
High-Performance In-Memory OLTP via
Coroutine-to-Transaction

by

Yongjun He

B.Eng., Nanjing University, 2018

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Yongjun He 2021
SIMON FRASER UNIVERSITY

Summer 2021

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Yongjun He

Degree: Master of Science

Thesis title: High-Performance In-Memory OLTP via
Coroutine-to-Transaction

Committee: Chair: Saba Alimadadi
Assistant Professor, Computing Science

Tianzheng Wang
Supervisor
Assistant Professor, Computing Science

Jiannan Wang
Committee Member
Associate Professor, Computing Science

Keval Vora
Examiner
Assistant Professor, Computing Science

ii

Abstract

Data stalls are a major overhead in main-memory database engines due to the use of pointer-
rich data structures. Lightweight coroutines ease the implementation of software prefetching
to hide data stalls by overlapping computation and asynchronous data prefetching. Prior
solutions, however, mainly focused on (1) individual components and operations and (2)
intra-transaction batching that requires interface changes, breaking backward compatibility.
It was not clear how they apply to a full database engine and how much end-to-end benefit
they bring under various workloads.

This thesis presents CoroBase, a main-memory database engine that tackles these challenges
with a new coroutine-to-transaction paradigm. Coroutine-to-transaction models transac-
tions as coroutines and thus enables inter-transaction batching, avoiding application changes
but retaining the benefits of prefetching. We show that on a 48-core server, CoroBase can
perform close to 2× better for read-intensive workloads and remain competitive for work-
loads that inherently do not benefit from software prefetching.

Keywords: main-memory engines; coroutines; memory stalls; prefetching

iii

Dedication

To my family, friends, and mentors, who have always supported me.

iv

Acknowledgements

I would like to thank three outstanding computer scientists who shaped me from an un-
dergraduate student who was utterly ignorant of database research to a better researcher.
First, and most importantly, I am indebted to Tianzheng Wang who taught me everything
from C++ programming to carrying out world-class research. I summarized the principles
of the latter as facing the hardest problems and writing papers only for substantive orig-
inal research contribution and made it my personal maxim. Making the thesis would not
be possible without his unremitting efforts to create the best research environment for us
during the pandemic. I could not have asked for a better supervisor.

Second, I am deeply grateful to Jiannan Wang, who took me under his wing from the
day I arrived at SFU and introduced me to the exciting world of database research. From
such an intellectual leader in database research, I learned the importance of considering the
impact of my research within and outside of the database community. Jiannan has always
been approachable and is someone who I can just ping on Slack anytime. If I can get an
academic career, I hope to advise my students in Jiannan’s style.

Third, I am especially fortunate that Per-Åke Larson provided gracious support and
thoughtful guidance while I was a support researcher at Huawei Toronto Research Centre.
Collaboration on Taurus Database with him at the lead greatly enriched my understanding
and enthusiasm for cloud-native database research. His honest and insightful advice helped
me make multiple important decisions in my life and realize that I wanted to pursue an
academic career.

Special thanks to Ryan Shea, who I will always miss, for giving me the academic freedom
of exploration and collaboration in database research; to Qingqing Zhou and Kangnyeon
Kim for their valuable discussions; to Keval Vora and Saba Alimadadi for serving as the
examiner; and to the anonymous VLDB reviewers for their useful feedback.

I would also like to thank members of the SFU Data-Intensive Systems Lab: Kaisong
Huang, Jiacheng Lu, Mogami Nakayama (i.e., Miao Liu), Xiangpeng Hao, Ge Shi, Jianqiu
Zhang, and George He; members of the SFU Database System Lab: Pei Wang, Jinglin
Peng, Weiyuan Wu, Changbo Qu, Ruochen Jiang, Xi Yang, Xiaoying Wang, Danrui Qi, and
Lydia Zheng; members of SFU Network Modeling Lab: Carmen Zhang, Andy Sun, Chen
Song, Miao Zhang, and Linfeng Shen; fellow graduates: Yudong Luo, Jiaqi Tan, Anjian
Li, Jiansheng Ding, Yiqi Yan, Mohan Zhang, Zhiqin Chen, Zeshi Yang, Xiang Xu, Fuyang

v

Zhang and Yue Ruan; visiting students: Jing Nathan Yan, Baotong Lu, Jonghyeok Park,
Song Bian, Liang Zhao, and Yejia Liu; and my girlfriend Qinghong Xu. You gave me so
much intellectual and emotional support, which made my master’s experience in Vancouver
an unforgettable journey.

vi

Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vii

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Software Prefetching via Coroutines . 1
1.2 CoroBase . 3
1.3 Contributions and Thesis Organization . 4

2 Background 5
2.1 Software Prefetching . 5
2.2 Coroutines . 6
2.3 Coroutine-based Software Prefetching in Main-Memory Database Engines . 8

3 Design Principles 10

4 CoroBase Design 11
4.1 Overview . 11
4.2 Fully-Nested Coroutine-to-Transaction . 12
4.3 Two-Level Coroutine-to-Transaction . 14
4.4 Resource Management . 15
4.5 Concurrency Control and Synchronization 17
4.6 Discussions . 18

vii

5 Evaluation 20
5.1 Experimental Setup . 20
5.2 Benchmarks . 21
5.3 Sequential vs. Interleaved Execution . 22
5.4 Effect of Coroutine-to-Transaction . 23
5.5 Write and Scan Workloads . 25
5.6 Impact of Key Lengths and Data Sizes . 26
5.7 Impact of Skewed Accesses . 27
5.8 End-to-End TPC-C Results . 27
5.9 Impact on Transaction Latency . 29
5.10 Coroutine Frame Management . 30

6 Related Work 32

7 Conclusion 34

Bibliography 35

viii

List of Tables

Table 4.1 Changes needed to adopt coroutine-to-transaction in systems based on
thread-to-transaction. The key is to ensure isolation between transac-
tions on the same thread. 18

Table 5.1 Throughput (TPS) of original TPC-C which is not inherently memory-
bound. With two-level coroutines, CoroBase outperforms Naïve and
matches ERMIA and Hybrid. 28

ix

List of Figures

Figure 1.1 Data access interfaces and execution under (a) sequential execution
(no interleaving), (b) prior approaches that require multi-key inter-
faces, (c) CoroBase which hides data stalls and maintains backward
compatibility. 2

Figure 2.1 Stackless coroutine that directly uses the underlying thread’s stack.
States (e.g., local variables and return value) are maintained in dy-
namically allocated memory. 7

Figure 2.2 Execution models under thread-to-transaction. 9

Figure 4.1 CoroBase overview. Indexes map keys to unique record IDs (RIDs).
Versions are maintained by version chains. Each worker thread runs
a scheduler that 1 starts/resumes transactions (coroutines). 2 A
transaction may invoke other coroutines that implement specific op-
erations, which may suspend but 3 return control directly to the
scheduler, which can 4 resume a different transaction. 12

Figure 5.1 Index probing throughput with hyperthreading disabled (left) and
enabled (right). Fully-nested coroutines are ∼30% slower than AMAC.
Flattened coroutines (CORO-MK) reduce the gap to 8–10% under high
concurrency. 23

Figure 5.2 Throughput of a read-only YCSB workload (10 reads per trans-
action) without (left) and with (right) hyperthreading. CoroBase
matches the performance of multi-key variants but without requir-
ing application changes. 24

Figure 5.3 YCSB read-only performance normalized to Naïve under 48 threads.
CoroBase also benefits very short transactions (1–4 operations) while
multi-key based approaches inherently cannot under thread-to-transaction. 24

Figure 5.4 Throughput of update-only YCSB with 10 blind writes per transac-
tion (a–b), and a mixed workload (c–d). 25

Figure 5.5 Throughput of a YCSB scan workload. The benefits of prefetching
diminish with larger scan sizes: more records can be directly retrieved
in leaf nodes using B-link-tree structures. 26

x

Figure 5.6 Throughput of read-only YCSB (10 reads per transaction) under
varying key/value sizes and 96 hyperthreads. 26

Figure 5.7 YCSB read-only (10 reads per transaction) performance normalized
to Naïve under 96 hyperthreads and varying table sizes. 27

Figure 5.8 YCSB throughput with 96 hyperthreads and varying skewness (larger
theta indicates more skewed access). 28

Figure 5.9 Microarchitecture analysis for YCSB, TPC-C and TPC-CH work-
loads. CoroBase reduces memory stall cycles under all workloads,
especially the read-dominant ones. 29

Figure 5.10 Throughput of the read-only TPC-CR workload. 29
Figure 5.11 TPC-CH scalability (left) and throughput with 48 threads normal-

ized to Naïve (right). CoroBase reaps more benefits from prefetching
with more read operations. 30

Figure 5.12 Average transaction latency under varying batch sizes (BS=1–16)
with asynchronous commit. The end-to-end impact is expected to
be small with group/pipelined commit. 30

xi

Chapter 1

Introduction1

Modern main-memory database engines [23, 11, 56, 25, 60, 31, 26, 34] use memory-optimized
data structures [30, 2, 32, 37] to offer high performance on multicore CPUs. Many such
data structures rely on pointer chasing [35] which can stall the CPU upon cache misses. For
example, in Figure 1.1(a), to execute two SELECT (get) queries, the engine may traverse
a tree, and if a needed tree node is not cache-resident, dereferencing a pointer to it stalls
the CPU (dotted box in the figure) to fetch the node from memory. Computation (solid
box) would not resume until data is in the cache. With the wide speed gap between CPU
and memory, memory accesses have become a major overhead [4, 36]. The emergence of
capacious but slower persistent memory [10] is further widening this gap.

Modern processors allow multiple outstanding cache misses and provide prefetch in-
structions [19] for software to explicitly bring data from memory to CPU caches. This gave
rise to software prefetching techniques [5, 27, 22, 45, 46, 40, 35] that hide memory access
latency by overlapping data fetching and computation, alleviating pointer chasing overhead.
Most of these techniques, however, require hand-crafting asynchronous/pipelined algorithms
or state machines to be able to suspend/resume execution as needed. This is a difficult and
error-prone process; the resulted code often deviates a lot from the original code, making it
hard to maintain [22].

1.1 Software Prefetching via Coroutines

With the recent standardization in C++20 [20], coroutines greatly ease the implementation
of software prefetching. Coroutines [39] are functions that can suspend voluntarily and be
resumed later. Functions that involve pointer chasing can be written as coroutines which are
executed (interleaved) in batches. Before dereferencing a pointer in coroutine t1, the thread
issues a prefetch followed by a suspend to pause t1 and switches to another coroutine t2,
overlapping data fetching in t1 and computation in t2.

1This thesis is based on materials appeared in VLDB [17].

