
The University of Manchester Research

Transactional Data Structures

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Jarvis, K. (2011). Transactional Data Structures. University of Manchester.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:21. Oct. 2022

https://www.research.manchester.ac.uk/portal/en/publications/transactional-data-structures(93f5f210-8409-422c-bdbc-f615869d6a7d).html

TRANSACTIONAL DATA

STRUCTURES

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2011

By

Kimberley Jarvis

Computer Science

Contents

Abstract 11

Declaration 12

Copyright 13

Acknowledgements 14

1 Introduction 15

1.1 Speculative execution . 15

1.1.1 Mutual exclusion . 15

1.1.2 Speculative execution . 16

1.1.3 Techniques to support speculative execution 16

1.1.4 Infrastructure to support speculative execution 17

1.1.5 The problem with locks 18

1.1.6 The concurrency problem 19

1.2 Memory Transactions . 21

1.2.1 Transactional Memory systems 21

1.2.2 Design priorities . 22

1.2.3 Design choices . 23

1.2.4 The development of Transactional Memory 25

1.2.5 Software Transactional Memory 25

1.2.6 Hardware Transactional Memory 26

1.2.7 Ease of programming . 28

2 Concurrent Programming 30

2.1 Concurrent IO . 31

2.1.1 The interaction with external entities 31

2

2.1.2 The database programming model 32

2.1.3 Atomic sections . 33

2.1.4 Previous work . 35

2.1.5 The Client Server Database Model 36

2.1.6 Heterogeneous processors 37

2.2 Parallelism . 39

2.2.1 Temporal uncertainty . 39

2.2.2 Minimising temporal uncertainty 41

2.2.3 Functional dependencies 42

2.2.4 Mutable shared state . 43

2.2.5 Coordinating concurrent actions 44

2.2.6 Previous work . 44

2.2.7 The speculative execution of functional programs 45

2.2.8 Composable atomic sections 47

2.3 Compatibility . 49

2.3.1 Disruptive changes to existing software 49

2.3.2 Compatibility with existing software 50

2.3.3 Making concurrent programs easier to write 51

3 Maintaining State 52

3.1 Speculative State . 53

3.1.1 The memory wall . 53

3.1.2 Immutable memory . 55

3.1.3 Memory bandwidth . 56

3.1.4 The effect of speculation 57

3.1.5 Moving the bottleneck . 58

3.1.6 Cache coherency . 59

3.2 Immutable Data Structures . 61

3.2.1 Supporting speculation . 61

3.2.2 Immutable Data Structures 62

3.2.3 Immutability and concurrency 62

3.3 Path Copying . 65

3.3.1 Implementing Immutable Data Structures 65

3.3.2 Supporting concurrent access 70

3.3.3 Path copying transformations 72

3.3.4 Previous work . 77

3

3.4 Binary Trees . 78

3.4.1 A flexible Immutable Data Structure design 78

3.4.2 The Canonical Binary Tree 79

3.4.3 Previous work . 82

3.5 Abstract Data Types for Immutable Data 85

3.5.1 Priority queue . 85

3.5.2 Directed min-tree . 90

3.5.3 Deque . 93

3.5.4 Directed deque . 94

3.5.5 Map . 98

3.5.6 Interval tree with sentinel 102

3.5.7 Vector . 103

3.5.8 Directed sequence . 107

3.5.9 Previous work . 109

3.6 Balancing . 110

3.6.1 Balancing schemes . 110

3.6.2 Balancing the Canonical Binary Tree 112

3.6.3 Previous work . 118

3.6.4 Utility functions . 118

3.6.5 Optimisation . 118

3.6.6 Amortised analysis . 120

3.7 Memory Management . 122

3.7.1 Memory allocation and reclamation 122

3.7.2 Previous work . 123

4 Accessing State 124

4.1 Linearizable objects . 125

4.1.1 Weak isolation . 125

4.1.2 Strong isolation . 126

4.1.3 Linearizability . 127

4.1.4 Previous work . 128

4.1.5 The semantics of weak isolation 128

4.1.6 Isolation pathologies . 129

4.1.7 Nested transactions . 130

4.2 Persistent Data Structures . 133

4.2.1 Accessing past versions . 133

4

4.2.2 Persistence . 134

4.2.3 The classification of persistent data structures 135

4.2.4 Previous work . 137

4.2.5 The classification of Transactional Data Structures 138

4.3 Entanglement . 140

4.3.1 Fine grained irregular parallelism 140

4.3.2 The composition of Immutable Data Structures 141

4.3.3 Entanglement and Persistence 143

4.3.4 Previous work . 144

4.3.5 Low overhead checkpointing 145

4.4 Minimum Spanning Tree . 146

4.4.1 Experiment . 146

4.4.2 Results . 148

4.4.3 Method . 150

4.4.4 Serial Graph Colouring Implementation 151

4.4.5 Serial No-Colouring Implementation 152

4.4.6 The concurrent implementation of Prim’s algorithm 153

4.4.7 Concurrent Graph Colouring Implementation 154

4.4.8 Previous work . 154

4.4.9 Concurrent No-Colouring Implementation 155

4.4.10 The performance of the Concurrent No-Colouring Imple-

mentation . 157

5 Concurrency Control 159

5.1 Distributed Concurrency Control 160

5.1.1 Centralised concurrency control 160

5.1.2 Distributed concurrency control 161

5.1.3 Transaction management 162

5.1.4 Previous work . 163

5.1.5 Time Stamp Ordering . 163

5.1.6 Programmer productivity 164

5.2 Serialisability . 166

5.2.1 Simultaneous access . 166

5.2.2 Implementing concurrency control 167

5.2.3 Concurrent semantics . 168

5.2.4 Simultaneous semantics 169

5

5.2.5 Previous work . 170

5.2.6 Variables . 171

5.2.7 Functions and operations 172

5.2.8 Validate function . 176

5.2.9 Meta-data . 176

5.3 Confluence . 179

5.3.1 Simultaneous modifications 179

5.3.2 Meld Function . 179

5.3.3 Previous work . 181

6 Contention Management 183

6.1 Progress and Contention Management 184

6.1.1 Blocking . 184

6.1.2 Guaranteed progress . 185

6.1.3 The Dining Philosophers 185

6.1.4 Previous work . 188

6.2 Non-blocking Algorithms . 190

6.2.1 Ensuring serialisability without blocking 190

6.2.2 Lock-free serialisability . 191

6.2.3 Previous work . 193

6.2.4 Non-blocking evaluation 194

6.3 Producer Consumer Queue . 198

6.3.1 Experiment . 198

6.3.2 Results . 199

6.3.3 Method . 204

6.3.4 Implementation . 204

6.3.5 Workload simulation . 206

6.3.6 Previous work . 207

6.3.7 Mailbox Queue performance 208

6.3.8 Messaging Queue performance 209

6.3.9 Ease of implementation . 209

6.3.10 Ease of programming . 210

6.3.11 Scalability . 210

6.3.12 Progress . 211

6.4 Distribution and Scheduling . 212

6.4.1 Scheduling . 212

6

6.4.2 Load-balance . 213

6.4.3 Scheduling parallel work 214

6.4.4 Previous work . 215

6.4.5 Transaction granularity . 216

7 Conclusion 218

7.1 The flow of time . 218

7.1.1 The notion of the flow of time as a global phenomenon . . 218

7.1.2 The notion of the flow of time as a local phenomenon . . . 220

7.2 Future work . 223

7.3 Summary . 229

Glossary 230

Bibliography 237

Word count 70552

7

List of Tables

3.1 Directed min-tree implementation 92

3.2 Directed deque implementation 97

3.3 Map Implementation . 102

3.4 Directed sequence implementation 108

4.1 Persistence types for Transactional Data Structures 138

5.1 Cap topology and granularity of concurrency. 174

6.1 The maximum throughput of a Mailbox Queue 200

8

List of Figures

1.1 Observations about scalable concurrent systems 23

3.1 Insertion and deletion from an immutable deque 63

3.2 Full copying technique . 66

3.3 Path copying technique . 67

3.4 Fat node technique . 69

3.5 Node copying technique . 71

3.6 Bracket and remove bracket operations 73

3.7 Immutable add bracket and remove bracket operations 75

3.8 Immutable insert and delete operations 76

3.9 The leaf to root path copying technique 77

3.10 Example Min-tree . 86

3.11 Associativity property of a min-tree 86

3.12 Insertion and removal of an element in a min-tree 87

3.13 Animation showing the growth of a min-tree 89

3.14 Example Directed min-tree . 90

3.15 Example Deque . 93

3.16 Insertion and removal of an element in a deque 94

3.17 Animation showing the growth of a deque 95

3.18 Example Directed deque . 96

3.19 Associativity property of a directed deque 97

3.20 Example interval tree . 98

3.21 Associativity property of an interval tree 99

3.22 Insertion and removal of an element in an interval tree 100

3.23 Animation showing the growth of an interval tree 101

3.24 Example Sequence . 103

3.25 Associativity property of a sequence tree 104

3.26 Insertion and removal of an element in a sequence tree 105

9

3.27 Animation showing the growth of an immutable sequence tree . . 106

3.28 Example Directed sequence . 108

3.29 The associativity property permits balancing 111

3.30 A skew balancing rotation . 113

3.31 A split rotation . 114

3.32 Example of a skew balancing rotation acting on a vector 115

3.33 Example of a split balancing rotation acting on a vector 116

4.1 Version graphs . 136

4.2 A pair of entangled queues . 142

4.3 A persistent Directed min-tree . 144

4.4 Comparison of the elapsed time taken to calculate the minimum

spanning tree . 149

5.1 Labelling of variables in the cap of an Immutable Data Structure 171

5.2 Operations on variables in the cap of a deque. 173

5.3 Operations on variables in the cap of a map. 175

5.4 Conflicting and non-conflicting operations on a deque 177

5.5 Making a deque confluently persistent 180

6.1 The dining philosophers . 186

6.2 The execution of an access function in the presence of concurrent

mutations . 192

6.3 The abstract syntax tree of an expression 194

6.4 An Immutable Data Structure representing the evaluation of an

expression . 196

6.5 The non-blocking evaluation of an expression 197

6.6 The Producer Consumer Queue 199

6.7 The maximum throughput of a non-blocking bounded Messaging

Queue implemented by a confluently persistent Immutable Data

Structure . 201

6.8 The maximum throughput of a blocking Producer Consumer Queue

from the Boost library, implemented by the std::deque container . 202

10

Abstract

Concurrent programming is difficult and the effort is rarely rewarded by faster
execution. The concurrency problem arises because information cannot pass in-
stantly between processors resulting in temporal uncertainty.

This thesis explores the idea that immutable data and distributed concur-
rency control can be combined to allow scalable concurrent execution and make
concurrent programming easier. A concurrent system that does not impose a
global ordering on events lends itself to a scalable distributed implementation. A
concurrent programming environment in which the ordering of events affecting
an object is enforced locally has intuitive concurrent semantics.

This thesis introduces Transactional Data Structures which are data struc-
tures that permit access to past versions, although not all accesses succeed. These
data structures form the basis of a concurrent programming solution that sup-
ports database type transactions in memory. Transactional Data Structures per-
mit non-blocking concurrent access to familiar abstract data types such as deques,
maps, vectors and priority queues. Using these data structures a programmer can
write a concurrent program in C without having to reason about locks.

The solution is evaluated by comparing the performance of a concurrent algo-
rithm to calculate the minimum spanning tree of a graph with that of a similar
algorithm which uses Transactional Memory and by comparing a non-blocking
Producer Consumer Queue with its blocking counterpart.

Kimberley Jarvis
Transactional Data Structures
Doctor of Philosophy
The University of Manchester
11 November 2011

11

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

12

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, De-

signs and Patents Act 1988 (as amended) and regulations issued under it

or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is avail-

able in the University IP Policy (see http://www.campus.manchester.ac.

uk/medialibrary/policies/intellectual-property.pdf), in any rele-

vant Thesis restriction declarations deposited in the University Library,

The University Library’s regulations (see http://www.manchester.ac.uk/

library/aboutus/regulations) and in The University’s policy on presen-

tation of Theses

13

Acknowledgements

I have been privileged to work with my supervisor Chris Kirkham and my advisor

Ian Watson. They have given me an enormous amount of valuable advice and

guided me in the preparation of this thesis.

I owe a great debt of gratitude to my colleagues from the Advanced Processor

Technologies group at the University of Manchester where I have had the pleasure

of working closely with Mohammad Ansari, Behram Kahn, Christos Kotselidis,

Mikel Luján, Ian Rogers and Jeremy Singer.

I am grateful to my father James Jarvis for improving the readability of this

thesis.

14

Chapter 1

Introduction

1.1 Speculative execution

Programs that deliver scalable speed-up from parallel execution on Chip Multi-

Processors are difficult to develop. As the number of processing cores in a Chip

Multi-Processor increases so does the potential speed-up from parallel execution

but there are few programs that actually achieve scalable speed-up when execut-

ing on a Chip Multi-Processor.

This thesis examines the problem of getting the processors of a Chip Multi-

Processor to work together on a single program and complete the program in less

time than it would take a single processor working alone. The program can be

divided into tasks which are simultaneously executed by the processors and these

tasks may or may not be interdependent. This thesis focuses on the case where

task dependencies are not known until the program is executed.

1.1.1 Mutual exclusion

The most commonly used mechanism to support concurrent execution is mutual

exclusion. Mutual exclusion does not permit tasks with possible dependencies

to execute in overlapping periods of time. On a Chip Multi-Processor mutual

exclusion can be used to permit those sections of a program in which there are

known to be no conflicting operations to be executed in parallel and ensure that

the critical sections of the program, that may have dependencies, execute serially.

The use of mutual exclusion limits the scalability of a concurrent program

and makes it susceptible to progress pathologies such as deadlock.

15

16 CHAPTER 1. INTRODUCTION

Section 1.1.5 describes why concurrent programming using mutual exclusion

is difficult.

This thesis is primarily concerned with the problem of developing scalable

concurrent programs for Chip Multi-Processors and it focuses on the case where

task dependencies are not known until the program is executed.

Section 1.1.6 describes the scope of the problem addressed by this thesis.

1.1.2 Speculative execution

Speculative execution is a programming technique that can be used as an alterna-

tive to mutual exclusion. It facilitates scalable concurrent execution by permitting

the simultaneous execution of tasks that may be interdependent. Speculative ex-

ecution permits tasks to be executed optimistically. A concurrent program can

safely speculate that a task is not affected by tasks running on other processors,

provided it has a mechanism to re-execute the task should that speculation prove

incorrect.

To discover the dependencies between tasks, information must pass between

the processors performing them, while the program executes. Processors cannot

pass information to each other instantaneously, so each task has a slightly de-

layed view of the progress that tasks on other processors are making. This delay

necessitates speculative execution because if a processor were to wait for a task,

on which it is possibly dependent, to complete then there would be little benefit

from executing on multiple processors.

This thesis develops programming techniques that support speculative execu-

tion on a Chip Multi-Processor.

Section 1.1.3 outlines the techniques presented in this thesis.

This thesis describes software that enables the use of these techniques in an

application.

Section 1.1.4 describes the software we develop.

1.1.3 Techniques to support speculative execution

This thesis develops programming techniques that allow applications to access

shared state speculatively. These techniques include mechanisms for maintaining

shared state and mechanisms for detecting conflicting accesses during program

execution.

1.1. SPECULATIVE EXECUTION 17

This thesis presents a number of data structure representations and algorithms

and it describes features which make them suitable for concurrent execution.

These features include the use of a sentinel to distinguish between a non-existent

and an empty data structure and the use of additional annotations in vertices

so that traversals do not need to examine all of the children of a vertex when

determining a path through the structure.

A technique for composing data structures which can be used to implement

a low-overhead checkpointing and backtracking mechanism is presented. This

thesis explores and evaluates the use of the technique by developing a concurrent

graph algorithm.

A technique for detecting conflicting concurrent accesses to a data structure

is presented. Conflicts are detected by mapping relative positions within the data

structure to the variables considered by a concurrency control protocol.

This thesis explores the use of distributed concurrency control to ensure the

correctness of concurrent accesses to a data structure. A technique for incor-

porating a distributed transaction manager into the access functions of a data

structure is presented.

A technique for developing non-blocking algorithms that permits the non-

blocking execution of data structure access functions is presented. It is imple-

mented by a non-blocking scheduling routine. This thesis explores and evaluates

the use of the technique by developing a non-blocking queue.

1.1.4 Infrastructure to support speculative execution

We develop software to demonstrate the programming techniques described in

this thesis. This software supports our experiments and allows us to evaluate

these techniques. It takes the form of a C++ header library which implements

the data structures and a set of routines that implement the mechanisms which

permit speculative execution.

A concurrent application that makes use of our techniques accesses shared

state through the functions of a data structure. These data structures are im-

plemented by a C++ header library. This library implements common Abstract

Data Types (ADTs) in a way that permits the speculative execution of their

functions. The library implements a mechanism for maintaining speculative state

within a data structure and a mechanism for discovering conflicting accesses at

execution time.

18 CHAPTER 1. INTRODUCTION

A concurrent application that makes use of our techniques is divided into

tasks that may be executed in parallel on a Chip Multi-Processor. The software

includes routines to distribute and schedule concurrent tasks. These routines are

written in C++ and implemented using Intel’s Threading Building Block product

[Int09].

1.1.5 The problem with locks

The correctness of the concurrent execution of critical sections can be ensured by

locking. In the simplest scenario, a processor acquires the exclusive ownership of a

lock before executing the code within a critical section and relinquishes ownership

once the execution of the program code within that critical section is complete.

The lock is said to protect the critical section.

Mutual exclusion ensures the serial execution of critical sections regardless

of how often dependencies between tasks actually arise. If there is the slightest

possibility of a dependency between tasks then they must always be executed se-

rially. As the number of processes is increased, the execution time of the program

code within the critical sections dominates and the benefit of parallel execution

is diminished. This effect is a consequence of Amdahl’s law. [Amd67] [HM08].

The relationship between a lock and the critical section that it protects is

abstract. This relationship is not necessarily reflected in the program code or its

associated documentation. For example, the code in an existing critical section

may not contain information about a newly developed critical section which is

protected by the same lock.

Blocking occurs when a delay in the execution of a section of program code

delays the execution of other code sections. Mutual exclusion ensures the cor-

rectness of the execution of a code section by ensuring that only one processor

executes it at any given moment. The progress of processors that attempt to ac-

cess the code section simultaneously is blocked. A program that blocks is prone

to the progress pathology of deadlock which prevents it from completing. For

example, a concurrent program in which two critical sections acquire the same

locks but in a different order may deadlock.

Sections of program code are said to be composable if they can be combined

without examining or altering their implementation. Critical sections are not

composable because they have the potential to block the progress of processors

that attempt to execute them. Consequently, it is not possible to encapsulate the

1.1. SPECULATIVE EXECUTION 19

concerns of mutual exclusion. For example, the order of lock acquisition in an

existing critical section must be examined when developing a new critical section

protected by the same locks.

Critical sections that are protected by a common lock have shared performance

considerations. For example, a low-latency task may be blocked by a long running

task protected by the same lock.

Critical sections that are protected by a common lock must be tested to

the same level of integrity regardless of the importance of their functionality.

For example, a trivial task must be tested to the same level of integrity as an

important task protected by the same lock.

1.1.6 The concurrency problem

This thesis addresses the problem of developing scalable concurrent programs for

execution on Chip Multi-Processors. We focus exclusively on the execution of

tasks from a single program on Chip Multi-Processor hardware that supports

parallel execution. We are particularly interested in the case where the depen-

dencies between tasks are unknown until their execution is complete. We regard

the concurrency problem as the problem of obtaining speed-up from the parallel

execution of tasks from a single program on a Chip Multi-Processor when task

dependencies are unknown until their execution is complete.

A Chip Multi-Processor supports parallel execution, which is the simultane-

ous execution of tasks on different hardware processors. A system may support

concurrent execution, which is the execution of tasks that have the potential to

execute simultaneously. In this thesis we are concerned with internal concurrency

which is the potential to execute related tasks, that may interact through mem-

ory and which are part of a single program, simultaneously. We do not consider

external concurrency which occurs when a program, such as an operating system,

needs to perform several possibly unrelated tasks at the same time.

Many applications have the potential to benefit from parallel execution on

Chip Multi-Processors but are unable to realise this benefit because their ex-

ecution is dominated by frequent accesses to shared data. These applications

include low-latency trading, travel reservations, on-line inventory, on-line gam-

ing, payment verification and graph traversal algorithms. For these applications

the concurrency problem has two related components. Firstly, the development

costs associated with ensuring the correctness of concurrent accesses to shared

20 CHAPTER 1. INTRODUCTION

data using mutual exclusion exceed the commercial benefits of parallel execu-

tion on a Chip Multi-Processor. Secondly, the scaling restriction imposed by

using mutual exclusion precludes significant speed-up from parallel execution on

a Chip Multi-Processor.

This thesis focuses on programs written in C++ because applications that

may benefit from parallel execution on a Chip Multi-Processor are frequently

written in this language. However, the techniques we describe are not restricted

to a particular programming language.

Only small regions of many programs may benefit from parallel execution. We

focus on techniques which can be applied locally, without disrupting those regions

of an application that do not benefit. We seek solutions that can be applied to

existing programs. However, the techniques we describe can also be used to

develop new programs. The programs we develop to support our evaluation are

entirely new.

1.2. MEMORY TRANSACTIONS 21

1.2 Memory Transactions

Transactional Memory is a programming technique that promises to make con-

current programming easier and concurrent programs more scalable. However,

Transactional Memory systems rarely deliver on these promises. The design

choices made during the development of Transactional Memory systems are mo-

tivated by a common set of priorities. These priorities need to be re-evaluated

and different design choices considered.

The main contribution of this section is the identification of priorities that

motivate Transactional Memory designs. This section focuses on whether Trans-

actional Memory systems really deliver on their promise of making scalable con-

current programs easier to write.

1.2.1 Transactional Memory systems

Transactional Memory is a technique to support speculative execution that can

be used as an alternative to mutual exclusion. It facilitates scalable concurrent

execution by allowing the simultaneous execution of tasks that may be interde-

pendent.

Section 1.2.4 introduces Transactional Memory.

Software Transactional Memory systems provide a software framework for pro-

grammers to construct concurrent programs that can be executed speculatively.

However, the overheads of supporting speculative execution entirely in software

often exceed the benefits of concurrent execution.

Section 1.2.5 discusses the claim that Software Transactional Memory makes

concurrent programming easier.

Hardware Transactional Memory systems support concurrent execution by

providing a hardware environment in which concurrent programs can be executed

speculatively. The engineering challenges that must be overcome by Hardware

Transactional Memory are significant and the commercial barriers to adoption

are high.

Section 1.2.6 discusses the claim that Hardware Transactional Memory makes

concurrent programming easier.

Transactional Memory can make programming easier by freeing the program-

mer from having to reason about locks, but concurrent programming using Mem-

ory Transactions is not necessarily easier than concurrent programming using

22 CHAPTER 1. INTRODUCTION

mutual exclusion.

Section 1.2.7 discusses the claim that Transactional Memory makes concurrent

programming easier.

Research carried out in both the private and public sectors has yet to produce

convincing evidence that Transactional Memory systems are making progress

towards delivering on their promise of scalability, because the overheads of sup-

porting concurrent execution exceed the benefits of concurrent execution. They

also fail to deliver on their promise of improved programmer productivity, because

concurrent programming using Memory Transactions is no easier than concurrent

programming using mutual exclusion.

1.2.2 Design priorities

Transactional Memory research is founded on the premise that speculative ex-

ecution is necessary to support scalable concurrent execution on Chip Multi-

Processors and it has the goal of making concurrent programming easier. This

thesis does not doubt this premise nor question this laudable goal, but it does

question the priorities that motivate the design of Transactional Memory systems.

Transactional Memory proposals prioritise some aspects of system design at

the expense of others:

• They focus on the speculative execution of programs, at the expense of the

interaction with external systems.

• They choose to buffer speculative state, at the expense of increased memory

bandwidth.

• They weaken transactional isolation, at the expense of semantic simplicity.

• They centralise the responsibility for transaction management, at the ex-

pense of scalability.

• They focus on ease of programming per se, at the expense of total produc-

tivity across the software development cycle.

Given the disappointing progress of Transactional Memory systems to date it

is reasonable to suggest that some of the priorities should be re-assessed and that

designs based on a different set of priorities should be considered.

1.2. MEMORY TRANSACTIONS 23

Chapter 2
 Software engineering

 observation

Chapter 3
 Hardware engineering

 observations

Application must
 interact with

 external entity

Coherent caches
 are not scalable

Strong memory models
 are not scalable

Chapter 4
 Software engineering

 observation

Chapter 5
 Systems engineering

 observation

Weak isolation
causes

pathologies and
complex semantics

Chapter 6
 Systems engineering

 observation

Centralised
 concurrency control

is not scalable

Centralised
contention management

is not scalable

Shared state
 must be immutable

System must
implement

distributed concurrency
control

Application must make
 strong progress guarantee

Application
 execution must

 be inevitable

Speculation must
 be restricted to

 shared state interface

Shared state must
 be restricted to

Transactional Data Structures

Shared state must
 be restricted to

Linearizable Objects

Shared state must
 be restricted to
Immutable Data

 Structures

Shared state must
 be strongly

 isolated

Figure 1.1: Observations about scalable concurrent systems led to the
development of the techniques described in this thesis.

1.2.3 Design choices

This thesis is divided into chapters, each of which considers one aspect of the

design of a scalable concurrent system. The first section of each chapter exam-

ines how the design priorities have influenced the development of Transactional

Memory systems. Subsequent sections develop an alternative approach based on

a different interpretation of the design priorities.

Figure 1.1 illustrates the organisation of this thesis.

Some aspects of the design of a concurrent system that need to be considered

are:

How to interact with entities outside the concurrent system?

A useful concurrent application must interact with external entities, but it can-

not do so while executing speculatively. This software engineering observation

suggests that application execution must be inevitable.

Chapter 2 identifies the interaction with external entities as a primary design

concern. It presents a critique of the approach taken by Transactional Memory

systems and explores an alternative in which application execution is inevitable

and speculative execution is restricted to the interface with shared state.

24 CHAPTER 1. INTRODUCTION

How to maintain shared state and support speculative execution?

Strong memory models and coherent caches are not scalable. These hardware

engineering observations suggest that shared state in a concurrent system must

be immutable.

Chapter 3 identifies the restrictions on the scalability of hardware as a primary

design concern. It examines the approaches to maintaining shared state employed

by Transactional Memory systems and develops an alternative in which shared

state is immutable.

How to provide access to shared state with intuitive concurrent seman-

tics?

Weakly isolated transactional systems have complex concurrent semantics and

are prone to pathologies. This software engineering observation suggests that

concurrent systems must enforce strong isolation.

Chapter 4 identifies weak isolation as a source of both programming complex-

ity and pathologies. It presents a critique of the approach taken by Transactional

Memory systems and develops an alternative in which shared state is maintained

in data structures.

How to guarantee correct concurrent execution?

Centralised concurrency control is not scalable. This systems engineering obser-

vation suggests that concurrency control must not be centralised.

Chapter 5 presents a critique of the centralised approach to concurrency con-

trol adopted by many Transactional Memory systems and develops an alternative

approach based on distributed concurrency control.

How to implement contention management to eliminate progress patholo-

gies?

Centralised contention management is not scalable. This systems engineering

observation suggests that a scalable application must make a strong guarantee of

progress.

Chapter 6 explores the progress guarantees offered by concurrent systems and

suggests that the need for centralised contention management can be alleviated

1.2. MEMORY TRANSACTIONS 25

by ensuring that the interface to shared state does not block the progress of the

application.

1.2.4 The development of Transactional Memory

Research into Transactional Memory is comprehensively described in a book en-

titled “Transactional Memory” [HLR10].

The following are some of the significant developments in the history of Trans-

actional Memory:

Lomet proposed the use of transactions within programs [Lom77].

Weihl and Liskov proposed the use of transactions to support concurrent pro-

gramming [WL83].

Stone, Heidelberger and Turek recognised that Memory Transactions are dis-

contiguous multi-word atomic operations [SSHT93]. Computer hardware typi-

cally provides atomic operations that act on a single word or a contiguous double-

word in memory.

Herlihy and Moss proposed Hardware Transactional Memory [HM93]. A

Hardware Transactional Memory implements Memory Transactions by using mod-

ified hardware to support speculative execution.

