
Characterisation and Modelling of Indoor and
Short-Range MIMO Communications

Michail Matthaiou
T

H
E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

A thesis submitted for the degree of Doctor of Philosophy.
The University of Edinburgh .

November 2008



Abstract

Over the last decade, we have witnessed the rapid evolution of Multiple-Input Multiple-Output
(MIMO) systems which promise to break the frontiers of conventional architectures and deliver
high throughput by employing more than one element at the transmitter (Tx) and receiver (Rx)
in order to exploit the spatial domain. This is achieved by transmitting simultaneous data
streams from different elements which impinge on the Rx withideally unique spatial signatures
as a result of the propagation paths’ interactions with the surrounding environment. This thesis
is oriented to the statistical characterisation and modelling of MIMO systems and particularly
of indoor and short-range channels which lend themselves a plethora of modern applications,
such as wireless local networks (WLANs), peer-to-peer and vehicular communications.

The contributions of the thesis are detailed below. Firstly, an indoor channel model is proposed
which decorrelates the full spatial correlation matrix of a5.2 GHz measured MIMO channel and
thereafter assigns the Nakagami-m distribution on the resulting uncorrelated eigenmodes. The
choice of the flexible Nakagami-m density was found to better fit the measured data compared
to the commonly used Rayleigh and Ricean distributions. In fact, the proposed scheme captures
the spatial variations of the measured channel reasonably well and systematically outperforms
two known analytical models in terms of information theory and link-level performance.

The second contribution introduces an array processing scheme, namely the three-dimensional
(3D) frequency domain Space Alternating Generalised Expectation Maximisation (FD-SAGE)
algorithm for jointly extracting the dominant paths’ parameters. The scheme exhibits a satisfac-
tory robustness in a synthetic environment even for closelyseparated sources and is applicable
to any array geometry as long as its manifold is known. The algorithm is further applied to the
same set of raw data so that different global spatial parameters of interest are determined; these
are the multipath clustering, azimuth spreads and inter-dependency of the spatial domains.

The third contribution covers the case of short-range communications which have nowadays
emerged as a hot topic in the area of wireless networks. The main focus is on dual-branch
MIMO Ricean systems for which a design methodology to achieve maximum capacities in the
presence of Line-of-Sight (LoS) components is proposed. Moreover, a statistical eigenanalysis
of these configurations is performed and novel closed-formulae for the marginal eigenvalue
and condition number statistics are derived. These formulae are further used to develop an
adaptive detector (AD) whose aim is to reduce the feasibility cost and complexity of Maximum
Likelihood (ML)-based MIMO receivers.

Finally, a tractable novel upper bound on the ergodic capacity of the above mentioned MIMO
systems is presented which relies on a fundamental power constraint. The bound is sufficiently
tight and applicable for arbitrary rank of the mean channel matrix, Signal-to-Noise ratio (SNR)
and takes the effects of spatial correlation at both ends into account. More importantly, it
includes previously reported capacity bounds as special cases.
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Chapter 1
Introduction

The rapid advances of wireless communications over the lastdecades in conjunction with the

design of upcoming mobile networks have necessitated the comprehensive understanding of the

dynamic radio propagation mechanisms and characteristics. This demanding task can normally

be accomplished by conducting radio channel measurements followed by the extraction of the

path’s parameters and the development of accurate channel models. On these grounds, the first

goal of this thesis is the propagation modelling of modern indoor radio systems operating at the

5 GHz band. The second goal is related to short-range communications and particularly with

the development of high throughput optimised architectures as well as with the investigation of

the most important eigencharacteristics and derivation ofnovel ergodic capacity bounds. This

introductory chapter covers the state-of-the art in the area of wireless communications and,

further, addresses the open research challenges that have constituted the key motivations for

the present Ph.D. work. Section 1.1 discusses the evolutionof wireless communications with

a view to the limitations of traditional configurations and the benefits of employing multiple

antennas at both terminals. Section 1.2 explores the latestadvances in indoor communications

while Section 1.3 is dedicated to short-range propagation and potential future applications.

Section 1.4 summarises the author’s contributions to the field of multi-antenna systems. Finally,

Section 1.5 gives a general outline of the remainder of the thesis.

1.1 Evolution of wireless communication technology

When Guglielmo Marconi back in 1901 signalled the letter “S”across the Atlantic, from Eng-

land to Newfoundland, he never envisaged what his inventioncould lead to. The evolution of

wireless communications continued through the years fostered by the development of semicon-

ductor technology, advances in integrated circuit technology and the research in information

theory as well as in digital signal processing, in the continuing search for higher system ca-

pacity, improved usability and bandwidth efficiency. In thenear future, wireless networks are

expected to provide a plethora of high-quality services (data, voice, video, networking) be-

tween different users and multiple sources of information;ultimately, the convergence between
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decentralised wired and wireless technologies (subnetworks) will allow operators or content

providers, and eventually customers, to enjoy the completefunctionalities and resources of the

network towards the direction of ubiquitous communications. This means that users will be

able to receive the same service through different access networks regardless of the devices

they will be utilising.

Many communication systems nowadays are based on conventional Single-Input Single-Output

(SISO) architectures, where both the transmitter (Tx) and receiver (Rx) are equipped with a

single antenna. However, irrespective of the modulation and coding scheme employed, it has

been shown that for a finite bandwidth and given Signal-to-Noise Ratio (SNR), these systems

set a fundamental upper limit on the data rate (usually referred to aschannel capacity) and thus

are inconvenient to support the future demanding applications. Throughout this thesis, capacity

is adopted as the appropriate metric for quantifying the performance of wireless systems; in

general, channel capacity refers to the maximum achievabledata rate that can be transmitted

over the channel with asymptotically small error probability. From an information theory point

of view, Shannon defines channel capacity as the maximum ofmutual information1 [2].

A considerable number of researchers over the globe supportthat the solution for high through-

put resides in the use of millimetre wave frequencies (60 GHzand beyond) because of the mas-

sive bandwidth available for dense wireless local communications (7 GHz of unlicensed spec-

trum) and the lower interference levels [3]. Another very significant motivation for exploiting

this band is the fact that the wavelength becomes very short at such high frequencies, leading to

devices of reduced size and making feasible the integrationof many antennas and transceivers

into a single chip. Nevertheless, this technology is still expensive due to the extreme accuracy

required for constructing small-scale radio frequency (RF) equipment and for developing so-

phisticated signal processing algorithms; what’s more, most current commercial applications

are located at the microwave band. Recently, there has been an increasing design interest to

decrease the feasibility cost of today’s 60 GHz technology by using cheap, low-power silicon

germanium chips [4]. In any case though, due to the excessivepath loss (quadratic increase

with frequency) and the oxygen absorption present at 60 GHz (10–15 dB/km), most practical

platforms deploy high-gain directive antennas that rule out multipath propagation by focusing

energy on a certain direction, specifically intended for fixed point-to-point applications with a

coverage area of a few meters (< 10 m).

1This definition is valid for the usual case of memoryless channels, i.e. each channel realisation is independent
of the previous one.
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The most promising candidates for fulfilling the increasingdemand for enhanced data rates

within a fixed limited bandwidth are the so-called Multiple-Input Multiple-Output (MIMO)

systems which make use of multiple antenna elements at both the Tx and Rx. It has been

theoretically shown that these systems offer benefits whichgo far beyond those of traditional

configurations by fully exploiting the scattering environment; in fact, under specific propaga-

tion conditions, i.e. high multipath richness, MIMO capacity grows linearly with the mini-

mum number of transmit and receive antennas [5, 6]. This capacity boost is achieved by the

simultaneous transmission in time and within the same frequency interval of orthogonal, non-

interfering data streams which are conveyed through the established spatial subchannels be-

tween the two ends. The differentiation at the Rx happens in the spatial domain and is possible

since each multipath impinging on it has experienced a series of complex propagation interac-

tions with the surrounding environment and therefore carries a unique spatial signature. Given

this high practical importance of MIMO technology, the key motivation of this thesis is to study

in depth the performance of indoor and short-range MIMO systems that are expected to support

forthcoming high-speed (well above 100 Mbits/s) Wireless Local Area Networks (WLANs).

1.2 Indoor wireless communications

The first part of the thesis focuses on the area of indoor communications which has been ex-

tensively explored over the last decades following the increasing demand for high-speed data

transmission over medium ranges. Current indoor WLAN systems operate mainly at the 2.4

and 5.2 GHz bands as standardised by either the Institute of Electrical and Electronics Engi-

neers (IEEE) 802.11 protocol or its European counterpart, namely the HIgh PErformance Radio

LAN (HIPERLAN) protocol defined by the European Telecommunications Standards Institute

(ETSI) Broadband Radio Access Network (BRAN). In detail, the IEEE 802.11a protocol op-

erates at 5.2 GHz and is able to deliver data rates as high as 54Mbits/s within the operation

range of a so-called hotspot or access point (approximately35 m in an indoor propagation en-

vironment)2 [7]. Likewise, the IEEE 802.11n consensus standard, which is currently under

development and due to be finalised in June 2009, has also specified the usage of this band

for WLAN applications introducing the application of MIMO technology along with a wider

operation bandwidth (40 MHz instead of 20 MHz as in IEEE 802.11a). The objectives of this

protocol are a raw data rate of up to 600 Mbits/s (when four elements are employed at both

2Please note that this technology is widely known as WirelessFidelity (Wi-Fi).
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IEEE Carrier Channel Maximum Indoor

protocol frequency bandwidth data rate oper. range

802.11a 5 GHz 20 MHz 54 Mbits/s 35 m

802.11b 2.4 GHz 20 MHz 11 Mbits/s 38 m

802.11g 2.4 GHz 20 MHz 54 Mbits/s 38 m

802.11n 2.4/5 GHz 40 MHz 600 Mbits/s 70 m

Table 1.1: Basic characteristics of the IEEE 802.11 family of protocols.

ends) along with a coverage radius of approximately 70 m [8];some experts claim that these

revolutionary benefits will eventually convince the majority of modern commercial users to

abandon cable access networks technology. The main specifications of the most known IEEE

802.11 protocols are tabulated in Table 1.1.

Apart from WLAN services, a new innovative technology promises to replace last-mile wired-

access networks and provide broadband Internet to emergingmarkets that have no broadband

access. With a theoretical maximum data rate of 75 Mbits/s and maximum transmission range

of 50 Km, the Worldwide Interoperability for Microwave Access (WiMAX) protocol is re-

garded as an economically viable solution for seamless long-range delivery of information. The

associated IEEE 802.16d standard, finalised in 2004 for the 2–11 GHz frequency band, is suit-

able for fixed wireless access but lacks mobility support [9]. Since then, various amendments

were proposed which evolved to the latest IEEE 802.16e standard, aiming to support nomadic

mobility [10]. This mobile WiMAX scheme is planning to use MIMO technology to improve

coverage and exploit the Non Line-of-Sight (NLoS) propagation that exists in the vast majority

of practical radio channels. Interestingly, most countries allow higher power output levels in

the upper 5 GHz band (5.725–5.850 GHz) than in the lower 5 GHz bands, making the former

more attractive to WiMAX applications. Though originally designed for point-to-multipoint

topologies in which a base station (BS) distributes traffic to many subscriber stations mounted

on rooftops, WiMAX is also anticipated to provide users withbroadband connectivity over

huge indoor areas such as transportation halls, shopping malls, airport lounges and many more;

this is the key difference between WiMAX and the 802.11 hotspots which offer a moderate

coverage and are convenient for allowing a home or office PC toconnect to the Web [11].
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1.3 Short-range wireless communications

The second part of this thesis covers the area of short-rangecommunications where the two ends

are not spaced far apart and the link is dominated by a non-fading deterministic Line-of-Sight

(LoS) component. While the conventional applications include peer-to-peer communications,

fixed wireless access and Bluetooth, an emerging technologyhas recently attracted considerable

research and industry interest. This is the field of vehicular on-the-road communications which

hold the promise of great improvements in both the efficiencyof the transport systems and the

safety of all road users.

The automotive industry strives decisively to develop a novel WLAN technology suitable for

vehicle-to-vehicle (VTV) and vehicle-to-roadside (VTR) channels. The so-called Dedicated

Short-Range Communications (DSRC) protocol is designed towork in parallel with cellular

communications by providing high data rates with a low latency between vehicles and from

vehicles to fixed infrastructure units. The official spectrum allocation for DSRC was completed

in 1999 by the American Federal Communication Commission which designated 75 MHz of

bandwidth, partitioned into seven 10 MHz channels, at the 5.9 GHz Intelligent Transportation

System (ITS) frequency band. It has also being standardisedas the IEEE 802.11p protocol (due

to be ratified in April 2009) which is essentially an amendment of the IEEE 802.11a protocol

adjusted for low overhead operations in the DSRC spectrum [12]. Apart from the DSRC band-

width that is half of the 802.11a bandwidth, the remaining physical layer specifications, such

as the modulation scheme, frame structure and training sequences, are almost identical [13].

Nevertheless, while IEEE 802.11a has been designed for indoor WLAN applications in a low-

mobility environment, IEEE 802.11p is expected to operate over time-selective channels where

vehicles are moving with speeds as high as 120 miles/h and offer a wider coverage of up to

1000 m.

The DSRC applications are usually classified into safety andnon-safety with higher priority be-

ing given to the former category following the steadily increasing need for zero-accident road

journeys and minimisation of the tremendous cost caused by traffic collisions. In 2006, road

accidents accounted for 39,000 deaths within Europe while in the U.K. alone this number was

3,172. According to the World Health Organisation (WHO), road accidents cause the death

of 1.2 million people annually worldwide, making it the seventh biggest killing cause in the

world, while by 2020 road deaths are predicted to become the third killing cause. Road traf-

fic injuries cost low-income and middle-income countries between 1% and 2% of their gross
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national product which represents more than the total development aid received by these coun-

tries [14]. While different factors contribute to vehicle crashes, such as mechanical problems

and bad weather, driver behaviour is considered to be the leading cause of more than 90 percent

of all road accidents. In fact, the inability of drivers to react fast to emergency situations can

potentially cause chain collisions where an initial crash is followed by secondary crashes [15].

This is the main reason behind extending ITS technology to safety applications that include

among others: intersection collision avoidance, road status reports, alerts for approaching emer-

gency vehicles and lane departure, forward obstacle detection and avoidance as well as sudden

halt warnings.

Apart from safety applications, a variety of more demandingapplications have emerged which

range from high-speed networking and video streaming to mobile commerce and Web surfing.

Due to the high spectral efficiency requirements these applications impose, the use of multiple

antenna elements seems sensible, thereby bringing MIMO technology to the field of vehicular

communications. An illustrative graph showing the future of vehicular communications with

full availability, connectivity, flexibility, and transparency between road users is seen in Fig. 1.1.

Figure 1.1: A future deployment scenario of vehicular communications (courtesy of [16]).
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1.4 Key contributions

The main contributions of this work are now summarised as follows:

• A novel statistical-based indoor channel model that captures the fading variations of each

spatial eigenmode separately and assigns the flexible Nakagami-m distribution to each of

them [17, 18]. The model yields an excellent fit with a set of measured data and system-

atically outperforms two analytical reference models thathave recently been proposed in

the corresponding literature.

• A powerful unconstrained technique for generating independent Nakagami-m envelope

deviates for arbitrary values of the corresponding shape parameters. The method is con-

structed upon the well knownrejection/acceptancetechnique and overcomes the defi-

ciencies of all similar techniques and in parallel offers a remarkable accuracy [19].

• A new maximum likelihood (ML) high-resolution array processing technique namely, the

three-dimensional (3D) frequency domain-Space Alternating Generalised Expectation

Maximisation (FD-SAGE) algorithm is devised for estimating the multipath parameters

in both temporal and spatial domains [20]. The scheme is further used to characterise an

indoor MIMO channel by means of clustering, azimuth dispersion and inter-dependency

of the spatial domains [21].

• For the case of dual-branch3 VTR MIMO Ricean configurations, a maximum near-field4

LoS capacity criterion is formulated as a function of the carrier wavelength, transmit-

receive separation distance and inter-element spacings. The capacity of systems that

follow this criterion is not only benefited by the presence ofstrong LoS components but

is normally greater than the capacity offered by the usual Rayleigh channels [22].

• Taking into account the high practical usability of dual MIMO Ricean systems (small

setup size and low implementation cost), a detailed statistical eigenanalysis is carried

out and novel closed-form formulae are derived for the eigenvalue and condition number

densities [23]. These expressions are subsequently used toconstruct an adaptive detec-

3Throughout the thesis, the termdual-branchor simply dual will stand for MIMO systems with two transmit
and two receive antenna elements.

4Hereafter, the termnear-fieldwill express the close-in region of an antenna where the angular distribution is
dependent upon the distance from the source and the waves arepropagating as spherical wavefronts. On the contrary,
the far-field is the region outside the near-field where the angular distribution is independent of the distance from
the source and the waves are propagating as plane wavefronts.
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tor (AD) which switches between the robust but computationally expensive ML and the

suboptimal Zero Forcing (ZF) detector [24].

• A novel ergodic capacity upper bound for dual double-correlated MIMO Ricean systems

is derived based on a fundamental power constraint; the bound is applicable for arbitrary

rank of the deterministic mean channel matrix and arbitrarySNR and, more importantly,

includes previously reported analytical bounds as specialcases [25]. The tightness of the

bound is also analytically determined for asymptotically low and high SNRs.

1.5 Organisation of the thesis

An outline of the remainder of this thesis is given in this section.

Chapter 2 covers the principles of wireless propagation and subsequently presents the funda-

mental properties of the promising MIMO technology. Moreover, the area of channel modelling

is reviewed while the main characteristics of each model arehighlighted. A categorisation of

all models, with regard to which features the model’s designer intends to reconstruct, is also

performed.

Chapter 3 proposes a novel spatial channel model based on theKarhunen-Lòeve Transform

(KLT) which is validated through a set of measurement data atthe carrier frequency of 5.2

GHz. The scheme decomposes the MIMO correlation matrix and assigns a Nakagami-m fading

distribution to each resulting uncorrelated eigenmode. The model’s performance is assessed by

means of mutual information and link-level performance where its superiority, in comparison

with two reference models, is clearly demonstrated.

Chapter 4 introduces an array processing algorithm for extracting multipath channel param-

eters. In particular, the 3D FD-SAGE algorithm is employed in conjunction with the serial

interference cancellation (SIC) technique to identify thedominant paths and estimate their key

parameters. Apart from validating the scheme robustness ina synthetic environment, a detailed

characterisation of the previously mentioned measured channel is conducted in the double di-

rectional domain using the SAGE framework.

Chapter 5 suggests a straightforward criterion for achieving high VTR MIMO capacities in the

presence of a LoS component. The sensitivity of the proposedconfiguration is investigated un-

der optimal and suboptimal positioning and orientation conditions. Secondly, the eigenstatistics
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of dual MIMO Ricean channels are analytically assessed and closed-form formulae are derived

which are validated through Monte-Carlo simulations. These statistical results are finally ap-

plied to the detection stage of MIMO receivers so that an AD isdeveloped that can minimise

the implementation cost and complexity of most practical ML-based testbeds.

Chapter 6 derives a novel upper bound on the ergodic capacity of dual spatially correlated

MIMO Ricean systems that includes previously reported bounds as special cases. Apart from

being remarkably simple and efficient, the bound is applicable for any arbitrary rank of the LoS

component and system SNR. Its tightness is analytically evaluated and asymptotic closed-form

expressions for the error of the bound are presented which are verified through Monte-Carlo

simulations.

Chapter 7 forms a summary of the most important conclusions drawn fromthis thesis and

proposes several research paths for future work.
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Chapter 2
MIMO wireless systems and

background of channel modelling

The medium responsible for the transmission and reception of information signals between two

antennas in space is widely known as the wireless propagation channel. According to [26],

there is a key difference between the radio channel and the propagation channel. In partic-

ular, the latter does not take into account the antenna patterns and this means that isotropic

antennas are assumed at both sides. The radio channel thoughincludes both array responses

and therefore is described by a non-directional channel response. In this chapter, the funda-

mental concepts and background for statistically modelling a MIMO propagation channel are

assessed. The remainder of this chapter is organised as follows: Section 2.1 presents a sum-

mary of the basic multipath propagation mechanisms and manifestations experienced in typical

wireless channels. In Section 2.3, the foundations of MIMO technology are outlined along

with an investigation of the trade-offs between MIMO features. Also, a brief derivation of the

very useful capacity formula is presented. In Section 2.4, the principles of multi-dimensional

channel modelling are introduced with a view to double directional propagation. Section 2.5

focuses on the current state-of-the-art in the area of MIMO channel modelling; classification of

the channel models into relevant categories is also provided along with the key characteristics

of each model. Finally, Section 2.6 concludes the chapter and summarises the key findings.

2.1 Basic multipath propagation mechanisms

In a wireless channel, the interaction of the transmitted signal with the physical environment

as it travels towards the Rx creates multiple propagated wavefronts; a phenomenon usually

referred to asmultipath propagation. Multipath propagation occurs due to three basic mecha-

nisms, namelyreflection, diffraction, andscattering. In Fig. 2.1, an illustrative figure shows the

mechanisms causing multipath effects in an indoor environment. The impact of each of these

mechanisms on the received signal is outlined below.
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Figure 2.1: Basic propagation mechanisms in an indoor wireless channel.

Transmissioncorresponds to the direct route between the Tx and Rx; if thisis unobstructed,

free-space LoS propagation takes place. In the case of obstructed-LoS (OLoS) transmission

through walls and ceilings, it has been found that the penetration loss, as defined by Rice in [27],

is a function of the construction materials of a building, building orientation with respect to the

Tx, internal layout, floor height and the percentage of windows in a building [28]. The main

effect of OLoS transmission is that the direct component power is much closer to the power of

the diffracted and reflected components.

Reflectionoccurs when a propagating electromagnetic wave impinges upon a surface with di-

mensions much larger than the wavelengthλ of the wave. In an outdoor environment, reflec-

tions are created by the surface of the earth and buildings while in an indoor environment,

reflections are mostly caused by floors, walls, ceilings and furniture [29]. The roughness of

surface defines the type of reflection according to:

• Specular reflectionoccurs when the surface is smooth and ideally infinite. The incoming

wave splits up into reflected and transmitted (refracted) waves whose magnitudes can be

computed via Fresnel’s formulae. The main characteristic of specular reflection is that

the directions of the incident and reflected waves are the same with respect to the surface

normal on the same plane. While there are no perfectly flat andinfinite surfaces, specular

reflection is a good approximation if the surface is sufficiently large in wavelengths (i.e.

larger than the cross-section of the first Fresnel zone) and not too rough compared toλ.
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• Diffuse reflectionoccurs when the surface has a degree of roughness and this causes the

incoming ray to be spread in a broad range of non-specular directions and further re-

duces the energy in the specular direction. The severity of diffuse scattering is dependent

on both the surface roughness and incidence angle. A critical surface roughnessCr is

determined by the Rayleigh criterion which is given as [30]

Cr =
4πσ cos θ

λ
(2.1)

whereσ is the standard deviation of the surface irregularities andθ is the angle of inci-

dence with respect to the normal of the surface. In general, the surface is considered to

be smooth and thus specular reflection dominates whenCr < 0.1; in such a case, waves

reflected from the surface encounter only small relative phase shift with respect to each

other. ForCr > 10 though, highly diffuse reflection dominates and the specularly re-

flected wave is small enough to be neglected given that waves reflected from the surface

exhibit a relatively large phase shift. An illustrative graph showing the different types of

reflection can be seen in Fig. 2.2.

Smooth Rough Rougher

Specular

direction

Scattered

wave

Scattered

wave

Figure 2.2: The effect of surface roughness on the type of reflection (adopted from [30]).

Diffraction occurs when a radio path is obstructed by either a surface that has sharp irregulari-

ties (edges) or a dense body with dimensions that are large compared toλ, causing secondary

waves to be formed behind the obstructing body [29]. This phenomenon originates from Huy-

gen’s principle which states that all points on a wavefront act as point sources of secondary

wavelets; these wavelets are eventually combined to produce a new wavefront in the direc-

tion of propagation [29, 30]. Diffraction is often termed shadowing because the diffracted field

can reach the Rx even when shadowed by an impenetrable obstruction [31]. In outdoor en-

vironments, diffraction usually occurs via propagation around hills or over rooftops while in

the indoor environment, diffraction normally occurs via propagation around door openings and

corners. The power loss associated with this propagation effect is usually very high compared

to that of reflection.
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Scatteringoccurs when a radio wave impinges on any surface with dimensions of the order of

λ or less, causing the reflected energy to spread out in all directions. In an urban environment,

typical obstructions that yield scattering are foliage, lamp posts and road signs while in indoor

environments the primary scatterers are walls and furniture [29]. Henceforth, the term scatterer

will describe any obstacle that causes a change to the direction of a propagating wavefront.

2.2 Basic multipath propagation manifestations

At this point, the reader is reminded that multipath propagation can also be characterised by

means ofpath loss(Pl) andfading. A brief description of these phenomena is provided below.

2.2.1 Path loss

Path losscan be defined as the ratio of the received to transmitted power. In fact, it expresses

the diminution of the received powerPr with distanced as

Pr(d) = P0

(
d

d0

)−np

(2.2)

wherenp is the so-called Pl factor andP0 the reference power, dependent on the transmitted

power, frequency and antenna gains, at a known distanced0. For free-space propagation,np =

2 but becomes larger for other more complicated cases. In general, the more cluttered an

environment is the higher the value ofnp. The Pl also depends on the operating frequency; the

authors in [32] compared the path losses for 1.7 GHz and 60 GHzand showed that the difference

is greater than 45 dB. The difference inP0 (31 dB) partially explains the result. The rest of the

difference is due to the higher penetration loss of materials and the stronger reflections and

diffractions at higher frequencies. An excellent review ofPl models can be found in [33, 34].

2.2.2 Slow and fast fading

The superposition of all impinging waves at the Rx gives riseto fluctuations in the amplitude

and phase of the received signal, commonly known as multipath fading, which is also distance

dependent. A further classification can be made in two categories namelylarge scale(or slow

fadingor sometimesshadowing) andsmall scale fading(or fast fading).

13
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Large scale fadingrefers to the slow long-term variation of the local mean signal strength as a

mobile terminal (MT) moves over tens of wavelengths. The term shadowing is indicative since

typically these changes are due to the changes in visibilityor the appearance/disappearance

of shadowing objects on the signal paths. In outdoor environments, it is mainly caused by

prominent terrain contours (for instance hills, forests, buildings) while in indoor propagation,

it occurs due to the blocking effects of large objects such aswalls and furniture [31]. The

envelope of a slow-fading signal has been found to follow a log-normal distribution especially

in outdoor environments [29].

Small scale fadingexpresses the dramatic short-term changes in the signal envelope as a MT

moves over small distances. This rapid fluctuation can be attributed to the incoherent summa-

tion of a large number of independent rays coming from all directions with random phases (as

a result of different path lengths) which can add either constructively or destructively. Fig. 2.3

illustrates an example of the path loss, small and large scale fading phenomena as a function of

the distance travelled by a MT.

Figure 2.3: Fading manifestations vs the distance travelled by a MT (courtesy of [35]).

For the statistical description of fast fading envelopes, three main distributions have been pro-

posed, namely Rayleigh, Ricean and Nakagami-m. Rayleigh fading can model multipath sit-

uations when there is no direct LoS between the Tx and Rx and the incoming waves have ap-

proximately equal amplitudes. The probability density function (PDF) of the signal’s envelope

14
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r is then given by [36]

p(r) =
r

σ2
exp

(
− r2

2σ2

)
, r ≥ 0 (2.3)

whereE
{
r2
}

= 2σ2 is the distance-average power of the received signal. For the rest of

the thesis, the notationE {·} will refer to the expectation operation. Under these conditions

the phase of the received signal is uniformly distributed in[0, 2π). In practice, however, there

is occasionally a dominant incoming wave which can be eithera LoS component or a strong

specular wavefront. In such a case, the envelope of the received signal follows the Ricean

distribution according to [36]

p(r) =
r

σ2
exp

(
−r

2 + b2

2σ2

)
I0

(
br

σ2

)
, r ≥ 0, A ≥ 0 (2.4)

with b being the peak amplitude of the dominant signal andI0(·) the modified Bessel function

of first kind and zero order. The RiceanK-factor controls the ratio of powers of the free-

space signal and the scattered waves, i.e.K = b2/2σ2; whenK = 0 the Ricean distribution

degenerates to a Rayleigh distribution.

The Nakagami-m distribution [37] has also attracted considerable research interest since it

yields a satisfactory fit for various measured channels overa wide range of frequency bands [38,

39]. The corresponding PDF is

p(r) =
2

Γ(m)

(m
Ω

)m
r2m−1e−mr2/Ω, r ≥ 0 (2.5)

whereΓ(·) expressing the Gamma function andΩ = E
{
r2
}
≥ 0 is the average power. The

Nakagami fading figurem, indicating the severity of fading, is determined as

m =
Ω2

E
{

(r2 − Ω)2
} ≥ 1

2
. (2.6)

Both Ricean and Nakagami-m distributions have two shape parameters and behave approxi-

mately equivalently near their mean value. Whenm = 1 the Nakagami distribution reduces to

Rayleigh distribution while form = 0.5 it reduces to the one-sided Gaussian distribution.
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2.2.3 Flat and frequency-selective fading

Another distinction is usually made to the type of fading with regard to the so-calledcoherence

channel bandwidth. The coherence bandwidth, which is inversely related to thetime delay

spread of the channel, indicates the minimum frequency separation at which the attenuation

of the amplitudes of two frequency components becomes decorrelated. The decorrelation is

usually defined as the point where the correlation coefficient between the fading envelopes at

the two frequencies is reduced from unity to 0.9 or 0.5.

On this basis,flat fadingoccurs when the coherence bandwidth is larger than the bandwidth

of the signal. Therefore, all frequency components of the signal will experience the same

magnitude of fading. On the other hand,frequency-selective fadingoccurs when the coherence

bandwidth of the channel is smaller or of the order of the bandwidth of the signal. Under these

circumstances, two frequency components that are far apartexperience substantially different

attenuations.

2.3 Fundamentals of MIMO technology

2.3.1 Background of MIMO systems

The potential of employing multiple antennas at both ends ofa radio link in order to improve the

channel throughput was sparked by the pioneering work of Winters in 1987 [40]. Surprisingly,

it was not until mid-90s that two breakthrough papers by Foschini [5] and Telatar [6] separately

investigated this promising technology in detail. Both authors showed that MIMO systems

have the unique ability to turn multipath propagation, usually regarded as a serious hindrance

in wireless communications, into an advantage for increasing the spectral efficiency. Under

independent Rayleigh fading conditions, MIMO systems offer a linear capacity increase that

is proportional to the minimum number of receiveM and transmitN antenna elements, i.e.

min {M,N}.

The boost in spectral efficiency offered by an ideal MIMO system was firstly demonstrated

in [5], where an architecture called BLAST1 along with a reconstruction algorithm and a cod-

ing/decoding scheme were devised. The most attractive feature of MIMO systems is their

ability to simultaneously transmit individual (orthogonal) data streams from each antenna el-

1BLAST: Bell Labs Layered Space Time.
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ement; in the literature, this feature is widely known asspatial multiplexing(SM) [41]. The

number of orthogonal multiplexed streams depends on the spatial properties of the surrounding

environment and is upper limited bymin {M,N}.

Another feature of MIMO systems isspatial diversitywhich is a means to combat fading by

exploiting multiple uncorrelated replicas of the transmitted signal. Diversity occurs when the

antenna spacing is high enough so that independent signal paths are created, resulting in a

reduced variation of the received signal’s power. Diversity reduces the probability that all

branches are in a deep fade simultaneously and thus it enhances the error rate performance

(channel hardening). MIMO techniques permit the spatial diversity to be exploited at both

sides of the radio link with the maximal diversity gain beingMN .

However, there is an inherent trade-off between SM and spatial diversity. This means that

increasing the diversity advantage comes at the expense of decreasing the SM gain, and vice

versa. In fact, the authors in [42] showed that the diversity-multiplexing trade-off achievable

by a system is a more fundamental measure of its performance than just its maximal diversity

gain or its maximal multiplexing gain alone. Generally, theoptimal trade-off is determined by

system requirements such as the desired data rate and reliability of transmission. High data

rates can be achieved by employing multiplexing to full extent while high reliability benefits

from diversity [43].

Smart antenna systems, which use an antenna array at a singleend, make use ofbeamforming

in order to increase the average SNR and suppress interference from other users by steering

energy into desired directions. Likewise, for MIMO systemsbeamforming may be applied at

the Tx and/or the Rx side. The more directive a channel is the higher its beamforming gain.

For pure LoS conditions with only one path present, the maximal beamforming gainMN is

obtained, albeit at the expense of an increased spatial correlation that diminishes the beneficial

effects of spatial diversity. Finally, it should be underlined that full beamforming excludes full

diversity or multiplexing and the same is true for full diversity and beamforming/multiplexing;

however, full multiplexing excludes beamforming whereas it only reduces diversity.

17



MIMO wireless systems and background of channel modelling

2.3.2 General structure of MIMO systems

Let us now consider a general MIMO system equipped withN transmit andM ≤ N receive

antenna elements. For such a scenario, the transmitted signal x(t) ∈ C
N×1 can be modelled as

a signal vector

x(t) = [x1(t), x2(t) . . . , xN (t)]T (2.7)

wherexn(t) is the signal emitted by then-th transmit antenna element and[·]T denotes trans-

position. Similarly, the received signal vectory(t) ∈ C
M×1 is modelled as

y(t) = [y1(t), y2(t) . . . , yM (t)]T . (2.8)

Then, the input-output complex relationship can be succinctly written as

y(t) =



√

ρ

N

∫

τ

H(t, τ)x(t− τ)dτ


 + n(t) (2.9)

whereρ is the average SNR per branch at the Rx andn(t) is the noise plus interference term.

The elements of the channel impulse response matrixH(t, τ) ∈ C
M×N describe the response

between them-th receive and then-th transmit element. The channel matrix, containing all

complex response coefficients, is then written as

H(t, τ) =




h11(t, τ) h12(t, τ) · · · h1N (t, τ)

h21(t, τ) h22(t, τ) · · · h2N (t, τ)
...

...
. ..

...

hM1(t, τ) hM2(t, τ) · · · hMN (t, τ)




(2.10)

whereτ corresponds to the delay index. For the flat-fading case, where the channel is non-zero

only for τ = 0, (2.9) becomes

y(t) =

√
ρ

N
H(t)x(t) + n(t). (2.11)
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2.3.3 MIMO capacity

For the derivation of MIMO capacity formula, let us considerthe case where the Tx is con-

strained to its total powerPt regardless of the number of antennas, i.e.

tr(Q) ≤ Pt (2.12)

whereQ = E
{
xxH

}
is the input covariance matrix,[·]H denotes the Hermitian transpose

andtr(·) returns the trace of a matrix. The common assumption that theelements ofn(t) are

independent and identically distributed (i.i.d.)∼ CN (0, 1) complex variables is introduced and

then the noise covariance matrixE
{
nnH

}
= IM , with IM the(M ×M) identity matrix.

As was remarked in the introductory chapter, for memorylesschannels, capacity represents the

maximum mutual information. Following (2.11), the mutual informationI (x; (y,H)) between

the inputx and the outputy can be written as2

I (x; (y,H)) = H (y|H) −H (y|x,H) = H (y|H) −H (n|H) . (2.13)

In general,H(A|B) stands for the conditional entropy between the random variables (RVs)A

andB. Given a covariance matrixQ, circularly symmetric complex Gaussian variables3 are

entropy maximisers and therefore it is sensible to assign this distribution4 to the input signal

x [6]. Then, the received signal is in turn a circularly symmetric complex Gaussian variable

with covariance matrixE
{
yyH

}
= ρ

N HQHH +IM . Substituting this relationship into (2.13),

the mutual information of a random MIMO channel becomes

I = log2

(
det
( ρ
N

HQHH + IM

))
. (2.14)

Hence, the instantaneous capacityC of an(M×N) MIMO channel with Gaussian inputs is [6]

C = max
Q≥0; tr(Q)≤Pt

log2

(
det
( ρ
N

HQHH + IM

))
(2.15)

where the maximisation is performed over a set of positive and semi-definite Hermitian matrices

2Note that the channel is fully described with inputx and output(y,H) = (Hx + n, H).
3A circularly symmetric complex Gaussian variablez, denoted byz ∼ eN (0, σ2), is a complex RVz = x + jy

where bothx andy are i.i.d.∼ N (0, σ2/2).
4The differential entropy of a complex Gaussian vectorx with covarianceQ is given bylog

2
(det(πeQ).
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Q satisfying (2.12). The ergodic capacity (or the expectation ofC) then reads

C = max
Q≥0; tr(Q)≤Pt

EH

{
log2

(
det
( ρ
N

HQHH + IM

))}
(2.16)

where the expectation is taken with respect to the random channel matrixH. To the best of the

author’s knowledge, no explicit closed-form solution for the maximisation overQ exists in the

literature. In his seminal work though, Telatar showed thatwhen the channel matrix has i.i.d.

∼ Ñ (0, 1) entries and no channel state information (CSI) is availableat the Tx, it is optimal

to use a uniform power distribution with a transmit covariance matrixQ = IN . Under these

conditions, a Rayleigh fading channel is modelled with sufficient physical separation between

the transmit and receive antenna elements. This approach results in the well known formula for

the ergodic MIMO capacity [5, 6]

C = EH

{
log2

(
det
(
IM +

ρ

N
HHH

))}
. (2.17)

For the remainder of this thesis, the above equation will be used5. However, it should be made

clear that this formula is based on the isotropic property ofthe i.i.d. complex GaussianH where

the ergodic capacity is achieved with covariance matrix identity. There is a misconception on

this issue since many researchers define the ergodic capacity, irrespective of the distribution of

the channel matrix, according to (2.16). This discrepancy can be attributed to the difficulty in

deriving the optimum matrixQ when the channel is not i.i.d. complex Gaussian [44].

The ergodic capacity is evidently maximised whenE
{
HHH

}
= NIM . In physical terms, this

corresponds to a system with orthogonal MIMO subchannels and a capacity equivalent to that

of M independent SISO channels as

Cmax = M log2(1 + ρ). (2.18)

On the other hand, the minimum ergodic capacity is obtained for E
{
HHH

}
= N1M , where

1M is an(M×M) all-one matrix. This corresponds to an entirely correlatedMIMO system and

the associated capacity is equivalent to that of a Single-Input Multiple-Output (SIMO) system

Cmin = log2(1 +Mρ). (2.19)

5WhenM ≥ N , M should be replaced withN andHHH with HHH. This holds true thanks to the fundamental
determinant propertydet (I + AB) = det (I + BA).
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In order to get a solid insight into the advantages of MIMO systems, a graph showing the com-

plementary cumulative distribution functions (CCDFs) of capacity, for different numbers of

Tx/Rx elements and a fixed SNRρ = 20 dB, is depicted in Fig. 2.4. The channel matrix is

assumed to have i.i.d. Rayleigh fading entries. Clearly, capacity exhibits a linear increase with

the number of antenna elements thereby validating the aforementioned theoretical background.

Finally, when perfect CSI is available at both ends, smarterallocation strategies have been pro-

posed, like thewater filling theorem so as to maximise capacity [45]. The main concept behind

this scheme is to allocate the highest amount of power to the strongest spatial subchannels. An

investigation of MIMO capacity bounds, under different assumptions about the available CSI

at both the Rx and Tx, can be found in [46, 47].
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Figure 2.4: Capacity CCDFs of different i.i.d. Rayleigh MIMO channels.

2.4 Multi-dimensional channel modelling

In MIMO channels, the selectivity in time and frequency domains comes with the selectivity

in a third dimension, that is space. Taking into account thatthe angular (spatial) distribution

of energy is a key issue when modelling MIMO channels, we end up with the so-calleddouble
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directional description. The terms double directional indicate that the spatial characterisation

is carried out at both ends of the link whereas a non-directional model accounts merely for the

temporal spreading.

2.4.1 Principles of double directional propagation

In Fig. 2.5, a rich scattering MIMO channel consisting of multiple propagation paths is shown.

 Direct (LoS)

 Indirect (NLoS)

scatterer

scatterer

scatterer

scatterer

scatterer

scatterer

scatterer

N elements
M elements

Figure 2.5: The concept of double directional propagation in MIMO channels.

In general, each multipath component (MPC) can be identifiedby means of its Time of Ar-

rival (ToA), Direction of Arrival (DoA), Direction of Departure (DoD) and complex amplitude.

