determinant &K'T may be
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expressed adet (K'T) = K?2det (T) which concludes the proof. Note that, the upper bound
in (6.27), depends only dit through the elementary symmetric polynomials of its eigdunes.

This is in agreement with the findings in [231].
The case of i.i.d. Rayleigh fading is obtained directly fr¢231), by settingk’ = 0 and
R, = R; = I,. The upper bound in (6.27) then reducesic£ 1)

2
C < log, (1 2+ %) (6.28)

which is identical with the results presented in [231, EQ], (218, Theorem 2] and [219, Eq.
(22)].

6.4 Tightness of the upper bound

A crucial characteristic of all capacity bounds is theittigess, or in other words, the offset
between the analytical bound and the empirical capacitgeheral, the absolute erroinserted

by an upper bound’ is given asx = U — C. In this section, it is shown that the upper bound
converges to the true capacity at low SNRs whereas at highsShie offset from the true

capacity is analytically determined. In the first case, tiliving corollary holds:

Corollary 3: The upper bound in (6.17) becomes asymptotically tight asSNRp tends to

Zero.

Proof: The proof begins with further upper bounding the ergodicacdy in (6.17) according

to

=_ L 0’
< (2p+ 2= 6.29
C_ln2<p+2> (6.29)

where the logarithm property.(1 4+ ) < = has been used. Following [231] and [236], we can
lower bound the ergodic capacity according to [236, EQ.](23)

C = Ellog, (1+ 2 1HI})]

> Lop[HE] - 5 (8) B [Im]

21n 2 -~ 2In2 \2
20 p? 4

= X _ E |[H||%]. 6.30
In2 8In2 [H ”F} ( )
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The second line follows from the propetity(1 + z) > = — $22. After subtracting (6.30) from

(6.29), the absolute errerof the proposed upper bound becomes

2

€= 57— <7 +3E [HHH‘;D (6.31)

which asymptotically tends to zero as— 0.

Corollary 4: As the SNRo — o0, the absolute error inserted by the upper bound in (6.1dsten

to
e =logy(27) — E [1og2 (det (VNV))} . (6.32)

Proof: As p — oo, the upper bound’ in (6.17), simplifies to

U =~ logy (27) + 2logy (g) . (6.33)

In (6.21), the quadratic term becomes significantly largehe high SNR-regime and therefore

the ergodic capacity may be approximated as

E [logQ <%2 det (VNV) )}

— 2log, (g) +E [1og2 (det (VNV))] . (6.34)

%

C

Subtracting (6.34) from (6.33), yields (6.32).

From (6.32), it is apparent that the bound’s error is giverainon-analytical form; in this
light, the crucial issue is to determine the expectatiorhetdg det function of a complex non-
central quadratic matrix, which involves a nonlinéag function. Thus, the following theorem

is introduced.

Theorem 3:Let’s assume thaW ~ CQa (IQ,RT/(K +1),Ry, VK/(K + 1)H|_). Then

the first-order moment of the logarithm of its determinargiien as

E [1og2 (det (Wm - é [¢(1) +(2) — 2In(K + 1) + In [R,Ry|

B 1
01 — 05

(A1(©) + Aﬂ@))} (6.35)

wherefy, 0, are the eigenvalues of the mati& which was given in (6.19) while the well
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known digamma functiong (z) are defined as

¥(e) & L inT(r) =

(6.36)

The polynomial termg\; (®) andA»(®) are essentially functions of the eigenvaldesandd,

and, in particular

A1(®) = 63h1(01) — ha(61) (6.37)
A2(®) = ha(f2) — 01h1(62) (6.38)
where
hi(z) = ZP(’Z’”“’) (6.39)
k=0
ho(z) = 3327;(]1’? (6.40)
k=0

with P(a, x) being the regularised gamma function [237, 6.5.1].

R S A R (X))
P(a,:c)—r(a)/ot le~tat = T(a) (6.41)

wherey(a, z) is the lower incomplete gamma function.

Proof: The proof begins with the following key transformation

E[lnz] = %E [Y] [u=0 (6.42)

which holds since, by definitiom;” = e¥!"*, By combining (6.42) and (6.1) and denoting

(=E [mg2 (det (VA\?))} - éE [m (det (VA\?))} (6.43)

we can directly get

. 1 d -1 v f2(U+2)
C_ln2 dv {‘(K"’_l) RrRt| [ 2

6.44
I'2(2) (649

By (—U;Q;—@)}

v=0

It can be easily observed that the above differentiatiorsisté of three multiplicative terms.

Treating each one separately due to the chain rule, it igkiio show that the first term results
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inln |R,R;| —2In(K + 1). The second one, may be rearranged according to

(B2l - B e )

F2(2) dv

d 2
=1

v=0 v=0

(6.45)

v=0

which, after invoking the definition of digamma functions36), readily yields)(1) + ¥(2).

Focusing now on the last term, we get

d ([ ~ d .
- {1F1 (—v; 2; —@)} =& {etr(—@)lFl (0+20+2; @)} »
é%1ﬁ1(1)+-2;v;())
- v=0, (6.46)

1ﬁ1 (U;U;@)

where the second line follows from the propert; («; a; z) = exp(z). The proof concludes
after introducing a very useful result from [198, Appendikfor the nominator in the above
equation. Substituting (6.45) and (6.46) into (6.44) andpsifying yields (6.35).

Please note that the derivation of the formula (6.35) rek@thout loss of generality, on the
assumption of two non-zero eigenvalues of the ma®ix For the case of rank-1 matrices, a
similar analysis should be followed; this is however beytimel scope of this chapter and the
interested readers are referred to [198] for a detailedudision. Evidently, after replacing
(6.35) into (6.32), we can obtain an analytical formula fog bound’s offset at high SNRs, for
the general case of double-sided correlated Ricean fathiregddition, this result can be further
used to deduce exact capacity expressions in the high-S§iRee When the channel exhibits
i.i.d. Ricean fading and both ends are employed with optingdsigned arrays as discussed in
Section 5.1, the LoS component yields two equal eigenvaundshus, the following corollary

should be introduced.

Corollary 5: As the SNRp — oo, the absolute error inserted by the upper bound for the case

of i.i.d. Ricean fading and optimised LoS configurationsiteto

¢ = logy(20) - [wu) $(2) — 2In(K 1 1)

i%ﬂ Y(k, A1) — Ape AR
(k+1)

(6.47)
k=1
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where\; = )\, represents any of the two equal eigenvalueQ et KT.

Proof: The proof starts by noting that for i.i.d. Ricean fadi®gshould be replaced b = K'T

in all manipulations. Further, in the specific case of opgiai configurations, the equality of
eigenvalues leads to a division by zero in (6.35). In ordecitoumvent this singularityde
I'H dpital’s rule is used to get a solution at the linfit; — X2). In particular, the last term in

(6.35) can be rewritten as

. d
¢ = lim e (Ath1(A1 +¢€) = ha(A +¢)) —hi(M)] - (6.48)
Taking into account that
4 gy = (6.49)
Az’ = I'(a) '

and after some algebraic manipulations we end up with

lim Ly (0 o) = i% (6.50)
e—0de 1 T k() '
d e MR hy ()
lim —hao(A = 1 . 6.51
limg Zehz(d+2) ; ESNOREE (6-51)
Substituting (6.50)—(6.51) into (6.48),
ho(w) e wh—1
- h —wewy
¢ Hw) + = = —we ; k(k + DT(k)
2 (2k + 1)y(k,w) — we™@wk! (6.52)
e k+ )T (k) '

Recalling that for integen, I'(n) = (n — 1)!, (6.47) is finally obtained.

6.5 Numerical results

In this section, the theoretical analysis presented ini@ec6.3 and 6.4 is validated through a
set of Monte-Carlo simulations. Using exactly the same Esinoulations as in Section 5.1.2,
l.e. Dy, = 5.3852 m andf,,, = 21.80°, we examine both an optimised and conventional
configuration, whose LoS matrix components are respegtiadien through (5.18) and (5.19).
Throughout the simulations, the constant correlation raladopted thanks to its inherent
simplicity. The entries oR, andR, in (2.31) can be modelled §R.}, ; = (dr)/" 7! and,
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Figure 6.1: Upper bound and ergodic capacity as a function of the SNR£ 0.2, 7 = 0.5).
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in analogy,{R;}, ; = (d7)/"7!, wheredr, 67 € [0,1). After generating 50,000 Monte-Carlo
realizations of the channel matrix according to (2.31) aettirey 6 = 0.2 anddp = 0.5, the
proposed bound in (6.17) is firstly evaluated against the SMH@ifferent values of{. From
Figs. 6.1(a) and 6.1(b), it can be easily seen that the baureshiarkably tight for the optimised
configuration and, likewise, performs satisfactorily fengentional configurations. Moreover,
at low SNRs both bounds converge asymptotically to the dogbivalues of ergodic capacity.
Generally speaking, the bound becomes tighter adsdiHactor increases and SNR decreases
which is line with the conclusions drawn in [227,229, 231]nd® more, the superiority of

optimised configurations in the presence of strong detastitrcomponents is indisputable.

As a next step, the effects of tlié-factor on the performance of the proposed bound are inrvesti
gated in Fig. 6.2, where it is again apparent that both bobedsme tighter with an increasing
K -factor. For Rayleigh-fading conditions though, &r < 0 dB, the achieved tightness is de-
graded and, under these circumstances, it is sensible toaee efficient bounds which are
inherently tied to Rayleigh channels, like the ones preskmt [218—220].
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Figure 6.2: Upper bound and ergodic capacity as a function of fidactor (z = 0.2, 67 =
0.5 andp = 20 dB).

133



Novel capacity upper bound for dual-branch MIMO Ricean exyst

14 T T T T T T T T T

131 .

H
N
T
4
l
*
|
¥
+
|
¥
]

H
=
:
o
o
(-]
o
o
(-]
o

*— - |
101 —* ok e — e g

Ergodic capacity (bits/s/Hz)

©
o
(-]
o
o
(-]
o
7
o x
-
o 4
oo
° ¥
B

— — — Upper bound-opt

"""" Simulated ergodic capacity—opt
8r | — - Upper bound-conv

9 Simulated ergodic capacity—conv

7
0 0.05 0.1 0.15 0.2 0.25 0.3 035 04 045 05
Correlation coefficient

Figure 6.3: Upper bound and ergodic capacity as a function of the cotiefacoefficientsip
anddr (p = 20 dB).

In Fig. 6.3, the relationship between practical values ettigp correlation and MIMO capac-
ity is addressed. Clearly, the effects of correlation orodig capacity become less significant
(smaller dynamic range) as thié-factor gets higher for both configurations under investiga
tion, i.e. highK-factors provide robustness against spatial correlatfmexpected, the large
inter-element spacings make the optimised setup remaiffiegted by the level of correlation;
hence, it offers almost the same ergodic capacity regardiethe values obr andop. The
conventional configuration, however, suffers from spat@telation with the ergodic capacity
decreasing as correlation gets higher. Intuitively, tiglttiess of the corresponding bound is
relatively improved in the high-correlation regime. Plea®te that this outcome is in agree-

ment with the results initially given in [219, 229, 231].

The absolute error inserted by the proposed bound is noedesjainst the system SNR and
K-factor. The obtained surf plots are depicted in Figs. §.4(al 6.4(b). The main difference
between the two error distributions lies in the high-SNB -factor region. More specifi-
cally, whenp > 20 dB the bound’s error associated with optimised configuratidecreases

rapidly whenK > 5 dB, whereas that of conventional configurations remaireively unaf-
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Figure 6.4: Absolute error of the upper bound as a function of the SNRFsfedctor (6 = 0.2
anddér = 0.5).
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fected. Thisis aresult of the diminishing SNR effects ondigodic capacity of LoS-optimised,
as theK -factor gets higher. In other words, whén > 5 dB MIMO capacity approaches its
maximal value and, consequently, the absolute error tendsdrease, regardless of the system
SNR.

At the last stage of the evaluation process, the high-SNiatdem between the ergodic capacity
and the proposed upper bound is considered, using the m@ligrmulae derived in (6.32)
and (6.47). In Fig. 6.5, the analytical curves are overlaith\whe outputs of a Monte-Carlo
simulator with the match being remarkably good, therebydeding the accuracy of the above
presented theoretical analysis. The error associatedoptimised configurations is constantly
lower than that of conventional ones, as a result of the daflciency of the former. What's
more, it appears that the latter error has a much smallerrdineange revealing that a high
K -factor does not have an extensive impact on its value. Oottier hand, the bound for the
optimised configuration yields an enhanced tightnesk ascreases and under strong Ricean

conditions, the corresponding offset is minimised.
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Figure 6.5: Analytical and simulated absolute error of the upper bounthe high-SNR regime
as a function of thd{-factor () = 0.2 andop = 0.5).
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6.6 Summary

In this chapter, the main purpose has been the derivationtigctable upper bound for the
ergodic capacity of dual-branch MIMO Ricean systems withkby concept originating from
a widely used power constraint. The first empirical boundethels on the expected value of
the determinant of either a non-central quadratic form kdesided correlated Ricean fading)
or non-central Wishart matrix (single-sided correlated amcorrelated Ricean fading). For
this reason, the determinant expectation had to be arallytidefined by introducing the de-
terminant representation of hypergeometric functions rad matrix argument. By doing so,
the derived analytical bound becomes remarkably simpleagepiends only on the elementary
symmetric functions of, at most, three deterministic ntasiand hence can be very efficiently
evaluated. Apart from its inherent simplicity, another atage of this novel bound is the fact
that it is not confined to the common case of rank-1 detertigni®S components. The simu-
lation results demonstrated that the bound is sufficieglyt for optimised configurations and
marginally looser for the conventional setups. The tighsnef the bound was finally assessed
in the low and high-SNR regions; in the former, the bound bee® asymptotically tight (ab-
solute error tends to zero) whereas in the latter the bowftset tends to a constant value that

was analytically determined and validated through Mongeldtrials.
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Chapter 7
Conclusions

This thesis has covered a wide range of areas related to mddi&iO wireless communi-

cations. It has been shown that its contributions are of bwtbretical and practical interest
and serve as a good starting point for additional reseanatthi$ concluding chapter, all the
key findings from different chapters are summarised andrakftgure research routes are sug-

gested.

7.1 Summary of results

In Chapter 3, the Nakagami fading model is developed upoeitiendecomposition of the full
spatial MIMO correlation matriRy using the data collected at a 5.2 GHz carrier frequency.
The reason behind choosing the Nakagamdhstribution to model the eigenmodes’ envelope
variations can be attributed to its inherent flexibility thmaakes it exhibit the best statistical
fit with the raw data. Although the computer generation okjpeindent Nakagamir deviates

is broadly viewed as a trivial task, the reality is differetd be more precise, none of the the
available known techniques is applicable for any arbitraadues of the shape parameters (
and) or on their whole range. Hence, there was a motivation tw¢hice a novel rejection-
based technique which fulfils both prerequisites and yialdatisfactory efficiency. The good-
ness of the proposed channel model is tested and comparedhait of the Weichselberger
and VCR models; the comparative results demonstrate therisupy of the Nakagami fading
model from both information theory and error performancespectives. The performance en-
hancement over the sophisticated Weichselberger modelouvas to be 2.2 dB in the case of
ergodic and outage capacity and 3 dB in the case of BER mismatee VCR model, on the
other hand, is unable to capture the spatial activity wittuaacy due to the artificial generation
of MPCs and, as a result, it systematically overestimatest mitannel characteristics. As was
conjectured in Chapter 3, the Nakagami fading model is @asgily important for 5-GHz band
WLAN systems as well as for MIMO computer simulations, camgion of optimum spatial

filtering and design of space-time codes.
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Apart from modelling the wireless channel, its charactgiis is essential for understanding
the spatio-temporal structure of the channel transferimatrd ultimately predicting the per-
formance of MIMO systems through the radio channel conaitiolntuitively, the extraction
of multipath characteristics dictates the development oltirdimensional channel parameter
estimation algorithms; for this reason, in Chapter 4 the IDFAGE algorithm is introduced
that, contrary to most array processing algorithms suchs8HT, Unitary ESPRIT and RMU-
SIC, can be directly applied to any arbitrary antenna gepnpgbvided that the array response
is known a priori. The scheme yields a remarkable robustimegsynthetic environment when
used in conjunction with the SIC technique. The latter i® &sorporated within the initiali-
sation stage to detect the number of dominant MPCs since@goo restrictions on the model
order whereas most of the information theoretic criteria tdising the same set of measured
data as before, the performance of a real-time indoor MIM@nciel is investigated in the dou-
ble directional domain. It is found that the dependency efttio domains grows when a LoS is
present or when the Tx faces the Rx and the distance betwesmisHow (OL0S propagation).
On the other hand, at NLoS Rx locations the azimuth dispergits larger since it benefits
from the complex propagation paths’ interactions and, in,tthe correlation between the an-
gular domains falls off. It is worth mentioning that the aage values tabulated in Table 4.4

serve as a good reference point for the planning of futureandVLANS.

While the first part of the thesis is focused on indoor chasirteke second part is purely devoted
to short-range communications where the presence of andigistic component violates the
assumption of Rayleigh fading and the channel entries atedRi distributed. Under these
circumstances, it is widely believed that the beneficiab@8 of multipath propagation are
diminished due to the high level of spatial correlation. Hwer, with appropriate positioning
of the antenna elements, the presence of a free-space centgaems to strengthen the link so
that it delivers high throughput. To this end, in Chapter ar2aximum capacity criterion is
derived for the special case of two-element ULAs at both eagls function of the separation
distance between the two arrays, their orientations arei-glement spacings on each array.
This simplified criterion can be used as a guideline for d@aigLoS-optimised MIMO systems

which can achieve higher capacity than that predicted fariah Rayleigh MIMO channel.

Aside from this design methodology, a detailed eigenaimalgt dual-branch MIMO Ricean
systems is performed using elements of random matrix thedbhg marginal PDF and CDF

distributions of the eigenvalues as well as of the conditiomber are deduced in closed-form
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and validated via simulations. These formulae can aid tediption of the most significant
MIMO features, namely the SM ability, ergodic and outageacity and finally the symbol
error and detection performance. As a potential applicatitthe above mentioned theoretical
analysis, an AD is proposed so that the high cost and contplexiML-based receivers is
reduced. The scheme offers an extensive complexity remuetiong with a satisfactory BER

performance even when applied to suboptimum LoS configunati

In Chapter 6, a tractable analytical upper bound on the érgmpacity of dual MIMO Ricean
systems is derived which, contrary to the majority of simileorks documented in literature, is
applicable for arbitrary rank of the mean channel matrixfalet, the bound is evaluated for both
a conventional rank-1 and optimal configurations with twaad-oS eigenvalues. In order to
allow the formulation of a broad framework, the effects oéisal correlation at both ends are
taken into account as well; by doing so, the derived resudtge mot only a higher usability
but also include previously published works as specialxasbe asymptotic tightness of the
bound is also explored where it is shown that as the SNR temdsrb the bound becomes
asymptotically tight while it tends to a constant, that islgtically determined, for infinitely
high SNRs.