Shavit and Touitou proposed the conventional model of Software Transac-

tional Memory [ST95]. A Software Transactional Memory implements Memory

Transactions entirely in software by buffering speculative state in core or in a log.

Lie and Asanovic proposed Hybrid Transactional Memory [LA04]. Recent

Hardware Transactional Memory systems are typically hybrids involving both

compiler and run-time support for Memory Transactions executing on modified

hardware.

1.2.5 Software Transactional Memory

Software Transactional Memory systems provide a framework and a run-time sys-

tem to support the speculative execution of Memory Transactions. Dependencies

between tasks are checked at run-time. If conflicting operations are found then

the tasks containing them are re-executed resulting in wasted work.

The influential paper “Software Transactional Memory: Why is it only a

research toy?” was written by the team responsible for IBM’s Software Trans-

actional Memory system [CBM+08]. They compared the performance of their

26 CHAPTER 1. INTRODUCTION

Software Transactional Memory with comparable systems from Intel and Sun

[ART08] [DDS06]. They examined the performance of programs from the STAMP

benchmark suite [CMCKO08]. This benchmark suite contains programs that are

good candidates for concurrent execution. The team does not discuss the inter-

action with the Network or Operating System because the benchmark programs

are monolithic.

The team found that none of the Software Transactional Memory systems they

examined overcame the overhead of supporting Memory Transactions. They also

found that, as more processors were added to the concurrent system, the over-

heads of concurrent execution increased faster than the benefits, so the Software

Transactional Memory systems they studied did not exhibit scalable concurrent

execution.

The team concluded that complex concurrent semantics, weak atomicity,

transactional pathologies, the interaction with serial code, memory reclamation

and the support for legacy binaries are all major barriers to the development of

Software Transactional Memory.

The conclusion of the IBM paper is that Software Transactional Memory does

not achieve its goal of supporting scalable concurrent execution. Soon after pub-

lication of the IBM paper Microsoft cancelled its Software Transactional Memory

research project without publishing any results [Duf10].

This thesis examines why Software Transactional Memory fails to achieve this

goal and explores alternatives that might make the goal achievable in the future.

1.2.6 Hardware Transactional Memory

Hardware Transactional Memory systems use a combination of techniques in-

cluding run-time systems, modified programs and modified hardware to support

speculative execution. The original goal of Hardware Transactional Memory was

to facilitate the concurrent execution of critical sections in programs written

for mutual exclusion without program modification. Unfortunately, programs

written for mutual exclusion rarely contain enough information about dependent

variables for this to be achievable.

The influential paper “Early experience with a commercial Hardware Transac-

tional Memory implementation” was written by the team responsible for SUN’s

ROCK processor [DLMN09]. The ROCK processor is a Chip Multi-Processor

which aims to support concurrent processing. The processor contained hardware

1.2. MEMORY TRANSACTIONS 27

support for speculative execution and explicit support for Memory Transactions.

The team evaluated the system using programs from the STAMP benchmark

suite [CMCKO08].

Prior to the ROCK processor Hardware Transactional Memory research was

restricted to architectural simulation. A hardware architecture can be simulated

in software by a virtual machine on which the target program runs. Typically, the

proposed hardware support for Hardware Transactional Memory is included in the

virtual machine and the execution time for benchmark applications is determined

by simulation. The main problem with architectural simulation is that one cannot

be sure that the results will be similar to those that would be obtained were the

proposed modifications to be implemented in physical hardware. This is especially

true of simulated Chip Multi-Processors because cycle accurate simulation of the

shared memory subsystem is extremely difficult to achieve [Jac09]. The ROCK

processor was seen, by the Transactional Memory research community, as the

most significant Hardware Transactional Memory design to be implemented in

real hardware.

The team reported some speed-up on the benchmarks they tested. They also

demonstrated some scalability. However, the speed-ups were not very impressive

and a great deal of program adaptation was required to obtain them. The team

concluded that Hardware Transactional Memory is a promising area of research.

The ROCK project was cancelled a few months after publication of the paper.

The reasons for the cancellation were not made public, but the cancellation may

suggest that support for Hardware Transactional Memory in commercial Chip

Multi-Processors was not found to be economically viable [Van09]. It might also

suggest that the benchmark results obtained from the hardware implementation

were disappointing when compared to those of architectural simulation [And09].

Many Transactional Memory research papers are able to demonstrate scalable

speed-up from the concurrent execution of benchmark applications. There is

no doubt that Hardware Transactional Memory implementations can speed-up

the concurrent execution of Transactional Memory benchmark programs, such

as those in the STAMP or DaCapo benchmark suites [CMCKO08] [BGH+06].

However, these benchmark applications are not general applications. Performance

results obtained using them are not indicative of the performance one might

expect from the concurrent execution of an operating system or a game.

The conclusion of the ROCK paper is that Hardware Transactional Memory

28 CHAPTER 1. INTRODUCTION

does not achieve its goal of supporting scalable concurrent execution.

This thesis examines why Hardware Transactional Memory fails to achieve

this goal and explores alternatives that might make the goal achievable in the

future.

1.2.7 Ease of programming

Concurrent programs are difficult to write because using mutual exclusion to seri-

alise access to shared data is error prone. Concurrent programs must implement

mutual exclusion, correctly, to avoid the run-time problem of data races and the

pathology of deadlock. Concurrent programming must be done at a very low level

of abstraction, because locks are not composable, so the fundamental interaction

with the program cannot be hidden by abstraction [HMPH05].

Ease of programming is a subjective criterion for determining the efficacy of

Transactional Memory systems. Writing a concurrent program using Memory

Transactions can be just as difficult as writing one using mutual exclusion as it

is often very difficult to break an algorithm into transactions of sufficient size to

be worth scheduling. Transactional Memory systems are also prone to run-time

pathologies such as livelock and priority inversion.

Research publications often claim that programming concurrent systems using

Transactional Memory is somehow easier than writing the same algorithm using

locks. In a sample of 25 papers chosen at random from the on-line transactional

memory bibliography we found that 17 asserted that Transactional Memory made

concurrent programming easier [JBR10]. However, none of the papers in our sam-

ple contained any explicit justification for this claim and most referred to it only

in the introductory section. Indeed, many of the papers contained descriptions of

syntax and semantics that would indicate precisely the opposite to be the case.

Many Transactional Memory research papers claim that concurrent program-

ming using Memory Transactions is easier than using mutual exclusion. However,

very few papers support this assertion with quantitative analysis or empirical

results. In an exceptional paper Rossbach, Hofmann and Witchel describe ex-

periments that showed that students found programming a concurrent algorithm

using Software Transactional Memory was just as difficult as constructing the

same algorithm using mutual exclusion [RHW09]. Rossbach was not able to

show that Memory Transactions were easier to use than mutual exclusion.

1.2. MEMORY TRANSACTIONS 29

The claim that transactional programming is easier than using mutual ex-

clusion is largely based on experience of programmers using transactions to pro-

gram Relational Database systems which is undoubtedly easier than accessing

a database using mutual exclusion. Relational Database systems that support

serialisable transactional execution have largely replaced earlier systems, such

as CICS, in which the programmer is responsible for enforcing mutual exclusion

[GR92]. However, Relational Database systems and Transactional Memory sys-

tems have very little in common as a Memory Transaction coded using an atomic

section is very different from a database transaction specified as a Structured

Query Language (SQL) statement. Transactional programming is easier in the

context of a database system but this does not necessarily mean that using Mem-

ory Transactions makes concurrent programming easier in the context of a Chip

Multi-Processor.

If we compare the specification of TCC [HCW+04], an early Transactional

Memory system, with that of openTM [BMT+07], which is a more recent sys-

tem from the same institution, then we find the more recent specification to be

more complex. So, the claim that Transactional Memory systems have the po-

tential to make concurrent programming easier does not appear to be based on

an extrapolation of the current trend.

Chapter 2

Concurrent Programming

A concurrent program cannot communicate with an external entity or with a com-

ponent running on another processor while executing speculatively. The Trans-

actional Memory programming model does not offer a satisfactory solution to

the problem of communicating with entities outside the program nor does it offer

a way of avoiding the complexity inherent in coordinating concurrent actions.

This chapter examines the aspects of the database programming and functional

programming models that can be usefully incorporated into a concurrent pro-

gramming model.

Section 2.1 identifies the choice of mechanism to support Input and Output

(IO) and operating system interaction as one of the key decisions when designing

a concurrent system.

Section 2.2 identifies uncertainty about the passage of time as the source of

the complexity in a concurrent system.

Section 2.3 identifies the characteristics that a solution to the concurrency

problem must have.

30

2.1. CONCURRENT IO 31

2.1 Concurrent IO

The difficulty of presenting a consistent view of shared state to entities outside

the control of a program is central to the problem of concurrent programming.

A solution to this problem defines the structure of the concurrent program and

the nature of the interface with shared state. Concurrent programs do not exist

in isolation, they interact with the Operating System, the Network and human

interfaces. The requirements for the interaction with entities outside the control

of the system should be a primary design concern of any concurrent system.

Concurrent programs that conform to the database programming model present

a consistent view of shared state to their external interfaces. A concurrent pro-

gramming model for Chip Multi-Processors can be developed from the database

programming model.

The main contribution of this section is the identification of the features of

the database programming model that facilitate interaction with external en-

tities. This section focuses on adapting these features to create a concurrent

programming model for a Chip Multi-Processor.

2.1.1 The interaction with external entities

Transactional Memory systems do not treat the interaction with external entities

as a primary design priority. In fact many Transactional Memory systems do not

present any solution for interaction with external entities, other than to support

the output of a result at the end of program execution.

A concurrent program must conduct a serial interaction to each outside entity.

There must actually be a causal, “happens before”, relationship between events

and their responses and concurrent programs must be built around this causal

relationship. It is not possible for a concurrent program to interact with an

external entity while it is executing speculatively. Speculative execution may

be aborted and restarted, its effects on shared state are speculative and can be

undone. However, the interaction with an external entity cannot be undone so

this interaction must be restricted to those parts of a concurrent program that

are executed inevitably.

A concurrent program presents the appearance of a serialisable interaction

with shared state. There must appear to be a causal, “happens before”, relation-

ship between events and their responses from the point of view of a particular

32 CHAPTER 2. CONCURRENT PROGRAMMING

external entity.

The requirements of the interaction with external entities dictate both the

structure of the concurrent program and the nature of its interface with shared

state. The causal relationships required by external interaction cannot easily be

engineered into a system designed with other priorities.

Transactional Memory systems execute some program code speculatively within

an atomic section, which prevents the program from interacting freely with ex-

ternal entities.

Section 2.1.3 discusses atomic sections.

The problem of presenting a consistent view of shared state to entities outside

the control of the concurrent program has been successfully solved by the database

programming model which describes how a concurrent system should interact

with external entities.

Both the Database programming model and the Transactional Memory pro-

gramming model rely on a transactional approach to concurrent processing. They

are targeted at different problem areas and assign different priorities to design cri-

teria. The main difference between them is that the database model regards the

concurrent interaction with the client as the primary design concern and regards

concurrency as a performance enhancement, whereas Transactional Memory re-

gards concurrent performance as the primary design goal.

Many Chip Multi-Processor systems, such as those used in embedded systems,

are heterogeneous. A heterogeneous Chip Multi-Processor consists of processor

cores and caches of varying size and complexity linked to each other by an on-chip

interconnect. This arrangement of communicating components internalises the

problem of interaction.

Section 2.1.6 discusses the difficulty of writing concurrent applications for

heterogeneous Chip Multi-Processors.

2.1.2 The database programming model

This section identifies features of the database programming model that facilitate

external interaction and adapts them to create a concurrent programming model

for Chip Multi-Processors. It suggests that a program that executes inevitably

can present a consistent view of shared state to external entities.

A database application program executes inevitably and restricts speculation

to the interaction with the database, whilst allowing the application to interact

2.1. CONCURRENT IO 33

freely with external entities. A database system isolates shared state from an

application by implementing the client server model, thereby allowing the inter-

action with shared state to be treated as a transaction.

Section 2.1.5 discusses the Client Server Database programming model.

We adapt the Client Server Database programming model and apply it to

the concurrent execution of a program on a Chip Multi-Processor. The model

permits application programs to interact freely with external entities because

they execute inevitably.

In our model Memory Transactions are specified in terms of an Application

Programming Interface (API) to shared memory. Concurrent programs execute

inevitably and speculative execution is restricted to the interaction with shared

state. Shared state is stored in objects that are isolated from local state. The

interfaces to these shared objects supports Memory Transactions. The shared

state interface executes speculatively, but this speculative execution is encapsu-

lated within transactions that present a consistent view of shared state to the

application. This allows the program to present a consistent view of shared state

to external entities.

2.1.3 Atomic sections

An atomic section is a programming idiom that supports the development of

concurrent programs. An atomic section is a section of program code that appears

to be performed atomically and in isolation as a transaction [CCG08]. An atomic

section differs from a critical section because the instructions within the atomic

section can be simultaneously executed by more than one processor, whereas a

critical section guarantees that only a single processor executes program code

within the section at any particular moment in time.

Speculative lock elision is an execution technique that permits the simulta-

neous speculative execution of program code within a critical section [RG01]. It

permits a concurrent program written using mutual exclusion to be interpreted

as a program containing atomic sections. Within a section all memory writes are

considered speculative and when a conflict occurs the speculative state is rolled

back and corrective action is taken. The rationale behind speculative lock eli-

sion is that conflicts are rare and that execution of the section is unnecessarily

serialised by mutual exclusion.

To detect conflicts it is necessary to distinguish variables that are shared from

34 CHAPTER 2. CONCURRENT PROGRAMMING

variables that are local to a section. In programming languages that allow the

use of pointers, such as C, the locality of a variable is not explicitly defined by

the program. This limits the utility of atomic sections in general and speculative

lock elision in particular. In programming languages that do not allow the use of

pointers, such as Java, a system can attempt to determine the locality of variables

within a section using techniques such as escape analysis [SR01].

Implementations of atomic sections require the programmer to indicate the

locality of variables to the run-time system in some way. However, the object ori-

ented programming model encourages programmers to place logically connected

variables with different access characteristics together in the same object. The

object oriented model is orthogonal to a model in which the locality of each

variable is considered individually.

The apparent simplicity of the use of the atomic keyword to identify an atomic

section belies the subtle complexities of the use of atomic sections [MBL06]. This

complexity arises when atomic sections compromise isolation or are implemented

by locks which block the progress of other processors [CGE08].

Database systems support transactions without explicitly supporting atomic

sections [WA02]. However, it is informative to consider applying the program-

ming model adopted by Transactional Memory to the programming of a Rela-

tional Database system. SQL is a complete functional programming language

so complex routines can be written as single SQL statements rather like atomic

sections.

Not surprisingly, a database program written in this way has many of the neg-

ative characteristics of a program written for Transactional Memory. SQL does

not have an IO mechanism so interaction with external systems is restricted. SQL

requires that each shared variable must be specified in the database schema so

such a program would be tedious to write. For these reasons Database program-

mers rarely write programs in this style and do not generally express transactions

as atomic sections.

The original proponents of Hardware Transactional Memory envisaged a hard-

ware system that would be able to execute programs written for mutual exclusion

by concurrently executing critical sections as atomic sections. They imagined that

this hardware system could implement transactions transparently and that crit-

ical sections could be converted into atomic sections so that applications would

not have to be changed. Today, few believe that this is achievable. Transactional

2.1. CONCURRENT IO 35

Memory systems require that an application program is significantly modified

to support Memory Transactions. Atomic sections seem at odds with modern

networked and object oriented applications. Despite this, the basic approach of

expressing Memory Transactions as atomic sections has remained the same since

Transactional Memory was first proposed.

2.1.4 Previous work

It is common for Transactional Memory systems to treat IO and Operating Sys-

tem interaction as engineering problems to be addressed at a late stage in the

implementation. However, it is difficult to engineer a serial interaction with

external entities into a system primarily designed around the requirements of

concurrent execution. This section describes attempts to engineer support for

external interaction into Transactional Memory systems.

The main reference book on Transactional Memory describes how Trans-

actional Memory systems perform IO and interact with the Operating System

[HLR10]. However, the limited coverage of the topic suggests that the interac-

tion with external systems is not the primary design concern when developing a

Transactional Memory system nor is it the main focus of Transactional Memory

research.

Transactional Memory systems take three general approaches to interaction.

Firstly, they delay interaction by buffering the output produced within an atomic

section. The buffer can be discarded if the atomic section is restarted. Secondly,

they undo interaction with the Operating System. A memory allocation within

an atomic section can be undone should the atomic section be restarted. Thirdly,

they stop concurrent execution before interacting with an external entity.

xCall is a Transactional Memory aware API that has been proposed for han-

dling system calls [VTG+09]. xCall addresses the problem of performing IO while

executing speculatively. It also addresses the problem that the atomicity and iso-

lation guarantees made by the transactional system do not apply to the Operating

System kernel.

xCall provides output facilities to Memory Transactions by buffering IO oper-

ations until a transaction has committed. This buffered output can be discarded

if speculation fails. The technique makes writing monolithic programs easier as

output can be built up as the program runs.

xCall improves the concurrent semantics of some system calls by undoing their

36 CHAPTER 2. CONCURRENT PROGRAMMING

effect when the transaction is aborted. This technique works well for memory

allocation but not all Operating System calls are reversible.

Applications in the STAMP benchmark suite stop all concurrent execution

before initiating output [CMCKO08]. Software Transactional Memory systems

generally approach Operating System interaction in the same way as output.

They stop all concurrent execution before making a call to the Operating System.

Operating System interaction complicates the implementation of Hardware

Transactional Memory systems and a great deal of engineering effort is required

to support it. Many Operating System calls involve a context switch. The state of

the transaction prior to the context switch must be preserved and this state must

be restored after the Operating System call is complete [KHLW10]. For Hardware

Transactional Memory systems that buffer speculative state in cache the context

switch associated with Operating System calls is particularly problematic. The

Hardware Transactional Memory system must ensure that speculative state held

in cache is not flushed during the Operating System call.

In-memory databases implement the database programming model [Gra02].

In-memory database systems execute programs inevitably and present a consis-

tent view of shared state to external entities. However, many of the features

of in-memory databases, such as abstract query language and relational tables

are not suitable as a model of shared state for concurrent programming. A con-

current programming solution should adopt only those features of the database

model that are relevant to supporting the interaction with external entities.

2.1.5 The Client Server Database Model

The Client Server Database model addresses a similar problem to Transactional

Memory and it shares the goals of supporting scalable concurrent execution and

ease of programming. The reason why the programming styles and supporting

systems appear so different is that database programs treat the interaction with

external entities as the primary design concern and this affects every aspect of

the program and supporting system.

The Client Server Database model is a software engineering concept in which

the application processing and the management of shared data are regarded as

distinct processing tiers. These tiers do not share access to each other’s data and

the interaction between the tiers is restricted to passing messages between them.

The Client Server Database model provides the appearance of serial execution

2.1. CONCURRENT IO 37

to entities outside the control of the system. This is achieved by isolating and

serialising the interaction with any particular external entity through a client

server relationship. The processing of the interaction with each client is treated

as an independent task. These tasks can be executed concurrently while each

client experiences a serial interaction with the program.

In the Client Server Database model applications execute inevitably with spec-

ulative execution restricted to the accesses to shared data. The execution of a

program can be regarded as serial because it is isolated from concurrently exe-

cuting programs and because the access to shared data is serialised. In the Client

Server Database programming model, output is only contingent on committed

state so all speculative execution related to the output values must be committed

before output can start.

The Client Server Database model describes how shared state should be re-

stricted so that external entities experience a consistent view of shared state. This

is achieved by giving the appearance of a serialised interaction with shared state

to any particular external entity by using a database as the exclusive repository

of shared state.

A Client Server Database system treats state local to an application and

state shared between applications completely differently. State shared between

processes is restricted exclusively to values in the database, which can only be

accessed through the interface provided by the database, whereas state local to

an application can be accessed by the usual memory operations.

In the Client Server Database model all state shared between users is restricted

exclusively to the database. Data related to one client is isolated from data

related to any other client. Output must be based on committed shared state.

Typically, a database server will implement some kind of memory protection or

address space restriction to prevent instances of concurrently executing programs

affecting each other’s execution.

2.1.6 Heterogeneous processors

Message passing is the predominant model for programming heterogeneous Chip

Multi-Processors. The message passing model restricts shared state to the inter-

nals of the message passing interface. The program must pass all shared values

in messages. When message passing is orchestrated, as it is in a parallel proces-

sor, it can be a very efficient way of sharing data, but when messages must be

38 CHAPTER 2. CONCURRENT PROGRAMMING

marshalled, as they are in an embedded Chip Multi-Processor, the overheads of

routing messages can be very high.

A communications protocol is used to pass messages between processors. A

programmer must be careful to abide by the rules of this protocol and handle all

conditions relating to the transmission of the message. It is possible to implement

layers of abstraction over message passing protocols but the fundamental interac-

tion with the program cannot be abstracted away [Zim81]. The usual approach

to programming heterogeneous systems is to avoid sharing any state at all by

using a programming language such as Erlang [Arm07]. There is almost univer-

sal agreement that concurrent programs for heterogeneous Chip Multi-Processors

are difficult to write [DL09].

The reason why Transactional Memory has not been proposed as a technique

for making the programming of heterogeneous Chip Multi-Processors easier is

that heterogeneous processors do not have mechanisms for ensuring the consis-

tency of shared memory. Heterogeneous Chip Multi-Processors do not implement

mechanisms, such as cache coherency, which would allow them to share state.

The solution to the problems of allowing heterogeneous systems concurrent

access to shared data are solved by Client Server Databases which are naturally

heterogeneous. The mechanisms used to maintain shared state in a database

environment could serve as a model for heterogeneous Chip Multi-Processors.

2.2. PARALLELISM 39

2.2 Parallelism

It is difficult to express an algorithm, within an existing imperative program, in

such a way that a computer can execute it concurrently. The key to making this

easier is to remove the concept of shared mutable state from both the expression

of the program and its execution. This can be achieved by incorporating pure

functions and immutable data into the imperative programming paradigm. This

relieves the programmer of having to reason about dependencies and coordinate

concurrent execution.

Software is becoming more and more complex. Much of this complexity is

incidental, arising from the way problems are solved, rather than the problems

themselves. Unfortunately, the mechanisms required to utilise the concurrency af-

forded by Chip Multi-Processors introduce even more incidental complexity. The

functional programming and transactional programming paradigms offer ways to

reduce the incidental complexity arising from the utilisation of concurrent execu-

tion.

The main contribution of this section is to identify concepts fundamental to

the support of concurrent programming within the functional and transactional

programming paradigms. This section focuses on combining the concepts of pure

functions and immutable data within the context of an existing imperative pro-

gramming language.

2.2.1 Temporal uncertainty

The imperative programming paradigm does not offer a satisfactory solution to

the problem of coordinating the concurrent actions of multiple processors as it

relies on the, essentially serial, concepts of impure functions and mutable state.

For many organisations the investment in existing software is too large to con-

template entirely re-writing working programs just to gain a performance benefit

from concurrency. Only a small region of a program benefits from concurrent exe-

cution. Finding a way to support the concurrent execution of performance-critical

regions of existing imperative programs is of great commercial importance.

This thesis focuses on the problem of expressing concurrency, within an ex-

isting imperative program, in such a way that a Chip Multi-Processor can obtain

speed-up from concurrent execution. Our approach is to combine aspects of

functional programming and transactional programming within the imperative

40 CHAPTER 2. CONCURRENT PROGRAMMING

programming paradigm.

The aim is to reduce the incidental complexity introduced into an algorithm

when it is expressed in such a way that it can execute concurrently on a Chip

Multi-Processor. This incidental complexity is not restricted to the additional

code required to allow a routine to execute concurrently. Mechanisms to support

concurrency also make it more complex to design, code, test, debug and maintain

a concurrent algorithm than an equivalent serial algorithm.

The source of this complexity is the uncertainty about the passage of time

perceived by the concurrently executing components and this temporal uncer-

tainty originates from uncertainty about the dependencies between functions and

the interleaving of memory operations.

Functional programming overcomes the incidental complexity of determining

whether concurrently executing functions are dependent on each other as it em-

phasises the use of pure functions in which all dependencies are explicit. This

raises the question of how to express pure functions in such a way that program-

mers can incorporate them into existing imperative programs easily?

Section 2.2.3 discusses this problem in detail.

Functional programming eliminates the incidental complexity inherent in the

management of mutable shared state. Functional programming emphasises the

use of immutable data which can be safely shared between processors. This raises

the question of how to express immutable data in such a way that programmers

can incorporate it into existing imperative programs easily?

Section 2.2.4 discusses this problem in detail.

Transactional programming reduces the incidental complexity of coordinat-

ing concurrent actions between processors. Transactions permit the simultane-

ous speculative execution of functions in the absence of complete information

about their dependencies. This raises the question of how to express Memory

Transactions in such a way that programmers can incorporate them into existing

imperative programs easily?

Section 2.2.5 discusses this problem in detail.

2.2. PARALLELISM 41

2.2.2 Minimising temporal uncertainty

The problem of supporting concurrency in an imperative programming language

can be broken down into the problems of determining dependencies between func-

tions, managing shared state and coordinating concurrent actions. The func-

tional and transactional programming paradigms offer solutions to these prob-

lems. Functional programming languages emphasise the use of pure functions

and immutable data as a means of identifying dependencies and managing shared

state respectively. Transactional programming emphasises the use of transactions

as a means of coordinating concurrent actions. However, the concurrency prob-

lem is not solved by translating a concept from one programming paradigm into

another. Solutions should be found to the problem of balancing concurrent work

while ensuring that operations appear to occur in the correct semantic order.

Certainty about the dependencies between functions permit a functional pro-

gram to include atomic sections which can be evaluated speculatively.

Section 2.2.7 discusses the speculative evaluation of functional programs.

Certainty about the isolation of atomic sections permit those sections to be

executed speculatively without blocking the execution of other processors. The

non-blocking property permits atomic sections to be composed. The ability to

compose atomic sections raises the level of abstraction offered to programmers

freeing them from concerns about locks, lock acquisition order and deadlock. It

permits the combination of abstractions without knowing their implementations.

Section 2.2.8 discusses the composition of atomic sections implemented by

functional programming languages.

Pure functions, immutable data and Memory Transactions are difficult to in-

corporate into the imperative programming paradigm, independently. However,

there are synergies to be gained by incorporating these concepts into the impera-

tive programming paradigm in an integrated manner. The challenge is to combine

these concepts in a way that makes concurrent programming easier within the

imperative programming paradigm.

The proposal developed in this thesis is to decompose programs into func-

tions acting on immutable data and to execute those functions speculatively as

Memory Transactions. In this way the transactional and functional programming

paradigms can be combined to support concurrent execution.

42 CHAPTER 2. CONCURRENT PROGRAMMING

2.2.3 Functional dependencies

A function that uses a value produced by another function is said to be dependent

on that function. The dependency implies that the functions should be executed

in a particular order called the precedence order of the functions. Functions that

are not dependent on each other may be executed concurrently. Precedence is

usually a weak ordering offering many opportunities for concurrent execution.

When there is uncertainty about the dependencies between functions it is not

safe to execute them concurrently but when the uncertainty about dependencies

is reduced the opportunities for exploiting concurrency increase.

An impure function is one that does not necessarily produce the same return

value each time it is executed with a given set of parameters. Impure functions

may have side effects. They read the state of memory in addition to their pa-

rameter list and they can modify the state of memory in addition to returning

a value. These side effects introduce dependencies between functions which are

not expressed in the function’s parameter list or return value. The dependencies

between functions should be known if they are to be executed concurrently.

Imperative programming languages are not usually expressive enough to allow

the identification of all functional dependencies. Consequently, it is often not

possible to identify sets of routines that do not contain dependencies and that

can safely be executed concurrently.

Functional programming is a style of programming that emphasises the use of

pure functions. Pure functions do not have side effects. The dependencies of pure

functions are easily determined because they are restricted to their parameters.

The effects of pure functions are restricted to the return values of the function.

An expression is said to be referentially transparent if it can be replaced

with its value without changing the behaviour of a program. A referentially

transparent expression corresponds to an expression in pure mathematics; it is a

timeless statement of truth.

Pure functions have many advantages over the impure functions typical of

imperative programming languages. The use of the functional program style in

imperative programs is explored in [HM97]. However, the functional program

style is in many ways orthogonal to the style in which imperative programs are

written. The difficulty of using pure functions in an imperative context arises

because imperative programming languages lack the expressiveness necessary to

enforce purity through the use of the type system.