Then, the communication between a Tx located at−→rt and a Rx located at−→rr in the 3D space

may be expressed as the superposition ofL impinging paths, leading to thedouble directional

impulse response[26, 48]

h (−→rt ,−→rr , τ,Ωt,Ωr) =

L∑

ℓ=1

βℓδ(τ − τℓ)δ(Ωt − Ωt,ℓ)δ(Ωr − Ωr,ℓ). (2.20)

In the above equation,βℓ, τℓ, Ωt,ℓ, Ωr,ℓ are the complex amplitude, ToA, DoA, DoD of the

ℓ-th MPC respectively andδ(·) is the delta Dirac function. For the sake of simplicity, the

polarisation selectivity has been excluded from the analysis. The spatial angleΩt is uniquely
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determined by the azimuthφt and elevationψt which are the spherical coordinates on a sphere

of unit radius6,

Ωt , [cos(φt) sin(ψt), sin(φt) sin(ψt), cos(ψt)]
T . (2.21)

In realistic wireless channels though, the positions of both the Tx and/or Rx and surrounding

scatterers are not fixed but may change with time. This also causes the disappearance of MPCs

and the appearance of new interactions. In this light, a moregeneral version of (2.20) can

be obtained for time-variant channels where the number of MPCs as well the corresponding

parameters are varying with time

h (t, τ,Ωt,Ωr) =

L(t)∑

ℓ=1

βℓ(t)δ(τ − τℓ(t))δ(Ωt − Ωt,ℓ(t))δ(Ωr − Ωr,ℓ(t)). (2.22)

Following the distinction between the radio and propagation channel as defined in [26], we can

easily conjecture that (2.22), which describes the latter,assumes isotropic radiators at both ends

of the link.

2.4.2 Double directional propagation and MIMO channel matrix

While the double directional response (2.20) is indicativeof the underlying propagation mech-

anisms, the MIMO channel matrix can describe the responses between each pair of transmit

and receive elements given a specific antenna configuration and bandwidth. A direct conjunc-

tion (for time-invariant channels) between these two frameworks is achieved via the relation-

ship [49]

hij(τ) =

∫

Ωt

∫

Ωr

∫

τ ′

h
(−→rt (j),−→rr (i), τ ′,Ωt,Ωr

)
Gt(Ωt)

Gr(Ωr)f(τ − τ ′)dτ ′dΩrdΩt (2.23)

where−→rt (j) expresses thej-th transmit element coordinates andGt(Ωt) is the transmit antenna

pattern. The same notation holds for the receive side through the subscript(·)r. Finally,f(τ) is

the combined impulse response of both antennas. From (2.23), the reader sees that the impulse

response needs to be known between all possible pairs of transmit and receive elements [49].

6The DoAΩr is defined likewise.
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2.5 Review of MIMO channel models

In recent years, the area of MIMO channel modelling has gained extensive research interest

since an accurate model can in principle predict the propagation mechanisms and ultimately

make possible the integration of MIMO technology into real-life applications. This section

provides a survey of the most important developments in the area of MIMO channel modelling.

Following the concept in [50], channel models are classifiedinto physicalandanalyticalmod-

els. The former are independent of antenna configurations (antenna pattern, number of antenna

elements, array geometry, polarisation) and system bandwidth while analytical models char-

acterise the channel impulse response between individual transmit and receive antennas in a

mathematical way without explicitly accounting for wave propagation.

2.5.1 Physical models

Physical models are supported by the principles of electromagnetic wave propagation and orig-

inate from the early days of cellular radio when only the signal amplitude distributions and

Doppler spreads could be investigated. Following the rapidevolution of wireless communica-

tions, these models became far more sophisticated in order to encompass additional features

such as the time delay spread, angular statistics, joint distributions between delay/angular do-

mains and many more. In any case though, the great majority ofthem are built upon the

fundamental principles of cellular radio models [51]. Physical models can be further classified

into deterministic, geometry-based stochasticandnon-geometrical stochasticmodels [49, 50].

2.5.1.1 Deterministic physical models

In deterministic models, the environment (positions of Tx,Rx and scatterers) is prescribed in a

fixed (deterministic) way and thereafter the fundamental Maxwell’s equations are solved using

one of the widely known methods of electromagnetism (Methodof Moments, Finite Differ-

ence Time Domain Method, Finite Element Method). Naturally, the accuracy of deterministic

models is strongly dependent on the accuracy and detail of the site-specific representation of

the propagation medium. The main drawback of deterministicmodels is that they require large

amounts of computer resources (both memory and processing time) if different channel situa-

tions are to be studied, as well as a detailed description of simulation environments that is often

time-consuming and impractical.
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The most known deterministic models are the ray tracing (RT)algorithms [52, 53], constructed

upon the Geometrical Optics (GO) theory in order to account for the signal’s interactions with

the surrounding environment. RT techniques try to assess the propagation characteristics such

as path loss, reflection, diffraction and scattering. GO theory relies on the so-called ray approx-

imation which is valid when the wavelengths of the propagating waves are much smaller than

the dimensions of the environment obstacles; this is the case for most urban propagation prob-

lems. The ray approximation suggests that multipath propagation can be expressed as a tube of

rays, each of them corresponding to a piece-wise linear pathconnecting two terminals [50]. In

RT algorithms, the positions of both terminals as well as themaximum number of successive

interactions, usually referred to as the prediction order,are specified by the user. Apart from the

environment’s geometry, the electromagnetic parameters of materials and the speeds of moving

objects (cars, buses) also need to be inserted as input parameters to the model at the generic iter-

ation. Yet, RT models are only representative of the considered environment and thus, multiple

runs are required to obtain a comprehensive set of differentpropagation environments.

2.5.1.2 Geometry-based stochastic physical models

The plethora of geometry-based stochastic channel models (GSCMs) makes the detailed de-

scription of them a non-trivial task. Hence, the focus will be on the most innovative models

(some dating back to 70s) given that the majority of the rest are actually variations of them.

In a GSCM, the location of the scatterers is chosen stochastically assuming a certain PDF and

the model is derived from the position of the scatterers by applying the fundamental laws of

reflection, diffraction and scattering. The main GSCM advantages were summarised in [54] as

• An immediate projection onto physical reality is availablesince the important param-

eters (like scatterer locations) are usually determined according to simple geometrical

considerations.

• Most effects are implicitly reproduced; for instance, small scale fading is created by the

superposition of waves from individual scatterers while DoA and delay drifts caused by

MT movement are implicitly included.

• All information rests a priori in the distribution of scatterers; hence, dependencies of the

power delay profile (PDP) and angular power spectrum (APS) donot further complicate

the model.
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• Tx/Rx and scatterer movement as well as shadowing and the (dis)appearance of propa-

gation paths can be easily implemented; this allows for inclusion of long-term channel

correlations in a straightforward way.

An initial modelling approach was introduced by Lee in 1973 [55] who suggested the even

placement of scatterers on a circle (ring) around the MT to predict the spatial correlation be-

tween signals received by two sensors. This approach is valid when the BS is elevated and not

obstructed by local scattering, as usually occurs in macrocells. Since then, different extensions

have been proposed with the most significant reported in [56,57]. The simplicity and easy im-

plementation of the one-ring model makes it remarkably elegant; hence, it has also been applied

to multi-antenna element systems, as a number of recent publications indicates [58–61]. The

extension to account for frequency-selective MIMO channels, and thus enable the accurate sim-

ulation of the highly promising Orthogonal Frequency Division Multiplexing (OFDM) MIMO

systems, was recently published in [62]. A uniformly distributed disk of scatterers around the

MT is another model describing scattering especially in macrocellular environments where the

BS antenna is mounted above rooftops and thus no scattering occurs from locations near it. The

idea of placing the scatterers within a circle was motivatedby Jakes’ work [63] and adopted by

many research groups which subsequently extracted the Doppler spectrum [64], joint ToA/DoA

distribution [51], APS [65] and finally the delay spread and DoA distribution [66]. Different

types of scatterer distributions, such as Rayleigh [67] andone-sided Gaussian [68], have also

been reported.

If a microcellular environment is to be examined then the uniform placement of scatterers

within an ellipse, whose foci are the BS and the MT, yields an enhanced fit [69]. Under these

conditions, antenna heights are relatively low and therefore scattering is likely to occur in the

vicinity of both the BS and MT. A space-time generalisation of this model for SIMO chan-

nels can be found in [70] while the extension to wideband MIMOchannels in [71]. It should be

pointed out that both one-disk and elliptical models allow for a path-loss exponent to be defined

so that scatterers with longer delays suffer larger attenuation. However, they are both deficient

for indoor environments where the scatterers are distributed all over the 3D volume and thus

it is impossible to obtain any information about their distribution and further multiple (rather

than single) reflections occur [72].

It is also worth noting a special class of GSCMs, namely the two-ring models which are ap-

propriate for mobile-to-mobile communications especially when neither the Tx nor the Rx are
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elevated but both are surrounded by a large number of local scatterers. Early work on SISO

systems is outlined in [73, 74] while further work on MIMO systems, focusing on either the

space-time correlation or space-time-frequency correlation functions, can be respectively found

in [75, 76] and [77, 78]. A geometrical two-ring model for twoMTs, separated by distanced

and moving with velocities−→νt and−→νr respectively, is shown in Fig. 2.6.

Rt Rrd

y

x

vr

vt

Figure 2.6: The geometrical two-ring model for a2 × 2 MIMO channel with local scatterers
distributed on rings with radiiRt andRr.

All the above considerations (apart from the two-ring model) are based on the assumption that

only single scattering occurs. In physical reality though,multiple-scattering is prevalent es-

pecially for micro- and picocells; for instance, in microcells most of energy is waveguided

through street canyons exhibiting multiple reflections just as in indoor environments [54]. A

potential solution lies in the use ofequivalent scattererswhose positions and pathloss are cho-

sen appropriately to artificially generate a certain delay and DoA [79]. While this alternative is

sufficiently effective for SISO antenna systems, it becomescomplicated for MIMO where once

the location of a scatterer is fixed (with respect to the desired parameters of an impinging path),

the DoD from the Tx is implicitly described as well [50]. On these grounds, Molisch devised

a generic model for outdoor microcells and macrocells by combining stochastic placement of

scatterers with simplified semi-RT to simulate the double scattering and a mixed geometri-

cal/stochastic process to account for waveguiding and diffraction [80]. As a matter of fact, the

model, which is substantially based on the European Cooperation in the field of Scientific and

Technical research (COST) 259 directional channel model [81], embodies a wide variety of

propagation effects, namely, LoS propagation, single and double scattering, scattering via far

clusters, waveguiding, roof-edge diffraction, large-scale variations and moving scatterers.
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2.5.1.3 Non-geometrical stochastic physical models

The non-geometric stochastic models describe paths from Txto Rx by statistical parameters

only, without reference to the geometry of the physical environment. They are also named

empirical models since they are based on experimental data.In general, they are very useful for

a posteriori simulation purposes [82]. A further distinction is usually made with respect to the

clustering of MPCs as follows.

Extended Saleh-Valenzuela model: The first comprehensive statistical channel model, specif-

ically for an indoor multipath environment, was proposed bySaleh and Valenzuela (SV) in [83].

The authors observed that MPCs tend to arrive at the Rx in clusters or bundles. Hereafter, clus-

ters are defined as an accumulation of MPCs with similar temporal and angular characteristics,

namely ToAs, Azimuth of Arrivals (AoAs) and Azimuth of Departures (AoDs). The formation

of clusters is related to the building structure while the MPCs within a cluster are formed by

multiple reflections from objects in the vicinity of the Tx and Rx. Both the power of MPCs

within a cluster as well as the average cluster power follow an exponential decay over time.

Moreover, the arrival times were described by two Poisson processes corresponding to the ar-

rival time of clusters and of MPCs within clusters.

The SV model was later extended into the spatial domain for SISO and dynamic SIMO channels

by Spencer [84] and Chonget al. [85], respectively. While the authors in [84] assumed that the

spatial and temporal domains are independent the authors in[85] showed that this assumption

is invalid for LoS scenarios; in such an environment, paths arriving at the Rx with short delays

have a relatively large angular range whereas paths arriving with longer delays have angles very

similar to the LoS direction thereby leading to the dependency of the two domains. A key con-

clusion drawn from both models is that MPCs within a cluster follow a Laplacian distribution.

A further extension to the SV model for the MIMO case was accomplished by Wallace and

Jensen in [86]. From experimental data, the authors observed clustering phenomena at both

ends of the link. Then, the narrowband double directional impulse response, arising fromKc

clusters andLc MPCs within a cluster, can be succinctly written as

h (φt, φr) =
1√
LcKc

Lc−1∑

ℓ=0

Kc−1∑

k=0

βkℓδ(φt − Φt,k − φt,kℓ)δ(φr − Φr,k − φr,kℓ) (2.24)

whereΦt andΦr are the mean transmit and receive azimuthal angles within the k-th cluster;

φt,kℓ andφr,kℓ are the transmit and receive angle of theℓ-th MPC in thek-th cluster respectively,
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which also has a complex amplitude given byβkℓ. The average-ray power in each cluster was

assumed to be constant so thatβkℓ = N (0, |β2
ℓ |). In addition, the mean DoD and DoA (cluster

centres) are uniformly distributed over(0, 2π) while a zero-mean Laplacian PDF with standard

deviationσ is assigned to the MPCs within each cluster at both ends

p(φkℓ) =
1√
2σ
e−|

√
2φkℓ/σ|. (2.25)

If a wideband model is desired, (2.24) can be simply rewritten as

h (τ, φt, φr) =
1√
LcKc

Lc−1∑

ℓ=0

Kc−1∑

k=0

βkℓδ(τ − Tk − τkℓ)δ(φt − Φt,k − φt,kℓ)

×δ(φr − Φr,k − φr,kℓ) (2.26)

whereTk is the arrival time of thek-th cluster (determined by a Poisson process) andτkℓ is

the arrival time of theℓ-th MPC measured from the beginning of clusterk (determined by a

second Poisson process). It is noteworthy that the study of clustering effects in temporal and

spatial domains is nowadays regarded as a hot topic in wireless communications. The papers

cited above as well as the results presented in [87], which demonstrated the harmful impact of

clustering on channel capacity, triggered a great amount ofinterest for these topics. Numerous

publications have been documented dealing with cluster identification and cluster distributions,

most of them by the groups at Technical University of Vienna (TUV) and Aalborg University

(AAU); the interested readers are referred to [88–91] amongothers.

Zwick model: Zwick et al.[72] investigated an indoor channel which is basically characterised

by reflections rather than diffuse scattering and the numberof significant MPCs is higher. Their

model disproves the formation of clusters when the operation bandwidth is high, based on

the experience drawn from previous measurements (see [72] and references therein). The key

equation of the model reads for the directional, time-variant frequency-dependent response as

H (t, f,Ωt,Ωr) =

L(t)∑

ℓ=1

Γℓ(t)e
−j2πfτℓ(t)δ(Ωt − Ωt,ℓ(t))δ(Ωr − Ωr,ℓ(t)) (2.27)

whereΓℓ(t) is the full polarimetric matrix whose entries contain the losses and depolarisation

of all scattering processes (reflections, transmissions, diffractions, etc.) of theℓ-th wave. The

rest of notation is consistent to that of (2.22). The channelresponse between all transmit and re-

ceive elements can be easily obtained by introducing the phase shifts of all MPCs, according to
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the relative position of the antenna elements. Furthermore, the appearance and disappearance of

paths over time is modelled by a genetic marked Poisson process. Once a MPC has been gener-

ated (birth) its properties are updated until it dies off (death). Deterministic ray tracing tools are

employed for producing the huge data sets required for the statistical evaluation of the model

parameters [92, 93]. The main mpdel’s advantage is that it enables the transition between LoS

and OLoS configurations in an easy manner by modelling the LoScomponent separately from

all other MPCs. Consequently, all environments can be modelled using the same framework

instead of employing different burdensome techniques. However, the relatively large number

of frequency-dependent site-specific parameters that needto be defined and the fact that the

time-dispersion of each separate MPC is neglected are the main drawbacks of this model.

2.5.2 Analytical models

In the previous section, physical models were studied; nevertheless, it turns out that for system

design, MIMO simulations and design of space-time codes, analytical models are preferred as

they are able to capture the channel matrix from a mathematical viewpoint.

2.5.2.1 Correlation-based analytical models

The correlation-based analytical models have been constructed upon the first and second order

statistics of a MIMO channel. According to [94], the full spatial correlation matrix

RH , EH

{
vec (H) vec(H)H

}
∈ C

MN×MN (2.28)

wherevec(·) stacks the columns of a matrix into a vector, can completely describe the spa-

tial behaviour of the MIMO channel since it contains the mutual correlation complex values

between all channel matrix elements. The one-sided correlation matrices are also defined as

Rt , EH

{(
HHH

)T} ∈ C
N×N (2.29)

Rr , EH

{
HHH

}
∈ C

M×M . (2.30)

A direct physical interpretation of the elements ofRH is not possible though and thus different

approximations ofRH have been proposed that rely either on a separability assumption be-

tween the transmit/receive correlation matrices or on a decomposition in the eigen/beam-space.
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I.i.d. Rayleigh model: The i.i.d. Rayleigh model was the initial scheme for assessing the

performance of MIMO channels and went on to become the most common analytical tool for

the design of space-time codes. The entries of the channel matrix are assumed to be i.i.d.

zero-mean complex Gaussian variables with unit variance, thereby corresponding to a spatially

white MIMO channel. These channels occur when the antenna spacings and/or the the angu-

lar spreads are high enough to induce independent fading (zero spatial correlation) and a large

number of multipaths impinge on the Rx from all directions; then, the correlation matrix be-

comes proportional to the identity matrix. In practice though, the spatial subchannels are rarely

uncorrelated due to the limited angular spreads and array sizes.

In the same way, the presence of a strong LoS coherent component may violate the assumption

of Rayleigh fading causing the channel statistics to be Ricean distributed instead. In this case,

the channel matrix consists of a spatially deterministic specular componentHL, which contains

the free-space responses between all antenna duets, and a random Rayleigh-distributed compo-

nentHw which accounts for the scattered signals. The LoS MIMO channel model then reads

as [95]

H =

√
K

K + 1
HL +

√
1

K + 1
Hw. (2.31)

Kronecker model: The so-called Kronecker model was evaluated by the group atAAU as

a contribution to the IST-SATURN7 initiative to model narrowband NLoS propagation [94].

The extension of the narrowband model to the wideband case was performed in [96] where the

authors assumed that the delay bins in the PDP are independent and thus applied the Kronecker

model to each tap. The model simply claims that the spatial correlation matrix can be well

approximated by the Kronecker product of the one-sided correlation matrices according to

RH =
1

tr(Rr)
Rt ⊗Rr (2.32)

where⊗ returns the Kronecker product of two matrices. Then, it is trivial to show that the

channel matrix may be modelled as

Hkron =
1√

tr(Rr)
R1/2

r Hw

(
R

1/2
t

)T
(2.33)

where(·)1/2 denotes any matrix square root fulfillingR1/2
r

(
R

1/2
r

)H
= Rr. Yu et al. [96],

7Information Society Technology-Smart Antenna Technologyin Universal Broadband Wireless Networks.
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have proved that for systems with three or less transmit and receive antennas, aggregate statis-

tics, like average capacity, can be precisely predicted. Given its simplicity (operations on

vec(H) are replaced by matrix manipulations onH) and the fact that it allows for indepen-

dent array optimisation at Tx and Rx, the scheme has become popular for MIMO simulations.

However, Kronecker models enforce the spatial correlationproperties at both ends to be sepa-

rable; that is all DoDs couple into all DoAs with the same power profile, and vice versa. Then,

the joint APS is assumed to be the product of the DoA and DoD power spectra, which produces

artifact paths lying at the vertical and horizontal intersections of the real DoD and DoA spectral

peaks [97]. These artifacts increase the apparent diversity but decrease the apparent capacity

since they take away energy from all real paths that do not lieat the intersection points so that

the overall power is kept constant. These undesired implications of the Kronecker model can

be clearly seen in Fig. 2.7 where both the normalised measured and modelled angular power

spectra of an8 × 8 indoor MIMO channel at 5.2 GHz have been plotted, with receive and

transmit inter-element spacings of0.5λ and0.4λ respectively (a detailed discussion on the in-

vestigated measurement campaign is given in Section 3.1). When larger antenna arrays are used

(improved angular resolution) the model’s performance is significantly impaired [97, 98].

Figure 2.7: Joint angular power spectrum for a measured (left) and a synthetic MIMO channel
based on the Kronecker model (right).

Weichselberger model: The so-called Weichselberger (or eigenbeam) model alleviates the de-

ficiencies of the Kronecker model by considering the joint correlation structure of both ends

and consequently the average coupling between the spatial subchannels is effectively mod-
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elled [99]. This implies that the correlation properties atthe Tx and Rx are modelled jointly.

The eigenvalue decomposition of the transmit and receive correlation matrices yields

Rt = UtΛtU
H
t (2.34)

Rr = UrΛrU
H
r (2.35)

whereΛt is a diagonal matrix containing the positive, real-valued eigenvalues ofRt and the

columns of the unitary eigenbasisUt correspond to the eigenvectors at the Tx. The same

nomenclature holds for the Rx side. The coupling between thetwo ends is determined by

the power coupling matrixΩweichsel whose positive and real-valued coefficientsωweichsel,m,n

specify the mean amount of energy coupled from then-th transmit eigenvector to them-th

receive eigenvector. The structure ofΩweichsel is heavily dependent on the spatial arrangement

of scatterers and determines all the fundamental features of a MIMO channel, i.e. number of

multiplexed data streams, degree of diversity and beamforming gain. An excellent description

of how the structure ofΩweichselis related to the surrounding spatial environment exists in[99].

Mathematically speaking, the power coupling matrix can be directly obtained from the transfer

matrixH as

Ωweichsel= EH

{(
UH

r HU∗
t

)
⊙
(
UT

r H∗Ut

)}
(2.36)

where⊙ returns the element-wise Schur Hadamard multiplication. Assuming that the eigen-

basis at the Rx is independent of the transmit weights and vice versa, the key formula of the

model reads as

Hweichsel= Ur

(
Ω̃weichsel⊙ Hw

)
UT

t (2.37)

whereΩ̃weichsel expresses the element-wise square root ofΩweichsel. While the model neces-

sitates the spatial eigenbases at one side to be always the same for any spatial weight at the

other side, the eigenvalues may differ. Despite the fact that the eigenbases are undoubtedly

influenced by the spatial structure of the transmit signals,the less restrictive assumption for

the eigenvalues improves drastically the attained accuracy. The Kronecker model is intuitively

considered as a special case of the sophisticated Weichselberger framework obtained with the

rank-1 coupling matrixΩweichsel = λrλ
T
t , whereλt andλr are vectorised versions ofΛt and

Λr, respectively.

Apart from its increased complexity, the main drawback of the Weichselberger scheme lies in

the estimation of the joint APS since the multipath environment is occasionally not rendered
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accurately; this may lead to a rather blurred version of the APS. Although more robust than the

Kronecker model with systems employing more than four antennas, the model still faces diffi-

culties in capturing the spatial variations [98]. This shortcoming is again illustrated by plotting

the measured and modelled joint APS for a different measurement scenario (see Fig. 2.8).

Figure 2.8: Joint angular power spectrum for a measured (left) and a synthetic MIMO channel
based on the Weichselberger model (right).

Structured model: To the best of the author’s knowledge, this is the latest analytical MIMO

channel model and in essence represents an extension of the Weichselberger model to three di-

mensions, namely the receive-transmit-delay space [100].It is based on the notion of structured

vector modes, initially introduced in [43], and recasts theMIMO channel matrix as a tensor to

account for correlation in all domains and especially between delay bins in the PDP. Assuming

Nf delay bins, the model’s key equation is given by

Hstruct = W ×1 Ur ×2 Ut ×3 Ud (2.38)

whereUd is the eigenbasis of the delay correlation matrix,W ∈ C
M×N×Nf is a tensor whose

entries reflect the wideband power coupling between the two ends andA×nM denotes then-th

mode tensor product between a tensorA ∈ C
I1×I2···×In×···IN and a matrixM ∈ C

Jn×In . Sim-

ilar to the Weichselberger model, the structured model doesnot assume independence between

scatterers at the Tx and Rx and hence it systematically outperforms the Kronecker model as two

different measurement campaigns revealed [100]. The modelyields also a greater robustness

as its estimated capacity error remains relatively unchanged as the array sizes get larger.
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2.5.2.2 Propagation-based analytical models

Virtual channel representation: The so-called virtual channel representation (VCR) is a

tractable linear model, valid for uniform linear arrays (ULAs), initially prompted by the limited

resolution in the spatial signal space8 [101]. The main idea is that the finite number of antennas

represent nonetheless a discrete sampling in the aperture domains which are directly related to

the angular domains via a Fourier transform (FT). The use of FT explains why the model can

be applied merely to ULA configurations as the sampling needsto be uniform in the aperture

domains [82]. The angular range at both ends is partitioned into fixed, predefined directions

which are determined by the spatial resolution, that is the size and inter-element spacings of

the arrays. Please note that the latter characteristic affects also the degree of mutual coupling

which distorts the array response and needs to be minimised using an array perturbation ma-

trix [102]. The model is virtual in the sense that it does not represent the real directions but only

the contribution of the channel to those fixed directions. The key formula of the model reads as

Hvirt = Ãr

(
Ω̃virt ⊙ Hw

)
ÃT

t (2.39)

whereÃr andÃt are the channel independent discrete Fourier transform (DFT) matrices of

size(M ×M) and(N × N) respectively. The columns of these orthonormal matrices con-

stitute steering vectors into the directions of virtual angles. As anticipated,̃Ωvirt is again the

element-wise square root of a(M × N) matrix Ωvirt whose entries reflect the power coupling

between then-th virtual transmit angle and them-th receive virtual angle. In this case, the

coupling matrix is obtained through (2.36), by using the predefined DFT matrices̃Ar andÃt

instead of the eigenbasesUr andUt respectively. The author emphasises that the VCR and the

Weichselberger models represent in essence different perspectives of the modelling domain; the

former is modelled in beamspace while the latter in eigenspace.

Its straightforward geometrical projection makes the model rather appealing while the struc-

ture of Ω̃virt provides an insightful interpretation of the scattering effects on the multiplexing

gain and level of diversity. The VCR model yields a better fit in terms of joint APS compared

to Kronecker and Weichselberger schemes, particularly fora high number of antenna elements

(enhanced spatial resolution and therefore higher number of steering directions) [49]. However,

it struggles considerably when it comes to measure the ergodic and outage mutual information

metrics; this is a side-effect of the abrupt spatial partition. To be more precise, the underlying

8Note that the VCR model might be qualified as correlation-based as well.
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model assumption of uncorrelated fading is problematic since any scatterer lying between two

virtual angles is anticipated to induce correlated fading due to sidelobe effects. In the worst

case scenario, a MPC at the middle of a fixed partition is modelled by four equal-powered,

independently-fading components and we eventually end up with more MPCs than the mea-

sured channel really has [49]. To sum up, the VCR does not distinguish between scatterers

which are separated by less than the angular resolution.

Finite scatterers model: The main motivation for developing this model has been the theory

of double directional propagation, as described in Section2.4. Assuming narrowband transmis-

sion, that is the signal bandwidth is narrow compared with the overall coherence bandwidth of

the channel, the delay of each path can be disregarded. Then,the channel response is the su-

perposition of a finite number ofL waves each connected to a specific AoA, AoD and complex

amplitude. Following (2.20), the channel matrix reads as [103]

Hfinite =

L∑

ℓ=1

ar(φr,ℓ)βℓaH
t (φt,ℓ) = ArBLAH

t . (2.40)

In the above equation,ar(φr,ℓ) andat(φt,ℓ) are the steering vectors at Rx and Tx corresponding

to theℓ-th MPC. By concatenating the steering vectors for all DoAs (DoDs), the(M×L) matrix

Ar (or the(N × L) matrix At) is obtained. The diagonal matrixBL = diag(β1, β2, . . . , βL)

contains the complex gains of all paths.
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Figure 2.9: Illustration of the finite scatterers model showing examples of (a) single scattered
paths, (b) doubly reflected paths, and (c) split components.

The finite scatterers model not only accounts for single and doubly scattered components (paths
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(a) and (b) respectively in Fig. 2.9) but also for split components (path (c) in Fig. 2.9) which

may have a single AoD but subsequently split, resulting in two or more AoAs (and vice versa).

Therefore, it may be regarded as a generalised version of most GSCMs which can deal only

with single and doubly scattered components [79, 80]. The derivation of (2.40) was based on

the assumption that the transmit and receive elements are ideal uncoupled isotropic radiators.

Deviations from these unrealistic conditions can be easilyinvestigated by multiplying with

appropriate transformation matrices [104]. Summarising,the main differences compared with

the VCR model are:

• The finite scatterers model allows for arbitrary number of AoDs and AoAs regardless of

the number of transmit and receive antenna elements.

• It can be applied to any antenna geometry (after appropriatemanipulations) and thus it is

not restricted to single-polarised ULAs.

• The model is not linear inφr,ℓ andφt,ℓ.

Distributed scatterers model: The so-called distributed scatterers model was developedto as-

sess the performance of outdoor MIMO systems and suggest guidelines for achieving subchan-

nel orthogonality and hence high channel capacity [105]. Both the Tx and Rx are surrounded

by a set ofS actual near-field scatterers whose extent from the horizontal axis is denoted asDt

andDr respectively. The value ofS is assumed to be large enough to induce random fading

while the arrangement of scatterers follows no certain pattern. Moreover, the angular spreads

of the reflected waves areσt andσr. The inter-element distance at Tx and Rx is expressed as

dt anddr; the scatterers at the receive side can be seen as a virtual array ofS elements between

the Tx and Rx with an average element spacing2Dr/S. The propagation scenario described

above has been plotted in Fig. 2.10.

The MIMO channel transfer function is then given by

HDS =
1√
S

R
1/2
σr ,dr

Hw,rR
1/2
σS ,2Dr/SHw,tR

1/2
σt,dt

(2.41)

where 1√
S

is a normalisation factor andHw,r, Hw,t are i.i.d. Rayleigh fading matrices of size

(M × S) and(S ×N), respectively whereasσS is the angular spread for the virtual array

tan(σS/2) = Dt/R. (2.42)
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Figure 2.10: Illustration of the distributed scatterers model showing the angular spreads.

The deterministic matricesRσt,dt
, RσS ,2Dr/S , Rσr ,dr

control the spatial correlation seen from

the Tx, virtual array and the Rx, respectively. The degree ofcorrelation is governed by the

angular spread and inter-element distance since high angular spreads and element separations

reduce correlation leading to high-rank (HR) channel matrices. If the correlation matrix at one

end is low-rank (LR), then from (2.41) the MIMO channel is also LR. The opposite though

is not always true. In some cases, fading may be uncorrelatedat both sides of the link, i.e.

Rσt,dt
= IN and Rσr ,dr

= IM but the MIMO channel rank remains poor. This unusual

phenomenon is known as thekeyholeeffect. Conceptually, the rank of the channel matrix is

by definition determined by the rank of the correlation matrix of the virtual arrayRσS ,2Dr/S .

When the distanceD is large compared to the product ofDt andDr the channel rank eventually

drops. This may occur in specific roof-top diffraction scenarios where a vertical-base antenna

is employed. Other physical examples of keyholes include a spatial keyhole in a metal screen,

a modal keyhole in a waveguide or a hallway where only one modeis present [106]. Under

these circumstances, the elements of the channel matrix aredistributed according to a double

Rayleigh distribution which fades twice as often as a standard Rayleigh distribution [105].

Maximum entropy model: This model was developed on the grounds of statistical inference

in order to attribute a joint probability distribution to the channel transfer matrix. By using the

theorem of maximum entropy the authors in [44] demonstratedthat a modelling framework

can be easily created out of the state of knowledge available. The choice of distribution with

the greatest entropy, and only this, guarantees that unknown information is not introduced. For

expressing the prior knowledge statistically and estimating the parameters of the model, the

principles of Bayesian probability theory were also employed. In order to achieve consistency,

regardless of the application of the model, the following axiom was defined:
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If the prior informationI1 which is the basis for channel modelH1 is equivalent to the prior

informationI2 of channel modelH2, then both models must be assigned the same probability

distributionf(H1) = f(H2).

This axiom originates from the fundamental principle that if a problem can be solved in more

than one way the outcomes should be consistent. In its broadest version, the model assumes

knowledge of the following

• Number of stationary scatterers at the transmit and receivesideSt andSr respectively.

• Velocities of Tx and Rx−→νt and−→νr respectively.

• AoD from transmit antennai to scattererj denoted asφt,ij and carrying powerP t
ij .

• AoA from scattereri to receive antennaj denoted asφr,ij and carrying powerP r
ij.

• TheSr × St delay matrix linking each DoA to each DoD, written as

D(f) =




e−j2πfτ1,1 e−j2πfτ1,2 · · · e−j2πfτ1,St

e−j2πfτ2,1 e−j2πfτ2,2 · · · e−j2πfτ2,St

...
...

. . .
...

e−j2πfτSr,1 e−j2πfτSr,2 · · · e−j2πfτSr,St




(2.43)

The response of a time-variant frequency selective MIMO channel then has the following struc-

ture

HME(t, f) =
1√
SrSt

Ar(t, f)Pr 1

2 (t) (Θ(t, f) ⊙ D(f))Pt 1

2 (t)At(t, f). (2.44)

with Pr 1

2 (t) = diag
(√

P1(t), . . . ,
√
PSr(t)

)
being the received power matrix and in accor-

dancePt 1

2 (t) = diag
(√

P1(t), . . . ,
√
PSt(t)

)
is the transmit power matrix. It was shown that

a Gaussian i.i.d. distribution with zero mean and unity variance should be assigned toΘ(t, f)

since it is the solution of the consistency argument and maximises entropy.

The goodness of this model was tested using the data from botha wideband outdoor and an

indoor measurement campaign, performed at frequencies of 2.1 GHz and 5.2 GHz with a band-

width of 100 MHz. The model yields a satisfactory compliancein terms of capacity especially

at 2.1 GHz. The main advantage of this approach is its flexibility since every new piece of

information on the environment can be straightforwardly incorporated in a consistent way.
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2.5.3 Standardised models

A brief review of the most important standardised models, established by several international

organisations, is now provided. The aim to give the reader a view of recent and ongoing channel

modelling activities. It should be noted though, that thesemodels are not intended to enhance

understanding of MIMO propagation characteristics.

2.5.3.1 3GPP spatial channel model

The 3rd Generation Partnership Project (3GPP) system-level spatial channel model (SCM) has

been designed for the simulation of third-generation networks in urban and suburban macrocells

as well as in urban microcells. It is noteworthy that a link-level SCM has also being developed

for the purpose of calibration, where taps with different delays are assumed independent and can

be fully characterised by their spatial parameters, i.e. angular spread, APS, AoA/AoD [107].

The model structure and simulation methodology are identical for all these environments but

the input parameters, like delay spread, angular spreads and so forth, are different [50]. The

provided implementation is a tap-delay line model where each tap consists of several subpaths

which share the same delay but have different directions of arrival and departure. Adding up

these different subpaths (which all have deterministic amplitudes but random phases) leads

to Rayleigh or Ricean fading. In [107], a parameter table hasbeen given which lists all the

important parameters, such as number and power of paths and subpaths and spatial parameters.

The system bandwidth is normally assumed to be 5 MHz, but an extension to larger bandwidths

was proposed in [108], where a wideband SCM is adopted.

The core of the link-level 3GPP MIMO model is a Kronecker model which provides a direct link

between the rank ofRH and capacity and, more importantly, requires a low number ofinput

parameters [109]. It also introduces spatial and spatio-temporal separability at all three levels,

namely cluster, link and system levels. On the other hand, the SCM [108] was also proposed

by the 3GPP for both link- and system-level simulations. In [110] though, it was shown that

SCM shows the spatial separability at the link and system levels, but not at the cluster level

since its spatial correlation is related to the joint AoA/AoD distribution. Likewise, the spatio-

temporal separability is observed for the SCM only at the system level. To summarise, the

simpler Kronecker model can capture only the average spatio-temporal properties of MIMO

channels while SCM, though more complex, provides a deeper insight into the variations of

different MIMO realisations.
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2.5.3.2 IEEE 802.11n channel models

This set of models, developed by the High Throughpout Task Group within the IEEE 802.11n

Working Group, have been designed for indoor WLANs at both 2 and 5 GHz with an oper-

ating bandwidth of 100 MHz [111]. They essentially represent an improved and standardised

version of the SV model with overlapping clusters in the delay domain [82]. Six canonical en-

vironments (A to F) are modelled including, flat-fading, residential, small office, typical office,

large office and large open space. For each of the six environments, the TGn model specifies a

different set of simulation settings. Typically, the number of clusters varies from 2 to 6 for dif-

ferent indoor scenarios while the overall root mean squared(rms) delay spread ranges between

0 (flat-fading) and 150 ns.

In general, these models are a combination of the Kronecker approach along with the cluster

modeling framework as given in [83, 84]. More specifically, at each time instant,l, the full spa-

tial correlation matrix,Rl
H, is approximated using (2.32); the correlation matrices ateach delay

tap,Rl
t andRl

r, are obtained by the APS and angular spreads at the Tx and Rx, respectively. In

order to determine the latter two characteristics, the results of [83, 85] have been adopted and,

consequently, the APS of thel-th tap is modelled by a Laplacian distribution whose spreadis

equal to the cluster spread. This is consistent with the results presented in [112], where it was

clearly demonstrated that the instantaneous tap azimuth spread is slightly less than the cluster

spread with the difference becoming smaller as the channel bandwidth decreases. On a similar

basis, taps are assigned a truncated Laplacian distribution with the mean AoA and AoD being

uniformly distributed over[0, 2π). The cluster azimuth spread is normally selected in the range

20◦–40◦ and is correlated with the delay spread. The temporal channel variations are char-

acterised by means of the Doppler spectrum, which consists of a ”bell-shaped” part with low

Doppler frequency and an optional additional ”horn” peak ata larger Doppler frequency. The

latter is caused by vehicle movements which mostly occur in large-space environments (model

F). As additional options, path-loss modeling and polarisations have also been treated in [111].

2.5.3.3 WINNER channel model

The IST-Wireless World Initiative New Radio (WINNER) project has been developed by a

consortium of 41 partners which aimed to define radio interface technologies needed for a

ubiquitous radio system concept as well as radio network topologies and deployment concepts

for the provision of a ubiquitous coverage area [113]. The model is inherently related to 3GPP
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but a wider bandwidth of up to 100 MHz is used in both 2 and 5 GHz frequency ranges. This is

achieved through the SCM-Extended (SCME) model by introducing the so-called intracluster

delay spread, which is zero in the original SCM [114]. The model covers six different indoor

and outdoor propagation environments, particularly, indoor small office, indoor large hall, urban

microcell, urban small macrocell, suburban macrocell and rural [115] with the key parameters

of each environment being extracted from several real-lifemeasurement campaigns.

The modelling approach is based on a generic sum-of-sinusoids model where the double direc-

tional characteristics, delay, polarisation and complex amplitude of each MPC are considered.

The clusters are defined independently in DoA and DoD domainsand this assumption signif-

icantly simplifies parameter extraction and coefficient generation [115]. The key model’s fea-

tures are the modelling of cross-correlation between largescale parameters (i.e. delay spread,

AoA/AoD spread and lognormal shadowing), the inclusion of polarisation effects via a(2× 2)

polarimetric matrix and finally, the consideration of elevation in indoor environments [50]. A

more detailed discussion on the model characteristics along with a MATLAB implementation

of it are available in [113].

2.5.3.4 COST 259/273/2100 channel models

The COST project is a European research initiative which includes COST 259 (1996–2000)

in the field of “Flexible personalised wireless communications” [81] and similarly COST 273

(2001–2005) in the field of “Towards mobile broadband multimedia networks” [116]. Both

subprojects aimed to develop efficient and generalised radio channel models suitable for mod-

ern MIMO communications. It should be noted that 3GPP and IEEE 802.11n can be regarded

as special cases of COST models (though with different parameter settings) [50].

According to [50], the COST 259 directional model was the first model which explicitly in-

vestigated the complex relationships between BS-MT distance, delay dispersion and angular

spread. The model relies on the key notions ofexternalandglobal parameters. The former are

fixed for a simulation run and include the following featuresof the simulation environments

among others: frequency band, average BS-MT distance, average height of BS and MT anten-

nas and average building heights and separations. The latter parameters must be extracted by

exhaustive real-life measurement trials since their scopeis to describe the propagation condi-

tions of eachradio environment; in fact, they are sets of pdfs and/or statistical moments ofthe

stochastic parameters. For instance, the number of visibleclusters is normally modelled via a
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Poisson process. More importantly, global parameters provide necessary information for the

appropriate design of communication systems with regard topractical issues like modulation

scheme, burst length, coding scheme etc. We also refer tolocal parameterswhich are basi-

cally random realisations of the global parameters and are assumed to remain constant within

a small local area of the order of tens ofλ; therefore they can only describe the instantaneous

channel conditions. The main advantage of the COST 259 modelis that it can handle the con-

tinuous motion of the MT across different radio environments and return as output the double

directional impulse response, as the one given in (2.20). A thorough discussion on the most

important aspects of the COST 259 model can be found in [117].On the other hand, there are

two fundamental deficiencies of the COST 259 framework. The first one is the assumption of

stationary scatterers which implies that time variations are attributed only to the MT movement.

Secondly, delay attenuations are modelled as complex Gaussian RVs which, in practice, means

that a relatively high number of MPCs should be present at each delay bin.