1

transaction:
v1 = get(k1)
v2 = get(k2)
if v1 == 0:

put(k3, 10)

(a) Sequential

transaction:
v1, v2 =

multi_get(k1, k2)
if v1 == 0:

put(k3, 10)

(b) Multi-get

transaction:
v1 = get(k1)
v2 = get(k2)
if v1 == 0:

put(k3, 10)

(c) CoroBase

T1 T1 T1 . . .T2 T1 T1 T1 T1 T1 T1
T2 T2 T2

. . .
T1 T1 . . .

T2 T2
T2Time

Figure 1.1: Data access interfaces and execution under (a) sequential execution (no inter-
leaving), (b) prior approaches that require multi-key interfaces, (c) CoroBase which hides
data stalls and maintains backward compatibility.

Compared to earlier approaches [5, 27], coroutines only require prefetch/suspend be
inserted into sequential code, greatly simplifying implementation while delivering high per-
formance, as the switching overhead can be cheaper than a last-level cache miss [22]. How-
ever, adopting software prefetching remains challenging.

First, existing approaches typically use intra-transaction batching which mandates multi-
key interfaces that can break backward compatibility. For example, in Figure 1.1(b) an
application2 uses multi_get to retrieve a batch of records at once in a transaction. Cache
misses caused by probing k1 (k2) in a tree are hidden behind the computation part of
probing k2 (k1). While intra-transaction batching is a natural fit for some operators (e.g.,
IN-predicate queries [46, 45]), it is not always directly applicable. Changing the applica-
tion is not always feasible and may not achieve the desired improvement as depending
requests need to be issued in separate batches, limiting interleaving opportunities. Short
(or even single-record) transactions also cannot benefit much due to the lack of interleaving
opportunity. It would be desirable to allow batching operations across transactions, i.e.,
inter-transaction batching.

Second, prior work provided only piece-wise solutions, focusing on optimizing individual
database operations (e.g., index traversal [22] and hash join [5, 45]). Despite the significant
improvement (e.g., up to 3× faster for tree probing [22]), it was not clear how much overall
improvement one can expect when these techniques are applied in a full database engine
that involves various components.

Overall, these issues lead to two key questions:

• How should a database engine adopt coroutine-based software prefetching, preferably
without requiring application changes?

2The “application” may be another database system component or an end-user application that uses the
record access interfaces provided by the database engine.

2

• How much end-to-end benefit can software prefetching bring to a database engine under
realistic workloads?

1.2 CoroBase

To answer these questions, we propose and evaluate CoroBase, a multi-version, main-
memory database engine that uses coroutines to hide data stalls. The crux of CoroBase is
a simple but effective coroutine-to-transaction paradigm that models transactions as corou-
tines, to enable inter-transaction batching and maintain backward compatibility. Worker
threads receive transaction requests and switch among transactions (rather than requests
within a transaction) without requiring intra-transaction batching or multi-key interfaces.
As Figure 1.1(c) shows, the application remains unchanged as batching and interleaving
happen at the transaction level.

Coroutine-to-transaction can be easily adopted to hide data stalls in different database
engine components and can even work together with multi-key based approaches. In par-
ticular, in multi-version systems versions of data records are typically chained using linked
lists [63], traversing which constitutes another main source of data stalls, in addition to
index traversals. CoroBase transparently suspends and resumes transactions upon pointer
dereferences during version chain traversals. This way, CoroBase “coroutinizes” the full data
access paths to provide an end-to-end solution.

To explore how coroutine-to-transaction impacts common design principles of main-
memory database systems, instead of building CoroBase from scratch, we base it on ER-
MIA [25], an open-source, multi-version main-memory database engine. This allows us to
devise an end-to-end solution and explore how easy (or hard) it is to adopt coroutine-
to-transaction in an existing engine, which we expect to be a common starting point for
most practitioners. In this context, we discuss solutions to issues brought by coroutine-to-
transaction, such as (nested) coroutine switching overhead, higher latency and more complex
resource management in later chapters.

On a 48-core server, our evaluation results corroborate with prior work and show that
software prefetching is mainly (unsurprisingly) beneficial to read-dominant workloads, with
close to 2× improvement over highly-optimized baselines. For write-intensive workloads, we
find mixed results with up to 45% improvement depending on access patterns. Importantly,
CoroBase retains competitive performance for workloads that inherently do not benefit from
prefetching, thanks to its low-overhead coroutine design.

Note that our goal is not to outperform prior work, but to (1) effectively adopt software
prefetching in a database engine without necessitating new interfaces, and (2) understand
its end-to-end benefits. Hand-crafted techniques usually present the performance upper
bound; CoroBase strikes a balance between performance, programmability and backward
compatibility.

3

1.3 Contributions and Thesis Organization

We make four contributions. 1 We highlight the challenges for adopting software prefetching
in main-memory database engines. 2 We propose a new execution model, coroutine-to-
transaction, to enable inter-transaction batching and avoid interface changes while retaining
the benefits of prefetching. 3 We build CoroBase, a main-memory multi-version database
engine that uses coroutine-to-transaction to hide data stalls during index and version chain
traversals. We explore the design tradeoffs by describing our experience of transforming an
existing engine to use coroutine-to-transaction. 4 We conduct a comprehensive evaluation of
CoroBase to quantify the end-to-end effect of prefetching under various workloads. CoroBase
is open-source at https://github.com/sfu-dis/corobase.

Next, we give the necessary background in Chapter 2. Chapters 3– 4 then present the
design principles and details of CoroBase. Chapter 5 quantifies the end-to-end benefits of
software prefetching. We cover related work in Chapter 6 and conclude in Chapter 7.

4

https://github.com/sfu-dis/corobase

Chapter 2

Background

This chapter gives the necessary background on software prefetching techniques, coroutines
and main-memory database engines to motivate our work.

2.1 Software Prefetching

Although modern CPUs use sophisticated hardware prefetching mechanisms, they are not
effective on reducing pointer-chasing overheads, due to the irregular access patterns in
pointer-intensive data structures. For instance, when traversing a tree, it is difficult for
hardware to predict and prefetch correctly the node which is going to be accessed next,
until the node is needed right away.

Basic Idea. Software prefetching techniques [27, 5, 45, 22] use workload semantics to
issue prefetch instructions [19] to explicitly bring data into CPU caches. Worker threads
handle requests (e.g., tree search) in batches. To access data (e.g., a tree node) in request t1
which may incur a cache miss, the thread issues a prefetch and switches to another request
t2, and repeats this process. While the data needed by t1 is being fetched from memory
to CPU cache, the worker thread handles t2, which may further cause the thread to issue
prefetch and switch to another request. By the time the worker thread switches back to
t1, the hope is that the needed data is (already and still) cache-resident. The thread then
picks up at where it left for t1, dereferences the pointer to the prefetched data and continues
executing t1 until the next possible cache miss upon which a prefetch will be issued. It
is important that the switching mechanism and representation of requests are cheap and
lightweight enough to achieve a net gain.

Hand-Crafted Approaches. The mechanism we just described fits naturally with
many loop-based operations. Group prefetching and software pipelined prefetching [5] over-
lap multiple hash table lookups to accelerate hash joins. After a prefetch is issued, the
control flow switches to execute the computation stage of another operation. Asynchronous
memory access chaining (AMAC) [27] is a general approach that allows one to transform a
heterogeneous set of operations into state machines to facilitate switching between opera-

5

tions upon cache misses. A notable drawback of these approaches is they require developers
hand-craft algorithms. The resulted code is typically not intuitive to understand and hard to
maintain. This limits their application to simple or individual data structures and operations
(e.g., tree traversal). Recent approaches tackle this challenge using lightweight coroutines,
described next.

2.2 Coroutines

Coroutines [8] are generalizations of functions with two special characteristics: (1) Dur-
ing the execution between invoke and return, a coroutine can suspend and be resumed at
manually defined points. (2) Each coroutine preserves local variables until it is destroyed.
Traditional stackful coroutines [39] use separate runtime stacks to keep track of local vari-
ables and function calls. They have been available as third-party libraries [52, 38] and are
convenient to use, but exhibit high overhead that is greater than the cost of a cache miss [22],
defeating the purpose of hiding memory stalls.

Stackless Coroutines. Recent stackless coroutines standardized in C++20 [20] (which
is our focus) exhibit low overhead in construction and context switching1 (cheaper than a
last-level cache miss). They do not own stacks and run on the call stack of the underlying
thread. Invoking a coroutine is similar to invoking a normal function, but its states (e.g.,
local variables that live across suspension points) are kept in dynamically allocated mem-
ory (coroutine frames) that survive suspend/resume cycles. Figure 2.1 shows an example
in C++20: any function that uses coroutine keywords (e.g., co_await, co_return) is a
coroutine. A coroutine returns a promise_type structure that allows querying the corou-
tine’s states, such as whether it is completed and its return value. The co_await keyword
operates on a promise_type and is translated by the compiler into a code block that can
save the states in a coroutine frame and pop the call stack frame. The suspend_always

object is an instance of promise_type that has no logic and suspends unconditionally. The
co_return keyword matches the syntax of return, but instead of returning an rvalue, it
stores the returned value into a coroutine frame. As Figure 2.1 shows, upon starting (step
1) or resuming (step 3) a coroutine, a frame is created and pushed onto the stack. At un-
conditional suspension points (steps 2 and 4), the frame is popped and control is returned
to the caller. Since the coroutine frame lives on the heap, coroutine states are still retained
after the stack frame is popped. Coroutine frames need to be explicitly destroyed after the
coroutine finishes execution.

Scheduling. Each worker thread essentially runs a scheduler that keeps switching be-
tween coroutines, such as the one below:

1Not to be confused with context switches at the OS level. In main-memory systems, threads are typically
pinned to mitigate the impact of OS scheduling. Throughout this thesis “contexts” refers to coroutines/-
transactions that are pure user-space constructs.

6

promise<void> foo() {

co_await suspend_always();

co_await suspend_always();
. . .

co_return;
}

code segment 1 Segment 1

Other frames

Call stack status:

code segment 2

Coroutine frame (heap):

Segment 2

Other frames

1

2

3

4

1 2

3 4

Free

Free

Pop

Pop

Other frames

Push

Other frames

Figure 2.1: Stackless coroutine that directly uses the underlying thread’s stack. States (e.g.,
local variables and return value) are maintained in dynamically allocated memory.

1. // construct coroutines
2. for i = 0 to batch_size - 1:
3. coroutine_promises[i] = foo(...);
4. // switch between active coroutines
5. while any(coroutine_promises, x: not x.done()):
6. for i = 0 to batch_size - 1:
7. if not coroutine_promises[i].done():
8. coroutine_promises[i].resume()

After creating a batch of operations (coroutines) at lines 1–2, it invokes and switches among
coroutines (lines 4–8). The batch_size parameter determines the number of inflight mem-
ory fetches and how effectively memory stalls can be hidden: once a coroutine suspends,
it is not resumed before the other batch_size-1 coroutines are examined. Prior work has
shown that the optimal batch_size is roughly the number of outstanding memory accesses
that can be supported by the CPU (10 in current Intel x86 processors) [45].