2.2. PARALLELISM 43

2.2.4 Mutable shared state

When a function modifies data that is shared it must ensure that no function

executing on another processor is accessing that data at the same moment in

time. A function can only be certain about mutable data that is never shared.

The conventional approach to ensuring that a function has exclusive access to

shared data is to serialise access to it using mutual exclusion. An alternative

approach is to eliminate mutable shared data altogether and share only immutable

data. Both approaches increase the opportunities for exploiting concurrency by

reducing uncertainty about the order of access to shared data.

Imperative programming languages permit mutable shared data in the form

of variables, objects and data structures. Shared data cannot be simultaneously

modified by multiple processors safely. To prevent simultaneous modification

imperative programming languages implement mutual exclusion which serialises

the execution of a code section accessing shared data. The association between a

serialised code section and the shared data which it protects is a convention. It

is not expressed in, and is not enforced by, the programming language.

Functional programming emphasises the use of immutable data. Immutable

memory locations are unreachable before they have been written and cannot be

modified after they have been written. Immutable data can be organised into

Immutable Data Structures. A data structure is an Immutable Data Structure if

all of the memory locations within it are immutable. Immutable implementations

of many common data structures are described in the literature [Oka98]. These

Immutable Data Structures can have access times and space requirements similar

to their mutable counterparts.

Immutable Data Structures have received little attention outside the field of

functional programming languages and there are no publicly available libraries of

Immutable Data Structures implemented in imperative programming languages.

Immutable Data Structure are traditionally regarded as more difficult to imple-

ment than their ephemeral counterparts.

The use of immutable data is in many ways orthogonal to the imperative

program paradigm. In general, the use of Immutable Data Structures does not

make imperative programming easier and very few imperative programs make use

of them.

44 CHAPTER 2. CONCURRENT PROGRAMMING

2.2.5 Coordinating concurrent actions

An algorithm may be decomposed into tasks that can be executed concurrently on

multiple processors. The actions of these tasks should be coordinated. However,

imperative programming languages do not offer a general solution to the problem

of coordinating actions on multiple processors.

Transactional programming is a style of programming that emphasises the

use of speculative execution. Transactions permit speculation by allowing their

effects to be undone should speculation prove incorrect. Transactions permit the

separation of the actual order of execution from the order in which operations

appear to have executed. It is the separation of the actual and apparent order of

execution which permits speculation.

Concurrent actions are easier to coordinate if their effects are restricted to

transactions. Transactions permit reactive and optimistic coordination, so con-

flicts can be detected after they happen, and can be corrected. Without trans-

actions coordination must be preemptive and pessimistic, so conflicting events

occurring on different processors must be anticipated and avoided.

The support for Memory Transactions within imperative programming lan-

guages is discussed extensively in this thesis. A central problem is how to express

a Memory Transaction within the imperative programming paradigm without

making extensive changes to existing applications?

2.2.6 Previous work

Harris, Marlow, Peyton-Jones and Herlihy develop a Software Transactional Mem-

ory system called STM Haskell that is based on the functional programming

language Haskell [HMPH05].

Haskell is a pure functional programming language. It prevents a programmer

from using impure functions or mutable state, so the choice of Haskell as a base

for developing a concurrent programming language eliminates uncertainty about

both functional dependencies and the interleaving of memory operations during

concurrent execution.

STM Haskell permits the use of atomic sections that can be evaluated specu-

latively as Memory Transactions. STM Haskell’s type system ensures that these

2.2. PARALLELISM 45

Memory Transactions are strongly isolated. STM Haskell’s run time system en-

sures that these Memory Transactions do not block each others progress. Conse-

quently, Memory Transactions implemented in STM Haskell are composable and

are not prone to deadlock.

Harris describes the desirable properties of the functional and transactional

programming paradigms and attempts to combine them. Harris’s system com-

bines pure functions, immutable data and Memory Transactions to support con-

current execution. Our Transactional Data Structures also combine these ele-

ments. However, Harris chooses to regard Memory Transactions as atomic sec-

tions, whereas we choose to regard them as speculative access to shared data.

2.2.7 The speculative execution of functional programs

Concurrent Haskell adds support for concurrent execution to the Haskell language

by introducing explicitly forked threads and a mechanism for communicating

between them [PGF96]. To support the interaction of concurrent programs with

external entities Concurrent Haskell introduces functions with side effects to the

otherwise pure language. Side effects are implemented by a mechanism called a

monad which is incorporated into the type system [PW93].

A monad permits a value of a specific type to have an associated side effect.

When a value of a monadic type is accessed it performs some action before yield-

ing its value. Side effects can be combined by a monadic bind combinator to

produce a sequence of actions. For example, the IO monad has the side effect

of performing input and output operations. An access to a value of a monadic

IO type reads a value of that type from an input stream or writes a value to the

output stream. These accesses can be combined to produce a sequence of input

and output actions.

STM Haskell extends Concurrent Haskell to support speculative execution by

introducing mutable variables called transactional variables and introducing a

monad to support speculative access to them [HMPH05]. This monad facilitates

the creation of atomic sections. Within an atomic section operations on transac-

tional variables are speculative and are not visible to atomic sections executing

concurrently.

The speculative values of transactional variables can be combined by a monadic

bind combinator to form the speculative state of an atomic section. STM Haskell

introduces a function that atomically commits the speculative values of all the

46 CHAPTER 2. CONCURRENT PROGRAMMING

transactional variables written by an atomic section thereby making them visible

to other atomic sections. Atomic sections implemented in STM Haskell can be

regarded as Memory Transactions because they are isolated and they commit

atomically.

The speculative values of all of the transactional variables accessed by an

atomic section are validated and committed at the end of a transaction. The val-

idation process ensures that no concurrent transactions have committed conflict-

ing updates to any of the transactional variables accessed by the atomic section.

If validation is successful then the state of the transactional variables is updated

atomically and can be observed by subsequent Memory Transactions, otherwise

the speculative state of the transaction is discarded and the atomic section is

automatically retried.

STM Haskell introduces a mechanism for explicitly retrying an atomic sec-

tion. Explicit retry aborts the transaction and discards the speculative values of

the transactional variables. Explicit retry occurs under the control of the pro-

grammer but it is otherwise similar to the automatic retry that occurs after an

unsuccessful validation. Automatic retry repeats until no conflicting operations

occur, whereas explicit retry can be used to retry until an event, signalled by

the value of a transactional variable, occurs. To improve efficiency both types of

retry are initiated only when at least one of the transactional variables accessed

by the atomic section is modified by another processor.

Haskell has a static type system which allows the compiler to infer a precise

type for all values automatically. The type system prevents a speculatively exe-

cuting Memory Transaction from interacting with an external entity by ensuring

that only pure functions and speculative actions on transactional variables are

permitted within an atomic section. The type system also ensures that Memory

Transactions are isolated from each other and from non-transactional execution

by preventing transactional variables from being accessed outside an atomic sec-

tion.

STM Haskell provides mechanisms to support atomic and isolated Memory

Transactions. Harris and Peyton-Jones describe how STM Haskell can be ex-

tended to include mechanisms for ensuring the consistency of accesses to data

structures [HP06a].

2.2. PARALLELISM 47

2.2.8 Composable atomic sections

Harris, Marlow, Peyton-Jones and Herlihy describe how STM Haskell permits

the composition of Memory Transactions [HMPH05]. Peyton-Jones provides an

accessible introduction to the modular construction of concurrent programs in

STM Haskell [Pey07].

Sections of program code that ensure their correctness by blocking the progress

of other code sections cannot be composed because correct code sections may fail

when combined. To ensure that two code sections do not deadlock the order in

which their locks are acquired must be examined, so code sections that block

do not encapsulate their implementation details. However, atomic sections im-

plemented by STM Haskell do not block, so they are composable and they can

encapsulate the details of their implementation.

A useful concurrency mechanism should provide a means by which a proces-

sor can wait for an event to occur on another processor. STM Haskell provides a

mechanism whereby an atomic section can wait for an event by explicitly retrying

until the event occurs. An atomic section speculatively executes the code section

that will be completed when an event, which is signalled by the value of a trans-

actional variable, occurs. The atomic section may be retried repeatedly until

the event occurs without blocking the progress of the processor. Atomic sections

that wait for an event in this way can be composed because it is not necessary

to examine or modify their internals when combining them.

A processor can wait for an event to occur on another processor by blocking

the progress of the processor until notification of the event is received. A lock

may block the progress of a processor to protect the code section that will be

completed when it is released. It is the act of blocking progress that prevents

code sections from being composed. Code sections that block the progress of a

processor are not composable because it is necessary to examine their internals

to ensure that deadlock does not occur.

STM Haskell provides a mechanism whereby two atomic sections can be se-

quentially composed to create a composite atomic section. The composite atomic

section commits as a single atomic action. It is not necessary to examine or mod-

ify the internals of the atomic section during composition, so atomic sections are

sequentially composable.

Critical sections protected by locks cannot be sequentially composed. To

sequentially combine two critical sections the locks around each section must be

48 CHAPTER 2. CONCURRENT PROGRAMMING

replaced by a single lock to create a combined critical section. This requires the

examination and modification of the internals of the critical sections, so critical

sections are not sequentially composable.

STM Haskell provides a mechanism whereby two atomic sections can be com-

posed as alternatives, so that either one or the other is eventually executed. If

validation of one atomic section fails then, instead of retrying the same atomic

section, the other can be tried. If validation of the alternative fails then the entire

composition is retried. Atomic sections that act as alternatives in this way can be

composed because it is not necessary to examine or modify their internals when

combining them.

Critical sections protected by locks cannot be composed as alternatives. To

combine two alternative critical sections they must be combined to form a crit-

ical section that contains both alternatives. This requires the examination and

modification of the internals of the critical sections, so critical sections are not

composable as alternatives.

The mechanisms described here facilitate the construction of non-blocking

algorithms. Discolo et al. describe how STM Haskell can be used to implement

a non-blocking queue [DHM+06].

2.3. COMPATIBILITY 49

2.3 Compatibility

A solution to the concurrency problem should be compatible with existing pro-

grams and software development processes. Unfortunately, the changes needed to

support concurrent execution are not always confined to the performance critical

regions of the program. This section examines how the compatibility criterion

restricts the design space of concurrent programming solutions.

The main reason for writing a parallel program is to obtain speed-up from

the performance-critical regions of the program that can benefit from parallel

execution. These regions are only a small part of most programs and a solution

to the concurrency problem should only apply to these regions.

The main contribution of this section is the recognition that the potential ben-

efits of concurrent execution are rarely compelling enough to justify disrupting

existing software development processes or completely re-writing existing pro-

grams. This section focuses on defining the scope of possible solutions to the

concurrency problem that are compatible with existing software.

2.3.1 Disruptive changes to existing software

The benefit of exploiting concurrency must exceed the costs associated with im-

plementing it.

Section 2.3.3 explains why a worthwhile concurrent programming solution

must improve total software development productivity.

Research into concurrent programming tends to focus on obtaining speed-up

from the concurrent execution of those regions of a program that benefit from

it while giving little consideration to the impact on those regions of a program

that do not. To be compatible with existing software a concurrent programming

solution should only affect the regions of a program that benefit from concurrent

execution.

To stand a realistic chance of adoption a concurrent programming solution

should be compatible with existing software, libraries, operating systems, devel-

opment tools and hardware.

Regions with unknown dependencies can occur in applications that also con-

tain regions that are known to be independent. Mechanisms to support the

speculative execution of tasks with unknown dependencies should not adversely

50 CHAPTER 2. CONCURRENT PROGRAMMING

affect mechanisms that support the execution of tasks that are known to be in-

dependent.

During the unit testing phase of application development it must be possible

to reproduce a problem for debugging purposes, during the acceptance testing

phase it must be possible to stimulate all possible program behaviours and in

production it must be possible to capture a program’s behaviour so that errors can

be reproduced. To be compatible with existing software a concurrent application

must exhibit reproducible behaviour, so that it can be integrated into existing

testing methodologies.

Thus, a concurrent programming solution must be locally applicable, compat-

ible with existing software and development processes, compatible with a parallel

programming solution and compatible with existing testing methodologies.

2.3.2 Compatibility with existing software

A concurrent programming methodology should be applicable locally and it should

not be necessary to structure a program around the requirements of those regions

that it is beneficial to execute concurrently. We focus on restricting the locality of

program changes to those routines that benefit most from concurrent execution.

A concurrent programming solution should be implemented in software, with-

out requiring changes to the compiler, the operating system or the software devel-

opment tool chain. We focus on developing a concurrent programming solution

for a conventional imperative language to minimise the impact on existing pro-

gramming methodologies.

A concurrent programming solution should permit the parallel execution of

tasks that are known to be independent and tasks with possible dependencies.

We focus on providing compatibility with the Threading Building Blocks library

which is an integrated parallel programming solution for Chip Multi-Processors

[Int09].

A concurrent execution environment should ensure reproducible application

behaviour. We focus on using time stamps to ensure the correctness of concurrent

execution. Time stamps can be used to ensure reproducible behaviour and to

determine the relationship between tasks during the problem solving process.

2.3. COMPATIBILITY 51

2.3.3 Making concurrent programs easier to write

The goal of research into concurrent programming is to make it easier to create

scalable concurrent programs. To achieve this goal, the benefit from the reduction

in the execution time of a concurrent program, relative to an equivalent serial

program, must exceed the total cost associated with making that program execute

concurrently.

A technique that makes program coding easier might make a program more

difficult to debug offsetting any programmer productivity gains. Any proposal to

make programming easier should improve productivity when amortised over the

entire development process including: program design, coding, debugging, test-

ing, operation and maintenance. The benefits of a new programming technique

must also exceed the costs associated with learning it and the cost of rectifying

mistakes made when it is applied incorrectly.

Regions of many types of application may benefit from concurrent execution,

so the challenge is to integrate techniques to support concurrency into existing

programming environments in such a way that utilising concurrency in those

regions is worthwhile.

Chapter 3

Maintaining State

A concurrent program that uses mutable speculative and shared state is not

scalable. Transactional Memory systems buffer speculative and shared state at

the expense of increased memory bandwidth which limits scalability. This chapter

examines how immutable data offers a means of maintaining both speculative and

shared state that permits a concurrent program to scale.

Section 3.1 identifies the choice of where to store speculative state as one

of the central design decisions of a Transactional Memory system. The section

reviews the mechanisms that Transactional Memory systems employ to support

shared and speculative state and it proposes an alternative approach in which

both speculative and shared state are stored immutably.

The remainder of the chapter focuses on an implementation of an Immutable

Data Structure suitable for use in a concurrent execution environment.

Section 3.2 describes how Immutable Data Structures can be used to store

speculative state.

Section 3.3 describes techniques for implementing Immutable Data Structures.

Section 3.4 describes an Immutable Data Structure that we call the Canonical

Binary Tree.

Section 3.5 describes how the Canonical Binary Tree can be specialised to

implement common ADTs.

Section 3.6 describes how the Canonical Binary Tree can be balanced to min-

imise access time.

52

3.1. SPECULATIVE STATE 53

3.1 Speculative State

The memory wall is an obstacle to obtaining scalable speed-up from the execution

of a program on a Chip Multi-Processor. Transactional Memory systems promise

to speed-up concurrent execution by removing the barriers to scalability imposed

by mutual exclusion, but concurrent speed-up has only been demonstrated in a

few applications, because the buffering of speculative state increases the memory

bandwidth requirement of a concurrent program, restricting scalability. The use

of immutable memory permits concurrent programs to scale to greater numbers

of processors before hitting the memory wall.

The effective memory bandwidth of a scalable concurrent program must be

independent of the number of processors participating in its execution.

The main contribution of this section is an examination of why the demon-

strable concurrent speed-up of general applications has remained elusive. This

section focuses on identifying the impact of the buffering of speculative state on

memory bandwidth as a factor limiting the speed-up that can be achieved.

3.1.1 The memory wall

For execution-bound programs there is a potential for speed-up from concurrent

execution on a Chip Multi-Processor. For such programs a barrier to concurrent

speed-up is mutual exclusion as described by Amdahl’s law. Speculative execution

avoids the need for mutual exclusion and alleviates the scaling restrictions of

Amdahl’s law. However, the scaling of a concurrent program is bounded by

restrictions imposed by both memory latency and memory bandwidth. Wulf and

McKee describe these restrictions which are collectively known as the memory

wall [WM95].

The connection between the processors of a Chip Multi-Processor and main

memory has a finite bandwidth that is shared by all of the processors. The

connection consists of the caches, the memory controller and the wiring between

the processor chip and main memory. Contention in the common components of

the path to memory affects the speed at which memory requests can be serviced.

A program has a memory bandwidth requirement which is the bandwidth,

expressed in bytes per second, that it consumes. An increase in the memory

bandwidth requirement leads to an increase in the latency of individual memory

requests and an increase in the elapsed execution time of the program [HP06b].

54 CHAPTER 3. MAINTAINING STATE

In a Chip Multi-Processor a finite memory bandwidth is shared amongst all of

the processors and this limits the speed-up that can be obtained from concurrent

execution. Increasing the available memory bandwidth is a much more difficult

engineering challenge than increasing the number of processors in a Chip Multi-

Processor so memory bandwidth tends to increase more slowly than aggregate

processing power.

Section 3.1.3 describes the limiting effect of memory bandwidth on execution

time and the difficulty of increasing the available bandwidth.

Buffering speculative state increases the memory bandwidth of a concurrent

program. Data is written twice, once as isolated speculative values and again as

shared committed values. Bookkeeping information, required to ensure correct

concurrent execution, is also written to memory. Wasted work from failed specu-

lation also contributes to the volume of data written to memory. Together these

factors cause a concurrent program to have a much higher memory bandwidth

requirement than the equivalent serial program.

Section 3.1.4 describes how storing speculative state increases the memory

bandwidth requirement of a program.

For many applications the memory wall is a constraint on the speed of serial

execution and such applications are known as memory-bound. It is reasonable

to expect that memory bandwidth will also be the main barrier to obtaining

concurrent speed-up on Chip Multi-Processors. The use of multiple processors

does little to alleviate the memory wall problem, instead Chip Multi-Processors

make the memory bandwidth problem more acute.

Section 3.1.5 describes how concurrent programming transforms an execution-

bound program into a program bounded by memory bandwidth.

Chip Multi-Processors enforce a cache coherency protocol to keep caches co-

herent but mechanisms to ensure cache coherency do not scale well. The over-

heads associated with maintaining coherent caches reduce the effectiveness of

caching and thus increase the effective memory bandwidth of a concurrent ap-

plication. The engineering difficulty of scaling cache coherency mechanisms is a

barrier to increasing the number of processors in a Chip Multi-Processor design.

Section 3.1.6 describes the difficulty of scaling the mechanisms that ensure

cache coherence.

3.1. SPECULATIVE STATE 55

3.1.2 Immutable memory

When only immutable data is used to represent shared state, the amount of shared

data that is either read or written to main memory by a program is independent

of the number of processors involved in its concurrent execution.

A concurrent program should maintain both speculative and shared state

immutably in memory. Immutable values are written just once so immutable

data satisfies the requirement that it does not increase memory bandwidth of a

program. Immutable values cannot change so cached copies are always coherent.

Immutability is a memory usage convention. A memory location is said to

be immutable if its value is written just once and cannot be changed thereafter.

Prior to writing the value the memory location cannot be reached by the program,

so the program cannot read memory locations that have not already been written

and cannot write to those locations that have already been written.

An immutable object is an object whose state cannot be modified once it has

been created. It can be regarded as a set of constant values. An object reference

associates an identifier with a location in memory where the object can be found.

An immutable object cannot be modified but a reference to it may be mutable, so

an identifier can be associated with different versions of an immutable object by

modifying its reference. A concurrent program that maintains state immutably

requires mutable memory to maintain both unshared state and shared references

to immutable objects.

Immutable objects can be relocated while retaining the property of immutabil-

ity. To relocate an immutable object in memory a copy of the object is made

at another location. Values can be inserted into and deleted from an immutable

object during the copy operation. It is possible to create an immutable object

with identical properties to any mutable object by implementing all of the ob-

ject’s mutating methods as constructors of new copies of the object. A serial

program that maintains state in immutable objects may have a different memory

bandwidth requirement from a similar program that uses mutable objects but

in many cases immutable objects can be implemented just as efficiently as their

mutable counterparts. It is not necessary to perform a full copy of an object

every time a mutating method is called to preserve the property of immutability.

Immutable data is written just once so an immutable value written spec-

ulatively does not need to be written again when it is shared. A concurrent

program that maintains shared state immutably scales without increasing its

56 CHAPTER 3. MAINTAINING STATE

memory bandwidth requirement as the total amount of data both written to and

read from memory is unaffected by the number of processors participating in its

execution.

An immutable object can never go stale in cache because its value cannot be

changed so it is not necessary to ensure that the cached copies of an immutable

object are coherent. However, a mechanism to enforce cache coherency is required

to ensure that all processors observe an up to date copy of the reference to the

immutable data.

Immutable data frees Chip Multi-Processors from the scaling restrictions of

cache coherency in two ways. Firstly, it is not necessary for the processor design to

enforce a cache coherency protocol for all memory locations, allowing the design

to be more scalable. Secondly, the cache pathologies of cache coherency misses

and false sharing do not occur and this increases the effective memory bandwidth

of the cache.

3.1.3 Memory bandwidth

A program executing in parallel on two processors requires twice the memory

bandwidth of an equivalent program executing on one. The bandwidth require-

ment for processors executing general applications is around 1GB/s per core.

Desktop and server Chip Multi-Processors use single or dual DDRx memory sys-

tems. The maximum bandwidth of such an arrangement is less than 10GB/s.

Jacob offers a reason why four physical core Chip Multi-Processors are common

and eight core systems have yet to appear which is that, unless the memory sys-

tem is upgraded, an eight core system would perform no better than a four core

system [Jac09].

A solution to the problem of restricted bandwidth is to increase the memory

bandwidth of the processor. Historically, memory bandwidth has increased more

slowly than processor frequency for physical reasons, such as the difficulty of

scaling the number of off-chip pins. Increasing the number of off-chip pins is

challenging because of their energy requirements and because it increases the

complexity of printed circuit boards. Currently, processor frequency is static

and the number of processors on a chip is increasing. Jacob describes why the

number of concurrent memory operations that a processor’s memory controllers

can support is much harder to scale than the number of processors on the chip

[Jac09].

3.1. SPECULATIVE STATE 57

Memory bandwidth can be increased to match the number of cores, but at

significant design cost. A Chip Multi-Processor saturates its memory subsystem

once the number of cores multiplied by the bandwidth of the program executing

on them reaches a maximum sustainable bandwidth. Jacob finds that the 32

core Niagara Chip Multi-Processor has a memory subsystem that saturates at

25GB/s, so the Niagara processor has a memory bandwidth of less than 1GB/s

per core [Jac09].

Memory bandwidth is limited by physical factors and dramatic increases in

bandwidth are unlikely in the near future. Consequently, proposals to support

concurrent programming should focus on decreasing the effective memory band-

width requirement of programs.

3.1.4 The effect of speculation

Transactional Memory systems take several different approaches to storing spec-

ulative state. Each of these approaches has its own relative merits, which are dis-

cussed in detail in the main reference book on Transactional Memory [HLR10].

However, each approach involves writing values to more than one location or

writing additional meta-data to memory. The additional memory writes tend to

increase the memory bandwidth requirement of the program.

Maintaining state in a recovery log is a common technique in Software Trans-

actional Memory systems. Logging state increases memory bandwidth as each

shared value must be written to main memory at least twice. Typically, a system

will write the old value of a location to a log before storing the new value. For

example, the logTM Software Transactional Memory system maintains the com-

mitted state of memory locations that have been written speculatively in a log

[MBM+06]. This technique is known as eager versioning. The amount of state

written to the log is equal to the amount of speculative state written by the pro-

gram. The latency of a memory write operation can be reduced by caching the

log but, eventually, both the old and new values must be written to main memory

as a result of the operation thus increasing the memory bandwidth requirement

of the program.

Maintaining speculative state in cache is a technique adopted by some Hard-

ware Transactional Memory systems. For example, the Hardware Transactional

Memory proposal of Herlihy and Moss maintains speculative state in a dedicated

transactional cache [HM93]. Speculative values are eventually written to main

58 CHAPTER 3. MAINTAINING STATE

memory in addition to committed values so the caching of speculative state in-

creases the memory bandwidth of a program. When cache contains both the

speculative and committed state of an object the number of distinct objects that

it can contain is reduced so the caching of speculative state also increases the

memory bandwidth of a program by reducing the effectiveness of cache.

Maintaining speculative state in a buffer is a technique adopted by many

Hybrid and Software Transactional Memory systems. Buffering shared state in-

creases memory bandwidth because objects must be copied when they are written.

Typically, a buffering Transactional Memory system will copy an entire object

to a new location when one of its fields is modified speculatively. The operation

usually has low latency because it occurs in cache, but the whole of the copied

object must eventually be written to main memory as a result of the operation.

Object copying increases the memory bandwidth of the program.

Each of these techniques require additional bookkeeping information to ensure

the correct concurrent execution of the program. This information will eventually

be written to main memory, increasing the effective memory bandwidth of the

program.

Speculative execution necessitates that some transactions will be aborted and

the work they did will be wasted. Memory operations performed by this wasted

work also increases the effective bandwidth of the concurrent program.

Transactional Memory increases the memory bandwidth requirement of the

program. In many cases the overhead of buffering speculative state is the main

factor limiting the speed-up that can be achieved from the concurrent execution

[Olu07].

3.1.5 Moving the bottleneck

The number of processing cores that it is possible to fit into a single Chip Multi-

Processor is expected to increase in future. As the number of cores increases

so does the potential speed advantage of concurrent programs over their serial

counterparts. Concurrent programming is universally accepted to be difficult but

at some point the speed advantage of concurrent execution will make the effort

of writing concurrent programs worthwhile.

This familiar argument is based on two questionable assumptions. Firstly, that

the difficult of writing concurrent programs is a major obstacle to the adoption of

concurrent programming. Secondly, that a concurrent program has the potential

3.1. SPECULATIVE STATE 59

to execute faster on a Chip Multi-Processor than the equivalent serial program.

In many application programming environments, such as the computer games

industry, there are enormous financial incentives to improve concurrent perfor-

mance. In such environments no programmer effort is spared in utilising concur-

rent execution. The difficult of writing concurrent programs can be overcome by

applying many programmers to the task and requiring each of them to think very

hard. The real problem is that their efforts are so rarely rewarded by improved

performance of the program.

The elapsed execution time of a memory-bound program on a Chip Multi-

Processor is equal to or greater than the serial execution time, no matter how

many processors are applied to the problem. Only execution-bound programs

have the potential for a concurrent implementation executing on a Chip Multi-

Processor to execute faster than a serial implementation.

For execution-bound programs there is a potential speed-up from concurrent

execution. The first obstacle to realising this speed-up is that executing on mul-

tiple processors increases the bandwidth of the program causing it to become

memory-bound. The second obstacle is that instrumentation to support spec-

ulative execution increases the effective memory latency and bandwidth of the

program causing it to become memory-bound.

At best Transactional Memory converts a concurrent program with speed-up

restricted by mutual exclusion into a concurrent program with speed-up restricted

by the memory wall. Transactional Memory systems increase the memory band-

width of the program and this lowers the amount of scaling possible before a

concurrent program hits the memory wall. Programs that have a low memory

bandwidth requirement tend to scale well when the restrictions of mutual exclu-

sion are removed and these are the programs that Transactional Memory research

focuses on [PW10].

3.1.6 Cache coherency

Small memories are generally faster than large memories because they contain

shorter wires. Processors maintain a hierarchy of caches of different sizes to

reduce memory latency and increase memory bandwidth. Chip Multi-Processors

maintain both shared and unshared caches. Typically, each processor has a small

local cache that is not shared and if a memory access cannot be satisfied from this

cache an attempt is made to satisfy it from a larger slower cache shared between

60 CHAPTER 3. MAINTAINING STATE

all of the processors of the Chip Multi-Processor.

To present a consistent view of memory to each processor a Chip Multi-

Processor implements a cache coherency mechanism which enforces a cache co-

herency protocol. A snoop-based cache coherency mechanism broadcasts the ad-

dress of memory locations that have been modified to all caches and a directory-

based mechanism records where all of the copies of a particular location reside.

Chip Multi-Processors generally enforce snoop-based protocols to avoid the ad-

ditional latency of accessing a centralised directory.

The implementation complexity of snoop-based cache coherency protocols in-

creases with processor count because the number of processors that can access a

memory bus is physically limited, so designers face the challenge of maintaining

coherency without the benefit of a single bus to serialise events [Sto06].