The COST 273 approach represents an extended version of the COST 259 one since 18 differ-

ent radio environments are now considered (compared to 13) including some scenarios of high

practical interest nowadays, such as peer-to-peer communications and fixed wireless access.

The COST 273 employs the same generic channel model for all types of environments that is

also identical to that of COST 259 for macrocells; this is a significant distinction to the COST

259 model, which used different generic models for pico-, micro- and macrocells. The simula-

tion parameters have also been updated to comply with the observations drawn from a plethora

of recently available double directional MIMO campaigns [116]. The key methodology of

COST 273 is to model the mean angles and delays of clusters by geometrical considerations,

while the intracluster spreads and small scale fading may beexpressed by either a geometrical

approach or a tapped delay line representation. However, a significant discrepancy exists when

it comes down to the modelling of multiple interactions. Under these circumstances, the con-

cept of twin clustersis introduced so that each cluster is divided into a cluster corresponding

to the BS side and one at the MT. The angular dispersion at BS and MT are independently

modelled while the two clusters have the same scatterer distributions and long-term behaviours

(twins). These two representations are connected via a so-called stochastic cluster link delay,

which is the same for all scatterers within a cluster. This link delay guarantees realistic path

delays while the placement of the cluster is defined by the angular cluster statistics as seen from

the BS and MT, respectively [50].
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The latest COST initiative, is the COST 2100 project (2006–2010) in the field of “Pervasive

mobile & ambient wireless communications” [118] which aims, among others, to bring to-

gether various aspects of mobile-to-mobile communications to support future telematics appli-

cations, such as improved navigation mechanisms and infotainment services [119, 120]. Other

subworking groups explore the design of compact antenna systems for terminals, localisation

in ultra-wideband systems, and establishment of referencechannel models that will include

diffuse scattering interactions and investigate the temporal behaviour caused by moving scat-

terers [118].

2.6 Summary

The goal of this chapter has been twofold. Firstly, the basiccharacteristics of radio propagation

were described as they are essential in order to comprehend the nature of wireless channels. As

anticipated, MIMO channels are also governed by these well known mechanisms with the only

difference lying in the reciprocity of propagation (doubledirectional) due to the multiple an-

tenna elements at both sides of the radio link. Secondly, taking into account that practical mea-

surements are cumbersome and unique for each environment, the main focus was on channel

models that are tractable statistical tools for capturing multipath propagation and interactions

with the surrounding environment. Apart from reviewing thearea of channel modelling, the

author classified models with regard to which feature the designer intends to capture (double-

directional propagation or impulse response) and determined the models’ limitations. To sum

up, this chapter outlines the scope and represents a stepping stone for the remainder of the

thesis.
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Chapter 3
Stochastic modelling of MIMO

channels using the spatial eigenmodes

In the previous chapter, the author reviewed the most important analytical MIMO channel mod-

els whose disadvantages necessitate the development of a more general framework able to cap-

ture the spatial activity with finer detail. This chapter presents a new stochastic indoor model,

which originates from the widely known KLT, and is constructed upon the eigendecomposi-

tion of the full correlation matrix. It is shown that the channel matrix can be modelled by the

superposition of the spatial eigenmodes experiencing independent Nakagami-m fading. The

model is derived based on measurement data collected at a carrier frequency of 5.2 GHz in

an indoor environment under a range of propagation conditions. The Nakagami-m distribu-

tion offers a good fit with the measured data and furthermore it is more flexible compared to

the commonly employed Rayleigh distribution. The remainder of this chapter is organised as

follows: In Section 3.1, a MIMO measurement campaign carried out in an office environment

is described. Section 3.2 outlines the foundations of the new analytical model and offers a

physical interpretation of the spatial parameters that comprise it. In Section 3.3, the choice of

the Nakagami-m distribution for modelling the fluctuations of the measuredenvelopes is clari-

fied. In Section 3.4, a novel method for generating independent Nakagami-m deviates based on

the rejection/acceptance technique is proposed. The goodness and efficiency of the proposed

method are subsequently demonstrated in depth. In Section 3.5, the performance of the stochas-

tic model is evaluated using the measured data and compared with two well known analytical

models reported in the literature. Finally, Section 3.6 concludes the chapter and summarises

the key findings.

3.1 Indoor measurement campaign

An indoor measurement campaign was carried out in the Electrical Engineering Building within

TUV, in an area with many office partitions (highly clutteredenvironment). The heart of the
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measurement setup was the RUSK ATM MEDAV vector channel sounder operating at a centre

frequency of 5.2 GHz [121]. The sounder was probed at 193 equi-spaced frequency bins cov-

ering the 120 MHz of operating bandwidth with a dynamic rangeof typically 35 dB. The two

ends were synchronised via an optical fibre [43, 49]. The measurements were repeated at 128

temporal snapshots in order to enhance the output SNR. The channel had to be static during one

such snapshot and for this reason the campaign was conductedat night to ensure stationarity.

By averaging over all snapshots the receive SNR was increased by10 · log(128) = 21 dB the-

oretically to values up to 50-60 dB; however, the signal discrimination ability remains limited

by the dynamic range of the sounder.

The Rx was mounted on a wooden tripod at a height of 1.5 m and employed a ULA of eight

vertically-polarised printed dipoles with an inter-element distance ofdr = 0.4λ. Two dummy

elements were also used. Each single antenna had a 3 dB azimuth beamwidth of about120◦.

Prior to any DoA estimation process, the physical receive array was fully calibrated in order

to remove the undesired effects of electromagnetic mutual coupling between the antenna ele-

ments, amplification errors, non-identical element responses and other array imperfections and

this was accomplished using the method described in [102]. At the Tx, an omni-directional

sleeve antenna was moved on a 10×20 rectangular grid with element spacings ofdt = 0.5λ.

By considering a virtual eight-element ULA on each row, a total number of13 × 10 = 130

spatial realisations of the8 × 8 MIMO transfer matrix is acquired. Hence, a total set of

130× 193 = 25, 090 space and frequency realisations per measurement scenariowas obtained.

For the present study, 24 different Rx locations were investigated in several offices while the Tx

was positioned at a fixed position in the hallway. In order to acquire the whole azimuth domain

activity, the Rx was steered to three different broadside directions spaced by120◦ (D1, D2 and

D3) leading to the generation of 72 data sets, i.e. combinations of Rx positions and directions.

Hereafter, each data set will be denoted via the Rx location and broadside direction, e.g. 2D3.

Please note that most office rooms were sparsely furnished with wooden and metal furniture

(computers, chairs, tables). The doors between the hallwayand the rooms were also wooden or

glass-filled [49]. The measurement layout along with the Rx locations are depicted in Fig. 3.1.

3.2 Derivation of the spatial MIMO channel model

Prior to pursuing the statistical description of a new analytical model, it would be wise to

justify the reason behind developing one more scheme in an already saturated area. At this
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Figure 3.1: Layout of the measurement environment and Rx locations (taken from [49]).
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point, the reader should be reminded that a common assumption for constructing a correlation-

based model is that the channel follows a zero-mean complex Gaussian distribution; then, the

second-order statistics suffice for its spatial description. In such a case, any channel realisation

can be generated by the full spatial correlation matrix (equivalent to the covariance matrix)

according to

vec (H) = R
1/2
H vec (Hw) . (3.1)

This model is a valid formalism only when the channel statistics are jointly Gaussian though this

rarely holds in practice. A potential solution for capturing the non-normality is to decorrelate

the spatial subchannels and model the marginal behaviour ofeach decorrelated subchannel

separately. This approach is essentially a KLT which has been extensively used in numerous

applications that span image compression to seismology andcomputer graphics in order to

decorrelate multi-element data using the eigendecomposition of the correlation matrix [122].

At a next stage, the assumption of Rayleigh fading may be relaxed by assigning a different

fading distribution.

Let’s assume now a flat-fading MIMO channel withN transmit andM receive antenna ele-

ments. The eigendecomposition ofRH, defined in (2.28), into a sum of rank-1 matrices is

given by

RH =
MN∑

k=1

λkuku
H
k (3.2)

whereλk are the real non-zero ordered eigenvalues(λ1 ≥ λ2 ≥ . . . ≥ λMN ≥ 0) anduk con-

tain the corresponding eigenvectors which are by definitionmutually orthogonal and have

unit norm. The number of non-zero eigenvalues determines also the rank ofRH which is

upper bounded byMN . The eigenvectoruk can be reshaped column-wise into the matrix

Uk = unvec(uk) ∈ C
M×N which will be referred to hereafter as thek-th eigenmode. From

a physical viewpoint, eigenvalues specify the degree of diversity offered by the channel while

eigenmodes, commonly representing a linear combination ofpropagation paths, are indicative

of the SM ability [99]. Likewise, the channel matrix may be modelled as

Hmod =

MN∑

k=1

g[k]
√
λkUk. (3.3)

From (3.3), it can be readily inferred that the PDF ofg[k] expresses the fading variations of

the channel. In fact, the fading coefficientsg[k] are i.i.d. complex RVs satisfying the key
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relationshipEg {g[m]g∗[n]} = δmn, whereδmn is the Kronecker delta function. The validity

of (3.3) can be easily checked by calculating the correlation matrix ofHmod as

Eg

{
vec(Hmod)vec(Hmod)

H
}

=

MN∑

k=1

MN∑

n=1

√
λk

√
λnuku

H
n Eg {g[k]g∗[n]}

=

MN∑

k=1

λkuku
H
k ≡ RH. (3.4)

It should be noted that the second-order moment of the fadingcoefficientsg[k] is assumed to

be the same for allk so that the eigenvaluesλk reflect the power of each eigenmode.

3.3 Nakagami-m fading characteristics

The resulting uncorrelated eigenmodes of the proposed channel model (3.3) are now assigned

a Nakagami-m fading process that, as was mentioned in Chapter 2, yields a satisfactory fit with

empirical data for various measured channels. The normalised (unity power) Nakagami-m PDF

of the fading enveloper is given by

p(r) =
2

Γ(m)
mmr2m−1e−mr2

, r ≥ 0. (3.5)

The Nakagami fading figurem[k] (1 ≤ k ≤MN ) is estimated directly from the measured data

according to

m[k] =
E
{∣∣uH

k vec(H)
∣∣2
}2

E

{{∣∣uH
k vec(H)

∣∣2 − E
{∣∣uH

k vec(H)
∣∣2
}}2

}

=
λ2

k

E

{{∣∣uH
k vec(H)

∣∣2 − λk

}2
} ≥ 1

2
. (3.6)

An example indicating the excellent fit of the Nakagami-m distribution with the distribution of

a measured fading envelope is depicted in Fig. 3.2 (location1D3). Please note that the param-

eters of the Ricean fit were obtained by directly applying a MLestimator to the raw data. This

aggregate statistical metric shows the poor match of the commonly used Rayleigh distribution

while the Ricean distribution fits reasonably well except inthe tails of the measured data. Sim-

ilar trends were observed at most of the considered cases. Tofurther justify the choice of the
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average std min max smallest MSE

Rayleigh 2.38 × 10−4 1.72 × 10−3 5.59 × 10−7 5.32 × 10−2 5.79 (%)

Ricean 4.95 × 10−5 1.28 × 10−4 5.53 × 10−7 4.72 × 10−3 21.81 (%)

Nakagami-m 3.81 × 10−5 1.23 × 10−4 4.65 × 10−7 4.18 × 10−3 72.40 (%)

Table 3.1: MSE characteristics of three CDF fitting distributions.

Nakagami-m distribution, the Mean Squared Error (MSE) of these three candidate cumulative

distribution function (CDF) fits across the whole data set, has been computed; the key charac-

teristics are tabulated in Table 3.1. The acronym std standsfor the standard deviation of a RV.

The average and standard deviation measures indicate that the Nakagami-m fit yields a rather

good accuracy and substantially outperforms the Rayleigh fit by an order of one magnitude

while it remains robust and experiences the lowest maximum MSE. On the basis of which dis-

tribution best fits the measured data set, the smallest MSE occurs at72.40% of the cases when

a Nakagami-m fit is employed thereby confirming its improved performance compared to the

other two reference distributions (right-hand column of Table 3.1).
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Figure 3.2: CDF of a measured fading envelope in comparison with Nakagami-m, Rayleigh
and Ricean distributions (location 1D3).
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3.4 Generation of independent Nakagami-m envelope deviates

This section suggests an unconstrained method for the generation of independent Nakagami-

m envelope deviates based on therejection/acceptance technique[123]. Please note that the

generation of independent Nakagami-m RVs may in general offer an insight into the charac-

terisation of practical systems operating in slowly varying Nakagami-m fading environments.

Surprisingly, few results have been reported covering the computer simulation of independent

Nakagami-m fading [36, 124, 125].

The so-calledbrute force method[36] considers the square root of a sum of squares ofp zero-

mean identically distributed Gaussian RVs and leads to a Nakagami distribution withm = p/2;

yet, this scheme is limited to integer and half-integer values ofm. The authors in [124] showed

that the product of a square-root beta process and a complex Gaussian process forms an accurate

approach but unfortunately is valid only for values ofm < 1 . The inverse methodproposed

in [125] is sufficiently accurate for arbitrary values ofm but requires the computation of a

different set of coefficients for eachm value.

The initial attempt to apply the rejection/acceptance method in order to generate independent

Nakagami-m samples was recently addressed in [126] but lacks a uniform approach for the

whole range ofm values. In particular, the authors suggest the use of eitherthe folded-Gaussian

(0.5 ≤ m ≤ 1.0) or the Gaussian (m ≥ 1.0) PDFs as hat functions, resulting in the achieved

efficiency being strongly dependent on the corresponding interval (65.75% and 66.67% respec-

tively); an additional option to select different constants (which were determined empirically)

enchanced the efficiency for particular ranges ofm (see Tables I and II in [126]). This was

achieved by applying the rejection scheme only in the confined region0 ≤ x ≤ 4Ω since for

high values of the enveloper andm ≥ 1 the tails of the considered scaled Gaussian PDF may

fall below the tails of the Nakagami-m PDF. In this light, a simple technique with no constraints

on the range of shape parameters is proposed in this section which overcomes the inadequacies

of the above mentioned schemes and yields an excellent accuracy.

3.4.1 Rejection method

The rejection method requires the selection of a comparisonfunction (usually referred to as the

hat function)f(r) that has finite area and satisfies the inequalityf(r) ≥ p(r) with p(r) being

the original PDF. In the present case, a second-order inverse polynomial function is proposed
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as the hat function and therefore

p(r) =
2

Γ(m)

(m
Ω

)m
r2m−1e−mr2/Ω (3.7)

f(r) =
A
√

Ω

Ω −B
√

Ωr + r2
. (3.8)

An illustrative graph of the two functions under investigation is shown in Fig. 3.3.
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Figure 3.3: Rejection method for generating random Nakagami-m deviates using an inverse
polynomial function.

The determination ofA andB is an inter-dependent problem which can be solved with an

iteration method. Taking into account that the maxima of (3.7) and (3.8) should coincide1, it is

trivial to show thatB = 2
√

2m−1
2m . The scaling factor,A, is set such that the curves intersect at

a single point,r = rmin, without crossing (minimum distance). In other words,

A
√

Ω

Ω −B
√

Ωrmin + r2min

= p(rmin) ⇒ (3.9)

A =
Ω −B

√
Ωrmin + r2min√

Ω
p(rmin). (3.10)

1The maximum of a Nakagami PDF occurs atr =
q

2m−1

2m
and that of the hat function atr = B/2.
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In order to find the position of minimum distance between the two curves, the derivative of their

difference needs to be set equal to zero which results in the following equation

lim
r→rmin

d

dr
(f(r)− p(r)) = 0 (3.11)

or

lim
r→rmin

d

dr




(
Ω −B

√
Ωrmin + r2min

)
p(rmin)

Ω −B
√

Ωr + r2
− p(r)


 = 0. (3.12)

For the ease of computation, the above equation is written ina more compact form

lim
r→rmin

d

dr

(
a(rmin)p(rmin)

a(r)
− p(r)

)
= 0 (3.13)

wherea(r) = Ω −B
√

Ωr + r2. Then, it is trivial to show that

d

dr
a(r) = 2r −B

√
Ω (3.14)

d

dr
p(r) =

p(r)

r

[
(2m− 1) − 2mr2

Ω

]
. (3.15)

After some easy manipulations of (3.13), we end up with

p(rmin) lim
r→rmin

d

dr
a(r) = −a(rmin)p(rmin)

(
(2m− 1) − 2mr2min/Ω

r

)
⇒ (3.16)

lim
r→rmin

d

dr
a(r) = −a(rmin)

[
(2m− 1) − 2mr2

Ω

]
⇒ (3.17)

rmin

(
2rmin −B

√
Ω
)

=
(
Ω −B

√
Ωrmin + r2min

)(2mr2min

Ω
− (2m− 1)

)
⇒ (3.18)

2mr4min

Ω
− 2mBr3min/

√
Ω − r2min + 2mBrmin

√
Ω + (1 − 2m)Ω = 0 ⇒ (3.19)

(
rmin −

√
Ω
)(

rmin +
√

Ω
)(2mr2min

Ω
− 2mBrmin√

Ω
+ 2m− 1

)
= 0. (3.20)

The last quadratic term of the product has a discriminant always equal to zero, which results in

a negative value forA for all m ≥ 2/3. This, however, makes the hat function negative since

the denominator in (3.8) is always positive. Hence, only onevalid positive solution exists at

rmin =
√

Ω. Substituting the above solution into (3.10), the following relationship comes up

A = (2 −B)
2mm

Γ(m)
e−m > 0. (3.21)

53



Stochastic modelling of MIMO channels using the spatial eigenmodes

For the generation of independent samples from (3.8) the inverse method is introduced [123];

firstly, the indefinite integral of (3.8) is computed returning the closed-form function

u =

∫
f(r)dr =

2A tan−1

(
2r√
Ω
−B

√
4−B2

)

√
4 −B2

. (3.22)

A random sample ofr is now generated via the inverse function of (3.22) which reads as

r =

√
Ω

2

(√
4 −B2 tan

(
u
√

4 −B2

2A

)
+B

)
(3.23)

with u denoting a RV distributed uniformly in the range




2A tan−1

„

−B√
4−B2

«

√
4−B2

, Aπ√
4−B2


.

The above limits express respectively the minimum and maximum of (3.22) forr ∈ [0,+∞),

and define also the efficiency of the rejection method; in fact, their difference represents by

definition the area belowf(r). The generated sampler is accepted only if a random sample,

uniformly distributed in the area underf(r), lies also underp(r). The pseudocode employed

throughout the rejection scheme is summarised in Algorithm1.

Algorithm 1 Rejection method for generating Nakagami-m deviates

1: Determine the values ofA andB of the hat function with an iterative procedure.

2: for i = 1 to Number of samplesdo

3: Generate a uniform RVu in




2A tan−1

„

−B√
4−B2

«

√
4−B2

, Aπ√
4−B2


.

4: Generate a sample ofr according to (3.23).
5: Estimate the value of the hat functionf(r) through (3.8).
6: Estimate the value of the Nakagami PDFp(r) through (3.7).
7: Generate a uniform RVu′ in the total area underf(r), i.e. [0, f(r)].
8: if u′ < p(r) then
9: acceptr

10: else
11: rejectr
12: end if
13: end for
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3.4.2 Performance evaluation

After generating220 random samples ofr using (3.23), the algorithm’s performance was tested

from different perspectives. In Fig. 3.4, the theoretical and simulated Nakagami-m PDFs are

depicted for four different values ofm assumingΩ = 1; the attained accuracy is remarkably

high, thereby verifying the choice of the rejection scheme as a powerful and straightforward

technique for generating random deviates.
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Figure 3.4: Theoretical (curves) and simulated (stars) Nakagami-m PDFs for four arbitrary
values ofm using the rejection method (Ω = 1).

As far as the method’s efficiency is concerned, this is directly related to the value of them

parameter. For high values ofm, the tails of (3.7) decay faster than those of (3.8); this means

that the relative difference between the two functions under comparison grows and this causes

the achieved efficiency to decrease. In any case though, the efficiency in the common range of

interest (0.5 ≤ m ≤ 2.5) rests above 65%, as Fig. 3.5 indicates.
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Figure 3.5: Efficiency of the rejection method as a function of them factor.

3.5 MIMO channel model validation

The indoor campaign described in Section 3.1 provided the necessary amount of data for val-

idating the analytical MIMO model of (3.3). The model is assessed by means of information

theory as well as link-level performance. The measured correlation matrix is firstly computed

using all space and frequency realisations and thereafter decomposed in order to obtain the spa-

tial eigenmodes; as a next step,25, 090 synthetic channel realisations are generated according

to (3.3) so that the measured and simulated ensembles are thesame2. It should be noted that

the spatial fading coefficients were generated according tog[k] = r[k] exp (jφ[k]), whereφ[k]

is a random phase distributed uniformly in[0, 2π). The uniform phase assumption was found

to be valid even for large values of them-factor (i.e. non-Rayleigh conditions) and thanks to

its intrinsic simplicity was incorporated throughout the analysis.

2It was found that a further increase in the ensemble size did not significantly affect the variance of the estimators.
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3.5.1 Information theory performance

A common policy in the capacity analysis of all measured MIMOchannels is to remove the

path-loss effects and have unity energy on average [96]. In practice, a system with perfect

power control is simulated whose performance is assessed independently of the average SNR.

On this basis, both ensembles are normalised so that the constraint E
{
‖H‖2

F

}
= MN is

fulfilled, where‖·‖F corresponds to the Frobenius norm. The instantaneous capacity, assuming

perfect CSI at the Rx but no knowledge at the Tx, reads

C = log2

(
det
(
IM +

ρ

N
HHH

))
(bits/s/Hz) (3.24)

and the ergodic capacity is evaluated following (2.17). TheSNR ρ was set equal to 20 dB

to ensure that is well below the measured SNR after being averaged across all the temporal

snapshots. The expectation operation was performed on either the measured data or the fading

realisations ofg[k]. In Fig. 3.6, three different models are compared, namely the Nakagami,

Weichselberger and VCR models; the modelled ergodic capacity is plotted against the measured

ergodic capacity for each of the 72 scenarios under investigation.
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Figure 3.6: Ergodic capacity for three different channel models versusmeasured ergodic ca-
pacity. The dashed line corresponds to the points of no modelling error.
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Please note that the Kronecker model has not been included inthe following analysis since it

is a special case of the Weichselberger model and yields an inferior performance for the great

majority of cases [43, 49, 98]. From this figure, it is clearlyobservable that the proposed model

holds a smaller modeling error than the Weichselberger model, whose mismatch increases with

decreasing capacity, for all the scenarios under investigation; in particular, a 2.2 dB improve-

ment was achieved in the MSE from -9.72 to -11.93 dB. The VCR model systematically over-

estimates the modelled capacity as a result of the artificialgeneration of MPCs discussed in

Chapter 2; in this case, the MSE is as high as 8.81 dB disclosing the rather poor fit of the

specific model. These results are in reasonable agreement with those presented in [49, 98].

The good fit of the Nakagami model can be partially attributedto the presence of strong OLoS

components at the majority of Rx locations due to its inherent higher flexibility compared to

the more restricted Rayleigh and Ricean distributions. In other words, for the corresponding

eigenmodesm > 1 and therefore the fluctuations of the signal strength reducecompared to

Rayleigh fading.

Traditionally, the ergodic capacity is a metric of the amount of average error-free information

transmitted; however, a key issue in the design of multi-antenna systems is the outage capacity

usually regarded as a more fair measure of the probability ofsuccessful transmission within a

given time frame. Theq% outage capacityCout,q is the capacity that is guaranteed in(100−q)%
of the cases

Prob [C < Cout,q] = q%. (3.25)

In order to calculate the outage capacity a precise knowledge of the CDF of the RVC is re-

quired. For a specific Rx location (22D1) the measured and modelled capacity CDFs are plotted

in Fig. 3.7 where it is shown that the Nakagami fading model yields the best fit; at the 10% out-

age capacity the proposed scheme deviates by 1.64 bits/s/Hzwhile the Weichselberger and the

VCR models by 2.36 and 3.91 bits/s/Hz respectively. In addition, the slope of the capacity

CDF is directly related to the notion of diversity, i.e. the reliability of the radio link for a given

confidence interval. All modelled curves are steeper than the measured curve, thereby overes-

timating the achieved diversity, but the proposed model remains sufficiently robust and offers

the best accuracy again. Similar conclusions can be drawn from the whole set of data after

estimating the 10% outage capacity (see Fig. 3.8).
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Figure 3.7: Capacity CDFs for a measured and modelled channels (location 22D1).
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Figure 3.8: 10% outage capacity for three different channel models versus measured outage
capacity. The dashed line corresponds to the points of no modelling error.
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In terms of the estimation MSE, the performance gain is 2.21 dB from -1.65 dB to -3.86 dB

compared to the model implemented by Weichselberger. As anticipated, the predefined steering

angular directions make the VCR framework unable to captureMPCs lying between them and

this gives rise to overestimated statistics. In this case, the MSE is 9.83 dB demonstrating a

dramatic degradation of 13.69 dB compared to the Nakagami scheme.

3.5.2 Link-level performance

The analysis presented in the previous section was based on an information theory approach

which used channel capacity as a criterion for testing the goodness of fit for all MIMO models.

In order to conduct a concise comparison study though, the models’ performance should be

investigated from a link-level perspective as well. Assuming a SM transmission strategy, a

linear Minimum Mean Squared Error (MMSE) detector is considered which can minimise the

overall error caused by noise and mutual interference2. The uncoded transmitted signal is

modulated using BPSK (Binary Phase Shift Keying) modulation. Referring back to the input-

output MIMO relationship (2.11), the estimated transmit signal vector̂x is [128]

x̂ = w̃ · y, wherew̃ = arg min
w

E
{
‖wy − x‖2

}
(3.26)

and thus the following closed-form expression is obtained

x̂ = HH
(
HHH +N0IM

)−1 · y (3.27)

whereN0 is the noise power. The Bit Error Rate (BER) is measured by counting the number

of erroneously detected symbols and divide this number withthe total number of transmitted

symbols, assuming that the entries of the noise term are∼ Ñ (0, 1) RVs. The BER curves for

a single measurement scenario (location 15D3), in which thedominant eigenmode has anm-

factor equal to 5.3, are depicted in Fig. 3.9. All channel models tend to underestimate the BER

with the proposed model yielding an enhanced accuracy, especially in the high SNR region.

For instance, performance gains of 6% at 20 dB, of 12% at 30 dB and of more than 28% at 35

dB over the Weilscelberger scheme were noticed. The VCR fails to approximate the empirical

BER leading to an irreducible underestimation.

2A more detailed discussion on SM detection algorithms is given in Chapter 5.
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Figure 3.9: BER performance of measured and modelled channels (location 15D3).

The so-called BER mismatch is finally explored at a target SNRof 20 dB against the Nakagami

m-factor of the dominant eigenmode (c.f. Fig. 3.10). In general, the BER mismatch is defined

as the absolute difference between the measured and the modelled BER at a predefined target

SNR. Please note that while there is no dependency between them-factor and the Weichsel-

berger/VCR models, their direct mapping offers a deeper insight into the estimation accuracy

of all schemes as a function of the critical parameterm. To this end, a key observation to be

made is that the distribution of them values clearly confirms the assumption of Nakagami fad-

ing while a significant portion of them lies well beyond the typical unity value. The proposed

model has again a superior performance, compared to the Weichselberger scheme, for the vast

majority of measured scenarios (68 out of 72 scenarios) withthe MSEs being2.24 × 10−5

and4.47 × 10−5 respectively, expressing a 3 dB improvement. Once again, the VCR model

deviates significantly from the actual BER and the output MSEis larger by more than an order

of magnitude (7.96 × 10−4). It is noteworthy that the relative difference of models’ estimators

is higher when more than one eigenmode experiences purely Nakagami fading (m > 2).
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Figure 3.10: BER mismatch at a target SNR of 20 dB against the Nakagamim-factor of the
dominant eigenmode.

3.6 Summary

In this chapter, a novel spatial-based analytical model hasbeen devised using the data from an

indoor measurement campaign conducted at 5.2 GHz. Following the formalism of the KLT,

the scheme decorrelates the spatial subchannels and modelstheir marginal behaviour sepa-

rately. This approach not only provides a reasonable physical interpretation but also relaxes

the stringent condition of joint Gaussian channel statistics. A deeper analysis of the measured

data revealed that the fading envelopes of the vast majorityof the spatial eigenmodes follow a

Nakagami-m distribution rather than a Rayleigh or Ricean distribution. For the generation of

Nakagami-m RVs the rejection technique is introduced with a second-order inverse polynomial

function serving as the hat function. The method is accuratefor arbitrary values ofm andΩ,

thus indicating its high flexibility. By assigning the independent Nakagami-m fading process

on each eigenmode, the performance of the proposed scheme was tested from two different

perspectives (information theory and link-level) and compared it with the sophisticated Weich-

selberger and suboptimal VCR models. It was shown that the Nakagami model outperforms

the former by approximately 2.2 dB in the case of ergodic and outage capacity and by 3 dB in
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terms of BER mismatch. On the other hand, the VCR yields a rather poor fit in all cases leading

to intolerable errors.

The only disadvantage of the proposed scheme lies in its increased complexity burden which

is generally a crucial issue in the choice of the most appropriate channel model. While the

VCR and the Weichselberger models require respectivelyMN = 64 andMN + M(M −
1) + N(N − 1) = 176 real parameters to be specified, the complexity order of the Nakagami

scheme is equal to that of the full correlation model, i.e.(MN)2 = 4096. However, in terms

of processing time a modest increase of 45% was observed on a 3.2 GHz Pentium, making the

model rather appealing when an enhanced accuracy is desired. For example, if a MIMO Rx is

to be simulated for a quasi-static3 channel with reasonable data packet lengths (≫ 1 symbol),

the proposed channel model can be applied to generate the channel for each separate frame

and increase drastically the achieved accuracy without a significant sacrifice in the simulation

time. Ultimately, the scheme can be deployed as a framework for describing different scenarios

operating at the 5 GHz frequency band, e.g. WLANs, fixed wireless and peer-to-peer commu-

nications. It can also be used as a tractable tool for the simulation of MIMO systems, design of

space-time codes and construction of optimum spatial filtering at both ends.

3A quasi-staticchannel is wide sense stationary, i.e. its statistics remain constant during the entire transmission.
In general, the quasi-static channel assumption is a good model for users that are stationary or moving very slowly
relative to the rate of communication.
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Chapter 4
A high-resolution array processing

algorithm for channel characterisation

For the construction of efficient physical channel models aswell as the optimum design and re-

alistic performance evaluation of multi-antenna systems,a detailed knowledge of the statistical

distributions of the multipath parameters is required. This involves multi-dimensional practical

measurement trials followed by the joint extraction of different propagation characteristics in

the corresponding domains, i.e. ToA, DoA, DoD, Doppler frequency, polarisation, complex

path gain, etc. This is usually accomplished by high-resolution array signal processing algo-

rithms applied directly to the raw measurement data. In thischapter, a ML frequency domain

estimation algorithm is devised, namely the 3D FD-SAGE algorithm which can reliably char-

acterise a wireless channel. The scheme is based on a SIC strategy for both detecting the paths

and estimating their corresponding parameters. The remainder of the chapter is organised as

follows: Section 4.1 covers the most known parameter estimation algorithms that have been

reported over the last decades. Section 4.2 elaborates on the fundamentals of the Expectation-

Maximisation (EM) and SAGE algorithms as well as on their applications to channel charac-

terisation. In Section 4.3, the kernel of the 3D FD-SAGE algorithm is discussed for a far-field

propagation scenario where a finite number of plane waves impinge on the Rx. The algorithm’s

performance is evaluated in Section 4.4 for a synthetic environment and in Section 4.5 for a

measured environment. In Section 4.6, the intrinsic deficiencies of the SAGE framework are

addressed. Finally, Section 4.7 concludes the chapter and summarises the key findings.

4.1 Parameter estimation techniques

The quintessential goal of channel characterisation is theidentification of MPCs in conjunction

with the estimation of their parameters in both temporal andspatial domains. As a further

step, we can obtain a geometrical projection of the signal’sinteractions with the surrounding

environment and thereafter work out the dominant propagation mechanisms. The computation
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of the paths’ parameters implies the use of parameter estimation techniques which are globally

classified into two main categories namely,spectral-basedandparametric methods[129].

4.1.1 Spectral-based methods

The key idea is to generate the spectrum of the parameter under investigation and then the

locations of the discrete peaks are recorded as the parameter estimates. The main advantage of

these techniques is that they are simple and require no extensive memory requirements. The

spectral-based techniques can be further classified intobeamforming techniquesandsubspace-

based methods. The classical definition of beamforming states that an array should be steered

in one direction at a time so that the output power is measured; the steering locations which

result in maximum power yield the parameter estimates, e.g.AoA. Different beamforming

schemes have been implemented with the most known and straightforward being theBartlett

or conventionalbeamformer [130] and theCapon’s beamformer[131]. While both schemes

(and their alternatives) are reasonably simple their performance is strongly dependent on the

array aperture and the system SNR. In highly scattered environments with correlated sources,

they fail to capture all multipath activity. The author points out that two signals are correlated

when their correlation coefficient is non-zero while they are coherent when their correlation

coefficient is one. According to [129], two signals are coherent if one is a scaled and delayed

version of the other.

These intrinsic deficiencies of beamforming techniques maybe partially eliminated through

the use of subspace methods. These methods rely on the decomposition of the input covariance

matrix into a signal and a noise subspace and the most well known scheme is MUltiple SIgnal

Classification (MUSIC) algorithm [132, 133], which outperforms the beamformers and satisfies

the two basic criteria of estimation theory:consistency1andefficiency2. Although the MUSIC

spatial spectrum is not a true spectrum, it exhibits peaks inthe vicinity of the true DOAs. A

comprehensive analysis of the algorithm’s performance canbe found in [134]. A performance

measure of Bartlett, Capon’s and MUSIC methods can be seen inFig 4.1, where the normalised

spectra generated by these methods are shown. A ULA with five elements and inter-element

distance equal toλ/2 was used in the simulation and the SNR was set to 20 dB. The true

directions of arrival are−10◦ and0◦.
1An estimate is consistent if it converges to the correct value when the number of observations tends to infinity.
2An estimator is statistically efficient if it asymptotically attains the Cramér-Rao (CR) lower bound.
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Figure 4.1: Normalised power spectra of Bartlett (dash-dotted), Capon(dashed) and MUSIC
(solid) methods vs DoA. The true directions of arrival are−10◦ and0◦.

Undoubtedly, Bartlett and Capon’s beamformers fail to resolve both signals; MUSIC though

returns two distinct peaks. The crucial advantage of MUSIC is that, in contrast to beamformers,

it yields statistically consistent estimates. On the otherhand, the performance enhancement of

MUSIC is achieved at a considerable cost in computational burden as the search is carried out

across the whole parameter space. Moreover, when the amountof data or the SNR is low it

can hardly resolve closely spaced signals. In the limiting case of coherent signals, MUSIC’s

advantages vanish and the estimates are inconsistent. A potential solution for mitigating the

undesired effects of correlated signals lies in theforward-backwardaveraging (FB) [135] or

spatial smoothing(SS) [136] techniques. Their key concept is to split the array into a number

of overlapping subarrays which induce a random phase modulation and hence decorrelate the

signals. Nevertheless, these techniques are practically applicable only to ULA geometries and

further they inevitably reduce the effective aperture of the array since the subarrays are smaller

than the original array [129].
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4.1.2 Parametric methods

The shortcomings of spectral-based techniques dictated the development of the more robust

parametric methods which directly estimate the parameter of interest without first computing

a spectrum, albeit at the expense of an intensive complexity. This is a result of the multi-

dimensional search required to determine the paths’ parameters. A classification is usually

made for parametric techniques intosubspace-based approximationsandML methods[129].

4.1.2.1 Subspace-based approximations

The subspace-based methods constitute the first class in thefamily of parametric methods; they

offer similar statistical performance as ML methods but areless complex. In the specific case

of ULAs, high-resolution algorithms can be directly applied leading to an enhanced accuracy.

A brief overview of the most important techniques in now provided.

ESPRIT: Since its formal derivation in 1985 [137], the so-called Estimation of Signal Param-

eters via Rotational Invariance Techniques (ESPRIT) algorithm has been widely deployed for

DoA estimation, harmonic analysis, frequency estimation,delay estimation, and combinations

thereof [138]. The scheme may be considered as a counterpartof the MUSIC algorithm ex-

panded in the signal subspace rather than in the noise subspace. Moreover, it is more robust

and far less complex since the solution is essentially givenin closed form and no numerical

search through all possible steering vectors is needed. On the contrary, the ESPRIT estima-

tors are unbiased only if the antenna arrays used fulfil the strict condition of two identical and

translationally invariant subarrays (shift-invariance)and hence the scheme is applicable to cer-

tain topologies (in practice ULAs and their combinations).If different configurations are to

be employed, such as circular arrays, special modificationsneed to be performed in order to

transform the circular array into a virtual array with uniform linear structure. Furthermore, it is

noted that like MUSIC, ESPRIT cannot handle correlated paths. Pre-processing techniques, as

the ones reported above for the MUSIC algorithm, are required.

Unitary ESPRIT : The so-called Unitary ESPRIT [139] is applicable to specific array geome-

tries, namely centro-symmetric arrays3, and is based on the transformation of the complex data

matrix to a real matrix of the same size and involves only real-valued calculations throughout.

The resulting algorithm performs better in terms of correlated sources compared to the conven-

3An array is called centro-symmetric if its element locations are symmetric with respect to the centroid and the
complex radiation characteristics of paired elements are the same.
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tional ESPRIT algorithm, but when more two correlated sources are present it fails to maintain

the rank of the signal covariance matrix and hence, a SS technique is still required.

Root MUSIC: The Root-MUSIC (RMUSIC) is basically a polynomial-rooting version of the

conventional MUSIC algorithm [140]. When only small samples are available, RMUSIC yields

a superior performance and also has a lower failure rate for closely spaced sources. Like-

wise, the algorithm was initially applied only to ULA configurations although recently a novel

scheme was introduced which processes the data in the element-space domain and is applicable

for any array geometry. The so-called Element-Space RMUSICalgorithm provides asymptoti-

cally optimal AoA estimation and has very good statistical performance [141].

RARE: The rank reduction estimator (RARE) is a relatively new eigenspace-based estimation

method for multi-dimensional harmonic retrieval problems. Two variants have been devel-

oped so far, namely the root RARE (r-RARE) [142] and the spectral RARE (s-RARE) [143].

The former exploits its rooting-based implementation and the rich Vandermode structure in the

measurement data to improve the estimation performance. Also, the r-RARE is a search-free

algorithm and thus its computational cost is substantiallylower than that of the s-RARE. How-

ever, both schemes are susceptible to array orientation errors which noticeably deteriorate the

output accuracy. This problem has been addressed in [144] where the proposed modified RARE

is more robust in terms of DoA estimation and exhibits a performance close to the CR bound.

4.1.2.2 ML methods

In general, ML techniques, which are built upon the statistical properties of the ray paths, are

optimal and experience a superior performance even in the low SNR region or when the data

ensemble is small. In addition, they offer a high degree of robustness and flexibility with regard

to the array geometry they can be applied to. Two different assumptions about the transmit

signals lead to two different versions which are outlined below [129].

Deterministic ML : The deterministic ML (DML) method poses no assumptions about the ray

paths. The complex gains are modelled as arbitrary deterministic sequences while the noise as

a stationary Gaussian white random process. Then, the estimated parameters are obtained by

solving a multi-dimensional minimisation problem which isusually computationally expensive.

Stochastic ML: The stochastic ML (SML) method models the complex path gains as stationary,

temporally white Gaussian RVs. It is interesting to note that the model is applicable even if
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the signal waveforms are not Gaussian but still requires an exhaustive numerical search while it

shows a better accuracy than the corresponding DML method (see [129] and references therein),

with the difference being pronounced for small numbers of antenna elements, low SNR and

highly correlated signals.

4.2 Principles of the EM and SAGE algorithms

4.2.1 The EM algorithm

One of the most known DML approaches is the EM algorithm whichwas initially formulated

by Dempsteret al. in [145] as a general method for maximising likelihood functions that

arise in various statistical estimation problems. The EM algorithm supplements the observed

measurements which areincompleteor have missing values with acomplete dataspace whose

relationship to the parameter space facilitates estimation. An EM scheme is comprised of two

steps: an Expectation step (E-step) and a Maximisation step(M-step); the former calculates the

expectation of the complete-data log-likelihood, using the current estimate of the parameters

and conditioned upon the observations, while the latter maximises the expectation with respect

to all the unknown parameters. These two steps are iterated until convergence is reached.