Nested Stackless Coroutines. Similar to “normal” functions, a coroutine may invoke,
suspend and resume another coroutine using co_await, forming a chain of nested coroutines.
By default, when a stackless coroutine suspends, control is returned to its caller. Real-
world systems often employ deep function calls for high-level operations to modularize their
implementation. To support interleaving at the operation level in database engines (e.g.,
search), a mechanism that allows control to be returned to the top-level (i.e., the scheduler)
is necessary. This is typically done by returning control level-by-level, from the lowest-level
suspending coroutine to the scheduler, through every stack frame. Note that the number of
frames preceding the suspending coroutine on the stack may not be the same as its position
in the call chain. For the first suspend in the coroutine chain, the entire chain is on the
stack. For subsequent suspends, however, the stack frames start from the last suspended
coroutine instead of the top level one, since it is directly resumed by the scheduler. When
a coroutine c finishes execution, the scheduler resumes execution of c’s parent coroutine.

7

As a result, a sequential program with nested function calls can be easily transformed into
nested coroutine calls by adding prefetch and suspend statements.

This approach can be easily used to realize coroutine-to-transaction. However, doing so
can bring non-trivial overhead associated with scheduling and maintaining coroutine states;
we discuss details in later chapters.

2.3 Coroutine-based Software Prefetching in Main-Memory
Database Engines

Modern main-memory database systems eliminate I/O operations from the critical path.
This allows worker threads to execute each transaction without any interruptions.

Modern Main-Memory Database Systems. Bigger and cheaper main memory and
CPUs with an increasing number of cores turn main-memory database systems into reality.
These systems are not bound by disk I/O, so they abandon techniques like oversubscrip-
tion and software speculation used to overlap I/O and CPU work in traditional disk-based
database systems. Instead, they take advantage of memory-optimized designs and the new
commodity hardware. Memory-optimized engines adopt the following designs: (1) latch-
free data structures and optimistic concurrency control to avoid blocking and OS context
switches; (2) cache-conscious indexes to reduce cache misses; and (3) query compilation to
minimize interpretation overhead. Modern CPU features, including hyperthreading, hard-
ware prefetching, and turbo boost, have become popular acceleration strategies.

Execution Model. Recent studies have shown that data stalls are a major overhead in
both OLTP and OLAP workloads [54, 55]. In this thesis, we mainly focus on OLTP work-
loads. With I/O off the critical path, thread-to-transaction has been the dominating exe-
cution model in main-memory environments for transaction execution. Each worker thread
executes transactions one by one without context switching to handle additional transac-
tions unless the current transaction concluded (i.e., committed or aborted). Figure 2.2(a)
shows an example of worker threads executing transactions under this model. To read a
record, the worker thread sequentially executes the corresponding functions that implement
the needed functionality, including (1) probing an index to learn about the physical address
of the target record, and (2) fetching the record from the address. After all the operations
of the current transaction (Transaction 1 in the figure) are finished, the worker thread
continues to serve the next transaction.

Software Prefetching under Thread-to-Transaction. With nested coroutines, it
is straightforward to transform individual operations to use software prefetching, by adding
suspend points into existing sequential code. However, under thread-to-transaction, once
a thread starts to work on a transaction, it cannot switch to another. As a result, the
caller of these operations now essentially runs a scheduler that switches between individual
operations, i.e., using intra-transaction batching. In the case of a transaction reading records,

8

(b) Interleaved execution with multi-key interfaces

Worker thread N

Worker thread 1

Transaction 1

Transaction 2

. . .

MultiGet (A, B, C)

. . .

Worker thread N

Worker thread 1

Transaction 1

Transaction 2

. . .

Read (A)
Read(key)

probe_index
get_record

(a) Sequential execution

Multi-key interfaces
(insert/get/scan/update):

MultiGet(keys) {
for each key {

resume(probe_index)
resume(get_record)

}
}

Figure 2.2: Execution models under thread-to-transaction.

for example, in Figure 2.2(b), the transaction calls a multi_get function that accepts a set
of keys as its parameter and runs a scheduler that switches between coroutines that do the
heavylifting of record access and may suspend upon cache misses. All these actions happen
in the context of a transaction; another transaction can only be started after the current
transaction being handled concludes, limiting inter-transaction batching and necessitating
interface changes that may break backward compatibility.

9

Chapter 3

Design Principles

We summarize four desirable properties and principles that should be followed when de-
signing coroutine-based database engines:

• Maintain Backward Compatibility. The engine should allow applications to continue
to use single-key interfaces. Interleaving should be enabled within the engine without user
intervention.

• Low Context Switching Overhead. It should be at least lower than the cost of a
last-level cache miss to warrant any end-to-end performance improvement in most cases.
For workloads that do not have enough data stalls to benefit from prefetching, having
low switching overhead can help retain competitive performance.

• Maximize Batching Opportunities. The batching mechanism should allow both
intra- and inter-transaction interleaving. This would allow arbitrary query to benefit
from prefetching, in addition to operators that naturally fits the batching paradigm.

• Easy Implementation. A salient feature of coroutine is it only needs simple changes
to sequential code base; a new design must retain this property for maintainability and
programmability.

10

Chapter 4

CoroBase Design

Now we describe the design of CoroBase, a multi-version main-memory database engine
based on the coroutine-to-transaction execution model. We do so by taking an existing
memory-optimized database engine (ERMIA [25]) and transforming it to use coroutine-to-
transaction. As we mentioned in Chapter 1, this allows us to contrast and highlight the fea-
sibility and potential of coroutine-to-transaction, and reason about the programming effort
required to adopt coroutine-to-transaction. However, CoroBase and coroutine-to-transaction
can be applied to other systems.

4.1 Overview

CoroBase organizes data and controls data version visibility in ways similar to other main-
memory multi-version systems [25, 34, 31, 11, 63] (in our specific case, ERMIA [25]). Fig-
ure 4.1 gives the overall design of CoroBase. For each record, CoroBase maintains multiple
versions that are chained together in a linked list, with the latest version (ordered by logical
timestamps) as the list head. This is a common design in multi-version systems [63]. Each
record is uniquely identified by a logical record ID (RID) that never changes throughout the
lifetime of the record, in contrast to physical RIDs in traditional disk-based systems [48]. For
each table, we maintain an indirection array [25, 51] that maps RID to the virtual memory
pointer to the record’s latest version which further points to the next older version, and
so on. Indexes map keys to RIDs, instead of pointers to record versions. A main benefit of
this approach is that record updates (i.e., creation of new versions) or movement (e.g., from
memory to storage) will not always mandate secondary index updates. Same as ERMIA,
CoroBase uses Masstree [37] for indexing and all data accesses are done through indexes,
however, the choice of index types is orthogonal to the techniques being proposed here.

With the indirection and version chain design, accessing a record is a two-step process:
the worker thread first traverses an index of the underlying table, and then consults the
indirection array (using the RID found in the leaf node as index) to find the actual record
and suitable version by traversing the version chain of that record. We defer details on

11

Worker thread N

Worker thread 1

Transaction 1
(coroutine)

Scheduler

Transaction 2
(coroutine)

…

12

Read (A)
. . .

Read(key) {
. . .

. . .
}

Probe index
Get version

4

Record access
coroutines:

Indexes

Where?

V2 V1

Version chains

V2 V1

RID

0

1
…

Indirection array

RIDs

3

…

V0

V0

Figure 4.1: CoroBase overview. Indexes map keys to unique record IDs (RIDs). Versions are
maintained by version chains. Each worker thread runs a scheduler that 1 starts/resumes
transactions (coroutines). 2 A transaction may invoke other coroutines that implement
specific operations, which may suspend but 3 return control directly to the scheduler,
which can 4 resume a different transaction.

determining version visibility to later sections when we discuss concurrency control. Under
thread-to-transaction, this two-step process is done synchronously by the worker thread,
with record access procedures implemented as multiple levels of functions. Under coroutine-
to-transaction, record access procedures are implemented as coroutines, instead of “normal”
functions. As Figure 4.1 shows, each worker thread independently runs a scheduler that
switches between a batch of transactions (coroutines). The key to realize this model is
transforming nested functions on the data access path into coroutines, which we elaborate
next.

4.2 Fully-Nested Coroutine-to-Transaction

To support common data access operations (insert/read/update/scan/delete), a straight-
forward way is to transform function call chains that may cause cache misses into nested
stackless coroutines outlined in Section 2.2. Functions that will not incur cache misses may
be kept as “normal” functions. For index, we follow prior work [22] to add suspend state-
ments (suspend_always in C++20) as needed after each prefetch, which can be identified
easily as Masstree already prefetches nodes.1 We use co_await to invoke other coroutines
and replace return with co_return. For version chain traversal, we issue prefetch and
suspend before dereferencing a linked list node pointer. These changes are straightforward
and only require inserting prefetch/suspend statements and replacing keywords. Our im-

1Based on https://github.com/kohler/masstree-beta.

12

https://github.com/kohler/masstree-beta

Algorithm 1 Scheduler for coroutine-to-transaction.

def s chedu l e r (batch_size) :
while not shutdown :

[T] = get_transact ion_reques t s ()
enter_epoch ()
while done < batch_size :

done = 0
for i = 0 to batch_size − 1 :

if T[i] . is_done :
++done

else
T[i] . resume ()

exit_epoch ()

plementation defines macros to automatically convert between function and coroutine ver-
sions of the code, easing code maintainability.2 Thus, a call chain of N functions is replaced
by an (up to) N-level coroutine chain. Coroutines at any level may voluntarily suspend,
after which control goes back to the scheduler which resumes the next transaction that is
not done yet; control then goes to the newly resumed transaction.

Figure 4.1 shows how control flows end-to-end. When a new transaction is created,
CoroBase starts to execute it in a coroutine (step 1 in the figure). Subsequent operations
(e.g., read/write/scan) are further handled in the context of their corresponding transaction
coroutine (step 2). All the operations are also coroutines that may suspend and get resumed.
For example, in Figure 4.1, the Read coroutine may further use other coroutines to traverse
a tree index structure to find the requested record’s RID, followed by invoking yet another
coroutine that traverses the version chain to retrieve the desirable version. Upon a possible
cache miss, the executing coroutine (e.g., index traversal as part of a Read call) issues a
prefetch to bring the needed memory to CPU caches asynchronously, followed by a suspend

which returns control directly to the scheduler (step 3). This allows the scheduler to further
resume another transaction (step 4), hoping to overlap computation and data fetching.
After a transaction commits or aborts, its coroutine structures are destroyed and control is
returned to the scheduler which may resume another active transaction. Finally, after every
transaction in the batch is concluded, the scheduler starts a new batch of transactions.