A coherency cache miss is a cache miss required to maintain coherency between

processor caches. When a cached location is modified by a processor all of the

copies of that location held in the local caches of the other processors must either

be updated or discarded. Typically, a snoop-based protocol regards the copies

held by the other processors as stale and marks them as invalid so the next

access to the location will result in a cache miss. Coherency cache misses tend

to increase with the processor count and are unaffected by cache size. They have

a detrimental effect on performance as each cache miss increases the effective

memory bandwidth of the program.

The messages sent between processors to maintain coherent caches are known

as coherency bus traffic. Coherency bus traffic increases with processor count

and is unaffected by cache size. Congestion on the bus has a detrimental ef-

fect on memory latency and additional bus traffic increases the effective memory

bandwidth of the program [HP06b].

3.2. IMMUTABLE DATA STRUCTURES 61

3.2 Immutable Data Structures

To support scalable execution a concurrent system should support speculation

without increasing the effective memory bandwidth of the program. A solution

should facilitate concurrent access to shared data while requiring that values are

written to main memory only once. Immutable data is necessarily written to

main memory only once so we propose that Immutable Data Structures can act

as repositories of both speculative and shared state. Immutable Data Structures

have not previously been considered in the context of concurrent execution so

support for them must be developed before this proposal can be evaluated.

The problem is to find a mechanism for maintaining speculative and shared

state in memory. The solution should support the isolation of speculative state

and the atomic transformation of speculative state into shared state. It should

also support simultaneous access to shared state and require that data values be

written to main memory once only.

This section identifies Immutable Data Structures as candidate repositories

of shared state in concurrent systems and examines techniques for maintaining

both speculative and shared state in Immutable Data Structures.

3.2.1 Supporting speculation

To support speculation a mechanism to isolate speculative state and permit its

atomic transformation into shared state is required. This mechanism should

afford scalable concurrency without increasing the effective memory bandwidth

of the program.

The mechanism should support the isolation of speculative state from other

functions executing concurrently. Only the process that wrote the state specu-

latively should be able to observe it. The mechanism should also ensure that a

function observes a consistent view of shared state. Consistency criteria must be

met at the point speculative state becomes shared state.

The mechanism should support the atomic transformation of speculative state

into shared state. In a Chip Multi-Processor the only mechanism for performing

an atomic action is an atomic instruction, so the transformation of speculative

state into shared state must be implemented by an atomic instruction.

Typically, atomic instructions act on only one word in memory. The atomic

transformation of isolated multi-word values into shared values can be achieved by

62 CHAPTER 3. MAINTAINING STATE

atomically updating a reference to those values instead of the values themselves.

To enable atomic transformation, to shared state, speculative state should be

identified by a single reference and this reference should be modified by an atomic

instruction.

An atomic instruction typically implements a memory barrier to ensure that

any memory writes, buffered by the processor, are completed and that caches

are coherent during the execution of the atomic instruction. The memory bar-

rier ensures that the speculative state identified by the reference appears to be

atomically transformed into shared state.

3.2.2 Immutable Data Structures

Immutable Data Structures provide a solution to the problem of maintaining

both speculative and shared state. Paths within an Immutable Data Structure

can be isolated until the mutable reference to the data structure is modified by an

atomic instruction so functions acting on Immutable Data Structure can benefit

from isolation and atomicity provided by the structures themselves.

Figure 3.1 illustrates the insertion and removal of an element in an immutable

binary tree. The functions cause a new path to be created within the data

structure but do not change any of the existing values. A version of a data

structure is identified by a mutable reference. The data structure does not change

per se. Instead, a new version is created by copying data and modifying the

reference.

3.2.3 Immutability and concurrency

In this section we describe how certainty that shared data within an Immutable

Data Structure is immutable enables a program to access it concurrently.

Immutable Data Structures provide a medium for maintaining immutable

shared state within the data structure itself. Immutable Data Structures also

provide a medium for maintaining isolated speculative state, in the form of the

values written by an access function. The mutable reference to the data structure

is modified by an atomic instruction and this causes the speculative state, created

in isolation by the access function, to be transformed atomically into shared state.

Concurrent accesses to mutable data structures must be coordinated for two

reasons. Firstly to protect the integrity of the data structure itself and secondly

3.2. IMMUTABLE DATA STRUCTURES 63

V1 V0

t usr v wq

(a)

V0 V2

t u vr s w

(b)

Figure 3.1: Insertion and deletion from an immutable binary tree. The
shaded vertices represent the path created by the operation. An ellipse with
a double border represents a mutable reference to a version of the Immutable
Data Structure. Version V0 of the immutable binary tree contains the elements
{r, s, t, u, v, w}.
(a) Insertion of an element q into an immutable binary tree creates version V1
containing the elements {q, r, s, t, u, v, w}.
(b) Removal of the element w from an immutable binary tree creates version V2
containing the elements {r, s, t, u, v}.

64 CHAPTER 3. MAINTAINING STATE

to ensure the correct semantic order of operation. An Immutable Data Structure

distinguishes between the structural consistency criteria of the data structure and

the semantic consistency criteria of the application data. However, Immutable

Data Structures do not offer a mechanism for ensuring the correct ordering of the

effects of concurrent operations. A mechanism to ensure this ordering is presented

in subsequent chapters.

3.3. PATH COPYING 65

3.3 Path Copying

We wish to determine the appropriate technique for implementing Immutable

Data Structure in a concurrent execution environment. In a serial execution en-

vironment ease of implementation and performance are important considerations.

However, in a concurrent execution environment ensuring the consistency of the

data structure is the primary consideration. This section reviews the techniques

for implementing Immutable Data Structures described in the literature.

The main contribution of this section is an examination of techniques for im-

plementing Immutable Data Structures. This section focuses on the applicability

of each technique in a concurrent execution environment.

3.3.1 Implementing Immutable Data Structures

Driscoll, Sarnak, Sleator, and Tarjan describe techniques for implementing Im-

mutable Data Structures [DSST86]. This section examines how a complete im-

mutable binary tree, with values on leaves, can be implemented using these tech-

niques.

Full copying

The easiest technique for making a data structure immutable is to copy the entire

data structure including the application values when any change is made. This

technique is called näıve copying. A similar technique called full copying causes

the structure to be copied while leaving the application values in place.

Figure 3.2 illustrates how the full copy technique is used to maintain a com-

plete immutable binary tree.

The children of an immutable node should be copied before the node itself.

Typically, a full copy of an immutable tree is implemented using a post-order

traversal of the nodes. The performance overheads of full copying are significant

so the technique has received little attention.

Path copying

The copying of the data structure can be restricted to the copying of those nodes

that are modified by the operation. A path is a set of connected nodes linking the

root with one or more leaves. A path copy operation creates a new path within

66 CHAPTER 3. MAINTAINING STATE

c da b

(a)

a b c d

(b)

a b c d

e

(c)

ca b d

(d)

Figure 3.2: Full copying technique.
(a) Original complete binary tree.
(b) A full copy duplicates the data structure. The nodes created during the
operation are shaded. Each node of the data structure is copied to create a new
structure.
(c) The leaf e is inserted into the data structure by copying all of the nodes and
adding a new node.
(d) The leaf d is removed from the data structure by copying all of the nodes
except the parent of the leaf being removed.

3.3. PATH COPYING 67

c da b

(a)

c da b

(b)

c d

a b e

(c)

ca b d

(d)

Figure 3.3: Path copying technique.
(a) Original complete binary tree.
(b) A leaf to root path copy. The nodes created during the operation are shaded.
Each node on the path is copied to make a new data structure that has nodes in
common with the original data structure.
(c) The leaf e is inserted into the data structure by copying the path to a leaf
and adding a new node.
(d) The leaf d is removed from the data structure by copying the path to the
parent of a leaf.

68 CHAPTER 3. MAINTAINING STATE

the data structure. A path copy operation may create a new path by copying an

existing path from leaf to root or by selectively copying nodes in some other way.

Figure 3.3 illustrates how the leaf to root path copying technique is used to

maintain a complete immutable binary tree.

In the context of functional programming languages an Immutable Data Struc-

ture maintained using the path copying technique is called a purely functional

data structure.

Section 3.3.3 discusses path copying in more detail.

Fat node

The fat node technique is based on the idea of recording changes to the data

structure within the nodes themselves. The nodes modified by an operation

are regarded as alternatives. Fat nodes can be implemented either by a list of

alternative values for a node or by a list of alternative values for each pointer

within a node.

Figure 3.4 illustrates how the fat node technique is used to maintain a com-

plete immutable binary tree.

The fat node technique can be implemented by augmenting a node with an

additional reference. If this reference is null then the node is the most recent and

its children are interrogated to determine the path. If the reference is not null

then the node or pointer has been superseded by a new value so the reference

should be followed instead.

An access function determines the correct alternative based on a version num-

ber. Driscoll describes how alternatives can be associated with a range of version

numbers [DSST86].

The fat node technique requires less copying than the path copy technique,

because a path copy copies all of the nodes that the fat node copies together with

additional nodes to the root.

The fat node technique is fairly easy to implement. However, long lists of

alternative nodes can build up and these lists can degrade performance. To

improve performance the lists can be split using the path copying technique but

this comes at the cost of additional implementation complexity.

The fat node technique has received attention as the basis of maintaining

persistent data structures in computational geometry [WR08].

3.3. PATH COPYING 69

c da b

(a)

c da b

(b)

c d

a b e

(c)

c da b

(d)

Figure 3.4: Fat node technique.
(a) Original complete binary tree.
(b) A node is added to the fat node. New nodes are created as needed. The
nodes joined by the horizontal dotted line are regarded as part of a single fat
node. The fat node is a list of past values for the node. The nodes created during
the operation are shaded.
(c) The leaf e is inserted into the data structure by the creation of an alternative
value for the parent of the leaf c.
(d) The leaf d is removed from the data structure by the creation of an alternative
value for its grandparent.

70 CHAPTER 3. MAINTAINING STATE

Node copying

The node copying technique is similar to the fat node technique except that a

finite number of alternatives are maintained within a node instead of in a list.

These can either be alternative values for pointers or alternative values for the

node. When the node becomes full it may be split. Cole describes the node

copying technique in relation to persistent data structures [Col86].

Figure 3.5 illustrates how the node copying technique is used to maintain a

complete immutable binary tree.

A node contains alternative values for the references to its children which are

initialised to null and used if set. Each node in the data structure contains a

set of alternative values. Typically, the alternative pointers are set to null when

the node is created and subsequently modified when a path is modified. When a

node becomes full it is split into multiple nodes by creating new paths to nodes

in a similar manner to the path copying technique.

The path copying technique requires that a new path containing copies of all

the nodes from leaf is created during each operation, whereas the node copy-

ing technique copies only part of the path, so the node copying technique often

performs better than the path copying technique. Typically, two alternative val-

ues are stored in a single cache line so the overhead of checking whether the

alternative value is in use is low.

The node copying technique is more difficult to implement than the fat node

technique because node splitting requires that the path copying technique must

also be implemented.

The node copying technique has also received attention as the basis of main-

taining persistent data structures in computational geometry [ST86].

3.3.2 Supporting concurrent access

It is useful to distinguish between an immutable memory location and one that

is singly-assigned. An immutable memory location is always observed to contain

a constant value and it is unreachable until it is assigned. A singly-assigned

memory location can be observed to contain either no value or a value that is

constant once set.

In the context of concurrent execution an immutable memory location can be

safely written because it is unreachable in its uninitialised state, whereas a shared

3.3. PATH COPYING 71

a b c d

(a)

a b c d

(b)

a b

c d e

(c)

ca b d

(d)

Figure 3.5: Node copying technique.
(a) Original complete binary tree.
(b) A node is copied. The nodes affected by the operation are shaded. A node
contains a left and right pointer and an alternative left and right pointer. In
order to find a leaf a test is done to determine whether the alternative pointers
are null and if not the new path is taken.
(c) The leaf e is inserted into the data structure by using the alternative right
pointer of the parent of the leaf c.
(d) The leaf d is removed from the data structure by using the alternative right
pointer of its grandparent.

72 CHAPTER 3. MAINTAINING STATE

singly-assigned memory location must always be written by an atomic instruction

to prevent race conditions.

An immutable memory location can be safely cached by multiple processors

without requiring any mechanism to ensure cache coherence, whereas a singly-

assigned memory location may not because the location can be accessed and

cached in an uninitialised state and is, in effect, mutable. A cache coherency

mechanism is required to ensure that all processors observe the correct value of

a singly assigned memory location.

The fat node and node copying techniques both require that a singly-assigned

memory location is checked for a null value within the data structure. The fat

node technique checks whether the alternative value is null and the node copying

technique checks whether a reference to an alternative node is null. In a concur-

rent execution environment the fat node and node copying techniques require that

these shared singly-assigned locations must be modified by an atomic hardware

instruction. Coherent caches and memory barriers are also required to support

these singly-assigned values. These restrictions mean that the fat node and node

copying techniques are not suitable for implementing Immutable Data Structures

in a concurrent execution environment.

The full copy and path copy techniques do not rely on singly-assigned memory

locations. In the context of concurrent execution the path copying and full copy-

ing techniques share the advantage, over the other techniques, that modifications

to the data structure can be made to appear atomic because a new version of

the data structure only becomes visible to other processors when the root node

is written. They also share the advantage that all values are immutable so they

can be cached in processor-unique caches without requiring that these caches

implement a coherency protocol.

3.3.3 Path copying transformations

Okasaki relates trees to number systems [Oka98]. We can use this relationship to

show that the path copying technique can be used to transform the topology of

an immutable binary tree arbitrarily.

Let S be the set of expressions {{a.b.c.d.e.f},{a.(b.c).d.e.f},. . . } in which the

letters a to f are in the same order. The set S corresponds to the set of possible

topologies of the binary tree in which the leaves are in the same order from left

to right. If the binary operator ’.’ is regarded as being associative then all of the

3.3. PATH COPYING 73

T0

a

b

c

d

e f

(a)

T1

a

b c d

e f

(b)

Figure 3.6: Bracket operations.
(a) A degenerate tree T0 corresponding to the expression {a.b.c.d.e.f} in which
the binary operator ’.’ acts on the values a to f, which are represented by the
leaves in order from left right.
(b) A tree T1 corresponding to an expression in which the brackets have been
re-arranged to cause some operations to take precedence over others. The oper-
ation acting on b and c takes precedence and the expression can be written as
{a.(b.c).d.e.f)}.

expressions in the set S are equivalent. This topological equivalence is the basis

of tree balancing.

For any expression in S there is a transformation, essentially removing brack-

ets, that maps it onto the expression {a.b.c.d.e.f}. Similarly, for any expression in

S there is a transformation, essentially adding brackets, that maps the expression

{a.b.c.d.e.f} onto it.

Figure 3.6 illustrates bracket operations acting on a degenerate tree.

For any tree topology there is a transformation that maps it onto an equivalent

degenerate tree. Similarly, for any tree topology there is a transformation that

maps the degenerate tree onto it. These transformations can be broken down

into a finite sequence of steps, each of which corresponds to adding or removing

brackets from the expression.

By using a similar informal argument we can show that a value can be added

74 CHAPTER 3. MAINTAINING STATE

to or removed from an expression and that this corresponds to the insertion and

deletion of leaves in a degenerate tree.

Implementing topological changes using path copying

The operations that add or remove brackets from an expression correspond to

topological transformations of the tree. These transformations can be imple-

mented using the path copying technique.

Figure 3.7 illustrates bracket operations implemented by path copying.

Given a degenerate tree it is possible to transform it into an equivalent tree

with any topology without altering the original by using the path copying tech-

nique. Similarly, it is possible to transform a tree with any topology into an

equivalent degenerate tree without altering the original.

It is interesting to note that these trees really are equivalent. The trees T0

and T1 in figure 3.6 are equivalent in the vague sense that an in-order traversal

returns the same values in the same order, whereas the trees T2 and T3 in figure

3.7 are equivalent because the same leaves are shared by both trees, they are in

the same order and they exist at the same moment in time.

Implementing structural changes using path copying

The operations that add or remove values from an expression correspond to struc-

tural transformations of the tree.

A value can be inserted into an expression at any point and correspondingly

a leaf can be inserted into the degenerate tree at any point to create a new

degenerate tree. A value can be removed from an expression at any point and

correspondingly a leaf can be removed from a degenerate tree at any point to

create a new degenerate tree.

Figure 3.8 illustrates how these transformations can be implemented using

the path copying technique.

By using the path copying technique it is possible to make structural changes

to a tree, by inserting or removing an arbitrary number of leaves, without altering

the original.

3.3. PATH COPYING 75

T2 T3

a

b

c

d

e f

(a)

T4 T5

a

b c d

e f

(b)

Figure 3.7: Immutable add bracket and remove bracket operations.
(a) A tree corresponding to an expression in which the precedence of one operation
has been elevated. Degenerate tree T2 representing the expression {a.b.c.d.e.f}
and the tree T3 representing the expression {a.(b.c).d.e.f}.
(b) A tree corresponding to an expression in which the precedence of one operation
has been reduced. Tree T4 representing the expression {a.(b.c).d.e.f} and the
degenerate tree T5 representing the expression {a.b.c.d.e.f}.

76 CHAPTER 3. MAINTAINING STATE

T6 T7

a

b

c X

d

e f

(a)

T8 T9

a

b

c

d

e f

(b)

Figure 3.8: Immutable insert and delete operations.
(a) Insertion of an item into the degenerate binary tree. Degenerate tree T6
representing the expression {a.b.c.d.e.f} and the degenerate tree T7 representing
the expression {a.b.c.X.d.e.f}.
(b) Removal of an item from the degenerate binary tree. Degenerate tree T8
representing the expression {a.b.c.d.e.f} and the degenerate tree T9 representing
the expression {a.b.d.e.f}.

3.3. PATH COPYING 77

T12T11

T10

 B

C

 A

Figure 3.9: The leaf to root path copying technique is distinct from other
path copying techniques because it preserves the position of nodes relative to the
root.
A new leaf A is added to tree T10 by a leaf to root path copy to create tree T11.
The path copy preserves the position of nodes that are not copied relative to the
root. For example, the node C is the right child of the root’s left child in both
versions.
A new leaf B is added to tree T10 by another path copying technique to create
tree T12. The relative positions of the existing nodes are not preserved.

3.3.4 Previous work

A leaf to root path copy operation preserves the position of existing nodes relative

to the root, but not all path copy operations preserve the relative position of

existing nodes.

The literature does not make a distinction between a leaf to root path copy

or the creation of a new version through the construction of a new path in some

other way. Driscoll describes path copying without detailed consideration of how

it is achieved [DSST86]. Okasaki describes many copying optimisations which are

not leaf to root copies [Oka98].

Figure 3.9 illustrates the distinction between leaf to root path copy and other

path copying techniques.

78 CHAPTER 3. MAINTAINING STATE

3.4 Binary Trees

There are no publicly available libraries of Immutable Data Structures imple-

mented in imperative programming languages. This section describes the design

of a general purpose Immutable Data Structure. This flexible design can be spe-

cialised to implement a variety of ADTs. The topology of the data structure is

hidden from the program so it can be balanced independent of the ADT that it

implements.

In a functional programming language immutable values are maintained in

purely functional data structures, such as those described by Okasaki [Oka04].

Purely functional data structures might appear to be a starting point for devel-

oping Immutable Data Structures. However, functional programming languages

permit the expression of a function in terms of immutable data, whereas the eval-

uation of a function typically relies on mutable data. In some cases a functional

programming language compiler implements a purely functional data structure

as a mutable structure. In a concurrent execution environment it is the actual

immutability of values used during the execution that matters rather than the

appearance of immutability presented to the programmer by the programming

language.

The main contribution of this section is the development of a general Im-

mutable Data Structure that can be used to maintain speculative and shared

state. This section focuses on design flexibility and subsequent sections show

how the structure can be specialised to conform to a variety of ADTs.

3.4.1 A flexible Immutable Data Structure design

A general purpose Immutable Data Structure should be flexible enough to present

a variety of familiar ADTs to the program. Design flexibility is a vague term but

we take it to mean three things. Firstly, we prefer the simplest most general

solution. In practice, this means designs that contain no special cases. Secondly,

we prefer to hide details of the data structure implementation from the appli-

cation. In practice, this means making details of the topology inaccessible to

the ADT. Thirdly, we delay performance optimisations until the final stages of

implementation.

3.4. BINARY TREES 79

3.4.2 The Canonical Binary Tree

The proposed solution is an immutable binary tree that can be specialised to

conform to a particular ADT. We call this structure the Canonical Binary Tree

because it is an immutable binary tree reduced to the simplest and most signifi-

cant form possible without loss of generality. This section states the decisions on

which the design of the Canonical Binary Tree is based.

Why a binary tree?

A tree in which each node has many children can be shallower than a binary tree

containing the same number of leaves. It is common for purely functional data

structures to be based on shallow trees so that access times are minimised.

For example, the Clojure language implements a number of purely functional

data structures internally. These structures are based on a 32 bit hash array

mapped trie. Each node of the trie has up to 32 children so the structure is

shallow and permits fast access. Bagwell describes the implementation of these

data structures in detail [Bag01]. A hash array mapped trie is a complex structure

optimised for good performance on modern computer hardware, but it is difficult

to implement. Clojure offers just a few Immutable Data Structures as primitives

and the language offers no control over the implementation of the underlying

data structure. At the time of writing a new ADT is under development by the

Clojure community. Hickey describes the performance benefits of the hash array

mapped trie and the significant work involved in implementing ADTs based upon

it [Hic11].

In a concurrent execution environment access time is not the most important

design consideration and optimisation can be deferred to a later stage in the

design process. The binary tree has the simplest possible structure and offers the

greatest design and implementation flexibility.

Why associate values exclusively with leaves?

A Canonical Binary Tree contains both structural information and application

values. Structural information is necessarily associated with the nodes but appli-

cation values can be associated either exclusively with leaves or with both leaves

and nodes, which we refer to as vertices. A tree that associates application values

exclusively with leaves can hide its topology.

80 CHAPTER 3. MAINTAINING STATE

For example, the priority queue ADT associates a priority with an applica-

tion value. It is common for a priority queue to be implemented as a binary

heap in which both a priority and an application value are associated with each

vertex. Both the ephemeral priority queue considered by Sedgewick [Sed98] and

the purely functional priority queue considered by Okasaki [Oka04] associate an

application value with a vertex because a vertex can be accessed more quickly

than a leaf. When a priority queue is implemented by a binary heap the high-

est priority vertex can be accessed in O(1) time and insertion into the queue

takes O(log2(n)) time. However, when a priority queue is implemented by a tree

with application values associated exclusively with leaves the access time for all

operations is O(log2(n)).

The Canonical Binary Tree associates application values exclusively with

leaves. All functions access leaves so the amortised access time is:

O(log2(n))

This amortised access time is identical to that of an ephemeral binary tree with

application values maintained exclusively by leaves.

Why separate keys and annotations?

A key is an argument to a function of a data structure, whereas a vertex anno-

tation is a value used to navigate a path through the tree. Usually, annotations

and keys are of the same type and annotations are accessible to the program.

The Canonical Binary Tree design separates the concepts of keys and anno-

tations. Annotations are not accessible to programs so the topology of the tree

can be altered independent of the ADT being implemented.

For example, an associative data structure in which all values are reachable,

such as a map, is typically distinguished from one in which not all application

values are reachable, such as a deque. However, the front and back functions of

a deque can be regarded as a query function that takes as its access argument a

binary key indicating which end of the queue it acts upon.

By separating the concept of the annotation from the key all ADTs can be

regarded as associative. The Canonical Binary Tree treats all ADTs as associative

and hides the details of the annotations from the calling program.

3.4. BINARY TREES 81

Why fix the comparison function?

The function that determines the annotation of a node given the annotations of

its children is referred to as the annotator and the operation that determines

which of the children of a node is on the path is called the comparison. The

annotator function specialises the Canonical Binary Tree so that it conforms to a

particular ADT. The Canonical Binary Tree uses the same comparison function

for every ADT.

For example, a path through a Binary Search Tree can be determined by a

comparison function that causes the right child of a node to be selected if the

access argument is greater than its annotation. This causes an in-order traversal

to return application values in ascending order of the access argument used to

insert them. The order of the elements returned by an in-order traversal can be

reversed either by using a different comparison function or by inserting the values

using a different annotator.

The Canonical Binary Tree fixes the comparison function to reduce the amount

of information that must be specified to specialise it to conform to a particular

ADT.

Why maintain a sentinel leaf?

There is a distinction between a data structure that is empty and a data structure

that does not exist. This is particularly important for data structures that are

accessed concurrently.

An empty Canonical Binary Tree contains a sentinel leaf which is always

present within the tree. We adopt the convention that the sentinel is always the

right-most leaf of the tree.

Which access functions should the Canonical Binary Tree implement?

The Canonical Binary Tree implements only the access functions: create(), insert(),

query(), delete() and empty(). The interface functions required by common

ADTs, such as Top(), Front() etc. are implemented by wrapper functions.

The create() function creates a new data structure containing only the sen-

tinel. Its parameters specify the appropriate sentinel annotation for the ADT

being implemented and an application value. The function allocates storage for

the root and returns a reference to it. The root is initialised with a reference

82 CHAPTER 3. MAINTAINING STATE

to the sentinel. References to the root and the sentinel are maintained by the

program.

The query() function returns an application value. The function accepts an

access argument, a reference to the root and a reference to the sentinel as its

parameters. It is ADT agnostic and does not require a specialising function as a

parameter. Its access argument will always match a single leaf within the tree.

When the tree is empty it returns the application value of the sentinel.

The insert() function always succeeds in inserting a leaf into the tree and

has no return value. The function accepts a specialising annotator function, an

access argument, a reference to the root and a reference to the sentinel as its

parameters.

The delete() removes a leaf from the tree unless it is empty and has no return

value. The function accepts a specialising annotator function, an access argument,

a reference to the root and a reference to the sentinel as its parameters. The

sentinel cannot be deleted and an instance of the Canonical Binary Tree persists

until the program terminates, so there is no function to delete an entire data

structure.

The empty() function compares the address of the sentinel with the address

of the root node, both of which are maintained by the program and passed as

parameters.

3.4.3 Previous work

Sedgewick provides a comprehensive guide to important ephemeral data struc-

tures [Sed98]. Okasaki provides a comprehensive guide to purely functional data

structures [Oka98].

Tarjan describes methods of amortised time analysis called the Banker’s and

Physicist’s methods [Tar85]. Okasaki adapts these analyses to purely functional

data structures [Oka98]. The Banker’s method associates credits and debits with

short and long paths in the data structure respectively. The analysis balances the

debits and credits to determine the effective cost of an operation. The Physicist’s

method describes a function mapping each element in the data structure onto a

real number called its potential. The analysis balances the positive and negative

potential of accesses to particular elements to determine the effective charge of

an operation. These analyses are more complicated than ours because the ADTs

presented are tightly coupled to the data structures that implement them.

3.4. BINARY TREES 83

Okasaki focuses on the path copying technique and the diagrams in the book

imply that the programmer should visualise path copying when thinking about

the structures. However, in a functional programming language a data structure is

specified at a high level of abstraction and how the language compiler implements

the structure is not specified. In some cases path copying is used by the generated

code but this is compiler dependent. A structure that appears immutable when

described in a functional programming language might be compiled to a mutable

structure to improve performance.

Moss describes a set of benchmark applications that can be used to assess the

performance of purely functional data structures [Mos99].

Prior to this thesis there were no publicly available libraries of Immutable

Data Structures implemented in an imperative programming language. We do

not know of any previous attempts to produce such a library.

Persistent Data Structures implemented in an imperative programming lan-

guage are typically bespoke solutions to problems in algebraic geometry or version

control. Sarnak and Tarjan describe how a persistent data structure can be used

to solve the planar point location problem in computational geometry [ST86].

Pluquet, Langerman, Marot and Wuyts describe how to construct a partially

persistent data structure in C++ to solve the same planar point location prob-

lem [PLMW08]. These persistent data structures use the fat node technique so

they are not immutable.

Parrish et al. describe a class based implementation of persistence in C++

[PDC+98]. The problem that Parrish addresses is one of transforming a general

application class into a persistent class. The resulting data structure is immutable

but new versions can only be created by copying the entire object.

The C++ Standard Template Library (STL) contains several associative ADTs

that are usually implemented by a balanced red-black tree [Jos99]. The STL sep-

arates the concerns of the ADT from those of the data structure that implements

it. The STL separates the ADT from the balancing process. STL iterators sepa-

rate the ADT from the process of traversing the tree. STL allocators separate the

ADT from the memory management processes so the data structure implements

a container.