4.2.2 The SAGE algorithm

The main motivation for introducing the SAGE algorithm is the slow convergence rate of the

classical EM scheme due to its simultaneous update procedure [146]. The SAGE algorithm

generalises the idea of data augmentation to simplify computations of EM algorithm and im-

prove the convergence rate [147]. This is done by breaking down the sequential maximisation

problem into several smaller ones and using EM to update the parameter subset associated with

each reduced problem while keeping the estimates of the remaining parameters fixed. Still, the

derivation of the algorithm relies on the key notions ofcomplete (unobservable)and incom-

plete (observable)data. However, the mapping from complete to incomplete datais allowed

to be random rather than deterministic as occurs within the EM [145]. To sum up, the SAGE

algorithm yields a faster convergence rate along with a reduced complexity. Last but far from

least, a crucial advantage of both the EM and SAGE schemes is that they can be applied to

any arbitrary antenna geometry provided that the array manifold is fully available and further

require no spatial smoothing for resolving correlated sources.
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4.2.3 Application to the problem of channel characterisation

The original application of the EM algorithm for estimatingthe parameters of superimposed

signals in white Gaussian noise can be found in [149]. The application of the SAGE algo-

rithm to the problem of channel characterisation was originally investigated by Fleuryet al.

in [150] and [151], where time-invariant and time-variant SIMO channels respectively were

studied. Their study was performed exclusively in the time domain and the sounding signal

consisted of an infinite train of rectangular pulses modulated by a pseudo-noise sequence. An

extension to MIMO systems has been presented in [152]. In this case, both ends of the link

were equipped with RF switches whose timing structure was selected so that the MIMO sub-

channels are sounded sequentially. This technique reduceshardware costs and effort for system

calibration. The overall sounding of the propagation channel was performed in a time-division

multiplexed mode. The broadest version of these schemes canbe found in [153], where the

authors considered an extra selectivity domain, i.e. polarisation.

On the other hand, the main motivation for applying the SAGE algorithm in the FD can be

attributed to the operation of the commonly used RUSK vectorchannel sounders of MEDAV

company [121]. In such a case, the Tx is probed by a multi-tonefrequency excitation signal and

the sounder output represents the complex frequency response. The initial development of the

FD-SAGE algorithm has been presented in [154] for a dynamic indoor SIMO channel where

the Rx was in motion. However, this model did not account for angular spread at the transmit

side. In this thesis, the aforementioned approach in this thesis has been extended to encompass

the double directional information.

4.3 The 3D FD-SAGE algorithm

The general problem of interest is stated as follows. Let’s assume a finite number,L, of specular

wavefronts impinging on the Rx, i.e. all signal sources as well as the scatterers are located in the

corresponding far-field regions. The transmitted signal model is assumed to be narrowband and

thus time delays between elements of the arrays can be approximated by phase shifts. For the

sake of simplicity, only horizontal propagation is considered and therefore the elevation angle

is discarded. This assumption does not have a significant impact on the estimation of azimuth

as long as the elevation is confined within±40◦ [150]; in fact, the elevation incidence is very

likely to lie within this range when the Tx and Rx are mounted at the same heights. Under these
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conditions, the channel transfer function can be modelled as (similar to (2.40))

H(f,m, n) =
L∑

ℓ=1

βℓar(φr,ℓ)aT
t (φt,ℓ) exp (−j2πτℓf) (4.1)

with f,m, n representing the selectivity in frequency, receive and transmit spatial domains

respectively. For clarity, the spatial dependency is dropped and all the path parameters are

concatenated in a vectorθℓ , [τℓ, φr,ℓ, φt,ℓ, βℓ]. By consideringNf frequency bins, the noise-

corrupted transfer function at thek-th frequency bin with1 ≤ k ≤ Nf , is given as

H(k) =
L∑

ℓ=1

S(k; θℓ) + N(k). (4.2)

In the above equation, the elements of the(M × N) matrix N(k) are independent complex

zero-mean white Gaussian noise processes with unit spectral height. The contribution of each

path reads as

S(k; θℓ) = βℓar(φr,ℓ)aT
t (φt,ℓ) exp (−j2πτℓfk). (4.3)

Referring to (4.2) the channel response,H(k), is identified as the incomplete data and is related

to the complete data,Yℓ(k), according to

H(k) =
L∑

ℓ=1

Yℓ(k) (4.4)

where

Yℓ(k) = S(k; θℓ) + pℓNℓ(k) ℓ = 1, . . . , L. (4.5)

In the SAGE context, it is optimal to setpℓ = 1 since empirical evidence shows that this choice

leads to a fast convergence of the algorithm even in the earlyiteration steps [146, 151]. During

the E-step the complete data of theℓ-th path is estimated; this can be done using either the

Parallel Interference Cancellation (PIC) or the SIC scheme. Although the former is commonly

used in conjunction with the SAGE algorithm in the time domain, the latter yields more stable

and robust performance in the frequency domain [154]. The main concept of the SIC technique

is to order the waves with respect to their received power in adescending order; thereafter, paths

are estimated and cancelled successively from the receivedchannel response. By doing that,

the effects of interference caused by the strong MPCs are removed, otherwise they are likely to

lead to inaccurate estimates for the low power MPCs. When themultipath activity is high, the
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PIC scheme can be unstable and diverge from the solution, especially in low SNR scenarios.

Furthermore, the PIC scheme is laborious since it requires the whole set of waves in order to

compute the updated estimates. The E-step of the 3D FD-SAGE algorithm then becomes

Ŷℓ(k; θ̂
′) = H(k) −

ℓ−1∑

ℓ′=1

S(k; θ̂′ℓ′). (4.6)

The coordinate wise updating procedure for obtaining the parameterŝθ′′ of each wave based on

all previous estimateŝθ′ reads as (M-step)

τ̂ ′′ℓ = arg max
τ

{∣∣∣z(τ, φ̂′r,ℓ, φ̂′t,ℓ; Ŷℓ(k; θ̂
′)
∣∣∣
2
}

(4.7)

φ̂′′r,ℓ = arg max
φr

{∣∣∣z(τ̂ ′′ℓ , φr, φ̂
′
t,ℓ; Ŷℓ(k; θ̂

′)
∣∣∣
2
}

(4.8)

φ̂′′t,ℓ = arg max
φt

{∣∣∣z(τ̂ ′′ℓ , φ̂′′r,ℓ, φt; Ŷℓ(k; θ̂
′)
∣∣∣
2
}

(4.9)

β̂′′ℓ =
1

M ·N ·Nf
· z
(
τ̂ ′′ℓ , φ̂

′′
r,ℓ, φ̂

′′
t,ℓ; Ŷℓ(k; θ̂

′)
)

(4.10)

wherez (τ, φr, φt;Yℓ) is the so-called cost (or correlation) function; in general, the cost func-

tion originates from the fundamental concept of ML techniques while at each optimisation stage

its peak corresponds to the expected parameter value [146].In the present case, it is given by

z (τ, φr, φt;Yℓ) , aH
r (φr)U

∗ ⊙ Yℓa
∗
t (φt)

= aH
r (φr)

Nf∑

k=1

ej2πτfk ⊙ Yℓ(k)a
∗
t (φt). (4.11)

The termU∗ expresses the conjugate of the calibrated periodic multi-tone frequency excitation

signal [121]. The execution of this update process once defines one iteration cycle of the 3D

FD-SAGE algorithm while at theµ-th iteration step the parameters of the pathℓ = µmod(L)+1

are re-estimated. The parameter estimates are sequentially and cyclically updated until conver-

gence is attained. The complex amplitude is then computed asthe output signal normalised by

the total energy. As for any other iteration method, the algorithm converges when the differ-

ence between two successive estimators becomes smaller than a predefined threshold. Typical

thresholds of 0.5 ns and0.1◦ for the delay and angular domains have respectively been used, as

sufficiently small iteration steps.
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4.3.1 Initialisation of the SAGE algorithm

It is well established that the convergence of any iterationtechnique to a global maximum is

strongly dependent upon the initial conditions. Again, theinitialisation procedure is based on a

successive cancellation scheme with the iteration stepµ ranging from{−(L− 1), . . . , 0}. By

starting with the pre-initial settinĝθ′ = [0, . . . , 0] for ℓ = 1, . . . L, the initial estimates for the

ToA and AoA were computed according to

τ̂ ′′ℓ = arg max
τ





M∑

m=1

N∑

n=1

∣∣∣∣∣∣

Nf∑

k=1

ej2πτfkŶℓ,m,n(k; θ̂′′)

∣∣∣∣∣∣

2
 (4.12)

φ̂′′r,ℓ = arg max
φr





N∑

n=1

∣∣∣∣∣∣
aH

r (φr)

Nf∑

k=1

ej2πτ̂ ′′
ℓ

fkŶℓ,n(k; θ̂′′)

∣∣∣∣∣∣

2
 (4.13)

It should be underlined that at the initialisation of theℓ-th wave the estimates related toℓ′ ≥ ℓ

remain equal to 0, i.e.̂θ′ = [θ̂′1, . . . , θ̂
′
ℓ−1, 0, . . . , 0]. From (4.12) and (4.13) it can be conjec-

tured that the ToA is calculated via coherent summation across all antenna elements while the

AoA via coherent summation across only the transmit elements.

4.3.2 Determination of the model order-SIC technique

A critical issue in the area of parameter estimation algorithms is the determination of the model

order or, in other words, the number of impinging signals that lie above the noise floor. This

is widely referred to as the detection problem and has been extensively addressed over the last

decades. Two information theoretic criteria are usually deployed thanks to their simplicity: the

Akaike information criterion (AIC) [155] and the minimum descriptive length (MDL) [156].

The main drawback of these schemes is that they almost collapse when highly correlated signals

are present. Further, they are mostly applicable to scenarios where the number of signals is less

than the number of antenna elements. In realistic wireless channels though, both assumptions

are usually violated. The same observations infer from [26], where real-life MIMO measure-

ment data was used and it turned out that these information theoretic criteria are insufficient.

In order to circumvent these constraints, the detection problem has been incorporated within

the initialisation stage; the SIC technique is applied until the detected paths have power levels

relative to the strongest path below a threshold. This can either be a constant value for synthetic

environments or the dynamic range of the sounder for measured channels.
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4.4 Performance evaluation of the 3D FD-SAGE algorithm

The performance of the 3D FD-SAGE algorithm is firstly evaluated in a synthetic environment

by means of Monte-Carlo simulations. Here a predefined number of impinging plane waves

with known parameters is used. For generating a rich scattering propagation scenario, a high

number of MPCs and an extended delay range to account for the multiple long-delayed echoes

are needed. The Tx employed a ULA withM = 8 elements with an inter-element distance of

dt = λ/2 while the Rx an eight-element Uniform Circular Array (UCA) with a radius ofλ/2.

For these two configurations, the array responses are

ar(φr) =

[
exp (jπ cos(φr)) , . . . , exp

(
jπ cos

(
φr −

2π(M − 1)

M

))]T

(4.14)

at(φt) = [1, exp (j2πdt cos(φt)) , . . . , exp (j2πdt(N − 1) cos(φt))]
T (4.15)

The number of frequency bins was set equal toNf = 193 with an operating bandwith of

240 MHz to provide a satisfactory resolution in the temporaldomain (4.16 ns). The complex

amplitude,βℓ, was assumed to be an independent zero-mean complex Gaussian RV while the

ToA, τℓ, was randomly and independently chosen from a uniform distribution in [0, 800] ns;

similarly, the azimuth DoA,φr,ℓ, and DoD,φt,ℓ, were chosen from a uniform distribution in

[0, 180]◦. Finally, white complex Gaussian noise was added to the transfer matrix, according

to (4.2) with an input SNR of 20 dB. The actual as well as the estimated paths’ parameters

are tabulated in Table 4.1 and Table 4.2, respectively. It isevident that the algorithm yields

a remarkable accuracy for the great majority of paths. As anticipated, paths will be precisely

estimated only when their characteristics differ by the intrinsic resolution of the corresponding

domain. The ToA estimates are more precise than the angular estimates due to the increased

resolution of the temporal domain; this accounts also for the lobes of the temporal cost functions

to be narrower and is also consistent with the results presented in [148, 154].

Apart from the operating SNR, the algorithm’s performance is heavily dependent on the number

of paths lying within the dynamic range. For higher values ofL the arrays fail to accurately

capture all MPCs due to their finite aperture. To further justify this statement, the root-mean

squared errors (RMSE) of all the paths’ parameters as a function ofL has been computed with

the results being shown in Table 4.3.
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Path Actual ToA, Actual AoA, Actual AoD, Actual power,
no. ℓ τℓ [ns] φr,ℓ [◦] φt,ℓ [◦] |βℓ|2 [dB]

1 515.45 35.05 107.08 -21.69

2 302.88 40.66 47.19 -23.16

3 649.26 30.72 108.51 -24.42

4 426.26 40.97 128.01 -24.72

5 280.58 78.42 39.91 -25.23

6 751.20 55.99 21.13 -27.90

7 700.75 166.20 53.41 -28.33

8 440.12 77.43 57.38 -29.77

9 497.98 33.26 76.35 -31.69

10 469.63 162.87 91.41 -31.93

11 166.19 176.35 15.39 -32.61

12 240.99 78.99 47.24 -34.21

13 376.73 20.01 144.18 -36.06

14 184.39 46.45 5.25 -38.90

15 675.44 73.56 167.19 -41.85

Table 4.1: Actual channel parameters forL = 15 paths.

Path Estimated ToA, Estimated AoA, Estimated AoD, Estimated power,
no. ℓ τ̂ℓ [ns] φ̂r,ℓ [◦] φ̂t,ℓ [◦] |β̂ℓ|2 [dB]

1 515.53 35.06 107.01 -21.75

2 302.84 40.82 47.18 -23.13

3 649.25 30.68 108.49 -24.41

4 426.24 40.92 128.00 -24.71

5 280.56 78.42 39.88 -25.22

6 751.17 55.93 21.13 -27.88

7 700.74 166.16 53.38 -28.32

8 440.14 77.45 57.39 -29.76

9 497.99 33.18 76.24 -31.71

10 469.62 162.76 91.45 -31.96

11 166.18 175.77 15.54 -32.60

12 240.97 78.97 47.32 -34.22

13 376.75 20.11 144.14 -36.04

14 184.37 46.31 4.04 -38.84

15 675.47 73.58 166.85 -41.94

Table 4.2: The 3D FD-SAGE estimated channel parameters forL = 15 paths.
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No. of paths,L RMSE ToA, [ns] RMSE AoA, [◦] RMSE AoD,[◦]

10 0.07 0.34 0.91

20 0.13 0.85 1.36

30 1.73 2.67 8.12

40 12.5 5.04 9.51

50 47.3 14.6 19.4

Table 4.3: RMSEs of simulated SAGE parameters.

4.5 Channel characterisation in the double directional domain

The performance of the 3D FD-SAGE algorithm is now assessed by post-processing the raw

data obtained from the indoor measurement campaign described in Section 3.1. While the

algorithm has been developed on the joint spatio/temporal domain, the limited sounder’s delay

resolution of 8.3 ns allows a very limited path separation (i.e. path length difference equals

2.49 m or approximately 43 wavelengths at 5.2 GHz) in the delay domain and therefore only

the joint AoA/AoD domain is investigated.

Following [88], 150 random realisations of the measured(8×8) channel transfer matrixH were

selected and for each realisation the SAGE algorithm is executed. This value not only allows a

fair comparison with the results presented in [88] but also satisfies the tradeoff between a low

computational burden and a sufficiently large subset of the data ensemble (25,090 realisations

in total). Besides, a further increase in the subset size wasfound to lead to no dramatic changes

in the final estimation results (less than0.5◦ in all cases).

At the initialisation stage, the SIC technique was employeduntil the signal’s power became

smaller than -20 dB relative to the strongest peak so that alldominant MPCs in the received

signal could be extracted. Please note that the study presented in the following section is per-

formed in terms of multipath clustering, azimuth dispersions and inter-dependency between the

azimuth domains.

4.5.1 Cluster identification

The next step of channel characterisation involved clusteridentification on the joint AoA/AoD

spatial domain based on the SAGE estimates. Unfortunately,the widely used clustering al-

gorithms require that the number of clusters is specified by the user which is inappropriate in
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the considered case [157]. As in [85], the author resorted tothe use of non-parametric kernel

density estimates (KDEs), which are flexible and robust, forjointly identifying the clusters. In

general, KDE techniques are employed for associating a smooth non-parametric estimate of the

unknown PDF with an arbitrary collection of observations. For bivariate data points, the two

dimensional (2-D) KDÊf(x1, x2) is given by

f̂(x1, x2) =
1

Np

Np∑

i=1

1

h1h2
K
(
x1 − x1,i

h1
,
x2 − x2,i

h2

)
(4.16)

whereNp denotes the number of random observations,K(x, y) is the kernel function andh1

andh2 are the kernel widths (or bandwidths) of the two dimensions.The smoothness of the

estimator is primarily determined by the selection of the kernel widths and also by the choice

of the kernel function. For the ease of computation, a bivariate Gaussian kernel function is

introduced where

K(x1, x2) =
1

2π
exp

{
−x

2
1 + x2

2

2

}
. (4.17)

The concept of bandwidth selection has recently gained considerable attention since if the val-

ues ofh1 andh2 are too large, we end up with oversmoothing phenomena which remove the

key features of the underlying distribution. An excellent review of the most frequently used

methods can be found in [158]. While there is no overall best method for automatic bandwidth

selection, the direct-plug-in (DPI) method, originally proposed in [159], was adopted due to the

following advantages

• It yields optimal asymptotic performance, that is the asymptotic rate isN−1/2
p .

• For large sample sizes the strength of the plug-in estimatorgrows.

On the other hand, a potential disadvantage rests in the intrinsic sensitivity of the PI bandwidth

to the choice of the so-called auxiliary bandwidths which may result in bias instability [160].

Taking into account that the weaker components may have negligible influence on the calcu-

lation of statistical spreads but can introduce unavoidable errors when calculating PDFs such

as for the number of clusters, only theNp = 1000 AoA/AoD pairs exhibiting the largest gain

amplitudes were used through the cluster identification process. In order to get an understand-

ing of the identification process4, a scatter plot showing the joint AoA/AoD SAGE estimates

is depicted in Fig. 4.2(a) (location 24D2). The corresponding joint density plot after being

4The software implementation of KDE was obtained from [1].
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processed by the two-dimensional (2D) KDE technique can be seen in Fig. 4.2(b) with the

circles corresponding to the identified clusters. The reader can observe that clusters become

far more obvious after the KDE procedure and can be easily determined by visual inspection.

The estimated number of clusters is tabulated in Table 4.4 (columns 2-4); a mean number of

6.875 is found compared to 8.8 in [88]. This difference can beattributed to the constraint of no

overlapping clusters imposed by the authors therein which is relaxed in the present work. This

limitation may generally lead to an overestimation of the number of clusters since in realistic

channels clusters are not always clearly separated and therefore they are likely to overlap.

4.5.2 Global parameters of the spatial domains

In this section, the main focus is on the global spatial parameters and the effects these have on

the ergodic capacity. The first comprehensive study of azimuth dispersion can be found in [161]

and its extension in [162]. The authors considered different outdoor scenarios and examined

the level of temporal and azimuth dispersion as well as the degree of correlation between them.

Similar work was also reported in [163], [164] and [165]. However, all these studies were

limited to the joint spatio-temporal dispersion and therefore disregarded the spatial activity

at the transmit side. Recently, the dispersion experiencedat the Tx in an outdoor-to-indoor

channel has been addressed [166], but the authors focused onthe intra-cluster (within clusters)

properties which implies that the formulation of a broader channel description was beyond their

scope.

4.5.2.1 Angular dispersion

It is widely known that the beneficial effects of MIMO technology can be severely limited

by spatial correlation at both ends of the radio link, that isthe signal correlation between the

antenna elements [59]. The degree of spatial correlation isinversely related to the spatial dis-

persion usually characterised by the rms azimuth spread, i.e. the root second central moment

of the APS

φt,rms =

√√√√√√√√

L∑
ℓ=1

Pφt
(ℓ) · φt(ℓ)2

L∑
ℓ=1

Pφt
(ℓ)

−

(
L∑

ℓ=1

Pφt
(ℓ) · φt(ℓ)

)2

(
L∑

ℓ=1

Pφt
(ℓ)

)2 (4.18)

78



A high-resolution array processing algorithm for channel characterisation

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

Azimuth of Arrival, [degrees]

A
zi

m
ut

h 
of

 D
ep

ar
tu

re
, [

de
gr

ee
s]

(a) Scatter plot of MPCs AoA-AoD as obtained from the SAGE algorithm.
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(b) Joint density distribution after being processed by the2-D KDE with the red circles showing the
identified clusters.

Figure 4.2: Cluster identification using the 2-D KDE procedure (location 24D2).
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wherePφt
(ℓ) is the power of theℓ-th MPC in the transmit APS. The same notation holds for the

receive side. The obtained CDFs for a LoS (17D1) and an NLoS (16D2) location can be seen

in Fig. 4.3(a) and Fig. 4.3(b), respectively. A lognormal distribution is fitted to the empirical

data and plotted for comparison since it was found that it yields an accurate match for the

great majority of the considered scenarios. This implies that the azimuth spread can be directly

described by the density

f(x) =
1

xσt

√
2π

exp

(
−(lnx− µt)

2σ2
t

)
(4.19)

whereµt = E {ln(φt,rms)} andσt = std{ln(φt,rms)}. It should be remembered that the

lognormal distribution is also adopted by different standardisation bodies, such as 3GPP and

COST 273, as an effective means to model global azimuth spreads [107, 116].

From Fig. 4.3, the reader can notice the excellent fit for the AoA spread while the AoD spread

exhibits a slight deviation from the lognormal CDF, especially for the NLoS case. This can be

attributed to the so-called transmit bimodal angular distribution which occurs at all Tx loca-

tions close to the Rx (locations 13-16) and violates the single mode assumption that lies behind

the power normality on the exponential scale. In physical terms, the OLoS component and the

back-wall reflections contribute to the creation of two separate regions (modes) across the trans-

mit spatial domain; this phenomenon is clearly illustratedin Fig. 4.4 where an AoD histogram

for location 14D3 has been plotted. At the Rx though, due to the highly cluttered environment

in which it is situated, this effect becomes very weak and therefore the AoAs are more evenly

distributed across the azimuth domain.
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Figure 4.3: Empirical azimuth rms spreads and best fit lognormal distributions for two differ-
ent Rx locations.
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Figure 4.4: Histogram of measured AoDs for location 14D3 showing the bimodal distribution
across the transmit azimuth domain.

4.5.2.2 Correlation between the angular domains

A correlation study was also performed in order to investigate whether the mechanisms leading

to spatial dispersion at the two ends are similar. The spatial correlation coefficient between the

azimuth spreads was calculated for each measurement scenario according to

ρφt,φr
=

∣∣∣∣∣∣∣∣∣∣

150∑
p=1

(
φt,rms(p) − φt,rms

) (
φr,rms(p) − φr,rms

)

√
150∑
p=1

(
φt,rms(p) − φt,rms

)2 150∑
p=1

(
φr,rms(p) − φr,rms

)2

∣∣∣∣∣∣∣∣∣∣

, ρφt,φr
∈ [0, 1] (4.20)

whereφt,rms, φr,rms are the average values of the transmit and receive azimuth spreads respec-

tively. All obtained values are shown in Table 4.4 (columns 5-13). Analysis of the measurement

results revealed a high correlation at LoS (17) and OLoS locations (13D1, 14D3, 23D3, 24D3)

where the Tx-Rx distance is low and the Tx faces the Rx5. This is anticipated since the direct

dominant component is followed by multiple reflections which all follow a similar route thereby

5For illustrative purposes, the values obtained at LoS locations are depicted in heavy-gray coloured cells while
the Tx facing the Rx cases in light-gray coloured cells.
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leading to a high correlation. The dependency of the spatialdomains in the LoS case can be

regarded as a counterpart of the high correlation between the spatio-temporal domains (again

under LoS conditions) as documented in [85, 165] (for more details please see Section 2.5.1.3).

On the contrary, at the vast majority of NLoS locations the dominant path vanishes and the

degree of correlation is relatively low; under these circumstances, the propagation mechanisms

have become far more complex (multiple-order reflection, diffraction and scattering) and the

impinging paths follow different routes reducing the dependency of the two domains.

As far as the mean azimuth spread is concerned, a number of interesting conclusions can been

drawn. Firstly, the LoS and OLoS locations exhibit the lowest dispersion, indicating a lower

spatial decorrelation, as the dominant paths mask the scattered waves making them lie within

the noise region; that is, the lower power paths are not observable and hence did not contribute

to the global azimuth spread. The Rx locations in the vicinity of the outer wall (such as 9D1,

12D1, 16D1, 18D1, 18D2, 20D1, 22D1, 22D2, 25D2) yield very high values of AoA spread

because of the weak high-order waves which bounce off the surrounding walls. For the AoD

dispersion, its large values at locations 14-16 are due to the bimodal energy distribution as was

previously mentioned. In general, the receive azimuth spread is higher than the transmit spread

at 51 out of the 72 considered scenarios (71.8% of the cases).The AoA spread ranges between

11 and 56 degrees whereas the AoD spread between 10 and 51 degrees. One explanation

suggests that the transmitted energy is confined within a region around the direct Tx-Rx path

while the received multipath activity is spread over the whole azimuth domain. This means that

the transmitted waves create a single or at most two clustersunder the bimodal conditions and

hence the values of the transmit spread are normally lower than those of the receive spread.

In any case though, the obtained values are well above the ones reported in the corresponding

literature from measurements at a base station mounted above rooftops [161, 162]; this is a

direct consequence of the low antenna heights and closer proximity of local scatterers.

4.5.2.3 Effects on ergodic capacity

In Fig. 4.5 and Fig. 4.6, the ergodic capacity, as calculatedby (2.17), has been plotted against the

spatial parameters of interest, i.e. the azimuth spreads and the correlation coefficient between

them. Normally, low angular spreads cause a decrease in MIMOcapacity since they diminish

the advantages of multipath propagation causing the rank-deficiency of the channel matrix [59].

Clearly, a consistent observation can be made for the measured data set under investigation; the
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Rx No. of clusters φr,rms [◦] φt,rms [◦] ρφt,φr

locat. D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

1 4 6 5 21.9 44.2 26.2 23.3 21.2 22.5 0.13 0.17 0.36

2 6 6 7 21.0 46.9 29.8 28.6 23.7 19.7 0.08 0.35 0.57

3 5 8 7 15.3 42.3 44.4 28.3 23.3 30.3 0.17 0.21 0.11

4 5 8 8 30.4 50.2 26.2 26.3 26.2 19.6 0.27 0.01 0.58

5 6 7 6 11.4 45.2 35.0 32.3 27.4 26.9 0.25 0.11 0.23

6 6 7 7 40.1 40.8 29.5 28.1 24.8 23.9 0.42 0.19 0.48

7 6 7 9 34.2 39.9 27.5 31.3 24.8 23.3 0.06 0.52 0.56

9 7 8 8 50.8 33.9 27.8 31.1 25.1 26.1 0.21 0.26 0.21

10 8 6 10 21.4 52.6 37.3 20.3 17.2 17.5 0.52 0.30 0.12

12 7 7 8 43.4 19.1 19.5 17.9 17.0 15.7 0.23 0.14 0.32

13 7 7 7 11.6 54.6 50.1 17.0 45.6 31.8 0.61 0.22 0.25

14 7 8 7 27.2 47.1 13.0 45.3 51.2 33.8 0.53 0.05 0.51

15 7 7 6 29.8 37.0 27.8 40.6 47.8 42.5 0.33 0.03 0.15

16 9 6 7 45.1 31.4 23.6 47.1 48.5 49.3 0.42 0.16 0.18

17 9 5 6 13.0 35.2 31.4 14.9 11.0 10.2 0.65 0.42 0.47

18 7 7 9 56.8 49.0 30.3 15.4 12.4 16.3 0.35 0.66 0.40

19 4 10 4 26.5 51.5 31.1 14.5 15.6 11.2 0.58 0.37 0.63

20 5 7 7 42.6 34.3 23.3 25.8 22.6 27.2 0.11 0.48 0.12

21 10 9 4 33.9 43.2 21.3 22.9 27.8 26.0 0.03 0.33 0.34

22 5 9 9 43.3 47.6 30.1 22.6 26.2 24.6 0.14 0.15 0.12

23 9 8 9 40.3 43.5 26.1 21.1 25.4 23.7 0.33 0.03 0.70

24 7 6 4 40.8 39.4 15.2 33.6 29.3 28.2 0.23 0.31 0.79

25 5 7 3 34.1 46.9 21.2 34.0 39.6 38.1 0.38 0.17 0.22

26 5 8 8 40.8 37.1 24.0 31.8 37.9 39.1 0.41 0.04 0.34

Table 4.4: Spatial characteristics at all Rx locations and orientations. The heavy and light-
gray colored cells correspond to LoS and OLoS locations respectively.
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effects of azimuth spread on capacity are more pronounced atthe receive side whereφr,rms

andC behave in a more correlated way thanφt,rms andC do. From a statistical viewpoint, the

correlation betweenφr,rms andC is 0.5518 while betweenφt,rms andC is 0.1574.
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Figure 4.5: Ergodic capacity as a function of the mean rms azimuth spreadsφt,rms andφr,rms.

This trend may be attributed to the fact that the values of transmit azimuth spreads are slightly

misleading due to either the bimodal distribution or near-field scattering effects which artifi-

cially increase them. This means that high transmit spreadsare not always indicative of high

multipath activity and therefore do not always lead to larger MIMO capacities. Similarly, an

increase in dependency between the spatial domains leads toa decrease in the ergodic capacity.

The relatively small number of deviations from this generaltrend can be attributed to strong

OLoS components which raise the total received power level but, at the same time, contribute

to a high degree of correlation. For practical systems, large angular spreads have a beneficial

effect on MIMO capacity by enriching the SM potential (higher number of orthogonal subchan-

nels) while independence of the two angular domains leads toan improvement in the spatial

diversity of the MIMO link (high reliability).
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Figure 4.6: Ergodic capacity as a function of the spatial correlation coefficientρφt,φr
.

4.6 Limitations of the SAGE algorithm

So far, only the advantages offered by the SAGE algorithm have been addressed. However,

there are some concomitant deficiencies of this framework which are summarised below. The

first shortcoming lies in the identification of the diffuse scattering phenomena which occur

when the MPCs are closely distributed around a local region forming a cluster of rays with very

similar temporal characteristics and small angular spread. The author restates herein the fun-

damental point-source assumption which suggests that the radio channel can be regarded as the

superposition of a finite number of specular propagation paths. However, realistic radio chan-

nels contain not only concentrated propagation paths, but also an amount of MPCs resulting

from distributed diffuse scattering. When the size of the cluster is smaller than the resolution

of the corresponding domain, the MPCs within a cluster can not be resolved and only the nom-

inal direction is tracked; when the cluster size is larger than the intrinsic system’s resolution,

only a few dominant MPCs will be identified. In both cases though, the contributions of MPCs

within a cluster are not fully removed and thus the update process is prone to interference from

residual energy from the detected components (error propagation) [167].
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The alleviation of this problem has been addressed separately in [168], where it was shown

that the direction estimates are RVs whose distribution depends only on the angular spread of

the diffuse scattering, and in [169], where a multivariate circular complex normal distribution

was assigned to the diffuse scattered paths. The authors therein suggest the use of the so-called

RIMAX algorithm [170, 171] which is essentially an iterative ML parameter estimation scheme

based on both multi-dimensional conjugate gradient searchand sequential parameter update. In

comparison with SAGE, its complexity is drastically reduced especially if the number of paths

is smaller than the number of samples and, furthermore, the convergence speed is enhanced as

the parameter-wise search is replaced by the faster nonlinear gradient search [116]. The esti-

mation results are the deterministic multi-dimensional parameters of the specular propagation

paths as well as the parameters of a simplified model for the diffuse scattered MPCs. The En-

hanced SAGE (E-SAGE) scheme is an alternative which estimates only the nominal parameters

of the cluster and its spreads [172]. However, the parameters for each of the MPCs within a

cluster cannot be estimated due to the limited fundamental resolution of the algorithm. This

technique yields better phantom path discrimination as it takes the spread of each cluster into

account when implementing the E-step and therefore the relative power difference between the

strongest path and the phantom paths is increased (enhancedsignal cancellation).

The assumption of far-field conditions may not be always met in practice especially for termi-

nals mounted at low heights (for instance in peer-to-peer communications). In this case, local

scatterers are more densely distributed around the terminals leading to near-field scattering,

i.e. spherical instead of plane waves are created. In a similar manner, plane waves imping-

ing on a sharp edge are expected to propagate as cylindrical diffracted wavefronts in the 3D

space. Due to the high power loss associated with this propagation mechanism though (see

Section 2.1), its impact on the performance of estimation algorithms becomes significant only

when the diffracting body is in the Rx’s vicinity.

From a computational point of view, a limitation exists in the SIC technique which is subject

to interference from the uncancelledℓ + 1 path as well as the residual components from the

previous paths that are not totally removed from the total response. This may lead to inac-

curate estimates due to power imbalance. Finally, the complexity level of the SAGE scheme,

particularly that of the M-step, necessitates the use of more efficient approaches as the one de-

scribed in [173]. Due to the iterative nature of the algorithm, applying it to the estimation of

superimposed signals can be time consuming and impractical. The long processing time whilst
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awaiting convergence, especially in multi-dimensional problems, turns out to be the main algo-

rithm’s drawback.

4.7 Summary

The design and performance planning of MIMO systems poses a prerequisite, that is the pre-

cise knowledge of the multipath parameters in different selectivity domains. In this chapter,

a new multi-dimensional version of the FD-SAGE algorithm has been presented. The chan-

nel model under consideration consists of an finite number ofplane waves whose temporal

and angular parameters need to be defined in the frequency domain. The SIC technique has

been incorporated in both the initialisation and the estimation stages, following previous stud-

ies which demonstrated its higher reliability compared to the PIC approach in the frequency

domain. By generating a synthetic environment the performance of the SAGE algorithm was

tested; apart from its excellent accuracy, the scheme offers a high degree of flexibility for any

antenna geometry and plus it remains robust in the presence of correlated sources in contrast to

the majority of array signal processing algorithms. Nevertheless, paths are resolved only when

their characteristics differ by the intrinsic resolution of the temporal and spatial domains.
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Using a set of raw measurement data, a detailed characterisation of an indoor MIMO channel

was also carried out in the joint AoA/AoD domain. Lower dispersion and higher correlation

occur when a LoS is present or when the Tx faces the Rx and the distance between them is

low (OLoS propagation) while for NLoS Rx locations, the dispersion is larger and in turn the

two spatial domains are decorrelated. The transmit bimodalangular distribution is another

interesting phenomenon that artificially increases the AoDspread at Rx locations close to the

Tx. The common belief that high angular spreads contribute to high MIMO capacities was

verified while the independence of the two azimuth domains seems to have a positive impact

on capacity performance.

Finally, the fundamental limitations of the SAGE frameworkwere addressed in the last part

of this chapter since they should always be taken into account in the physical interpretation of

the algorithm’s output. Summarising, this sophisticated version of the SAGE algorithm can be

used to work out the propagation conditions of most practical wireless channels and ultimately

aid the planning of multiple-antenna systems.
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Chapter 5
Statistical characterisation of

dual-branch MIMO Ricean systems

While the previous two chapters were devoted to the modelling and characterisation of in-

door MIMO systems, the present chapter covers the area of short-range communications which

have recently emerged as a hot topic in the area of wireless networks. In the interesting case

of VTR propagation, the presence of a LoS component is highlylikely especially if the road

traffic is sparse and hence there are no obstacles between thetwo ends; this means that the fad-

ing statistics of the channel matrix entries are not Rayleigh but Ricean instead. The first aim of

this chapter is to devise a dual-branch architecture able todeliver high MIMO throughput under

these LoS conditions. Secondly, a detailed statistical eigenanalysis of these dual-branch MIMO

architectures is performed, based on the principles of random matrix theory. The outputs of this

analysis are thereafter used to construct an AD that offers adrastic reduction in the complexity

and implementation cost of practical MIMO receivers. The remainder of the chapter is organ-

ised as follows: In Section 5.1, a design methodology for LoS-optimised MIMO systems is

proposed that overcomes the problem of reduced multiplexing gain in LoS conditions with the

derived criterion being adapted to a VTR propagation scenario. Section 5.2 elaborates on the

eigenvalue and condition number statistical properties ofdual-branch MIMO Ricean systems

for which closed-form formulae are derived and validated via Monte-Carlo simulations. Sec-

tion 5.3 exploits these analytical results to develop the aforementioned AD for the usual case

of SM-MIMO systems. Finally, Section 5.4 concludes the chapter and summarises the key

findings.

5.1 LoS-optimised MIMO systems for VTR communications

While it is greatly accepted that a single LoS path is optimalfor SISO systems since it en-

hances their performance with respect to multipath conditions, these results can not be straight-

forwardly extended to the MIMO case. Generally, LoS propagation limits the beneficial effects
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of MIMO technology because the channel matrix is normally rank deficient due to the linear

dependence of the LoS’ rays phases on the receive elements. In detail, it has been found that

in most LoS scenarios the communication subchannels have almost identical responses and the

differentiation of the received signals at the MIMO detector becomes difficult due to the reduced

multiplexing gain between the different pairs of transmit and receive elements [174–176]. Con-

sequently, an unavoidably high percentage of erroneously detected transmitted signals occurs.

Over the last years though, research in the field of short-range communications revealed that

high capacities are still achievable in LoS by appropriate positioning of the antenna elements

so that the LoS rays become orthogonal [177–179]. This meansthat subchannel orthogonality,

which is a key condition for capacity maximisation, can be achieved as long as special antenna

geometries are employed at both the Tx and Rx [105]. The main disadvantage of the above

cited papers though, is the fact that they were tied to fixed communication systems where both

terminals are static. Thus, in this section, these results are extended to account for the case of

DSRC where a moving car is communicating with a fixed roadsideunit; under these circum-

stances, a LoS-optimised architecture is devised assumingthat both ends are equipped with

two-element ULAs. The model’s equation for MIMO Ricean channels (2.31) is now rewritten

for the sake of continuity

H =

√
K

K + 1
HL +

√
1

K + 1
Hw. (5.1)

In the case of free-space propagation, the complex entries of the deterministic componentHL

are of the forme−jkdm,n/dm,n, wherek = 2π/λ is the wavenumber corresponding to the

carrier wavelengthλ anddm,n is the distance between a receive elementm ∈ {1, 2} and a

transmit elementn ∈ {1, 2}. Assuming, without loss of generality, isotropic radiators and

negligible differences in the path-losses the normalised free-space matrix component becomes

HL =


 e−jkd1,1 e−jkd1,2

e−jkd2,1 e−jkd2,2


 . (5.2)

5.1.1 Maximum LoS MIMO capacity criteria

For a purely deterministic channel (H = HL), the instantaneous capacity is also deterministic

and depends exclusively on the distances between the antenna elements whereas the corre-
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sponding formula is

C = log2

(
det
(
I2 +

ρ

2
HLH

H
L

))
. (5.3)

As was indicated in Section 2.3.3, the instantaneous capacity is maximised whenHHH = 2I2.

For the deterministic case, that is the eigenvalues of the LoS correlation matrixT = HLH
H
L

become equal and therefore we end up with perfectly orthogonal MIMO spatial subchannels,

i.e. full-rank matrix. In [178], it was shown that this condition is satisfied when

|d1,1 − d2,1 + d2,2 − d1,2| = (2r + 1)
λ

2
, r ∈ Z+ (5.4)

whereZ+ is the set of positive integers. In physical terms, the authors therein concluded that

the sum of path differences(d1,1 − d2,1) and(d2,2 − d1,2) needs to be an odd integer multiple

of a half wavelength. While the capacity maximisation criterion (5.4) is expressed as a func-

tion of distances between the antenna elements, in practiceis awkward since it disregards the

array geometries and orientations. A more tractable criterion can be derived by considering the

geometry depicted in Fig. 5.1 which is basically a top view ofthe propagation scenario under

consideration, with the car moving on a straight trajectoryalong they-axis and both arrays

being placed perpendicular to the ground. The distance between the two arrays on thex andy

axes are respectivelydx anddy whereas the constant height difference is given asdz. A side

view of the same scenario is illustrated in Fig. 5.2; an axis rotation by an angleθ has been

conducted around they-axis in order to make the array origins lie on the same axis and ease

the post-processing. The coordinates of all elements with regard to the new coordinate system

x′yz′ have also been included. The inter-element distances are respectivelys1 at the Tx ands2

at the Rx. The distance between the first element of each arrayis

D =
√
dx2 + dy2 + dz2 (5.5)

while the rotation angleθ can be defined as

cos θ =

√
dx2 + dy2

D
(5.6)

sin θ =
dz

D
. (5.7)
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Figure 5.1: Top view of a vehicle-to-roadside propagation scenario.
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Figure 5.2: Side view of a vehicle-to-roadside propagation scenario with 2-element ULAs at
both ends.
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The Euclidean distances between all antenna pairs are givenby

d1,1 = D (5.8)

d1,2 =

√
(D + s1 sin θ)2 + (s1 cos θ)2 (5.9)

d2,1 =

√
(D − s2 sin θ)2 + (s2 cos θ)2 (5.10)

d2,2 =

√
(D + (s1 − s2) sin θ)2 + ((s1 − s2) cos θ)2. (5.11)

As a next step, a Taylor series approximation is introduced in order to simplify the above set of

equations

√
(D + µ)2 + ν2 = (D + µ)

√
1 +

ν2

(D + µ)2

≈ (D + µ) +
ν2

2 (D + µ)
. (5.12)

This approach is sufficiently accurate as long as(D + µ)2 ≫ ν; this holds true for all practical

systems whereD is of order of meters whiles1, s2 are typically of order of centimetres. Then,

the Euclidean distances become

d1,1 = D (5.13)

d1,2 ≈ D + s1 sin θ +
(s1 cos θ)2

2 (D + s1 sin θ)
(5.14)

d2,1 ≈ D − s2 sin θ +
(s2 cos θ)2

2 (D − s2 sin θ)
(5.15)

d2,2 ≈ D + (s1 − s2) sin θ +
((s1 − s2) cos θ)2

2 (D + (s1 − s2) sin θ)
. (5.16)

A further simplification is easily achieved if the denominators in (5.14)–(5.16) are approxi-

mated by2D. Once more, the error introduced is negligible. By replacing (5.13) and modified

(5.14)–(5.16) into (5.4), the simplified maximum capacity criterion can be written as

s1s2 ≈ λ

(
r +

1

2

)
D

cos2 θ
, r ∈ Z+. (5.17)

This formula is now a function of the inter-element distances, Tx-Rx distance, orientation of the

arrays and carrier frequency. In general, larger distance requires larger antenna spacings while

higher frequency requires smaller antenna spacings. For fixed frequency and Tx-Rx distance,

the arrays can be designed so that subchannel orthogonalityis attained.
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5.1.2 Capacity variations

Although the derived criterion is simple, it does not take into account possible deviations from

the optimum values which are always present in realistic propagation environments due to either

design inaccuracies or positioning displacements. What’smore, most practical applications are

designed to operate within a coverage area rather than between fixed points. In this section, the

capacity of configurations fulfilling the criterion (5.17) is tested under a range of more practical

conditions, such as the displacements from optimal positions and the presence of multipath

scattering.