Coroutine-to-transaction moves the responsibility of batching from the user API level to
the engine level, by grouping transactions. Each worker thread runs a coroutine scheduler
which accepts and handles transaction requests. In CoroBase we use a round-robin sched-

2For example, the record read function/coroutine can be found at: https://github.com/sfu-dis/
corobase/blob/v1.0/ermia.cc#L145. The AWAIT and PROMISE macros transparently convert between corou-
tine and function versions.

13

https://github.com/sfu-dis/corobase/blob/v1.0/ermia.cc#L145
https://github.com/sfu-dis/corobase/blob/v1.0/ermia.cc#L145

uler shown in Algorithm 1. The scheduler function keeps batching and switching between
incoming transactions (lines 7–11). It loops over each batch to execute transactions. When
a query in a transaction suspends, control returns to the scheduler which then resumes the
next in-progress transaction (line 11). Note that each time the scheduler takes a fixed num-
ber (denoted as batch_size) of transactions, and when a transaction finishes, we do not
start a new one until the whole batch is processed. The rationale behind is to preserve local-
ity and avoid overheads associated with initializing transaction contexts. Although it may
reduce the possible window of overlapping, we observe the impact is negligible. Avoiding
irregular, ad hoc transaction context initialization helps maintain competitive performance
for workloads that inherently do not benefit from prefetching where the scheduler activi-
ties and switching are pure overheads that should be minimized. Processing transactions
in strict batches also eases the adoption of epoch-based resource management in coroutine
environments, as Section 4.4 describes. The downside is that individual transaction latency
may become higher. Our focus is OLTP where transactions are often similar and short, so
we anticipate the impact to be modest. For workloads that may mix short transactions and
long queries in a batch, other approaches, e.g., a scheduler that takes transaction priority
into account when choosing the next transaction to resume may be more attractive for
reducing system response time.

While easy to implement, fully-nested coroutine-to-transaction and coroutine-to-transaction
in general bring three main challenges, which we elaborate next.

4.3 Two-Level Coroutine-to-Transaction

Since currently there is no way for software to tell whether dereferencing a pointer would
cause a cache miss [45, 22], software has to “guess” which memory accesses may cause a cache
miss. CoroBase issues prefetch and suspend upon dereferencing pointers to index nodes
and record objects in version chains based on profiling results. To reduce the cost of wrong
guesses, it is crucial to reduce switching overheads. Database engine code typically uses
nested, deep call chains of multiple functions to modularize implementation. As Chapter 5
shows, blindly transforming deep function call chains into coroutine chains using fully-
nested coroutine-to-transaction incurs non-trivial overhead that overshadows the benefits
brought by prefetching. Yet completely flattening (inlining) the entire call chain to become
a single coroutine mixes application logic and database engine code, defeating the purpose
of coroutine-to-transaction.

CoroBase takes a middle ground to flatten only nested calls within the database engine,
forming a two-level structure that balances performance and programmability. This allows
the application to still use the conventional interfaces; under the hood, transaction corou-
tines may invoke other coroutines for individual operations (e.g., get), which are single-level
coroutines with all the nested coroutines that may suspend inlined. Sequential functions that

14

do not suspend are not inlined unless the compiler does so transparently. At a first glance,
it may seem tedious or infeasible to inline the whole read/write paths in a database engine
manually. However, this is largely mechanical and straightforward. For instance, it took us
shorter than three hours to flatten the search operation in Masstree [37], the index structure
used by CoroBase. The flattened code occupies <100 lines and still largely maintains the
original logic.3 This shows that flattening functions is in fact feasible. Moreover, there is a
rich body of work in compilers about function inlining and flattening [64, 41, 50, 44, 1] that
can help automate this process. For example, developers can still write small, modularized
functions, but a source-to-source transformation pass can be performed to flatten the code
before compilation.

The downside of flattening is that it may cause more instruction cache misses because
the same code segment (previously short functions) may appear repeatedly in different
coroutines. For example, the same tree traversal code is required by both update and read
operations. Individual coroutines may become larger, causing more instruction cache misses.
However, as Chapter 5 shows, the benefits outweigh this drawback. Code reordering [3] can
also be used as an optimization in compilers to reduce the instruction fetch overhead.
Discussion of code transformation techniques is beyond the scope of this thesis; we leave it
as promising future work.

4.4 Resource Management

Resource management in the physical layer is tightly coupled with transaction execution
model. Under thread-to-transaction, “transaction” is almost a synonymy of thread, allowing
transparent application of parallel programming techniques, in particular epoch-based mem-
ory reclamation and thread-local storage to improve performance. Most of these techniques
are implicitly thread-centric, sequential algorithms that do not consider the possibility of
coroutine switching. Although the OS scheduler may deschedule a thread working on a task
t, the thread does not switch to another task. When the thread resumes, it picks up from
where it left to continue executing t. This implicit assumption brings extra challenges for
coroutine-based asynchronous programming, which we describe and tackle next. Note that
these issues are not unique to database systems, and our solutions are generally applicable
to other systems employing coroutines and parallel programming techniques.

Epoch-based Reclamation. Many main-memory database engines rely on lock-free
data structures, e.g., lock-free lists [15] and trees [32]. Threads may access memory that
is simultaneously being removed from the data structure. Although no new accesses are

3Details in our code repo at lines 375–469 at https://github.com/sfu-dis/corobase/blob/v1.0/
corobase.cc#L375.

15

https://github.com/sfu-dis/corobase/blob/v1.0/corobase.cc#L375
https://github.com/sfu-dis/corobase/blob/v1.0/corobase.cc#L375

possible once the memory block is unlinked, existing accesses must be allowed to finish
before the memory can be recycled.

Epoch-based memory reclamation [16] is a popular approach to implementing this. The
basic idea is for each thread to register (enter an epoch) upon accessing memory, and ensure
the unlinked memory block is not recycled until all threads in the epoch have deregistered
(exited). The epoch is advanced periodically depending pre-defined conditions, e.g., when
the amount of allocated memory passes a threshold. An assumption is that data access are
coordinated by thread boundaries. Under thread-to-transaction, a transaction exclusively
uses all the resources associated with a thread, so thread boundaries are also transaction
boundaries. Transactions can transparently use the epoch enter/exit machinery. However,
under coroutine-to-transaction this may lead to memory corruption: Suppose transactions
T1 and T2 run on the same thread, and T1 has entered epoch e before it suspends. Now
the scheduler switches to T2 which is already in epoch e and issued epoch exit, allowing
the memory to be freed, although it is still needed by T1 later.

CoroBase solves this problem by decoupling epoch enter/exit from transactions for the
scheduler to issue them. Upon starting/finishing the processing of a batch of transactions,
the worker thread enters/exits the epoch (lines 4 and 12 in Algorithm 1). This fits nicely
with our scheduling policy which only handles whole batches. It also reduces the overhead
associated with epoch-based reclamation as each thread registers/deregisters itself much
less frequently. Another potential approach is to implement nested enter/exit machinery
that allows a thread to register multiple times as needed. Though flexible, this approach is
error-prone to implement, and brings much higher bookkeeping overhead.

Thread-Local Storage (TLS). TLS is widely used to reduce initialization and allo-
cation overheads. In particular, ERMIA uses thread-local read/write sets and log buffers,
as well as thread-local scratch areas for storing temporaries such as records that were read
and new data to be added to the database. Logically, these structures are transaction-local.
Although storing these structures in transaction coroutines would fully conform to the
coroutine-to-transaction paradigm, doing so may reintroduce extra initialization and allo-
cation overheads. Under coroutine-to-transaction, a transaction coroutine allocates/deallo-
cates its own coroutine frames when it starts/finishies. Hence, transaction contexts placed
on coroutine frames need to be allocated and initialized for each transaction. To reduce
the performance impact, we expand each individual TLS variable to become an array of
variables, one per transaction in the batch, and store them again as TLS variables. Upon
system initialization, each worker thread creates the TLS array before starting to handle
requests. When a transaction starts (e.g., the i-th in a batch), it takes the corresponding
TLS array entry for use. This way, we avoid allocation/initialization overhead similar to
how it was done under thread-to-transaction, but provide proper isolation among trans-
actions. The tradeoff is that we consume (batch_size times) more memory space. As we

16

show in Chapter 5, our approach makes a practical tradeoff as the optimal batch size does
not exceed ten.

4.5 Concurrency Control and Synchronization

CoroBase inherits the shared-everything architecture, synchronization and concurrency con-
trol protocols from ERMIA (snapshot isolation with the serial safety net [61] for serializabil-
ity). A worker thread is free to access any part of the database. Version visibility is controlled
using timestamps drawn from a global, monotonically increasing counter maintained by the
engine. Upon transaction start, the worker thread reads the timestamp counter to obtain
a begin timestamp b. When reading a record, the version with the latest timestamp that is
smaller than b is visible. To update a record, the transaction must be able to see the latest
version of the record. To commit, the worker thread atomically increments the timestamp
counter (e.g., using atomic fetch-and-add [19]) to obtain a commit timestamp which is
written on the record versions created by it.

We observe that adopting coroutine-to-transaction in shared-everything systems re-
quired no change for snapshot isolation to work. Similar to ERMIA, CoroBase adopts the
serial safety net (SSN) [61], a certifier that can be applied on top of snapshot isolation to
achieve serializability. It tracks dependencies among transactions and aborts transactions
that may lead to non-serializable execution. Adapting SSN to CoroBase mainly requires
turning TLS bitmaps used for tracking readers in tuple headers [61] into transaction-local.
This adds batch_size bits per thread (compared to one in ERMIA). The impact is minimal
because of the small (≤10) batch size, and stalls caused by bitmap accesses can be easily
hidden by prefetching. Devising a potentially more efficient approach under very high core
count (e.g., 1000) is interesting future work. Since CoroBase allows multiple open trans-
actions per thread, the additional overhead on supporting serializability may widen the
conflict window and increase abort rate. Our experiments show that the impact is very
small, again because the desirable batch sizes are not big (4–8).

For physical-level data structures such as indexes and version chains, coroutines bring
extra challenges if they use latches for synchronization (e.g., higher chance to deadlock with
multiple transactions open on a thread). However, in main-memory database engines these
data structures mainly use optimistic concurrency without much (if not none of) locking.
In CoroBase and ERMIA, index (Masstree [37]) traversals proceed without acquiring any
latches and rely on versioning for correctness. This makes it straightforward to coroutinize
the index structure for read/scan and part of update/insert/delete operations (they share
the same traversal code to reach the leaf level). Locks are only held when a tree node is
being updated. Hand-over-hand locking is used during structural modification operations
(SMOs) such as splits. Our profiling results show that cache misses on code paths that
use hand-over-hand locking make up less than 6% of overall misses under an insert-only

17

Table 4.1: Changes needed to adopt coroutine-to-transaction in systems based on thread-
to-transaction. The key is to ensure isolation between transactions on the same thread.
Component Modifications

Concurrency Control (CC)
Shared-everything: transparent, but need careful deadlock han-
dling if pessimistic locking used.
Shared-nothing: re-introduce CC.