7.2 Future research areas

There are several areas of this thesis that can be expandeitatre stage and some of these

are being outlined below:

e In Chapter 3, the author showed the very good match of the ddakamn distribution
with the indoor measured data. Due to time limitations, anljmited amount of data
could be acquired and processed. Additional MIMO measunertnials to further char-
acterise indoor channels in various propagation conditimould lead to greater con-
fidence of the model. Another attractive research area istend the model to the
wideband case thereby making it appropriate for the ingatitn of MIMO-OFDM sys-
tems. Further, it is quite challenging to explore whethéfiedént distributions can offer
the same, or even a better, fit with the eigenmodes’ enveldgigbditions. A strong
candidate is the Weibull distribution [238] which has beeaved to exhibit good fit
to experimental fading measurements, for both indoor [289], and outdoor environ-

ments [241, 242], and further includes the Rayleigh distidn as a special case.
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e Another possible topic to be addressed is the asymptotic parformance of the SAGE
algorithm and particularly the determination of the CR loweund of the estimators.
Unfortunately, due to time constraints, the author coultdexplore the interesting the-
ory of point estimation; as a general rule whatsoever, tisbdtiinformation matrix has
firstly to be computed along with the log-likelihood functiof the signal model [243]
and thereafter the procedure described in [151] should b@xfed. The algorithm can
also be extended to higher dimensions in order to embodydlagigation and Doppler
information. From a comparative point of view, the applicatof the gradient-based ML
RIMAX algorithm on the measured data is expected to incréfaseonvergence speed
compared to the coordinate-wise search strategy of the S#{@d&ithm and further aid

the detection of diffuse scattering contributions (seeiSea.6).

e One of the most interesting topics for future research, éscibnduction of the first-ever
VTR MIMO campaign at the standardised ITS frequency of 5.92GH is an indis-
putable fact that this campaign could serve as a very ustftirg) point for assessing
the channel statistics in the joint spatio-temporal-Depmlomain under practical con-
ditions. Nevertheless, the ultimate goal remains the dgveént of new sophisticated
channel models based on measurement data which will endchralerstanding of the

emerging short-range MIMO communications in fast-vary@myironments.

e In Chapter 5, the main focus was on dual MIMO Ricean systertis twio transmit and
receive antennas since, as it was pointed out, these caatfigus are of high practical
relevance thanks to their low setup size and implementatast. While the criterion
derived for maximum MIMO capacity (5.17) retains its stigigrward form for a higher
number of antennas according to [178], the same does notthu@dor the eigenvalue
and condition number statistics. Under these circumstartbe simplified relationships
for dual systems (5.20), (5.21) and thereof become invaglyas underlined in Sec-
tion 5.2.1, the marginal eigenvalue CDF densities for artrary size Wishart matrix
can be found in [185]. The estimation, however, of the comdihumber distributions
dictates among others the extraction of the joint densfty, , w,,) (assuming &m x n)
MIMO system withm < n) which is a non-trivial task. Briefly stated, an appropriate
transformation of variables followed byra— 1 integrations over all eigenvalue baselines
have to take place. The interested reader is referred to, [£§2 (102)] for additional

information on the joint eigenvalue PDF of random size campishart matrices.
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e Likewise, the derivation of the upper bound in Chapter 6esl tio these specific con-
figurations due to the eigenvalue cross-products that asgenl after expanding the key
capacity-eigenvalues relationship (2.17). In any caseghpit would be really inter-
esting to expand the semi-correlated analysis of [231]cliig entirely based on the
elementary functions of the channel correlation matrixaliow for double-sided cor-
relation. This can be achieved by decomposing the assdciatgrix into a series of
weighted submatrices and thereafter applying some of thelteeon the moments of

elementary functions of quadratic forms, recently preseri [198, 228].
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Appendix A

Analytical derivations of eigenvalue
and condition number distributions

A.1 Proofs of (5.28) and (5.32)

By inspection, it is noticed that the sum of the two indiceshef Nutall€) function in (5.24) is
always odd. In such a case, one can express the Ntalterms of only a Marcunt function
and a finite weighted sum of modified Bessel functions, usingsalt from [244]. Replacing

the valuesn = n = 2 andi = 1 into [244, Eq. (13)], we get

a2 (12 + b2
Qo+2:1+1,0 (a,b) = 211!L(1] <—?> Qo+1 (a,b) + exp [— 3 :|

X {211! (L? <—“;> — L (—“;» gll(ab) + bPLl(bQ)Io(ab)} (A1)

where, for the sake of simplicity, the same notation has hesmu as in [244]. This means
that L} (x) is the generalized-th order Laguerre polynomial [244, Eq. (14)] ai);(x) is

a polynomial of orderk — [ in = defined in [244, Eq. (10)]. By observing thaf(z) = 1,
LY(x) = 1—=zandP;(x) = 1, the key equation (5.28) is derived in a straightforward nen

The result in (5.32) can be readily obtained after followihg same procedure.

A.2 Proofs of (5.29)—(5.33)

The derivation process relies on the classical formulaterderivative of a determinant, that
is [245]

%det (B(t)) = det (B(t)) tr (B‘%t)%B(t)) . (A.2)

The above relationship is now applied to (5.23) which imragady yields (5.29); the use of
the step function guarantees the positivity of the considleigenvalue. At a next stage, the

entries of the matrixp (z) need to be differentiated with respectitoThe partial derivative of
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a Marcumé) functionQ(a, b) with respect td was derived in [246] as

0Q(a,b)

a2 4 b2
= —bIy(ab) exp [— —;b ] (A.3)

that gives
0Q (\/E’ \/ﬁ) _ _IO(2 )\jfv) exp [—()\j —I—ZC)] . (A-4)

ox

The fundamental formulae for the derivatives of modified €t$unctions are also being used

Wile) _ a(0) + L) (A5)
algf) = L(2) (A.6)

Combining (A.3)—(A.6) with (5.28) and after some manipigas, it is trivial to calculate the
entries of® (w9). The result for the largest eigenvalue is readily obtainier &llowing the

same procedure for the entries®{x).

A.3 Proofs of (5.37) and (5.45)

Starting with the joint eigenvalue PDRw, ws), the following transformation of variables is
applied to estimate the marginal PDF of the condition numberw; /ws [123, Eq. (6.43)]

f(2) :/ wa f (zwe, w )dws. (A.7)
0
By substituting (5.20) into (A.7), the integral becomes

fa(z) = e Mitd2) (5 1)2/ wie 2t By (2; A, W) dw, (A.8)
0

wherew’ = (zws, wo). If (5.21) is introduced in the analysis, the following r&aship is

obtained
det (0F1 (1, w;)\j))

B (20 w) = A.9
of ( ) wa(A\1 — Ao)(z — 1) (A-9)
which leads to a simplified version of (A.8)
—()q-i—)\g) _ )
fo(2) = = 5 (; 1)/ wie™ 2 det (oFy (1;w));)) dws. (A.10)
1 — A2 0
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For the dual case, (5.22) reduces to

oF1(1;2) = Iy (2v/x) (A.11)

and therefore

—(A1+X2)(» _ 1 o)
fulz) =S 5 (; ) / wie 2 det (Io <2ﬁ/ngj>> dws (A.12)
1 — N2 0

or
e MutR)(z 1) X2 —ws(a1)
f(2) = N X [/0 wie” 2 Iy (2 zwg)\l) (2 wg)\g) dwo
— / ’w%e_w2(2+1)10 (2\/ Z’LUQAQ) I() (2\/ ’LUQAl) dw2:| .
0
(A.13)

To the best of the author’'s knowledge, there is no analysoéltion for the integrals involved
in (A.13); in light of this fact, the zeroth-order modified &l function is expressed as an

infinite sum of powers according to

=3 <%>2 )" (A.14)

k=0
which results in
—atr2) (5 — 1) oo 0, (A A2k tn
¢ < 2(24+1) 12)* (M12)"Agwy ™
z - d
f2(2) M X /0 wie” ;OZ] (kln!)2 w2
0 00 00 kyn, k+n
_ 2 —wo(z+1) (A22)"ATwy
/0 wle—v2 ;Z—(W) . (A15)

The summation is directly interchanged with the integratiad taking into account the follow-

ing straightforward formula

o T 1
/ Pe”dr = (p +1 ) (A.16)
0 ab+

the proof of (5.37) is concluded.
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The derivation of (5.45) represents essentially an extens the analysis presented above. To

be more precise, by combining (5.44) with (A.7) we get

fz(Z) = )\1_1/2 72)\1 |:/ \/_w5/2 —wo ZJrl)Il (2 Z)\le) 1'0 (2 )\le) dwsy
_ / wg/Qe_u&(Z-l-l)Il (2\/ Alfwg) Iy (2\/ Z)\l’wg) dw2:| .
0
(A.17)

Once more, the infinite series representation of a firstrardmified Bessel function of the first

kind is adopted according to

s 1 2k
L) = gzk!l“ k+ 2) (g)

S ()" o

Substituting (A.14) and (A.18) into (A.17) one can obtain

oo k+n
-1/2 _ —wa(z (Mw
F2) = APz 1) [/o 2w D/ Aws E E : kynll 2 — dwy

kOnO k+1)

/ 5/2 o~ w2(z41) \/TZZ G '1w2 dw2] (A.19)
0 n

kOnO k+1)

which after making use of (A.16) and some trivial manipuas returns (5.45).
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On Analytical Derivations of the Condition Numbel
Distributions of Dual Non-Central Wishart Matrices

Michail Matthaiou,Member, IEEEDavid |. LaurensonMember, IEEE,
and Cheng-Xiang Wandvilember, IEEE

Abstract—In this paper, we explore the statistical charac- is highly desirable since it will shed some light into the
terization of Multiple-Input Multiple-Output (MIMO) channel efficient characterization of the promising MIMO technology.

correlation matrices with the main focus being on their condition We point out that throughout the paper our main interest lies
number statistics. More specifically, novel expressions are derived . dual-b h implyd MIMO fi ti hich
for the probability density function (PDF) and cumulative distri- ' dual-branc (or simply dual) configurations, whicl

bution function (CDF) of the MIMO condition number. Contrary ~ are expected to be employed in the majority of future practical
to the majority of related studies, where only the common case systems (e.g. hand-held devices), thanks to their small size anc
of Rayleigh fading was considered, our investigation is extended |ow complexity/implementation cost.
to account for the generalized case of Ricean fading where a |, order to conduct the above mentioned analysis, we have
deterministic Line-of-Sight (LoS) component exists in the com- ) . .
munication link. The overall analysis is based on the principles resorted to the use of cpmplex Wlshart matrlcgs which haYe
of random matrix theory and particularly of dual complex non- ~ recently attracted considerable interest following the rapid
central Wishart matrices; the latter represent a practical class of development of MIMO systems. Most studies dealing with
MIMO systems, namely dual-branch systems which are equipped the application of Wishart matrix theory on MIMO systems
with two transmit and receive antenna elements. Al the derived g |4p0rate on the common case of a rich scattering environment
formulae are validated through extensive simulations with the . . .
attained accuracy being remarkably good. \_Nhere no L|ne-of-$|ght (LoS) component is pre_:sent apd the
) . inter-element spacings are assumed to be sufficiently high; un-
coLgﬁ%nTgu’Efb_e ?AIRA?(:OeaSXSf;edTnSé non-central Wishart matrices,  qor these conditions, the entries of the channel matrix exhibit
' ' uncorrelated Rayleigh fading [1], [2], [6] and in practice we
end up with the simplified case of complex central (zero-mean)
I. INTRODUCTION Wishart matrices. The presence of a specular wavefront or a
T is an indisputable fact that, nowadays, Multiple-Inpu$trong direct component though, violates the assumption of
Multiple-Output (MIMO) systems are considered as a hdt@Yleigh fading and the channel is said to be Ricean dis-
topic in the area of wireless communications. The pioneefibuted instead. Surprisingly, despite their practical relevance,
ing works of Foschini [1] and Telatar [2] demonstrated th&W results have been reported focusing on the eigenstatistics
extensive performance enhancement when multiple anterffgRicean channels. This fact can be attributed to the difficulty
elements are used at both ends of a radio link. While '/ Manipulating hypergeometric functions with two matrix
considerable amount of research effort has been devoted to ffguments of non-central Wishart matrices compared to the
study of MIMO technology, there are still some open aspecf§!€ matrix argument of central Wishart matrices [7].
that have not been addressed. One of the most interestingVith régard to the condition number statistics, we primarily
topics is the eigenanalysis of the MIMO correlation matrif€call the seminal work of Edelman [8] which revealed the
and especially the statistical determination of its conditioftal importance of the condition number as a metric of the
number, commonly defined as the ratio of the largest {oatrix ill-condition. Howeyer, his anqu5|s was Ilmlted Fo the
the smallest eigenvalue. In the MIMO context, the conditiof@S€ 0f(2 x 2) central Wishart matrices with unit variance
number indicates the multipath richness of the channel [3] af{'ere the generalized work of Ratnarajgtrel. [9] accounted
has also been shown to drastically affect the detection and erfef Matrices of random size and with arbitrary variance. An
performance in spatial multiplexing (SM) systems [4], [5]_|nterest|ng approach to model the temporal transition proba-

Hence, a detailed knowledge of the condition number statistibdities of the condition number using a finite-state Markov

process can be found in [10]; more importantly, it was shown
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eigenvalues of the LoS matrix component (distinct or equal). Ill. STATISTICS OF THECONDITION NUMBER OF W
As potential applications of our theoretical analysis, we can |t js well established that the condition number is a metr
expect that it can facilitate the prediction of capacity and linksf the channel rank or of how invertible a given matrix is
level performance of MIMO channels as well as the design ¢f condition number close to one indicates a well-conditione
space-time codes and MIMO simulations. matrix with almost equal eigenvalues. As the condition numb
The remainder of the paper is organized as follows: Igets |arger though, the matrix rank drops and eventual
Section Il, the fundamental properties of the theory of WiShaﬂegenerates into a rank-one matrix. Its importance in the ai
matrices are outlined. In Section Ill, new expressions for thgs MiIMO communications has been demonstrated in [3]-[¢
condition number distributions are derived. In Section IVamong others. In the considered case, the condition numl
the underlying MIMO Ricean channel model used throughow ihe scaled MIMO correlation matriV becomes
the paper is discussed followed by the numerical results wy
as obtained by Monte-Carlo simulations. Finally, Section V Z= 0y =1 4
concludes the paper and summarizes the key findings. F inf tion th int of vi the i '
A note on notationWe use upper and lower case boldfaces rom an information theory pont of view, the impac
to denote matrices and vectors, respectively witilewill of the condition number on MIMO capacity can be see

denote the set of complex-valued numbers. The nomenclatt e(5)’ which returns the instantaneous channel capacity

~ CN(X,Y) stands for a complex normally distributed its/s/Hz) assuming perfect channel knowledge at Fhe Rx a
matrix with meanX and covariancd?. An (n x n) identity no knowledge at the Tx and uniform power allocation [1]

matrix is expressed ds, while the all-zero(n x m) matrix as C = log, (det (12 + BHHH>)
0,,xm. The symbols(-)” and (-)~* correspond to Hermitian w 2 .
transposition and matrix inversion whereass the Kronecker = log, ((1 + TQ> (1 + f)) (5)

product. Finallydet(-) and||-|| . respectively return the matrix

determinant and Frobenius norm. where p is the system Signal-to-Noise ratio (SNR) and=

2(1 + K)/p. The symbolK stands for the the Riceak -
II. NON-CENTRAL WISHART MATRICES factor, normally expressing the ratio of the free-space sigr

As was previously highlighted, we are particularly interpo_"(‘j’er tohthehpower of thel s_ca:tered waves. From (g)’ it
ested in dual complex non-central Wishart matrices. In suchSy'dent that there |sdnohana ytlg{:\_ one-to-cl)ane mapping et;ve.
case, g2 x2) complex normal random matritd is considered !V”MO capacity and the condition number. Hc.)\_/vev_er, the
which is distributed according 6l ~ CA’(M, £ ® I,). The !nter—dependency can be numerically evaluated; in Fig. 1, tt
matrix ¥ = o2I, is the correlation matrix containing thelnter-_dependency_ IS |IIustrateq for an SNR of 20%B
variancess? of the entries ofH on its main diagonal. The i grgph verifies the' notion that hlg.h.-rank channels, \
so-called instantaneous MIMO correlation matrix is define@w condition numbers, yield high capacities and vice-vers

asW = HH” and is said to follow the complex non-central'© 9€et @ deeper understanding, the density and distributi

Wishart distribution with two degrees of freedom and nongg;ctlorls of th_etﬁor:fmt'p ”t.”“”?bif arz novxt/hstudled ‘fotr ;V\t
centrality matrix 2 = %~'"MM, commonly denoted as ¢ erent cases; the distinction is based on the associate

W ~ OV, (2,3, Q)L eigenvalues and, in particular, on whether these are identici

We_now consider a scaled version W, that is W =
$~1W. SinceW is a (2 x 2) Hermitian matrix, it has two 17
real ordered eigenvalues;, > wy > 0, whose joint PDF is

2

f(wi,ws) = exp [ > (i +wi)

i=1

15

oF1 (22, w) (w; — w2)?

@
where\ = (A1, \2) contains the real ordered eigenvalues c
Q and, in turn,w = (w1, ws); Moreover,oFi(.;.,.) is the
complex hypergeometric function of two matrix arguments [7]
A convenient version of)F; (2; A\, w) for the dual case was
given by Gross and Richards [11] as
det (()Fl (1; 1U7j/\j))

oFL (250, w) = On = ) (w1 —wa) @)

Capacity, [bits/s/Hz]
T I~ T
© o = N w S

©

~

5 10 15 20 25 30

with I,(-) denoting thegth order modified Bessel function of Condition number
the first kind and, 1 (s + 1; z) is the classical hypergeometric
function [12] Fig. 1. Capacity evolution as a function of the condition number (SNR
20 dB).
oF1 (s + 1;2) = sla—/%1, (2v). 3)

LIt should be noted that iM = 02y SO thatf2 = 0O2x2, a complex  2A more detailed discussion on the simulation settings is provided
central Wishart matrix is obtained, expressedvéis~ CW>(2, X). Section IV.
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1) Case 1(A1 # X2): We firstly consider the common
case of two distinct non-zero LoS eigenvaluks > \o
which reflects any conventional MIMO configuration with nc
constraint on the rank of the LoS channel matrix. We can shc
that the PDF of, f.(z), can then be expressed as a weighte
summation of polynomials given by

e~ (MtA2) (5 > n P

= 2o 2 (Rnl)2 (s + 1)Fre

Double summation output

x {A?Ag-»AgA?} (6)

with I'(n) denoting the Gamma function which, for the cas
of an integer index, can be rewritten Bén) = (n — 1)!. The P R N S S S S
full proof of (6) is provided in Appendix A. L e e D0

In order to reduce the high computational complexity in-
serted by the infinite double summation of the above equatiofly 2. convergence of the double summation in () for four different valu
a truncated finite subset of terms may be considered as  of =.