5.1.2.1 Displacement effects

For the assumed scenario, the receive array is not fixed at a specific position but its location

changes constantly with the car motion. The performance of the proposed scheme is firstly

evaluated by means of displacement from an optimal point within an area of interest. Let’s

assume the optimal point to occur whendx = 5 m, dy = 0 anddz = 2 m (Dopt = 5.3852 m

andθopt = 21.8◦). These are typical values of a short-range peer-to-peer propagation scenario

where one terminal is mounted well below rooftops. The carrier ITS frequency is 5.9 GHz and

the SNRρ is set to 20 dB. Using the solution of equal inter-element spacing, the minimum

optimal spacing for the full-rank model (i.e. the solution of (5.17) forr = 0) returnss1 = s2 =

39.85 cm. At this point, capacity reaches its maximum value which isCmax = 2 log2(1 + ρ) =

13.32 bits/s/Hz. The LoS component of this optimised configuration is1

H
opt
L =


 0.8384 + j0.5451 0.9074 − j0.4202

0.0160 − j0.9999 0.8384 + j0.5451


 . (5.18)

with the two eigenvalues ofTopt being equal to 2. The sensitivity of the proposed orientation to

displacements from the optimal point on thex−y plane can now be addressed. The considered

area is determined as0 ≤ Dx ≤ 15 m and−50 ≤ Dy ≤ 50 m whereDx, Dy are the

displacements on the corresponding axes. The variations ofcapacity are illustrated in Fig. 5.3.

It is easily seen that the system capacity is highly sensitive to displacements in the direction

of y-axis whereas it seems to be less susceptible to displacements in the direction ofx-axis

(smaller dynamic range). As anticipated, when the car is passing by the infrastructure unit

(Dy = 0) the largest capacity values are observed. For the range−20 ≤ Dy ≤ 20 m, which

1The subscriptsopt, suboptandconvrespectively stand for optimal, suboptimal and conventional configurations.
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Figure 5.3: Capacity variation against displacement on thex− y plane.
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corresponds to a total area of40 × 15 = 600 m2, the proposed scheme delivers high capacities

and outperforms the i.i.d. Rayleigh system which yields an ergodic capacity of 11.4 bits/s/Hz

at the same operating SNR.

5.1.2.2 Scattering effects

So far, only a deterministic channel has been considered andfor this reason free-space prop-

agation is the only propagation mechanism. This assumptionis fairly valid for short ranges

where the LoS component is expected to dominate over the scattered paths (highK-factor).

In practice though, some degree of scattering is always present due to the interaction of the

transmitted signal with the physical environment as it travels towards the Rx. For a multipath

MIMO channel, the channel matrixH becomes a stochastic fading process making capacity be-

come a RV as well. A total set of 50,000 Monte-Carlo realisations ofH is acquired from (5.1)

using the same fixed optimum settings for the LoS matrixH
opt
L as before. The effects of theK-

factor on channel capacity are depicted in Fig. 5.4(a). For the specific full-rank geometry, the

monotonic capacity increase with theK-factor as well as the enhanced diversity performance

(steeper CDF curves) are of paramount significance. In fact,this behaviour contradicts the

common belief that higherK-factors, which induce stronger deterministic components, lead

to higher correlation and thus lower capacity; in strong LoSconditions the proposed config-

uration systematically outperforms most conventional architectures. These results are in line

with those presented in [177–179]. To shed some light on thisphenomenon, a conventional LR

architecture withs1 = s2 = 0.5λ and arrays in the far-field region, is also examined. This

implies that the LoS signals propagate as plane wavefronts whose phases are highly correlated

and thereforeHHH = 212. The LoS matrix component then becomes

Hconv
L =


 0.8384 + j0.5451 0.8272 − j0.5618

−0.1653 + j0.9862 0.8384 + j0.5451


 . (5.19)

whereas the eigenvalues ofTconv are (4, 4, 08 × 10−5). A completely inverse trend is now

observed in Fig. 5.4(b) with the presence of a LoS path cancelling off the MIMO advantages.

In the lowK-factor regime though, the capacity performance of both systems becomes identical

while in the limit (K → −∞ dB) the LoS component vanishes and we end up with a pure i.i.d.

Rayleigh channel, regardless of the antenna element positions. On the other hand, in the limit

(K → ∞ dB), the conventional configuration degenerates into a single-path MIMO link.
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(a) Optimised configuration.
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(b) Conventional configuration.

Figure 5.4: Capacity CDFs of two stochastic MIMO channels (ρ = 20 dB).
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As a next step, the dynamic evolution of capacity is studied again for different values of the

K-factor and the obtained results are shown in Fig. 5.5. As theK-factor increases the dynamic

range of capacity increases too; forK ≥ 10 dB the ergodic channel capacity is able to reach its

maximum value and becomes more robust to displacements fromoptimum locations. On the

other hand, forK ≤ 0 dB the system performance is unaffected by the car motion andalso gets

closer to the ergodic Rayleigh capacity which implies that the benefits of LoS-optimised arrays

are minimised.
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Figure 5.5: Sensitivity of ergodic capacity to displacements on thex − y plane for different
values of theK-factor.

5.2 Eigenanalysis of dual-branch MIMO Ricean systems

The impact of eigencharacteristics on MIMO performance hasbecome evident from the previ-

ous section and has been widely recognised over the last years as well. For instance, the eigen-

values ofHHH reflect the power of each multiplexed data stream and therefore are inherently

related to MIMO capacity [5, 6] and further constitute a metric of multipath richness [180].

For this reason, the main objective herein is the determination of the eigenvalue profile which

includes among others the marginal eigenvalue and condition number distributions.
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5.2.1 Eigenvalue statistics

Since the introduction of MIMO technology, an extensive amount of research effort has been

devoted to the study of eigenvalue statistics (see [6, 44, 181–184] among others) which gov-

ern a variety of MIMO features spanning from SM ability to diversity order and error per-

formance [185–188]. Apart from the eigenvalue statistics,an equally important metric is the

condition number commonly defined as the ratio of the largestto the smallest eigenvalue. In the

MIMO context, the condition number indicates the multipathrichness of the channel [189] and

it has also been shown to drastically affect the detection performance in SM systems [190, 191].

Hence, a detailed knowledge of the eigenvalue as well as of the condition number statistics is

highly desirable since it will facilitate the efficient characterisation of the promising MIMO

technology and the design of future communication networks.

All the above cited papers make use of random matrix theory and particularly of the theory of

random complex Wishart matrices, established by the pioneering work of James [192]. In the

usual scenario of Rayleigh fading the channel matrix entries have zero mean and, consequently,

the tractable class of central (zero-mean) Wishart matrices comes up for which all ordered

joint/marginal eigenvalue CDFs and PDFs are known in closedform (see for instance [193] and

references therein). On the other hand, the presence of the specular component in Ricean chan-

nels violates the zero-mean condition but despite their practical relevance few results have been

documented on the eigenvalue statistics of Ricean channels. This fact can be attributed to the

difficulty in manipulating hypergeometric functions with two matrix arguments of non-central

Wishart matrices compared to the one matrix argument of central Wishart matrices [192]. For

example, following the fundamental guidelines introducedby Khatri [194], the PDF and CDF

of the largest eigenvalue of an arbitrary size non-central Wishart matrix were derived in [187]

and thereafter were used to analyse the performance of maximal ratio combining systems. Like-

wise, the marginal PDF of an unordered eigenvalue was derived in [195] along with the ergodic

mutual information in explicit form. On the other hand, based on the joint eigenvalue distri-

butions, different insightful results have been reported in the literature. To be more precise,

the authors in [196] explored the moment generating function of capacity whereas in [197]

the main focus was on the higher-order moments of capacity. Also, in [198] tight upper and

lower bounds on the ergodic capacity of correlated MIMO Ricean channels were presented. For

the dual case under consideration, exact density and distribution capacity functions for rank-1

MIMO Ricean channels were derived in [199], through the unordered joint eigenvalue PDF.
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To the best of the author’s knowledge, the first investigations dealing with the ordered marginal

distributions of the smallest and largest eigenvalues of MIMO Ricean channels were separately

addressed in [200], [185] and [201]. The former proposed theuse of invariant polynomials

which, in the author’s opinion, made the overall analysis excessively complicated and further it

merely considered the marginal CDFs; what’s more, the distribution of the smallest eigenvalue

was given in an integral non-analytical form. In [185], muchsimpler CDF expressions were

expressed but, at the same time, the PDF densities were modelled via asymptotic first-order

expansions which are, by definition, accurate only when the eigenvalues tend to zero. The latter

paper recently studied the marginal eigenvalue PDFs, starting from the joint eigenvalue PDF,

but the derivation of final closed-form expressions, which the authors acknowledge as quite

involved, was beyond the scope of the paper. Summarising, itappears that no tractable closed-

form formulae for the ordered marginal eigenvalue PDFs are available in the literature. For the

rest of this chapter, the symbol∼ CN (X,Y) will stand for a complex normally distributed

matrix with meanX and covarianceY. The entries of an(m × n) matrix X are denoted as

{X}i,j wherei = 1, . . . ,m andj = 1, . . . , n and the all-zero(m× n) matrix as0m×n.

5.2.1.1 Review of dual non-central Wishart matrices

When a dual Ricean system is assumed, the(2 × 2) complex normal random matrixH is

distributed according toH ∼ CN (M,Σ⊗ I2). The matrixΣ = σ2I2 is the correlation matrix

containing the variancesσ2 of the entries ofH on its main diagonal. The instantaneous MIMO

correlation matrix is defined as̃W = HHH and is said to follow the complex non-central

Wishart distribution with two degrees of freedom and non-centrality matrixΩ = Σ−1MMH ,

commonly denoted as̃W ∼ CW2(2,Σ,Ω)2. Let’s now consider a scaled version of̃W, that

is W = Σ−1W̃. SinceW is a(2 × 2) Hermitian matrix, it has two real ordered eigenvalues

w1 > w2 > 0, whose joint PDF is given by [192]

f(w1, w2) = exp

[
−

2∑

i=1

(λi + wi)

]
0F̃1 (2;λ,w) (w1 − w2)

2 (5.20)

whereλ = (λ1, λ2) contains the real ordered eigenvalues ofΩ and, in turn,w = (w1, w2)

while 0F̃1(.; ., .) is the complex hypergeometric function of two matrix arguments. A conve-

nient version of0F̃1 (2;λ,w) for the case of two transmit and two receive antenna elements

2It should be noted that ifM = 02×2 so thatΩ = 02×2, a complex central Wishart matrix is obtained, i.e.
fW ∼ CW2(2,Σ).
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was given by Gross and Richards [202] as

0F̃1 (2;λ,w) =
det (0F1 (1;wiλj))

(λ1 − λ2)(w1 − w2)
(5.21)

with 0F1(s + 1;x) being the classical hypergeometric function [203]

0F1(s+ 1;x) = s!x−s/2Is
(
2
√
x
)
. (5.22)

Regarding the statistical characteristics ofH in (5.1), it can be inferred thatM =
√

K
K+1HL

while Σ = 1
K+1I2. Then, it is trivial to show that the Wishart matrix̃W = HHH follows

the distributionW̃ ∼ CW2

(
2, 1

K+1I2,KHLH
H
L

)
and in turn the associated LoS version of

interestW = (K + 1)W̃.

5.2.1.2 Marginal eigenvalue PDFs

In this section, the marginal PDFs of the smallest and largest eigenvalue of dual non-central

Wishart matrices are derived. The starting point of the following analysis is the work presented

in [185] where the marginal CDFs of all ordered eigenvalues of random size complex non-

central Wishart matrices were derived. These explicit results apply for non-centrality matrices

of arbitrary rank and are rewritten herein for the ease of thereader. The following mathematical

derivation is exclusively performed in the matrix domain and, consequently, the eigenvalue

PDFs cannot be simply obtained after differentiating the CDFs. More interestingly, it is shown

the derived formulae, which are given in matrix form as well,can be efficiently evaluated and

easily programmed thanks to the compact matrix sizes. To begin with, in the general case of a

(m × n) MIMO system withm ≤ n, the marginal CDF of the smallest eigenvaluewn of W

is [185]

Fwn(x) = 1 − det (Φ(x))

det (Φ(0))
, x > 0. (5.23)

The entries of the matrixΦ(x) are succinctly given by

{Φ(x)}i,j = Qm+n−2i+1,m+n

(√
2λj ,

√
2x
)

(5.24)

whereQp,q(y, z) is the Nutall Q-function, originally defined in [205, Eq. (86)] according to

Qp,q(y, z) =

∫ ∞

z
xp exp

[
−x

2 + y2

2

]
Iq(yx)dx. (5.25)
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The CDF of the largest eigenvaluew1 of W reads as

Fw1
(x) =

det (Ξ(x))

det (Φ(0))
, x > 0. (5.26)

Likewise, the entries of the matrixΞ(x) are

{Ξ(x)}i,j = Qm+n−2i+1,m+n

(√
2λj , 0

)

−Qm+n−2i+1,m+n

(√
2λj ,

√
2x
)
. (5.27)

Whenm = n = 2, the following simplified expression for the entries ofΦ(x) is obtained

(proof given in Appendix A.1)

{Φ(x)}i,j =





(2λj + 2)Q
(√

2λj ,
√

2x
)

+
√

2x exp [−(λj + x)]

×





√
2λjI1

(
2
√
λjx
)

+
√

2xI0

(
2
√
λjx
)

︸ ︷︷ ︸
A(x)




, for i = 1

Q
(√

2λj ,
√

2x
)
, for i = 2

(5.28)

where the Marcum-Q function is defined asQ(a, b) =
∫∞
b x exp

[
−a2+x2

2

]
I0(ax)dx. Please

note that similar simplified expressions for the marginal eigenvalue CDFs have been investi-

gated in [204], though the authors evaluated the Nutall-Q as an infinite series of polynomial

terms which introduce higher computational requirements.The marginal PDF is now given by

fw2
(w2) = −det (Φ(w2))

det (Φ(0))
tr
(
Φ−1(w2)Ψ(w2)

)
U(w2). (5.29)

In the above equation,U(·) is the unit step function while the entries of the(2 × 2) matrix

Ψ(w2) contain the derivatives of{Φ(x)}i,j with respect tox and are given by

{Ψ(w2)}i,j = e−(λj+w2)





− (1 + λj) I0
(
2
√
λjw2

)
+ 1−2w2√

2w2

A(w2)

+2
√
λjw2I1

(
2
√
λjw2

)
+ λjI2

(
2
√
λjw2

)
, for i = 1

−I0
(
2
√
λjw2

)
, for i = 2.

(5.30)

The marginal CDF of the largest eigenvaluew1 can again be extracted from [185, Theorem 2],
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based on [185, Eq. (20)], as

Fw1
(x) =

det (Ξ(x))

det (Φ(0))
, x > 0 (5.31)

with the entries of the matrixΞ(x) being (please see again Appendix A.1)

{Ξ(x)}i,j =





(2λj + 2)Q
(√

2λj , 0
)
− {Φ(x)}i,j , for i = 1

Q
(√

2λj , 0
)
−Q

(√
2λj ,

√
2x
)
, for i = 2.

(5.32)

In a similar manner, we can obtain the marginal PDF ofw1 as

fw1
(w1) =

det (Ξ(w1))

det (Φ(0))
tr
(
−Ξ−1(w1)Ψ(w1)

)
U(w1). (5.33)

The proof is given in Appendix A.2. Clearly, the PDFs of both eigenvalues have been expressed

as the product of exponentials with modified Bessel functions of the first kind and Marcum-Q

functions which can be easily applied to the performance analysis of MIMO systems.

5.2.2 Condition number statistics

The distribution of the condition number is now explored andclosed-form formulae for its

PDF and CDF are introduced as a weighted sum of polynomials. While the seminal work

of Edelman [206] revealed the significant importance of the condition number as a metric of

the matrix ill-condition, it was limited to the case of(2 × 2) central Wishart matrices with

unit variance. The work presented by Ratnarajahet al. [207] extended these results to account

for matrices of random size and with arbitrary variance but still did not allow for non-zero

mean Wishart matrices. It is also worth noting an interesting approach to model the temporal

transition probabilities of the condition number using a finite-state Markov process [208]; more

interestingly, it was shown that the CDF of the logarithm of the condition number can be very

well approximated via a gamma variable. Yet, the analysis was again limited to Rayleigh-fading

MIMO channels. This implies that the contribution of this section can be regarded as a broader

framework of the above cited papers [206–208].

Generally speaking, the condition number is a metric of the channel rank or, in other words, of

how invertible a given matrix is; a condition number close toone indicates a well-conditioned

matrix with almost equal eigenvalues. On the contrary, as the condition number gets larger the

matrix rank drops and eventually degenerates into a rank-1 matrix. Its importance in the area of
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MIMO communications has been demonstrated in [189–191] among others. In the considered

case, the condition number of the scaled MIMO correlation matrix W can be expressed as

z =
w1

w2
≥ 1. (5.34)

From an information theory point of view, the impact of the condition number on MIMO ca-

pacity can be seen in the following equation, which returns the instantaneous channel capacity

assuming CSI at the Rx and no knowledge at the Tx3 [5]

C = log2

((
1 +

w1

α

)(
1 +

w2

α

))
(5.35)

= log2

((
1 +

zw2

α

)(
1 +

w2

α

))
(5.36)

whereα = 2(1 + K)/ρ. From (5.36), it is evident that there is no analytical one-to-one

mapping between MIMO capacity and the condition number. However, their inter-dependency

can be numerically evaluated; in Fig. 5.6 this inter-dependency is illustrated for an SNR of 20

dB4. This graph verifies the notion that high-rank channels, or low condition numbers, yield

high capacities and vice-versa. From the previous discussion it is apparent how essential the

determination of the statistical characteristics of the condition number is; ultimately, the SM

performance of MIMO channels could be analytically predicted and appropriate space-time

codes could be designed. In order to get a deeper understanding, the density and distribution

functions of the condition number are now studied for two different cases; the distinction is

based on the associated LoS eigenvalues and, in particular,on whether these are identical.

5.2.2.1 Case 1(λ1 6= λ2)

This first category represents any conventional MIMO configuration, with no constraint on the

rank of the LoS channel matrix, that offers two distinct non-zero LoS eigenvaluesλ1 > λ2. It is

shown that the PDF ofz, fz(z), can then be expressed as a weighted summation of polynomials

given by

fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2

∞∑

k=0

∞∑

n=0

Γ(k + n+ 3)zk

(k!n!)2(z + 1)k+n+3

[
λk

1λ
n
2 − λk

2λ
n
1

]
(5.37)

3Please note that this capacity formula relies on an equal-power transmission policy where the Tx splits the power
uniformly across all subchannels. This scheme, though not optimal, has been shown to be robust for maximising
the capacity of the worst fading correlation matrix, or the so-called “maxmin” property [196].

4A more detailed discussion on the simulation settings is provided in Section 5.2.3.
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Figure 5.6: Capacity evolution as a function of the condition number (ρ = 20 dB,K = 5 dB).

with the Gamma function being rewritten for the case of an integer index asΓ(n) = (n−1)!. A

detailed proof is given in Appendix A.3. In order to reduce the high computational complexity

inserted by the infinite double summation of the above equation, only a truncated subset of

terms may be considered according to

fz(z) ≈
e−(λ1+λ2)(z − 1)

λ1 − λ2

Ks∑

k=0

Ns∑

n=0

Γ(k + n+ 3)zk

(k!n!)2(z + 1)k+n+3

[
λk

1λ
n
2 − λk

2λ
n
1

]
. (5.38)

The values ofKs andNs are chosen so that a further increase in the number of coefficients

holds negligible impact on the final outcome (less than 0.5% between consecutive steps). It

was empirically found that to fulfill this prerequisite withthe minimum number of terms,Ks

andNs should be set to the same value. In fact, by adopting this approach the asymptotic result

is approximated well withKs = Ns = 20. This observation is verified in Fig. 5.7, where the

evolution of the double summation against the number of termsKs,Ns is depicted, for four

arbitrary values ofz.
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Figure 5.7: Convergence of the double summation in (5.38) for four different values of the
condition numberz.

The corresponding CDF ofz, Fz(x), is related to the PDF via the well known relationship

Fz(x) =

∫ x

1
fz(z)dz (5.39)

since by definitionz ≥ 1. By substituting (5.37) into (5.39) and taking into accountthe Dom-

inated Convergence Theorem which states that the summationand integration can be inter-

changed, the following equation is obtained after some basic algebraic manipulations

Fz(x) =
e−(λ1+λ2)

λ1 − λ2

∞∑

k=0

∞∑

n=0

Γ(k + n+ 3)

(k!n!)2

[
λk

1λ
n
2 − λk

2λ
n
1

]

×
{∫ x

0

zk+1

(z + 1)k+n+3
−
∫ 1

0

zk+1

(z + 1)k+n+3
−
∫ x

0

zk

(z + 1)k+n+3
+

∫ 1

0

zk

(z + 1)k+n+3

}

(5.40)

For the integrals involved in (5.40), a tractable representation in terms of scalar hypergeometric
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functions is available in [203, Eq. (3.194)]

∫ u

0

tµ

(1 + bt)ν
dt =

uµ+1

µ+ 1
2F1(ν, µ+ 1;µ+ 2;−bu) (5.41)

where2F1(α, β; γ;u) is the classical Gaussian hypergeometric function defined in [203, Eq.

(9.14)]. The CDF of the condition number eventually becomes

Fz(x) =
e−(λ1+λ2)

λ1 − λ2

∞∑

k=0

∞∑

n=0

Γ(k + n+ 3)

(k!n!)2

[
λk

1λ
n
2 − λk

2λ
n
1

]

×
{
Ik+1,k+n+3
1 (x) − Ik,k+n+3

1 (x)

}
(5.42)

where

Ia,b
1 (y) =

(
ya+1

a+ 1

)
2F1(b, a+ 1; a+ 2;−y)

−
(

1

a+ 1

)
2F1 (b, a+ 1; a+ 2;−1) . (5.43)

5.2.2.2 Case 2(λ1 = λ2)

As was reported in Section 5.1, this is a special class of specifically designed LoS configurations

with extensive practical interest since it offers two equaleigenvalues and thus delivers high

capacities in the presence of strong deterministic components. In the case of equal eigenvalues

though, the(λ1 − λ2) term in the denominator of (5.21) becomes zero making the analysis

invalid; in order to circumvent the division by zerode l’Hôpital’s rule is employed to get a

solution for the limit(λ1 → λ2). Following this approach, the ordered eigenvalue distribution

f(w1, w2) becomes [201]

f(w1, w2) = λ
−1/2
1 e−2λ1(w1 − w2)e

−(w1+w2)

×
(√

w1I1

(
2
√
λ1w1

)
I0

(
2
√
λ1w2

)

−√
w2I1

(
2
√
λ1w2

)
I0

(
2
√
λ1w1

))
. (5.44)

In Appendix A.3, it is shown that the PDF of the condition number has the form

fz(z) = e−2λ1(z − 1)

∞∑

k=0

∞∑

n=0

Γ(k + n+ 4)

(k!n!)2(k + 1)(z + 1)k+n+4

(
zk+1 − zn

)
. (5.45)

108



Statistical characterisation of dual-branch MIMO Ricean systems

The similarity between the infinite double summations involved in (5.37) and (5.45) is apparent

and hence the finite subset approximation can be again used. In this case, a similar convergence

check, as the one performed for (5.38), revealed that the choiceKs = Ns = 15 approximates

the asymptotic solution reasonably well. As far as the condition number CDF is concerned,

the concept for deriving an analytical expression is exactly the same as in (5.39)–(5.43). Thus,

it is straightforward to show that for the case of equal LoS eigenvalues the condition number

cumulative density reads as

Fz(x) = e−2λ1

∞∑

k=0

∞∑

n=0

Γ(k + n+ 4)

(k!n!)2(k + 1)
×
{
Ik+2,k+n+4
1 (x)

− In+1,k+n+4
1 (x) − Ik+1,k+n+4

1 (x) + In,k+n+4
1 (x)

}
. (5.46)

5.2.3 Numerical results

In this section, the theoretical analysis presented in Sections 5.2.1 and 5.2.2 is validated through

a set of simulations. In order to allow the formulation of a general framework, a suboptimum

HR configuration is used henceforth but all the presented results are readily extensible to the

ideal case of equal eigenvalues. Referring back to (5.17) and Fig. 5.2, the inter-element spacings

may be expressed as

s1 = s2 =

√
λ(D + δd)

2 cos2 θ
(5.47)

whereδd is the deviation from the optimum solution. The simulation settings for the LoS chan-

nel component are{d11 = d2,2 = D = 5.3852 m} and {d12 = 5.25 m, d21 = 5.53 m}. The

spatial deviationδd is assumed to be -0.3852 m and the carrier frequency 5.9 GHz. The LoS

matrix component then becomes

H
subopt
L =


 0.8384 + j0.5451 0.9411 + j0.3380

−0.5123 − j0.8588 0.8384 + j0.5451


 . (5.48)

Assuming a Ricean-K factor of 5 dB, the eigenvalues ofΩsubopt can be easily computed and

thereafter concatenated into the vectorλ = (7.0336, 5.6155). After generating 50,000 random

Monte-Carlo realisations of the channel matrixH according to (5.1), the accuracy of the ana-

lytical marginal eigenvalue CDFs/PDFs is respectively demonstrated in Figs. 5.8(a) and 5.8(b).
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(a) Marginal eigenvalue CDFs.
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(b) Marginal eigenvalue PDFs.

Figure 5.8: Marginal eigenvalue CDFs and PDFs of a dual non-central Wishart matrix.
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Figure 5.9: Condition number CDF and PDF of a dual non-central Wishart matrix.
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The analytical curves, as obtained from (5.23), (5.31) and (5.29), (5.33) respectively, are over-

laid with the simulator outputs with the theoretical and simulation results being in remarkable

agreement for both cases. Similarly, the quality of the analytical expressions for the condi-

tion number (5.38) and (5.42) is investigated in Figs. 5.9(a) and 5.9(b) where once more the

agreement between simulation and theory is excellent.

5.3 Adaptive detection for SM-MIMO systems

In this section, a potential practical application of the previous mathematical derivations is pro-

posed, by means of an AD suitable for SM systems. The main motivation for suggesting such

a scheme is to reduce the implementation cost of MIMO detectors within most testbeds. We

recall that the optimal detector for SM MIMO systems is the MLdetector which minimises

the error probability when all data vectors are equally likely but, at the same time, is compu-

tationally prohibitive [127]. One way to alleviate the excessive complexity of ML detectors is

to settle for sphere decoding techniques, such as the Finke-Post algorithm proposed in [209],

whose complexity, under certain assumptions, is polynomial in the problem size. In [210], it

was shown that when the SNR is high the expected number of operations required by the sphere

decoder is roughly cubic in the number of transmit antennas for a small problem size. However,

the authors in [211] proved that for any arbitrarily fixed SNRthe overall complexity of sphere

decoders does not grow as a polynomial function of the problem size but as an exponential func-

tion instead. What’s more, when ill-conditioned channels occur, the computational complexity

of sphere decoding schemes increases to a significant extent[190]. On the other hand, different

suboptimal techniques exist which span from the linear ZF detector to nonlinear techniques

such as Ordered Successive Interference Cancellation (OSIC) [212]; the former is the simplest

detection technique but causes a systematic performance degradation and further is unable to

exploit all of the available diversity. Its main disadvantage lies in its poor performance when

channels with large condition numbers occur.

From the previous discussion, it is evident that an AD which could switch between a ML and

a ZF scheme, depending on the instantaneous channel conditions, is of vital importance since

it will allow the efficient integration of MIMO systems into practical applications by simplify-

ing their feasibility. A similar concept of adaptive MIMO transmission has been investigated

by various research groups during the last years (the interested readers are referred to [213–

215] among others) and essentially goes back to the fundamental diversity-multiplexing trade-
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Figure 5.10: A general SM-MIMO system.

off [42]. As far as the author’s knowledge goes, the first MIMOadaptive scheme for the receive

side was recently presented in [216]. The authors however considered merely a Rayleigh chan-

nel, which leads to central complex Wishart matrices, and inthis light the formulation of a gen-

eralized framework is not possible. The proposed scheme relaxes the assumption of Rayleigh

fading to account for the commonly experienced LoS propagation and, consequently, embodies

the model of [216] as a special case.

5.3.1 Detection schemes for SM systems

In this section the two reference detection schemes, namelyZF and ML detectors, are reviewed

and thereafter the concept of the novel AD is explored. All the following investigations are

based on a SM-MIMO transmission scheme, such as the widely employed V-BLAST [212], in

which the data is divided into a number ofN blocks, equal to the number of transmit elements,

that are then simultaneously emitted (see Fig. 5.10). At theRx, the main goal is to differentiate

the data blocks originating from each of the transmit elements so that the transmitted signals are

efficiently recovered. This differentiation is made possible due to the (ideally) unique spatial

signature acquired by each data block as a result of the propagation path from the Tx to the Rx.
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5.3.1.1 ZF detection

The simplest linear MIMO detector is the ZF receiver, where the received signal vectory

is multiplied by the Moore-Penrose pseudoinverseH† of the channel matrixH to obtain an

estimated transmit signal vectorx̂ZF as follows

x̂ZF = H†Hx + H†n. (5.49)

The computational complexity of ZF includes an exhaustive search through theQ symbols in

the constellation of the modulation technique forN times and thus it is of the order ofO(QN).

However, the low complexity of the ZF receiver comes at the expense of noise amplification

which induces irreducible errors. In fact, as the number of transmit and receive antennas grows

with no bound, the noise amplification tends to infinity [217].

5.3.1.2 ML detection

An alternative detector is the optimal ML detector which remains robust and yields the best per-

formance among all detection techniques [127]. Assuming equally likely, temporally uncoded

transmit symbols, this receiver chooses the vectort that solves the following expression

x̂ML = arg min
t

‖y −Ht‖2
F . (5.50)

The optimisation is performed through an exhaustive searchover all possible vector symbols.

This implies that the complexity of the ML detector grows exponentially with the number of

transmit antennas i.e.O(QN ), making the scheme infeasible for large antenna configurations

and constellation sizes.

5.3.1.3 Adaptive detection

Given the aforementioned deficiencies of both detection strategies, the need of a detector which

can adaptively switch between them in order to enhance the error performance and minimise

the computational cost is strengthened. The AD uses ZF when the condition number is below

a predefined threshold defined and ML detection otherwise. The key idea is to employ the ZF

detector only for well-conditioned channels (low condition numbers) and let the ML deal with
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the ill-conditioned channels (high condition numbers). Statistically speaking,

x̂AD =





x̂ZF if z ≤ κ

x̂ML if z > κ.
(5.51)

The thresholdκ affects the complexity of the proposed scheme; forκ = 1, we getx̂AD = x̂ML

and complexity equals that of ML detection whereas forκ → ∞ we havex̂AD = x̂ZF. In

general, the probability of ZF calls is Prob{z ≤ κ} ≡ Fz(κ) = pκ and therefore the average

AD complexityg becomes

g = pκQN︸ ︷︷ ︸
ZF calls

+ (1 − pκ)QN

︸ ︷︷ ︸
ML calls

, 0 ≤ pκ ≤ 1. (5.52)

The percentage of complexity reduction, compared to that ofthe ML detector, is

QN − g

QN
= pκ

(
1 − N

QN−1

)
. (5.53)

An illustrative graph, indicating the significant complexity advantage by employing the AD

for a fixed number of transmit elements (N = 2), can be seen in Fig. 5.11. Obviously, the

reduction is more pronounced for greater sizes of the symbolalphabet and higher number of

ZF calls. As an example, for the commonly employed 16-QAM modulation and forpκ = 0.6,

the complexity is reduced by more than52%.

5.3.2 AD performance evaluation

The AD performance is now investigated for two different geometrical LoS models, namely

the suboptimum HR configurationHsubopt
L presented in Section 5.2.3 and the conventional LR

configurationHconv
L given in Section 5.1.2.2 with antenna spacings of0.5λ. TheK-factor

was again set to 5 dB and therefore the eigenvalues of the latter configurationΩconv become

λ
′ = (12.649, 0.0001) thereby indicating the matrix ill-condition. For both geometrical models

under investigation, 50,000 random Monte-Carlo realisations of the channel matrixH are gen-

erated according to (5.1) and a 16-QAM modulation scheme is employed. From Fig. 5.6, it is

inferred that whenκ ≤ 6.46 the instantaneous capacity of the HR channel is greater than11.4

bits/s/Hz (Rayleigh capacity). On this basis, a lower threshold ofκ = 5 has been adopted as a

reasonable indicator of the channel rank and multipath richness. In Fig. 5.12, the BER curves

are depicted for three different detection schemes, namelyZF, ML and the proposed AD.
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Figure 5.11: Percentage of complexity reduction of the AD as a function ofconstellation size
and probability of ZF calls (two transmit antennas).

As expected, higherK-factors lead to significant performance enhancement for arrays designed

following the suboptimum HR model. On the other hand, for lowvalues ofK-factor (below

0 dB) the channel approaches the i.i.d. Rayleigh channel characteristics which corresponds to

a rich-scattering environment; in this region, the BER curves are approximately identical in

both systems and the benefits of LoS-optimised arrays are minimised. In order to get a better

understanding, the main AD performance characteristics are tabulated in Table 5.1 where the

radically different trends of the two configurations are readily observable. The application of

the detection scheme has a noticeable impact only on the HR channel; in fact, a significant per-

centage of ZF calls occur for all values of theK-factor with a consequent complexity reduction

of up to 83.35%. The reader can also acknowledge the steady increase ofpκ asK gets higher

since the channel becomes full rank and delivers two approximately equal eigenvalues. In the

LR case,pκ is always below 29.43% and further is inversely proportional to theK-factor. This

phenomenon can be attributed to the ill-condition of conventional architectures which degener-

ate eventually into a rank-1 channel due to the increased dependence of the LoS rays’ phases.

Consequently, forK ≥ 5 dB the number of ZF calls is too low to exploit the adaptivity benefits

and a complexity identical to that of a ML detector inevitably takes place.
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(a) Suboptimum HR LoS channel.
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Figure 5.12: BER curves for three different detection strategies (16-QAM modulation).
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Suboptimum HR LoS channel Conventional LR LoS channel

Analytical Simulated Compl. Analytical Simulated Compl.

K-factor prob.,pκ prob.,pκ reduction prob.,pκ prob.,pκ reduction

K = −10 dB 0.2992 0.3150 26.18% 0.2943 0.3132 25.75%

K = −5 dB 0.3203 0.3380 28.02% 0.2801 0.3002 24.51%

K = 0 dB 0.4372 0.4403 38.25% 0.2052 0.2241 17.95%

K = 5 dB 0.7499 0.7501 65.61% 0.0536 0.064 4.69%

K = 10 dB 0.9526 0.9620 83.35% - - -

Table 5.1: AD performance characteristics for two different LoS channel models as a function
of theK-factor.

5.4 Conclusions

In this chapter, the case of short-range propagation was considered where a non-fading compo-

nent dominates the wireless channel. Contrary to the commonbelief, LoS MIMO channels are

not always rank deficient; in fact, they can deliver capacities much higher than Rayleigh (rich

scattering) channels do, with appropriate positioning of the antenna arrays. A tractable crite-

rion to achieve subchannel orthogonality was devised for the case of dual-branch VTR MIMO

systems with the proposed optimised configuration remaining robust even when large displace-

ments occur. The beneficial effects of theK-factor were verified and it was concluded that the

presence of strong specular components stabilises the linkand makes the proposed configura-

tion outperform the conventional architectures used nowadays in wireless communications.

The eigenstatistics of the above mentioned dual systems were subsequently analytically as-

sessed with the derived closed-form formulae being validated through Monte-Carlo trials. In

general, the eigenvalue and condition number statistics are very useful tools for determining nu-

merous MIMO characteristics, ranging from SM ability and ergodic capacity to symbol error

and detection performance. To further indicate the usefulness of this statistical analysis, an AD

was developed whose kernel was a hard-decision condition number-based criterion. The dra-

matic decrease in terms of complexity, compared to the sophisticated ML detector, makes this

adaptive scheme applicable to the majority of modern practical receivers. For LoS-optimised

architectures, the attained performance was shown to be reasonably good especially for high

values of theK-factor. On the contrary, the scheme’s advantages diminishwhen it is applied

to conventional antenna configurations since the channel matrix is inherently rank deficient and

therefore yields a deteriorating performance with the increasingK-factor.
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Chapter 6
Novel capacity upper bound for

dual-branch MIMO Ricean systems

One of the most interesting topics in the theoretical analysis of wireless networks, is the deter-

mination of upper capacity bounds or, in other words, of the maximum achievable error-free

data rate. In this chapter, a novel analytical upper bound onthe ergodic capacity of dual-

branch MIMO Ricean systems is derived based on a fundamentalpower constraint. The main

advantages of the proposed bound are its low complexity and the fact that is applicable for ar-

bitrary rank of the LoS component and system SNR. The mathematical formulations presented

hereafter are using elements of non-central complex Wishart matrices and non-central complex

quadratic forms. A comprehensive insight into the tightness of the bound is also provided where

it is demonstrated that as the SNR tends to zero the bound becomes asymptotically tight; at high

SNRs, the offset between empirical capacity and the proposed bound is analytically computed

which implies that an explicit asymptotic capacity expression can ultimately be obtained. The

remainder of the chapter is organised as follows: In Section6.1, a detailed literature review

is performed with the open problems and the chapter contributions being highlighted. In Sec-

tion 6.2, some basic definitions related to quadratic forms are given along with the double-sided

correlated MIMO Ricean channel model used throughout the chapter. Section 6.3 presents new

upper capacity bounds for different categories of MIMO systems. In Section 6.4, the tightness

of the novel bounds is explored while the numerical results are given in Section 6.5. Finally,

Section 6.6 concludes the chapter and summarises the key findings.

6.1 Relations to previous and concurrent work

Taking into account the tractability in manipulating hypergeometric functions with only one

matrix argument, it becomes more than expected that the majority of related studies documented

in literature consider the common case of Rayleigh fading. For Rayleigh fading conditions, a

plethora of results dealing with capacity bounds is available for various scenarios, spanning
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from uncorrelated fading to double-sided spatial correlation (see for instance [5, 6, 218–220]

and references therein among others). On the other hand, significantly fewer publications fo-

cusing on MIMO Ricean channels have been reported with the most important being found

in [195, 196, 198, 221–232]. More specifically, in [221] the distribution of the ergodic capacity

for i.i.d. rank-1 Ricean fading channels was explored at thehigh-SNR regime. In [195], ex-

plicit closed-form expressions for the ergodic capacity were presented via infinite series while

in [196], capacity statistics (mean and second-order moment) were expressed in integral form

for arbitrary rank of the mean channel matrix. An interesting approach is reported in [222]

where upper and lower numerical bounds were derived for the i.i.d. case, assuming that the

Tx has knowledge of statistical properties of the fading process but not of the instantaneous

CSI. The first analytical bounds on MIMO Ricean capacity can be found in [223–225], where

the assumption of uncorrelated fading at both ends was adopted. In [226, 227], these results

were extended to account for spatial correlation at a singleend of the MIMO link. The more

general case of double-sided spatial correlation was addressed in [228, 229], using elements of

quadratic form theory. The main characteristic of the abovecited papers ([223–229]) though,

is that they are limited to the case of rank-1 LoS matrices. Asmentioned before, while this

condition may occur quite often in reality, as a result of theexcessive correlation of the LoS’

rays phases, at the same time is not sufficiently general since it limits the applications of MIMO

technology to conventional configurations.