Synchronization 1. Thread-local to transaction-local.
2. Avoid holding latches upon suspension.

Resource 1. Thread-local to transaction-local.
Management 2. Piggyback on batching to reduce overhead.
Durability Transparent, with transaction-local log buffers.

workload. This is not high enough to benefit much from prefetching. Atomic instructions
such as compare-and-swap used by most latch implementations also do not benefit much
from prefetching. Therefore, we do not issue suspend on SMO code paths that use hand-
over-hand locking.

More general, coroutine-centric synchronization primitives such as asynchronous mutex4

are also being devised. How these primitives would apply to database systems remains to
be explored.

4.6 Discussions

Coroutine-to-transaction only dictates how queries and transactions are interleaved. It does
not require fundamental changes to components in ERMIA. Table 4.1 summarizes the nec-
essary changes in ERMIA and engines that may make different assumptions than ERMIA’s.
Beyond concurrency control, synchronization and resource management, we find that the
durability mechanism (logging, recovery and checkpointing) is mostly orthogonal to the
execution model. The only change is to transform the thread-local log buffer to become
transaction-local, which is straightforward.

Coroutine-to-transaction fits naturally with shared-everything, multi-versioned systems
that use optimistic flavored concurrency control protocols. For pessimistic locking, coroutine-
to-transaction may increase deadlock rates if transactions suspend while holding a lock. Op-
timistic and multi-version approaches alleviate this issue as reads and writes do not block
each other, although adding serializability in general widens the conflict window.

Different from shared-everything systems, shared-nothing systems [56] partition data
and restrict threads to only access its own data partition. This allowed vastly simplified

4Such as the async_mutex in CppCoro: https://github.com/lewissbaker/cppcoro/blob/
1140628b6e9e6048234d404cc393d855ae80d3e7/include/cppcoro/async_mutex.hpp.

18

https://github.com/lewissbaker/cppcoro/blob/1140628b6e9e6048234d404cc393d855ae80d3e7/include/cppcoro/async_mutex.hpp
https://github.com/lewissbaker/cppcoro/blob/1140628b6e9e6048234d404cc393d855ae80d3e7/include/cppcoro/async_mutex.hpp

synchronization and concurrency control protocols: in most cases if a transaction only ac-
cesses data in one partition, no synchronization or concurrency control is needed at all,
as there is at most one active transaction at any time working on a partition. To adopt
coroutine-to-transaction in shared-nothing systems, concurrency control and synchroniza-
tion needs to be (re-)introduced to provide proper isolation between transactions running
on the same thread.

Some systems [53, 13, 12, 42] explore intra-transaction parallelism to improve perfor-
mance: a transaction is decomposed into pieces, each of which is executed by a thread
dedicated to a partition of data, allowing non-conflicting data accesses in the same trans-
action to proceed in parallel. Data stalls may still occur as threads use pointer-intensive
data structures (e.g., indexes) to access data. Coroutine-to-transaction can be adapted to
model the individual pieces as coroutines to hide stalls. This would require changes such
as a scheduler described in Algorithm 1 in the transaction executors in Bohm [12] and
ReactDB [53]); we leave these for future work.

Finally, CoroBase removes the need for multi-key operations, but still supports them.
A transaction can call a multi-key operation which interleaves operations within a trans-
action and does not return control to the scheduler until completion. A transaction can
also use operations in both interfaces to combine inter- and intra-transaction interleaving.
For example, it can invoke a get, followed by an AMAC-based join to reduce latency and
coroutine switching overhead. This hybrid approach can be attractive when the efforts for
changing interfaces is not high. Chapter 5 quantifies the potential of this approach.

19

Chapter 5

Evaluation

Now we evaluate CoroBase to understand the end-to-end effect of software prefetching under
various workloads. Through experiments, we confirm the following:

• CoroBase enables inter-transaction batching to effectively batch arbitrary queries to
benefit from software prefetching.

• In addition to read-dominant workloads, CoroBase also improves on read-write workloads
while remaining competitive for workloads that inherently do not benefit from software
prefetching.

• CoroBase can improve performance with and without hyperthreading, on top of hardware
prefetching.

5.1 Experimental Setup

We use a dual-socket server equipped with two 24-core Intel Xeon Gold 6252 CPUs clocked
at 2.1GHz (up to 3.7GHz with turbo boost). The CPU has 35.75M last-level cache. In total
the server has 48 cores (96 hyperthreads) and 384GB main memory occupying all the six
channels per socket to maximize memory bandwidth. We compile all the code using Clang
10 with coroutine support on Arch Linux with Linux kernel 5.6.5. All the data is kept
in memory using tmpfs. We report the average throughput and latency numbers of three
30-second runs of each experiment.

System Model. Similar to prior work [60, 26, 25], we implement benchmarks in C++
directly using APIs exposed by the database engine, without SQL or networking layers.
Using coroutines to alleviate overheads in these layers is promising but orthogonal work.
The database engine is compiled as a shared library, which is then linked with the benchmark
code to perform tests.

20

Variants. We conduct experiments using the following variants which are all imple-
mented based on ERMIA [25].1

• Naïve: Baseline that uses thread-to-transaction and executes transactions sequentially
without interleaving or prefetching.

• ERMIA: Same as Naïve but with prefetch instructions carefully added to index and
version chain traversal code.

• AMAC-MK: Same as ERMIA but applications use hand-crafted multi-key interfaces based on
AMAC.

• CORO-MK: Same as ERMIA but applications use multi-key interfaces based on flattened
coroutines.

• CORO-FN-MK: Same as CORO-MK but with fully-nested coroutines described in Section 2.2.

• CoroBase-FN: CoroBase that uses the fully-nested coroutine-to-transaction design. No
changes in applications.

• CoroBase: Same as CoroBase-FN but uses the optimized 2-level coroutine-to-transaction
design described in Section 4.3.

• Hybrid: Same as CoroBase but selectively leverages multi-key interfaces in TPC-C trans-
actions (details in Section 5.8).

We use a customized allocator to avoid coroutine frame allocation/deallocation bot-
tlenecks. Hardware prefetching is enabled for all runs. For interleaved executions, we ex-
perimented with different batch sizes and use the optimal setting (eight) unless specified
otherwise. We use snapshot isolation2 for all runs except for pure index-probing workloads
which do not involve transactions (described later). We also perform experiments with and
without hyperthreading to explore its impact.

5.2 Benchmarks

We use both microbenchmarks and standard benchmarks to stress test and understand the
end-to-end potential of CoroBase.

Microbenchmarks. We use YCSB [9] to compare in detail the impact of different
design decisions. The workload models point read, read-modify-write (RMW), update and
scan transactions on a single table with specified access patterns. We use a ∼15GB database
of one billion records with 8-byte keys and 8-byte values.

1ERMIA code downloaded from https://github.com/sfu-dis/ermia.

2 We also ran experiments under the serializable isolation level (using SSN on top of snapshot isolation).
The results show that SSN adds a fixed amount of overhead (∼10–15%, similar to the numbers reported
earlier for thread-to-transaction systems [61]). We therefore focus on experiments under SI for clarity.

21

https://github.com/sfu-dis/ermia

Standard Benchmarks. We use TPC-C [58] to quantify the end-to-end benefits of
software prefetching under CoroBase. To show comprehensively how CoroBase performs
under a realistic and varying set of workloads with different read/write ratios, we run both
the original TPC-C and two variants, TPC-CR [62] and TPC-CH [25]. TPC-CR is a sim-
plified read-only version of TPC-C that comprises 50% of StockLevel and 50% OrderStatus
transactions. TPC-CH adds a modified version of the Query2 transaction (Q2*) in TPC-
H [59] to TPC-C’s transaction mix. This makes TPC-CH a heterogeneous workload that
resembles hybrid transaction-analytical processing (HTAP) scenarios.3 We use the same
implementation in ERMIA [25] where the transaction picks a random region and updates
records in the stock table whose quantity is lower than a pre-defined threshold. The size
of Q2* is determined mainly by the portion of the suppliers table it needs to access. We
modify the transaction mix to be 10% of Q2*, 40% of NewOrder, 38% of Payment, plus
4% of StockLevel, Delivery and OrderStatus each. For all TPC-C benchmarks, we set scale
factor to 1000 (warehouses). Each transaction uniform-randomly chooses and works on their
home warehouse, but 1% of New-Order and 15% of Payment transactions respectively access
remote warehouses.

5.3 Sequential vs. Interleaved Execution

As mentioned in earlier chapters, our goal in this thesis is to adopt coroutine-based interleav-
ing in a database engine and understand its end-to-end benefits. Therefore, it is important
to set the proper expectation on the possible gain that could be achieved by CoroBase. To
do this, we run a simple non-transactional index probing workload where worker threads
keep issuing multi_get requests. Each multi_get issues 10 requests against the index but
does not access the actual database record. The workload is similar to what prior work [22]
used to evaluate index performance. As Figure 5.1 shows, on average AMAC-MK outperforms
Naïve/ERMIA by up to 2.3×/2.96× without hyperthreading. Since AMAC-MK does not incur
much overhead in managing additional metadata like coroutine frames, these results set the
upper bound of the potential gain of interleave execution. However, AMAC-MK uses highly-
optimized but complex, hand-crafted code, making it much less practical. Using single-level
coroutines, CORO-MK achieves up to 2.56×/1.99× higher throughput than Naïve/ERMIA,
which is 17% faster than CORO-FN-MK because of its lower switching overhead. With hyper-
threading, the improvement becomes smaller across all variants.

These results match what was reported earlier in the literature, and set the upper bound
for CoroBase to be up to ∼2× faster than optimized sequential execution that already uses
prefetching (i.e., the ERMIA variant), or ∼2.5× faster than Naïve under read-only workloads.

3 Our focus is on OLTP (Section 2.3). We run TPC-CH to explore how CoroBase performs under various
read-intensive workloads. Hiding data stalls in OLAP workloads requires further investigation that considers
various access patterns and constraints.

22

 0

 30

 60

 90

 120

 1 8 16 24 32 40 48

M
ill

io
n

 o
p

s/
s

Threads (no-HT)

Naive
ERMIA

AMAC-MK
CORO-MK

CORO-FN-MK

 0

 30

 60

 90

 120

 1 16 32 48 64 80 96

Threads (HT)

Figure 5.1: Index probing throughput with hyperthreading disabled (left) and enabled
(right). Fully-nested coroutines are ∼30% slower than AMAC. Flattened coroutines
(CORO-MK) reduce the gap to 8–10% under high concurrency.