Hinze and Paterson describe how a similar separation of concerns can be

applied to a purely functional data structure [HP05]. Hinze describes a general

technique for creating Immutable Data Structures in a functional programming

84 CHAPTER 3. MAINTAINING STATE

language. This technique has not previously been explored in the context of

imperative programming. Hinze reduces the amortised access time of a binary

tree by adding a central spine, to create a so-called finger tree. However, the

spine is just an access time optimisation. Hinze describes how a specialising

function can be used to make an immutable binary tree conform to a particular

ADT. Hinze shows how monoid functions, which are associative functions with

an identity, can be used to specialise a binary tree.

A finger tree is statically specialised to conform to a particular ADT, whereas

the Canonical Binary Tree is dynamically specialised. The set of access functions

associated with each structure implemented by a finger tree is ADT dependent,

whereas the Canonical Binary Tree presents a basic set of functions that can be

adapted to implement a particular ADT.

Hinze’s design is based on an Immutable Data Structure that requires both a

function to determine the annotation of a node given its children and a comparison

operation to determine the path, whereas the Canonical Binary Tree requires only

one specialising function.

Finally, Hinze does not make a distinction between an empty tree and a non-

existent tree, whereas the Canonical Binary Tree maintains a sentinel to make

this distinction.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 85

3.5 Abstract Data Types for Immutable Data

The design of a data structure is normally tightly coupled with the ADT being

implemented. The property of immutability permits the development of a gen-

eral technique for implementing an ADT. The technique has not previously been

explored in the context of an imperative programming language. The Canon-

ical Binary Tree can be made to conform to many different ADTs by specify-

ing a specialising function as a first order parameter. Functions acting on the

Canonical Binary Tree, including those supporting concurrent execution, can be

implemented independent of the ADT.

The main contribution of this section is the development of an Immutable

Data Structure that separates the concerns of the structure from those of the

ADT to which it conforms. This section focuses on techniques for specialising

the Canonical Binary Tree so that a mechanism to allow concurrent access can

be implemented independent of the ADT.

3.5.1 Priority queue

A priority queue associates a priority with a data value so that the value asso-

ciated with the highest priority can be recovered. Priority queues are used to

schedule operating system tasks and to solve the selection problem, which is to

return the kth largest element from a set of elements.

A priority queue has a Push() function to insert a value with an associated

priority into the structure. It has a Top() function that returns the value with the

highest priority and a Pop() function that removes that value. It is conventional

to regard low numbers as high priorities.

Hinze and Paterson describe an implementation of a purely functional priority

queue based on a min-tree [HP05]. The min-tree is a type of tournament tree in

which the annotation of a leaf is the priority and the annotation of a node is the

minimum annotation of its children. This property causes the annotation of the

root node to be equal to the lowest priority of any leaf. A path from the root

to the leaf with the highest priority is found by examining the annotation of the

root node and then repeatedly choosing the child node with matching priority

until a leaf is reached.

Figure 3.10 illustrates an example of a min-tree.

The min-tree corresponds to a mathematical expression in which the minimum

86 CHAPTER 3. MAINTAINING STATE

1

2 1

2 5 1 3

10

g

2

b

6

5

h

1

9

d

3

a

14

j

6

f

7

i

1

e

12

c

Figure 3.10: Example Min-tree containing the priority value pairs {1 7→ e, 2 7→
b, 3 7→ a, 5 7→ h, 6 7→ f, 7 7→ i, 9 7→ d, 10 7→ g, 12 7→ c, 14 7→ j}. The shaded
vertices illustrate the path to the value with the highest priority.

1

1
3

d

2
1

c

2

a

4

b

(a)

1

2 1

2

a

4

b

1

c

3

d

(b)

1

2

a
1

4

b
1

1

c

3

d

(c)

Figure 3.11: Associativity property of a min-tree. Min-trees with differ-
ent topologies maintain the property that the root node is annotated with the
minimum annotation of any leaf. The shaded vertices illustrate the path to the
highest priority element.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 87

V1

1

V0

1

1 33

1

A

2

B

5

E

3

C

4

4

D

(a)

2

2

B

3

4

D

3

C

V1

1

A

1

1

V0

(b)

Figure 3.12: Insertion and removal of an element in a min-tree.
(a) Insertion of an element into an immutable min-tree. Version V0 contains the
priority value pairs {1 7→ A, 2 7→ B, 3 7→ C, 5 7→ E}. The operation Push(4 7→
D) creates version V1 containing the priority value pairs {1 7→ A, 2 7→ B, 3 7→
C, 4 7→ D, 5 7→ E}. The path created by the operation is shaded.
(b) Removal of an element from an immutable min-tree. Version V0 contains
the priority value pairs {1 7→ A, 2 7→ B, 3 7→ C, 4 7→ D}. The operation Pop()
creates version V1 containing the priority value pairs {2 7→ B, 3 7→ C, 4 7→ D}.
The path created by the operation is shaded.

function is applied to the priorities. The minimum function is both associative

and commutative so the min-tree maintains the property that the annotation of a

node is equal to the minimum priority of any leaf in the subtree that it suspends,

regardless of the topology of that subtree.

Figure 3.11 illustrates the associativity property of the minimum function.

The Push() function inserts a value into the min-tree by creating a new leaf

containing the value and annotated by the priority. A new path from the root to

this leaf is created by path copying. The annotation of each node on the path is

set to be the minimum of the annotations of its children. Path copying creates

an entirely new path so the annotations of existing nodes are unaffected by the

operation. The Push() function can insert a leaf anywhere in the tree because

the minimum function is commutative.

The Pop() function removes the value with the highest priority from the

immutable min-tree by creating a new path which makes the leaf with the highest

priority unreachable. The root node is annotated with the next highest priority.

88 CHAPTER 3. MAINTAINING STATE

Figure 3.12 illustrates the insertion and removal of an element from a min-tree.

Figure 3.13 illustrates the growth of an immutable min-tree. Successive leaves

are added through a process of path copying. The properties of the min-tree are

preserved by each version.

The min-tree requires that the children of a node are examined when deter-

mining the path. If the path could be determined without accessing the children

then the number of nodes accessed when traversing a path would be approxi-

mately halved.

In the context of concurrent execution the benefit of determining the path

without accessing the children is significant because nodes that are read while

traversing the path must be recorded to ensure correct concurrent execution. It

is therefore beneficial to restrict node access to those nodes actually on the path.

The min-tree requires that both the comparison and the annotator function

are supplied as specialising functions. The annotation of the root node is followed

to the leaf. This requires a special comparison operation to reach the highest

priority element because the value of the annotation of the root node must be

retained while following the path. If the path could be determined without spe-

cialising the comparison operation then the amount of information required to

describe the data structure would be reduced.

The min-tree does not specify a representation of the empty priority queue. If

a representation of the empty priority queue were specified it would be possible

to distinguish an empty priority queue from a non-existent queue.

In a typical priority queue implementation the Pop() function behaves differ-

ently when removing the last remaining element in a data structure because the

data structure is subsequently empty. In the concurrent execution environment

the status of a data structure between function calls is unknown so it is necessary

that the data structure represents and includes checks for an empty queue in

access function.

The functions Top(), Push() and Pop() are specific to the priority queue

ADT. If these functions could be specified as adaptations of the access functions

of the Canonical Binary Tree then it would be possible to abstract the priority

queue ADT from the data structure that implements it.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 89

4

D

V0

(a)

V0

4

D

V1

1

1

A

(b)

V0

4

D

V1

1

V2

1

2

1

A

2

B

(c)

V0

4

D

V1

1

V2

1

V3

1

1

A

2

2

3

3

C

2

B

(d)

Figure 3.13: Animation showing the growth of a min-tree through a series
of insertions. A new version of the data structure is created by each operation.
In each case the path created by the operation is shaded.
(a) Initial data structure containing the priority value pair 4 7→ D.
(b) After Push(1 7→ A)
(c) After Push(2 7→ B)
(d) After Push(3 7→ C).

90 CHAPTER 3. MAINTAINING STATE

-1

1

3

2

2

1

-8

2

-1

5

-8

1

*

3

10

g

2

b

1

6

5

h

11

1

9

d

3

a

*

6

f

7

i

1

e

12

c

Figure 3.14: Example Directed min-tree containing the priority value pairs
{1 7→ e, 2 7→ b, 3 7→ a, 5 7→ h, 6 7→ f, 7 7→ i, 9 7→ d, 10 7→ g, 12 7→ c}. The
shaded vertices illustrate the path to the highest priority element. The sentinel
is the right-most leaf of the tree. The first annotation is shown above the second
annotation.

3.5.2 Directed min-tree

A new data structure, the directed min-tree, implements the priority queue ADT

and addresses the shortcomings of the min-tree.

The min-tree suffers from the problem that the annotations of both of the

children must be examined to determine the path. The directed min-tree solves

this problem by regarding the annotation as a pair of values. One value contains

the minimum value of the child annotations and the other contains an indicator

as to whether the left or right child of a node has a lower annotation value.

Figure 3.14 illustrates the annotations of a directed min-tree. The annotation

pair contains two values that we call the first and second annotations of the

node. In the figure the first annotation is shown above the second annotation.

The first annotation is calculated by subtracting the second annotation of the

left child from the second annotation of the right child. The second annotation

is the minimum of the second annotations of the children. The first annotation

of a leaf is not used and its second annotation is the priority associated with the

application value.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 91

Only the first annotation of a node is examined when traversing the path.

This annotation indicates which child has the minimum second annotation. The

path to the leaf with the highest priority can be found by comparing the first

annotation of each node with zero. If it is greater than zero then the left child

is on the path, so to determine the path it is only necessary to examine the

annotations of nodes on the path.

The min-tree suffers from the problem that both the comparison operation

and the annotator function must be supplied as specialising functions, whereas

the directed min-tree requires only that the annotator function be specified. The

comparison function is regarded as a feature of the Canonical Binary Tree com-

mon to all ADTs.

The comparison function and the path determination process are the same

regardless of the ADT being implemented, so the query() function is ADT ag-

nostic. For example, the Top() function is implemented as a Canonical Binary

Tree query() function with an access parameter of zero. Path determination

is a common feature of the query(), insert() and delete() functions so the im-

plementation of each function is simplified by making path determination ADT

agnostic.

The min-tree suffers from the problem that the annotation of the root node

must be an argument to the comparison function for every node on the path,

whereas the directed min-tree does not treat the root node as special and does

not require an annotation to be retained while determining the path.

The min-tree suffers from the problem that it does not specify a representation

of the empty priority queue, whereas the directed min-tree contains a sentinel

that can be used to distinguish an empty data structure from a non-existent data

structure. The sentinel is annotated in such a way that it cannot be removed

from the tree.

The access parameter of the insert() function identifies a leaf in the data

structure. When a new leaf is inserted to the min-tree it can be inserted either to

the left or the right of this leaf because the minimum function is commutative so

it does not matter on which side of the path the insertion takes place. However,

the Canonical Binary Tree requires that the sentinel is always the right most leaf.

To ensure this, the insert function always inserts a new leaf to the left of the path

identified by the access parameter. When the tree is created the sentinel is the

only leaf and the insert() function always inserts leaves to the left of the path,

92 CHAPTER 3. MAINTAINING STATE

Canonical Binary Tree specialisation
annotator(< a, b >,< c, d >) < d− b,min(b, d) >
identity <,∞ >

API function Canonical Binary Tree
access function

Push(priority) insert(priority)
Pop() delete(0)
Top() query(0)

Table 3.1: Directed min-tree implementation. The Canonical Binary Tree
can be specialised to implement a directed min-tree and its access functions can
be adapted to present a priority queue ADT to the application.

so the sentinel will always remain the right-most leaf of the tree.

The sentinel must be annotated in such a way that the left child of its parent

is always chosen by the query() and delete() functions because the sentinel is un-

reachable by query() and cannot be removed by delete(). The second annotation

of the sentinel is infinity which causes its parent to have a first annotation value

of infinity so a path through the directed min-tree will include the sentinel only

when the tree is empty. In practice, the sentinel is annotated with the highest

value of the data type of the annotation.

The min-tree suffers from the problem that the ADT cannot be completely

abstracted from the data structure that implements it, whereas the directed min-

tree can be implemented by specifying access arguments to adapt the functions

of the Canonical Binary Tree.

Table 3.1 contains all of the information needed to specialise the Canonical

Binary Tree so that it implements the priority queue ADT. The annotator func-

tion returns the annotation of a node given the annotations of its children. The

identity is the annotation of the sentinel. The Push() function is implemented by

the insert() function of the Canonical Binary Tree. The Pop() function is imple-

mented by the delete() function, The value with the highest priority will always

be found by specifying an access argument of zero as the access parameter of the

delete() function. Similarly, the Top() function is implemented by a query() with

an access argument of zero.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 93

g b h d a jf i e c

Figure 3.15: Example Deque containing the values {g, b, f, i, h, d, e, c, a, j}.

3.5.3 Deque

A deque data structure contains an ordered list of elements and only permits

access to those elements at either end of the list. The functionality of the data

structure can be further restricted to implement a queue or stack.

A deque is regarded as having a front and a back. The Push front() function

inserts a value onto the front of the deque. The Front() function returns that

value. The Pop front() function removes the value at the front of the deque. The

corresponding functions Push back(), Back() and Pop back() affect the back of

the deque.

Hinze and Paterson describe an implementation of an immutable deque based

on the ordering of leaves of a binary tree [HP05].

Figure 3.15 illustrates an example of a deque.

The vertices of the tree are not annotated. The front of the deque is found

by choosing the left child of each node starting from the root node. The order of

the leaves is preserved.

Figure 3.16 illustrates the insertion and removal of an element in a deque.

Figure 3.17 illustrates the growth of the immutable deque. Successive leaves

are added through a process of path copying.

The deque corresponds to an expression in which the list concatenation func-

tion is applied to the values. The concatenation function is associative so the

deque maintains the property that the annotation of a node is equal to the con-

catenation of the values of the leaves in the subtree that it suspends. It is not

necessary to annotate the nodes with the value of the concatenation. List con-

catenation is not commutative so the order of leaves must be maintained during

any transformation of the tree.

94 CHAPTER 3. MAINTAINING STATE

V1 V0

A B C D E

(a)

B DC

V1

A

V0

(b)

Figure 3.16: Insertion and removal of an element in a deque.
(a) Insertion of an element into an immutable deque. Version V0 contains the
values {B,C,D,E}. The operation Push front(A) creates version V1 containing
the values {A,B,C,D,E}. The path created by the operation is shaded.
(b) Removal of an element from an immutable deque. Version V0 contains the
values {A,B,C,D}. The operation Pop front() creates version V1 containing
the values {B,C,D}. The path created by the operation is shaded.

Special comparison functions are required to reach the front and back of the

deque. One of the comparison functions creates a path to the front of the queue

by always selecting the left child. The other comparison function accesses the

back of the queue.

This deque suffers from some of the same shortcomings as the priority queue,

it requires the implementation of access functions that are specific to the deque

ADT, it requires multiple comparison functions and it does not distinguish an

empty deque from a non-existent deque.

3.5.4 Directed deque

A new data structure, the directed deque, addresses the shortcomings of the

deque. It supports a sentinel and fully abstracts the ADT implementation from

the functions of the Canonical Binary Tree.

The nodes are annotated with a pair formed from the second annotation of

the child on the right and the second annotation of the child on the left. The first

annotation of a leaf is not used and the second annotation is zero. The second

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 95

D

V0

(a)

V0

D

V1

C

(b)

V2 V1 V0

DB C

(c)

V3 V2 V1 V0

DB CA

(d)

Figure 3.17: Animation showing the growth of an immutable deque
through a series of insertions. New versions of the data structure are created
by each operation. In each case the path created by the operation is shaded.
(a) Initial deque.
(b) After Push front(C)
(c) After Push front(B)
(d) After Push front(A)

96 CHAPTER 3. MAINTAINING STATE

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

g

0

b

0

0

0

h

0

0

0

d

0

a

1

0

f

0

i

0

e

0

c

Figure 3.18: Example Directed deque containing the values
{g, b, f, i, h, d, e, c, a}. The shaded vertices illustrate the path to the back
of the queue. The sentinel is the right-most leaf of the tree. The first annotation
is shown above the second annotation.

annotation of the sentinel is one.

Figure 3.18 illustrates an example of a Directed deque.

The sentinel is annotated in such a way that it cannot be removed from the tree

and leaves cannot be inserted to the right of the sentinel. Using the annotation

scheme three leaves are reachable, they are the left-most leaf, the sentinel and

the leaf to the left of the sentinel.

The Push front(), Front() and Pop front() functions are implemented by

the Canonical Binary Tree functions insert(), query() and delete() each called

with an access parameter of zero which causes the path to the front of the queue

to be selected. The Push back() function is implemented by the insert() function

with an access parameter of infinity, which causes a path to the sentinel to be

selected. Insertion takes place to the left of the sentinel which causes an element

to be added to the back of the queue. The Back() and Pop back() functions are

implemented by the query() and delete() functions with an access parameter of

one which causes a path to the back of the queue to be selected.

Table 3.2 contains all of the information needed to specialise the Canonical

Binary Tree so that it implements the directed deque ADT.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 97

Canonical Binary Tree specialisation
annotator(< a, b >,< c, d >) < d, b >
identity <, 1 >

API function Canonical Binary Tree
access function

Push front() insert(0)
Pop front() delete(0)
Front() query(0)
Push back() insert(∞)
Pop back() delete(1)
Back() query(1)

Table 3.2: Directed deque implementation. The Canonical Binary Tree can
be specialised to implement a Directed deque and its access functions can be
adapted to present a deque ADT to the application.

1

0

0

0

1

0

0

0

c

0

a

0

b

(a)

0

0

0

0

1

0

0

a

0

b

0

c

1

(b)

0

0

0

a

0

0

0

b

1

0

0

c

1

(c)

Figure 3.19: Associativity property of a directed deque. Directed deques
with different topologies maintain the order of their leaves. The path to the back
of the queue is shaded.

98 CHAPTER 3. MAINTAINING STATE

6

14

2

6

10

14

0

2

5

6

7

10

12

14

0

e

2

b

3

5

6

f

9

10

7

i

12

c

14

j

3

a

5

h

9

d

10

g

Figure 3.20: Example interval tree containing the key-value pairs {0 7→ e, 2 7→
b, 3 7→ a, 5 7→ h, 6 7→ f, 7 7→ i, 9 7→ d, 10 7→ g, 12 7→ c, 14 7→ j }. The shaded path
illustrates the mapping 9 7→ d.

Figure 3.19 illustrates the associativity property of the Directed deque. The

associativity property allows the topology of the data structure to be modified

without affecting the functionality provided by the ADT.

3.5.5 Map

A map is a sorted associative data structure that provides access to a set of key-

value pairs. It also supports in-order traversal of leaves in sorted order. The

functionality that the map ADT provides is similar to that of a C++ STL map

[Jos99].

A map has an Insert() function that inserts a key-value pair, a Query()

function that retrieves an application value given its key and a Remove() function

that removes the key-value pair from the map.

Hinze and Paterson describe an implementation of an immutable map using

an interval tree [HP05].

Figure 3.20 illustrates an interval tree.

An interval tree corresponds to a mathematical expression in which the maxi-

mum and minimum functions are applied to the annotations. The first annotation

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 99

2

3

1

2

3

d

0

1

2

c

0

a

1

b

(a)

1

3

0

1

2

3

0

a

1

b

2

c

3

d

(b)

0

3

0

a

1

3

1

b

2

3

2

c

3

d

(c)

Figure 3.21: Associativity property of an interval tree. Interval trees with
different topologies maintain the property that the first annotation of a node is
the highest first annotation in the subtree suspended on the left and the second
annotation is the highest first annotation in the subtree suspended on the right.

of a node is the minimum of the second annotations of its children. The second an-

notation of a node is the maximum of the second annotations of its children. The

minimum and maximum functions are associative, so during topological trans-

formations the interval tree maintains the property that the first annotation of

a node is the maximum key in the sub-tree suspended by its left child and the

second annotation of a node is the maximum key in the sub-tree suspended by

its right child.

Figure 3.21 illustrates the associativity property of the interval tree.

The key is the access parameter for the functions of the data structure. A

path from the root to a leaf with a given key is found by repeatedly checking

for a leaf and then comparing the key to the first annotation of the node. If the

key is greater than the first annotation then the right child of the node is on the

path. If a leaf with a given key is not present in the interval tree then a leaf with

a different key will be found. It is not necessary to access the children of a node

in order to determine the path.

Figure 3.22 illustrates the insertion and removal of an element in an interval

tree.

100 CHAPTER 3. MAINTAINING STATE

V0

2

5

V1

2

5

1

2

3

5

3

5

1

A

2

B

5

E

3

C

4

5

4

D

(a)

2

4

1

2

4

D

1

A

2

B

V1

3

C

3

4

2

4

V0

(b)

Figure 3.22: Insertion and removal of an element in an interval tree.
(a) Insertion of an element into an immutable interval tree. Version V0 contains
the key-value pairs {1 7→ A, 2 7→ B, 3 7→ C, 5 7→ E}. The operation Insert(4 7→
D) creates version V1 containing the key-value pairs {1 7→ A, 2 7→ B, 3 7→ C, 4 7→
D, 5 7→ E}. The path created by the operation is shaded.
(b) Removal of an element from an immutable interval tree. Version V0 contains
the key-value pairs {1 7→ A, 2 7→ B, 3 7→ C, 4 7→ D }. The operation Remove(3)
creates version V1 containing the key-value pairs {1 7→ A, 2 7→ B, 4 7→ D}. The
path created by the operation is shaded.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 101

4

D

V0

(a)

V0

4

D

V1

1

4

1

A

(b)

V2

1

4

V1

1

4

V0

4

D

1

A

2

4

2

B

(c)

V3 V2

1

4

V1

1

4

V0

1

4

4

D

1

A

2

4

2

4

3

4

3

C

2

B

(d)

Figure 3.23: Animation showing the growth of an interval tree through
a series of insertions. New versions of the data structure are created by each
operation. In each case the path created by the operation is shaded.
(a) The initial data structure containing the key-value pair 4 7→ D.
(b) After Insert(1 7→ A)
(c) After Insert(2 7→ B)
(d) After Insert(3 7→ C)

102 CHAPTER 3. MAINTAINING STATE

Canonical Binary Tree specialisation
annotator(< a, b >,< c, d >) < min(b, d),max(b, d) >
identity <,∞ >

API function Canonical Binary Tree
access function

Insert(key) insert(key)
Remove(key) delete(key)
Query(key) query(key)

Table 3.3: Map implementation. The Canonical Binary Tree can be specialised
to implement an interval tree and its access functions can be adapted to present
a map ADT to the application.

Figure 3.23 illustrates the growth of the immutable interval tree.

The interval tree suffers from the problem that it does not specify a represen-

tation of the empty map.

3.5.6 Interval tree with sentinel

The Canonical Binary Tree can be adapted to implement an interval tree with a

sentinel. The first annotation of the sentinel is not used and the second annotation

is infinity. In practice, the sentinel is annotated with the maximum value of its

data type.

Table 3.3 contains all of the information needed to specialise the Canonical

Binary Tree so that it implements the map ADT.

The Query() function returns a value for every possible value of the access

parameter, even when the access parameter does not match a key. This is not

the behaviour typically expected of a map. The ADT wrapper functions can

implement checks to ensure that the value retrieved by a query corresponds to

the key and that duplicate keys are handled appropriately.

To check that the value retrieved by a query corresponds to a key it is necessary

to store the value of the key as part of the application value. In a concurrent

execution environment the annotation of a leaf cannot be used for this purpose as

it is regarded as structural information and is not accessible through the functions

of the Canonical Binary Tree.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 103

10

5 5

2 3 3 2

1

[1] g

1

[2] b

2

1

[5] h

2

1

[6] d

1

[9] a

1

[10] j

1

[3] f

1

[4] i

1

[7] e

1

[8] c

Figure 3.24: Example Sequence tree containing the values {[1]g, [2]b, [3]f, [4]i,
[5]h, [6]d, [7]e, [8]c, [9]a, [10]j}

A set ADT can be implemented by an interval tree that does not permit dupli-

cate values. To implement the set ADT the Insert() function should call query()

to ensure the uniqueness of a value before calling insert(). In a concurrent exe-

cution environment the Canonical Binary Tree functions should be referentially

transparent so the insert() function, which alters the Canonical Binary Tree,

cannot give any indication of success.

3.5.7 Vector

A vector is an ordered set of values that supports random access based on ordinal

number. The vector ADT provides a similar set of functions to the deque ADT

in addition to random access to ordinals within the sequence. The functionality

that the vector ADT provides is similar to that of a C++ STL map [Jos99].

The Insert() function inserts an ordinal value pair into the vector. The

Query() function is supplied with an ordinal as the access parameter. The func-

tion returns the value associated with the ordinal. The Remove() function deletes

an ordinal value pair from the data structure. An in-order traversal of the vector

returns values in the order given by their ordinal number.

Hinze and Paterson describe an implementation of an immutable vector based

on a sequence tree [HP05].

A node of the tree is annotated with the sum of the annotations of its children.

104 CHAPTER 3. MAINTAINING STATE

4

3
1

[4] d

2
1

[3] c

1

[1] a

1

[2] b

(a)

4

2 2

1

[1] a

1

[2] b

1

[3] c

1

[4] d

(b)

4

1

[1] a
3

1

[2] b
2

1

[3] c

1

[4] d

(c)

Figure 3.25: Associativity property of a sequence tree. Sequence trees with
different topologies maintain the property that a node is annotated with the sum
of the annotations of its children.

A leaf of the tree is annotated with a value of one.

Figure 3.24 illustrates the sequence tree. The ordinal numbers shown in square

brackets are for illustration purposes only and are not part of the data structure.

A vector corresponds to a mathematical expression in which the addition func-

tion is applied to a value of one. Addition is both associative and commutative,

so the vector maintains the property that the annotation of a node contains the

sum of the number of leaves in the subtree that it suspends, regardless of the

topology of that subtree.

Figure 3.25 illustrates the associativity property

To locate a leaf with a given target ordinal the annotations of the children

of the root node are examined. If the target ordinal is greater than or equal to

the annotation of the left child then the right child is on the path. If the right

path is chosen then the annotation of the left path is subtracted from the target

ordinal number. If the left path is chosen then the target ordinal is unchanged.

The comparison process continues at each node until a leaf is reached.

Figure 3.26 illustrates the insertion and removal of an element in an immutable

sequence tree.

Figure 3.27 illustrates the growth of the immutable sequence tree.

The vector ADT can be restricted to implement an immutable array. To

implement an immutable array a vector is populated with values before normal

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 105

V1 V0

5 4

3 22

2

1

C

1

B

1

D

1

E

1

A

(a)

3

1

B

2

1

D

1

C

V1

1

A

2

4

V0

(b)

Figure 3.26: Insertion and removal of an element in an immutable se-
quence tree.
(a) Insertion of an element into an immutable sequence. Version V0 contains the
sequence {[1]B, [2]C, [3]D, [4]E}. The operation Insert([1]A) creates version V1
containing the sequence {[1]A, [2]B, [3]C, [4]D, [5]E}. The path created by the
operation is shaded.
(b) Removal of an element from an immutable sequence. Version V0 contains the
sequence {[1]A, [2]B, [3]C, [4]D} The operation Remove([1]) creates version V1
containing the sequence {[1]B, [2]C, [3]D}. The path created by the operation is
shaded.

106 CHAPTER 3. MAINTAINING STATE

1

[1] D

V0

(a)

V1 V0

2

1

[2] D

1

[1] C

(b)

V2 V1

3

V0

2

1

[3] D

2

1

[2] C

1

[1] B

(c)

V0

1

[4] D

V1

2

V2

3

V3

4

3

2

1

[3] C

2

1

[1] A

1

[2] B

(d)

Figure 3.27: Animation showing the growth of an immutable sequence
tree through a series of insertions. New versions of the data structure are created
by each operation. In each case the path created by the operation is shaded.
Version V3 represents the sequence {[1]A, [2]B, [3]C, [4]D}
(a) Initial data structure containing the value D.
(b) After Insert([1]C)
(c) After Insert([1]B)
(d) After Insert([1]A)

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 107

access is permitted. Replacement is a compound operation formed by an insert

and a remove operation acting on elements with the same ordinal number. It is

the only operation normally permitted by a vector implementing an array.