To the best of the author’s knowledge, the derivation of capacity bounds in the general case of

arbitrary-rank mean matrices, has been separately assessed in [230], [231] and [198]. The for-

mer paper proposed a very tight lower bound on the ergodic capacity of semi-correlated MIMO

Ricean channels after decomposing the channel correlationmatrix into non-central Wishart sub-

matrices and thereafter applying the bounding technique originally proposed in [220]. In [231],

the authors relied on the expected values of elementary functions of complex non-central

Wishart matrices to come up with an efficient capacity upper bound of semi-correlated MIMO

Ricean channels. The latter paper represents so far the moregeneral approach in the associ-

ated area since it derives several lower and upper bounds assuming all different types of spatial

correlation. However, the paper’s general upper bound is given as an infinite summation of

Hayakawa polynomials of one matrix argument, which the authors acknowledge as quite in-

volved and computationally inefficient. It is also worth mentioning the work presented by

Lozanoet al. [232], who considered the high-SNR capacity offsets in order to establish the

key effect of the so-called power offset on MIMO performance. To sum up, it appears that no
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tractable analytical results exist in the literature for the upper bound of double-sided correlated

MIMO systems in Ricean fading with arbitrary-rank of the deterministic component.

On these grounds, in the present chapter, using some recent results on the theory of Wishart

matrices and quadratic forms, a novel and efficient upper bound on the ergodic capacity of dual-

branch MIMO systems is firstly derived based on a fundamentalpower constraint. In order to

formulate a broad framework, the effects of spatial correlation are considered at both ends and,

more importantly, the rank of the mean channel matrix is allowed to be arbitrary. In fact, the

following analysis is carried out for both conventional LR and optimised HR configurations, as

initially defined in Chapter 5. The tightness of the bound is also investigated in detail and it is

clearly shown that as the SNR tends to zero the bound becomes asymptotically tight while, at

infinitely high SNRs, the offset from true capacity is analytically determined as well.

6.2 Multivariate statistics definitions and channel model

Let’s assume that the(m × n) complex matrixX, with m ≤ n, is distributed according to

X ∼ CNm,n(M,Σ ⊗ Ψ), whereΣ ∈ C
m×m andΨ ∈ C

n×n are positive definite Hermitian

matrices. Then, the matrixQ = XΛXH , with Λ ∈ C
n×n, is said to be a non-central matrix-

variate quadratic form denoted asQ ∼ CQm,n(A,Σ,Ψ,M). In [198] and [228], the PDF

of Q was expressed through complex Hayakawa polynomials of two matrix arguments which

are very difficult to calculate numerically. A more tractable version of the associated PDF

as a product of hypergeometric functions, can be found in [233, Eq. (5)]. Please note that

non-central quadratic forms degenerate into non-central Wishart matrices whenΨ = In and

when eitherΛ = In or Λ is idempotent with rankR ≥ m [198, 234]. The following theorem

returns theυth moment of the determinant of(2 × 2) complex quadratic forms. Please note

that hereafter the symbolsdet and| · | will be interchangeably used to denote the determinant

operator. Finally,etr(·) is a shorthand notation forexp(tr(·)).

Theorem 1:Let Q ∼ CQ2,2(I2,Σ,Ψ,M). Then, theυth moment of its determinant|Q| is

given by

E [|Q|υ] = |ΣΨ|υ
[

Γ̃2(υ + 2)

Γ̃2(2)

]
1F̃1 (−υ; 2;−Θ) (6.1)

whereΘ = Ψ−1M̄M̄H andM̄ = Σ−1/2M.
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Proof: The proof begins by expressing the determinant ofQ ∼ CQ2,2(I2,Σ,Ψ,M) as

E [det (Q)υ] = E
[
det
(
XXH

)υ]

= E
[
det
(
Σ1/2X̄X̄HΣ1/2

)υ]

= det (Σ)υ E
[
det
(
X̄X̄H

)υ]
(6.2)

where the complex normal matrix̄X is distributed according to

X ∼ CN 2,2(M̄, I2 ⊗ Ψ). (6.3)

Using a result from [228] through the aid of the Cauchy-Binetformula, it can be shown that

X̄HX̄ ∼ CW2(2,Ψ,Θ) (6.4)

and the expectation of the determinant in (6.2) can now be evaluated through [198, Theorem 1]

to obtain

E
[
det
(
X̄X̄H

)υ]
= det (Ψ)υ

[
Γ̃2(υ + 2)

Γ̃2(2)

]
etr(Θ)1F̃1 (υ + 2; 2;Θ) (6.5)

where the following property for the determinant of the product of square matrices has been

used

det (CD) = det (DC) . (6.6)

The proof concludes after introducing the well known Kummerrelation for hypergeometric

functions of one matrix argument [235]

1F̃1 (a; b;S) = etr(S)1F̃1 (b− a; b;−S) . (6.7)

It should be pointed out that the above theorem is applicableonly to (2 × 2) quadratic forms

since for matrix sizes of(m× n), a finite summation over a collection of
(

n
m

)
subsets needs to

take place. The interested readers are referred to [228] fora detailed discussion. A simplified

formula can now be obtained for the first-order moment of the determinant after applying the

determinant representation of the hypergeometric function.
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Corollary 1: Forυ = 1, (6.1) reduces to

E [|Q|] = 2|ΣΨ|
(

1 +
1

2
tr(Θ) +

1

2
det (Θ)

)
. (6.8)

Proof: The authors in [198] showed that for any square matrixB ∈ C
m×m, its hypergeometric

function1F̃1 (c; d;B) can be expressed according to

1F̃1 (c; d;B) =
det
(

1F̃1 (c−m+ j; d −m+ j; bi) b
j−1
i

)

∏
i<j(bj − bi)

(6.9)

whereb1, b2, . . . , bm is the set of non-zero eigenvalues ofB. After taking into account the

following properties for the scalar hypergeometric functions

1F̃1(−2, 1; z) = 1 − 2z +
1

2
z2 (6.10)

1F̃1(−1, 2; z) = 1 − 1

2
z2 (6.11)

it is trivial to show that for the dual case under consideration

1F̃1 (−1; 2;−Θ) =
1

2
(2 + θ1 + θ2 + θ1θ2) (6.12)

whereθ1, θ2 are the eigenvalues ofΘ. The proof concludes after recalling that the sum and

product of the eigenvalues return the trace and the determinant of a matrix, respectively. It

is noteworthy that the same result can be drawn if we represent the hypergeometric function

1F̃1 (−1; 2;−Θ) via its zonal polynomials, as originally proposed in [234] and amended for

the MIMO case in [231, Appendix I].

With regard to the MIMO channel model under consideration, the effects of spatial correlation

at both ends can be easily incorporated into the i.i.d. Ricean model given in (5.1). To be more

precise, the MIMO transfer channel matrix can now be rewritten according to

H =

√
K

K + 1
HL +

√
1

K + 1
R1/2

r HWR
1/2
t . (6.13)

As was highlighted in Chapter 2, this Kronecker-type of modelling is inherently simple and

sufficiently accurate when a small number of antenna is used [96]. Most importantly, it is the

most common correlation structure model used in the vast majority of related publications [198,
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220, 231]. Clearly, the channel matrix is distributed according to

H ∼ CN 2,2

(√
K/(K + 1)HL , (K + 1)−1Rr ⊗ Rt

)
. (6.14)

It should be noted that for optimised configurations the effects of spatial correlation are rather

weak due to the increased antenna spacings. However, in the following analysis the presence of

correlation is considered for the fairness of comparison with conventional configurations (more

details are given in Section 6.5).

6.3 Ergodic capacity upper bounds

In this section, novel expressions for the upper bound of ergodic capacity based on a power

constraint are derived. Let’s assume firstly that the Rx has perfect CSI while the Tx knows nei-

ther the statistics nor the instantaneous CSI; then the uniform-power allocation ergodic capacity

reads [5, 6]

C = E
[
log2

(
det
(
I2 +

ρ

2
HHH

))]
. (6.15)

6.3.1 Double-sided correlated Ricean and Rayleigh fading

In the general case of double-sided correlated Ricean fading, where the channel matrix is dis-

tributed according to (6.14), the MIMO correlation matrix̃W = HHH exhibits non-central

quadratic form distribution with the following properties

W̃ ∼ CQ2,2

(
I2,Rr/(K + 1),Rt,

√
K/(K + 1)HL

)
. (6.16)

The following theorem returns an upper bound on the ergodic capacity of a double-sided corre-

lated dual MIMO Ricean system.

Theorem 2:The ergodic capacity in bits/s/Hz of a(2×2) double-sided correlated MIMO Ricean

channel with mean matrix
√

K
K+1HL , receive correlation matrix(K + 1)−1Rr and transmit

correlation matrixRt is analytically upper bounded by

C ≤ log2

(
1 + 2ρ+

γρ2

2

)
(6.17)
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where the parameterγ is given as

γ = (K + 1)−2|Rr||Rt|
(

1 +
1

2
tr(Θ) +

1

2
det (Θ)

)
(6.18)

with

Θ = KR−1
t R−1/2

r HLHL
H
(
R−1/2

r

)H
. (6.19)

Proof: An alternative way to express the ergodic MIMO capacity is through the real positive

eigenvalues̃w1, w̃2 of W̃ which, in practice, represent the power carried by each spatial sub-

channel. Then, (2.16) can be rewritten as

C = E

[
log2

(
1 +

ρ

2
w̃1

)(
1 +

ρ

2
w̃2

) ]
. (6.20)

Expanding (2.17), to get

C = E

[
log2

(
1 +

ρ

2
(w̃1 + w̃2) +

ρ2

4
det
(
W̃
))]

. (6.21)

Taking into account thatlog(·) is a concave function and making use of the Jensen’s inequality

the following result is obtained

C ≤ log2

(
1 +

ρ

2
E [w̃1 + w̃2] +

ρ2

4
E
[
det
(
W̃
)])

= log2

(
1 + 2ρ+

ρ2

4
E
[
det
(
W̃
)])

. (6.22)

The second line follows from the widely used power constraint

E
[
‖H‖2

F

]
= 4 (6.23)

or equivalently,

E
[
tr
(
HHH

)]
= E

[
tr
(
W̃
)]

= E [w̃1 + w̃2] = 4. (6.24)

The upper bound in (6.17) follows immediately after introducing Corollary 1 and simplifying.

As was mentioned in Chapters 3 and 5, the key normalisation in(6.23) has been widely adopted

into the capacity characterisation of MIMO systems [5, 6, 222, 231]. With regard to the novel

upper bound derived in (6.17), two important remarks shouldbe made. The first one is that the
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bound is strictly applicable to dual-branch configurationssince for larger MIMO setups we end

up with a series of eigenvalue cross-products that are created after expanding (2.17). Secondly,

by inspection of (6.17) it can be inferred that the proposed upper bound is rather simple as it just

requires the computation of the elementary functions of three different deterministic matrices

(Rr, Rt andΘ) only once. Comparatively, the bound in [198, Eq. (66)] for arbitrary rank of

the LoS component relies on an infinite summation of Hayakawapolynomials and therefore is

hard to evaluate either analytically or numerically.

In the case of double-sided correlated Rayleigh fading (K = 0), the channel matrix is dis-

tributed according toH ∼ CN 2,2 (02,Rr ⊗ Rt) and the upper bound in (6.17) reduces to

C ≤ log2

(
1 + 2ρ+

ρ2

2
|RrRt|

)
(6.25)

which is in perfect agreement with the bound derived in [219,Eq. (25)].

6.3.2 Uncorrelated Ricean and Rayleigh fading

For the sake of brevity, the case of single-side correlationis omitted in this chapter since the

derivation is based on exactly the same concept as before. Therefore, let’s now consider the spe-

cial case of both ends exhibiting uncorrelated i.i.d. Ricean fading. Under these circumstances,

the channel matrix is distributed according to

H ∼ CN 2,2

(√
K

K + 1
HL ,

1

K + 1
I2 ⊗ I2

)
. (6.26)

Corollary 2: The ergodic capacity in bits/s/Hz of a(2×2) uncorrelated MIMO Ricean channel

with mean matrix
√

K
K+1HL and receive correlation matrixRr = 1

K+1I2 is analytically upper

bounded by

C ≤ log2

(
1 + 2ρ+

βρ2

2

)
(6.27)

whereβ =
(
1 + 2K + 0.5K2 det (T)

)
/(K + 1)2 andT = HLH

H
L .

Proof: This corollary is a consequence of (6.17) after taking into account thatΘ ≡ KT for the

case of uncorrelated fading at both ends. Furthermore, it holds thattr (KT) = Ktr (T) and

given that the entries of the deterministic LoS component matrix are unit-amplitude complex

exponentials, it is trivial to show thattr (T) = 4. Likewise, the determinant ofKT may be
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expressed asdet (KT) = K2 det (T) which concludes the proof. Note that, the upper bound

in (6.27), depends only onT through the elementary symmetric polynomials of its eigenvalues.

This is in agreement with the findings in [231].

The case of i.i.d. Rayleigh fading is obtained directly from(2.31), by settingK = 0 and

Rr = Rt = I2. The upper bound in (6.27) then reduces to (β = 1)

C ≤ log2

(
1 + 2ρ+

ρ2

2

)
(6.28)

which is identical with the results presented in [231, Eq. (5)], [218, Theorem 2] and [219, Eq.

(22)].

6.4 Tightness of the upper bound

A crucial characteristic of all capacity bounds is their tightness, or in other words, the offset

between the analytical bound and the empirical capacity. Ingeneral, the absolute errorǫ inserted

by an upper boundU is given asǫ = U − C. In this section, it is shown that the upper bound

converges to the true capacity at low SNRs whereas at high SNRs, the offset from the true

capacity is analytically determined. In the first case, the following corollary holds:

Corollary 3: The upper bound in (6.17) becomes asymptotically tight as the SNRρ tends to

zero.

Proof: The proof begins with further upper bounding the ergodic capacity in (6.17) according

to

C ≤ 1

ln 2

(
2ρ+

γρ2

2

)
(6.29)

where the logarithm propertyln(1 + x) ≤ x has been used. Following [231] and [236], we can

lower bound the ergodic capacity according to [236, Eq. (23)]

C ≥ E
[
log2

(
1 +

ρ

2
‖H‖2

F

)]

≥ ρ

2 ln 2
E
[
‖H‖2

F

]
− 1

2 ln 2

(ρ
2

)2
E
[
‖H‖4

F

]

=
2ρ

ln 2
− ρ2

8 ln 2
E
[
‖H‖4

F

]
. (6.30)
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The second line follows from the propertyln(1 + x) ≥ x− 1
2x

2. After subtracting (6.30) from

(6.29), the absolute errorǫ of the proposed upper bound becomes

ǫ =
ρ2

2 ln 2

(
γ +

1

4
E
[
‖H‖4

F

])
(6.31)

which asymptotically tends to zero asρ→ 0.

Corollary 4: As the SNRρ→ ∞, the absolute error inserted by the upper bound in (6.17) tends

to

ǫ = log2(2γ) − E
[
log2

(
det
(
W̃
))]

. (6.32)

Proof: As ρ→ ∞, the upper boundU in (6.17), simplifies to

U ≈ log2 (2γ) + 2 log2

(ρ
2

)
. (6.33)

In (6.21), the quadratic term becomes significantly larger in the high SNR-regime and therefore

the ergodic capacity may be approximated as

C ≈ E

[
log2

(
ρ2

4
det
(
W̃
))]

= 2 log2

(ρ
2

)
+ E

[
log2

(
det
(
W̃
))]

. (6.34)

Subtracting (6.34) from (6.33), yields (6.32).

From (6.32), it is apparent that the bound’s error is given ina non-analytical form; in this

light, the crucial issue is to determine the expectation of thelog det function of a complex non-

central quadratic matrix, which involves a nonlinearlog function. Thus, the following theorem

is introduced.

Theorem 3:Let’s assume that̃W ∼ CQ2,2

(
I2,Rr/(K + 1),Rt,

√
K/(K + 1)HL

)
. Then

the first-order moment of the logarithm of its determinant isgiven as

E
[
log2

(
det
(
W̃
))]

=
1

ln 2

[
ψ(1) + ψ(2) − 2 ln(K + 1) + ln |RrRt|

− 1

θ1 − θ2
(Λ1(Θ) + Λ2(Θ))

]
(6.35)

whereθ1, θ2 are the eigenvalues of the matrixΘ which was given in (6.19) while the well
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known digamma functionsψ(x) are defined as

ψ(x) ,
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

. (6.36)

The polynomial termsΛ1(Θ) andΛ2(Θ) are essentially functions of the eigenvaluesθ1 andθ2

and, in particular

Λ1(Θ) = θ2h1(θ1) − h2(θ1) (6.37)

Λ2(Θ) = h2(θ2) − θ1h1(θ2) (6.38)

where

h1(x) =

∞∑

k=0

P(k, x)

k
(6.39)

h2(x) = x

∞∑

k=0

P(k, x)

k + 1
(6.40)

with P(a, x) being the regularised gamma function [237, 6.5.1].

P(a, x) =
1

Γ(a)

∫ x

0
ta−1e−tdt =

γ(a, x)

Γ(a)
(6.41)

whereγ(a, x) is the lower incomplete gamma function.

Proof: The proof begins with the following key transformation

E [lnx] =
d

dυ
E [xυ] |υ=0 (6.42)

which holds since, by definition,xυ = eυ ln x. By combining (6.42) and (6.1) and denoting

ζ = E
[
log2

(
det
(
W̃
))]

=
1

ln 2
E
[
ln
(
det
(
W̃
))]

(6.43)

we can directly get

ζ =
1

ln 2

d

dυ

{
|(K + 1)−1RrRt|υ

[
Γ̃2(υ + 2)

Γ̃2(2)

]
1F̃1 (−υ; 2;−Θ)

}∣∣∣∣∣
υ=0

. (6.44)

It can be easily observed that the above differentiation consists of three multiplicative terms.

Treating each one separately due to the chain rule, it is trivial to show that the first term results
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in ln |RrRt| − 2 ln(K + 1). The second one, may be rearranged according to

d

dυ

{
Γ̃2(υ + 2)

Γ̃2(2)

}∣∣∣∣∣
υ=0

=
Γ̃2(υ + 2)

Γ̃2(2)

d

dυ

{
ln
(
Γ̃2(υ + 2)

)}∣∣∣∣
υ=0

=
d

dυ

{
2∑

i=1

ln (Γ(υ + 2 − i+ 1))

}∣∣∣∣∣
υ=0

(6.45)

which, after invoking the definition of digamma functions (6.36), readily yieldsψ(1) + ψ(2).

Focusing now on the last term, we get

d

dυ

{
1F̃1 (−υ; 2;−Θ)

}∣∣∣∣
υ=0

=
d

dυ

{
etr(−Θ)1F̃1 (υ + 2;υ + 2;Θ)

}∣∣∣∣
υ=0

=

d
dυ 1F̃1 (υ + 2;υ;Θ)

∣∣∣
υ=0

1F̃1 (υ;υ;Θ)
. (6.46)

where the second line follows from the property1F̃1 (α;α;x) = exp(x). The proof concludes

after introducing a very useful result from [198, Appendix II] for the nominator in the above

equation. Substituting (6.45) and (6.46) into (6.44) and simplifying yields (6.35).

Please note that the derivation of the formula (6.35) relies, without loss of generality, on the

assumption of two non-zero eigenvalues of the matrixΘ. For the case of rank-1 matrices, a

similar analysis should be followed; this is however beyondthe scope of this chapter and the

interested readers are referred to [198] for a detailed discussion. Evidently, after replacing

(6.35) into (6.32), we can obtain an analytical formula for the bound’s offset at high SNRs, for

the general case of double-sided correlated Ricean fading.In addition, this result can be further

used to deduce exact capacity expressions in the high-SNR regime. When the channel exhibits

i.i.d. Ricean fading and both ends are employed with optimally designed arrays as discussed in

Section 5.1, the LoS component yields two equal eigenvaluesand thus, the following corollary

should be introduced.

Corollary 5: As the SNRρ → ∞, the absolute error inserted by the upper bound for the case

of i.i.d. Ricean fading and optimised LoS configurations tends to

ǫ = log2(2β) − 1

ln 2

[
ψ(1) + ψ(2) − 2 ln(K + 1)

+

∞∑

k=1

(2k + 1)γ(k, λ1) − λ1e
−λ1λk−1

1

(k + 1)!

]
(6.47)
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whereλ1 = λ2 represents any of the two equal eigenvalues ofΩ ≡ KT.

Proof: The proof starts by noting that for i.i.d. Ricean fadingΘ should be replaced byΩ ≡ KT

in all manipulations. Further, in the specific case of optimised configurations, the equality of

eigenvalues leads to a division by zero in (6.35). In order tocircumvent this singularity,de

l’H ôpital’s rule is used to get a solution at the limit(λ1 → λ2). In particular, the last term in

(6.35) can be rewritten as

ξ = lim
ε→0

[
d

dε
(λ1h1(λ1 + ε) − h2(λ1 + ε)) − h1(λ1)

]
. (6.48)

Taking into account that
d

dx
P(a, x) =

e−xxa−1

Γ(a)
(6.49)

and after some algebraic manipulations we end up with

lim
ε→0

d

dε
h1(λ1 + ε) =

∞∑

k=1

e−λ1λk−1
1

kΓ(k)
(6.50)

lim
ε→0

d

dε
h2(λ1 + ε) =

∞∑

k=1

e−λ1λk−1
1

(k + 1)Γ(k)
+
h2(λ1)

λ1
. (6.51)

Substituting (6.50)–(6.51) into (6.48),

ξ = h1(ω) +
h2(ω)

ω
− ωe−ω

∞∑

k=1

ωk−1

k(k + 1)Γ(k)

=

∞∑

k=1

(2k + 1)γ(k, ω) − ωe−ωωk−1

k(k + 1)Γ(k)
. (6.52)

Recalling that for integern, Γ(n) = (n− 1)!, (6.47) is finally obtained.

6.5 Numerical results

In this section, the theoretical analysis presented in Sections 6.3 and 6.4 is validated through a

set of Monte-Carlo simulations. Using exactly the same set of simulations as in Section 5.1.2,

i.e. Dopt = 5.3852 m andθopt = 21.80◦, we examine both an optimised and conventional

configuration, whose LoS matrix components are respectively taken through (5.18) and (5.19).

Throughout the simulations, the constant correlation model is adopted thanks to its inherent

simplicity. The entries ofRr andRt in (2.31) can be modelled as{Rr}i,j = (δR)|i−j| and,
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(a) Optimised configuration.
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Figure 6.1: Upper bound and ergodic capacity as a function of the SNR (δR = 0.2, δT = 0.5).
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in analogy,{Rt}i,j = (δT )|i−j|, whereδR, δT ∈ [0, 1). After generating 50,000 Monte-Carlo

realizations of the channel matrix according to (2.31) and setting δR = 0.2 andδT = 0.5, the

proposed bound in (6.17) is firstly evaluated against the SNRfor different values ofK. From

Figs. 6.1(a) and 6.1(b), it can be easily seen that the bound is remarkably tight for the optimised

configuration and, likewise, performs satisfactorily for conventional configurations. Moreover,

at low SNRs both bounds converge asymptotically to the empirical values of ergodic capacity.

Generally speaking, the bound becomes tighter as theK-factor increases and SNR decreases

which is line with the conclusions drawn in [227, 229, 231]. Once more, the superiority of

optimised configurations in the presence of strong deterministic components is indisputable.

As a next step, the effects of theK-factor on the performance of the proposed bound are investi-

gated in Fig. 6.2, where it is again apparent that both boundsbecome tighter with an increasing

K-factor. For Rayleigh-fading conditions though, orK ≤ 0 dB, the achieved tightness is de-

graded and, under these circumstances, it is sensible to usemore efficient bounds which are

inherently tied to Rayleigh channels, like the ones presented in [218–220].
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Figure 6.2: Upper bound and ergodic capacity as a function of theK-factor (δR = 0.2, δT =
0.5 andρ = 20 dB).
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Figure 6.3: Upper bound and ergodic capacity as a function of the correlation coefficientsδR
andδT (ρ = 20 dB).

In Fig. 6.3, the relationship between practical values of spatial correlation and MIMO capac-

ity is addressed. Clearly, the effects of correlation on ergodic capacity become less significant

(smaller dynamic range) as theK-factor gets higher for both configurations under investiga-

tion, i.e. highK-factors provide robustness against spatial correlation.As expected, the large

inter-element spacings make the optimised setup remain unaffected by the level of correlation;

hence, it offers almost the same ergodic capacity regardless of the values ofδR andδT . The

conventional configuration, however, suffers from spatialcorrelation with the ergodic capacity

decreasing as correlation gets higher. Intuitively, the tightness of the corresponding bound is

relatively improved in the high-correlation regime. Please note that this outcome is in agree-

ment with the results initially given in [219, 229, 231].

The absolute error inserted by the proposed bound is now tested against the system SNR and

K-factor. The obtained surf plots are depicted in Figs. 6.4(a) and 6.4(b). The main difference

between the two error distributions lies in the high-SNR/high-K-factor region. More specifi-

cally, whenρ ≥ 20 dB the bound’s error associated with optimised configurations decreases

rapidly whenK ≥ 5 dB, whereas that of conventional configurations remains relatively unaf-
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(a) Optimised configuration.
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(b) Conventional configuration.

Figure 6.4: Absolute error of the upper bound as a function of the SNR andK-factor (δR = 0.2
andδT = 0.5).
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fected. This is a result of the diminishing SNR effects on theergodic capacity of LoS-optimised,

as theK-factor gets higher. In other words, whenK ≥ 5 dB MIMO capacity approaches its

maximal value and, consequently, the absolute error tends to decrease, regardless of the system

SNR.

At the last stage of the evaluation process, the high-SNR deviation between the ergodic capacity

and the proposed upper bound is considered, using the analytical formulae derived in (6.32)

and (6.47). In Fig. 6.5, the analytical curves are overlaid with the outputs of a Monte-Carlo

simulator with the match being remarkably good, thereby validating the accuracy of the above

presented theoretical analysis. The error associated withoptimised configurations is constantly

lower than that of conventional ones, as a result of the rank-deficiency of the former. What’s

more, it appears that the latter error has a much smaller dynamic range revealing that a high

K-factor does not have an extensive impact on its value. On theother hand, the bound for the

optimised configuration yields an enhanced tightness asK increases and under strong Ricean

conditions, the corresponding offset is minimised.
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Figure 6.5: Analytical and simulated absolute error of the upper bound in the high-SNR regime
as a function of theK-factor (δR = 0.2 andδT = 0.5).
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6.6 Summary

In this chapter, the main purpose has been the derivation of atractable upper bound for the

ergodic capacity of dual-branch MIMO Ricean systems with the key concept originating from

a widely used power constraint. The first empirical bound depends on the expected value of

the determinant of either a non-central quadratic form (double-sided correlated Ricean fading)

or non-central Wishart matrix (single-sided correlated and uncorrelated Ricean fading). For

this reason, the determinant expectation had to be analytically defined by introducing the de-

terminant representation of hypergeometric functions of one matrix argument. By doing so,

the derived analytical bound becomes remarkably simple as it depends only on the elementary

symmetric functions of, at most, three deterministic matrices and hence can be very efficiently

evaluated. Apart from its inherent simplicity, another advantage of this novel bound is the fact

that it is not confined to the common case of rank-1 deterministic LoS components. The simu-

lation results demonstrated that the bound is sufficiently tight for optimised configurations and

marginally looser for the conventional setups. The tightness of the bound was finally assessed

in the low and high-SNR regions; in the former, the bound becomes asymptotically tight (ab-

solute error tends to zero) whereas in the latter the bound’soffset tends to a constant value that

was analytically determined and validated through Monte-Carlo trials.
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Chapter 7
Conclusions

This thesis has covered a wide range of areas related to modern MIMO wireless communi-

cations. It has been shown that its contributions are of boththeoretical and practical interest

and serve as a good starting point for additional research. In this concluding chapter, all the

key findings from different chapters are summarised and several future research routes are sug-

gested.

7.1 Summary of results

In Chapter 3, the Nakagami fading model is developed upon theeigendecomposition of the full

spatial MIMO correlation matrixRH using the data collected at a 5.2 GHz carrier frequency.

The reason behind choosing the Nakagami-m distribution to model the eigenmodes’ envelope

variations can be attributed to its inherent flexibility that makes it exhibit the best statistical

fit with the raw data. Although the computer generation of independent Nakagami-m deviates

is broadly viewed as a trivial task, the reality is different; to be more precise, none of the the

available known techniques is applicable for any arbitraryvalues of the shape parameters (m

andΩ) or on their whole range. Hence, there was a motivation to introduce a novel rejection-

based technique which fulfils both prerequisites and yieldsa satisfactory efficiency. The good-

ness of the proposed channel model is tested and compared with that of the Weichselberger

and VCR models; the comparative results demonstrate the superiority of the Nakagami fading

model from both information theory and error performance perspectives. The performance en-

hancement over the sophisticated Weichselberger model wasfound to be 2.2 dB in the case of

ergodic and outage capacity and 3 dB in the case of BER mismatch. The VCR model, on the

other hand, is unable to capture the spatial activity with accuracy due to the artificial generation

of MPCs and, as a result, it systematically overestimates most channel characteristics. As was

conjectured in Chapter 3, the Nakagami fading model is particularly important for 5-GHz band

WLAN systems as well as for MIMO computer simulations, construction of optimum spatial

filtering and design of space-time codes.
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Conclusions

Apart from modelling the wireless channel, its characterisation is essential for understanding

the spatio-temporal structure of the channel transfer matrix and ultimately predicting the per-

formance of MIMO systems through the radio channel conditions. Intuitively, the extraction

of multipath characteristics dictates the development of multi-dimensional channel parameter

estimation algorithms; for this reason, in Chapter 4 the 3D FD-SAGE algorithm is introduced

that, contrary to most array processing algorithms such as ESPRIT, Unitary ESPRIT and RMU-

SIC, can be directly applied to any arbitrary antenna geometry provided that the array response

is known a priori. The scheme yields a remarkable robustnessin a synthetic environment when

used in conjunction with the SIC technique. The latter is also incorporated within the initiali-

sation stage to detect the number of dominant MPCs since it poses no restrictions on the model

order whereas most of the information theoretic criteria do. Using the same set of measured

data as before, the performance of a real-time indoor MIMO channel is investigated in the dou-

ble directional domain. It is found that the dependency of the two domains grows when a LoS is

present or when the Tx faces the Rx and the distance between them is low (OLoS propagation).

On the other hand, at NLoS Rx locations the azimuth dispersion gets larger since it benefits

from the complex propagation paths’ interactions and, in turn, the correlation between the an-

gular domains falls off. It is worth mentioning that the average values tabulated in Table 4.4

serve as a good reference point for the planning of future indoor WLANs.

While the first part of the thesis is focused on indoor channels, the second part is purely devoted

to short-range communications where the presence of a deterministic component violates the

assumption of Rayleigh fading and the channel entries are Ricean distributed. Under these

circumstances, it is widely believed that the beneficial effects of multipath propagation are

diminished due to the high level of spatial correlation. However, with appropriate positioning

of the antenna elements, the presence of a free-space component seems to strengthen the link so

that it delivers high throughput. To this end, in Chapter 5 a 2D maximum capacity criterion is

derived for the special case of two-element ULAs at both ends, as a function of the separation

distance between the two arrays, their orientations and inter-element spacings on each array.

This simplified criterion can be used as a guideline for designing LoS-optimised MIMO systems

which can achieve higher capacity than that predicted for ani.i.d. Rayleigh MIMO channel.

Aside from this design methodology, a detailed eigenanalysis of dual-branch MIMO Ricean

systems is performed using elements of random matrix theory. The marginal PDF and CDF

distributions of the eigenvalues as well as of the conditionnumber are deduced in closed-form

139



Conclusions

and validated via simulations. These formulae can aid the prediction of the most significant

MIMO features, namely the SM ability, ergodic and outage capacity and finally the symbol

error and detection performance. As a potential application of the above mentioned theoretical

analysis, an AD is proposed so that the high cost and complexity of ML-based receivers is

reduced. The scheme offers an extensive complexity reduction along with a satisfactory BER

performance even when applied to suboptimum LoS configurations.

In Chapter 6, a tractable analytical upper bound on the ergodic capacity of dual MIMO Ricean

systems is derived which, contrary to the majority of similar works documented in literature, is

applicable for arbitrary rank of the mean channel matrix. Infact, the bound is evaluated for both

a conventional rank-1 and optimal configurations with two equal LoS eigenvalues. In order to

allow the formulation of a broad framework, the effects of spatial correlation at both ends are

taken into account as well; by doing so, the derived results have not only a higher usability

but also include previously published works as special cases. The asymptotic tightness of the

bound is also explored where it is shown that as the SNR tends to zero the bound becomes

asymptotically tight while it tends to a constant, that is analytically determined, for infinitely

high SNRs.

7.2 Future research areas

There are several areas of this thesis that can be expanded ata future stage and some of these

are being outlined below:

• In Chapter 3, the author showed the very good match of the Nakagami-m distribution

with the indoor measured data. Due to time limitations, onlya limited amount of data

could be acquired and processed. Additional MIMO measurement trials to further char-

acterise indoor channels in various propagation conditions would lead to greater con-

fidence of the model. Another attractive research area is to extend the model to the

wideband case thereby making it appropriate for the investigation of MIMO-OFDM sys-

tems. Further, it is quite challenging to explore whether different distributions can offer

the same, or even a better, fit with the eigenmodes’ envelope distributions. A strong

candidate is the Weibull distribution [238] which has been proved to exhibit good fit

to experimental fading measurements, for both indoor [239,240], and outdoor environ-

ments [241, 242], and further includes the Rayleigh distribution as a special case.
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• Another possible topic to be addressed is the asymptotic error performance of the SAGE

algorithm and particularly the determination of the CR lower bound of the estimators.

Unfortunately, due to time constraints, the author could not explore the interesting the-

ory of point estimation; as a general rule whatsoever, the Fisher information matrix has

firstly to be computed along with the log-likelihood function of the signal model [243]

and thereafter the procedure described in [151] should be followed. The algorithm can

also be extended to higher dimensions in order to embody the polarisation and Doppler

information. From a comparative point of view, the application of the gradient-based ML

RIMAX algorithm on the measured data is expected to increasethe convergence speed

compared to the coordinate-wise search strategy of the SAGEalgorithm and further aid

the detection of diffuse scattering contributions (see Section 4.6).

• One of the most interesting topics for future research, is the conduction of the first-ever

VTR MIMO campaign at the standardised ITS frequency of 5.9 GHz. It is an indis-

putable fact that this campaign could serve as a very useful starting point for assessing

the channel statistics in the joint spatio-temporal-Doppler domain under practical con-

ditions. Nevertheless, the ultimate goal remains the development of new sophisticated

channel models based on measurement data which will enrich our understanding of the

emerging short-range MIMO communications in fast-varyingenvironments.

• In Chapter 5, the main focus was on dual MIMO Ricean systems with two transmit and

receive antennas since, as it was pointed out, these configurations are of high practical

relevance thanks to their low setup size and implementationcost. While the criterion

derived for maximum MIMO capacity (5.17) retains its straightforward form for a higher

number of antennas according to [178], the same does not holdtrue for the eigenvalue

and condition number statistics. Under these circumstances, the simplified relationships

for dual systems (5.20), (5.21) and thereof become invalid;as was underlined in Sec-

tion 5.2.1, the marginal eigenvalue CDF densities for an arbitrary size Wishart matrix

can be found in [185]. The estimation, however, of the condition number distributions

dictates among others the extraction of the joint densityf(w1, wn) (assuming a(m× n)

MIMO system withm ≤ n) which is a non-trivial task. Briefly stated, an appropriate

transformation of variables followed by an−1 integrations over all eigenvalue baselines

have to take place. The interested reader is referred to [192, Eq. (102)] for additional

information on the joint eigenvalue PDF of random size complex Wishart matrices.
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• Likewise, the derivation of the upper bound in Chapter 6 is tied to these specific con-

figurations due to the eigenvalue cross-products that are created after expanding the key

capacity-eigenvalues relationship (2.17). In any case though, it would be really inter-

esting to expand the semi-correlated analysis of [231], which is entirely based on the

elementary functions of the channel correlation matrix, toallow for double-sided cor-

relation. This can be achieved by decomposing the associated matrix into a series of

weighted submatrices and thereafter applying some of the results on the moments of

elementary functions of quadratic forms, recently presented in [198, 228].

142



Appendix A
Analytical derivations of eigenvalue
and condition number distributions

A.1 Proofs of (5.28) and (5.32)

By inspection, it is noticed that the sum of the two indices ofthe Nutall-Q function in (5.24) is

always odd. In such a case, one can express the Nutall-Q in terms of only a Marcum-Q function

and a finite weighted sum of modified Bessel functions, using aresult from [244]. Replacing

the valuesm = n = 2 andi = 1 into [244, Eq. (13)], we get

Q0+2·1+1,0 (a, b) = 211!L0
1

(
−a

2

2

)
Q0+1 (a, b) + exp

[
−a

2 + b2

2

]

×
{

211!

(
L0

1

(
−a

2

2

)
− L0

0

(
−a

2

2

))
b

a
I1(ab) + bP1,1(b

2)I0(ab)

}
(A.1)

where, for the sake of simplicity, the same notation has beenused as in [244]. This means

thatLn
k(x) is the generalizedk-th order Laguerre polynomial [244, Eq. (14)] andPk,l(x) is

a polynomial of orderk − l in x defined in [244, Eq. (10)]. By observing thatLn
0 (x) = 1,

L0
1(x) = 1−x andP1,1(x) = 1, the key equation (5.28) is derived in a straightforward manner.

The result in (5.32) can be readily obtained after followingthe same procedure.

A.2 Proofs of (5.29)–(5.33)

The derivation process relies on the classical formula for the derivative of a determinant, that

is [245]
d

dt
det (B(t)) = det (B(t)) tr

(
B−1(t)

d

dt
B(t)

)
. (A.2)

The above relationship is now applied to (5.23) which immediately yields (5.29); the use of

the step function guarantees the positivity of the considered eigenvalue. At a next stage, the

entries of the matrixΦ(x) need to be differentiated with respect tox. The partial derivative of
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a Marcum-Q functionQ(a, b) with respect tob was derived in [246] as

∂Q(a, b)

∂b
= −bI0(ab) exp

[
−a

2 + b2

2

]
(A.3)

that gives
∂Q
(√

2λj ,
√

2x
)

∂x
= −I0(2

√
λjx) exp [−(λj + x)] . (A.4)

The fundamental formulae for the derivatives of modified Bessel functions are also being used

∂Iq(z)

∂z
=

1

2
(Iq−1(z) + Iq+1(z)) (A.5)

∂I0(z)

∂z
= I1(z). (A.6)

Combining (A.3)–(A.6) with (5.28) and after some manipulations, it is trivial to calculate the

entries ofΨ(w2). The result for the largest eigenvalue is readily obtained after following the

same procedure for the entries ofΞ(x).

A.3 Proofs of (5.37) and (5.45)

Starting with the joint eigenvalue PDFf(w1, w2), the following transformation of variables is

applied to estimate the marginal PDF of the condition numberz = w1/w2 [123, Eq. (6.43)]

fz(z) =

∫ ∞

0
w2f(zw2, w2)dw2. (A.7)

By substituting (5.20) into (A.7), the integral becomes

fz(z) = e−(λ1+λ2)(z − 1)2
∫ ∞

0
w3

2e
−w2(z+1)

0F̃1

(
2;λ,w′) dw2 (A.8)

wherew′ = (zw2, w2). If (5.21) is introduced in the analysis, the following relationship is

obtained

0F̃1

(
2;λ,w′) =

det (0F1 (1;w′
iλj))

w2(λ1 − λ2)(z − 1)
(A.9)

which leads to a simplified version of (A.8)

fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2

∫ ∞

0
w2

2e
−w2(z+1) det

(
0F1

(
1;w′

iλj

))
dw2. (A.10)
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For the dual case, (5.22) reduces to

0F1(1;x) = I0
(
2
√
x
)

(A.11)

and therefore

fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2
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To the best of the author’s knowledge, there is no analyticalsolution for the integrals involved

in (A.13); in light of this fact, the zeroth-order modified Bessel function is expressed as an

infinite sum of powers according to

I0(x) =

∞∑

k=0
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1

k!