*()\H»)\'z)( ,1) K. N. F(k+ +3) k

e z n z

S Vi ;}2) (Kln!)2(z + 1)k+n+3 where

=0 n= a+1
a,b _ Y . P
X |:)\11a)\;c_/\l2s/\it:| (7) [1 (Z/) - (G+1>2F1(b,a+1,a+2, y)
1
The values of K, and N, are chosen so that a further - <a+ 1> 2F1(batLat2-1). (12)

increase in the number of coefficients holds negligible impact2 c A=) Thisi ial cl f ificall
on the final outcome (less than 0.5% between consecutige? a;?ﬁ( ! I_< LQ)S' '? 'S a;‘pema_ttr:]asi ot specl |ca;‘y‘
steps). It was empirically found that to fulfill this prerequisitec>'9"€d TUll-rank LoS contigurations with extensive practic:
with the minimum number of termsi, and N, should be interest since it offers two equal eigenvalues and thus delive

set to the same value. In fact, by adopting this approach tﬁl%:?h capacities in the presence of strong direct componer
asymptotic result is approximéted well witi. — N. — 20 is is achieved with appropriate positioning of the antenr
This observation is verified in Fig. 2, where the evolution O?Iements at both ends of the link so that subchannel orthc

the double summation against the number of tefihs N, is ?hnallty 1S attalljn?df[;lh3]t—£15é. Thh's phlenomenontls ﬁgn(:raryt
depicted, for four arbitrary values of e common belief that LoS channels represent a hindrance

The corresponding CDF of, F. (z), can then be deducedthe.a.rea of MIMO communication since they are usu_ally ran|
deficient and therefore have only one non-zero eigenvalt
by the PDF as :
- In the case of equal eigenvalues though, the — \,) term
F.(z) = / f2(2)dz. (8) in the denominator of (2) becomes zero making the analy:s
1 invalid; in order to circumvent this singularity we emplog
By substituting (6) into (8) and taking into account the DomtH 0pital’s rule to get a solution for the limit\, — A2). Then,
inated Convergence Theorem which states that summation 4R@ ordered eigenvalue distributigifw:,w2) becomes [13]

integration can be interchanged, Eqg. (9) at the top of the next —1/2 _axn, o (w1 w:
page is obtained after some basic algebraic manipulationsf(wl’wz) =M e (w1 = wa)e ( )
For the integrals involved in (9), a tractable representation in « <\/ﬁh (2 >\1w1> I (2 /\le)
terms of scalar hypergeometric functions is available in [12,

Eqg. (3.194)]

— Vsl (2 A1w2>10 (2 A1w1)>. (13)
uhtl

U tp/
/ T dt = ——2 (v, p+ 1 u+2,-bu)  (10) |n Appendix B, it is shown that the PDF of the conditior
o (1+0t) p+1 ;
number has the following form
where, F'y (o, 3;v; u) is the classical Gaussian hypergeometric o oo Pk + 4 4)
function defined in [12, Eq. (9.14)]. The CDF of the condition — o2, n
[12, Eq. (9.14)] fla) =z =1)) ) CIE

number eventually becomes prrfowrd (k4 1)(z 4 1)k+n+4
oMt ISR Dk +n 4 3) x (z"‘“ - z) (14)
Fi(x) = APAS — AEAT
=3 k;nzo (kinl)2 { 172 = A2 1}

The similarity between the infinite double summation
x {]1"“+1~k‘+ﬂ+3(x) ,]f‘k+n+3(l.)} (11) involved in (6) and (14) is apparent and hence the fini
subset approximation can be used again. In this case, a sim
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M) ERTR+243) [0 ke
F.(z) = V- ZZ e [ATAZ — A5AT]
k=0n=
x et 1 Skt x ok 1 Sk
X / k 3 7/ k 3 k 3 +/ k 3 (" ©)
0 (z+l) +n+ o (Z+1) +n+ o (z+1) +n+ o (Z+1) +n+

convergence check, as the one performed for (7), revealedThis matrix intuitively satisfies the power constraint, i.
that the choicek’s, = N, = 15 approximates the asymptoticHHLHfD = 4. After generating 50,000 random Monte-Carlc
solution reasonably well. As far as the condition number CDFealizations of the channel matrid according to (16) and
is concerned, the concept for deriving an analytical expressigetting theK -factor equal to 5 dB, the ordered eigenvalues «
is exactly the same as in (8)—(12). Thus, it is trivial to show2 were easily computed and thereafter concatenated into
that for the case of equal LoS eigenvalues the conditiarector A = (7.0336,5.6155). As a main step of the perfor-
number CDF is mance evaluation process, the analytical expressions deri
for the statistics of the condition number are validated.
Fy(z) = e Z Z klil;&tﬁ) {IFH’H"H(Q”) Figs. 3(a) and 3(b), the closed-form relationships (6) and (1

k=0n= 0 are respectively tested, where it is easily seen that theoret
_ I["“’k*”“(x) _ If+1’k+"+4(x) + I{“’“*”’“(ac) ~and simulation results are in remarkable agreement for bc
cases.
(15)

IV. MIMO CHANNEL MODEL AND NUMERICAL RESULTS

The underlying MIMO channel model is now presented
for the case of LoS propagation. For an uncorrelated fadini
scenario, the channel transfer function matfk ¢ C?2*2
consists of a spatially deterministic compondidf and a
randomly distributed componei, which accounts for the
scattered signals. Then, the channel model is

K
/W R 16
\/K+1 LV R (16)

A common policy in the analysis of MIMO systems is to
normalize the entries o so that they have unity energy on
average and the mean SNR is independent of the channel i
trix. For this reasonHy is modeled as a Rayleigh distributed
matrix with independent and identically distributed (i.i.d.) cir-
cular symmetric zero-mean complex Gaussian variables wit
unity variance. With regard to the free-space LoS componer:.
H,, its entries can be expressed @s’*¢~= /d,, ,, where
k = 2m/X is the wavenumber corresponding to the carriet
wavelengthA and d,,,, is the distance between a receive
elementm € {1,2} and a transmit element € {1,2}. Please
note that we have assumed, without loss of generality, isotrop
radiators. Regarding the statistical characteristicIoit can

be inferred thatM = 1/K+1HL while ¥ = K“IQ Then, it

is trivial to show that the Wishart matriv = HH follows
the distribution W ~ CW; (2, 7451, KHLHH> and the

associated LoS version of interé®f = (K + 1)W.

We can now validate the theoretical analysis presented i
Section Il through a set of simulations. For the sake of brevity
we consider the more general case of unequal LoS eigenvalu
but all the presented results are readily extensible to the ca
of full-rank LoS configurations. Due to space limitations,
we directly consider the LoS suboptimum configuration, as
originally given by the authors in [16, Eq. 20], with

0.8384 + j0.5451  0.9411 + j0.3380
—0.5123 — j0.8588 0.8384 + ;0.5451

H, =
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From inspection of Fig. 1 and Fig. 3, we can also conjedAe can now evaluate (22) as shown in (23) in the next pa¢
ture that for a relatively high percentage of realizations th€ the best of our knowledge, there is no analytical solutic
proposed architecture yields large capacities and outperforiies the integrals in (23); in this light, we express the zerott
the common i.i.d. Rayleigh system which offers an ergodiorder modified Bessel function as an infinite sum of powe
capacity of 11.4 bits/s/Hz for the same operating SNR. Thiaccording to

observation is consistent with the results presented in [13]- o 2 on
[15] where different optimized architectures were proposed L) =Y <l> (ﬁ) ) (24)
for the case of near-field LoS propagation. kL) A2

V. CONCLUSION Inserting (24) into (23) and taking into account the following

In the present contribution, a detailed statistical eiger?_tralghtforward formula

analysis of dual-branch MIMO systems has been performed. /°° Pe—a gy — I'(p+1) 25)
In detail, we derived the PDF and CDF of the condition Jo T BT T
number of a dual complex non-central Wishart matrix. This
: . ) . . . we conclude the proof of (6).
class of matrices has an increasing practical interest since
it corresponds to compact MIMO systems with two antenna
elements at both ends. The statistics of the condition number APPENDIXB
were thoroughly explored for a conventional as well as &ERIVATION OF THE PDFOF THE CONDITION NUMBER OF
specifically designed full-rank configuration with equal LoS W (A1 = A2)

eigenvalues. All theoretical formulae were tested against theThe derivation presented herein represents essentially
outputs of a Monte-Carlo simulator and it was shown that thektension to the analysis of the previous section. To be mc
match between theory and simulation is excellent. It shoulstecise, by combining (13) with (18) we get (26) at the to
be emphasized that all the analytical results presented in thiSthe next page.

paper can be easily evaluated since the overall complexityonce more, the infinite series representation of a first-ord

burden was kept as low as possible. More importantly, theyodified Bessel function of the first kind is used according 1
constitute the basis of the statistical assessment of Ricean

MIMO channels and further are very useful tools for deter- (@) = z i 1 (E)Zk
mining numerous MIMO characteristics, spanning SM ability ! 2= ET(k+2) \2
to symbol error and detection performance.

T 1 a2k
APPENDIXA ) ; ER(k+1) (5) : 27)
DERIVATION OF THE PDFOF THE CONDITION NUMBER OF _ B . :
W (A # Ao) After substituting (24) and (27) into (26) and making use ¢

Starting with the joint eigenvalue PDR w1, w2), we apply (25), we can directly obtain (14).

the following transformation of variables to estimate the

marginal pdf of the condition number= w /ws REFERENCES
oo [1] G. J. Foschini, “Layered space-time architecture for wireless communi
f2(z) = / wa f (zwa, we)dws. (18) tions in a fading environment when using multiple antennge|ll Labs
0 Technical Journalvol. 1, no. 2, pp. 41-59, Autumn 1996.
By Substituting (1) into (18) the integral becomes [2] I. E. Telatar, “Capacity of multi-antenna Gaussian channef§;T-Bell

Labs Internal Technical Memorandyrdune 1995.
[3] V.Erceg, P. Soma, D. S. Baum, and A. J. Paulraj, “Capacity obtained frc
multiple-input multiple-output channel measurements in fixed wirele
AL — A2 0 environments at 2.5 GHz,” ifProc. International Conference on Com-
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of1 (2’ AW )d“’Z 19) [4] H. Artes, D. Seethaler, and F. Hlawatsch, “Efficient detection algorithr
wherew’ = (zwq,ws). If (2) is introduced in our analysis, for MIMO channels: A geometrical approach to approximate ML de

the following relationship is obtained tze;égfésleoEig;g?ﬁ;ﬁggg;n Signal Processingl. 51, no. 11, pp.

o—(A1+A2 _ 0
el )(Z 1) wge—wg(zﬂ)

fz(z) =

- S S\ [5] D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “MMSE-base
oF1 (250, W) = M (20) lattice-reduction for near-ML detection of MIMO systems,”Rmoc. ITG
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det (OF1 (1; w;,\j)) dws. (21) [7] A T. James, “Distributions of matrix variates and latent roots derive
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—(A1+A2) o0
e~ z—1 _
f(2) = # X wge wa(+1) 1 (2 zwz/\l) Iy (2 71;2)\2> dwo
A1 — A2 0

00
7/ w%ef'“’?(z“)fg (2 Zﬂ72)\2) I() (2 ’LUQ/\1> d’LU2:|. (23)
0

f(2) = /\1_1/26’2’\1 (z—1) x [/ \/ngﬂe’“”(z“)h (2 z)\1w2) Iy (2 /\1w2> dwo
0

—/ wg/ze’m(“l)h (2 )\11112) Iy (2 z/\1u12> dwg]. (26)
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to the ideal behavior. The termination of the antenna will result in
ringing behavior that should be smoothed by an appropriate loading
scheme. A partially focused monocone antenna would provide an
omnidirectional radiator with the properties of (6), while a partially
focused TEM horn would provide one with more gain. The antenna
designed by Ameya, et al., seems to accomplish this task by tapering
the impedance of the printed monocone.

VI. CONCLUSION

In this paper we have presented requirements for an UWB antenna
that can provide a dispersionless channel when used as both the
transmit and receive antenna. The desired antenna would need to
closely approximate an ideal, pulsed line source and would radiate a
waveform that approximates a half derivative of the applied voltage.
‘We demonstrated that such a waveform could be generated by a current
source that is spatially limited by a Gaussian waveform.

Creating an antenna that produces such a pulse is a challenge. We
provided a concept that might lead to such an antenna. By noting that
a focused aperture antenna radiates a derivative of the applied voltage
and a completely unfocused aperture radiates a replica of the applied
voltage [4], it was hypothesized that an antenna that is focused in
elevation but unfocused in azimuth would create the desired waveform,
at least in the vicinity of the antenna. Further analysis of the proposed
strategy is warranted. However, recent experimental results using
printed monopole antennas seem to indicate that the desired goal can
be achieved, at least over a limited range of frequencies [9].
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A MIMO Channel Model Based on the Nakagami-Faded
Spatial Eigenmodes

Michail Matthaiou, David I. Laurenson, and John S. Thompson

Abstract—We propose a stochastic model for multiple-input multiple-
output (MIMO) communication systems based on the eigendecomposition
of the spatial correlation matrix. It is shown that the channel matrix can be
well modeled by the superposition of the spatial eigenmodes experiencing
independent Nakagami-m fading. The proposed scheme is also compared
with the correlation-based models using the data obtained from an
indoor measurement campaign so that its performance is assessed in depth.

h 1

Index Terms—Fading
systems, spatial correlation.

multiple-input multiple-output (MIMO)

1. INTRODUCTION

In recent years, the area of multiple-input multiple-output (MIMO)
channel modeling has attracted considerable research interest since a
reliable model can in principle predict the propagation mechanisms
and ultimately make possible the integration of MIMO technology into
real-time applications. On this basis, various stochastic modeling ap-
proaches have been proposed in the literature with a view to capturing
the spatial behavior at both the transmitter (Tx) and the receiver (Rx).

More specifically, the so called “Kronecker model” [1] assumes that
the spatial correlation properties at both ends of the link are separable
which can result though in the multipath structure being rendered in-
correctly. In other words, it enforces the joint angular power spectrum
(APS) to be the product of the direction of arrival (DoA) and direction
of departure (DoD) power spectra. The model may give accurate esti-
mates when three or less antenna elements are employed but for larger
arrays (and hence an improved angular resolution) its performance de-
teriorates significantly [2]. However, it has been extensively used for
the theoretical analysis and simulations of MIMO systems thanks to its
simplicity.

On the other hand, the so called “Weichselberger model” [3] allevi-
ates the deficiencies of the Kronecker model by considering the joint
correlation structure of both ends and consequently the average cou-
pling between the spatial subchannels is effectively modeled. Although
more robust than the Kronecker model with systems employing more
than four antennas, it still falls short of precisely capturing all spatial
activity [4], [5]. Yet, the multipath environment is occasionally not re-
produced properly resulting in an inaccurate estimate of the joint APS.

In this letter, we present a full spatial correlation model which en-
compasses a generalized version of the aforementioned approaches and
yields a better fit, in terms of statistical metrics, with the measured data.
The common assumption of Rayleigh fading, which is often violated
in measured channels, is relaxed by considering the more flexible Nak-
agami-n distribution in order to account for the presence of strong
obstructed line-of-sight (LoS) components.

The letter is organized as follows: In Section II, we derive
the proposed MIMO channel model in a straightforward manner. In
Section III, an indoor MIMO measurement campaign is described. The
statistical characteristics as well as the accuracy of the Nakagami-rn
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fading assigned to each eigenmode are addressed in Section IV. The
performance of the stochastic model is evaluated in Section V using
the measured data. Finally, Section VI summarizes the key findings.

II. MIMO CHANNEL MODEL

For a flat-fading MIMO system equipped with IV transmit and M
receive antenna elements, the complex input-output relationship can
be written for the discrete case as

y=Hx+n (1)
where x € CV*! s the transmitted signal vector, y € C**! is the
noise-corrupted received signal and n € C**? corresponds to the ad-
ditive noise plus interference. The term H € C*** is usually referred
to as the channel transfer function matrix and contains the complex re-
sponses between all antenna pairs. The full spatial correlation matrix,
describing the joint correlation properties of both link ends, is defined
as [1]

Ru £ By {vec(H)vec(H)" } ¢ CMV*MN )

where the vec(+) operator stacks the columns of a matrix into a vector
and (- )H is the Hermitian transposition. The eigendecomposition of
Ry into a sum of rank-one matrices yields

MN

RH = Z )\kukuf (3)
k=1

where A are the real non zero ordered eigenvalues (A1 > A2 >
- > Amn > 0) and uy contain the corresponding eigenvectors
which are by definition mutually orthogonal and have unit norm. We
note that the number of non-zero eigenvalues determines the rank of
Ry which is upper bounded by A V. The eigenvector uy, can be re-
shaped column-wise into the matrix U, = unvec(uy) € CM*V
which we will refer to hereafter as the k-th eigenmode. From a phys-
ical viewpoint, eigenvalues specify the degree of diversity offered by
the channel while eigenmodes, commonly representing a linear combi-
nation of propagation paths, are indicative of the spatial multiplexing
(SM) ability [3]. Likewise, the channel matrix can be modeled as

MN

Huoa =y gkl Us. “

k=1

From (4), we readily infer that the probability density function (pdf) of
g[¥] expresses the fading variations of the channel. In fact, the fading
coefficients g[k] are independent and identically distributed (i.i.d.)
random variables satisfying the relationship E,{g[m]g*[n]} = bmn,
where .., is the Kronecker delta function.! We underline the fact that
the second-order moment of g[%] is assumed to be the same for all &
so that the eigenvalues A, reflect the power of each eigenmode.