The sequence suffers from some of the same shortcomings as the priority

queue, it requires the implementation of access functions which are specific to

the vector ADT and it does not distinguish an empty vector from a non-existent

vector.

3.5.8 Directed sequence

A new data structure, the directed sequence, addresses the shortcomings of the

sequence tree. The comparison function of the sequence accesses only the node

annotation. The directed sequence supports a sentinel and fully abstracts the

ADT implementation from the functions of the Canonical Binary Tree.

The sequence requires that the annotations of the children of a node are

examined to determine the path and this results in unnecessary accesses to nodes

that are not on the path. To avoid these accesses a node should be annotated in

such a way that the direction of the path can be determined without accessing the

annotations of its children. This can be achieved by a regarding the annotation

as a pair.

The second annotation, of the directed sequence, is the sum of the second

annotations of the left and right children. The first annotation is set to the

value of the second annotation of the left child. The first annotation is used to

determine the path.

Figure 3.28 illustrates an example of a directed sequence.

To locate a leaf with a given target ordinal that ordinal is compared with the

first annotation of the root node. If it is greater the right child is chosen otherwise

the left child is chosen. This process is repeated until a leaf is reached. When

a right child is chosen the second annotation of the child is subtracted from the

target ordinal.

The sentinel is always the right-most leaf of the Canonical Binary Tree. To

support the Back() and Push back() functions the sentinel and the leaf to the left

of the sentinel must be annotated in such a way that they can be found without

specifying an ordinal. The ADT specifies a special value which causes the second

annotation of the root to be used as the access argument. The second value of

the root is the number of elements in the sequence, including the sentinel.

108 CHAPTER 3. MAINTAINING STATE

5

10

2

5

3

5

1

2

2

3

1

3

1

2

1

[1] g

1

[2] b

1

2

1

[5] h

1

2

1

[6] d

1

[9] a

1

1

[3] f

1

[4] i

1

[7] e

1

[8] c

Figure 3.28: Example Directed sequence containing the values:
{[1]g, [2]b, [3]f, [4]i, [5]h, [6]d, [7]e, [8]c, [9]a}. The shaded path illustrates the ac-
cess to the leaf with an ordinal of seven. The sentinel is the right-most leaf. The
first annotation is shown above the second annotation.

Canonical Binary Tree specialisation
annotator(< a, b >,< c, d >) < b, b + d >
identity <, 1 >

API function Canonical Binary Tree
access function

Insert(ordinal) insert(ordinal)
Remove(ordinal) delete(ordinal)
Query(ordinal) query(ordinal)
Push front() insert(0)
Pop front() delete(0)
Front() query(0)
Push back() insert(?)
Pop back() delete(?− 1)
Back() query(?− 1)

Table 3.4: Directed sequence implementation. The Canonical Binary Tree
can be specialised to implement a directed sequence and its access functions can
be adapted to present a vector ADT to the application. The second annotation
of the root is represented by a star.

3.5. ABSTRACT DATA TYPES FOR IMMUTABLE DATA 109

Table 3.4 contains all of the information required to specialise the Canonical

Binary Tree so that it implements the vector ADT. The value of the second

annotation of the root node is represented by a star.

The functions of the Canonical Binary Tree are complete so all values of the

access parameter are valid arguments. An ordinal value less than or equal to

one refers to ordinal number one. However, an ordinal number equal to or higher

than the number of elements in the sequence refers to the sentinel. The Remove()

function verifies that its access argument is less than the second annotation of

the root.

The directed sequence permits access to all leaves using their ordinal number.

The ordinal is relative to the start of the sequence. Array indexes map to ordinals

which start at one. For example, the Query(0), Query(1) and Front() functions

have the same effect.

An immutable array can be created by restricting the functions of the vector.

The sequence implementation requires that a value is retained and decre-

mented while determining the path, so the function that determines the path

through the data structure is specific to the vector ADT. This is unfortunate

as some of the generality of the Canonical Binary Tree must be sacrificed to

support the sequence. In our implementation the Canonical Binary Tree func-

tions are supplied with an additional parameter which alters the mechanism for

determining the path when implementing a sequence.

The sequence implementation requires that the ADT has access to the sec-

ond annotation of root node. This is unfortunate as annotations are structural

information that should not be exposed to the application.

3.5.9 Previous work

Andersson and Nilsson describe how the comparison operations used to determine

the path through an interval tree can be confined to those nodes that are actually

on the path [AN95]. We extend this idea and apply it to immutable min-trees,

deques and sequence trees.

110 CHAPTER 3. MAINTAINING STATE

3.6 Balancing

An immutable binary tree can be balanced to minimise the time taken to access

the data within it. A number of schemes for balancing binary trees are described

in the literature. This section describes the implementation of a scheme for

balancing the Canonical Binary Tree. The balancing process is independent of

the ADT implemented by the Canonical Binary Tree.

The problem is to adapt a balancing scheme, implemented in an imperative

programming language, so that it can be used to balance the immutable Canonical

Binary Tree. Balancing reduces the average time required to access the data

associated with a leaf. Balancing improves the performance of the priority queue,

deque, map and vector implemented by the ADT by reducing the average access

time of all of the Canonical Binary Tree operations.

The main contribution of this section is the development of an Immutable

Data Structure that separates the performance characteristics of the structure

from the ADT to which it conforms. This section focuses on techniques for

minimising the average access time and the amortised access time of Immutable

Data Structures implemented in imperative programming languages.

3.6.1 Balancing schemes

The Canonical Binary Tree described in the previous section can be balanced

independent of the ADT that it implements.

Figure 3.29 illustrates how the associativity property of the annotator function

permits the topological transformations required to balance the tree regardless of

the ADT that it implements.

A balancing scheme works by implementing a set of balancing invariants.

When the invariants are compromised the tree is restructured so that its topology

conforms to the invariants. Restructuring takes the form of topological transfor-

mations called rotations. A balancing scheme can be characterised by a set of

invariants and a set of rotations. These are combined into a set of cases. Each

case is characterised by a configuration of nodes that violates the invariants.

These nodes are made to conform to the invariants by applying the rotations.

Typically, balancing algorithms restructure the tree during a mutation, guaran-

teeing balancing invariants as post conditions to each mutating function. The

post condition is enforced by applying the checks to each node altered by the

3.6. BALANCING 111

A

A.B

B

(A.B).C

C

((A.B).C).D

D

(a)

A

A.B

B

(A.B).(C.D)

C.D

C D

(b)

B

B.(C.D)

C.D

C D

A.(B.(C.D))

A

(c)

Figure 3.29: The associativity property permits balancing. The mean
number of nodes that are traversed to reach a leaf of the balanced tree (b) is two,
whereas for the unbalanced trees (a) and (c) it is 2.25. The associativity property
of the annotator function ’.’ allows the topology of the tree to be modified, in
order to reduce the average access time, without affecting the functionality of the
ADT being implemented.

mutation.

Many tree balancing schemes are based on B-Trees [BM72]. In these schemes

the invariants and balancing information are expressed in terms of a binary B-

Tree composed from the nodes of the binary tree. The B-Tree nodes are referred

to as pseudo-nodes. Each B-Tree pseudo-node contains a number of binary tree

nodes. The maximum number of children of a pseudo-node is referred to as the

order of the B-tree. Nodes in the same pseudo-node are said to be joined by

horizontal edges. Edges between pseudo-nodes are said to be vertical. Balancing

information in the node indicates whether each edge is horizontal or vertical.

Pseudo-nodes can be joined or split by changing the orientation of the edges. A

balancing algorithm joins and splits the B-tree nodes so that the B-tree remains

perfectly balanced. This places a limit on the imbalance of the underlying binary

tree.

A red-black tree is a self balancing binary B-tree of order four. Guibas and

Sedgewick describe the implementation of an ephemeral red-black tree in detail

[GS78]. For every red-black tree there is at least one corresponding 2-4 B-Tree

with elements in the same order. The invariants are described in terms of the

colours red and black. As a post condition to insertion each node on the path is

examined to ensure that it complies with the invariants. Compromised invariants

112 CHAPTER 3. MAINTAINING STATE

are restored by a series of rotations. For each node on the path of an insertion

there are five possible cases. There are six possible cases for each node during a

deletion.

Okasaki describes an immutable implementation of a red-black tree [Oka98]

in the functional programming languages Haskell and ML. The implementation

relies on repeated pattern matching. Each node on the path is compared with

one of the cases and compromised invariants are fixed by applying rotations.

Each case corresponds to a single program line in both functional programming

languages making the implementation both brief and easy to follow.

The C++ STL contains an implementation of a red-black tree in an imperative

programming language [Jos99]. The imperative implementation relies on explicit

testing of each of the cases for each node on the path. Rotations are implemented

by pointer manipulation. As a result the imperative implementation appears

much more involved than the functional implementation. The high number of

cases and the complexity of the rotations makes the implementation of red-black

balancing in an imperative programming language both long winded and opaque.

To apply a balancing scheme to the Canonical Binary Tree the rotations must

be implemented using path copy. This promises to make the implementation even

more unwieldy, so to ease the implementation effort a simpler balancing scheme

than red-black is required.

3.6.2 Balancing the Canonical Binary Tree

This section describes how the Canonical Binary Tree can be balanced using the

AA-tree balancing scheme. The AA-tree has fewer cases and simpler rotations

than a red-black tree making it simpler to implement. The rotations are easily

expressed in terms of path copy operations.

An AA-tree is a self balancing binary B-tree of order three. Andersson describe

the implementation of an ephemeral AA-tree in detail [And93]. For every AA-

tree there is at least one corresponding 2-3 B-Tree with elements in the same

order. A 2-3 B-Tree consists of pseudo-nodes containing either one or two binary

tree nodes. Two binary tree nodes joined by a horizontal edge are regarded

as forming a pseudo-node. Restructuring operations implement rotations that

maintain a perfectly balanced 2-3 B-tree. This places a limit on the imbalance of

the underlying binary tree.

Each tree node maintains balancing information in the form of a level number.

3.6. BALANCING 113

A.((B.C).D)
level X+1

A
level X

B
level X-1

C
level X-1

D
level X-1

(B.C).D
level X

B.C
level X

(a)

A.(B.(C.D))
level X+1

A
level X

B
level X-1

C
level X-1

D
level X-1

B.(C.D)
level X

C.D
level X

(b)

Figure 3.30: A skew balancing rotation corrects violations of the invariant
that only right edges are horizontal. Horizontal edges linking the nodes within a
pseudo-node are shown in bold. The level number adjustment is also indicated.
(a) A subtree that violates the invariant because it has a horizontal left edge.
(b) A right rotation transforms the horizontal left edge into a horizontal right
edge.

114 CHAPTER 3. MAINTAINING STATE

A.(B.(C.D))
level X

A
level X-1

B
level X-1

C
level X-1

D
level X-1

B.(C.D)
level X

C.D
level X

(a)

(A.B).(C.D)
level X+1

A
level X-1

B
level X-1

C
level X-1

D
level X-1

A.B
level X

C.D
level X

(b)

Figure 3.31: Split rotation corrects violations of the invariant that the largest
pseudo-node has three children. Horizontal edges linking the nodes within a
pseudo-node are shown in bold. The level number adjustment is also indicated.
(a) A subtree that violates the invariant because it forms a pseudo-node with
four children.
(b) A left rotation is performed to transform a pseudo-node with four children
into three pseudo-nodes with two children each. The split balancing rotation
reduces the size of a pseudo-node by elevating the middle node.

3.6. BALANCING 115

0

1

0

1

0

2

1

00

V1

1

2

V0

(a)

 4

 2 2

1
B

1
D

1
E

1
*

(b)

0 1

0 0

1

2

1

00

V1

1

2

V0

(c)

 5

 3 2 2

1
A

1
B

1
D

1
E

1
*

(d)

Figure 3.32: Example of a skew balancing rotation acting on a vector.
(a) A Canonical Binary Tree implementing a vector. The level number of each
node is shown. Vertical edges are dotted. Horizontal edges are bold. The in-
sertion of an element, with a value of A, creates a new version which is shaded.
Insertion without balance creates a horizontal left edge that violates the invariant
that only right edges may be horizontal so a skew balancing rotation is performed.
(b) Version V0 of a vector viewed as a 2-3 B-tree.
(c) The Canonical Binary Tree implementing this vector after inserting the value
A and performing a skew balancing rotation. The skew balancing rotation trans-
forms a potential horizontal left edge into a horizontal right edge.
(d) Version V1 of the vector viewed as a 2-3 B-tree.

116 CHAPTER 3. MAINTAINING STATE

0

1

0

1

0

1

0

2

1

00

V1

1

1

2

V0

(a)

 5

 3 2 2

1
A

1
B

1
D

1
E

1
*

(b)

0

1

0

1

0

0

2

1

00

2

V1

1

1

2

V0

(c)

 6 4

 2 2 2

1
A

1
B

1
C

1
D

1
E

1
*

(d)

Figure 3.33: Example of a split balancing rotation acting on a vector.
(a) A Canonical Binary Tree implementing a vector. The level number of each
node is shown. Vertical edges are dotted. Horizontal edges are bold. The in-
sertion of an element, with a value of C, creates a new version which is shaded.
Insertion without balance creates two adjacent horizontal right edges representing
an overly full pseudo-node that violates the invariant that a pseudo node has at
most three children.
(b) Version V0 of a vector viewed as a 2-3 B-tree.
(c) The Canonical Binary Tree implementing this vector after inserting the value
C and performing a skew followed by a split balancing rotation. The split balanc-
ing rotation transforms the potential overly full pseudo-node by raising the level
of the middle node. This creates a horizontal left edge which must be transformed
into a horizontal right edge by a skew rotation.
(d) Version V1 of the vector viewed as a 2-3 B-tree.

3.6. BALANCING 117

This number corresponds to the level of the pseudo-node within the B-Tree. The

root pseudo-node has the highest level number. Pseudo-nodes at the bottom of

the tree are on level 1 and leaves are on level 0. A binary tree edge which connects

nodes with equal level numbers is regarded as a horizontal edge and the nodes

joined by a horizontal edge form a pseudo-node. A binary tree edge connecting

nodes with different level numbers is regarded as a vertical edge and these edges

connect pseudo-nodes to form the B-tree.

The AA-Tree maintains the following invariants:

• Only right edges are horizontal

• Pseudo-nodes have at most three children

• There are no breaks in the level numbers

The invariants can be implemented by examining three cases for insert opera-

tions and five cases for delete operations. Restructuring operations consisting of

combinations of just two balancing rotations, called skew and split, are required

to maintain the invariants. The skew and split balancing rotations change the

topology of the Canonical Binary Tree. The associativity of the annotator func-

tion ensures that the annotations preserve the functionality of the ADT that it

implements.

A 2-3 B-tree preserves the invariant that all right edges are horizontal. A

horizontal left edge is transformed into a horizontal right edge by a right rotation

called a skew.

Figure 3.30 illustrates a skew balancing rotation.

A 2-3 B-tree preserves the invariant that a pseudo-node has at most three

children. A pseudo-node with four children contains two horizontal right edges.

These are transformed into a left and a right vertical edge by a left rotation called

a split. The split balancing rotation raises the level of the middle vertex.

Figure 3.31 illustrates a split balancing rotation.

Figure 3.32 illustrates an example of a skew balancing rotation acting on a

vector.

Figure 3.33 illustrates an example of a split balancing rotation acting on a

vector.

A tree can be balanced at any time. In our implementation balancing takes

place during insert and delete operations. These operations create a new path

118 CHAPTER 3. MAINTAINING STATE

within the Canonical Binary Tree and this path can cause the balancing invari-

ants to be compromised. Each node on the path is checked by comparing the

configuration of neighbouring nodes to ensure the invariants are preserved. The

process of checking the balancing invariants starts at the leaf and ends at root.

The addresses of the vertices on the path created by the operation are maintained

on a stack so that the path can be accessed in reverse order. An operation that

would cause an invariant to be compromised is made compliant by restructuring

the tree during the path copy.

3.6.3 Previous work

Tree balancing schemes reduce access time by ensuring that paths within a tree

are of similar lengths so that the tree remains balanced. Guibas and Sedgewick de-

scribe a commonly used balancing scheme for ephemeral trees called the red-black

tree [GS78]. Balancing schemes are applicable to both ephemeral and Immutable

Data Structures. Okasaki applies the red-black scheme to balance immutable

binary trees implemented by a purely functional data structure [Oka98]. Okasaki

also describes a purely functional implementation of the AVL tree balancing al-

gorithm. However, the balancing of an immutable binary tree implemented in an

imperative programming language has not previously been considered.

3.6.4 Utility functions

The Canonical Binary Tree provides an ADT-agnostic in-order traversal of the

data structure that returns the values of the leaves. The first value returned is

that of the left most leaf of the tree and the last value returned is that of the

sentinel.

The Canonical Binary Tree also provides a full copy utility that creates a copy

of the tree which shares leaves with the tree being copied and a näıve copy utility

that creates an entirely new copy of the tree. The full copy utility can be used

to both copy and compress a tree. The näıve copy can be used to both copy a

tree and to convert between different ADTs.

3.6.5 Optimisation

To reduce the number of paths created by the balance process a copy of a path

can be balanced in mutable storage and then copied to immutable storage. This

3.6. BALANCING 119

optimisation reduces the amount of storage consumed by the Immutable Data

Structure at the cost of additional copying.

Anderson describes a 2-3 B-tree in which the balancing information takes the

form of a level number and the invariants act on this number. This formulation

is known as an AA-tree. However, the level number is just an implementation

convenience. The invariants of the tree can also be expressed in terms of just

horizontal and vertical edges. Such a formulation results in a smaller node size

as a single bit indicator can be used to indicate the orientation of an edge.

A node may contain information about the subtree it suspends because that

subtree is immutable. This information can reduce the need to access the subtree

during balancing operations. It is possible to record within the node itself whether

or not a child of a node is a leaf. It is also possible to record whether or not the

link to a child’s left child is horizontal or vertical within the parent node. These

optimisations reduce the number of nodes that must be accessed when testing

the balancing invariants. Using these optimisations it is only necessary to access

nodes on the path to balance the tree.

The size of a node can have a significant effect on performance as larger node

sizes reduce the effectiveness of caching. In our implementation the data type of

the annotation is supplied as a template parameter. The smallest data type that

can accommodate the expected range of annotation values is chosen to minimise

the node size. The nature of the references to a child node also affects the size

of the node. Memory displacements or ordinal numbers may be used instead

of pointers to reduce the node size when the memory to be used by the data

structure is pre-allocated in a contiguous chunk.

A tree with multiple children per node improves access times by making the

tree shallower but this optimisation comes at the cost of increased implementation

complexity. A binary tree can be mapped onto a tree with larger nodes by

making some of the parent-child relationships implicit. When paths are written

to contiguous memory the relationship between a node and one of its children

can be implied, because this child resides in a consecutive memory location, so

it is only necessary that a node contain a reference to one of its children and

a bit indicating whether that child is to the left or right. An immutable path

is typically written into contiguous memory leaf first, so the implicit child of a

node immediately precedes it in storage. By restricting the implicit parent-child

relationship to nodes on a path it is possible to achieve the effect of a large

120 CHAPTER 3. MAINTAINING STATE

node with multiple children without significantly increasing the implementation

complexity.

When implementing Immutable Data Structures using C or C++ it is tempt-

ing to allocate individual nodes by using the functions malloc or new, but we

found that this leads to poor performance. The effect is particularly pronounced

in a concurrent execution environment where memory allocation is typically se-

rialised. We found that allocating nodes on a cache line boundary and fitting an

integral number of nodes into a cache line improved performance. In our imple-

mentation we used the Threading Building Blocks scalable memory allocator to

pre-allocate cache aligned contiguous chunks of storage for our data structures

[Int09].

3.6.6 Amortised analysis

Amortised analysis is a method of analysing the performance of a function acting

on a data structure. The idea is that costly operations occur rarely and that

their effect on performance is offset by the occurrence of cheaper, more frequent

operations. The analysis proceeds by establishing the worst case time bound of

the function and how frequently this worst case occurs. The amortised time per

operation is the worst case time bound on a series of m operations divided by m.

Goodrich and Tamassia give a detailed explanation of amortised time analysis for

many common ephemeral data structures [GT09].

Amortised analysis has two distinct purposes. Firstly it guides data structure

design and allows comparison between equivalent operations on different data

structures. For example, the amortised time for the insertion of a value with

associated priority into a priority queue ADT implemented by two different data

structures can be compared. Secondly, it guides application development because

it indicates the relative cost of different operations.

Published amortised access times for functions acting on a data structure

are an important guide for developing high performance applications. However,

access times are a characteristic of the data structure implementation rather than

the ADT. If the application programmer needs to know the amortised access

time for a series of operations then the details of the implementation of that

data structure have not been completely hidden by abstraction. For example,

both a tree and a hash table can implement a map ADT with identical access

functions, however the access time of a tree is logarithmic and that of a hash

3.6. BALANCING 121

table is constant. It is not possible to exchange the implementations without

affecting the performance of the access functions, so the implementation details

have not been fully encapsulated. Using the results of amortised analysis as a

guide to developing applications is orthogonal to the principle of encapsulating

the implementation details of a data structure.

The amortised times for all functions of the Canonical Binary Tree are iden-

tical as each function requires that a single leaf be accessed. The worst case time

bound is 2log2(n) as the longest path to a leaf in a balanced AA-tree is twice as

long as the shortest [And93].

122 CHAPTER 3. MAINTAINING STATE

3.7 Memory Management

An Immutable Data Structure can grow to consume all available memory which

prevents an application from completing. The Immutable Data Structures pre-

sented in this thesis are unbounded and persist for the duration of the application.

The memory occupied by vertices must be allocated and returned in a way that

does not serialise the concurrent application and vertices that are no longer in

use must be identified and reclaimed.

This thesis does not propose a solution to the problem of managing the mem-

ory used by Immutable Data Structures, but a robust solution is necessary before

they can be used in production. This section focuses on techniques for allocat-

ing and reclaiming memory from an Immutable Data Structure in a concurrent

execution environment.

3.7.1 Memory allocation and reclamation

The memory management problem can be decomposed into two components. The

concurrent allocation problem, which is the problem of allocating and returning

memory locations without serialising the application, and the concurrent memory

reclamation problem, which is the problem of identifying memory for reclamation.

The concurrent allocation problem can be solved by using a scalable memory

allocator which can allocate and return the memory occupied by vertices of an

Immutable Data Structure without serialising the concurrent application using

it. The Threading Building Blocks scalable memory allocator can be employed to

allocate memory for a concurrent application. Reinders describes this allocator

in detail [Rei07].

The memory reclamation problem centres on determining reachability. Im-

mutable shared memory can be reclaimed if and only if it is unreachable from all

processors participating in the concurrent application’s execution. The problem

is to determine which vertices of the Immutable Data Structure are reachable and

then return all those vertices that are not.

Vertices allocated in isolation become unreachable when the function that al-

located them is unsuccessful in updating the root, so the memory occupied by

vertices allocated speculatively can be returned when speculation proves unsuc-

cessful.

The reachability of vertices within an Immutable Data Structure is dependent

3.7. MEMORY MANAGEMENT 123

on the reachability of versions. The reachable vertices of an Immutable Data

Structure are those vertices that form the transitive closure of the reachable

versions.

One approach to the memory reclamation problem is to quiesce all concurrent

execution so that only the most recent version of the Immutable Data Structure

is reachable. A full copy of this version is made. The entire Immutable Data

Structure can then be discarded and the memory it occupies can be reclaimed.

After the copy operation is complete concurrent execution can resume using the

copy as the base version of a new Immutable Data Structure. This approach

is particularly effective when the memory for the vertices is pre-allocated as a

contiguous chunk.

Another approach is to determine the set of vertices within the transitive

closure of the reachable versions and then to return all vertices not included in

this set. To achieve this, the reclamation process first traverses the transitive

closure of reachable versions to determine the set of reachable vertices. It then

performs a post-order traversal of the transitive closure of all versions returning

those vertices not included in the set of reachable vertices.

3.7.2 Previous work

Jones and Lins describe the problem of garbage collecting managed memories in a

comprehensive book [JL96]. The problem of reclaiming memory from committed

versions of the Canonical Binary Tree is simpler than the garbage collection prob-

lem in managed memory systems. The Canonical Binary Tree simplifies traversal

because functions acting on the data structure preserve its structural properties.

It simplifies the problem of determining reachability because vertices are only

reachable by a single link. It also simplifies the problem of coalescing reclaimed

memory because vertices are of uniform size and may be allocated contiguously.

Chapter 4

Accessing State

Transactional Memory systems have complex concurrent semantics and are prone

to pathologies which make their run-time behaviour unpredictable. In a concur-

rent system shared state should be isolated so that functions accessing it have

intuitive concurrent semantics and avoid pathologies. This chapter describes how

isolating shared state in linearizable objects provides a concurrent programming

model that has intuitive concurrent semantics and that is not prone to patholo-

gies.

Section 4.1 makes the observation that linearizable objects have intuitive con-

current semantics and are not prone to pathologies.

Section 4.2 describes how Immutable Data Structures can implement lineariz-

able objects.

Section 4.3 describes a checkpointing technique which relies on the composi-

tion of Immutable Data Structures.

Section 4.4 compares a concurrent application which calculates the minimum

spanning tree of a graph with a similar application which uses Transactional

Memory.

124

4.1. LINEARIZABLE OBJECTS 125

4.1 Linearizable objects

Concurrent programming using mutual exclusion is considered to be difficult but

developing software using Memory Transactions is not necessarily easier. Trans-

actional Memory systems have complex concurrent semantics and are prone to

isolation pathologies, such as cascading aborts, which make their run-time be-

haviour unpredictable. Weak isolation can be identified as the cause of these

problems. To avoid these problems Memory Transactions should be strongly

isolated and shared state should be encapsulated in linearizable objects. Lin-

earizable objects have intuitive concurrent semantics and are free from isolation

pathologies.

Transactional Memory systems weaken transactional isolation for several rea-

sons. Firstly, to make programming easier by minimising the application changes

required when implementing atomic sections. Secondly, to improve concurrent

performance, by allowing transactions to share values. Thirdly, to allow transac-

tions to be composed by nesting.

The main contribution of this section is the identification of weak transactional

isolation as one of the reasons why concurrent programs are so difficult to write.

This section focuses on implementing strongly isolated Memory Transactions.

4.1.1 Weak isolation

A database system is said to guarantee transactional isolation if for every pair of

transactions Ti and Tj, it appears to Ti that either Tj finished execution before

Ti started, or Tj started its execution after Ti finished. When this condition is

true each transaction is unaware of other transactions executing concurrently in

the system [SK86].

The definition of isolation in a database context does not consider the effects

of non-transactional execution. A transactional system is said to exhibit strong

isolation if transactions are isolated from both other transactions and concurrent

non-transactional execution [DS09]. A transactional system that is not strongly

isolated is said to exhibit weak isolation. A weakly isolated system is one in

which transactions may be affected either other transactions or concurrent non-

transactional execution or both.

Weakly isolated transactions appear to make programming more convenient

by allowing active transactions to pass values to each other. However, weakly

126 CHAPTER 4. ACCESSING STATE

isolated transactions interact with each other in many different ways which makes

their concurrent semantics very complex. Programming a system with complex

semantics is much more difficult than programming a system with simple intuitive

semantics. In a large program the complex semantics of weak isolation overwhelm

the programming convenience of value passing.

Section 4.1.5 identifies weak isolation as the origin of the semantic complexity

of transactional systems.

Weak isolation appears to improve the performance of a transactional system

by allowing a value to be shared between transactions as soon as it is produced,

but this introduces isolation pathologies which make the behaviour of the concur-

rent system unpredictable. As the number of participating processors increases so

does the overhead of the mechanisms required to avoid pathologies. Eventually,

this overhead exceeds the benefits of sharing values.

Section 4.1.6 describes how weak isolation causes the isolation pathologies.

A programming system should permit the programmer to compose a complex

application from simple components and the act of composition should not add

complexity. Transactional Memory systems support nesting so that transactions

can be composed. Nested transactions have complex concurrent semantics be-

cause they are a form of weak isolation in which value sharing is restricted to the

parent-child relationship. To compose complex transactional applications from

simpler components it is not necessary to support nested transactions. Commer-

cial database applications can be very complex, yet nested transactions are rarely

used.

Section 4.1.7 describes the semantics of nested transactions.

A solution to the problem of weak isolation and its associated pathologies

must address the reasons why isolation is typically weakened. Weak isolation per-

mits state to be shared between processors efficiently, minimises the application

changes required to support Memory Transactions and facilitates transactional

composition.