)2 (x
2

)2k
(A.14)

which results in
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The summation is directly interchanged with the integration and taking into account the follow-

ing straightforward formula ∫ ∞

0
xpe−axdx =

Γ(p+ 1)

ap+1
(A.16)

the proof of (5.37) is concluded.
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The derivation of (5.45) represents essentially an extension to the analysis presented above. To

be more precise, by combining (5.44) with (A.7) we get

fz(z) = λ
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(A.17)

Once more, the infinite series representation of a first-order modified Bessel function of the first

kind is adopted according to
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Substituting (A.14) and (A.18) into (A.17) one can obtain
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which after making use of (A.16) and some trivial manipulations returns (5.45).
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On Analytical Derivations of the Condition Number
Distributions of Dual Non-Central Wishart Matrices

Michail Matthaiou,Member, IEEE,David I. Laurenson,Member, IEEE,
and Cheng-Xiang Wang,Member, IEEE

Abstract—In this paper, we explore the statistical charac-
terization of Multiple-Input Multiple-Output (MIMO) channel
correlation matrices with the main focus being on their condition
number statistics. More specifically, novel expressions are derived
for the probability density function (PDF) and cumulative distri-
bution function (CDF) of the MIMO condition number. Contrary
to the majority of related studies, where only the common case
of Rayleigh fading was considered, our investigation is extended
to account for the generalized case of Ricean fading where a
deterministic Line-of-Sight (LoS) component exists in the com-
munication link. The overall analysis is based on the principles
of random matrix theory and particularly of dual complex non-
central Wishart matrices; the latter represent a practical class of
MIMO systems, namely dual-branch systems which are equipped
with two transmit and receive antenna elements. All the derived
formulae are validated through extensive simulations with the
attained accuracy being remarkably good.

Index Terms—MIMO systems, non-central Wishart matrices,
condition number, Ricean fading.

I. I NTRODUCTION

I T is an indisputable fact that, nowadays, Multiple-Input
Multiple-Output (MIMO) systems are considered as a hot

topic in the area of wireless communications. The pioneer-
ing works of Foschini [1] and Telatar [2] demonstrated the
extensive performance enhancement when multiple antenna
elements are used at both ends of a radio link. While a
considerable amount of research effort has been devoted to the
study of MIMO technology, there are still some open aspects
that have not been addressed. One of the most interesting
topics is the eigenanalysis of the MIMO correlation matrix
and especially the statistical determination of its condition
number, commonly defined as the ratio of the largest to
the smallest eigenvalue. In the MIMO context, the condition
number indicates the multipath richness of the channel [3] and
has also been shown to drastically affect the detection and error
performance in spatial multiplexing (SM) systems [4], [5].
Hence, a detailed knowledge of the condition number statistics
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is highly desirable since it will shed some light into the
efficient characterization of the promising MIMO technology.
We point out that throughout the paper our main interest lies
in dual-branch(or simply dual) MIMO configurations, which
are expected to be employed in the majority of future practical
systems (e.g. hand-held devices), thanks to their small size and
low complexity/implementation cost.

In order to conduct the above mentioned analysis, we have
resorted to the use of complex Wishart matrices which have
recently attracted considerable interest following the rapid
development of MIMO systems. Most studies dealing with
the application of Wishart matrix theory on MIMO systems
elaborate on the common case of a rich scattering environment
where no Line-of-Sight (LoS) component is present and the
inter-element spacings are assumed to be sufficiently high; un-
der these conditions, the entries of the channel matrix exhibit
uncorrelated Rayleigh fading [1], [2], [6] and in practice we
end up with the simplified case of complex central (zero-mean)
Wishart matrices. The presence of a specular wavefront or a
strong direct component though, violates the assumption of
Rayleigh fading and the channel is said to be Ricean dis-
tributed instead. Surprisingly, despite their practical relevance,
few results have been reported focusing on the eigenstatistics
of Ricean channels. This fact can be attributed to the difficulty
in manipulating hypergeometric functions with two matrix
arguments of non-central Wishart matrices compared to the
one matrix argument of central Wishart matrices [7].

With regard to the condition number statistics, we primarily
recall the seminal work of Edelman [8] which revealed the
vital importance of the condition number as a metric of the
matrix ill-condition. However, his analysis was limited to the
case of(2 × 2) central Wishart matrices with unit variance
where the generalized work of Ratnarajahet al. [9] accounted
for matrices of random size and with arbitrary variance. An
interesting approach to model the temporal transition proba-
bilities of the condition number using a finite-state Markov
process can be found in [10]; more importantly, it was shown
that the CDF of the logarithm of the condition number can be
approximated particularly well via a gamma variable. Yet, all
the above cited papers ( [8]–[10]) were limited to Rayleigh-
fading MIMO channels while the extension to Ricean-fading
channels remains an open problem. On this basis, in the
present study we explore the statistics of the condition number
of a dual non-central Wishart matrix and introduce closed-
form formulae for its PDF and CDF as weighted sums of
polynomials. For the sake of completeness, two different
cases are assessed with the classification being based on the
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eigenvalues of the LoS matrix component (distinct or equal).
As potential applications of our theoretical analysis, we can
expect that it can facilitate the prediction of capacity and link-
level performance of MIMO channels as well as the design of
space-time codes and MIMO simulations.

The remainder of the paper is organized as follows: In
Section II, the fundamental properties of the theory of Wishart
matrices are outlined. In Section III, new expressions for the
condition number distributions are derived. In Section IV,
the underlying MIMO Ricean channel model used throughout
the paper is discussed followed by the numerical results
as obtained by Monte-Carlo simulations. Finally, Section V
concludes the paper and summarizes the key findings.

A note on notation:We use upper and lower case boldfaces
to denote matrices and vectors, respectively whileC will
denote the set of complex-valued numbers. The nomenclature
∼ CN (X,Y) stands for a complex normally distributed
matrix with meanX and covarianceY. An (n × n) identity
matrix is expressed asIn while the all-zero(n×m) matrix as
0n×m. The symbols(·)H and (·)−1 correspond to Hermitian
transposition and matrix inversion whereas⊗ is the Kronecker
product. Finally,det(·) and‖·‖F respectively return the matrix
determinant and Frobenius norm.

II. NON-CENTRAL WISHART MATRICES

As was previously highlighted, we are particularly inter-
ested in dual complex non-central Wishart matrices. In such a
case, a(2×2) complex normal random matrixH is considered
which is distributed according toH ∼ CN (M,Σ ⊗ I2). The
matrix Σ = σ2

I2 is the correlation matrix containing the
variancesσ2 of the entries ofH on its main diagonal. The
so-called instantaneous MIMO correlation matrix is defined
asW̃ = HH

H and is said to follow the complex non-central
Wishart distribution with two degrees of freedom and non-
centrality matrix Ω = Σ

−1
MM

H , commonly denoted as
W̃ ∼ CW2(2,Σ,Ω)1.

We now consider a scaled version of̃W, that is W =
Σ

−1
W̃. SinceW is a (2 × 2) Hermitian matrix, it has two

real ordered eigenvaluesw1 > w2 > 0, whose joint PDF is

f(w1, w2) = exp

[
−

2∑

i=1

(λi + wi)

]
0F̃1 (2; λ,w) (w1 − w2)

2

(1)

whereλ = (λ1, λ2) contains the real ordered eigenvalues of
Ω and, in turn,w = (w1, w2); moreover,0F̃1(.; ., .) is the
complex hypergeometric function of two matrix arguments [7].
A convenient version of0F̃1 (2; λ,w) for the dual case was
given by Gross and Richards [11] as

0F̃1 (2; λ,w) =
det (0F1 (1; wiλj))

(λ1 − λ2)(w1 − w2)
(2)

with Iq(·) denoting theqth order modified Bessel function of
the first kind and0F1(s+1; x) is the classical hypergeometric
function [12]

0F1(s + 1; x) = s!x−s/2Is

(
2
√

x
)
. (3)

1It should be noted that ifM = 02×2 so thatΩ = 02×2, a complex
central Wishart matrix is obtained, expressed as�W ∼ CW2(2, Σ).

III. STATISTICS OF THECONDITION NUMBER OFW

It is well established that the condition number is a metric
of the channel rank or of how invertible a given matrix is;
a condition number close to one indicates a well-conditioned
matrix with almost equal eigenvalues. As the condition number
gets larger though, the matrix rank drops and eventually
degenerates into a rank-one matrix. Its importance in the area
of MIMO communications has been demonstrated in [3]–[5]
among others. In the considered case, the condition number
of the scaled MIMO correlation matrixW becomes

z =
w1

w2
≥ 1. (4)

From an information theory point of view, the impact
of the condition number on MIMO capacity can be seen
in (5), which returns the instantaneous channel capacity (in
bits/s/Hz) assuming perfect channel knowledge at the Rx and
no knowledge at the Tx and uniform power allocation [1]

C = log2

(
det

(
I2 +

ρ

2
HH

H
))

= log2

((
1 +

zw2

α

)(
1 +

w2

α

))
(5)

whereρ is the system Signal-to-Noise ratio (SNR) andα =
2(1 + K)/ρ. The symbolK stands for the the RiceanK-
factor, normally expressing the ratio of the free-space signal
power to the power of the scattered waves. From (5), it is
evident that there is no analytical one-to-one mapping between
MIMO capacity and the condition number. However, their
inter-dependency can be numerically evaluated; in Fig. 1, this
inter-dependency is illustrated for an SNR of 20 dB2.

This graph verifies the notion that high-rank channels, or
low condition numbers, yield high capacities and vice-versa.
To get a deeper understanding, the density and distribution
functions of the condition number are now studied for two
different cases; the distinction is based on the associated LoS
eigenvalues and, in particular, on whether these are identical.
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Fig. 1. Capacity evolution as a function of the condition number (SNR=
20 dB).

2A more detailed discussion on the simulation settings is provided in
Section IV.
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1) Case 1 (λ1 �= λ2): We firstly consider the common
case of two distinct non-zero LoS eigenvaluesλ1 > λ2

which reflects any conventional MIMO configuration with no
constraint on the rank of the LoS channel matrix. We can show
that the PDF ofz, fz(z), can then be expressed as a weighted
summation of polynomials given by

fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2

∞∑

k=0

∞∑

n=0

Γ(k + n + 3)zk

(k!n!)2(z + 1)k+n+3

×
[
λk

1λn
2 − λk

2λn
1

]
(6)

with Γ(n) denoting the Gamma function which, for the case
of an integer index, can be rewritten asΓ(n) = (n− 1)!. The
full proof of (6) is provided in Appendix A.

In order to reduce the high computational complexity in-
serted by the infinite double summation of the above equation,
a truncated finite subset of terms may be considered as

fz(z) ≈ e−(λ1+λ2)(z − 1)

λ1 − λ2

Ks∑

k=0

Ns∑

n=0

Γ(k + n + 3)zk

(k!n!)2(z + 1)k+n+3

×
[
λk

1λn
2 − λk

2λn
1

]
. (7)

The values ofKs and Ns are chosen so that a further
increase in the number of coefficients holds negligible impact
on the final outcome (less than 0.5% between consecutive
steps). It was empirically found that to fulfill this prerequisite
with the minimum number of terms,Ks and Ns should be
set to the same value. In fact, by adopting this approach the
asymptotic result is approximated well withKs = Ns = 20.
This observation is verified in Fig. 2, where the evolution of
the double summation against the number of termsK s, Ns is
depicted, for four arbitrary values ofz.

The corresponding CDF ofz, Fz(x), can then be deduced
by the PDF as

Fz(x) =

∫ x

1

fz(z)dz. (8)

By substituting (6) into (8) and taking into account the Dom-
inated Convergence Theorem which states that summation and
integration can be interchanged, Eq. (9) at the top of the next
page is obtained after some basic algebraic manipulations.
For the integrals involved in (9), a tractable representation in
terms of scalar hypergeometric functions is available in [12,
Eq. (3.194)]

∫ u

0

tµ

(1 + bt)ν
dt =

uµ+1

µ + 1
2F1(ν, µ + 1; µ + 2;−bu) (10)

where2F1(α, β; γ; u) is the classical Gaussian hypergeometric
function defined in [12, Eq. (9.14)]. The CDF of the condition
number eventually becomes

Fz(x) =
e−(λ1+λ2)

λ1 − λ2

∞∑

k=0

∞∑

n=0

Γ(k + n + 3)

(k!n!)2

[
λk

1λn
2 − λk

2λn
1

]

×
{

Ik+1,k+n+3
1 (x) − Ik,k+n+3

1 (x)

}
(11)
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Fig. 2. Convergence of the double summation in (6) for four different values
of z.

where

Ia,b
1 (y) =

(
ya+1

a + 1

)
2F1(b, a + 1; a + 2;−y)

−
(

1

a + 1

)
2F1 (b, a + 1; a + 2;−1) . (12)

2) Case 2(λ1 = λ2): This is a special class of specifically
designed full-rank LoS configurations with extensive practical
interest since it offers two equal eigenvalues and thus delivers
high capacities in the presence of strong direct components.
This is achieved with appropriate positioning of the antenna
elements at both ends of the link so that subchannel orthog-
onality is attained [13]–[15]. This phenomenon is contrary to
the common belief that LoS channels represent a hindrance in
the area of MIMO communication since they are usually rank-
deficient and therefore have only one non-zero eigenvalue.
In the case of equal eigenvalues though, the(λ1 − λ2) term
in the denominator of (2) becomes zero making the analysis
invalid; in order to circumvent this singularity we employde
l’H ôpital’s rule to get a solution for the limit(λ1 → λ2). Then,
the ordered eigenvalue distributionf(w1, w2) becomes [13]

f(w1, w2) = λ
−1/2
1 e−2λ1(w1 − w2)e

−(w1+w2)

×
(√

w1I1

(
2
√

λ1w1

)
I0

(
2
√

λ1w2

)

−√
w2I1

(
2
√

λ1w2

)
I0

(
2
√

λ1w1

))
. (13)

In Appendix B, it is shown that the PDF of the condition
number has the following form

fz(z) = e−2λ1(z − 1)

∞∑

k=0

∞∑

n=0

Γ(k + n + 4)

(k!n!)2(k + 1)(z + 1)k+n+4

×
(

zk+1 − zn

)
. (14)

The similarity between the infinite double summations
involved in (6) and (14) is apparent and hence the finite
subset approximation can be used again. In this case, a similar
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Fz(x) =
e−(λ1+λ2)

λ1 − λ2

∞∑

k=0

∞∑

n=0

Γ(k + n + 3)

(k!n!)2
[
λk

1λn
2 − λk

2λn
1

]

×
{∫ x

0

zk+1

(z + 1)k+n+3
−

∫ 1

0

zk+1

(z + 1)k+n+3
−

∫ x

0

zk

(z + 1)k+n+3
+

∫ 1

0

zk

(z + 1)k+n+3

}
. (9)

convergence check, as the one performed for (7), revealed
that the choiceKs = Ns = 15 approximates the asymptotic
solution reasonably well. As far as the condition number CDF
is concerned, the concept for deriving an analytical expression
is exactly the same as in (8)–(12). Thus, it is trivial to show
that for the case of equal LoS eigenvalues the condition
number CDF is

Fz(x) = e−2λ1

∞∑

k=0

∞∑

n=0

Γ(k + n + 4)

(k!n!)2(k + 1)
×

{
Ik+2,k+n+4
1 (x)

− In+1,k+n+4
1 (x) − Ik+1,k+n+4

1 (x) + In,k+n+4
1 (x)

}
.

(15)

IV. MIMO C HANNEL MODEL AND NUMERICAL RESULTS

The underlying MIMO channel model is now presented
for the case of LoS propagation. For an uncorrelated fading
scenario, the channel transfer function matrixH ∈ C2×2

consists of a spatially deterministic componentHL and a
randomly distributed componentHW which accounts for the
scattered signals. Then, the channel model is

H =

√
K

K + 1
HL +

√
1

K + 1
HW. (16)

A common policy in the analysis of MIMO systems is to
normalize the entries ofH so that they have unity energy on
average and the mean SNR is independent of the channel ma-
trix. For this reason,HW is modeled as a Rayleigh distributed
matrix with independent and identically distributed (i.i.d.) cir-
cular symmetric zero-mean complex Gaussian variables with
unity variance. With regard to the free-space LoS component
HL, its entries can be expressed ase−jkdm,n/dm,n, where
k = 2π/λ is the wavenumber corresponding to the carrier
wavelengthλ and dm,n is the distance between a receive
elementm ∈ {1, 2} and a transmit elementn ∈ {1, 2}. Please
note that we have assumed, without loss of generality, isotropic
radiators. Regarding the statistical characteristics ofH, it can

be inferred thatM =
√

K
K+1HL while Σ = 1

K+1I2. Then, it

is trivial to show that the Wishart matrix̃W = HH
H follows

the distributionW̃ ∼ CW2

(
2, 1

K+1I2, KHLH
H
L

)
and the

associated LoS version of interestW = (K + 1)W̃.
We can now validate the theoretical analysis presented in

Section III through a set of simulations. For the sake of brevity,
we consider the more general case of unequal LoS eigenvalues
but all the presented results are readily extensible to the case
of full-rank LoS configurations. Due to space limitations,
we directly consider the LoS suboptimum configuration, as
originally given by the authors in [16, Eq. 20], with

HL =

[
0.8384 + j0.5451 0.9411 + j0.3380
−0.5123− j0.8588 0.8384 + j0.5451

]
. (17)

This matrix intuitively satisfies the power constraint, i.e.
‖HL‖2

F = 4. After generating 50,000 random Monte-Carlo
realizations of the channel matrixH according to (16) and
setting theK-factor equal to 5 dB, the ordered eigenvalues of
Ω were easily computed and thereafter concatenated into the
vector λ = (7.0336, 5.6155). As a main step of the perfor-
mance evaluation process, the analytical expressions derived
for the statistics of the condition number are validated. In
Figs. 3(a) and 3(b), the closed-form relationships (6) and (11)
are respectively tested, where it is easily seen that theoretical
and simulation results are in remarkable agreement for both
cases.
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Fig. 3. Condition number PDF and CDF of a dual complex non-central
Wishart matrix.
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From inspection of Fig. 1 and Fig. 3, we can also conjec-
ture that for a relatively high percentage of realizations the
proposed architecture yields large capacities and outperforms
the common i.i.d. Rayleigh system which offers an ergodic
capacity of 11.4 bits/s/Hz for the same operating SNR. This
observation is consistent with the results presented in [13]–
[15] where different optimized architectures were proposed
for the case of near-field LoS propagation.

V. CONCLUSION

In the present contribution, a detailed statistical eigen-
analysis of dual-branch MIMO systems has been performed.
In detail, we derived the PDF and CDF of the condition
number of a dual complex non-central Wishart matrix. This
class of matrices has an increasing practical interest since
it corresponds to compact MIMO systems with two antenna
elements at both ends. The statistics of the condition number
were thoroughly explored for a conventional as well as a
specifically designed full-rank configuration with equal LoS
eigenvalues. All theoretical formulae were tested against the
outputs of a Monte-Carlo simulator and it was shown that the
match between theory and simulation is excellent. It should
be emphasized that all the analytical results presented in this
paper can be easily evaluated since the overall complexity
burden was kept as low as possible. More importantly, they
constitute the basis of the statistical assessment of Ricean
MIMO channels and further are very useful tools for deter-
mining numerous MIMO characteristics, spanning SM ability
to symbol error and detection performance.

APPENDIX A
DERIVATION OF THE PDF OF THE CONDITION NUMBER OF

W (λ1 �= λ2)

Starting with the joint eigenvalue PDFf(w1, w2), we apply
the following transformation of variables to estimate the
marginal pdf of the condition numberz = w1/w2

fz(z) =

∫
∞

0

w2f(zw2, w2)dw2. (18)

By substituting (1) into (18), the integral becomes

fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2

∫
∞

0

w2
2e

−w2(z+1)

0F̃1 (2; λ,w′) dw2 (19)

wherew
′ = (zw2, w2). If (2) is introduced in our analysis,

the following relationship is obtained

0F̃1 (2; λ,w′) =
det (0F1 (1; w′

iλj))

w2(λ1 − λ2)(z − 1)
(20)

which leads to a simplified version of (19)

fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2

∫
∞

0

w2
2e

−w2(z+1)

det (0F1 (1; w′

iλj)) dw2. (21)

For the dual case, (3) reduces to0F1(1; x) = I0 (2
√

x); thus,

fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2

∫
∞

0

w2
2e

−w2(z+1)

det
(
I0

(
2
√

w′

iλj

))
dw2. (22)

We can now evaluate (22) as shown in (23) in the next page.
To the best of our knowledge, there is no analytical solution
for the integrals in (23); in this light, we express the zeroth-
order modified Bessel function as an infinite sum of powers
according to

I0(x) =

∞∑

k=0

(
1

k!

)2 (x

2

)2k

. (24)

Inserting (24) into (23) and taking into account the following
straightforward formula

∫
∞

0

xpe−axdx =
Γ(p + 1)

ap+1
(25)

we conclude the proof of (6).

APPENDIX B
DERIVATION OF THE PDF OF THE CONDITION NUMBER OF

W (λ1 = λ2)

The derivation presented herein represents essentially an
extension to the analysis of the previous section. To be more
precise, by combining (13) with (18) we get (26) at the top
of the next page.

Once more, the infinite series representation of a first-order
modified Bessel function of the first kind is used according to

I1(x) =
x

2

∞∑

k=0

1

k!Γ(k + 2)

(x

2

)2k

=
x

2

∞∑

k=0

1

k!2(k + 1)

(x

2

)2k

. (27)

After substituting (24) and (27) into (26) and making use of
(25), we can directly obtain (14).
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[6] Ö. Oyman, R. U. Nabar, H. Bölcskei, and A. J. Paulraj, “Characterizing
the statistical properties of mutual information in MIMO channels,”IEEE
Transactions on Signal Processing, vol. 51, no. 11, pp. 2784–2795,
November 2003.

[7] A. T. James, “Distributions of matrix variates and latent roots derived
from normal samples,”Annals of Mathematical Statistics, vol. 35, no. 2,
pp. 475–501, June 1964.

[8] A. Edelman, Eigenvalues and condition numbers of random matrices,
Ph.D dissertation, MIT, Cambridge, MA, May 1989.

[9] T. Ratnarajah, R. Vaillancourt, and M. Alvo, “Eigenvalues and condition
numbers of complex random matrices,”SIAM Journal on Matrix Analysis
and Applications, vol. 26, no. 2, pp. 441–456, January 2005.

153



Original publications

Submitted to IEEE Transactions on Wireless Communications 6

fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2
×

[
∫

∞

0

w2
2e

−w2(z+1)I0

(

2
√

zw2λ1

)

I0

(

2
√

w2λ2

)

dw2

−

∫

∞

0

w2
2e

−w2(z+1)I0

(

2
√

zw2λ2

)

I0

(

2
√

w2λ1

)

dw2

]

. (23)

fz(z) = λ
−1/2
1 e−2λ1(z − 1) ×

[
∫

∞

0

√
zw

5/2
2 e−w2(z+1)I1

(

2
√

zλ1w2

)

I0

(

2
√

λ1w2

)

dw2

−

∫

∞

0

w
5/2
2 e−w2(z+1)I1

(

2
√

λ1w2

)

I0

(

2
√

zλ1w2

)

dw2

]

. (26)

[10] P. -H. Kuo, P. J. Smith, and L. M. Garth, “A Markov model for
MIMO channel condition number with application to dual-mode antenna
selection,” in Proc. Vehicular Technology Conference (VTC), Dublin,
Ireland, April 2007, pp. 471–475.

[11] K. I. Gross and D. S. Richards, “Total positivity, spherical series, and
hypergeometric functions of matrix argument,”Journal on Approximation
Theory, vol. 59, no. 2, pp. 224–246, 1989.

[12] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and
Products, Sixth ed. Academic Press, San Diego, 2000.

[13] F. Bøhagen, P. Orten, G. E. Øien, and S. de la Kethulle de Ryhove,
“Exact capacity expressions for dual-branch Ricean MIMO systems,”in
press IEEE Transactions on Communications.

[14] F. Bøhagen, P. Orten, and G. E. Øien, “Design of capacity-optimal
high-rank line-of-sight MIMO channels,”IEEE Transactions on Wireless
Communications, vol. 6, no. 4, pp. 1420– 1425, April 2007.

[15] M. Matthaiou, D. I. Laurenson, and C. -X. Wang, “Capacity study of
vehicle-to-roadside MIMO channels with a line-of-sight component,” in
Proc. Wireless Communications and Networking Conference (WCNC),
Las Vegas, USA, March 2008, pp. 775–779.

[16] —, “Reduced complexity detection for Ricean MIMO channels based on
condition number thresholding,” inProc. International Wireless Commu-
nications and Mobile Computing Conference (IWCMC), Crete, Greece,
August 2008, pp. 988–993.

154



Original publications

1494 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 5, MAY 2008

to the ideal behavior. The termination of the antenna will result in
ringing behavior that should be smoothed by an appropriate loading
scheme. A partially focused monocone antenna would provide an
omnidirectional radiator with the properties of (6), while a partially
focused TEM horn would provide one with more gain. The antenna
designed by Ameya, et al., seems to accomplish this task by tapering
the impedance of the printed monocone.

VI. CONCLUSION

In this paper we have presented requirements for an UWB antenna
that can provide a dispersionless channel when used as both the
transmit and receive antenna. The desired antenna would need to
closely approximate an ideal, pulsed line source and would radiate a
waveform that approximates a half derivative of the applied voltage.
We demonstrated that such a waveform could be generated by a current
source that is spatially limited by a Gaussian waveform.

Creating an antenna that produces such a pulse is a challenge. We
provided a concept that might lead to such an antenna. By noting that
a focused aperture antenna radiates a derivative of the applied voltage
and a completely unfocused aperture radiates a replica of the applied
voltage [4], it was hypothesized that an antenna that is focused in
elevation but unfocused in azimuth would create the desired waveform,
at least in the vicinity of the antenna. Further analysis of the proposed
strategy is warranted. However, recent experimental results using
printed monopole antennas seem to indicate that the desired goal can
be achieved, at least over a limited range of frequencies [9].
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A MIMO Channel Model Based on the Nakagami-Faded

Spatial Eigenmodes

Michail Matthaiou, David I. Laurenson, and John S. Thompson

Abstract—We propose a stochastic model for multiple-input multiple-
output (MIMO) communication systems based on the eigendecomposition

of the spatial correlation matrix. It is shown that the channel matrix can be
well modeled by the superposition of the spatial eigenmodes experiencing

independent Nakagami- fading. The proposed scheme is also compared
with the existing correlation-based models using the data obtained from an

indoor measurement campaign so that its performance is assessed in depth.

Index Terms—Fading channels, multiple-input multiple-output (MIMO)
systems, spatial correlation.

I. INTRODUCTION

In recent years, the area of multiple-input multiple-output (MIMO)
channel modeling has attracted considerable research interest since a
reliable model can in principle predict the propagation mechanisms
and ultimately make possible the integration of MIMO technology into
real-time applications. On this basis, various stochastic modeling ap-
proaches have been proposed in the literature with a view to capturing
the spatial behavior at both the transmitter (Tx) and the receiver (Rx).

More specifically, the so called “Kronecker model” [1] assumes that
the spatial correlation properties at both ends of the link are separable
which can result though in the multipath structure being rendered in-
correctly. In other words, it enforces the joint angular power spectrum
(APS) to be the product of the direction of arrival (DoA) and direction
of departure (DoD) power spectra. The model may give accurate esti-
mates when three or less antenna elements are employed but for larger
arrays (and hence an improved angular resolution) its performance de-
teriorates significantly [2]. However, it has been extensively used for
the theoretical analysis and simulations of MIMO systems thanks to its
simplicity.

On the other hand, the so called “Weichselberger model” [3] allevi-
ates the deficiencies of the Kronecker model by considering the joint
correlation structure of both ends and consequently the average cou-
pling between the spatial subchannels is effectively modeled. Although
more robust than the Kronecker model with systems employing more
than four antennas, it still falls short of precisely capturing all spatial
activity [4], [5]. Yet, the multipath environment is occasionally not re-
produced properly resulting in an inaccurate estimate of the joint APS.

In this letter, we present a full spatial correlation model which en-
compasses a generalized version of the aforementioned approaches and
yields a better fit, in terms of statistical metrics, with the measured data.
The common assumption of Rayleigh fading, which is often violated
in measured channels, is relaxed by considering the more flexible Nak-
agami-m distribution in order to account for the presence of strong
obstructed line-of-sight (LoS) components.

The letter is organized as follows: In Section II, we derive
the proposed MIMO channel model in a straightforward manner. In
Section III, an indoor MIMO measurement campaign is described. The
statistical characteristics as well as the accuracy of the Nakagami-m
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fading assigned to each eigenmode are addressed in Section IV. The

performance of the stochastic model is evaluated in Section V using

the measured data. Finally, Section VI summarizes the key findings.

II. MIMO CHANNEL MODEL

For a flat-fading MIMO system equipped with N transmit and M

receive antenna elements, the complex input-output relationship can

be written for the discrete case as

y = Hx + n (1)

where x 2 N�1 is the transmitted signal vector, y 2 M�1 is the

noise-corrupted received signal and n 2 M�1 corresponds to the ad-

ditive noise plus interference. The termH 2 M�N is usually referred

to as the channel transfer function matrix and contains the complex re-

sponses between all antenna pairs. The full spatial correlation matrix,

describing the joint correlation properties of both link ends, is defined

as [1]

RH EHfvec(H)vec(H)Hg 2 MN�MN
(2)

where the vec(�) operator stacks the columns of a matrix into a vector

and ( � )H is the Hermitian transposition. The eigendecomposition of

RH into a sum of rank-one matrices yields

RH =

MN

k=1

�kuku
H
k (3)

where �k are the real non zero ordered eigenvalues (�1 � �2 �
� � � � �MN � 0) and uk contain the corresponding eigenvectors

which are by definition mutually orthogonal and have unit norm. We

note that the number of non-zero eigenvalues determines the rank of

RH which is upper bounded by MN . The eigenvector uk can be re-

shaped column-wise into the matrix Uk = unvec(uk) 2 M�N

which we will refer to hereafter as the k-th eigenmode. From a phys-

ical viewpoint, eigenvalues specify the degree of diversity offered by

the channel while eigenmodes, commonly representing a linear combi-

nation of propagation paths, are indicative of the spatial multiplexing

(SM) ability [3]. Likewise, the channel matrix can be modeled as

Hmod =

MN

k=1

g[k] �kUk: (4)

From (4), we readily infer that the probability density function (pdf) of

g[k] expresses the fading variations of the channel. In fact, the fading

coefficients g[k] are independent and identically distributed (i.i.d.)

random variables satisfying the relationship Egfg[m]g�[n]g = �mn,

where �mn is the Kronecker delta function.1 We underline the fact that

the second-order moment of g[k] is assumed to be the same for all k

so that the eigenvalues �k reflect the power of each eigenmode.

III. INDOOR MEASUREMENT CAMPAIGN

An indoor measurement campaign was carried out in the Electrical

Engineering Building in Vienna University of Technology [6]. The

measurements were conducted using the MEDAV RUSK ATM channel

sounder which was probed at 193 equispaced frequency bins, covering

1It is trivial to check the validity of (4) by calculating the spatial correlation
matrix according to (2).

120 MHz of bandwidth, at a carrier frequency of 5.2 GHz. The Rx em-

ployed a uniform linear array (ULA) of eight vertically-polarized ele-

ments with an inter-element distance of 0:4�which was fully calibrated

in order to remove the undesired effects of mutual coupling and other

array imperfections. At the Tx, an omnidirectional sleeve antenna was

moved on a 10� 20 rectangular grid with element spacings of 0:5�.

By considering a virtual eight-element ULA on each row, we end up

with 13 � 10 = 130 spatial realizations of the 8� 8 MIMO transfer

matrix. Thus, a total set of 130� 193 = 25; 090 space and frequency

realizations per measurement scenario was obtained.

The Rx was placed at 24 locations in several offices while the Tx was

fixed in a hallway. In order to capture the whole azimuth domain ac-

tivity, the Rx was steered to three different directions (spaced by 120�),

leading to the generation of 72 data sets, i.e., combinations of Rx posi-

tions and directions.

IV. NAKAGAMI-M FADING CHARACTERISTICS

Intuitively, the main concept behind the proposed model (4) orig-

inates from the well-known Karhunen-Loeve transform (KLT) which

has been extensively used in numerous applications that range from

image compression to seismology and computer graphics in order to

decorrelate multi-element data based on the eigendecomposition of the

correlation matrix [7]. The resulting uncorrelated eigenmodes are as-

signed a Nakagami-m fading process [8] which yields a satisfactory fit

with real-time data for various measured channels (see [9] and refer-

ences therein). The normalized Nakagami-m pdf of the fading envelope

R is given by

fR(r) =
2

�(m)
m
m
r
2m�1

e
�mr

; r � 0 (5)

with�( � ) expressing the gamma function. The Nakagami fading figure

m[k](1 � k � MN ), which determines the severity of fading, is

estimated directly from the measured data according to

m[k] =
E uHk vec(H)

2
2

E juHk vec(H)j
2
� E juHk vec(H)j

2
2

=
�2k

E juHk vec(H)j
2
� �k

2
�

1

2
: (6)

In Fig. 1, we illustrate the cumulative distribution function (cdf) of a

normalized measured fading envelope which indicates the excellent fit

of the Nakagami-m distribution.

This aggregate statistical metric shows the poor match of the com-

monly used Rayleigh distribution while the Ricean distribution fits rea-

sonably well, except in the tails of the measured data. Similar trends

were observed at most of the considered cases. To further justify our

choice, we have computed the mean squared error (MSE) of these three

candidate cdf fits across the whole data set with the key characteristics

being tabulated in Table I. The average and standard deviation mea-

sures indicate that the Nakagami-m fit yields a rather good accuracy

and substantially outperforms the Rayleigh fit by an order of one mag-

nitude while it remains robust and experiences the lowest maximum

MSE. On the basis of which model best fits the measured data set,

we notice the smallest MSE to occur at 72.40% of the cases when a

Nakagami-m fit is employed thereby confirming its improved perfor-

mance compared to the other two reference distributions (right-hand

column of Table I). For the generation of the uncorrelated Nakagami-m
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TABLE I
MSE CHARACTERISTICS OF THREE CDF FITTING DISTRIBUTIONS

Fig. 1. Cdf of a normalized measured envelope in comparison with Nak-
agami- , Ricean and Rayleigh distributions.

envelope variates we adopt the rejection/acceptance method proposed

in [10] which is accurate and computationally efficient for arbitrary

values of m. Then, the spatial fading coefficients may be expressed

as g[k] = R[k] exp(j�[k]), where �[k] is a random phase distributed

uniformly in [0; 2�). The uniform phase assumption was found to be

valid even for large values of the m-factor (i.e., non-Rayleigh condi-

tions) and thanks to its intrinsic simplicity was incorporated throughout

our analysis.

V. MIMO CHANNEL MODEL VALIDATION

The proposed model is assessed by means of the mutual information

and the link-level performance using a minimum mean squared error

(MMSE) detector which can minimize the overall error caused by noise

and mutual interference. Firstly, we compute the measured correlation

matrix, using all space and frequency realizations, and thereafter the

matrix is decomposed in order to obtain the spatial eigenmodes; as a

next step 25,090 synthetic channel realizations are generated according

to (4) and hence the measured and simulated ensembles are the same. In

order to remove the path-loss effects, both ensembles are normalized

so that the constraint EfkHk2F g = MN is fulfilled, where k � kF
corresponds to the Frobenius norm.

Assuming perfect channel state information (CSI) at the Rx but no

knowledge at the Tx, the average mutual information (ergodic channel

capacity) is given by

I = E log
2

det IM +
�

N
HH

H
; (bits=s=Hz) (7)

where IM is the M � M identity matrix and � denotes the system

signal-to-noise ratio (SNR) per receiver branch [11]. The latter was

set equal to 20 dB2 while the expectation operation was performed on

either the measured data or the fading realizations of g[k]. In Fig. 2,

two different models are compared, namely the Nakagami and the We-

ichselberger models; the modeled capacity is plotted against the mea-

sured capacity for each of the 72 scenarios under investigation. The

Kronecker model is not included in our comparison since it is a special

case of the Weichselberger model and yields an inferior performance

for the great majority of cases [3]–[5].

From this figure, we observe that the proposed model holds a smaller

modeling error than the Weichselberger model, whose mismatch in-

creases with decreasing mutual information, for all the scenarios under

investigation; in particular, a 2.2 dB improvement was achieved in the

MSE from�9.72 to�11.93 dB. Additional study revealed that the We-

ichselberger’s accuracy diminishes when the outage mutual informa-

tion is considered, resulting in an overestimation of the diversity level;

this is consistent with the results presented in [4], [5]. The good fit of the

Nakagami model can be partially attributed to the presence of strong

obstructed LoS components at the majority of Rx locations due to its in-

herent higher flexibility compared to the more restricted Rayleigh and

Ricean distributions. In other words, for the corresponding eigenmodes

m > 1 and therefore the fluctuations of the signal strength reduce com-

pared to Rayleigh fading.

The link-level performance is evaluated by considering a SM

scheme, namely linear MMSE detection. The uncoded transmitted

signal is modulated using BPSK modulation. For these specifications,

the estimated transmit signal vector x̂ is [12]

x̂ =W � y; whereW = argmin
W

EfkWy� xk2g (8)

and thus the following closed-form expression is finally obtained

x̂ = HH(HHH +N0IM)�1 � y (9)

with N0 expressing the noise power. Due to space constraints, we di-

rectly focus on the BER mismatch at a target SNR of 20 dB against the

Nakagamim-factor of the dominant eigenmode (cf. Fig. 3). In general,

the BER mismatch is defined as the difference between the measured

and the modeled BER at a target SNR. The distribution of them values

validates clearly the assumption of Nakagami fading while we notice

a significant portion of them well beyond the typical unity value. The

proposed model holds again a superior performance for the vast ma-

jority of measured scenarios (68 out of 72 scenarios); in fact, its BER

estimators deviate by up to 11% while the Weichselberger’s by up to

20% and the MSEs (for the same target SNR) are 2. 24�10�5 and 4.47

�10�5 respectively, expressing a 3 dB improvement. It is noteworthy

that the relative difference of estimators is higher when more than one

eigenmodes experience purely Nakagami fading (m > 2).
The only disadvantage of the proposed scheme lies in its increased

complexity burden which is generally a crucial issue that affects the

choice of the most appropriate channel model. While the Kronecker

2This value is chosen so that the system SNR is well below the measured SNR
which lies in the region 55-60 dB after averaging the channel response across
128 temporal snapshots.
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Fig. 2. Mutual information for two different channel models versus measured
mutual information. The dashed line corresponds to the points of no modeling
error.

Fig. 3. BER mismatch at a target SNR of 20 dB against the Nakagami -factor
of the dominant eigenmode.

and the Weichselberger models require respectively M2 +N2 = 128
and MN + M(M � 1) + N(N � 1) = 176 real parameters to be

specified, the complexity order of our scheme is equal to that of the full

correlation model, i.e., (MN)2 = 4096. This implies that for practical

systems of interest the complexity increase is modest; further, in terms

of processing time an increase of 45% was observed on a 3.2 GHz Pen-

tium, making the model rather appealing when an enhanced accuracy

is desired.

VI. CONCLUSION

In this letter, a stochastic channel model has been presented with a

view to the decomposition of the spatial correlation matrix. The Nak-

agami-m fading approach yields a satisfactory performance since in

the majority of measured locations the presence of strong obstructed

LoS components violates the common assumption of Rayleigh fading

conditions. It is shown that the proposed model outperforms the so-

phisticated Weichselberger model in terms of both information theory

(mutual information) and link-level performance (BER). The scheme

can be regarded as a framework for describing different channels oper-

ating at the 5 GHz frequency band, e.g., Wireless Local Area Networks

(WLANs), fixed wireless and peer-to-peer communications. It can also

be used as a tractable tool for the simulation of MIMO systems, design

of space-time codes and construction of spatial filtering at both ends.
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Rejection method for generating
Nakagami-m independent deviates

M. Matthaiou and D.I. Laurenson

The Nakagami-m distribution has gained considerable research interest

in the area of wireless communications thanks to its good fit to empiri-

cal fading data. A simple scheme for the generation of independent

Nakagami-m random variables (RVs) is presented and compared

with the existing methods available in the literature.

Introduction: It is well established that the Nakagami-m distribution [1]

yields a satisfactory fit with measured fading data over a wide range of

frequency bands [2]. The Nakagami-m probability density function

(PDF) of the signal’s envelope r is given by the formula

f ðxÞ ¼ 2

GðmÞ
m

V

� �m

x2m�1e�mx2=V

x � 0; m � 0:5; V � 0 ð1Þ

where G(.) expresses the gamma function, m ¼ E 2(x 2)/var(x2) is the

shape parameter, determining the severity of fading, and V ¼ E(x2).

The generation of independent Nakagami-m RVs can provide an

insight into the characterisation of practical diverse systems operating

in slowly varying Nakagami-m fading environments. Surprisingly, to

the best of the authors’ knowledge, few results have been reported

dealing with the computer simulation of independent Nakagami-m

fading [3–5]. The so called ‘brute method’ [3], which considers the

square root of a sum of squares of n zero-mean identically distributed

Gaussian random variables, leads to a Nakagami distribution with

m ¼ n/2; however, this scheme is limited to integer and half-integer

values of m. The authors in [4] showed that the product of a square-

root beta process and a complex Gaussian process holds an accurate

model but similarly is valid only for values of m , 1. The inverse

method proposed in [5] is sufficiently accurate for arbitrary values of

m but requires the computation of a different set of coefficients for

each m value.