In the rest of this chapter, we mark the upper bound and multi-key variants that require
interface changes as dashed lines in figures, and explore how closely CoroBase matches the
upper bound under various workloads.

5.4 Effect of Coroutine-to-Transaction

Our first end-to-end experiment evaluates the effectiveness of coroutine-to-transaction. We
use a read-only YCSB workload where each transaction issues 10 record read operations
that are uniform randomly chosen from the database table; we expand on to other opera-
tions (write and scan) later. Note that different from the previous probe-only experiment in
Section 5.3, from now on we run fully transactional experiments that both probe indexes and
access database records. We compare variants that use coroutine-to-transaction (CoroBase

and CoroBase-FN) with other variants that use highly-optimized multi-key interfaces and
thread-to-transaction. Figure 5.2 plots result using physical cores (left) and hyperthreads
(right). Compared to the baselines (ERMIA and Naïve), all variants show significant improve-
ment. Because of the use of highly-optimized, hand-crafted state machines and multi-key
interfaces, AMAC-MK outperforms all the other variants. Without hyperthreading, CoroBase

exhibits an average of ∼15/∼18% slowdown from AMAC-MK, but is still ∼1.3/1.8× faster than
ERMIA when hyperthreading is enabled/disabled. This is mainly caused by the inherent over-
head of the coroutine machinery. CORO-FN-MK and CoroBase-FN are only up ∼1.25× faster
than ERMIA due to high switching overhead. CORO-MK and CoroBase minimize switching
overhead by flattening the entire record access call chain (index probing and version chain
traversal). The only difference is CORO-MK uses multi_get, while CoroBase allows the appli-
cation to remain unchanged using single-key interfaces. Therefore, it is necessary to flatten
call chains as much as possible to reduce context switching overhead. As the coroutine in-

23

 0
 2
 4
 6
 8

 10

 1 8 16 24 32 40 48Th
ro

u
gh

p
u

t
(M

TP
S)

Threads (no-HT)

Naive
AMAC-MK

ERMIA
CoroBase

CORO-MK
CoroBase-FN

CORO-FN-MK

 0
 2
 4
 6
 8

 10

 1 16 32 48 64 80 96

Threads (HT)

Figure 5.2: Throughput of a read-only YCSB workload (10 reads per transaction) without
(left) and with (right) hyperthreading. CoroBase matches the performance of multi-key
variants but without requiring application changes.

 1.2

 1.6

 2

 2.4

 2.8

1 2 3 4 5 6 7 8 9 10 20 50

N
o

rm
. t

h
ro

u
gh

p
u

t

Operations per transaction

Naive
ERMIA
AMAC-MK
CORO-MK
CORO-FN-MK
CoroBase
CoroBase-FN

Figure 5.3: YCSB read-only performance normalized to Naïve under 48 threads. CoroBase
also benefits very short transactions (1–4 operations) while multi-key based approaches
inherently cannot under thread-to-transaction.

frastructure continues to improve, we expect the gap between CoroBase, CoroBase-FN and
AMAC-MK to become smaller.

Coroutine-to-transaction also makes it possible for short transactions to benefit from
prefetching. We perform the same YCSB read-only workload but vary the number of reads
per transaction. As shown in Figure 5.3, CoroBase outperforms all multi_get approaches
for very short transactions (1–4 record reads) and continues to outperform all approaches
except AMAC-MK for larger transactions, as batches are formed across transactions.

These results show that inter-transaction batching enabled by coroutine-to-transaction
can match closely the performance of intra-transaction batching while retaining backward
compatibility. Hyperthreading helps to a limited extent and CoroBase can extract more per-
formance, partially due to the limited hardware contexts (two per core) available in modern
Intel processors. Compared to prior approaches, CoroBase and coroutine-to-transaction fur-
ther enable short transactions (with little/no intra-transaction batching opportunity) to also
benefit from software prefetching.

24

 0

 2

 4

 6

 1 8 16 24 32 40 48Th
ro

u
gh

p
u

t
(M

TP
S)

Threads (no-HT)
(a) Update

Naive ERMIA CoroBase

 0

 2

 4

 6

 1 16 32 48 64 80 96
Threads (HT)
(b) Update

 0

 2

 4

 6

 1 8 16 24 32 40 48Th
ro

u
gh

p
u

t
(M

TP
S)

Threads (no-HT)
(c) 2RMW+8R

 0

 2

 4

 6

 1 16 32 48 64 80 96
Threads (HT)

(d) 2RMW+8R

Figure 5.4: Throughput of update-only YCSB with 10 blind writes per transaction (a–b),
and a mixed workload (c–d).

5.5 Write and Scan Workloads

One of our goals is to use software prefetching to hide data stalls as much as possible.
While most prior work focused on read-only or read-dominant operations, we extend our
experiments to cover write-intensive scenarios. Write operations also need to traverse index
and version chains to reach the target record where data stalls constitute a significant
portion of stalled cycles. Figure 5.4(a–b) plots the throughput of update-only (blind write)
workload, where each transaction updates 10 uniform randomly-chosen records. CoroBase

achieves up to 1.77× and 1.45× higher throughput than Naïve and ERMIA, respectively. We
observe similar results but with lower improvement for a mixed workload that does two
RMWs and eight reads per transaction, shown in Figure 5.4(c–d); a pure RMW workload
showed similar trends (not shown here). The lower improvement comes from the fact that
the read operation before each modify-write has already brought necessary data into CPU
caches, making subsequent transaction switches for modify-write pure overhead. Moreover,
compared to read operations, write operations need to concurrently update the version
chain using atomic instructions, which cannot benefit much from prefetching. Nevertheless,
the results show that even for write-intensive workloads, prefetching has the potential of
improving overall performance as data stalls still constitute a significant portion of total
cycles.

Unlike point-read operations, we observe that scan operations do not always benefit as
much. Figure 5.5 shows the throughput of a pure scan workload. As we enlarge the number of

25

 0
 1
 2
 3
 4
 5

1 2 4 8 16 32 64Th
ro

u
gh

p
u

t
(M

TP
S)

Scan size (no-HT)

Naive ERMIA CoroBase

 0
 1
 2
 3
 4
 5

1 2 4 8 16 32 64

Scan size (HT)

Figure 5.5: Throughput of a YCSB scan workload. The benefits of prefetching diminish
with larger scan sizes: more records can be directly retrieved in leaf nodes using B-link-tree
structures.

 0

 3

 6

 9

 8 16 32 64Th
ro

u
gh

p
u

t
(M

TP
S)

Key size (bytes)

Naive
AMAC-MK

ERMIA
CoroBase

CORO-MK
CoroBase-FN

CORO-FN-MK

 0

 3

 6

 9

 8 16 32 64

Value size (bytes)

Figure 5.6: Throughput of read-only YCSB (10 reads per transaction) under varying key/-
value sizes and 96 hyperthreads.

scanned records, the performance of Naïve, ERMIA and CoroBase converges. This is because
Masstree builds on a structure similar to B-link-trees [29] where border nodes are linked,
minimizing the need to traverse internal nodes. It becomes more possible for the border
nodes to be cached and with longer scan ranges, more records can be retrieved directly at
the leaf level, amortizing the cost of tree traversal.

5.6 Impact of Key Lengths and Data Sizes

Now we examine how key length, value size, and database size affect runtime performance.
Figure 5.6(left) shows the throughput of the YCSB read-only workload under different key
lengths. CoroBase retains high performance across different key lengths, but CoroBase-FN

performs worse under longer keys which cause more coroutine calls to drill down Masstree’s
hybrid trie/B-tree structure, causing high switching overhead. As shown in Figure 5.6(right),
value size does not impact the overall relative merits of different variants. Figure 5.7 de-
picts the impact of data size by plotting the throughput normalized to that of Naïve. As
shown, with small table sizes, interleaving does not improve performance. For example, with

26

 0

 0.5

 1

 1.5

 2

1K 10K 100K 1M 10M 100M 1B

N
o

rm
. t

h
ro

u
gh

p
u

t

Table size (number of records)

Naive
ERMIA
AMAC-MK
CORO-MK
CORO-FN-MK
CoroBase
CoroBase-FN

Figure 5.7: YCSB read-only (10 reads per transaction) performance normalized to Naïve
under 96 hyperthreads and varying table sizes.

10K records, the total data size (including database records, index, etc.) is merely 1.23MB,
whereas the CPU has 35MB of last level cache, making all the anticipated cache misses cache
hits. Context switching becomes pure overhead and exhibits up to ∼12.64% lower through-
put (compared to Naïve). Approaches that use fully-nested coroutines (CoroBase-FN and
CORO-FN-MK) exhibit even up to 50% slower performance, whereas other approaches in-
cluding CoroBase keep a very low overhead. In particular, CoroBase follows the trend of
AMAC-MK with a fixed amount of overhead.

These results again emphasize the importance of reducing switching overhead. CoroBase’s
low switching overhead for longer keys and small tables make it a practical approach for
systems to adopt. We also expect coroutine support in compilers and runtime libraries to
continue to improve and reduce switching overhead in the future.

5.7 Impact of Skewed Accesses

Our last microbenchmark tests how different approaches perform under varying skewness.
Figure 5.8(a) calibrates the expectation using a multi-get based index probing workload that
does not access records. Each transaction here issues 10 operations. With higher skewness,
all schemes perform better because of the better locality. The YCSB read-only workload
in Figure 5.8(b) shows a similar trend. For update and RMW operations shown in Fig-
ures 5.8(c–d), highly skewed workloads lead to high contention and low performance across
all schemes, and memory stall is no longer the major bottleneck. CoroBase therefore shows
lower performance compared to ERMIA as switching becomes pure overhead.

5.8 End-to-End TPC-C Results

Now we turn to TPC-C benchmarks to see how prefetching works in more complex work-
loads. We begin with the default TPC-C configuration which is write-intensive. As shown
in Table 5.1, CoroBase manages to perform marginally better than Naïve and ERMIA with-
out hyperthreading but is 3.4% slower than ERMIA with hyperthreading. One reason is that

27

 0

 50

 100

 150

0.99 0.8 0.6 0.4 0.2

M
ill

io
n

 o
p

s/
s

Zipfian theta
(a) Index probe

Naive ERMIA CORO-MK CoroBase

 0

 3

 6

 9

0.99 0.8 0.6 0.4 0.2

Th
ro

u
gh

p
u

t
(M

TP
S)

Zipfian theta
(b) Read

 0

 2

 4

 6

0.99 0.8 0.6 0.4 0.2

Th
ro

u
gh

p
u

t
(M

TP
S)

Zipfian theta
(c) Update

 0

 2

 4

 6

0.99 0.8 0.6 0.4 0.2

Th
ro

u
gh

p
u

t
(M

TP
S)

Zipfian theta
(d) Read-modify-write

Figure 5.8: YCSB throughput with 96 hyperthreads and varying skewness (larger theta
indicates more skewed access).