III. INDOOR MEASUREMENT CAMPAIGN

An indoor measurement campaign was carried out in the Electrical
Engineering Building in Vienna University of Technology [6]. The
measurements were conducted using the MEDAV RUSK ATM channel
sounder which was probed at 193 equispaced frequency bins, covering

1t is trivial to check the validity of (4) by calculating the spatial correlation
matrix according to (2).
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120 MHz of bandwidth, at a carrier frequency of 5.2 GHz. The Rx em-
ployed a uniform linear array (ULA) of eight vertically-polarized ele-
ments with an inter-element distance of 0.4\ which was fully calibrated
in order to remove the undesired effects of mutual coupling and other
array imperfections. At the Tx, an omnidirectional sleeve antenna was
moved on a 10 X 20 rectangular grid with element spacings of 0.5\.
By considering a virtual eight-element ULA on each row, we end up
with 13 x 10 = 130 spatial realizations of the 8 x 8 MIMO transfer
matrix. Thus, a total set of 130 x 193 = 23, 090 space and frequency
realizations per measurement scenario was obtained.

The Rx was placed at 24 locations in several offices while the Tx was
fixed in a hallway. In order to capture the whole azimuth domain ac-
tivity, the Rx was steered to three different directions (spaced by 120°),
leading to the generation of 72 data sets, i.e., combinations of Rx posi-
tions and directions.

IV. NAKAGAMI-M FADING CHARACTERISTICS

Intuitively, the main concept behind the proposed model (4) orig-
inates from the well-known Karhunen-Loeve transform (KLT) which
has been extensively used in numerous applications that range from
image compression to seismology and computer graphics in order to
decorrelate multi-element data based on the eigendecomposition of the
correlation matrix [7]. The resulting uncorrelated eigenmodes are as-
signed a Nakagami-im fading process [8] which yields a satisfactory fit
with real-time data for various measured channels (see [9] and refer-
ences therein). The normalized Nakagami-m pdf of the fading envelope
R is given by

fR(T) — r(z )"lmer—le—nuzl
m

r20 5
with T'( - ) expressing the gamma function. The Nakagami fading figure
m[k](1 < k < MXN), which determines the severity of fading, is
estimated directly from the measured data according to

-2}2
E {{\uf\'GC(H)|2 —F {|ufvec(H>‘2}}2}
A%

B E {{\u{l\'ec(H)r) - )\k}z}

In Fig. 1, we illustrate the cumulative distribution function (cdf) of a
normalized measured fading envelope which indicates the excellent fit
of the Nakagami-m distribution.

This aggregate statistical metric shows the poor match of the com-
monly used Rayleigh distribution while the Ricean distribution fits rea-
sonably well, except in the tails of the measured data. Similar trends
were observed at most of the considered cases. To further justify our
choice, we have computed the mean squared error (MSE) of these three
candidate cdf fits across the whole data set with the key characteristics
being tabulated in Table I. The average and standard deviation mea-
sures indicate that the Nakagami-rn fit yields a rather good accuracy
and substantially outperforms the Rayleigh fit by an order of one mag-
nitude while it remains robust and experiences the lowest maximum
MSE. On the basis of which model best fits the measured data set,
we notice the smallest MSE to occur at 72.40% of the cases when a
Nakagami-m fit is employed thereby confirming its improved perfor-
mance compared to the other two reference distributions (right-hand
column of Table I). For the generation of the uncorrelated Nakagami-m

E {‘uf{ve(‘(H)

m[k]

25 (6)

DO =
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TABLE I
MSE CHARACTERISTICS OF THREE CDF FITTING DISTRIBUTIONS

minimum MSE | maximum MSE || smallest MSE
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average MSE | std. deviation MSE
Rayleigh 2.38 x 1074 1.72 x 1073
Ricean 4.95 x 107° 1.28 x 1074
Nakagami-m | 3.81 x 105 123 x 104
1 T . . - —=
09+ Measured data - il
— = Nakagami fit
08 F = = — Ricean fit il
Rayleigh fit
2 07f o] 1
el i/
8 osf £ E
[<) 7
a 2
o 05 7 q
g ft
S 04 7 4
g 4
O 03r 4 —
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01} 4 I
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0 = i 1 i i 1 i A i i
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Normalized fading envelope

Fig. 1. Cdf of a normalized measured envelope in comparison with Nak-
agami-m, Ricean and Rayleigh distributions.

envelope variates we adopt the rejection/acceptance method proposed
in [10] which is accurate and computationally efficient for arbitrary
values of m. Then, the spatial fading coefficients may be expressed
as g[k] = R[k]exp(j¢[k]), where ¢[F] is a random phase distributed
uniformly in [0. 27). The uniform phase assumption was found to be
valid even for large values of the m-factor (i.e., non-Rayleigh condi-
tions) and thanks to its intrinsic simplicity was incorporated throughout
our analysis.

V. MIMO CHANNEL MODEL VALIDATION

The proposed model is assessed by means of the mutual information
and the link-level performance using a minimum mean squared error
(MMSE) detector which can minimize the overall error caused by noise
and mutual interference. Firstly, we compute the measured correlation
matrix, using all space and frequency realizations, and thereafter the
matrix is decomposed in order to obtain the spatial eigenmodes; as a
next step 25,090 synthetic channel realizations are generated according
to (4) and hence the measured and simulated ensembles are the same. In
order to remove the path-loss effects, both ensembles are normalized
so that the constraint F{||H||%} = MN is fulfilled, where || - ||r
corresponds to the Frobenius norm.

Assuming perfect channel state information (CSI) at the Rx but no
knowledge at the Tx, the average mutual information (ergodic channel
capacity) is given by

I=E {10g2 (de‘r (IM + %HHH))} . (bits/s/Hz) (7)

where Ins is the M X M identity matrix and p denotes the system
signal-to-noise ratio (SNR) per receiver branch [11]. The latter was

5.59 x 10~7 5.32 x 1072 5.79 (%)
5.53 x 107 4.72 x 1073 21.81 (%)
4.65 x 10°7 418 x 1073 72.40 (%)

set equal to 20 dB2 while the expectation operation was performed on
either the measured data or the fading realizations of g[%]. In Fig. 2,
two different models are compared, namely the Nakagami and the We-
ichselberger models; the modeled capacity is plotted against the mea-
sured capacity for each of the 72 scenarios under investigation. The
Kronecker model is not included in our comparison since it is a special
case of the Weichselberger model and yields an inferior performance
for the great majority of cases [3]-[5].

From this figure, we observe that the proposed model holds a smaller
modeling error than the Weichselberger model, whose mismatch in-
creases with decreasing mutual information, for all the scenarios under
investigation; in particular, a 2.2 dB improvement was achieved in the
MSE from —9.72 to —11.93 dB. Additional study revealed that the We-
ichselberger’s accuracy diminishes when the outage mutual informa-
tion is considered, resulting in an overestimation of the diversity level;
this is consistent with the results presented in [4], [5]. The good fit of the
Nakagami model can be partially attributed to the presence of strong
obstructed LoS components at the majority of Rx locations due to its in-
herent higher flexibility compared to the more restricted Rayleigh and
Ricean distributions. In other words, for the corresponding eigenmodes
m > 1 and therefore the fluctuations of the signal strength reduce com-
pared to Rayleigh fading.

The link-level performance is evaluated by considering a SM
scheme, namely linear MMSE detection. The uncoded transmitted
signal is modulated using BPSK modulation. For these specifications,
the estimated transmit signal vector X is [12]

% =W .y, where W = argn‘l"i/nE{HWyfx||2} (8)

and thus the following closed-form expression is finally obtained

x=H"HH" + NI,;)"" -y ©

with Ny expressing the noise power. Due to space constraints, we di-
rectly focus on the BER mismatch at a target SNR of 20 dB against the
Nakagami rn-factor of the dominant eigenmode (cf. Fig. 3). In general,
the BER mismatch is defined as the difference between the measured
and the modeled BER at a target SNR. The distribution of the m values
validates clearly the assumption of Nakagami fading while we notice
a significant portion of them well beyond the typical unity value. The
proposed model holds again a superior performance for the vast ma-
jority of measured scenarios (68 out of 72 scenarios); in fact, its BER
estimators deviate by up to 11% while the Weichselberger’s by up to
20% and the MSEs (for the same target SNR) are 2. 24 x 10™° and 4.47
x 107" respectively, expressing a 3 dB improvement. It is noteworthy
that the relative difference of estimators is higher when more than one
eigenmodes experience purely Nakagami fading (m > 2).

The only disadvantage of the proposed scheme lies in its increased
complexity burden which is generally a crucial issue that affects the
choice of the most appropriate channel model. While the Kronecker

2This value is chosen so that the system SNR is well below the measured SNR
which lies in the region 55-60 dB after averaging the channel response across
128 temporal snapshots.
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Fig. 2. Mutual information for two different channel models versus measured
mutual information. The dashed line corresponds to the points of no modeling
error.
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Fig.3. BER mismatch at a target SNR of 20 dB against the Nakagami mn.-factor
of the dominant eigenmode.

and the Weichselberger models require respectively A% + N2 = 128
and MN + M(M — 1) + N(N — 1) = 176 real parameters to be
specified, the complexity order of our scheme is equal to that of the full
correlation model, i.e., (M N)2 = 4096. This implies that for practical
systems of interest the complexity increase is modest; further, in terms
of processing time an increase of 45% was observed on a 3.2 GHz Pen-
tium, making the model rather appealing when an enhanced accuracy
is desired.

VI. CONCLUSION

In this letter, a stochastic channel model has been presented with a
view to the decomposition of the spatial correlation matrix. The Nak-
agami-m fading approach yields a satisfactory performance since in
the majority of measured locations the presence of strong obstructed
LoS components violates the common assumption of Rayleigh fading
conditions. It is shown that the proposed model outperforms the so-
phisticated Weichselberger model in terms of both information theory
(mutual information) and link-level performance (BER). The scheme

1497

can be regarded as a framework for describing different channels oper-
ating at the 5 GHz frequency band, e.g., Wireless Local Area Networks
(WLANS), fixed wireless and peer-to-peer communications. It can also
be used as a tractable tool for the simulation of MIMO systems, design
of space-time codes and construction of spatial filtering at both ends.
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Rejection method for generating
Nakagami-m independent deviates

M. Matthaiou and D.I. Laurenson

The Nakagami-m distribution has gained considerable research interest
in the area of wireless communications thanks to its good fit to empiri-
cal fading data. A simple scheme for the generation of independent
Nakagami-m random variables (RVs) is presented and compared
with the existing methods available in the literature.

Introduction: Tt is well established that the Nakagami-m distribution [1]
yields a satisfactory fit with measured fading data over a wide range of
frequency bands [2]. The Nakagami-m probability density function
(PDF) of the signal’s envelope 7 is given by the formula

fx) = %m) (g)mxszle*mxz/ﬂ

x>0, m=>0.5,

Q>0 )

where T'(.) expresses the gamma function, m = E *(x?)/var(x?) is the
shape parameter, determining the severity of fading, and ) = E(x?).
The generation of independent Nakagami-m RVs can provide an
insight into the characterisation of practical diverse systems operating
in slowly varying Nakagami-m fading environments. Surprisingly, to
the best of the authors’ knowledge, few results have been reported
dealing with the computer simulation of independent Nakagami-m
fading [3—5]. The so called ‘brute method’ [3], which considers the
square root of a sum of squares of n zero-mean identically distributed
Gaussian random variables, leads to a Nakagami distribution with
m = n/2; however, this scheme is limited to integer and half-integer
values of m. The authors in [4] showed that the product of a square-
root beta process and a complex Gaussian process holds an accurate
model but similarly is valid only for values of m < 1. The inverse
method proposed in [5] is sufficiently accurate for arbitrary values of
m but requires the computation of a different set of coefficients for
each m value.

In this Letter, we present a novel technique for generating indepen-
dent Nakagami-m samples based on the rejection method [6]. A
similar approach has been recently addressed in [7] but lacks a
uniform approach for the whole range of m values. In particular, the
authors suggest the use of either the folded-Gaussian (0.5 < m < 1.0)
or the Gaussian (m > 1.0) PDFs as hat functions, resulting in the
achieved efficiency being strongly dependent on the corresponding
interval (65.75 and 66.67% respectively), with the option to select
different constants (which are determined empirically) to improve effi-
ciency for particular ranges of m (see Tables 1 and 2 in [7]). This was
achieved by applying the rejection scheme only in the confined region
0 < x < 40Q. In light of this fact, a simple uniform technique,
without any constraints on the range of random values, is proposed
herein, which alleviates the deficiencies of the aforementioned
schemes and yields an excellent accuracy.

hat function p(x}
Nakagami PDF f(x)

Fig. 1 Rejection method for generating random Nakagami-m deviates using
inverse polynomial function

Rejection method: The rejection method relies on the selection of a
comparison function (usually referred to as the hat function) p(x) that
has finite area and satisfies the inequality p(x) > f(x), where f(x) is the
original PDF. We propose the use of a second-order inverse polynomial
function which can be expressed as

AVQ
plx) = m > f(x) (2)

An illustrative graph of the two functions under investigation is shown in
Fig. 1. Taking into account that the maxima of (1) and (2) should
coincide, it is trivial to show that B = 2./(2m — 1)/2m). The scaling
factor, A4, is set such that the curves intersect at a single point, x =
Xmax» Without crossing. Thus

_0- By ity + 12

4 70 - (imax) 3)

Solving x i Xmax  d/dx(p(x) — f(x)) = 0 gives one real positive
solution at Xy, = /€2, which, when substituted into (3), yields

-
e @

A=Q@=B)ose

To generate independent samples from (2) we employ the widely known
inverse method [6]; firstly, the indefinite integral [ p(x)dx of (2) is com-
puted, leading to the closed-form function

2z _p

24tan~! /O
Vi—B

N>

A random sample of x is generated via the inverse function of (5)

x:?(«Mfthan(#) +B) (6)

where 7 is a RV distributed uniformly in the range

24 tan~! __—B
an (ﬁBz) .
4-B V2

It is worth noting that the above limits express, respectively, the
minimum and maximum of (5) and define also the efficiency of the
rejection method; in fact, their difference represents the area below
p(x). The generated sample x is accepted or rejected as a deviate
based on the difference between (1) and (2). A detailed description of
this well known algorithm can be found in [6].

Performance evaluation: By generating 2%° random x samples using (6)
we were able to study the algorithm’s performance in depth. Fig. 2
shows the theoretical and simulated Nakagami-m PDFs for (0 = 1; it
can be clearly seen that the achieved accuracy is noticeably high for
all values of m, validating the choice of the rejection scheme as a power-
ful and straightforward technique for generating random deviates. A
further study revealed that the maximum-likelihood (ML) estimators
for the two shape parameters of the Nakagami PDF ({) and m) give
excellent agreement with theoretical values.

ELECTRONICS LETTERS 6th December 2007 Vol. 43 No. 25
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30 Conclusions: The generation of independent Nakagami-m deviates has
been addressed by means of the rejection scheme based on an inverse
polynomial function. It has been shown that the method can be easily
applied for all values of the m parameter, yielding a high accuracy
along with a satisfactory efficiency.
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~
]
!
-

@
-3
L

rejection method efficiency
@ >
kS (=]
L L

3
S
L

60— T T T T T T T T J

m-factor

Fig. 3 Efficiency of rejection method against m factor

ELECTRONICS LETTERS 6th December 2007 Vol. 43 No. 25

160



Original publications

Reduced Complexity Detection for Ricean MIMO
Channels Based on Condition Number Thresholding

Michail Matthaiou®, David I. Laurenson*, and Cheng-Xiang Wang?
*Institute for Digital Communications, Joint Research Institute for Signal and Image Processing,
School of Engineering and Electronics, The University of Edinburgh,
Mayfield Road, EH9 3JL, Edinburgh, U.K.
Email: {M.Matthaiou, Dave.Laurenson} @ed.ac.uk
TJoint Research Institute for Signal and Image Processing,
School of Engineering and Physical Sciences, Heriot-Watt University,
EH14 4AS, Edinburgh, U.K.
Email: Cheng-Xiang.Wang@hw.ac.uk

Abstract—In this paper, a novel adaptive detection scheme
for the case of Multiple-Input Multiple-Output (MIMO) Ricean
channels with two transmit and receive antenna elements is
presented. Our prime aim is to reduce the extensive complexity of
Maximum-Likelihood (ML) detectors by developing an adaptive
scheme which switches between a ML and a much simpler Zero-
Forcing (ZF) detector depending on the instantaneous spatial
conditions. The kernel of the adaptive detector (AD) is a hard-
decision criterion based on the condition number of the MIMO
correlation matrix. It is demonstrated that the proposed scheme
offers a remarkable reduction in terms of complexity along with
a satisfactory performance when specifically designed antenna
arrays are employed.

I. INTRODUCTION

The use of MIMO technology has become the new hot topic
in wireless communications since the breakthrough works of
Telatar [1] and Foschini [2] revealed the great advantages of
employing multiple antennas at both the transmitter (Tx) and
receiver (Rx). This technology can potentially enhance the
reliability and speed of current and future wireless systems
such as wireless local area networks (WLANs) or fourth
generation cellular systems (4G). However, when it comes
down to the feasibility of MIMO systems, a number of
practical issues arises with the most prominent being the
overall implementation complexity and cost.

Undoubtedly, the detection stage may be regarded as one of
the most significant aspects in real-time applications. At this
point, we recall that the optimal detector for spatial multiplex-
ing (SM) MIMO systems is the ML detector which minimizes
the error probability when all data vectors are equally likely
but, at the same time, it is computationally prohibitive [3]. One
way to alleviate this excessive complexity is to settle for sphere
decoding techniques, such as the Finke-Post algorithm pro-
posed in [4], whose complexity, under certain assumptions, is
polynomial in the problem size. In [5], it was shown that when
the Signal-to-Noise ratio (SNR) is high, the expected number
of operations required by the sphere decoder is roughly cubic
in the number of transmit antennas for a small problem size.
However, the authors in [6] proved that for any arbitrarily
fixed SNR, the overall complexity of sphere decoders does

not grow as a polynomial function of the problem size but
as an exponential function instead. What’s more, when ill-
conditioned channels occur, the computational complexity of
sphere decoding schemes increases to a significant extent [7].
On the other hand, different suboptimal techniques exist which
span from the linear ZF detector to nonlinear techniques such
as Ordered Successive Interference Cancellation (OSIC) [8];
the former is the simplest detection technique but causes a
systematic performance degradation and further is unable to
exploit all of the available diversity. Its main disadvantage lies
in its poor performance when channels with large condition
numbers occur.

The previous discussion implies that an AD which could
switch between a ML and a ZF scheme, depending on the
instantaneous channel conditions, is of paramount interest
since it will allow the efficient development of MIMO systems.
In this paper, an AD is devised for the general case of
Ricean MIMO channels where a dominant Line-of-Sight (LoS)
component or a specular wavefront impinges on the receive
array; we are particularly interested in the practical case of
dual' Ricean MIMO systems. A similar concept of adaptive
MIMO transmission has been investigated by various research
groups during recent years (the interested readers are referred
to [9]-[11] among others) and essentially goes back to the
fundamental diversity-multiplexing tradeoff [12]. To the best
of the authors’ knowledge, the first MIMO adaptive scheme
for the receive side was recently presented in [13]. The
authors therein, however, considered only the common case of
Rayleigh channels and hence the formulation of a generalized
framework is infeasible; the proposed scheme relaxes the
constraint of Rayleigh fading to account for the commonly
experienced Ricean propagation and, consequently, it includes
the model of [13] as a special case.

