research

Estimating resource bounds for software transactions

Abstract

We present an effect based static analysis to calculate upper and lower bounds on the memory resource consumption in a transactional calculus. The calculus is a concurrent variant of Featherweight Java extended by transactional constructs. The model supports nested and concurrent transactions. The analysis is compositional and takes into account implicit join synchronizations that arise when more than one thread perfom a join-synchronization when jointly committing a transaction. Central for a compositional and precise analysis is to capture as part of the effects a tree-representation of the future resource consumption and synchronization points (which we call joining commit trees). We show the soundness of the analysis

    Similar works