Table 5.1: Throughput (TPS) of original TPC-C which is not inherently memory-bound.
With two-level coroutines, CoroBase outperforms Naïve and matches ERMIA and Hybrid.

Number of Threads Naïve ERMIA CoroBase Hybrid
48 (no-HT) 1306197 1487147 1489567 1682290
96 (HT) 1985490 2195667 2120033 2197260

TPC-C is write-intensive and exhibits good data locality, with fewer exposed cache misses
as shown by the narrow gap between Naïve and ERMIA. Our top-down microarchitecture
analysis [19] result shown in Figure 5.9(b) verifies this: TPC-C exhibits less than 50% of
memory stall cycles, which as previous work [45] pointed out, do not provide enough room
to benefit from prefetching. The high memory stall percentage in Figure 5.9(a) confirms
our YCSB results which showed more improvement. Under TPC-CR which is read-only,
CoroBase achieves up to 1.55×/1.3× higher throughput with/without hyperthreading (Fig-
ure 5.10). Notably, with hyperthreading CoroBase performs similarly (4% better) to ERMIA,
showing that using two hyperthreads is enough to hide the memory stalls that were exposed
on physical cores for TPC-CR. Interleaved execution is inherently not beneficial for such
workloads, so the goal is for CoroBase is to match the performance of sequential execution
as close as possible.

Under TPC-CH which is read-intensive and exhibits high memory stall cycles, CoroBase

achieves up to 34% higher throughput than ERMIA when the number of suppliers is set to 100
under 48 threads in Figure 5.11(left). Figure 5.11(right) explores how throughput changes
as the size of the Q2* transaction changes. CoroBase exhibits 25–39% higher throughput

28

 0

 25

 50

 75

 100

no-HT HT no-HT HT

C
yc

le
s

b
re

ak
d

o
w

n
 (

%
)

ERMIA CoroBase
(a) YCSB 10 Read

Stall (memory)
Stall (front-end)

Work (retiring)
Work (bad speculation)

Work (core)

 0

 25

 50

 75

 100

no-HT HT no-HT HT
ERMIA CoroBase

(b) TPC-C

 0

 25

 50

 75

 100

no-HT HT no-HT HT
ERMIA CoroBase

(c) TPC-CH

Figure 5.9: Microarchitecture analysis for YCSB, TPC-C and TPC-CH workloads. CoroBase
reduces memory stall cycles under all workloads, especially the read-dominant ones.

 0
 150
 300
 450
 600
 750

 1 8 16 24 32 40 48Th
ro

u
gh

p
u

t
(k

TP
S)

Threads (no-HT)

Naive ERMIA CoroBase Hybrid

 0
 150
 300
 450
 600
 750

 1 16 32 48 64 80 96
Threads (HT)

Figure 5.10: Throughput of the read-only TPC-CR workload.

than ERMIA, and the numbers over Naïve are 37–71%. Correspondingly, Figure 5.9(c) shows
fewer memory stall cycles under CoroBase.

We explore the potential of using selective multi-key operations in CoroBase (Section 4.6)
with the Hybrid variant. We use multi_get coroutines for long queries in NewOrder, Stock-
Level and Query2 to retrieve items and supplying warehouses, recently sold items and items
from certain pairs of the Stock and Supplier tables, respectively. Other queries use the same
single-key operations as in CoroBase. As shown in Table 5.1 and Figures 5.10–5.11, Hybrid

outperforms CoroBase by up to 1.29×/1.08×/1.36× under TPC-C/TPC-CR/TPC-CH, tak-
ing advantage of data locality and reduced switching overhead. The tradeoff is increased
code complexity. For operators that already exhibit or are easily amenable to multi-key
interfaces, Hybrid can be an attractive option.

5.9 Impact on Transaction Latency

We analyze the impact of interleaved execution on transaction latency using a mixed YCSB
workload (2 RMW +8 read operations per transaction), TPC-C and TPC-CH. As shown in
Figure 5.12, with larger batch sizes, transaction latency increases. We find setting batch size
to four to be optimal for the tested YCSB and TPC-C workloads: when batch size exceeds
four, latency grows proportionally since there is no room for interleaving. TPC-CH exhibits

29

 0
 1
 2
 3
 4
 5

 1 8 16 24 32 40 48Th
ro

u
gh

p
u

t
(k

TP
S)

Number of threads

Naive ERMIA CoroBase Hybrid

 0.9
 1.2
 1.5
 1.8
 2.1
 2.4

 50 100 1k 10kN
o

rm
. t

h
ro

u
gh

p
u

t

Number of suppliers

Figure 5.11: TPC-CH scalability (left) and throughput with 48 threads normalized to Naïve
(right). CoroBase reaps more benefits from prefetching with more read operations.

 0
 0.1
 0.2
 0.3
 0.4

no-HT HT

La
te

cn
y

(m
s)

(a) YCSB 2RMW+8R

Naive
ERMIA

BS=1
BS=2

BS=4
BS=8

BS=16

 0
 0.1
 0.2
 0.3
 0.4

no-HT HT
(b) TPC-C

 0

 15

 30

 45

no-HT HT
(c) TPC-CH

Figure 5.12: Average transaction latency under varying batch sizes (BS=1–16) with asyn-
chronous commit. The end-to-end impact is expected to be small with group/pipelined
commit.

smaller increase in latency, indicating there is much room for overlapping computation and
data fetching. Hyperthreading also only slightly increases average latency. Note that in this
experiment we use asynchronous commit which excludes I/O cost for persisting log records.
Many real systems use group/pipelined commit [21] to hide I/O cost. The result is higher
throughput but longer latency for individual transactions (e.g., 1–5ms reported by recent
literature [62]). Therefore, we expect the increased latency’s impact on end-to-end latency
in a real system to be very low.

5.10 Coroutine Frame Management

Flattening coroutines may increase code size and incur more instruction cache misses (Sec-
tion 4.3). For two-level coroutine-to-transaction, the size of a coroutine frame for the flat-
tened read/update/insert functions are 232/200/312 bytes, respectively. With fully-nested
coroutine-to-transaction, five small functions are involved, and their size range from 112–
216 bytes, which are indeed smaller than their flattened counterparts. When handling a
request, CoroBase allocates a single coroutine frame. CoroBase-FN maintains a chain of at
least five coroutine frames (e.g., for reads it adds up to 808 bytes per request) and switches
between them. Performance drops with both larger memory footprint (therefore higher allo-

30

cation/deallocation overhead) and switching. Overall, two-level coroutines ease this problem
and achieves better performance.

31

Chapter 6

Related Work

Our work is closely related to prior work on coroutine-based systems, cache-aware optimiza-
tions and database engine architectures.

Interleaving and Coroutines. We have covered most related work in this category [5,
27, 45, 46, 22] in Chapter 2, so we do not repeat here. The gap between CPU and the memory
subsystem continues to widen with the introduction of more spacious but slower persistent
memory [10]. Psaropoulos et al. [47] adapted interleaved execution using coroutine to speed
up index joins and tuple construction on persistent memory. Data stalls are also becoming
a bottleneck for vectorized queries [24, 43]. IMV [14] interleaves vectorized code to reduce
cache misses in SIMD vectorization.

Cache-Aware Optimizations.Many proposals try to improve locality. CSB+-tree [49]
stores child nodes contiguously to better utilize the cache but trades off update performance.
ART [30] is a trie that uses a set of techniques to improve space efficiency and cache
utilization. HOT [2] dynamically adjusts trie node span based on data distributions to
achieve a cache-friendly layout. Prefetching B+-trees [6] uses wider nodes to reduce B+-tree
height and cache misses during tree traversal. Fractal prefetching B+-trees [7] embed cache-
optimized trees within disk-optimized trees to optimize both memory and I/O. Masstree [37]
is a trie of B+-trees that uses prefetching. Software prefetching was also studied in the
context of compilers [40]. At the hardware level, path prefetching [33] adds a customized
prefetcher to record and read-ahead index nodes. Widx [28] is an on-chip accelerator that
decouples hashing and list traversal and processes multiple requests in parallel.

Database Engine Architectures. Most main-memory database engines [60, 26, 25,
11, 23] use the shared-everything architecture that is easy to be adapted to coroutine-to-
transaction. Some systems [42, 12, 13, 53] allow intra-transaction parallelism with delega-
tion. Techniques in CoroBase are complementary to and can be used to hide data stalls
in these systems (Section 4.6). To adopt coroutine-to-transaction in shared-nothing sys-
tems [56], concurrency control and synchronization need to be re-introduced to allow context
switching. Data stall issues were also identified in column stores [4, 57, 18] and analytical

32

workloads [54]. Exploring ways to hide data stalls in these systems is interesting future
work.

33

Chapter 7

Conclusion

We highlighted the gap between software prefetching and its adoption in database engines.
Prior approaches often break backward compatibility using multi-key interfaces and/or are
piece-wise solutions that optimize individual database operations. Leveraging recently stan-
dardized lightweight coroutines, we propose a new coroutine-to-transaction execution model
to fill this gap. Coroutine-to-transaction retains backward compatibility by allowing inter-
transaction batching which also enables more potential of software prefetching. Based on
coroutine-to-transaction, we build CoroBase, a main-memory database engine that judi-
ciously leverages coroutines to hide memory stalls. CoroBase achieves high performance via
a lightweight two-level coroutine design. Evaluation results show that on a 48-core server
CoroBase is up to ∼2× faster than highly-optimized baselines and remains competitive for
workloads that inherently do not benefit from software prefetching.

34

Bibliography

[1] Frances E. Allen and J. Cocke. A catalogue of optimizing transformations. In De-
sign and Optimization of Compilers, Prentice-Hall Series in Automatic Computation.
Prentice Hall, 1 edition, 1972.

[2] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. Hot: A
height optimized trie index for main-memory database systems. In Proceedings of the
2018 International Conference on Management of Data, SIGMOD ’18, page 521–534,
New York, NY, USA, 2018. Association for Computing Machinery.

[3] Omer Boehm, Daniel Citron, Gadi Haber, Moshe Klausner, and Roy Levin. Aggressive
function inlining with global code reordering. IBM Research Report, pages 1–26, 2006.

[4] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database architecture opti-
mized for the new bottleneck: Memory access. In Proceedings of the 25th International
Conference on Very Large Data Bases, VLDB ’99, page 54–65, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc.

[5] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. Improving
hash join performance through prefetching. In Proceedings of the 20th International
Conference on Data Engineering, ICDE ’04, page 116, 2004.

[6] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. Improving index performance
through prefetching. In Proceedings of the 2001 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’01, page 235–246, 2001.

[7] Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and Gary Valentin. Fractal prefetch-
ing b+-trees: Optimizing both cache and disk performance. In Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data, SIGMOD ’02, page
157–168, 2002.