The hard-decision criterion for the adaptive switching relies
on the condition number distribution whose exact determina-
tion requires knowledge of the theory of non-central complex

Throughout the paper, the term dual will stand for MIMO systems with
two transmit and two receive antenna elements.
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Wishart matrices. On these grounds, we firstly derive a novel
closed-form formula for the cumulative distribution function
(CDF) of the MIMO condition number which is validated
via Monte-Carlo simulations. It will also be shown that the
AD preserves the robustness of the ML detector as well as
the simplicity of the ZF detector and therefore can be easily
implemented within most MIMO testbeds.

The remainder of the paper is organized as follows: In
Section 11, the preliminaries of the theory of Wishart matrices
are outlined and a closed-form expression for the condition
number CDF distribution is derived. In Section III, the un-
derlying MIMO Ricean channel model used throughout the
paper is presented. In Section IV, we briefly address the main
characteristics of ZF and ML detections and subsequently
those of the proposed adaptive scheme. In Section V, the
validity of the analytical formula is tested and at a next stage
we assess the performance of the AD for two different LoS
geometrical configurations. Finally, Section VI concludes the
paper and summarizes the key findings.

A note on notation: We use upper and lower case boldface to
denote matrices and vectors, respectively while the symbol C
denote the set of complex-valued numbers. The nomenclature
~ CN(X,Y) stands for a complex normally distributed
matrix with mean X and covariance Y. An (n X n) identity
matrix is expressed as I,, while the all-zeros (n x m) matrix as
0,1 m. The symbols (-)" and (-)™" correspond to Hermitian
transposition and matrix inversion, respectively whereas ® is
the Kronecker product. Finally, det(-) returns the determinant
of a matrix.

II. NON-CENTRAL WISHART MATRICES AND CONDITION
NUMBER DISTRIBUTION

As was previously mentioned, we are particularly interested
in dual non-central Wishart matrices. In such a case, a (2 x 2)
complex normal random matrix H is considered which is
distributed according to H ~ CNV(M,X ® I,). In general,
M # 0242 whereas ¥ = 21, is the correlation matrix
containing the variances o2 of the entries of H on its main
diagonal. The so-called MIMO correlation matrix is defined
as W = HH" and is said to follow the complex non-
central Wishart distribution with two degrees of freedom and
non-centrality matrix 2 = X~'MM¥, commonly denoted
as W ~ CW5(2,3,Q). It should be emphasized that if
M = 0242, so that £ = 0542, a complex central Wishart
matrix is eventually obtained, ie. W ~CW»(2,%).

We now consider a scaled version of W, that is W =
$~'W. Since W is a (2 x 2) Hermitian matrix, it has two
real ordered eigenvalues (w; > wy > 0) where wy is the
largest and w9 the smallest eigenvalue, respectively; the joint
eigenvalue PDF f(wq,ws) is given by [14]

oF1 (2 A, w) (w1 — ws)?
(1)

where A = (A1, A2) contains the distinct real ordered eigenval-
ues of  and, in turn, w = (wy, ws); furthermore, o Fi(.;.,.) is

2
f(wy,wy) = exp [ Z()‘l + w;)

i=1

the complex hypergeometric function of two matrix arguments.
A convenient version of ¢F} (2; A, w) for the dual case was
given by Gross and Richards [15] as

~ det (OFI (1’LU1>\))

Fi(2A0w) = —— (2)

o ) (A= Ao) (w1 — w2)
with I,(-) denoting the g-th order modified Bessel function
of the first kind and (Fi(s + 1;2) is the hypergeometric
function [16]

oFi(s + 1) = sla ™21, (2v/7) . A3)

From a mathematical point of view, the condition number 2
is defined as the ratio of the largest to the smallest eigenvalue
and therefore

p= > @

wa

In [17], the authors showed that the probability density
function (PDF) of z, f.(z), can be written as a weighted
summation of polynomials according to (5), shown at the top
of the next page. In (5), I'(n) denotes the Gamma function
which, for the case of an integer index, can be rewritten as
I'(n) = (n—1)!. The corresponding CDF of z is then directly
written as

Fu(x) = / " f(2)d ©

or, equivalently

rw= [ rew- [ Lee @

By substituting (5) into (7) and taking into account the
Dominated Convergence Theorem which suggests that the
differentiation and integration can be interchanged we readily
obtain (8). For the integrals involved in (8), a closed-form
solution is available as [16, Eq. (3.194)]

T uhtl
[t
o (L+bt)”

p = m2F1(V7M + 14 2; —bu)

(10)

where 5 Fy (v, 3;v; u) is the classical Gaussian hypergeometric

function defined in [16, Eq. (9.14)]. We can finally write the
CDF of the condition number according to (9), where

o k2
" (x) = <m> oFi(k+n+3,k+2k+3;—x)
1
— | ——= ) 2P (k 3, k+2;k+3,—1) (11
<k+2>21(+n+y+7+,)()

and

k+1
IE(x) = (h) oFi(k+n+3,k+ 1Lk +2;—ax)

1
- (k—“> o (k+n+3.k+1k+2-1). (12)

Clearly, we have expressed the condition number distribu-
tion as a weighted summation of Gaussian hypergeometric
functions which can be efficiently evaluated and easily pro-
grammed.
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III. MIMO CHANNEL MODEL

In this section, the underlying MIMO channel model is
discussed for the case of LoS propagation. We consider a
memoryless, flat-fading MIMO system equipped with two
elements at both the Tx and the Rx. The complex input-output
relationship can be written for the discrete case as

y=Hx+n (13)

where x € C?*! is the transmitted signal vector, y € C?*! is
the noise-corrupted received signal and n € C?*! corresponds
to the additive noise plus interference term. Moreover, the term
H € C?*? is referred to as the channel transfer function matrix
and contains the complex responses between all antenna pairs.

In the case of Ricean fading, the channel matrix consists of a
spatially deterministic specular component Hy and a randomly
distributed component Hy which accounts for the scattered
signals. Then, the channel model reads as [18]

7H
\/K+1 L+\/ W

where K denotes the Ricean K -factor expressing the ratio
of the free-space signal power to the power of the scattered
waves. The entries of Hy are assumed to be independent
and identically distributed (i.i.d.) circular symmetric complex
Gaussian variables with zero mean and unity variance so that
their amplitudes follow the well-known Rayleigh distribution.
As far as the LoS component Hj is concerned, when the
distance between the Tx and the Rx is small or the array
size is large, its entries represent spherical wavefronts in
the near-field region. Without loss of generality, we assume
isotropic radiators and the complex responses are of the
form e~9kdm.n/d,, . where k = 27/) is the wavenumber
corresponding to the carrier wavelength A\ and d,, , is the
distance between a receive element m € {1,2} and a transmit
element n € {1,2}.

Regarding the statistical characteristics of H, it can be
inferred that M = K+1HL while ¥ = KHIQ Then, it

is trivial to show that the Wishart matrix W = HH follows

(14)

the distribution W ~ CW, ( Bt

the associated LoS version of interest W =

I, K HLHL ) and in turn
(K +1)W.

IV. DETECTION SCHEMES FOR SM SYSTEMS

In this section we review the two reference detection
schemes, namely ZF and ML detectors, and explore the con-
cept of the novel adaptive detection strategy. All the following
investigations are based on a SM-MIMO transmission scheme,
such as the widely employed V-BLAST [8], in which the data
is divided into a number of IV, blocks (equal to the number of
transmit elements) that are then simultaneously emitted. At the
Rx, the main goal is to differentiate the data blocks originating
from each of the transmit elements so that the transmitted
signals are efficiently recovered.

A. ZF detection

The simplest linear MIMO detector is the ZF receiver,
where the received signal vector y is multiplied by the Moore-
Penrose pseudoinverse H' of the channel matrix H to obtain
an estimated transmit signal vector Xzg as follows

%z = H'Hx + Hn. (15)

The computational complexity of ZF includes an exhaustive
search through the ) symbols in the constellation of the
modulation technique for IV, times and thus it is of the order
of O(QNy). However, the low complexity of the ZF receiver
comes at the expense of noise amplification which induces
irreducible errors. In fact, as the number of transmit and
receive antennas grows with no bound, the noise amplification
tends to infinity [19].

B. ML detection

On the other end, the optimal ML detector resides which
remains robust and yields the best performance among all
detection techniques [3]. Assuming equally likely, temporally
uncoded transmit symbols, this receiver chooses the vector t
that solves the following expression

S = argmin |y — He|7 . (16)
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The optimization is performed through an exhaustive search
over all possible vector symbols. This implies that the com-
plexity of the ML detector grows exponentially with the
number of transmit antennas i.e. O(Q™*), making the scheme
infeasible for large antenna setups and constellation sizes.

C. Adaptive detection

Given the deficiencies of both detection strategies, we herein
propose a novel detector which can adaptively switch between
them in order to enhance the error performance and minimize
the computational cost. The AD uses ZF when the condition
number is below a predefined threshold defined and ML
detection otherwise. The key notion is to employ the ZF
detector only for well-conditioned channels (low condition
numbers) and let the ML deal with the ill-conditioned channels
(high condition numbers). We can then write

XAD:{

The threshold x affects the complexity of the proposed
scheme; for k = 1 we get Xap = Xy and complexity
equals that of ML detection whereas for k — oo we have
Xap = Xzp. In general, the probability of ZF calls is
Prob{z < k} = F,(k) = p, and therefore the average AD
complexity g becomes

9=prQN + (1 —pe)Q™, 0<p, <1
ZF calls

if 2z <k
if 2 > k.

XZF
XML

an

(18)
ML calls

The percentage of complexity reduction, compared to that of
the ML detector, is

QNt*g_ 1 Ny
W*p“" QN1 )

Evidently, the reduction is more pronounced for greater sizes
of the symbol alphabet and a higher number of ZF calls.

(19)

V. SIMULATION RESULTS

In this section, the theoretical analysis presented in Sec-
tion II is validated through a set of simulations and subse-
quently the link-level performance of the AD is assessed in
terms of complexity and bit-error-rate (BER). In order to get
a deeper insight, we explore two different geometrical models
for the LoS component.

In particular, the first model belongs in the family of high-
rank (HR) configurations which, contrary to the common
belief, can deliver high MIMO capacities in the presence of
strong LoS components (large K -factors). This is achieved by
appropriate positioning of the antenna elements at both ends so
that subchannel orthogonality is attained, or, the eigenvalues
of © become equal. In such a case though, the (A; — \2)
term in the denominator of (2) becomes zero making the
analysis invalid (division by zero). In this light, we consider
a suboptimum HR LoS channel model in order to guarantee
that \; # Ao; the LoS matrix component then reads [17]

H — 0.8384 + j0.5451  0.9411 + j0.3380
L

~ | —0.5123 — 50.8588 0.8384 + j0.5451 (20)

Assuming a Ricean-K factor of 5 dB, the eigenvalues of €2 can
be easily computed and thereafter concatenated into the vector
A = (7.0336,5.6155). The second model is a conventional
architecture whose deterministic matrix reads

H — 0.8384 + 70.5451  0.9411 + 50.3380
L™ | —0.5123 — 5j0.8588 0.8384 + j0.5451

and, likewise, A’ = (12.649,0.0001). For both geometrical
models under investigation, 50,000 random Monte-Carlo re-
alizations of the channel matrix H were generated according
to (14). In Fig. 1, the simulated CDF curves of the condition
number are overlaid with the analytical results returned by (9).
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Fig. 1. Simulated and analytical CDFs of the condition number z of two
Ricean MIMO channel models (K = 5 dB).

The match between the simulated and theoretical results
is excellent in both cases, thereby indicating the validity of
the derived formulae. We also point out that for the HR
model a significant percentage of realizations is close to unity
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(well-conditioned channels) while, in contrary, the LR model
systematically yields a rather high condition number.

The next stage of our investigation comprises the assessment
of the AD advantages assuming a 16-QAM modulation type.
In [17], we found that when x < 6.46 the instantaneous
capacity of the HR channel is greater than the ergodic capacity
of a common (2x2) i.i.d. Rayleigh channel and hence we have
adopted a threshold of x = 5 as a reasonable indicator of the
channel rank and multipath richness. In Fig. 2, the BER curves
are depicted for three different detection schemes, namely
ZF, ML and the proposed AD. As anticipated, higher K-
factors lead to significant performance enhancement for arrays
designed following the suboptimum HR model. On the other
hand, for low values of K-factor (below O dB) the channel
approaches the i.i.d. Rayleigh channel characteristics which
corresponds to a rich-scattering environment; in this region,
the BER curves are approximately identical in both systems
and the benefits of LoS-optimized arrays are minimized. In
the limit (KX — oo dB) the LoS component vanishes and we
end up with a pure i.i.d Rayleigh channel where all multipath
components have equal amplitudes.

In order to get a better understanding, the main AD per-
formance characteristics are tabulated in Table I where the
radically different trends of the two configurations are readily
observable. More specifically, the application of the detection
scheme has a noticeable impact on the HR channel; in fact,
a significant percentage of ZF calls occur for all values of
the K -factor with a consequent complexity reduction of up to
83.35%. We also observe a steady increase of p, as K gets
higher since the channel becomes full rank and delivers two
approximately equal eigenvalues. In the LR case p,, is always
below 29.43% and further is inversely proportional to the K-
factor. This phenomenon can be attributed to the ill-condition
of conventional architectures which degenerate eventually into
a rank-one channel due to the linear dependence of the LoS
rays’ phases (higher spatial correlation). Consequently, for
K > 5 dB the number of ZF calls is too low to exploit the
adaptivity benefits and a complexity identical to that of a ML
detector inevitably takes place.

VI. CONCLUSION

In the present contribution, the potential of developing an
AD relying on the condition number of the MIMO correlation
matrix, has been investigated. On this basis, we firstly derived
a closed-form formula for the CDF of the condition number
of dual non-central complex Wishart matrices as a weighted
summation of Gaussian hypergeometric functions. The ana-
lytical CDF expression was firstly validated through extensive
Monte-Carlo simulations where it was clearly demonstrated
that the match between theory and simulation is very good.
At a next stage, the distribution of the condition number was
used to construct the hard-decision criterion of the proposed
AD which is appealing not only from a theoretical but also
from a practical perspective; most importantly, the dramatic
decrease in terms of complexity, compared to the sophisticated
ML detector, makes the model applicable to the majority of

BER
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(a) Suboptimum HR LoS channel.

BER
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*
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Fig. 2. BER curves for three different detection strategies based on a 16-
QAM modulation.

modern practical receivers. Further, when the antenna elements
are positioned in such a way to guarantee subchannel orthog-
onality, the attained performance was shown to be reasonably
good, especially for high values of the K-factor. On the
contrary, the scheme advantages diminish when it is applied to
a conventional antenna configuration since the channel matrix
is inherently rank deficient and therefore yields a deteriorating
performance with the increasing Ricean K -factor.
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AD PERFORMANCE CHARACTERISTICS FOR TWO DIFFERENT LOS CHANNEL MODELS AS A FUNCTION OF THE K -FACTOR.

TABLE 1

Suboptimum HR LoS channel model LR LoS channel model

K—factor Analyt. p | Simul. p, | Compl. reduction Analyt. p, | Simul. p, | Compl. reduction
K = —10dB 0.2992 0.3150 26.18% 0.2943 0.3132 25.75%
K =-5dB 0.3203 0.3380 28.02% 0.2801 0.3002 24.51%

K =0dB 0.4372 0.4403 38.25% 0.2052 0.2241 17.95%

K =5dB 0.7499 0.7501 65.61% 0.0536 0.064 4.69%
K =10dB 0.9526 0.9620 83.35% - - -

REFERENCES [12] L. Zheng and D. Tse, “Diversity and multiplexing: A fundamental

[1] L. E. Telatar, “Capacity of multi-antenna Gaussian channels,” ATT-Bell
Labs Internal Technical Memorandum, June 1995.

[2] G.J. Foschini, “Layered space-time architecture for wireless communica-
tions in a fading environment when using multiple antennas,” Bell Labs
Technical Journal, vol. 1, no. 2, pp. 41-59, Autumn 1996.

[3] R. N. A. Paulraj and D. Gore, Introduction to Space-Time Wireless
Communications, Cambridge University Press, UK. , 2003.

[4] U. Fincke and M. Phost, “Improved methods for calculating vectors of

short length in a lattice, including a complexity analysis,” Mathematics

of Computation, vol. 44, pp. 463—471, April 1985.

B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Expected

complexity,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp.

2806-2818, August 2005.

J. Jalden and B. Ottersten, “On the complexity of sphere decoding in

digital communications,” IEEE Transactions on Signal Processing, vol.

53, no. 4, pp. 1474-1484, April 2005.

[7]1 H. Artes, D. Seethaler, and F. Hlawatsch, “Efficient detection algorithms
for MIMO channels: A geometrical approach to approximate ML De-
tection,” IEEE Transactions on Signal Processing, vol. 51, no. 11, pp.
2808-2820, November 2003.

[8] G. Golden, G. J. Foschini, R. Valenzuela, and P. Wolniasky, “Detection
algorithm and initial laboratory results using the V-BLAST space-time
communication architecture,” IEE Electronics Letters, vol. 35, pp. 14—
15, 1999.

[9]1 R. W. Heath and A. J. Paulraj, “Switching between diversity and multi-
plexing in MIMO systems,” IEEE Transactions on Communications, vol.
53, no. 6, pp. 962-968, June 2005.

[10] A. Forenza, M. R. McKay, A. Pandharipande, R. W. Heath, and I. B.
Collings, “Adaptive MIMO transmission for exploiting the capacity of
spatially correlated channels,” IEEE Transactions on Vehicular Technol-
ogy, vol. 56, no. 2, pp. 619-630, March 2007.

[11] A. Forenza, M. R. McKay, I. B. Collings and R. W. Heath, “Switching
between OSTBC and spatial multiplexing with linear receivers in spatially
correlated MIMO channels,” in Proc. Vehicular Technology Conference
(VTC), Melbourne, Australia, May 2006, pp. 1387-1391.

[5

[6

tradeoff in multiple-antenna channels,” IEEE Transactions on Information
Theory, vol. 49, no. 5, pp. 10731096, May 2003.

[13] J. Maurer, G. Matz, and D. Seethaler, “Low-complexity and full-diversity
MIMO detection based on condition number thresholding,” in Proc.
Acoustics, Speech and Signal Processing Conference (ICASSP), vol. 3,
Honolulu, Hawaii, April 2007, pp. 61-64.