In this Letter, we present a novel technique for generating indepen-

dent Nakagami-m samples based on the rejection method [6]. A

similar approach has been recently addressed in [7] but lacks a

uniform approach for the whole range of m values. In particular, the

authors suggest the use of either the folded-Gaussian (0.5 � m � 1.0)

or the Gaussian (m � 1.0) PDFs as hat functions, resulting in the

achieved efficiency being strongly dependent on the corresponding

interval (65.75 and 66.67% respectively), with the option to select

different constants (which are determined empirically) to improve effi-

ciency for particular ranges of m (see Tables 1 and 2 in [7]). This was

achieved by applying the rejection scheme only in the confined region

0 � x � 4 V. In light of this fact, a simple uniform technique,

without any constraints on the range of random values, is proposed

herein, which alleviates the deficiencies of the aforementioned

schemes and yields an excellent accuracy.

Fig. 1 Rejection method for generating random Nakagami-m deviates using
inverse polynomial function

Rejection method: The rejection method relies on the selection of a

comparison function (usually referred to as the hat function) p(x) that

has finite area and satisfies the inequality p(x) � f (x), where f (x) is the

original PDF. We propose the use of a second-order inverse polynomial

function which can be expressed as

pðxÞ ¼ A
ffiffiffiffi

V
p

V� B
ffiffiffiffi

V
p

xþ x2
� f ðxÞ ð2Þ

An illustrative graph of the two functions under investigation is shown in

Fig. 1. Taking into account that the maxima of (1) and (2) should

coincide, it is trivial to show that B ¼ 2
p

((2m2 1)/2m). The scaling

factor, A, is set such that the curves intersect at a single point, x ¼

xmax, without crossing. Thus

A ¼ V� B
ffiffiffiffi

V
p

xmax þ x2max
ffiffiffiffi

V
p f ðxmaxÞ ð3Þ

Solving x ! xmax

lim
d/dx( p(x)2 f (x)) ¼ 0 gives one real positive

solution at xmax ¼
p

V, which, when substituted into (3), yields

A ¼ ð2� BÞ 2m
m

GðmÞ e
�m ð4Þ

To generate independent samples from (2) we employ the widely known

inverse method [6]; firstly, the indefinite integral
Ð

p(x)dx of (2) is com-

puted, leading to the closed-form function

t ¼

2A tan�1

2x
ffiffiffiffi

V
p � B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� B2
p

0

B

@

1

C

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� B2
p ð5Þ

A random sample of x is generated via the inverse function of (5)

x ¼
ffiffiffiffi

V
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� B2
p

tan
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� B2
p

2A

 !

þ B

 !

ð6Þ

where t is a RV distributed uniformly in the range

2A tan�1 �B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� B2
p
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� B2
p ;

Ap
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� B2
p

2

6

6

4

3

7

7

5

It is worth noting that the above limits express, respectively, the

minimum and maximum of (5) and define also the efficiency of the

rejection method; in fact, their difference represents the area below

p(x). The generated sample x is accepted or rejected as a deviate

based on the difference between (1) and (2). A detailed description of

this well known algorithm can be found in [6].

Performance evaluation: By generating 220 random x samples using (6)

we were able to study the algorithm’s performance in depth. Fig. 2

shows the theoretical and simulated Nakagami-m PDFs for V ¼ 1; it

can be clearly seen that the achieved accuracy is noticeably high for

all values of m, validating the choice of the rejection scheme as a power-

ful and straightforward technique for generating random deviates. A

further study revealed that the maximum-likelihood (ML) estimators

for the two shape parameters of the Nakagami PDF (V and m) give

excellent agreement with theoretical values.
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Fig. 2 Theoretical and simulated Nakagami-m PDFs for arbitrary values of
m (V ¼ 1)

—— theoretical curve
x simulated curve

Efficiency: It can be easily inferred that the method’s efficiency is

directly related to the m value. For high values of m, the tails of (1)

decay slower than those of (2) and therefore the achieved efficiency

decreases. In any case though, the efficiency in the common range of

interest (0.5 � m � 2.5) lies above 65% (see Fig. 3).

Fig. 3 Efficiency of rejection method against m factor

Conclusions: The generation of independent Nakagami-m deviates has

been addressed by means of the rejection scheme based on an inverse

polynomial function. It has been shown that the method can be easily

applied for all values of the m parameter, yielding a high accuracy

along with a satisfactory efficiency.
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Abstract—In this paper, a novel adaptive detection scheme
for the case of Multiple-Input Multiple-Output (MIMO) Ricean
channels with two transmit and receive antenna elements is
presented. Our prime aim is to reduce the extensive complexity of
Maximum-Likelihood (ML) detectors by developing an adaptive
scheme which switches between a ML and a much simpler Zero-
Forcing (ZF) detector depending on the instantaneous spatial
conditions. The kernel of the adaptive detector (AD) is a hard-
decision criterion based on the condition number of the MIMO
correlation matrix. It is demonstrated that the proposed scheme
offers a remarkable reduction in terms of complexity along with
a satisfactory performance when specifically designed antenna
arrays are employed.

I. INTRODUCTION

The use of MIMO technology has become the new hot topic

in wireless communications since the breakthrough works of

Telatar [1] and Foschini [2] revealed the great advantages of

employing multiple antennas at both the transmitter (Tx) and

receiver (Rx). This technology can potentially enhance the

reliability and speed of current and future wireless systems

such as wireless local area networks (WLANs) or fourth

generation cellular systems (4G). However, when it comes

down to the feasibility of MIMO systems, a number of

practical issues arises with the most prominent being the

overall implementation complexity and cost.

Undoubtedly, the detection stage may be regarded as one of

the most significant aspects in real-time applications. At this

point, we recall that the optimal detector for spatial multiplex-

ing (SM) MIMO systems is the ML detector which minimizes

the error probability when all data vectors are equally likely

but, at the same time, it is computationally prohibitive [3]. One

way to alleviate this excessive complexity is to settle for sphere

decoding techniques, such as the Finke-Post algorithm pro-

posed in [4], whose complexity, under certain assumptions, is

polynomial in the problem size. In [5], it was shown that when

the Signal-to-Noise ratio (SNR) is high, the expected number

of operations required by the sphere decoder is roughly cubic

in the number of transmit antennas for a small problem size.

However, the authors in [6] proved that for any arbitrarily

fixed SNR, the overall complexity of sphere decoders does

not grow as a polynomial function of the problem size but

as an exponential function instead. What’s more, when ill-

conditioned channels occur, the computational complexity of

sphere decoding schemes increases to a significant extent [7].

On the other hand, different suboptimal techniques exist which

span from the linear ZF detector to nonlinear techniques such

as Ordered Successive Interference Cancellation (OSIC) [8];

the former is the simplest detection technique but causes a

systematic performance degradation and further is unable to

exploit all of the available diversity. Its main disadvantage lies

in its poor performance when channels with large condition

numbers occur.

The previous discussion implies that an AD which could

switch between a ML and a ZF scheme, depending on the

instantaneous channel conditions, is of paramount interest

since it will allow the efficient development of MIMO systems.

In this paper, an AD is devised for the general case of

Ricean MIMO channels where a dominant Line-of-Sight (LoS)

component or a specular wavefront impinges on the receive

array; we are particularly interested in the practical case of

dual1 Ricean MIMO systems. A similar concept of adaptive

MIMO transmission has been investigated by various research

groups during recent years (the interested readers are referred

to [9]–[11] among others) and essentially goes back to the

fundamental diversity-multiplexing tradeoff [12]. To the best

of the authors’ knowledge, the first MIMO adaptive scheme

for the receive side was recently presented in [13]. The

authors therein, however, considered only the common case of

Rayleigh channels and hence the formulation of a generalized

framework is infeasible; the proposed scheme relaxes the

constraint of Rayleigh fading to account for the commonly

experienced Ricean propagation and, consequently, it includes

the model of [13] as a special case.

The hard-decision criterion for the adaptive switching relies

on the condition number distribution whose exact determina-

tion requires knowledge of the theory of non-central complex

1Throughout the paper, the term dual will stand for MIMO systems with
two transmit and two receive antenna elements.
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Wishart matrices. On these grounds, we firstly derive a novel

closed-form formula for the cumulative distribution function

(CDF) of the MIMO condition number which is validated

via Monte-Carlo simulations. It will also be shown that the

AD preserves the robustness of the ML detector as well as

the simplicity of the ZF detector and therefore can be easily

implemented within most MIMO testbeds.

The remainder of the paper is organized as follows: In

Section II, the preliminaries of the theory of Wishart matrices

are outlined and a closed-form expression for the condition

number CDF distribution is derived. In Section III, the un-

derlying MIMO Ricean channel model used throughout the

paper is presented. In Section IV, we briefly address the main

characteristics of ZF and ML detections and subsequently

those of the proposed adaptive scheme. In Section V, the

validity of the analytical formula is tested and at a next stage

we assess the performance of the AD for two different LoS

geometrical configurations. Finally, Section VI concludes the

paper and summarizes the key findings.

A note on notation: We use upper and lower case boldface to

denote matrices and vectors, respectively while the symbol C

denote the set of complex-valued numbers. The nomenclature

∼ CN (X,Y) stands for a complex normally distributed

matrix with mean X and covariance Y. An (n × n) identity

matrix is expressed as In while the all-zeros (n×m) matrix as

0n×m. The symbols (·)H
and (·)−1

correspond to Hermitian

transposition and matrix inversion, respectively whereas ⊗ is

the Kronecker product. Finally, det(·) returns the determinant

of a matrix.

II. NON-CENTRAL WISHART MATRICES AND CONDITION

NUMBER DISTRIBUTION

As was previously mentioned, we are particularly interested

in dual non-central Wishart matrices. In such a case, a (2×2)
complex normal random matrix H is considered which is

distributed according to H ∼ CN (M,Σ ⊗ I2). In general,

M �= 02×2 whereas Σ = σ2I2 is the correlation matrix

containing the variances σ2 of the entries of H on its main

diagonal. The so-called MIMO correlation matrix is defined

as W = HHH and is said to follow the complex non-

central Wishart distribution with two degrees of freedom and

non-centrality matrix Ω = Σ−1MMH , commonly denoted

as W ∼ CW2(2,Σ,Ω). It should be emphasized that if

M = 02×2, so that Ω = 02×2, a complex central Wishart

matrix is eventually obtained, i.e. W ∼ CW2(2,Σ).

We now consider a scaled version of W, that is W̃ =
Σ−1W. Since W̃ is a (2 × 2) Hermitian matrix, it has two

real ordered eigenvalues (w1 > w2 > 0) where w1 is the

largest and w2 the smallest eigenvalue, respectively; the joint

eigenvalue PDF f(w1, w2) is given by [14]

f(w1, w2) = exp

[
−

2∑

i=1

(λi + wi)

]
0F̃1 (2;λ,w) (w1 − w2)

2

(1)

where λ = (λ1, λ2) contains the distinct real ordered eigenval-

ues of Ω and, in turn, w = (w1, w2); furthermore, 0F̃1(.; ., .) is

the complex hypergeometric function of two matrix arguments.

A convenient version of 0F̃1 (2;λ,w) for the dual case was

given by Gross and Richards [15] as

0F̃1 (2;λ,w) =
det (0F1 (1;wiλj))

(λ1 − λ2)(w1 − w2)
(2)

with Iq(·) denoting the q-th order modified Bessel function

of the first kind and 0F1(s + 1;x) is the hypergeometric

function [16]

0F1(s + 1;x) = s!x−s/2Is

(
2
√

x
)
. (3)

From a mathematical point of view, the condition number z
is defined as the ratio of the largest to the smallest eigenvalue

and therefore

z =
w1

w2
≥ 1. (4)

In [17], the authors showed that the probability density

function (PDF) of z, fz(z), can be written as a weighted

summation of polynomials according to (5), shown at the top

of the next page. In (5), Γ(n) denotes the Gamma function

which, for the case of an integer index, can be rewritten as

Γ(n) = (n−1)!. The corresponding CDF of z is then directly

written as

Fz(x) =

∫ x

1

fz(z)dz (6)

or, equivalently

Fz(x) =

∫ x

0

fz(z)dz −
∫ 1

0

fz(z)dz. (7)

By substituting (5) into (7) and taking into account the

Dominated Convergence Theorem which suggests that the

differentiation and integration can be interchanged we readily

obtain (8). For the integrals involved in (8), a closed-form

solution is available as [16, Eq. (3.194)]
∫ u

0

tµ

(1 + bt)ν
dt =

uµ+1

µ + 1
2F1(ν, µ + 1;µ + 2;−bu) (10)

where 2F1(α, β; γ;u) is the classical Gaussian hypergeometric

function defined in [16, Eq. (9.14)]. We can finally write the

CDF of the condition number according to (9), where

Ik,n
1 (x) =

(
xk+2

k + 2

)
2F1(k + n + 3, k + 2; k + 3;−x)

−
(

1

k + 2

)
2F1 (k + n + 3, k + 2; k + 3;−1) (11)

and

Ik,n
2 (x) =

(
xk+1

k + 1

)
2F1(k + n + 3, k + 1; k + 2;−x)

−
(

1

k + 1

)
2F1(k + n + 3, k + 1; k + 2;−1). (12)

Clearly, we have expressed the condition number distribu-

tion as a weighted summation of Gaussian hypergeometric

functions which can be efficiently evaluated and easily pro-

grammed.
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fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2

∞∑

k=0

∞∑

n=0

Γ(k + n + 3)zk

(k!n!)2(z + 1)k+n+3

[
λk

1λn
2 − λk

2λn
1

]
(5)

Fz(x) =
e−(λ1+λ2)

λ1 − λ2

∞∑

k=0

∞∑

n=0

Γ(k + n + 3)

(k!n!)2
[
λk

1λn
2 − λk

2λn
1

]

×
{∫ x

0

zk+1

(z + 1)k+n+3
−

∫ 1

0

zk+1

(z + 1)k+n+3
−

∫ x

0

zk

(z + 1)k+n+3
+

∫ 1

0

zk

(z + 1)k+n+3

}
(8)

Fz(x) =
e−(λ1+λ2)

λ1 − λ2

∞∑

k=0

∞∑

n=0

Γ(k + n + 3)

(k!n!)2
[
λk

1λn
2 − λk

2λn
1

] {
Ik,n
1 (x) − Ik,n

2 (x)
}

(9)

III. MIMO CHANNEL MODEL

In this section, the underlying MIMO channel model is

discussed for the case of LoS propagation. We consider a

memoryless, flat-fading MIMO system equipped with two

elements at both the Tx and the Rx. The complex input-output

relationship can be written for the discrete case as

y = Hx + n (13)

where x ∈ C
2×1 is the transmitted signal vector, y ∈ C

2×1 is

the noise-corrupted received signal and n ∈ C
2×1 corresponds

to the additive noise plus interference term. Moreover, the term

H ∈ C
2×2 is referred to as the channel transfer function matrix

and contains the complex responses between all antenna pairs.

In the case of Ricean fading, the channel matrix consists of a

spatially deterministic specular component HL and a randomly

distributed component HW which accounts for the scattered

signals. Then, the channel model reads as [18]

H =

√
K

K + 1
HL +

√
1

K + 1
HW (14)

where K denotes the Ricean K-factor expressing the ratio

of the free-space signal power to the power of the scattered

waves. The entries of HW are assumed to be independent

and identically distributed (i.i.d.) circular symmetric complex

Gaussian variables with zero mean and unity variance so that

their amplitudes follow the well-known Rayleigh distribution.

As far as the LoS component HL is concerned, when the

distance between the Tx and the Rx is small or the array

size is large, its entries represent spherical wavefronts in

the near-field region. Without loss of generality, we assume

isotropic radiators and the complex responses are of the

form e−jkdm,n/dm,n, where k = 2π/λ is the wavenumber

corresponding to the carrier wavelength λ and dm,n is the

distance between a receive element m ∈ {1, 2} and a transmit

element n ∈ {1, 2}.

Regarding the statistical characteristics of H, it can be

inferred that M =
√

K
K+1HL while Σ = 1

K+1I2. Then, it

is trivial to show that the Wishart matrix W = HHH follows

the distribution W ∼ CW2

(
2, 1

K+1I2,KHLH
H
L

)
and in turn

the associated LoS version of interest W̃ = (K + 1)W.

IV. DETECTION SCHEMES FOR SM SYSTEMS

In this section we review the two reference detection

schemes, namely ZF and ML detectors, and explore the con-

cept of the novel adaptive detection strategy. All the following

investigations are based on a SM-MIMO transmission scheme,

such as the widely employed V-BLAST [8], in which the data

is divided into a number of Nt blocks (equal to the number of

transmit elements) that are then simultaneously emitted. At the

Rx, the main goal is to differentiate the data blocks originating

from each of the transmit elements so that the transmitted

signals are efficiently recovered.

A. ZF detection

The simplest linear MIMO detector is the ZF receiver,

where the received signal vector y is multiplied by the Moore-

Penrose pseudoinverse H† of the channel matrix H to obtain

an estimated transmit signal vector x̂ZF as follows

x̂ZF = H†Hx + H†n. (15)

The computational complexity of ZF includes an exhaustive

search through the Q symbols in the constellation of the

modulation technique for Nt times and thus it is of the order

of O(QNt). However, the low complexity of the ZF receiver

comes at the expense of noise amplification which induces

irreducible errors. In fact, as the number of transmit and

receive antennas grows with no bound, the noise amplification

tends to infinity [19].

B. ML detection

On the other end, the optimal ML detector resides which

remains robust and yields the best performance among all

detection techniques [3]. Assuming equally likely, temporally

uncoded transmit symbols, this receiver chooses the vector t

that solves the following expression

x̂ML = arg min
t

‖y − Ht‖2
F . (16)
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The optimization is performed through an exhaustive search

over all possible vector symbols. This implies that the com-

plexity of the ML detector grows exponentially with the

number of transmit antennas i.e. O(QNt), making the scheme

infeasible for large antenna setups and constellation sizes.

C. Adaptive detection

Given the deficiencies of both detection strategies, we herein

propose a novel detector which can adaptively switch between

them in order to enhance the error performance and minimize

the computational cost. The AD uses ZF when the condition

number is below a predefined threshold defined and ML

detection otherwise. The key notion is to employ the ZF

detector only for well-conditioned channels (low condition

numbers) and let the ML deal with the ill-conditioned channels

(high condition numbers). We can then write

x̂AD =

{
x̂ZF if z ≤ κ
x̂ML if z > κ.

(17)

The threshold κ affects the complexity of the proposed

scheme; for κ = 1 we get x̂AD = x̂ML and complexity

equals that of ML detection whereas for κ → ∞ we have

x̂AD = x̂ZF. In general, the probability of ZF calls is

Prob {z ≤ κ} ≡ Fz(κ) = pκ and therefore the average AD

complexity g becomes

g = pκQNt︸ ︷︷ ︸
ZF calls

+ (1 − pκ)QNt

︸ ︷︷ ︸
ML calls

, 0 ≤ pκ ≤ 1. (18)

The percentage of complexity reduction, compared to that of

the ML detector, is

QNt − g

QNt
= pκ

(
1 − Nt

QNt−1

)
. (19)

Evidently, the reduction is more pronounced for greater sizes

of the symbol alphabet and a higher number of ZF calls.

V. SIMULATION RESULTS

In this section, the theoretical analysis presented in Sec-

tion II is validated through a set of simulations and subse-

quently the link-level performance of the AD is assessed in

terms of complexity and bit-error-rate (BER). In order to get

a deeper insight, we explore two different geometrical models

for the LoS component.

In particular, the first model belongs in the family of high-

rank (HR) configurations which, contrary to the common

belief, can deliver high MIMO capacities in the presence of

strong LoS components (large K-factors). This is achieved by

appropriate positioning of the antenna elements at both ends so

that subchannel orthogonality is attained, or, the eigenvalues

of Ω become equal. In such a case though, the (λ1 − λ2)
term in the denominator of (2) becomes zero making the

analysis invalid (division by zero). In this light, we consider

a suboptimum HR LoS channel model in order to guarantee

that λ1 �= λ2; the LoS matrix component then reads [17]

HL =

[
0.8384 + j0.5451 0.9411 + j0.3380
−0.5123 − j0.8588 0.8384 + j0.5451

]
(20)

Assuming a Ricean-K factor of 5 dB, the eigenvalues of Ω can

be easily computed and thereafter concatenated into the vector

λ = (7.0336, 5.6155). The second model is a conventional

architecture whose deterministic matrix reads

H′
L =

[
0.8384 + j0.5451 0.9411 + j0.3380
−0.5123 − j0.8588 0.8384 + j0.5451

]
(21)

and, likewise, λ
′ = (12.649, 0.0001). For both geometrical

models under investigation, 50,000 random Monte-Carlo re-

alizations of the channel matrix H were generated according

to (14). In Fig. 1, the simulated CDF curves of the condition

number are overlaid with the analytical results returned by (9).
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Fig. 1. Simulated and analytical CDFs of the condition number z of two
Ricean MIMO channel models (K = 5 dB).

The match between the simulated and theoretical results

is excellent in both cases, thereby indicating the validity of

the derived formulae. We also point out that for the HR

model a significant percentage of realizations is close to unity
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(well-conditioned channels) while, in contrary, the LR model

systematically yields a rather high condition number.

The next stage of our investigation comprises the assessment

of the AD advantages assuming a 16-QAM modulation type.

In [17], we found that when κ ≤ 6.46 the instantaneous

capacity of the HR channel is greater than the ergodic capacity

of a common (2×2) i.i.d. Rayleigh channel and hence we have

adopted a threshold of κ = 5 as a reasonable indicator of the

channel rank and multipath richness. In Fig. 2, the BER curves

are depicted for three different detection schemes, namely

ZF, ML and the proposed AD. As anticipated, higher K-

factors lead to significant performance enhancement for arrays

designed following the suboptimum HR model. On the other

hand, for low values of K-factor (below 0 dB) the channel

approaches the i.i.d. Rayleigh channel characteristics which

corresponds to a rich-scattering environment; in this region,

the BER curves are approximately identical in both systems

and the benefits of LoS-optimized arrays are minimized. In

the limit (K → ∞ dB) the LoS component vanishes and we

end up with a pure i.i.d Rayleigh channel where all multipath

components have equal amplitudes.

In order to get a better understanding, the main AD per-

formance characteristics are tabulated in Table I where the

radically different trends of the two configurations are readily

observable. More specifically, the application of the detection

scheme has a noticeable impact on the HR channel; in fact,

a significant percentage of ZF calls occur for all values of

the K-factor with a consequent complexity reduction of up to

83.35%. We also observe a steady increase of pκ as K gets

higher since the channel becomes full rank and delivers two

approximately equal eigenvalues. In the LR case pκ is always

below 29.43% and further is inversely proportional to the K-

factor. This phenomenon can be attributed to the ill-condition

of conventional architectures which degenerate eventually into

a rank-one channel due to the linear dependence of the LoS

rays’ phases (higher spatial correlation). Consequently, for

K ≥ 5 dB the number of ZF calls is too low to exploit the

adaptivity benefits and a complexity identical to that of a ML

detector inevitably takes place.

VI. CONCLUSION

In the present contribution, the potential of developing an

AD relying on the condition number of the MIMO correlation

matrix, has been investigated. On this basis, we firstly derived

a closed-form formula for the CDF of the condition number

of dual non-central complex Wishart matrices as a weighted

summation of Gaussian hypergeometric functions. The ana-

lytical CDF expression was firstly validated through extensive

Monte-Carlo simulations where it was clearly demonstrated

that the match between theory and simulation is very good.

At a next stage, the distribution of the condition number was

used to construct the hard-decision criterion of the proposed

AD which is appealing not only from a theoretical but also

from a practical perspective; most importantly, the dramatic

decrease in terms of complexity, compared to the sophisticated

ML detector, makes the model applicable to the majority of
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Fig. 2. BER curves for three different detection strategies based on a 16-
QAM modulation.

modern practical receivers. Further, when the antenna elements

are positioned in such a way to guarantee subchannel orthog-

onality, the attained performance was shown to be reasonably

good, especially for high values of the K-factor. On the

contrary, the scheme advantages diminish when it is applied to

a conventional antenna configuration since the channel matrix

is inherently rank deficient and therefore yields a deteriorating

performance with the increasing Ricean K-factor.
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TABLE I
AD PERFORMANCE CHARACTERISTICS FOR TWO DIFFERENT LOS CHANNEL MODELS AS A FUNCTION OF THE K-FACTOR.

Suboptimum HR LoS channel model LR LoS channel model

K–factor Analyt. pκ Simul. pκ Compl. reduction Analyt. pκ Simul. pκ Compl. reduction

K = −10 dB 0.2992 0.3150 26.18% 0.2943 0.3132 25.75%

K = −5 dB 0.3203 0.3380 28.02% 0.2801 0.3002 24.51%

K = 0 dB 0.4372 0.4403 38.25% 0.2052 0.2241 17.95%

K = 5 dB 0.7499 0.7501 65.61% 0.0536 0.064 4.69%

K = 10 dB 0.9526 0.9620 83.35% - - -

REFERENCES

[1] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” ATT-Bell

Labs Internal Technical Memorandum, June 1995.
[2] G. J. Foschini, “Layered space-time architecture for wireless communica-

tions in a fading environment when using multiple antennas,” Bell Labs

Technical Journal, vol. 1, no. 2, pp. 41–59, Autumn 1996.
[3] R. N. A. Paulraj and D. Gore, Introduction to Space-Time Wireless

Communications, Cambridge University Press, U.K. , 2003.
[4] U. Fincke and M. Phost, “Improved methods for calculating vectors of

short length in a lattice, including a complexity analysis,” Mathematics

of Computation, vol. 44, pp. 463–471, April 1985.
[5] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Expected

complexity,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp.
2806–2818, August 2005.

[6] J. Jalden and B. Ottersten, “On the complexity of sphere decoding in
digital communications,” IEEE Transactions on Signal Processing, vol.
53, no. 4, pp. 1474–1484, April 2005.

[7] H. Artes, D. Seethaler, and F. Hlawatsch, “Efficient detection algorithms
for MIMO channels: A geometrical approach to approximate ML De-
tection,” IEEE Transactions on Signal Processing, vol. 51, no. 11, pp.
2808–2820, November 2003.

[8] G. Golden, G. J. Foschini, R. Valenzuela, and P. Wolniasky, “Detection
algorithm and initial laboratory results using the V-BLAST space-time
communication architecture,” IEE Electronics Letters, vol. 35, pp. 14–
15, 1999.

[9] R. W. Heath and A. J. Paulraj, “Switching between diversity and multi-
plexing in MIMO systems,” IEEE Transactions on Communications, vol.
53, no. 6, pp. 962–968, June 2005.

[10] A. Forenza, M. R. McKay, A. Pandharipande, R. W. Heath, and I. B.
Collings, “Adaptive MIMO transmission for exploiting the capacity of
spatially correlated channels,” IEEE Transactions on Vehicular Technol-

ogy, vol. 56, no. 2, pp. 619–630, March 2007.
[11] A. Forenza, M. R. McKay, I. B. Collings and R. W. Heath, “Switching

between OSTBC and spatial multiplexing with linear receivers in spatially
correlated MIMO channels,” in Proc. Vehicular Technology Conference

(VTC), Melbourne, Australia, May 2006, pp. 1387–1391.

[12] L. Zheng and D. Tse, “Diversity and multiplexing: A fundamental
tradeoff in multiple-antenna channels,” IEEE Transactions on Information

Theory, vol. 49, no. 5, pp. 1073–1096, May 2003.
[13] J. Maurer, G. Matz, and D. Seethaler, “Low-complexity and full-diversity

MIMO detection based on condition number thresholding,” in Proc.

Acoustics, Speech and Signal Processing Conference (ICASSP), vol. 3,
Honolulu, Hawaii, April 2007, pp. 61–64.

[14] A. T. James, “Distributions of matrix variates and latent roots derived
from normal samples,” Ann. Math. Stat., vol. 35, no. 2, pp. 475–501, June
1964.

[15] K. I. Gross and D. S. Richards, “Total positivity, spherical series, and
hypergeometric functions of matrix argument,” Journal on Approximation

Theory, vol. 59, no. 2, pp. 224–246, 1989.
[16] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and

Products, Academic Press, Sixth ed., San Diego, 2000.
[17] M. Matthaiou, D. I. Laurenson, and C. -X. Wang, “On analytical

derivations of the eigenvalue and condition number distributions of
dual non-central Wishart matrices,” submitted to IEEE Transactions on

Wireless Communications, March 2008.
[18] F. Rashid-Farrokhi, A. Lozano, G. J. Foschini, and R. Valenzuela,

“Spectral efficiency of wireless systems with multiple transmit and
receive antennas,” in Proc. International Symposium on Personal, Indoor

and Mobile Radio Communications (PIMRC), vol. 1, London, U.K.,
September 2000, pp. 373–377.

[19] R. Bohnke, D. Wubben, V. Kuhn, and K. -D. Kammeyer, “Reduced
complexity MMSE detection for BLAST architectures,” in Proc. Global

Telecommunications Conference (GLOBECOM), vol. 4, San Francisco,
USA, December 2003, pp. 2258–2262.

[20] I. Sarris and A. R. Nix, “Design and performance assessment of
high-capacity MIMO architectures in the presence of a line-of-sight
component,” IEEE Transactions on Vehicular Technology, vol. 56, no.
4, pp. 2194–2202, July 2007.

[21] M. Matthaiou, D. I. Laurenson, and C. -X. Wang, “Capacity study of
vehicle-to-roadside MIMO channels with a line-of-sight component,” in
Proc. Wireless Communications and Networking Conference (WCNC),
Las Vegas, USA, March 2008, pp. 775–779.

166



References

[1] A. Ihler, “Kernel density estimation toolbox for MATLAB” [Online]. Available to down-
load athttp://ssg.mit.edu/ihler/code/kde.shtml.

[2] C. E. Shannon, “A mathematical theory of communications,” Bell Systems Technical Jour-
nal, vol. 27, 1948.

[3] S. K. Yong and C. C. Chong, “An overview of multi-gigabit wireless through millime-
ter wave technology: Potentials and technical challenges,” EURASIP Journal on Wireless
Communications and Networking, vol. 2007, pp. 1–10.

[4] B. Razavi, “Gadgets gab at 60 GHz,”IEEE Spectrum, vol. 45, no. 2, pp. 46–58, February
2008.

[5] G. J. Foschini, “Layered space-time architecture for wireless communications in a fading
environment when using multiple antennas,”Bell Labs Technical Journal, vol. 1, no. 2, pp.
41–59, Autumn 1996.

[6] I. E. Telatar, “Capacity of multiantenna Gaussian channels,” ATT-Bell Labs Internal Tech-
nical Memorandum, June 1995.

[7] IEEE 802.11 Working Group, “Part 11: Wireless LAN mediumaccess control (MAC) and
physical layer (PHY) specifications: High speed physical layer in the 5 GHz band,” IEEE
P802.11a/D7.0, August 1999.

[8] IEEE 802.11n Working Group, “Draft amendment to wireless LAN medium access control
(MAC) and physical layer (PHY) specifications: Enhancements for higher throughput,”
IEEE P802.11n/D3.02, January 2008.

[9] IEEE 802.16e Working group, “Local and metropolitan networks–Part 16: Air interface for
fixed broadband wireless access systems, Amendment 2: Physical and medium access con-
trol layers for combined fixed and mobile operation in licensed bands and corrigendum,”
December 2005.

[10] IEEE 802.16-2004 Working group, “Local and metropolitan networks–Part 16: Air inter-
face for fixed broadband wireless access systems,” October 2004.

[11] Z. Abichar, P. Yanlin, and J. M. Chang, “WiMAX: The emergence of wireless broadband,”
IEEE IT Professional, vol. 8, no. 4, pp. 44–48, August 2006.

[12] IEEE 802.11p Working Group, “Draft amendment to wireless LAN medium access con-
trol (MAC) and physical layer (PHY) specifications: Wireless access in vehicular environ-
ments,” IEEE P802.11p/D2.01, March 2007.

[13] J. Yin, T. ElBatt, G. Yeung, B. Ryu, and S. Habermas, “Performance evaluation of safety
applications over DSRC vehicular ad hoc networks,” inProc. of ACM International Work-
shop on Vehicular Ad hoc Networks (VANET), Philadelphia, USA, October 2004, pp. 1–9.

167



References

[14] M. Pedenet al., “World report on road traffic injury prevention,” World Health Organisa-
tion report, 2004.

[15] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-vehicle wireless communication proto-
cols for enhancing highway traffic safety,”IEEE Communications Magazine, vol. 44, no.
1, pp. 74–82, January 2006.

[16] http://www.cvisproject.org/.

[17] M. Matthaiou, D. I. Laurenson, and J. S. Thompson, “A MIMO channel model based on
the Nakagami-faded spatial eigenmodes,”IEEE Transactions on Antennas and Propaga-
tion, vol. 56, no. 5, pp. 1494–1497, May 2008.

[18] M. Matthaiou, D. I. Laurenson, and J. S. Thompson, “Stochastic modelling of MIMO
channels using the spatial eigenmodes,” inProc. IET Seminar on Smart Antennas and Co-
operative Communications, London, U.K., October 2007.

[19] M. Matthaiou and D. I. Laurenson, “Rejection method forgenerating Nakagami-m in-
dependent deviates,”IET Electronics Letters, vol. 43, no. 25, pp. 1474–1475, December
2007.

[20] M. Matthaiou, N. Razavi-Ghods, D. I. Laurenson, and S. Salous, “Characterization of
an indoor MIMO channel in frequency domain using the 3D-SAGEalgorithm,” in Proc.
International Conference on Communications (ICC), Glasgow, U.K., June 2007, pp. 5868–
5872.

[21] M. Matthaiou, D. I. Laurenson, and J. S. Thompson, “Detailed characterisation of an
indoor MIMO channel in the double directional spatial domain,” in press IET Microwaves,
Antennas & Propagation, 2008.

[22] M. Matthaiou, D. I. Laurenson, and C. -X. Wang, “Capacity study of vehicle-to-roadside
MIMO channels with a line-of-sight component,” inProc. Wireless Communications and
Networking Conference (WCNC), Las Vegas, USA, March 2008, pp. 775–779.

[23] M. Matthaiou, D. I. Laurenson, and C. -X. Wang, “On analytical derivations of the con-
dition number distributions of dual non-central Wishart matrices,” IEEE Transactions on
Wireless Communications, accepted for publication, October 2008.

[24] M. Matthaiou, D. I. Laurenson, and C. -X. Wang, “Reducedcomplexity detection for
Ricean MIMO channels based on condition number thresholding,” in Proc. International
Wireless Communications and Mobile Computing Conference (IWCMC), Crete, Greece,
August 2008, pp. 988–993.

[25] M. Matthaiou, Y. Kopsinis, D. I. Laurenson, and A. M. Sayeed, “Novel ergodic capacity
upper bound of dual-branch MIMO Ricean systems,”submitted to IEEE Transactions on
Communications, August 2008.

[26] M. Steinbauer, “A comprehensive transmission and channel model for directional radio
channels,” inCOST 259 TD (98) 027, Bern, Switzerland, 1998.

[27] L. P. Rice, “Radio transmission into buildings at 35 and150 MHz,”Bell Systems Technical
Journal, vol. 38, no. 1, pp. 197–210, 1959.

168



References

[28] D. Molkdar, “Review on radio propagation into and within buildings,” IEE Proceedings
on Microwaves, Antennas and Propagation, vol. 138, no. 1, pp. 61–73, February 1991.

[29] J. B. Andersen, T. S. Rappaport, and S. Yoshida, “Propagation measurements and mod-
els for wireless communications channels,”IEEE Communications Magazine, pp. 42-49,
January 1995.

[30] S. R. Saunders,Antennas and Propagation for Wireless Communication Systems, John
Wiley & Sons Ltd., West Sussex, U.K., 1999.

[31] B. Sclar, “Rayleigh fading channels in mobile digital communications systems Part I:
Characterization,”IEEE Communications Magazine, vol. 35, no. 7, pp. 90–100, July 1997.

[32] P. Smulders and L. M. Correia, “Characterization of propagation in 60 GHz radio chan-
nels,”Electronics and Communication Engineering Journal, vol. 9, no. 2, pp. 73–80, April
1997.

[33] G. Y. Delisle, J. P. Lefevre, M. Lecours, and J. Y. Chouinard, “Propagation loss prediction:
A comparative study with application to the mobile radio channel,” IEEE Transactions on
Vehicular Technology, vol. 34, no. 2, pp. 86–96, 1986.

[34] V. S. Abhayawardhana, I. J. Wassell, D. Crosby, M. P. Sellars, and M. G. Brown, “Com-
parison of empirical propagation path loss models for fixed wireless access systems,” in
Proc. Vehicular Technology Conference (VTC), vol. 1, Stockholm, Sweden, 2005, pp. 73–
77.

[35] M. C. Vanderveen,Estimation of Parametric Channel Models in Wireless Communica-
tions, Ph.D. dissertation, Stanford University, Stanford, USA,December 1977.

[36] J. G. Proakis,Digital Communications, McGraw-Hill Ed., 1995.

[37] M. Nakagami, “Them-distribution-A general formula of intensity distribution of rapid
fading,” Statistical Methods in Radio Wave Propagation, W. C. Hoffman Ed., pp. 3–36,
Oxford, U.K., 1960.

[38] W. R. Braun and U. Dersh, “A physical mobile radio channel,” IEEE Transactions on
Vehicular Technologyvol. 40, pp. 472–482, May 1991.

[39] P. J. Crepeau, “Uncoded and coded performance of MFSK and DPSK in Nakagami fading
channels,”IEEE Transactions on Communications, vol. 40, no. 3, pp. 487–493, March
1992.

[40] J. Winters, “On the capacity of radio communication systems with diversity in a Rayleigh
fading environment,”IEEE Journal on Selected Areas in Communications, vol. 5, no. 5,
pp. 871–878, June 1987.

[41] A. Paulraj and T. Kailath, “U. S. Patent #5345599: Increasing capacity in wireless
broadcast systems using distributed transmission/directional reception (DTDR),” Septem-
ber 1994.

[42] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: Afundamental tradeoff in
multiple-antenna channels,”IEEE Transactions on Information Theory, vol. 49, no. 5, pp.
1073–1096, May 2003.

169



References

[43] W. Weichselberger,Spatial Structure of Multiple Antenna Radio Channels: A Signal Pro-
cessing Viewpoint, Ph.D. dissertation, Technical University of Vienna, December 2003.

[44] M. Debbah and R. Müller, “MIMO channel modelling and the principle of maximum
entropy,” IEEE Transactions on Information Theory, vol. 51, no. 5, pp. 1667–1690, May
2005.

[45] R. G. Gallager,Information Theory and Reliable Communications, Wiley, 1968.

[46] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath,“Capacity limits of MIMO chan-
nels,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 5, pp. 684–702,
June 2003.

[47] A. Medles, S. Visuri, and D. T. M. Slock, “On MIMO capacity for various types of par-
tial channel knowledge at the transmitter,” inProc. Information Theory Workshop (ITW),
Sophia Antipolis, France, 2003, pp. 99–102.

[48] M. Steinbauer, A. F. Molisch, and E. Bonek, “The double directional radio channel,”IEEE
Antennas and Propagation Magazine, vol. 43, no. 4, pp. 51–53, August 2001.
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[105] D. Gesbert, H. Böelcskei, and A. Paulraj, “Outdoor MIMO wireless channels: Models
and performance prediction,”IEEE Transactions on Communications, vol. 50, no. 12, pp.
1926–1934, December 2002.

[106] D. Chizhik, G. Foschini, M. Gans, and R. Valenzuela, “Keyholes, correlations, and ca-
pacities of multielement transmit and receive antennas,”IEEE Transactions on Wireless
Communications, vol. 1, pp. 361–368, April 2002.

[107] Technical Specification Group Radio Access Networks,“Spatial channel model for mul-
tiple input multiple output (MIMO) simulations (Release 6),” Technical Report 3GPP TR.
25.996, V6.1.0., 3rd Generation Partnership Project, September 2003.

[108] 3GPP, R1-050586, “Wideband SCM,” 2005.

[109] L. Schumacher, L. T. Berger, and J. Ramiro-Moreno, “Recent advances in propagation
characterisation and multiple antenna processing in the 3GPP framework,” inProc. General
Assembly of International Union of Radio Science (URSI), Maastricht, The Netherlands,
August 2002.

[110] C. -X. Wang, X. Hong, H. Wu, and W. Xu, “Spatial temporalcorrelation properties of the
3GPP spatial channel model and the Kronecker MIMO channel model,” EURASIP Journal
on Wireless Communications and Networking, vol. 2007, 9 pages, 2007.

174



References

[111] V. Erceget al., “TGn Channel Models,” IEEE 802.11-03/940r4, May 2004, available at
http://www.wirelessworld.com/.

[112] K. Yu, Q. Li, and M. Ho, “Measurement ivestigation of tap and cluster angular spreads at
5.2 GHz,”IEEE Transactions on Antennas and Propagation, vol. 53, no. 7, pp. 2156–2160,
July 2005.

[113] http://www.ist-winner.org/.

[114] D. S. Baum, J. Hansen, G. Del Galdo, M. Milojevic, J. Salo, and P. Kyösti, “An in-
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