2,250 research outputs found

    A Concurrency Control Algorithm for an Open and Safe Nested Transaction Model

    Get PDF
    We present a concurrency control algorithm for an open and safe nested transaction model. We use prewrite operations in our model to increase the concurrency. Prewrite operations are modeled as subtransactions in the nested transaction tree. The subtransaction which initiates prewrite subtransactions are modelled as recovery point subtransaction. The recovery point subtransaction can release their locks before its ancestors commit. Thus, our model increases the concurrency in comparison to other nested transaction models. Our model is useful an environment of long-running transactions common in object oriented databases, computer aided design and in the software development proces

    Transactional Data Structures

    Get PDF

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability

    High-Performance In-Memory OLTP via Coroutine-to-Transaction

    Get PDF
    Data stalls are a major overhead in main-memory database engines due to the use of pointer-rich data structures. Lightweight coroutines ease the implementation of software prefetching to hide data stalls by overlapping computation and asynchronous data prefetching. Prior solutions, however, mainly focused on (1) individual components and operations and (2) intra-transaction batching that requires interface changes, breaking backward compatibility. It was not clear how they apply to a full database engine and how much end-to-end benefit they bring under various workloads. This thesis presents CoroBase, a main-memory database engine that tackles these challenges with a new coroutine-to-transaction paradigm. Coroutine-to-transaction models transactions as coroutines and thus enables inter-transaction batching, avoiding application changes but retaining the benefits of prefetching. We show that on a 48-core server, CoroBase can perform close to 2× better for read-intensive workloads and remain competitive for workloads that inherently do not benefit from software prefetching

    A distributed file service based on optimistic concurrency control

    Get PDF
    The design of a layered file service for the Amoeba Distributed System is discussed, on top of which various applications can easily be intplemented. The bottom layer is formed by the Amoeba Block Services, responsible for implementing stable storage and repficated, highly available disk blocks. The next layer is formed by the Amoeba File Service which provides version management and concurrency control for tree-structured files. On top of this layer, the appficafions, ranging from databases to source code control systems, determine the structure of the file trees and provide an interface to the users

    Exploiting method semantics in client cache consistency protocols for object-oriented databases

    Get PDF
    PhD ThesisData-shipping systems are commonly used in client-server object-oriented databases. This is in- tended to utilise clients' resources and improve scalability by allowing clients to run transactions locally after fetching the required database items from the database server. A consequence of this is that a database item can be cached at more than one client. This therefore raises issues regarding client cache consistency and concurrency control. A number of client cache consistency protocols have been studied, and some approaches to concurrency control for object-oriented datahases have been proposed. Existing client consistency protocols, however, do not consider method semantics in concurrency control. This study proposes a client cache consistency protocol where method se- mantic can be exploited in concurrency control. It identifies issues regarding the use of method semantics for the protocol and investigates the performance using simulation. The performance re- sults show that this can result in performance gains when compared to existing protocols. The study also shows the potential benefits of asynchronous version of the protoco

    First Class Copy & Paste

    Get PDF
    The Subtext project seeks to make programming fundamentally easier by altering the nature of programming languages and tools. This paper defines an operational semantics for an essential subset of the Subtext language. It also presents a fresh approach to the problems of mutable state, I/O, and concurrency.Inclusions reify copy & paste edits into persistent relationships that propagate changes from their source into their destination. Inclusions formulate a programming language in which there is no distinction between a programÂs representation and its execution. Like spreadsheets, programs are live executions within a persistent runtime, and programming is direct manipulation of these executions via a graphical user interface. There is no need to encode programs into source text.Mutation of state is effected by the computation of hypothetical recursive variants of the state, which can then be lifted into new versions of the state. Transactional concurrency is based upon queued single-threaded execution. Speculative execution of queued hypotheticals provides concurrency as a semantically transparent implementation optimization

    Estimating resource bounds for software transactions

    Get PDF
    We present an effect based static analysis to calculate upper and lower bounds on the memory resource consumption in a transactional calculus. The calculus is a concurrent variant of Featherweight Java extended by transactional constructs. The model supports nested and concurrent transactions. The analysis is compositional and takes into account implicit join synchronizations that arise when more than one thread perfom a join-synchronization when jointly committing a transaction. Central for a compositional and precise analysis is to capture as part of the effects a tree-representation of the future resource consumption and synchronization points (which we call joining commit trees). We show the soundness of the analysis

    Object-Oriented Programming Language Facilities for Concurrency Control

    Get PDF
    Concurrent object-oriented programming systems require support for concurrency control, to enforce consistent commitment of changes and to support program-initiated rollback after application-specific failures. We have explored three different concurrency control models -- atomic blocks, serializable transactions, and commit-serializable transactions -- as part of the MELD programming language. We present our designs, discuss certain programming problems and implementation issues, and compare our work on MELD to other concurrent object-based systems

    A speculative execution approach to provide semantically aware contention management for concurrent systems

    Get PDF
    PhD ThesisMost modern platforms offer ample potention for parallel execution of concurrent programs yet concurrency control is required to exploit parallelism while maintaining program correctness. Pessimistic con- currency control featuring blocking synchronization and mutual ex- clusion, has given way to transactional memory, which allows the composition of concurrent code in a manner more intuitive for the application programmer. An important component in any transactional memory technique however is the policy for resolving conflicts on shared data, commonly referred to as the contention management policy. In this thesis, a Universal Construction is described which provides contention management for software transactional memory. The technique differs from existing approaches given that multiple execution paths are explored speculatively and in parallel. In the resolution of conflicts by state space exploration, we demonstrate that both concur- rent conflicts and semantic conflicts can be solved, promoting multi- threaded program progression. We de ne a model of computation called Many Systems, which defines the execution of concurrent threads as a state space management problem. An implementation is then presented based on concepts from the model, and we extend the implementation to incorporate nested transactions. Results are provided which compare the performance of our approach with an established contention management policy, under varying degrees of concurrent and semantic conflicts. Finally, we provide performance results from a number of search strategies, when nested transactions are introduced
    • …
    corecore