[14] A. T. James, “Distributions of matrix variates and latent roots derived
from normal samples,” Ann. Math. Stat., vol. 35, no. 2, pp. 475-501, June
1964.

[15] K. I. Gross and D. S. Richards, “Total positivity, spherical series, and
hypergeometric functions of matrix argument,” Journal on Approximation
Theory, vol. 59, no. 2, pp. 224-246, 1989.

[16] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, Academic Press, Sixth ed., San Diego, 2000.

[17] M. Matthaiou, D. I. Laurenson, and C. -X. Wang, “On analytical
derivations of the eigenvalue and condition number distributions of
dual non-central Wishart matrices,” submitted to IEEE Transactions on
Wireless Communications, March 2008.

[18] F. Rashid-Farrokhi, A. Lozano, G. J. Foschini, and R. Valenzuela,
“Spectral efficiency of wireless systems with multiple transmit and
receive antennas,” in Proc. International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), vol. 1, London, U.K.,
September 2000, pp. 373-377.

[19] R. Bohnke, D. Wubben, V. Kuhn, and K. -D. Kammeyer, “Reduced
complexity MMSE detection for BLAST architectures,” in Proc. Global
Telecommunications Conference (GLOBECOM), vol. 4, San Francisco,
USA, December 2003, pp. 2258-2262.

[20] I. Sarris and A. R. Nix, “Design and performance assessment of
high-capacity MIMO architectures in the presence of a line-of-sight
component,” [EEE Transactions on Vehicular Technology, vol. 56, no.
4, pp. 2194-2202, July 2007.

[21] M. Matthaiou, D. I. Laurenson, and C. -X. Wang, “Capacity study of
vehicle-to-roadside MIMO channels with a line-of-sight component,” in
Proc. Wireless Communications and Networking Conference (WCNC),
Las Vegas, USA, March 2008, pp. 775-779.

166



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A. Ihler, “Kernel density estimation toolbox for MATLAB[Online]. Available to down-
load athtt p: //ssg. mt. edu/i hl er/code/ kde. shtm .

C. E. Shannon, “A mathematical theory of communicatjoiiBell Systems Technical Jour-
nal, vol. 27, 1948.

S. K. Yong and C. C. Chong, “An overview of multi-gigabitineless through millime-
ter wave technology: Potentials and technical challehd&sRASIP Journal on Wireless
Communications and Networkingol. 2007, pp. 1-10.

B. Razavi, “Gadgets gab at 60 GHZEEE Spectrumvol. 45, no. 2, pp. 46-58, February
2008.

G. J. Foschini, “Layered space-time architecture foreldiss communications in a fading
environment when using multiple antennaB¢ll Labs Technical Journabol. 1, no. 2, pp.
41-59, Autumn 1996.

I. E. Telatar, “Capacity of multiantenna Gaussian cteleji ATT-Bell Labs Internal Tech-
nical MemorandumJune 1995.

IEEE 802.11 Working Group, “Part 11: Wireless LAN mediwaocess control (MAC) and
physical layer (PHY) specifications: High speed physicgétan the 5 GHz band,” IEEE
P802.11a/D7.0, August 1999.

IEEE 802.11n Working Group, “Draft amendment to wiredésAN medium access control
(MAC) and physical layer (PHY) specifications: Enhanceradot higher throughput,”
IEEE P802.11n/D3.02, January 2008.

IEEE 802.16e Working group, “Local and metropolitanwetks—Part 16: Air interface for
fixed broadband wireless access systems, Amendment 2:dahgsed medium access con-
trol layers for combined fixed and mobile operation in licethdands and corrigendum,”
December 2005.

[10] IEEE 802.16-2004 Working group, “Local and metropatitnetworks—Part 16: Air inter-

face for fixed broadband wireless access systems,” Octdligt. 2

[11] Z. Abichar, P. Yanlin, and J. M. Chang, “WiMAX: The emerce of wireless broadband,”

IEEE IT Professionalvol. 8, no. 4, pp. 44-48, August 2006.

[12] IEEE 802.11p Working Group, “Draft amendment to wikdd AN medium access con-

trol (MAC) and physical layer (PHY) specifications: Wiredegccess in vehicular environ-
ments,” IEEE P802.11p/D2.01, March 2007.

[13] J.Yin, T. EIBatt, G. Yeung, B. Ryu, and S. Habermas, fB@nance evaluation of safety

applications over DSRC vehicular ad hoc networks,Pioc. of ACM International Work-
shop on Vehicular Ad hoc Networks (VANERhiladelphia, USA, October 2004, pp. 1-9.

167



References

[14] M. Pederet al,, “World report on road traffic injury prevention,” World Hita Organisa-
tion report, 2004.

[15] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-vehiwireless communication proto-
cols for enhancing highway traffic safetyEE Communications Magazineol. 44, no.
1, pp. 74-82, January 2006.

[16] http://ww. cvi sproj ect.org/.

[17] M. Matthaiou, D. I. Laurenson, and J. S. Thompson, “A MI\¢hannel model based on
the Nakagami-faded spatial eigenmoddEEE Transactions on Antennas and Propaga-
tion, vol. 56, no. 5, pp. 1494-1497, May 2008.

[18] M. Matthaiou, D. I. Laurenson, and J. S. Thompson, “S&stic modelling of MIMO
channels using the spatial eigenmodesPinc. IET Seminar on Smart Antennas and Co-
operative Communicationsondon, U.K., October 2007.

[19] M. Matthaiou and D. I. Laurenson, “Rejection method mnerating Nakagamiz in-
dependent deviateslET Electronics Lettersvol. 43, no. 25, pp. 1474-1475, December
2007.

[20] M. Matthaiou, N. Razavi-Ghods, D. I. Laurenson, and 8lo8s, “Characterization of
an indoor MIMO channel in frequency domain using the 3D-SA&gorithm,” in Proc.
International Conference on Communications (ICGlasgow, U.K., June 2007, pp. 5868—
5872.

[21] M. Matthaiou, D. I. Laurenson, and J. S. Thompson, “Idethcharacterisation of an
indoor MIMO channel in the double directional spatial donjain press IET Microwaves,
Antennas & Propagatiari2008.

[22] M. Matthaiou, D. I. Laurenson, and C. -X. Wang, “Capgdtudy of vehicle-to-roadside
MIMO channels with a line-of-sight component,” Rroc. Wireless Communications and
Networking Conference (WCNQ)as Vegas, USA, March 2008, pp. 775-779.

[23] M. Matthaiou, D. I. Laurenson, and C. -X. Wang, “On arigl derivations of the con-
dition number distributions of dual non-central Wisharttrices,” IEEE Transactions on
Wireless Communicationaccepted for publication, October 2008.

[24] M. Matthaiou, D. I. Laurenson, and C. -X. Wang, “Reduanplexity detection for
Ricean MIMO channels based on condition number threshgldin Proc. International
Wireless Communications and Mobile Computing ConfereR8CMC), Crete, Greece,
August 2008, pp. 988—-993.

[25] M. Matthaiou, Y. Kopsinis, D. I. Laurenson, and A. M. &a&y, “Novel ergodic capacity
upper bound of dual-branch MIMO Ricean systensbmitted to IEEE Transactions on
CommunicationsAugust 2008.

[26] M. Steinbauer, “A comprehensive transmission and nkhmodel for directional radio
channels,” iINCOST 259 TD (98) 02'Bern, Switzerland, 1998.

[27] L. P.Rice, “Radio transmission into buildings at 35 d&® MHz,” Bell Systems Technical
Journal vol. 38, no. 1, pp. 197-210, 1959.

168



References

[28] D. Molkdar, “Review on radio propagation into and withbuildings,” IEE Proceedings
on Microwaves, Antennas and Propagationl. 138, no. 1, pp. 61-73, February 1991.

[29] J. B. Andersen, T. S. Rappaport, and S. Yoshida, “Prafiaig measurements and mod-
els for wireless communications channeli§EE Communications Magazinpp. 42-49,
January 1995.

[30] S. R. Saundersantennas and Propagation for Wireless Communication 8ysstdohn
Wiley & Sons Ltd., West Sussex, U.K., 1999.

[31] B. Sclar, “Rayleigh fading channels in mobile digitadamunications systems Part I:
Characterization,JEEE Communications Magazineol. 35, no. 7, pp. 90-100, July 1997.

[32] P. Smulders and L. M. Correia, “Characterization ofgagation in 60 GHz radio chan-
nels,” Electronics and Communication Engineering Journall. 9, no. 2, pp. 73-80, April
1997.

[33] G.Y.Delisle, J. P. Lefevre, M. Lecours, and J. Y. Chauith “Propagation loss prediction:
A comparative study with application to the mobile radiomhel,” IEEE Transactions on
Vehicular Technologwol. 34, no. 2, pp. 86—96, 1986.

[34] V. S. Abhayawardhana, I. J. Wassell, D. Croshy, M. Plaggland M. G. Brown, “Com-
parison of empirical propagation path loss models for fixérMyss access systems,” in
Proc. Vehicular Technology Conference (VT@)I. 1, Stockholm, Sweden, 2005, pp. 73—
7.

[35] M. C. VanderveenEstimation of Parametric Channel Models in Wireless Compain
tions Ph.D. dissertation, Stanford University, Stanford, US&cember 1977.

[36] J. G. ProakisDigital CommunicationsMcGraw-Hill Ed., 1995.

[37] M. Nakagami, “Them-distribution-A general formula of intensity distributioof rapid
fading,” Statistical Methods in Radio Wave Propagatiai. C. Hoffman Ed., pp. 3-36,
Oxford, U.K., 1960.

[38] W. R. Braun and U. Dersh, “A physical mobile radio chaiinéEEE Transactions on
Vehicular Technologyol. 40, pp. 472—-482, May 1991.

[39] P.J. Crepeau, “Uncoded and coded performance of MFSKD&EEK in Nakagami fading
channels,”IEEE Transactions on Communicationsl. 40, no. 3, pp. 487-493, March
1992.

[40] J. Winters, “On the capacity of radio communicationtsyss with diversity in a Rayleigh
fading environment,JEEE Journal on Selected Areas in Communicatjor. 5, no. 5,
pp. 871-878, June 1987.

[41] A. Paulraj and T. Kailath, “U. S. Patent #5345599: lm@asiag capacity in wireless
broadcast systems using distributed transmission/dtreait reception (DTDR),” Septem-
ber 1994.

[42] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: #indamental tradeoff in
multiple-antenna channeldEEE Transactions on Information Thegmpol. 49, no. 5, pp.
1073-1096, May 2003.

169



References

[43] W. WeichselbergeiSpatial Structure of Multiple Antenna Radio Channels: A 8Sidaro-
cessing ViewpointPh.D. dissertation, Technical University of Vienna, Dmaber 2003.

[44] M. Debbah and R. Muller, “MIMO channel modelling ancetprinciple of maximum
entropy,” IEEE Transactions on Information Theomyol. 51, no. 5, pp. 1667-1690, May
2005.

[45] R. G. Gallager|nformation Theory and Reliable Communicatipidley, 1968.

[46] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwand@apacity limits of MIMO chan-
nels,” IEEE Journal on Selected Areas in Communicatjord. 21, no. 5, pp. 684-702,
June 2003.

[47] A. Medles, S. Visuri, and D. T. M. Slock, “On MIMO capagitor various types of par-
tial channel knowledge at the transmitter,”®moc. Information Theory Workshop (ITW)
Sophia Antipolis, France, 2003, pp. 99-102.

[48] M. Steinbauer, A. F. Molisch, and E. Bonek, “The doubilectional radio channel [EEE
Antennas and Propagation Magazjnel. 43, no. 4, pp. 51-53, August 2001.

[49] H. Ozcelik, Indoor MIMO channel mode)sPh.D. dissertation, Technical University of
Vienna, December 2004.

[50] P. Almerset al,, “Survey of channel and radio propagation models for wgel®IMO
systems, EURASIP Journal on Wireless Communications and Networkipgl-19, vol.
2007.

[51] R. B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaparid J. H. Reed, “Overview of
spatial channel models for antenna array communicatiotesys” IEEE Personal Com-
munications Magazinep. 10-22, 1998.

[52] G. Athanasiadou, A. R. Nix, and J. P. McGeehan, “A miethdar ray-tracing propaga-
tion model and evaluation of its narrow-band and wide-bamediptions,”IEEE Journal on
Selected Areas in Communicatiorsl. 18, no. 3, pp. 322—-335, March 2000.

[53] J. Ling, D. Chizhik, and R. Valenzuela, “Predicting minglement receive and transmit
array capacity outdoors with ray tracing,”Rroc. Vehicular Technology Conference (VTC)
vol. 1, Rhodes, Greece, May 2001, pp. 392—-394.

[54] A.F. Moalisch, A. Kuchar, J. Laurilla, K. Hugl, and R. Stlalenberger, “Geometry-based
directional model for mobile radio channels-principlesddamplementation,”European
Transactions on Telecommunicatiorsl. 14, no. 4, pp. 351-359, 2003.

[55] W. C. Y. Lee, “Effects of correlation between two mobbase-station antennasEEE
Transactions on Communicatignl. 21, pp. 1214-1224, November 1973.

[56] S. P. Stapleton, X. Carbo, and T. McKeen, “Tracking anemity for a mobile com-
munications base station array antennaPioc. Vehicular Technology Conference (VTC)
Atlanta, USA, 1996, pp. 1695-1699.

[57] S. P. Stapleton, X. Carbo, and T. McKeen, “Spatial cledsimulator for phased arrays,”
in Proc. Vehicular Technology Conference (VT©T994, pp. 1789-1792.

170



References

[58] A.Abdiand M. Kaveh, “A space-time correlation modet foultielement antenna systems
in mobile fading channelsEEE Journal on Selected Areas in Communicatjoras. 20,
no. 3, pp. 550-560, April 2002.

[59] D.S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, ifkgdorrelation and its effects
on the capacity of multielement antenna systed&?E Transactions on Communications
vol. 48, no. 3, pp. 502-513, March 2000.

[60] M. Patzold and B. O. Hogstad, “A space-time channel &ou for MIMO channels
based on the geometrical one-ring scattering modléireless Communications and Mobile
Computing, Special Issue on Multiple-Input Multiple-QuitgMIMO) Communications
vol. 4, no. 7, pp. 727-737, November 2004.

[61] X.Cheng, C.-X.Wang, and D. |. Laurenson, “A genericagéime-frequency correlation
model and its corresponding simulation model for narroveb®iMO channels,” inProc.
European Conference on Antennas and Propagation (EuCBdihburgh, U.K., Novem-
ber 2007.

[62] M. Patzold and B. O. Hogstad, “A wideband space-time Mlkghannel simulator based
on the geometrical one-ring model,” roc. Vehicular Technology Conference (VTC)
Montreal, Canada, September 2006, pp. 1-6.

[63] J. W. C. Jakegylicrowave Mobile CommunicationlEEE Press Piscataway, USA, 1974.

[64] P. Petrus, J. H. Reed, and T. S. Rappaport, “Effects reictional antennas at the base
station on the Doppler spectrumMEEE Communications Lettergol. 1, pp. 40-42, March
1997.

[65] T. C. Fulghum, K. J. Molnar, and A. Del-Hallen, “The Jakiading model for antenna
arrays incorporating azimuth spreadE2EE Transactions on Vehicular Technologsol.
51, no. 5, pp. 968-977, September 2002.

[66] P. Petrus, J. H. Reed, and T. S. Rappaport, “Geometigsed statistical macrocell chan-
nel model for mobile environmentslEEE Transactions on Communication®l. 50, no.
3, pp. 494-502, March 2002.

[67] J. Laurila, A. F. Molisch, and E. Bonek, “Influence of theatterer distribution on power
delay profiles and azimuthal power spectra of mobile radanakels,” inProc. International
Symposium on Spread Spectrum Techniques and Applicate8STA)vol. 1, Sun City,
South Africa, September 1998, pp. 267-271.

[68] J. Fuhl, A. F. Molisch, and E. Bonek, “Unified channel nabtbr mobile radio systems
with smart antennasJEE Proceedings in Radar, Sonar and Navigatieol. 145, no. 1,
pp. 32—41, February 1998.

[69] J.C. Libertiand T. S. Rappaport, “A geometrically bdseodel for line of sight multipath
radio channels,” inProc. Vehicular Technology Conference (VT@jlanta, USA, April
1996, pp. 844-848.

[70] M. Patzold and N. Youssef, “Modelling and simulation difectional-selective and
frequency-selective mobile radio channeldfban & Fisher Verlag International Journal
of Electronics and Communicatigngol. AEU-55, no. 6, pp. 433—442, November 2001.

171



References

[71] M. Patzold and B. O. Hogstad, “A wideband MIMO channeldabderived from the
geometric elliptical scattering model,” Proc. International Symposium on Wireless Com-
munication Systems (ISWCSalencia, Spain, September 2006, pp. 138—-143.

[72] T. Zwick, C. Fischer, and W. Wiesbeck, “A stochastic tipdth channel model including
path directions for indoor environment$EEE Journal on Selected Areas in Communica-
tions vol. 20, no. 6, pp. 1178-1192, August 2002.

[73] A. S. Akki and P. Haber, “A statistical model of mobile-inobile land communication
channel,”IEEE Transactions on Vehicular Technologwl. 35, no. 1, pp. 2—-7, February
1986.

[74] A. S. Akki, “Statistical properties of mobile-to-mdeiland communication channel,”
IEEE Transactions on Vehicular Technologgl. 43, no. 4, pp. 826—-831, November 1994.

[75] G.J.Byers and F. Takawira, “Spatially and temporaliyrelated MIMO channels: Mod-
eling and capacity analysislEEE Transactions on Vehicular Technologypl. 53, no. 3,
pp. 634—643, May 2004.

[76] M. Patzold, B. O. Hogstad, N. Youssef, and D. Kim, “A MIM®@obile-to-mobile channel
model: Part I-the reference model,” Rroc. International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMR@Qermany, September 2005, pp. 573-578.

[77] X.Cheng, C. -X. Wang, D. I. Laurenson, H. -H. Chen, and/AVasilakos, “Space-time-
frequency characterization of non-isotropic MIMO mokiitemobile multicarrier Ricean
fading channels,” ifProc. International Wireless Communications and Mobilarpating
Conference (IWCMGCXrete, Greece, August 2008, pp. 994-999.

[78] X. Cheng, C. -X. Wang, D. I. Laurenson, H. -H. Chen, andvAVasilakos, “A generic
geometrical-based MIMO mobile-to-mobile channel modiel,Proc. International Wire-
less Communications and Mobile Computing Conference (I\@¥;MIrete, Greece, August
2008, pp. 1000-1005.