4.1.2 Strong isolation

The requirements that motivate the use of weak isolation should be satisfied by

the interface to shared state. Memory Transactions should be strongly isolated

and shared state should be encapsulated in linearizable objects.

Linearizability is a correctness condition that characterises the concurrent

4.1. LINEARIZABLE OBJECTS 127

behaviour of an object. Informally, an object is said to be linearizable if all of its

fields are private and the execution of each of its methods appear to take place

atomically, at a single moment in time, between their invocation and response

[Her08].

Section 4.1.3 describes the property of linearizability in detail.

A mutating method of an object can be seen as a transformation from a set

of pre-conditions, that are true of the object before the method call, to a set of

post-conditions, that are true afterwards. When these conditions are met the

object is said to be consistent. A linearizable object can ensure the consistency

of the data that it encapsulates.

A method of a linearizable object can be regarded as a Memory Transaction

because it is atomic, isolated and can ensure consistency. The execution of a

method of a linearizable object forms a strongly isolated Memory Transaction

which is free from isolation pathologies and has intuitive concurrent semantics.

A linearizable object satisfies our requirement for a solution to the problems

caused by weak isolation because it allows state to be shared between processors

efficiently, minimises changes to the calling application and allows transactions

to be composed.

In a concurrent system, shared state should be represented to applications ex-

clusively as linearizable objects because they have intuitive concurrent semantics

and predictable run-time behaviour.

4.1.3 Linearizability

Linearizability can be viewed as a special case of serialisability in which a trans-

action is restricted to a single method applied to a single object.

Linearizability is a non-blocking property of objects. An invocation of a

method is never required to wait for another pending invocation to complete

so the methods of linearizable objects are not prone to the progress pathology of

deadlock.

Linearizability is a local property. The methods of an object can enforce

linearizability without reference to any other object or to any global state so it

is not necessary to invoke the concept of a global transaction manager to enforce

linearizability.

The Linearizability property of an object may be preserved when objects are

composed. A system composed of objects is linearizable if and only if every object

128 CHAPTER 4. ACCESSING STATE

in the system is linearizable.

The property of linearizability does not permit method calls whose execu-

tion does not overlap to be re-ordered so it enforces a sequential order of events

affecting an object and preserves the real time order of method calls.

The property of linearizability can be contrasted with that of sequential con-

sistency which, when applied to objects, requires that method calls issued by

different processors appear to take place in some global sequential order. Se-

quential consistency is a property of the method calls of objects in a concurrent

system that many programmers expect [Lam97].

Sequential consistency is not a local property so a global view of state is re-

quired to ensure sequential consistency. It is a blocking property so an invocation

of a method is required to wait for another pending invocation to complete. It

is not a composable property so a system composed of multiple sequentially con-

sistent objects is not necessarily sequentially consistent. Sequential consistency

permits method calls whose execution does not overlap to be re-ordered so it does

not preserve the real time order of method calls.

Linearizability is a stronger condition than sequential consistency. Every lin-

earizable history is sequentially consistent but not vice versa.

4.1.4 Previous work

Herlihy introduced linearizability as a correctness condition [HW90]. Herlihy also

provides an accessible introduction to linearizability [Her08]. Linearizability has

not previously been considered as a correctness condition for Immutable Data

Structures.

4.1.5 The semantics of weak isolation

Isolation levels are a way of describing the behaviour of weakly isolated transac-

tions in terms of the access that a transaction has to the uncommitted state of

another transaction. In Database systems the classification of isolation levels is

formalised as the ANSI/ISO Isolation Levels [ISO92]. This formalism describes

weak isolation by characterising a read access that would not be permitted in a

strongly isolated transactional system.

A dirty read is an access to the uncommitted state of another transaction.

4.1. LINEARIZABLE OBJECTS 129

The transaction from which the variable was read might never commit. A trans-

actional system that permits dirty reads is regarded as having a transaction iso-

lation level of read uncommitted. It is difficult to write a concurrent program for

a system that permits dirty reads as there can be no happens-before relationship

between transactions.

A non-repeatable read is an access to a shared variable that can be modified

by another transaction. A variable can appear to have a different value when read

for a second time within a single transaction. A transactional system that permits

non-repeatable reads is regarded as having an isolation level of read committed. It

is difficult to write a concurrent program in a system that permits non-repeatable

reads as the values of variables can appear to change for reasons outside the

immediate logic of the program.

A phantom read is an inconsistent access to shared state. A transactional

system that permits phantom reads is regarded as having an isolation level of

repeatable read. This isolation level is referred to as repeatable because a read

access to a single variable will always return the same value within a transac-

tion. However, the reading of multiple variables within a transaction may not,

necessarily, present a consistent view of shared state. It is difficult to write a

concurrent program in a system that permits phantom reads as the value of the

variables accessed by a transaction do not necessarily represent a consistent state.

The ANSI/ISO Isolation Levels formalism has been criticised as being vague,

incomplete, inconsistent and not corresponding to the levels implemented by com-

mercial systems [BBG+95]. These criticisms support our assertion that weak iso-

lation does not have intuitive concurrent semantics. If the ANSI committee could

not come up with a logical way of classifying the semantics of weak isolation then

there is little chance that ordinary programmers will be able to reason about

them.

Transactional Memory systems compromise the isolation of transactions to

make a program easier to write. However, weakly isolated concurrent systems

have complex semantics that can make a concurrent program more difficult to

write.

4.1.6 Isolation pathologies

Isolation pathologies arise when scheduling is applied to enforce reasonable be-

haviour on weakly isolated transactions.

130 CHAPTER 4. ACCESSING STATE

A transaction schedule in which a transaction may commit before a trans-

action that wrote a variable that it has read is called non-recoverable. The

transaction schedule is non-recoverable because if the transaction it read from

aborts then it too should abort, because the value it read should never have been

written. However, once the transaction has already committed it is not possi-

ble to abort. A transaction schedule in which a transaction can commit only

after all the transactions it has read from have committed is called recoverable.

Non-recoverability is an isolation pathology of transactional systems that leads

to inconsistent results.

A transaction schedule in which a transaction is permitted to read uncommit-

ted values can suffer from the pathology of cascading aborts. A cascading abort

occurs when a transaction reads a value, written by another transaction, that has

not yet committed. If the transaction from which the value was read is aborted

then the reading transaction must also abort. A transaction schedule in which

a transaction can only read committed values avoids the pathology of cascading

aborts. Cascading aborts are an isolation pathology that causes unpredictable

run-time behaviour.

A transaction schedule in which all transactions appear to execute in isola-

tion is said to be serialisable. The execution is called serialisable because it is

equivalent to an execution in which all transactions execute one after the other.

A serialisable transaction schedule in which the order of conflicting operations

matches the order in which the transactions commit is said to be strict. Strictly

serialisable schedules are recoverable and not prone to the pathology of cascading

aborts.

Transactional Memory systems compromise the isolation of transactions to

obtain concurrent speed-up. However, weak isolation leaves Transactional Mem-

ory systems prone to isolation pathologies that make their run-time performance

unpredictable.

4.1.7 Nested transactions

Nesting permits the composition of complex programs from simpler components.

Transactional nesting is a form of weak isolation in which values may be shared

between transactions if there is a parent-child relationship between them. Trans-

actional nesting has complex semantics and guaranteeing the correctness of exe-

cution has high overheads.

4.1. LINEARIZABLE OBJECTS 131

A nested transaction is a transaction whose execution is properly contained

within the dynamic extent of another transaction. However, transactional nesting

is generally taken to mean the nesting of atomic sections so that an outer section

shares speculative state with an atomic section contained within it.

Mutual exclusion is not a composable property and this is often cited as an

argument to motivate the use of Transactional Memory [HMPH05]. It is argued

that in order for Memory Transactions to be composable a Transactional Memory

system should support nesting.

To support nested transactions isolation must be weakened to permit a parent-

child relationship between transactions. A parent transaction passes information

to its child both explicitly, in the form of shared values, and implicitly, because

the parent must exist in order for the child to be created.

Closed nesting has the simplest semantics but its implementation is complex.

A parent transaction may start a child transaction but the child must commit

before its parent can commit. The speculative state of the child is incorporated

into the speculative state of its parent when it commits. If a child transaction

aborts it can be restarted, without forcing the parent to abort. Closed nested

transactions facilitate the composition of a complex transaction from simpler

components and reduce wasted work. Maintaining the parent-child relationship

between closed transactions has a high overhead because if the parent transaction

is aborted then its children must also be aborted. However, the child transaction

may have already committed so to ensure that the transaction schedule of a

closed nested transaction is recoverable, all of the state produced by the child

transaction must be contained within the parent.

Open nested transactions have complex semantics but the implementation can

be simpler than that of closed nesting. When an open nested transaction commits,

its changes become visible to all other transactions in the system. Concurrently

executing transactions observe changes to shared state immediately [NMAT+07].

It is not necessary to maintain multiple versions of shared state so implementation

is simplified. Open nested transactions are composable, although great care must

be taken to avoid pathologies because exposing changes of shared state leads to

the phenomenon of non-repeatable reads and the isolation pathology of cascading

aborts.

There is a precise definition of the semantics of both open and closed nested

transactions [MH06]. However, other forms of nesting, of which there are many,

132 CHAPTER 4. ACCESSING STATE

do not have precise definitions.

Flattened nesting has complex semantics but simple implementation. Flatten-

ing is similar to closed nesting except that if a child transaction aborts the parent

transaction must also abort. Flattened transactions are effectively nested sub-

routines, all that is required to implement them is a stack of pointers indicating

the calling point in the parent, so implementation is straightforward. Flattened

nested transactions are not composable so their utility is questionable [HLR10].

Many database systems support some form of nested transactions. However,

the use of nested transactions in the database programming environment is not

widespread [GR92]. Nested database transactions can reduce the overhead of

transactional execution. Nesting facilitates the checkpointing of transactions to

reduce the amount of work wasted when a transaction aborts [HK08]. Nesting

also permits short running transactions to abort without affecting their long run-

ning parents. However, the overhead of maintaining the parent-child relationship

between transactions is significant. In the database environment the overheads

of transaction management, relative to the work done by a transaction access-

ing disk, are very low. Even so, support for nested database transactions has a

significant performance overhead [GR92].

There is wide disagreement on the semantics of transactional nesting and on

the desirability of different forms of nesting [AFS08] [HLR10]. However, the de-

bate about nesting is really a debate about weakening transactional isolation.

The complexity of the issues surrounding transactional nesting obfuscates the

undesirability of weak isolation. Nested transactions, like other forms of weak

isolation, have complex semantics and their run-time execution is prone to isola-

tion pathologies.

Transactional Memory systems permit composition through nesting which

makes a program easier to write. However, nesting is a form of weak isolation with

complex semantics that makes a concurrent program more difficult to write.

4.2. PERSISTENT DATA STRUCTURES 133

4.2 Persistent Data Structures

Linearizability is a desirable property for the objects that encapsulate shared state

in a concurrent system. However, we have proposed that shared state should be

maintained in Immutable Data Structures. This section considers how the access

functions of an Immutable Data Structure can be made linearizable. Lineariz-

ability endows the functions that access shared state with intuitive concurrent

semantics.

A persistent data structure permits access to past versions but in the context

of serial execution Immutable Data Structures do not. During concurrent execu-

tion access to a past version occurs when the root of the structure is modified by

a function executing on another processor. This causes the version being accessed

to become a past version. The tardiness of a function permits access to a past

version. An Immutable Data Structure that permits access to past versions is

persistent. This section considers how access to past versions can be controlled

to ensure the property of linearizability.

The main contribution of this section is the implementation of Immutable

Data Structures as linearizable objects. This section focuses on mechanisms to

restrict access to past versions of an Immutable Data Structure.

4.2.1 Accessing past versions

The property of immutability permits a separation of concerns about the integrity

of a data structure from concerns about the semantic order of the functions

acting on it. A Canonical Binary Tree preserves its structural invariants during

concurrent operation. However, it does not provide any mechanism for ensuring

the semantic ordering or the invariants of the functions acting upon it.

For example, consider a set implemented by a Canonical Binary Tree. A func-

tion inserts a value into the set if and only if the value is not already present.

Structural integrity can be described by a set of invariants related to the connect-

edness of the tree. During concurrent execution the structure of the binary tree

is guaranteed because its structural invariants are the pre and post conditions of

the path copy operation which implements the function. However, the uniqueness

of values in the set is guaranteed by pre and post conditions of the function. The

semantic invariants are guaranteed by the ADT and the structural invariants are

guaranteed by the data structure.

134 CHAPTER 4. ACCESSING STATE

A function can ensure both the structural and the semantic invariants of a

data structure by enforcing mutual exclusion. The use of mutual exclusion is so

pervasive that programmers do not usually distinguish between the semantic and

structural invariants.

A proof of the linearizability of an object typically requires the identification

of the linearization point of each method acting on the object [HW90]. The lin-

earization point of a method is some moment in time between the invocation of

the method and its response. Prior to this moment in time the pre-conditions

of the method are true and after it the post-conditions are true. To be lin-

earizable the execution of the method must appear to take place atomically at

its linearization point. An Immutable Data Structure has both structural and

semantic invariants that can be considered separately.

For example, two processors might attempt to insert the same value into

an Immutable Data Structure concurrently. Both of the operations complete

eventually and the structural invariants of the data structure are preserved. Each

of the instances of the function appears to modify the structure at a unique

moment in time so the data structure has a linearization point and is structurally

linearizable.

Now consider the semantic order of operations on the set. If two instances

of a function attempt to insert the same value concurrently both succeed. The

resulting data structure contains a duplicate value that violates the invariants of

the function. There is no instant in time when the operation can be considered

to have taken place. Consequently, there is no semantic linearization point so the

Immutable Data Structure is not semantically linearizable.

To imbue an Immutable Data Structure with the desirable properties of a

linearizable object all of its access functions must be linearizable. Structural

linearizability is the concern of the Canonical Binary Tree and the semantic lin-

earizability is the concern of the ADT. The access functions of an Immutable

Data Structure must have both semantic and structural linearization points in

order that the Immutable Data Structure is linearizable.

4.2.2 Persistence

An Immutable Data Structure can be made structurally linearizable by requiring

that the root is modified by an atomic instruction. Immutable Data Structures

can be made semantically linearizable by recording the root at the moment of

4.2. PERSISTENT DATA STRUCTURES 135

functional invocation and validating that the root has the same value at the

moment of response. If the value of the root has changed then the function is

invalid.

The root can be modified while a function is active. When this occurs two

functions can be reading different versions of the same data structure concur-

rently. The version referenced by the current value of the root is regarded as the

current version. The version that was referenced by the root at some point in

the past can be regarded as a past version. An Immutable Data Structure that

permits access to past versions is called a persistent data structure.

An Immutable Data Structure in which all access functions record the root

when they start and validate it before replacement is ephemeral. Functions acting

on versions other than the current version are not successful. An ephemeral

Immutable Data Structure is semantically linearizable.

An Immutable Data Structure in which only mutating access functions record

the root when they start and validate it before replacement is partially persistent.

Past versions can be accessed by tardy readers but successful mutations always act

on the most recent version. Mutations acting on past versions are not successful.

A partially persistent Immutable Data Structure is structurally linearizable.

Section 4.2.3 describes the classification of persistent data structures.

Concurrent applications implemented using mutual exclusion always access

the most recent version of a data structure, because it is the only version available.

Programmers are not used to questioning whether the most up to date version

is required. In many application domains the very latest version is not always

required. For example, an on-line reservation system does not need to present

the customer with the most recent version of inventory while they are browsing,

but an up to date inventory is required when the customer is making a purchase.

A partially persistent data structure is suitable for such a purpose because it

ensures that mutations are serialised while permitting concurrent read accesses.

4.2.3 The classification of persistent data structures

Most of the data structures encountered by programmers are both mutable and

ephemeral. A data structure is called a persistent data structure if it permits

access to past versions and it is called ephemeral otherwise. The data structure

is partially persistent if all versions can be accessed but only the most recent

can be modified. The structure is fully persistent if every version can be both

136 CHAPTER 4. ACCESSING STATE

V(4)

(a) Ephemeral

V(0)

V(1)

V(2)

V(3)

V(4)

(b) Partial per-
sistence

V(0)

V(1)

V(2) V(3)

V(5) V(4)

(c) Full persistence

V(0)

V(1)

V(2)

V(3)V(4)

V(5)

(d) Confluent persistence

Figure 4.1: Version graphs for various types of persistent data structure. Ver-
sions which can be modified are represented by an ellipse with a double border.
(a) An ephemeral data structure restricts both read and write access to the most
recent version.
(b) A partially persistent data structure restricts write access to the most recent
version but permits read access to past versions.
(c) A fully persistent data structure permits both read and write access to all
versions.
(d) A confluently persistent data structure permits both read and write access to
all versions and provides a meld function that can combine past versions.

4.2. PERSISTENT DATA STRUCTURES 137

accessed and modified. The data structure is confluently persistent if it is fully

persistent and has a meld operation which combines more than one version. The

evolution of a persistent data structure can be represented by a directed graph in

which each vertex represents a version and each edge a transformation between

versions [Kap04].

A version graph is a representation of the evolution of a data structure.

Figure 4.1 illustrates the version graphs of common types of persistent data

structure.

A persistence type is a restraint on the access to past versions. There are

many possible restraints and therefore many persistence types in addition to the

common types illustrated. For example, Conchon and Filliâtre describe a semi-

persistent data structure which permits access only to those past versions that

are ancestors of the most recent version [CF08].

An Immutable Data Structure is composed entirely of immutable values. In-

formally, we describe a persistent data structure as an Immutable Data Structure

that possesses a look-up function capable of accessing past versions. However,

not all persistent data structures are Immutable Data Structures. Persistent Data

Structures constructed using the Fat Node or the Node Copying techniques con-

tain singly assigned values that are not immutable. Persistent Data Structures

constructed using the full copying or path copying technique are Immutable Data

Structures.

4.2.4 Previous work

Kaplan provides an accessible introduction to persistent data structures [Kap04].

Driscoll, Sarnak, Sleator, and Tarjan describe persistent data structures in detail

[DSST86].

Interest in persistent data structures originated from the development of text

editors. Reps, Teitelbaum and Demers proposed that persistence can be used to

create a text editor with an undo operation [RTD83].

Sarnak and Tarjan describe how persistent data structures can be applied to

solve problems in computational geometry [ST86]. Computational geometry is

a branch of computer science concerned with algorithms that can be stated in

terms of geometry. Computation geometry is relevant to the subject of computer

graphics and much of the early development of persistent data structures occurred

in the mid 1980’s when computer graphics became commercially important.

138 CHAPTER 4. ACCESSING STATE

Persistence type Permitted Permitted
read access write access

Ephemeral Most recent only Most recent only
Partially persistent Tardy reads Most recent only
Fully persistent Tardy reads Tardy writes
Confluently persistent Non-conflicting reads Non-conflicting writes

Table 4.1: Persistence types for Transactional Data Structures are char-
acterised by the access to past versions that they permit.

The challenges of computational geometry required complex data structures

so the first persistent data structures to be developed were certainly not the

simplest. The subject of persistent data structure has always focused on highly

optimised solutions to challenging problems whilst the implementation of simple

persistent data structures has been somewhat neglected.

The research literature does not make a distinction between persistent data

structures and Immutable Data Structures. The use of a persistent data structure

in a concurrent execution environment and the access to a past version by a tardy

reader have not been considered before.

To permit access to past versions a persistent data structure must implement

some look-up mechanism. Generally, the research literature describing persistent

data structures does not describe the version look-up function in detail. The focus

of research is on the accessibility of past versions rather than the mechanisms to

support that access. Previous work either neglects the details of the look-up

function or assumes that versions are accessed by indexing an array mapping a

version number to the root address of the corresponding version.

4.2.5 The classification of Transactional Data Structures

This thesis introduces Transactional Data Structures which are data structures

that permit access to past versions, although not all accesses are successful.

For each type of persistent data structure there is a corresponding Transac-

tional Data Structure. A Transactional Data Structure with linearizable access

functions is ephemeral because accesses to past versions are not successful. A

tardy reader is a function that accesses a past version of a persistent data struc-

ture which was the most recent version at the moment the function started its

4.2. PERSISTENT DATA STRUCTURES 139

execution. A Transactional Data Structure that permits tardy readers but pre-

vents writers from successfully accessing all but the most recent version is partially

persistent. A fully persistent Transactional Data Structure permits both tardy

readers and mutations. A Transactional Data Structure which permits simul-

taneous accesses while ensuring serialisability is confluently persistent. It has a

validate function that causes conflicting functions to be unsuccessful and a meld

function that unites past versions.

Table 4.1 summarises the persistence types for Transactional Data Structures.

A Transactional Data Structure is necessarily an Immutable Data Structure

because it permits simultaneous access to values.

140 CHAPTER 4. ACCESSING STATE

4.3 Entanglement

Algorithms with irregular fine-grained parallelism are difficult to compose into

transactions that are large enough to be worth executing concurrently. The solu-

tion is to compose such work into larger transactions that can be rolled-back to

a previous state when conflicts are detected. Checkpointing reduces the amount

of work wasted when a conflict occurs. Checkpointing and roll-back mechanisms

enable the efficient concurrent execution of algorithms with irregular fine-grained

parallelism.

The state of an algorithm can be represented by multiple data structures. To

permit roll-back they must be checkpointed at a moment in time when they are

mutually consistent.

The main contribution of this section is a technique for composing Immutable

Data Structures to support checkpointing and roll-back. This section focuses

on composing Immutable Data Structures so that they record a history of the

algorithm they implement.

4.3.1 Fine grained irregular parallelism

The overhead of scheduling concurrent execution places a lower bound on the

size of a transaction that is worth scheduling. Many algorithms exhibit irregular

parallelism which is fine-grained and they appear not to be worth executing con-

currently. A solution to this problem is to compose the work into transactions

that are large enough to execute concurrently, but this increases the likelihood of

conflicts and increases the amount of work wasted when conflicts do occur.

When composing fine-grained work into large transactions it is often desirable

to create a checkpoint to reduce the amount of work wasted when conflicts occur.

The amount of wasted work is reduced by rolling-back to a state prior to the

conflict instead of entirely aborting a transaction. A mechanism for this check-

points a consistent state of the algorithm, backtracks through previous states of

the algorithm when a conflict is detected and rolls-back to a consistent state of

the algorithm.

For example, consider an algorithm that removes an item from a queue, per-

forms a function on that item, which can conflict with an instance of the function

executing on another processor, and then places the result in a second queue.

This is typical of a wide range of problems that exhibit fine-grained parallelism,

4.3. ENTANGLEMENT 141

but for which no efficient concurrent algorithm is known. The operations on an

item may be regarded as a single transaction, but such a transaction can be too

small to be worth scheduling. The presence of an item in one and only one of the

queues is an invariant of the algorithm. The algorithm is in a consistent state

only when this invariant is true. Checkpoints should be taken at moments in

time when the invariants are preserved.

When executing an algorithm speculatively it might be necessary to discard

the speculative state, which can be represented by more than one data structure,

and re-start execution from some consistent past state of the algorithm. The

roll-back mechanism must roll-back so that it is not possible to observe an inter-

mediate state in which one data structure involved in the algorithm is rolled-back

and another not. One problem is to find a checkpointing mechanism which can

ensure that all of the data structures involved in the algorithm are consistent at

the moment the checkpoint is taken. Another problem is to find a backtracking

mechanism that can backtrack through states of the algorithm to a previously

checkpointed state. Another problem is to ensure that there is the appearance of

instantaneous state transition during the roll-back.

4.3.2 The composition of Immutable Data Structures

The composition of fine-grained work into larger transactions can be achieved

by composing the Immutable Data Structures involved in the algorithm into a

single data structure. We call this technique Entanglement. In graph theory

the Entanglement of a directed graph is a measure of how strongly the cycles of

the graph are intertwined. In the context of Immutable Data Structures we take

this to mean the composition of multiple Immutable Data Structures into one

Immutable Data Structure through a process of adding links. Entanglement is

achieved by referencing the root address of one Immutable Data Structure from

the leaf of another Immutable Data Structure.

When applied to a single data structure entanglement is a look-up mechanism

which makes a data structure persistent. A data structure that allows access to

past versions only through entanglement is semi-persistent because only ancestors

of the most recent version may be accessed. When applied to multiple data

structures entanglement permits the composition of two data structures, which

may not be persistent, to form a persistent data structure.

Expanding on our example, consider a process that removes lower case letters

142 CHAPTER 4. ACCESSING STATE

V1 V0

D CEF B AG

jih lkg

Figure 4.2: A pair of entangled queues is created by referencing the root
of one queue from the leaf of another. In this example letters are removed from
the parameter queue, shown in the lower part of the figure, converted to upper
case and inserted into the result queue, shown in the upper part of the figure. In
version V0 of the entangled data structure the parameter queue contains the lower
case letter g. In version V1 the letter g has been removed from the parameter
queue and the upper case letter G has been added to the result queue. The new
root of the parameter queue is stored together with the converted letter in the
result queue. In this figure prior versions of the parameter queue are hidden for
clarity. The links from the leaves to the roots are dotted and the most recently
created path is shaded.

4.3. ENTANGLEMENT 143

from a queue, which we call the parameter queue, converts them to upper case

and places them on another queue, which we call the result queue. The presence

of a letter in one or other of the queues, but not both, is an invariant of the

algorithm. The queues are said to be in a consistent state when this invariant

is true. A consistent state of the algorithm can be checkpointed by recording a

reference to one of the data structures in the leaf of the other. When a conflict

is detected the reference in the leaf affected by the conflict indicates the root of

the entangled structure at the moment in time prior to the conflict. The data

structures can be rolled back to a consistent state by restoring this root. When

the root is restored the invariants of both data structures are preserved. To

ensure that the roll-back appears instantaneous the root of the entangled queues

is modified atomically.

Figure 4.2 illustrates an operation on the two logically separate data structures

which have been combined into a single structure by Entanglement.

Back tracking through past versions of an entangled data structure can be

achieved by examining only the most recent version. A leaf created by a conflict-

ing operation will contain a reference to the root of the entangled structure at

the moment in time prior to the conflict.

At their most basic, Memory Transactions allow the atomic modification of

discontinuous memory locations. Immutable Data Structures permit the atomic

modification of discontinuous memory locations which are part of the same data

structure and Entanglement extends this to locations which are not part of the

same logical data structure but which are affected by the same algorithm. Lin-

earizability is a composable property so the functions of our combined Immutable

Data Structures may also be linearizable.

Entanglement is a low overhead checkpointing technique which works by

recording the execution of an algorithm immutably instead of logging state changes.

Entanglement satisfies our requirements for a solution to the problem presented

by fine-grained parallelism as it permits backtracking through the entangled data

structures and atomic roll-back to a state in which all the data structures involved

in the algorithm are consistent.

4.3.3 Entanglement and Persistence

An Immutable Data Structure can be entangled with a past version by adding a

reference to the root node of the version it was path copied from. This creates a

144 CHAPTER 4. ACCESSING STATE

V0

*

V1

*

3

V2

*

2

V3

*

1

2

1

1

2

3

C

1

1

1

A

2

B

Figure 4.3: A persistent Directed min-tree is created by referencing the root
of a version from the leaf of the past version from which the path was copied. In
this example each leaf is linked to the version of the data structure from which
it was created by path copy. The links from the leaves to the roots are dotted
and the most recently created path is shaded. The Immutable Data Structure is
persistent because past versions are accessible by a look-up function which follows
these links.

link between a version of the data structure and a past version. A self-entangled

Immutable Data Structure is persistent because past versions can be accessed by

a look-up function which follows the links.

Figure 4.3 illustrates an immutable directed min-tree which is entangled in

such a way that past versions can be accessed.

4.3.4 Previous work

Checkpointing and roll-back mechanisms have been proposed as solutions to the

problem of fine-grained concurrency many times before [RW02],[HK08],[WS08].

The primary drawback of each of these mechanisms is the overhead of checkpoint-

ing and of backtracking.

One of the main applications of persistent data structures is their use in

backtracking algorithms. Conchon and Filliâtre describe a semi-persistent data

structure which only permits ancestors of the most recent version to be accessed

4.3. ENTANGLEMENT 145

or updated. Conchon show how a semi-persistent data structure can be used for

checkpointing and roll-back [CF08].

4.3.5 Low overhead checkpointing

In a typical implementation of checkpointing, changes are logged and values are

written to memory more than once. The sources of the overhead of checkpointing

are similar to those of maintaining duplicate copies of shared state. In our im-

plementation data is written to memory once, so the overhead of checkpointing

is reduced to that of storing a root address in each leaf of the entangled data

structure. Entanglement provides a mechanism for checkpointing at very little

additional cost because immutable data is written just once.