[8] Melvin E Conway. Design of a separable transition-diagram compiler. Communications
of the ACM, 6(7):396–408, 1963.

[9] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 143–154, 2010.

[10] Rob Crooke and Mark Durcan. A revolutionary breakthrough in memory technology.
3D XPoint Launch Keynote, 2015.

35

[11] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal, Ryan
Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: Sql server’s memory-optimized
oltp engine. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, page 1243–1254, 2013.

[12] Jose M. Faleiro and Daniel J. Abadi. Rethinking serializable multiversion concurrency
control. Proc. VLDB Endow., 8(11):1190–1201, July 2015.

[13] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. High performance trans-
actions via early write visibility. Proc. VLDB Endow., 10(5):613–624, January 2017.

[14] Zhuhe Fang, Beilei Zheng, and Chuliang Weng. Interleaved multi-vectorizing. Proc.
VLDB Endow., 13(3):226–238, November 2019.

[15] Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In Pro-
ceedings of the 15th International Conference on Distributed Computing, DISC ’01,
page 300–314, Berlin, Heidelberg, 2001. Springer-Verlag.

[16] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and Jonathan Walpole.
Performance of memory reclamation for lockless synchronization. J. Parallel Distrib.
Comput., 67(12):1270–1285, December 2007.

[17] Yongjun He, Jiacheng Lu, and Tianzheng Wang. Corobase: Coroutine-oriented main-
memory database engine. Proc. VLDB Endow., 14(3):431–444, November 2020.

[18] Stratos Idreos, F. Groffen, Niels Nes, Stefan Manegold, Sjoerd Mullender, and Martin
Kersten. MonetDB: Two decades of research in column-oriented database architectures.
IEEE Data Eng. Bull., 35, 01 2012.

[19] Intel Corporation. Intel 64 and IA-32 architectures software developer manuals. Octo-
ber 2016.

[20] ISO/IEC. Technical specification — c++ extensions for coroutines, 2017. https:
//www.iso.org/standard/73008.html.

[21] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anastasia
Ailamaki. Aether: a scalable approach to logging. PVLDB, 3(1):681–692, 2010.

[22] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin Levandoski, and
Gor Nishanov. Exploiting coroutines to attack the “killer nanoseconds”. Proc. VLDB
Endow., 11(11):1702–1714, July 2018.

[23] Alfons Kemper and Thomas Neumann. HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In Proceedings of the 2011 IEEE
27th International Conference on Data Engineering, ICDE ’11, page 195–206, 2011.

[24] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and
Peter Boncz. Everything you always wanted to know about compiled and vectorized
queries but were afraid to ask. Proc. VLDB Endow., 11(13):2209–2222, September
2018.

36

https://www.iso.org/standard/73008.html
https://www.iso.org/standard/73008.html

[25] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. ERMIA:
Fast memory-optimized database system for heterogeneous workloads. In Proceedings
of the 2016 International Conference on Management of Data, SIGMOD ’16, page
1675–1687, New York, NY, USA, 2016. Association for Computing Machinery.

[26] Hideaki Kimura. FOEDUS: OLTP engine for a thousand cores and NVRAM. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’15, page 691–706, New York, NY, USA, 2015. Association for Computing
Machinery.

[27] Onur Kocberber, Babak Falsafi, and Boris Grot. Asynchronous memory access chain-
ing. Proc. VLDB Endow., 9(4):252–263, December 2015.

[28] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. Meet the walkers: Accelerating index traversals for in-
memory databases. In Proceedings of the 46th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO-46, page 468–479, New York, NY, USA, 2013.
Association for Computing Machinery.

[29] Philip L. Lehman and s. Bing Yao. Efficient locking for concurrent operations on
b-trees. ACM Trans. Database Syst., 6(4):650–670, December 1981.

[30] Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix tree: ARTful
indexing for main-memory databases. In Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013), ICDE ’13, page 38–49, USA, 2013.
IEEE Computer Society.

[31] Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui Wang.
High performance transactions in deuteronomy. In Conference on Innovative Data
Systems Research (CIDR 2015), January 2015.

[32] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. The bw-tree: A b-tree
for new hardware platforms. In Proceedings of the 2013 IEEE International Conference
on Data Engineering (ICDE 2013), ICDE ’13, page 302–313, 2013.

[33] Shuo Li, Zhiguang Chen, Nong Xiao, and Guangyu Sun. Path prefetching: Accelerating
index searches for in-memory databases. In 36th IEEE International Conference on
Computer Design, ICCD 2018, Orlando, FL, USA, October 7-10, 2018, pages 274–277.
IEEE Computer Society, 2018.

[34] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. Cicada: Dependably fast
multi-core in-memory transactions. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, pages 21–35, 2017.

[35] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for recursive data
structures. In Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS VII, page
222–233, 1996.

[36] Stefan Manegold, Martin L. Kersten, and Peter Boncz. Database architecture evolu-
tion: Mammals flourished long before dinosaurs became extinct. Proc. VLDB Endow.,
2(2):1648–1653, August 2009.

37

[37] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness for fast
multicore key-value storage. In Proceedings of the 7th ACM european conference on
Computer Systems, pages 183–196, 2012.

[38] Microsoft. Windows Technical Documentation. 2018. https://docs.microsoft.com/
en-us/windows/win32/procthread/fibers?redirectedfrom=MSDN.

[39] Ana Lúcia De Moura and Roberto Ierusalimschy. Revisiting coroutines. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 31(2):1–31, 2009.

[40] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation of a
compiler algorithm for prefetching. In Proceedings of the Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
V, page 62–73, 1992.

[41] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. Cil:
Intermediate language and tools for analysis and transformation of c programs. In
Proceedings of the 11th International Conference on Compiler Construction, CC ’02,
page 213–228, Berlin, Heidelberg, 2002. Springer-Verlag.

[42] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Ailamaki. Data-
oriented transaction execution. Proc. VLDB Endow., 3(1–2):928–939, September 2010.

[43] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. Rethinking simd vector-
ization for in-memory databases. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’15, page 1493–1508, New York,
NY, USA, 2015. Association for Computing Machinery.

[44] Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and Thomas Würthinger.
An optimization-driven incremental inline substitution algorithm for just-in-time com-
pilers. In Proceedings of the 2019 IEEE/ACM International Symposium on Code Gen-
eration and Optimization, CGO 2019, page 164–179. IEEE Press, 2019.

[45] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki. Inter-
leaving with coroutines: A practical approach for robust index joins. Proc. VLDB
Endow., 11(2):230–242, October 2017.

[46] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki. Inter-
leaving with coroutines: a systematic and practical approach to hide memory latency
in index joins. The VLDB Journal, 28(4):451–471, 2019.

[47] Georgios Psaropoulos, Ismail Oukid, Thomas Legler, Norman May, and Anastasia Ail-
amaki. Bridging the latency gap between nvm and dram for latency-bound operations.
In Proceedings of the 15th International Workshop on Data Management on New Hard-
ware, DaMoN’19, New York, NY, USA, 2019. Association for Computing Machinery.

[48] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-
Hill, Inc., New York, NY, USA, 3 edition, 2003.

[49] Jun Rao and Kenneth A. Ross. Making B+-trees cache conscious in main memory.
In Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’00, page 475–486, New York, NY, USA, 2000. Association for
Computing Machinery.

38

https://docs.microsoft.com/en-us/windows/win32/procthread/fibers?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/procthread/fibers?redirectedfrom=MSDN

[50] Silvano Rivoira and Carlo Alberto Ferraris. Compiler optimizations based on call-graph
flattening. MSc Thesis, 2011.

[51] Mohammad Sadoghi, Kenneth A. Ross, Mustafa Canim, and Bishwaranjan Bhattachar-
jee. Making updates disk-i/o friendly using ssds. Proc. VLDB Endow., 6(11):997–1008,
August 2013.

[52] Boris Schling. The Boost C++ Libraries. 2020. https://theboostcpplibraries.
com/.

[53] Vivek Shah and Marcos Antonio Vaz Salles. Reactors: A case for predictable, virtu-
alized actor database systems. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, page 259–274, New York, NY, USA, 2018.
Association for Computing Machinery.

[54] Utku Sirin and Anastasia Ailamaki. Micro-architectural analysis of olap: Limitations
and opportunities. Proc. VLDB Endow., 13(6):840–853, February 2020.

[55] Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ailamaki. Micro-architectural
analysis of in-memory oltp. In Proceedings of the 2016 International Conference on
Management of Data, pages 387–402, 2016.

[56] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil
Hachem, and Pat Helland. The end of an architectural era: (it’s time for a complete
rewrite). page 1150–1160, 2007.

[57] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store: A column-oriented dbms.
In Proceedings of the 31st International Conference on Very Large Data Bases, VLDB
’05, page 553–564. VLDB Endowment, 2005.

[58] Transaction Processing Performance Council (TPC). TPC benchmark C (OLTP) stan-
dard specification, revision 5.11, 2010. http://www.tpc.org/tpcc.

[59] Transaction Processing Performance Council (TPC). TPC benchmark H (decision
support) standard specification, revision 2.18.0, 2018. http://www.tpc.org/tpch.

[60] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy transactions in multicore in-memory databases. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, page 18–32, 2013.

[61] Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ippokratis Pandis. Efficiently mak-
ing (almost) any concurrency control mechanism serializable. The VLDB Journal,
26(4):537–562, August 2017.

[62] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. Query fresh: Log shipping on
steroids. Proc. VLDB Endow., 11(4):406–419, December 2017.

[63] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An empirical
evaluation of in-memory multi-version concurrency control. Proc. VLDB Endow.,
10(7):781–792, March 2017.

39

https://theboostcpplibraries.com/
https://theboostcpplibraries.com/
http://www.tpc.org/tpcc
http://www.tpc.org/tpch

[64] Xuejun Yang, Nathan Cooprider, and John Regehr. Eliminating the call stack to save
ram. In Proceedings of the 2009 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, LCTES ’09, page 60–69, 2009.

40

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Software Prefetching via Coroutines
	CoroBase
	Contributions and Thesis Organization

	Background
	Software Prefetching
	Coroutines
	Coroutine-based Software Prefetching in Main-Memory Database Engines

	Design Principles
	CoroBase Design
	Overview
	Fully-Nested Coroutine-to-Transaction
	Two-Level Coroutine-to-Transaction
	Resource Management
	Concurrency Control and Synchronization
	Discussions

	Evaluation
	Experimental Setup
	Benchmarks
	Sequential vs. Interleaved Execution
	Effect of Coroutine-to-Transaction
	Write and Scan Workloads
	Impact of Key Lengths and Data Sizes
	Impact of Skewed Accesses
	End-to-End TPC-C Results
	Impact on Transaction Latency
	Coroutine Frame Management

	Related Work
	Conclusion
	Bibliography