[79] M. Toeltsch, J. Laurila, A. F. Molisch, K. Kalliola, Paihikainen, and E. Bonek, “Statis-
tical characterization of urban mobile radio channelEBEE Journal on Selected Areas in
Communicationsvol. 20, no. 3, pp. 539-549, April 2002.

[80] A.F. Molisch, “A generic model for the MIMO wireless geagation channels in macro-
and microcells,”IEEE Transactions on Signal Processingl. 52, no. 1, pp. 61-71, Jan-
uary 2004.

[81] L. Correia, ed.COST 259 final report: Wireless Flexible Personalised Compations
New York: John Wiley & Sons, Chistester, U.K., 2001.

[82] C. Oestges and B. ClerckMIMO Wireless Communications: From Real-World Propa-
gation to Space-Time Codinglsevier Ltd., 2007.

[83] A. A. M. Saleh and R. A. Valenzuela, “A statistical modet indoor multipath propa-
gation,” IEEE Journal on Selected Areas in Communicatjor@. 5, no. 2, pp. 128-137,
February 1987.

172



References

[84] Q.H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swihdtst, “Modeling the statistical
time and angle of arrival characteristics of an indoor npaith channel,IEEE Journal on
Selected Areas in Communicationsl. 18, no. 3, pp. 347-359, March 2000.

[85] C. C. Chong, C. M. Tan, D. I. Laurenson, S. McLaughlin, M.Beach, and A. R. Nix,
“A new wideband spatio-temporal channel model for 5-GHzdo#iL AN systems,"IEEE
Journal on Selected Areas in Communicatiord. 21, no. 2, pp. 139-150, February 2003.

[86] J. W. Wallace and M. A. Jensen, “Modeling the indoor MINMreless channel,JEEE
Transactions on Antennas and Propagatigal. 50, no. 5, pp. 591-599, May 2002.

[87] K. H. Li, M. A. Ingram, and A. V. Ngygen, “Impact of clusieg in statistical indoor
propagation models on link capacity£EE Transactions on Communication®l. 50, no.
4, pp. 521-523, April 2002.

[88] N. Czink, X.Yin, H.Ozcelik, M. Herdin, E. Bonek, and B. Fleury, “Cluster chaeaistics
in a MIMO indoor propagation environmentEEE Transactions on Wireless Communica-
tions vol. 6, no. 4, pp. 1465-1475, April 2007.

[89] N. Czink, E. Bonek, L. Hentila, P. Kyosti, J. P. Nuutinamd J. Ylitalo, “The interdepen-
dence of cluster parameters in MIMO channel modeling,Pioc. European Conference
on Antennas and Propagation (EuCAR)jce, France, November 2006.

[90] N. Czink and X. Yin, “Estimation of cluster angular spcein MIMO indoor environ-
ments,” inProc. International Workshop on Signal Processing for Wegs Communica-
tions (SPWGC)London, U.K., 2005.

[91] H. Hofstetter, A. F. Molisch, and N. Czink, “A twin-clter MIMO channel model,” in
Proc. European Conference on Antennas and Propagation fR)Mice, France, Novem-
ber 2006.

[92] T. Zwick, D. J. Cichon, and W. Wiesbeck, “Microwave pegation modelling in indoor
environments,” inProc. International Conference on Microwave und OptronjtHOP),
Sindelfingen, Germany, May 1995, pp. 629-633.

[93] T. Zwick, F. Demmerle, and W. Wiesbeck, “Comparison baonel impulse response
measurements and calculations in indoor environmentsPrat. International Antennas
and Propagation Symposium (AR8Rgltimore, USA, July 1996, pp. 1498-1501.

[94] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Megenand F. Frederiksen, “A
stochastic MIMO radio channel model with experimental datiion,” IEEE Journal on
Selected Areas in Communicatiorsl. 20, pp. 1211-1226, August 2002.

[95] F. Rashid-Farrokhi, A. Lozano, G. Foschini, and R. Yizlgela, “Spectral efficiency of
wireless systems with multiple transmit and receive arasyirin Proc. International Sym-
posium on Personal, Indoor and Mobile Radio Communicati®i®RC), vol. 1, London,
U.K., September 2000, pp. 373-377.

[96] K. Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Ksofs and M. A. Beach, “Mod-
eling of wideband MIMO radio channels based on NLoS indooasueements,IEEE
Transactions on Vehicular Technolggwl. 53, no. 3, pp. 655-665, May 2004.

173



References

[97] E. Bonek, H.Ozcelik, M. Herdin, W. Weichselberger, and J. Wallace, “Dieficies of
a popular MIMO radio channel model,” iRroc. International Symposium on Wireless
Personal Multimedia Communications (WPM@E&pkosuka, Japan, October 2003.

[98] H. Ozcelik, N. Czink, and E. Bonek, “What makes a good MIMO cl@dmmodel?,” in
Proc. Vehicular Technology Conference (VT®@)l. 1, Stockholm, Sweden, 2005, pp. 156—
160.

[99] W. WeichselbergelSpatial Structure of Multiple Antenna Radio Channels: A Sidiro-
cessing ViewpointPh.D. dissertation, Technical University of Vienna, Daber 2003.

[100] N. Costa and S. Haykin, “A novel wideband MIMO channeddal and experimental
validation,” IEEE Transactions on Antennas and Propagatiesl. 56, no. 2, pp. 550-562,
February 2008.

[101] A. M. Sayeed, “Deconstructing multiantenna fadin@gmhels,”IEEE Transactions on
Signal Processingvol. 50, no. 10, pp. 2563-2579, October 2002.

[102] K. Pensel and J. A. Nossek, “Uplink and downlink califisn of an antenna array in
a mobile communication system,” COST 259 Technical DocuyiaD(97)55 Lisbon,
Portugal, September 1997.

[103] A. G. Burr, “Capacity bounds and estimates for the érstatters MIMO wireless chan-
nel,” IEEE Journal on Selected Areas in Communicatjmas. 21, no. 5, pp. 812-818, June
2003.

[104] H. Steyskal and J. S. Herd, “Mutual coupling compeinsain small array antennas,”
IEEE Transactions on Antennas and Propagatienl. 38, no. 12, pp. 1971-1975, Decem-
ber 1990.

[105] D. Gesbert, H. Boelcskei, and A. Paulraj, “OutdoorM@ wireless channels: Models
and performance predictionlEEE Transactions on Communication®l. 50, no. 12, pp.
1926-1934, December 2002.

[106] D. Chizhik, G. Foschini, M. Gans, and R. ValenzuelagyKoles, correlations, and ca-
pacities of multielement transmit and receive antenndsE Transactions on Wireless
Communicationsvol. 1, pp. 361-368, April 2002.

[107] Technical Specification Group Radio Access Netwdf&patial channel model for mul-
tiple input multiple output (MIMO) simulations (Releasg’6)lechnical Report 3GPP TR.
25.996, V6.1.0., 3rd Generation Partnership Project,eeper 2003.

[108] 3GPP, R1-050586, “Wideband SCM,” 2005.

[109] L. Schumacher, L. T. Berger, and J. Ramiro-Moreno,C&# advances in propagation
characterisation and multiple antenna processing in tHeRBftamework,” irProc. General
Assembly of International Union of Radio Science (URBIRastricht, The Netherlands,
August 2002.

[110] C.-X.Wang, X. Hong, H. Wu, and W. Xu, “Spatial tempocalrelation properties of the
3GPP spatial channel model and the Kronecker MIMO channdehidc URASIP Journal
on Wireless Communications and Networkingl. 2007, 9 pages, 2007.

174



References

[111] V. Erceget al, “TGn Channel Models,” IEEE 802.11-03/940r4, May 2004 ilaide at
http://ww. wirel essworl d. com .

[112] K. Yu, Q. Li, and M. Ho, “Measurement ivestigation optand cluster angular spreads at
5.2 GHz,"IEEE Transactions on Antennas and Propagatim. 53, no. 7, pp. 2156—2160,
July 2005.

[113] http://ww. i st-w nner.org/.

[114] D. S. Baum, J. Hansen, G. Del Galdo, M. Milojevic, J.cgand P. Kyosti, “An in-
terim channel model for beyond-3G systems: Extending theRBGpatial channel model
(SCM),” in Proc. Vehicular Technology Conference (VT@I. 5, Stockholm, Sweden,
May 2005, pp. 3132-3136.

[115] H. El-Sallabi, D. S. Baum, P. Zetterberg, P. Kyosti,Rautiainen, and C. Schneider,
“Wideband spatial channel model for MIMO systems at 5 GHadoior and outdoor envi-
ronments,” inProc. Vehicular Technology Conference (VT@)l. 6, Melbourne, Australia,
May 2006, pp. 2916-2921.

[116] L. Correia, ed.COST 273 final report: Towards Mobile Broadband Multimediet-N
works, Models and tools for 4@&lsevier, 2006.

[117] A.F. Molisch, H. Asplund, R. Heddergott, M. Steinbguend T. Zwick, “The COST259
directional channel model-Part I: Overview and methodwlolfzEE Transactions on Wire-
less Communicationsol. 5, no. 12, pp. 3421-3433, December 2006.

[118] http://ww. cost 2100. org/ .

[119] A. Paieret al, “Characterization of vehicle-to-vehicle radio channigtsm measure-
ments at 5.2 GHz Springer Wireless Personal Communicatiofisne 2008.

[120] A. Paieret al, “Car-to-car radio channel measurements at 5 GHz: Pathjosser-
delay profile, and delay-Doppler spectrum,’Rinoc. International Symposium on Wireless
Communication Systems (ISWJ®ndheim, Norway, October 2007.

[121] R. S. Thoméet al, “Identification of time-variant directional mobile radhannels,”
IEEE Transactions on Instrumentation and Measuremesit 49, no. 2, pp. 357—-364, April
2000.

[122] S. Theodoridis and K. Koutroumbd2attern Recognition2nd Edition, Academic Press,
Inc., 2003.

[123] A. Papoulis and S. U. PillaRrobability, Random Variables and Stochastic Processes
4th ed. Boston, McGraw-Hill, 2002.

[124] K. W. Yip and T. S. Ng, “An efficient model for Nakagami-fading channels;m < 1,”
IEEE Transactions on Communication®l. 48, pp. 214-221, February 2000,

[125] N. C. Beaulieu and C. Cheng, “An efficient procedure Ifakagamim fading sim-
ulation,” in Proc. Global Telecommunications Conference (CLOBECQOM)as, USA,
November 2001, pp. 3336—3340.

175



References

[126] L. Cao and N. C. Beaulieu, “A simple efficient method fgenerating independent
Nakagamim fading samples,” inProc. International Conference on Communications
(ICC), vol. 1, Korea, May 2005, pp. 44-47.

[127] A. Paulraj, R. Nabar, and D. Gor&troduction to Space-Time Wireless Communica-
tions Cambridge University Press, U.K., 2003.

[128] S. Haykin,Adaptive Filter TheoryPrentice Hall, 4th Edition, 2002.

[129] H. Krima and M. Viberg, “Two decades of array signal ggesing: The parametric ap-
proach,”IEEE Signal Processing Magazineol. 13, pp. 67—94, 1996.

[130] M. S. Bartlett, “Smoothing periodograms for time ssriwith continuous spectralNa-
ture, vol. 161, pp. 686-687, 1948.

[131] J. Capon, “High-resolution frequency-wavenumbegctum analysis,Proceedings of
the IEEE vol. 57, no. 8, pp. 1408-1418, August 1969.

[132] R. O. Schmidt, “Multiple emitter location and signakrameter estimation,” ifProc.
RADC Spectral Estimation Workshdpome, NY, 1979.

[133] G. Bienvenu and L. Kopp, “Adaptivity to background seispatial coherence for high
resolution passive methods,” Proc. International Conference on Acoustics, Speech and
Signal Processing (ICASSH)enver, USA, April 1980, pp 307-310.

[134] M. Kaveh and A. J. Barabell, “The statistical performa of the MUSIC and the
minimum-norm algorithms in resolving plane waves in ndis&sEE Transactions on
Acoustics, Speech and Signal Processuud. 24, no. 2, pp. 331-341, April 1986.

[135] T.J.Shan, M. Wax, and T. Kailath, “On spatial smoogHior direction-of-arrival estima-
tion of coherent signalsJEEE Transactions on Acoustics, Speech and Signal Proggssi
vol. 33, no. 4, pp. 806-811, August 1985.

[136] S.U.Pillaiand B. H. Kwon, “Forward/backward spasahoothing techniques for coher-
ent signal identification,IEEE Transactions on Acoustics, Speech and Signal Proagssi
vol. 37, no. 1, pp. 8-15, January 1989.

[137] A. Paulraj, R. Roy, and T. Kailath, “A subspace rotatapproach to signal parameter
estimation,”’Proceedings of the IEEBpp. 1044-1045, July 1986.

[138] R.Royand T. Kailath, “ESPRIT-estimation of signafgraeters via rotational invariance
techniques,TEEE Transactions on Acoustics, Speech and Signal Proggssil. 37, no.
7, pp. 984995, July 1989.

[139] M. Haardt and J. A. Nossek, “Unitary ESPRIT: How to obtincreased estimation
accuracy with a reduced computational burdéBEE Transactions on Signal Processing
vol. 43, no. 5, pp. 1232-1242, May 1995.

[140] A.J. Barabell, “Improving the resolution performanef eigenstructure-based direction
finding algorithms,” inProc. International Conference on Acoustics, Speech agdabi
Processing (ICASSPBoston, USA, 1983, pp. 336—-339.

176



References

[141] F. Belloni, A. Richter, and V. Koivunen, “Extension mfot-MUSIC to non-ULA array
configurations,” inProc. International Conference on Acoustics, Speech agdabiPro-
cessing (ICASSPYol. 4, Toulouse, France, 2006, pp. 897-900.

[142] M. Pesavento, A. B. Gershman, and K. M. Wong, “Directiimding in partly-calibrated
sensor arrays composed of multiple subarrajSEE Transactions on Signal Processing
vol. 50, no. 9, pp. 2103-2115, September 2002.

[143] C. M. S. See and A. B. Gershman, “Direction-of-arriegtimation in partly calibrated
subarray-based sensor arrays in the presence of array amthalhimperfections,IEEE
Transactions on Signal Processingl. 52, no. 2, pp. 329-338, February 2004.

[144] S. A. Elkader, A. B. Gershman, and K. M. Wong, “Imprayithe robustness of the
RARE algorithm against subarray orientation errors,Pioc. International Conference on
Acoustics, Speech, and Signal Processing (ICAS®IR)2, 2004, pp. 241-244.

[145] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximunkdiihood from incomplete
data via the EM algorithm Journal of the Royal Statistical Society, Series B (Methagtol
ical), vol. 39, no. 1, pp. 1-38, 1977.

[146] J. A. Fessler and A. O. Hero, “Space-alternating galiEyd expectation-maximization
algorithm,” IEEE Transactions on Signal Processingl. 42, no. 10, pp. 2664—2677, Oc-
tober 1994.

[147] P.J. Chung and J. F. Bohme, “Comparative converganeaéysis of EM and SAGE algo-
rithms in DOA estimation,TEEE Transactions on Signal Processingl. 49, no. 12, pp.
2940-2949, December 2001.

[148] C.C.Chongbynamic Directional Channel Model for Indoor Wireless Coumications
Ph.D. dissertation, The University of Edinburgh, Septen#9®3.

[149] M. Feder and E. Weinstein, “Parameter estimation pesimposed signals using the EM
algorithm,” IEEE Transactions on Acoustics, Speech and Signal Proggs&il. 36, no. 4,
pp. 477-489, April 1988.

[150] B. H. Fleury, D. Dahlhaus, R. Heddergott, and M. TséhutiWideband angle of arrival
estimation using the SAGE algorithm,” Proc. International Symposium on Spread Spec-
trum Techniques and Applications (ISSSTMainz, Germany, vol. 1, September 1996, pp.
79-85.

[151] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaasd K. |. Pedersen, “Chan-
nel parameter estimation in mobile radio environmentsgitire SAGE algorithm,|IEEE
Journal on Selected Areas in Communicatiord. 17, no. 3, pp. 438—-450, March 1999.

[152] B. H. Fleury, P. Jourdan, and A. Stucki, “High-res@uat channel parameter estima-
tion for MIMO applications using the SAGE algorithmifiternational Zurich Seminar on
Broadband CommunicationETH Zurich, Switzerland, 2002, pp. 30-1-30-9.

[153] X. Yin, B. H. Fleury, P. Jourdan, and A. Stucki, “Pokation estimation of individ-
ual propagation paths using the SAGE algorithm,Piroc. International Symposium on
Personal, Indoor and Mobile Radio Communication (PIMRBgijing, China, September
2003, pp. 1795-1799.

177



References

[154] C. C. Chong, D. I. Laurenson, C. M. Tan, S. McLaughlin, M Beach, and A. R. Nix,
“Joint detection-estimation of directional channel pag#ens using the 2-D frequency do-
main SAGE algorithm with serial interference cancellafiom Proc. International Confer-
ence on Communications (ICG)ol. 2, New York, USA, April 2002, pp. 906-910.

[155] H. Akaike, “A new look at the statistical model ident#ition,” IEEE Transactions on
Automatic Contrglvol. 19, no. 6, pp. 716—723, December 1974.

[156] J. Rissanen, “Modeling by the shortest data desongtiAutomatica vol. 14, pp. 465—
471, 1978.

[157] A. K. Jain and R. C. Dubeglgorithms for Clustering DataPrentice-Hall, Englewood
Cliffs, New Jersey, USA, 1988.

[158] B. W. Silverman,Density Estimation for Statistics and Data Analysthapman and
Hall, London, U.K., 1986.

[159] P. Hall, S. J. Sheather, M. C. Jones, and J. S. Marron di@imal data-based bandwidth
selection in kernel density estimatioBiometrika vol. 78, no. 2, pp. 263-269, 1991.

[160] D. W. Scott,Multivariate Density Estimation: Theory, Practice and daéization John
Wiley & Sons, Inc., New York, USA, 1992.

[161] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, “Alsistic model of the temporal
and azimuthal dispersion seen at the base station in oufifopagation environments,”
IEEE Transactions on Vehicular Technologgl. 49, no. 2. pp. 437-447, March 2000.

[162] A. Algans, K. I. Pedersen, and P. E. Mogensen, “Expenital analysis of the joint
statistical properties of azimuth spread, delay spread,stiadow fading,1IEEE Journal
on Selected Areas in Communicatipusl. 20, no. 3, pp. 523-531, April 2002.

[163] S. E. Foo, C. M. Tan, and M. A. Beach, “Spatial tempotaracterization of UTRA
FDD channels at the user equipment,”"Rroc. Vehicular Technology Conference (VTC)
vol. 2, Jeju, Korea, April 2003, pp. 793—-797.

[164] C. M. Tan, A. R. Nix, and M. A. Beach, “Dynamic spatialtporal propagation mea-
surement and super-resolution channel characterisatidrRasHz in a corridor environ-
ment,” in Proc. Vehicular Technology Conference (VT®@ncouver, Canada, September
2002, pp. 797-801.

[165] C. C. Chong, D. I. Laurenson and S. McLaughlin, “Spa¢imporal correlation prop-
erties for the 5.2-GHz indoor propagation environment§EE Antennas and Wireless
Propagation Lettersvol. 2, no. 8, pp. 114-117, 2003.

[166] S.Wyne, N. Czink, J. Karedal, P. Almers, F. Tufvessord A. Molisch, “A cluster-based
analysis of outdoor-to-indoor office MIMO measurements.atGHz,” in Proc. Vehicular
Technology Conference (VT @fontreal, Kanada, September 2006, pp. 1-5.

[167] C. M. Tan,Multidimensional Channel Characterisation with Efficigtigh-Resolution
Array Signal Processing Algorithm®h.D. dissertation, University of Bristol, December
2004.

178



References

[168] M. Bengtsson and B. Volcker, “On the estimation of azilmdistributions and azimuth
spectra,” inProc. Vehicular Technology Conference (VT@)I. 3, Atlantic City, USA,
2001, pp. 1612-1615.

[169] A. Richter and R. S. Thoma, “Joint maximum likelihoedtimation of specular paths
and distributed diffuse scattering,” iroc. Vehicular Technology Conference (VT@)I.
1, 2005, pp. 11-15.

[170] A. Richter, M. Landmann, and R. S. Thoma, “A gradieas®d method for maximum
likelihood channel parameter estimation from multidimenal channel sounding mea-
surement,” inrProc. General Assembly of the International Union of Radieis®e (URSI)
Maastricht, Netherlands, 2002.

[171] R. S. Thoma, M. Landmann, and A. Richter, “RIMAX-A masum likelihood frame-
work for parameter estimation in multidimensional chans@linding,” inProc. Interna-
tional Symposium on Antennas and Propagation (ISAehndai, Japan, August 2004, pp.
53-56.

[172] C. M. Tan, M. A. Beach, and A. R. Nix, “Enhanced-SAGE althm for use in
distributed-source environmentdEE Electronics Lettersvol. 39, no. 8, pp. 697-698,
April 2003.

[173] C. M. Tan, M. A. Beach, and A. R. Nix, “Multipath pararmeet estimation with a reduced
complexity unitary-SAGE algorithm FEuropean Transactions on Telecommunicatjmas.
14, pp. 515-528, 2004.

[174] D. P. McNamara, M. A. Beach, P. N. Fletcher, and P. karts “Capacity variation of
indoor multiple input multiple output (MIMO) channeldEE Electronics Lettersvol. 36,
no. 24, pp. 2037-2038, November 2000.

[175] L. Cottatelluci and M. Debbah, “On the capacity of MIMRIce channels,” irProc.
Allerton Conferencglllinois, USA, 2004.

[176] L. Cottatelluci and M. Debbah, “The effect of line o§bi on the asymptotic capacity of
MIMO systems,” inProc. International Symposium on Information Theory ()}SOhicago,
USA, 2004, p. 242.

[177] 1. Sarris and A. R. Nix, “Design and performance asses¥ of high-capacity MIMO ar-
chitectures in the presence of a line-of-sight componéBEE Transactions on Vehicular
Technologyvol. 56, no. 4, pp. 2194-2202, July 2007.

[178] I. Sarris and A. R. Nix, “Design and performance asses® of maximum capacity
MIMO architectures in line-of-sight,TEE Proceedings in Communicatigngl. 153, no.
4, pp. 482—-488, August 2006.

[179] F. Bghagen, P. Orten, and G. E. @ien, “Constructionaphcity analysis of high-rank
line-of-sight MIMO channels,” irProc. IEEE Wireless Communications and Networking
Conference (WCNGCMarch 2005, pp. 432-437.

[180] J. B. Andersen, “Multipath richness-a meaure of MIM&pacity, COST 259 Technical
Document, inTD(04)157 Duisburg, Germany, September 2004.

179



References

[181] C. Martin and B. Ottersen, “Analytic approximationseigenvalue moments and mean
channel capacity for MIMO channels,” iRroc. International Conference on Acoustics,
Speech and Signal Processing (ICAS3Pgy 2002, pp. 111-2389—111-2392.

[182] C. Martin and B. Ottersen, “Asymptotic eigenvaluetidlgitions and capacity for MIMO
channels under correlated fadintEE Transactions on Wireless Communicatiord. 3,
no. 4, pp.1350-1359, July 2004.

[183] M. WennstromOn MIMO Systems and Adaptive Arrays for Wireless Commuaitat
Analysis and Practical IssueBh.D dissertation, Uppsalla University, 2002.

[184] R. K. Mallik, “The pseudo-Wishart distribution and idpplication to MIMO systems,”
IEEE Transactions on Information Theompol. 49, no. 10, pp. 2761-2769, October 2003.

[185] S. Jin, M. R. McKay, X. Gao, and I. B. Collings, “MIMO ntidhannel beamforming:
SER and outage using new eigenvalue distribution of compcentral Wishart matri-
ces,”IEEE Transactions on Communication®l. 56, no. 3, pp. 424-434, March 2008.

[186] L. M. Garth, P. J. Smith, and M. Shafi, “Exact symbol epoobabilities for SVD trans-
mission of BPSK data over fading channels,”"Rroc. IEEE International Conference on
Communications (ICCol. 4, Seoul, Korea, March 2005, pp. 2271-2276.

[187] M. Kang and M. -S. Alouini, “Largest eigenvalue of colepWishart matrices and per-
formance analysis of MIMO MRC systemdEEE Journal on Selected Areas in Commu-
nications vol. 21, no. 3, pp. 418-426, April 2003.

[188] I. Medvede\et al, “Transmission strategies for high throughput MIMO OFDMuou-
nication,” inProc. IEEE International Conference on Communicationg3)Grol. 4, 2005,
pp. 2621-2625

[189] V. Erceg, P. Soma, D. S. Baum, and A. J. Paulraj, “Cdpastained from multiple-
input multiple-output channel measurements in fixed waglenvironments at 2.5 GHz,”
in Proc. International Conference on Communications (I0©). 1, New York, USA, May
2002, pp. 396-400.

[190] H. Artes, D. Seethaler, and F. Hlawatsch, “Efficientedéon algorithms for MIMO
channels: A geometrical approach to approximate ML dede¢tiEEE Transactions on
Signal Processingvol. 51, no. 11, pp. 2808-2820, November. 2003.

[191] D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “MMBé&sed lattice-reduction
for near-ML detection of MIMO systems,” iRroc. ITG/IEEE Workshop on Smart Anten-
nas (WSA)Munich, Germany, March 2004, pp. 106-113.

[192] A.T. James, “Distributions of matrix variates ancklat roots derived from normal sam-
ples,” Annals of Mathematical Statisticgol. 35, no. 2, pp. 475-501, June 1964.

[193] T. RatnarajahJopics in complex random matrices and information the®ty.D. disser-
tation, University of Ottawa, 2003.

[194] C. G. Khatri, “Non-central distributions a@th largest characteristic roots of three matri-
ces concerning complex multivariate normal populatioAsihals of the Institute of Statis-
tical Mathematicsvol. 21, pp. 23-32, 1969.

180



References

[195] G. Alfano, A. Lozano, A. M. Tulino, and S. Verdd, “Mutinformation and eigenvalue
distribution of MIMO Ricean channels,” iRroc. International Symposium on Information
Theory and Applications (ISITAParma, Italy, October 2004, pp. 1040-1045.

[196] M. Kang and M.-S. Alouini, “Capacity of MIMO Rician chaels,”IEEE Transactions
on Wireless Communicationgol. 5, no. 1, pp. 112-122, January 2006.

[197] A. Maaref and S. Aissa, “Joint and marginal eigenvatiisributions of (non)central
complex Wishart matrices and PDF-based approach for degizing the capacity statis-
tics of MIMO Ricean and Rayleigh fading channel&§EE Transactions on Wireless Com-
municationsvol. 6, no. 10, pp. 3607-3619, October 2007.

[198] M. R. McKay and I. Collings, “General capacity bounds $patially correlated Rician
MIMO channels,”IEEE Transactions on Information Thegryol. 51, no. 9, pp. 3121-
3145, September 2005.

[199] P. Smith and L. Garth, “Exact capacity distributionr flual MIMO systems in Ricean
fading,” [IEEE Communications Lettersol. 8, no. 1, pp. 18-20, January 2004.

[200] T. Ratnarajah, R. Vaillancount, and M. Alvo, “Compleandom matrices and Rician
channel capacity,Problems of Information Transmissiovol. 41, no. 1, pp. 1-22, January
2005.

[201] F. Bghagen, P. Orten, G. E. @ien, and S. de la Kethull®ygl®ove, “Exact capacity
expressions for dual-branch Ricean MIMO systenmsfiress IEEE Transactions on Com-
munications 2008.

[202] K. I. Gross and D. S. Richards, “Total positivity, spkal series, and hypergeometric
functions of matrix argumentJournal on Approximation Theoryol. 59, no. 2, pp. 224—
246, 1989.

[203] I. S. Gradshteyn and I. M. RyzhiKable of Integrals, Series, and Produc&ixth ed.
Academic Press, San Diego, 2000.

[204] M. Charafeddine and A. Paulraj, “Simplified eigemedudistributions o2 x 2 complex
noncentral Wishart,Asilomar Conference on Signals, Systems, and ComputelSS&L
Monterey, California, USA, November 2007.

[205] A. H. Nutall, “Some integrals involving th& function,” Naval Underwater Systems
Center, New London, Lab., New London, CT, 429972.

[206] A. EdelmanEigenvalues and condition numbers of random matriBésD. dissertation,
MIT, Cambridge, MA, May 1989.

[207] T. Ratnarajah, R. Vaillancourt, and M. Alvo, “Eigehwas and condition numbers of
complex random matrices3IAM Journal on Matrix Analysis and Applicatigngl. 26,
no. 2, pp. 441-456, 2005.

[208] P. -H. Kuo, P. J. Smith, and L. M. Garth, “A Markov modefr MIMO channel con-
dition number with application to dual-mode antenna s&a¢tin Proc. IEEE Vehicular
Technology Conference (VJMublin, Ireland, April 2007, pp. 471-475.

181



References

[209] U. Fincke and M. Phost, “Improved methods for caldalgtvectors of short length in a
lattice, including a complexity analysisMathematics of Computatiowol. 44, pp. 463—
471, April 1985.

[210] B. Hassibi and H. Vikalo, “On the sphere-decoding &lho I. Expected complexity,”
IEEE Transactions on Signal Processingl. 53, no. 8, pp. 2806—2818, August 2005.

[211] J. Jalden and B. Ottersten, “On the complexity of sptagcoding in digital commu-
nications,”IEEE Transactions on Signal Processingl. 53, no. 4, pp. 1474-1484, April
2005.

[212] G. Golden, G. J. Foschini, R. Valenzuela, and P. Wekya“Detection algorithm and
initial laboratory results using the V-BLAST space-timemaunication architecture/EE
Electronics Lettersvol. 35, pp. 14-15, 1999.

[213] R. W. Health and A. J. Paulraj, “Switching between dbity and multiplexing in MIMO
systems,1IEEE Transactions on Communication®l. 53, no. 6, pp. 962-968, June 2005.

[214] A.Forenza, M. R. McKay, A. Pandharipande, R. W. Headtid I. B. Collings, “Adaptive
MIMO transmission for exploiting the capacity of spatialiprrelated channelsJEEE
Transactions on Vehicular Technolggl. 56, no. 2, pp. 619-630, March 2007.

[215] A. Forenza, M. R. McKay, I. B. Collings and R. W. Healtigwitching between OS-
TBC and spatial multiplexing with linear receivers in spdlyi correlated MIMO chan-
nels,” in Proc. Vehicular Technology Conference (VTRgelbourne, Australia, May 2006,
pp. 1387-1391.

[216] J. Maurer, G. Matz, and D. Seethaler, “Low-complexatyd full-diversity MIMO de-
tection based on condition number thresholding,Pioc. Acoustics, Speech and Signal
Processing Conference (ICASS®)I. 3, Honolulu, Hawaii, April 2007, pp. 61-64.

[217] R. Bohnke, D. Wubben, V. Kuhn, and K. -D. Kammeyer, “Begll complexity MMSE
detection for BLAST architectures,” ifProc. Global Telecommunications Conference
(GLOBECOM)vol. 4, San Francisco, USA, December 2003, pp. 2258—-2262.

[218] A. Grant, “Rayleigh fading multi-antenna channeEJRASIP Journal on Applied Sig-
nal Processing - Special Issue on Space-Time Coding - paot.12002, no. 3, pp. 316-329,
March 2002.

[219] H. Shin and J. H. Lee, “Capacity of multi-antenna fadamannels: Spatial fading corre-
lation, double scattering, and keyhol&8#EE Transactions on Information Theomol. 49,
no. 10, pp. 2636-2647, October 2003.

[220] Q. T. Zhang, X. W. Cui and X. M. Li, “Very tight capacityolnds for MIMO-correlated
Rayleigh-fading channelslEEE Transactions on Wireless Communicatiord. 4, no. 2,
pp. 681-688, March 2005.

[221] J. Hansen and H. Bolcskei, “A geometrical invesigatof the rank-1 Ricean MIMO
channel at high SNR,” ifProc. International Symposium on Information Theory ()SIT
Chigano, USA, June 2004, p. 64.

182



References

[222] S. K. Jayaweera and H. V. Poor, “On the capacity of mldtantenna systems in Rician
fading,” IEEE Transactions on Wireless Communicational. 4, no. 3, pp. 1102-1111,
May 2005.

[223] Y. -H. Kim and A. Lapidoth, “On the log determinant ofmaentral Wishart matrices,”
in Proc. International Symposium on Information Theory (}sMokohama, Japan, June
2003, p. 54.

[224] S. Jin and X. Gao, “Tight lower bounds on the ergodicawdy of Ricean fading MIMO
channels,” inProc. International Conference on Communications (10@). 4, May 2005,
pp. 2412-2416.

[225] S. Jin and X. Gao, “Tight upper bound on the ergodic cidpeof the Rician fad-
ing MIMO channels,” inProc. Wireless Communications and Networking Conference
(WCNC) vol. 1, March 2005, pp. 402—-407.

[226] M. R. McKay and |. B. Collings, “On the capacity of frezpcy-flat and frequency-
selective Rician MIMO channels with single-sided coriielaf IEEE Transactions on
Wireless Communicationgol. 5, no. 8, pp. 2038-2043, August 2005.

[227] X. W. Cui, Q. T. Zhang, and Z. M. Feng, “Generic procegltor tightly bounding the
capacity of MIMO correlated Rician fading channeli§EE Transactions on Communica-
tions vol. 53, no. 5, pp. 890-898, May 2005.

[228] M. R. McKay, P. J. Smith and I. B. Collings, “New propeg of complex noncentral
guadratic forms and bounds on MIMO mutual information,Piroc. International Sympo-
sium on Information Theory (ISITpeatle, USA, July 2006, pp. 1209-1213.

[229] S. Jin, X. Gao and X. You, “On the ergodic capacity ofk-dnRicean-fading MIMO
channels,IEEE Transactions on Information Thegmol. 53, no. 2, pp. 502-517, February
2007.

[230] M. R. McKay and I. B. Collings, “Improved general lowswund for spatially-correlated
Rician MIMO capacity, 'TEEE Communications Lettergol. 10, no. 3, pp. 162-164, March
2006.

[231] J. Salo, F. Mikas, and P. Vainikainen, “An upper boundhe ergodic mutual information
in Rician fading MIMO channels,JEEE Transactions on Wireless Communicatiovd.
5, no. 6, pp. 1415-1421, June 2006.

[232] A. Lozano, A. M. Tulino, and S. Verdu, “High-SNR poweifset in multiantenna com-
munication,”|[EEE Transactions on Information Theoryol. 51, no. 12, pp. 4134-4151,
December 2005.

[233] T. Ratnarajah, “Non-central quadratic forms on cosplandom matrices and applica-
tions,” in Proc. Workshop on Statistical Signal Processing (S8®@)ydeaux, France, July
2005.

[234] A. M. Mathai,Jacobians of Matrix Transformations and Functions of Makrguments
Singapore: World Scientific, 1997.

183



References

[235] A.P.Prudnikov, Y. A. Bruchkov, and O. |. Marichéutegrals and Series/ol. 3, Gordon
and Breach Science Publishers, 1990.

[236] O. Oyman, R. Nabar, H. Bolcskei, and A. Paulraj, “Charazieg the statistical proper-
ties of mutual information in MIMO channelslEEE Transactions on Signal Processing
vol. 51, no. 11, pp. 2782-2795, November 2003.

[237] M. Abramowitz and I. A. Stegurlandbook of Mathematical Functions With Formulas,
Graphs, and Mathematical Tablegdew York: Dover, 1972.

[238] W. Weibull, “A statistical distribution function of wle applicability,” Journal of Applied
Mechanicsno. 27, pp. 291-297, 1951.

[239] H. Hashemi, “The indoor radio propagation channBrdc. of the IEEEvol. 81, no. 7,
pp. 943-968, July 1993.

[240] F. Babich and G. Lombardi, “Statistical analysis ahdracterization of the indoor prop-
agation channel, IEEE Transactions on Communicationgl. 48, no. 3, pp. 455-464,
March 2000.

[241] N. S. Adawiet al, “Coverage prediction for mobile radio systems operatinghe
800/900 MHz frequency rangelEEE Transactions on Vehicular Technologyl. 37, no.
1, pp. 3-72, February 1988.

[242] M. A. Taneda, J. Takada, and K. Araki, “A new approacHaing: Weibull model,”
in Proc. International Symposium on Personal, Indoor and MoBiadio Communications
(PIMRC), Osaka, Japan, September 1999, pp. 711-715.

[243] E. L. LehmannTheory of Point EstimatigrNew York, Wiley, 1983.

[244] A. H. Nutall, “The Nutall@ function-Its relation to the Marcur® function and its ap-
plication in digital communication performance evaluafifodEEE Transactions on Com-
municationsvol. 50, no. 11, pp. 1712-1715, November 2002.

[245] M. A. Golberg, “The derivative of a determinanfmerican Mathematical Monthlyol.
79, pp. 1124-1126, December 1972.

[246] W. K. Pratt, “Partial derivatives of Marcum(@ Function,”Proc. of the IEEEpp. 1220—
1221, July 1968.

184