In a typical implementation, backtracking is a serial process which takes place

while progress of the algorithm on other processors is halted. In our implementa-

tion the examination of past versions and the detection of conflicting operations

can take place in parallel with the actions of the algorithm itself.

In a typical implementation, roll-back requires that the progress of the al-

gorithm is halted so roll-back does not have concurrent semantics. In our im-

plementation roll-back only affects those transactions involved in the conflicting

operation. Entanglement provides a checkpointing mechanism with intuitive con-

current semantics because events occurring during the execution of the algorithm

are checkpointed rather than system states.

146 CHAPTER 4. ACCESSING STATE

4.4 Minimum Spanning Tree

The problem of finding the minimum spanning tree of a graph is typical of com-

binatorial problems which exhibit fine-grained irregular parallelism. Researchers

have been frustrated in their attempts to exploit this parallelism and for many

types of graph the fastest known algorithms are serial. To evaluate our check-

pointing technique we measure the performance of a concurrent implementation of

a minimum spanning tree algorithm that uses entangled Immutable Data Struc-

tures. We find that our concurrent implementation does not perform as well as

a serial implementation.

The problem is to determine the minimum spanning tree of a connected undi-

rected graph with weighted edges. The minimum spanning tree of a graph is an

acyclic sub-graph which connects all of the vertices and has the minimum weight.

Sedgewick explains the problem in detail and describes a number of serial

algorithms for computing the minimum spanning tree [Sed02]. The minimum

spanning tree problem is one of the most important in combinatorics. Ahuja

describes how many problems in network routing and linear programming are

related to the problem of finding the minimum spanning tree [AMO93].

A minimum spanning tree is the tree of edges T ∈ G(V,E) with minimal

weight:

W (T) =
∑

(u,v)∈T

W ((u, v))

where W ((u, v)) is the weight of an edge (u, v).

The main contribution of this section is the evaluation of an algorithm which

uses entangled Immutable Data Structures to facilitate the checkpointing of spec-

ulative execution. This section focuses on comparing the times taken to determine

the minimum spanning tree of an undirected planar graph.

4.4.1 Experiment

Prim describes an algorithm to determine the minimum spanning tree of a graph

[Pri57]. To evaluate our checkpointing technique we compare the performance

of a concurrent implementation that uses entangled Immutable Data Structures

with a concurrent implementation that uses Software Transactional Memory. We

also compare these concurrent implementations with their serial counterparts.

4.4. MINIMUM SPANNING TREE 147

Prim’s algorithm is typically implemented using a mutable adjacency list to

represent the graph and its minimum spanning tree and a priority queue from

which minimally weighted edges are chosen. The implementation records whether

edges belong to the minimum spanning tree by storing a value, which is usually

referred to as a colour, as an edge property in the adjacency list. We call this

a Serial Graph Colouring Implementation of Prim’s algorithm. We use the ad-

jacency list and the Serial Graph Colouring Implementation of Prim’s algorithm

from the Boost graph library. Siek, Lee and Lumsdaine describe the format of

the adjacency list in detail [SLL01].

Section 4.4.3 describes the experimental set up.

Section 4.4.4 describes the Serial Graph Colouring Implementation of Prim’s

algorithm.

We develop an implementation of Prim’s algorithm that uses a set, instead of

graph colouring, to represent the minimum spanning tree. We call this a Serial

No-Colouring Implementation of Prim’s algorithm. This serial implementation is

used to measure the effect that maintaining the minimum spanning tree in a set,

rather than in the adjacency list, has on the execution time of the algorithm. We

use a data structure from the C++ standard template library to implement the set

of edges representing the minimum spanning tree and we also use a priority queue

from the standard library [Jos99]. The graph is implemented by an immutable

adjacency list from the Boost library.

Section 4.4.5 describes the Serial No-Colouring Implementation of Prim’s al-

gorithm.

A Concurrent Graph Colouring Implementation of Prim’s algorithm must

ensure the correctness of concurrent accesses to the edge colours.

Section 4.4.6 explains why a Concurrent Graph Colouring Implementation of

Prim’s algorithm that executes efficiently on a Chip Multi-Processor is difficult

to construct.

Kang and Bader developed a concurrent implementation of Prim’s algorithm

using Software Transactional Memory [KB09]. We call this a Concurrent Graph

Colouring Implementation of Prim’s algorithm. The implementation allows some

speculative execution by lazily detecting conflicting accesses to the graph colours.

Section 4.4.7 describes Kang’s Concurrent Graph Colouring Implementation

of Prim’s algorithm.

148 CHAPTER 4. ACCESSING STATE

We develop a concurrent implementation of Prim’s algorithm which uses en-

tangled Immutable Data Structure to allow checkpointing, backtracking and roll-

back to a previous state of the algorithm. We call this a Concurrent No-Colouring

Implementation of Prim’s algorithm. The implementation uses an immutable set,

to represent the minimum spanning tree, and an immutable priority queue, from

which minimally weighted edges are chosen. Both of these data structure are spe-

cialisations of the Canonical Binary Tree. The data structures are entangled to

facilitate checkpointing. The graph is implemented by an immutable adjacency

list from the Boost library.

Section 4.4.9 describes the Concurrent No-Colouring Implementation of Prim’s

algorithm.

4.4.2 Results

Our experiment shows that the Concurrent No-Colouring Implementation of

Prim’s algorithm takes longer to determine the minimum spanning tree of a graph

than either the Serial Graph Colouring Implementation or the Serial No-Colouring

Implementation for all graph sizes. The Serial No-Colouring Implementation of

the algorithm takes about twice as long as the Serial Graph Colouring Implemen-

tation for all graph sizes.

Figure 4.4 illustrates a comparison of the elapsed time taken to determine the

minimum spanning tree of a graph.

The Concurrent No-Colouring Implementation does not return the memory

used by the Immutable Data Structures because they are persistent. Only 32 GB

of memory are available to contain the persistent data structures on the evalua-

tion hardware and this limited the maximum size of the graph whose minimum

spanning tree could be determined to 219 vertices.

The topology of the graphs representing the road maps of urban states differs

from those of more rural states. This accounts for some of the variation in elapsed

time taken to calculate the minimum spanning tree of states with similar numbers

of vertices.

This thesis does not make any claims about the absolute performance of Im-

mutable Data Structures. However, even when using 8 hardware threads the

Concurrent No-Colouring Implementation takes longer to calculate the minimum

spanning tree than either serial algorithm.

Section 4.4.10 describes how the performance of the Concurrent No-Colouring

4.4. MINIMUM SPANNING TREE 149

 0

 1

 2

 3

 4

 5

 6

14 15 16 17 18 19 20

E
la

p
s
e
d
 t
im

e
 (

s
e
c
o

n
d

s
)

log2(Number of vertices)

Figure 4.4: Comparison of the elapsed time taken to calculate the mini-
mum spanning tree of planar undirected graphs representing road maps of US
states.
The elapsed time taken by the Serial Graph Colouring Implementation (p), the
Serial No-Colouring Implementation (x) and the Concurrent No-Colouring Im-
plementation (+) is plotted against varying graph sizes. We uses a log scale to
represent the number of vertices in the graph.
Eight hardware threads participate in the concurrent execution. Each hardware
thread executes on a dedicated processor.
Figures given are the mean of 10 measurements. Bars indicate the range of
elapsed times take by the concurrent implementation. The elapsed time taken by
the serial implementations did not vary significantly.

150 CHAPTER 4. ACCESSING STATE

Implementation can be improved.

Kang provided results for a Concurrent Graph Colouring Implementation

which uses Software Transactional Memory [KB09]. Kang measured the elapsed

time taken to calculate the minimum spanning tree of a planar graph with 222

edges. Unfortunately, we were not able to calculate the minimum spanning tree

of a graph of this size so we cannot make a direct comparison with Kang’s result.

When a single hardware thread was used the elapsed time taken to determine

the minimum spanning tree was 1143 seconds. When using 8 hardware threads,

on the same core, a 14X speed-up was achieved. Kang attributed this super-

linear speed-up to the sharing of cache by the hardware threads. When using 64

hardware threads, on 8 cores, a speed-up of 61.5X was achieved.

Kang attributed 98.5% of the execution time of the Concurrent Graph Colour-

ing Implementation to the overhead of Software Transactional Memory. To over-

come this overhead 64 hardware threads were applied to the problem. Kang

concluded that “even with this level of scalability, our parallel algorithm runs

only at the comparable speed to the single-threaded case which does not incur

the Software Transactional Memory overhead” [KB09].

This thesis claims that the use of Immutable Data Structures can make con-

current programming easier. Kang described the difficulty of ensuring the cor-

rectness of the Concurrent Graph Colouring Implementation which uses locks to

ensure serialisable access to the graph colours “this [acquiring locks] can lead to

many complex scenarios that can cause race conditions, deadlocks, or other com-

plications, and it is far from trivial to write correct and scalable code” [KB09].

Our Concurrent No-Colouring Implementation of Prim’s algorithm requires no

synchronisation. It is not prone to race conditions, because all shared data is

immutable and it is not prone to deadlock because it does not block. Our Con-

current No-Colouring Implementation of Prim’s algorithm was simpler to develop

than the Concurrent Graph Colouring Implementation described by Kang.

4.4.3 Method

Demetrescu describes a set of planar graphs, representing road maps, which were

used during the DIMACS implementation challenge competition [DGJe09]. These

graphs are widely accepted as benchmarks for evaluating minimum spanning tree

algorithms. Each graph node represents an intersection between roads and each

graph edge is weighted with the distance between intersections. The graphs have

4.4. MINIMUM SPANNING TREE 151

an average of 2.7 edges per vertex.

We evaluate our algorithm using a Sun Ultra Sparc T2 server [vRV+09]. The

server contains a single Niagara Chip Multi-Processor which implements simul-

taneous multi-threading, it has 64 hardware threads and 8 physical processors.

Both the hardware and the graph data sets used in our evaluation are identical

to those used by Kang [KB09].

We use an immutable priority queue implemented by a Directed min-tree spe-

cialisation of the Canonical Binary Tree. The Canonical Binary Tree is balanced

but none of the optimisations, suggested in section 3.6.5 are implemented. We

also use an immutable set implemented by an interval tree specialisation of the

Canonical Binary Tree.

4.4.4 Serial Graph Colouring Implementation

Prim’s algorithm is based on an observation known as the graph cut property

[Pri57]. A graph cut partitions the vertices of a graph into two disjoint sets.

Given a cut in the graph, any edge between the two sets which has a minimum

weight belongs to some minimum spanning tree of the graph.

Prim’s algorithm grows a minimum spanning tree iteratively from a single

graph edge. The algorithm maintains a set of crossing edges, called the fringe,

which is the set of edges with one vertex in the growing minimum spanning tree

and one outside it.

Initially, both the minimum spanning tree and the fringe are empty. A single

vertex is added to the minimum spanning tree and all of the edges from this

vertex are added to the fringe. At each iteration the minimally weighted edge is

removed from the fringe and added to the growing minimum spanning tree. This

adds a new vertex to the minimum spanning tree and all of the edges from this

vertex to vertices that are not already in the minimum spanning tree are then

added to the fringe. The resulting fringe is processed by the next iteration. The

algorithm completes when the set of vertices outside the minimum spanning tree

is empty and edges in the minimum spanning tree connect all of the nodes in the

graph.

Prim’s algorithm can be implemented by using an adjacency list to represent

the graph. Each graph edge has an associated weight. The minimum spanning

tree is represented by a colour indicator associated with each edge. The fringe is

represented by a priority queue which contains references to edges in the adjacency

152 CHAPTER 4. ACCESSING STATE

list. The priority associated with an edge is the weight of that edge.

Serial Graph Colouring Implementations of Prim’s algorithm are among the

fastest known. Typically, high performance Serial Graph Colouring Implementa-

tions focus on improving the performance of the priority queue.

4.4.5 Serial No-Colouring Implementation

Prim’s algorithm can also be implemented by using a set to maintain the grow-

ing minimum spanning tree instead of colouring graph edges. We call such an

implementation a Serial No-Colouring Implementation because the adjacency list

does not have any mutable properties. The set contains references to edges in the

adjacency list and is used to determine whether an edge is part of the minimum

spanning tree.

The Serial No-Colouring Implementation of Prim’s algorithm uses three data

structures. The graph is represented by a constant adjacency list with weighted

edges. The fringe is represented by a priority queue which orders edges by weight.

The minimum spanning tree is represented by a set of edges. In our implementa-

tion the priority queue is implemented using a vector from the standard library

and the set is implemented using the standard map [Jos99].

The algorithm starts from a single node and adds edges to the minimum

spanning tree iteratively. The edge with the minimum weight is removed from

the priority queue and added to the set to indicate that it is part of the minimum

spanning tree. This adds a new vertex to the minimum spanning tree. The edges

including this vertex, which are not already present in the set, are added to the

priority queue to complete the iteration.

To determine whether an edge is part of the minimum spanning tree a set

look-up is performed. Typically, set look-up takes O(log(n)) time whereas ac-

cessing a mutable graph edge takes O(1) time, so there is a significant overhead

associated with looking up edges in a set. Consequently, it is not common to

implement Prim’s algorithm in this way. Our Concurrent No-Colouring Imple-

mentation maintains the minimum spanning tree an immutable set and uses a

constant adjacency list to avoid sharing mutable data. We implement the Se-

rial No-Colouring Implementation algorithm so that we can measure the effect of

maintaining the growing minimum spanning tree in a set.

4.4. MINIMUM SPANNING TREE 153

4.4.6 The concurrent implementation of Prim’s algorithm

A concurrent implementation of Prim’s algorithm may attempt to combine the

minimum spanning trees of sub-graphs, produced by multiple processors, to form

a larger minimum spanning tree.

Two sub-graphs are disjoint if they do not have any vertices in common. Two

sub-graphs are adjacent if they are disjoint and there is at least one edge joining

vertices which belong to different sub-graphs. The minimum spanning trees of

adjacent sub-graphs can be combined by including the minimally weighted joining

edge in the graph formed by their union. The minimum spanning trees of disjoint

sub-graphs can be combined easily only by growing them until they are adjacent.

The minimum spanning trees of overlapping sub-graphs are difficult to combine.

Ideally, the minimum spanning trees of adjacent sub-graphs should be identified

and combined.

The graph cannot be decomposed into disjoint sub-graphs before the algorithm

starts because this problem is more difficult than the minimum spanning tree

problem itself. Dor and Tarsi prove that the problem of decomposing a graph

into disjoint sub-graphs with no common edges is NP-Complete [DT92].

To permit the combination of minimum spanning trees created concurrently

an algorithm can check that their sub-graphs are disjoint each time a vertex is

added. This imposes a synchronisation overhead on the concurrent implementa-

tion. The implementation can speculate that sub-graphs are disjoint to reduce

the synchronisation overhead. However, it must be prepared to roll-back the

algorithm to the point at which adjacency first occurs.

A concurrent algorithm has the potential to demonstrate speed-up provided it

is faster to check and combine the minimum spanning tree of sub-graphs with the

growing minimum spanning tree than to grow the minimum spanning tree by the

corresponding amount. Once checked, the merging of minimum spanning trees

is straightforward. The problem is to create minimum spanning trees in such a

way that they can be combined without incurring a significant synchronisation

overhead.

154 CHAPTER 4. ACCESSING STATE

4.4.7 Concurrent Graph Colouring Implementation

Kang describes a Concurrent Graph Colouring Implementation of Prim’s algo-

rithm which uses Software Transactional Memory [KB09]. Kang’s implementa-

tion is an application which implements Memory Transactions rather than an

application developed within an existing Software Transactional Memory frame-

work.

Memory operations acting on the graph colours can cause race conditions,

so simultaneous access must be restricted. A näıve implementation might seri-

alise every access to the colours but this effectively serialises the entire algorithm,

negating any benefit from concurrent execution. Kang uses Software Transac-

tional Memory to support speculation by buffering memory operations and de-

tecting conflicts. Conflicting accesses to the graph colours are rare so it can be

beneficial to speculate that a conflict did not occur.

Kang’s Concurrent Graph Colouring Implementation relies on the semantics

of memory transactions to avoid data races. Each thread colours the vertices

of its own minimum spanning tree and also colours all of the neighbours of the

marked vertices with a unique colour. The process of picking one vertex and then

applying an operation to its neighbours is encapsulated in a Memory Transaction.

Conflicts are detected by checking the colour of vertices in graph to determine

whether another processor has included the node in its minimum spanning tree.

Our experimental results are directly comparable to those of Kang because we

use identical graph data sets and identical hardware. Unfortunately, Kang was

not able to report concurrent speed-up because the overheads associated with

Software Transactional Memory exceed the benefits of concurrent execution.

4.4.8 Previous work

Bor̊uvka described a concurrent algorithm to determine the minimum spanning

tree of a graph nearly a century ago [NMN01]. However, realising speed-up from

concurrent execution has proved difficult. Chazelle describes an algorithm which

has the minimal amortised time [Cha00]. Vineet, Harish, Patidar and Narayanan

describe an algorithm that makes use of a graphics processing unit. This speeds-

up the calculation of some very large minimum spanning trees by an order of

magnitude when compared with a serial implementation [VHPN09]. In practice,

the fastest methods for finding the minimum spanning tree of a dense graph are

4.4. MINIMUM SPANNING TREE 155

based on a serial implementation of Prim’s algorithm. Bazlamacci and Hindi

present a survey of high performance minimum spanning tree algorithms [BH01].

In the fastest, the fringe is represented by a priority queue based on a Fibonacci

heap. Weiss describes the implementation of a Fibonacci heap data structure in

detail [Wei93].

Dice, Lev, Moir and Nussbaum describe a Concurrent Graph Colouring Im-

plementation of Prim’s algorithm which uses Hardware Transactional Memory

[DLMN09]. Dice uses a form of Hardware Transactional Memory known as spec-

ulative lock elision, which permits speculative access to the graph colours, while

relying on hardware to detect conflicting accesses [RG01]. Dice implements this

algorithm on the Sun ROCK processor [CCE+09]. The implementation diffi-

culty and the modest speed-up observed may have been factors contributing the

cancellation of the ROCK processor, which we described in section 1.2.6.

4.4.9 Concurrent No-Colouring Implementation

We develop a Concurrent No-Colouring Implementation of Prim’s algorithm. One

processor is designated as the main processor and it grows the minimum spanning

tree of the entire graph. The other processors are designated as helper processors

and they build the minimum spanning trees of sub-graphs. The main processor

occasionally checks whether the minimum spanning trees of these sub-graphs

overlap with the growing minimum spanning tree. When overlap is detected the

sub-graphs produced by the helper processors are rolled-back to the state they

were when they were adjacent to the growing minimum spanning tree. They

are then combined with the growing minimum spanning tree and their fringes are

added to the fringe of the growing minimum spanning tree. The helper processors

contribute to reducing the elapsed time taken to calculate the minimum spanning

tree.

We use the Serial No-Colouring Implementation of Prim’s algorithm on the

main processor because it makes the merging of the sub-graphs built by the

helper processors easier. However, we could have chosen a Serial Graph Colouring

Implementation, in which case only the main processor would access the graph

colours.

The helper processors create minimum spanning trees in such a way that the

execution of their algorithm can be rolled back to a previous state. The algorithm

executing on the helper processors is also a Serial No-Colouring Implementation

156 CHAPTER 4. ACCESSING STATE

of Prim’s algorithm. It uses an immutable set to identify edges in the minimum

spanning tree and an immutable priority queue to represent the fringe. Both

of these Immutable Data Structures are specialisations of the Canonical Binary

Tree. The immutable set and the priority queue are entangled so that they can

both be rolled-back to a mutually consistent state.

The Immutable Data Structures are entangled by storing the root of the im-

mutable priority queue in the leaves of the immutable set. Each leaf contains an

edge and a reference to the root of the past version of the priority queue from

which it was removed. The leaf also contains the corresponding root of the past

version of the set. This entanglement checkpoints the state of the algorithm at

the start of each iteration. The checkpoint allows the set and the priority queue to

be restored to a consistent state in which the set represents a minimum spanning

tree and the priority queue its fringe.

At some moment in time the minimum spanning trees of sub-graphs built

in isolation are checked by the main processor and possibly combined with the

growing minimum spanning tree. The frequency at which the minimum spanning

trees of sub-graphs are checked is a heuristic of the algorithm which does not

affect its correctness.

If necessary, the main processor examines the set produced by a helper pro-

cessor and backtracks through past versions by traversing the leaves of the set.

The algorithm must backtrack to the moment in time when the first common

edge was added. An ordinal number is used to determine the first common edge.

Each iteration of Prim’s algorithm performed by the helper processor causes a

process-unique ordinal number to be incremented. This ordinal number is stored

in a leaf of the set. The first common edge is the common edge with the lowest

ordinal number.

The main processor does not block the execution of the helper processors

while backtracking. The data structures produced by the helper processors are

immutable and can be examined by the main processor without requiring syn-

chronisation.

When backtracking detects overlap the state of the algorithm is rolled-back

to the point at which the first common edge was added. The traversal finds

the leaf containing a common edge with the lowest ordinal number. This leaf

contains a reference to the past version of the set which represents the minimum

spanning tree of a sub-graph which is adjacent to the growing minimum spanning

4.4. MINIMUM SPANNING TREE 157

tree. This leaf also contains a reference to the version of the priority queue which

represents the fringe of the minimum spanning tree of the sub-graph.

A merge process combines the past version of the minimum spanning tree of

the sub-graph with the growing minimum spanning tree and the past version of

the fringe of the sub-graph with the fringe of the growing minimum spanning

tree. The helper processor is stopped after the merge to reduce contention in the

path to memory.

4.4.10 The performance of the Concurrent No-Colouring

Implementation

The performance of a concurrent implementation of Prim’s algorithm is depen-

dent on both the topology of the graph and the choice of starting vertices. Heuris-

tics can guide the choice of starting vertices used by the helper processors. Our

concurrent implementation chooses the starting vertices for each processor at ran-

dom. We have focused exclusively on planar graphs, so the performance of the

Concurrent No-Colouring Implementation when applied to other graph topologies

remains to be investigated.

The elapsed time taken by the Concurrent No-Colouring Implementation of

Prim’s algorithm is dependent on heuristics such as the frequency at which the

main processor checks whether the minimum spanning trees of sub-graphs, pro-

duced by the helpers, overlap with the growing minimum spanning tree. The

checking process is performed by the main processor. There is a trade off be-

tween the frequency of checking and the benefit from merging a minimum span-

ning tree produced by a helper. We found that the best results were obtained

when the main processor checked for overlap infrequently. Our implementation

adds 210 nodes to the growing minimum spanning tree between checks. There

is little chance of overlap when the minimum spanning trees are small and little

to be gained from merging sub-graphs when the growing minimum spanning tree

is near completion. Checking for overlap is probably most advantageous when

about one quarter of the planar graph is covered by the minimum spanning trees

of sub-graphs. However, we did not attempt to find the optimum interval because

it is dependent on the topology of the graph.

When processing a large graph a high proportion of memory accesses result

in cache misses. Our implementation uses only 8 hardware threads, one on each

158 CHAPTER 4. ACCESSING STATE

physical processor. We found that using additional hardware threads did not

reduce the elapsed time taken to determine the minimum spanning tree. This

indicates that the elapsed time is bound by the performance of the memory

subsystem. Jacob describes how the Niagara processor in the Sun Ultra Sparc

T2 server has four memory controllers and uses fully buffered DIMM memory to

permit fast processing for frequent cache misses [Jac09]. However, we also carried

out experiments using an Intel core i7 system. We found that for graphs of less

than 218 vertices the elapsed time taken by the Intel system was less than that

obtained by processing the same graph on the Sun Ultra Sparc T2. The restricted

memory available on the Intel system prevented a comparison for larger graphs.

The Sun Ultra Sparc T2 server has 32 GB of main memory. Our algorithm

does not return any memory so the size of graphs considered during the evaluation

are restrained by the available memory. There are many ways that the memory

restraint could be lifted. For example, the helper processors could return the

memory occupied by a sub-tree after it is merged with the growing minimum

spanning tree.

The size of the node used to implement the Canonical Binary Tree and the

number of nodes accessed while balancing of the tree are important factors af-

fecting the performance of the No-Colouring Implementations because they con-

tribute to the effective memory bandwidth of the implementation.

Section 6.3.7 describes how node size affects the performance of algorithms

which use specialisations of the Canonical Binary Tree.

Chapter 5

Concurrency Control

Distributed concurrency control is scalable but centralised concurrency control

is not. Transactional Memory systems use centralised concurrency control to

ensure consistent access to shared state but a scalable concurrent system should

use distributed concurrency control to ensure consistent access to a particular

object. This chapter describes how a distributed concurrency control protocol

can serialise access to an Immutable Data Structure.

Section 5.1 identifies the choice of concurrency control mechanism as one of

the most significant decisions taken when designing a concurrent system.

Section 5.2 describes how functions acting simultaneously on an Immutable

Data Structure can be serialised.

Section 5.3 describes how an Immutable Data Structure can be made conflu-

ently persistent.

159

160 CHAPTER 5. CONCURRENCY CONTROL

5.1 Distributed Concurrency Control

Transactional Memory systems require the application program to interact with

a centralised transaction manager but this interaction makes programming diffi-

cult and restricts scalability. This section proposes using distributed transaction

management to ensure the correct concurrent execution of Memory Transactions.

Distributed transaction management makes concurrent programming easier and

concurrent systems more scalable.

The main run-time component of a Transactional Memory system is the trans-

action manager which ensures the correct concurrent execution of Memory Trans-

actions. Correctness is usually taken to mean that the result of the concurrent

execution is equivalent to the result obtained by executing the transactions in

some serial order. A transaction manager ensures serialisability by enforcing a

concurrency control protocol and the choice of protocol dictates the design of the

transaction manager.

Section 5.1.3 introduces Transaction management.

The main contribution of this section is the observation that the correct con-

current execution of Memory Transactions can be ensured without centralised

transaction management. This section focuses on ensuring the serialisable execu-

tion of functions acting on an Immutable Data Structure.

5.1.1 Centralised concurrency control

Centralised transaction management restricts the scalability of a concurrent sys-

tem as some part of the management processing is necessarily serialised. As

the number of concurrent processors increases the time spent within the seri-

alised part grows and eventually dominates the execution time of the concurrent

system. Amdahl’s law imposes restrictions on the scalability of a system with

centralised transaction management.

A concurrent application communicates with the transaction manager to sig-

nal that it is ready to commit a transaction and the transaction manager then

responds. This two way communication cannot be easily hidden by abstraction.

The orchestration of communication with the transaction manager makes con-

current programming difficult.

Centralised transaction management makes it difficult for programmers to use

5.1. DISTRIBUTED CONCURRENCY CONTROL 161

Memory Transactions in existing programs. To make use of Memory Transac-

tions a programmer must adapt a program to fit into a transaction processing

framework. This is an obstacle to the integration of Memory Transactions into

existing software and it is a barrier to the adoption of Transactional Memory.

The solution to these difficulties should ensure the serialisability of concurrent

Memory Transactions without requiring a centralised transaction manager.

5.1.2 Distributed concurrency control

Distributed transaction management is scalable because it does not require a

centralised mechanism to enforce concurrency control. It makes concurrent pro-

gramming easier because programmers do not need to coordinate the applica-

tion’s interaction with a centralised system and it makes the use of Memory

Transactions in existing applications easier by alleviating the need to integrate a

concurrent application into a centralised transaction management framework.

A distributed transaction manager can make the decision whether to commit

or abort a transaction independent of operations taking place on other processors

because a distributed concurrency control protocol requires only information local

to a processor. It does not depend on any information about concurrently active

transactions so in a distributed system it is not necessary to orchestrate the

interaction of transactions on multiple processors. Each processor can implement

transaction management independently.

A distributed transaction manager can make the decision whether to com-

mit or abort a transaction using only local information about the transactions

that affect an object. It does not depend on information about accesses to any

other objects so in a distributed system each transaction manager can maintain

information about the objects that it manages and go about making its deci-

sions independent of the action of other transaction managers. Each object can

implement transaction management independently.

A distributed transaction manager does not attempt to serialise access to

multiple objects. Groups of objects that require mutually consistent access are

logically connected and should be combined into a single object for the purposes

of concurrency control.

A fully distributed concurrency control protocol requires no communication

between transaction managers whatsoever as it can be implemented on a per

processor per object basis.

162 CHAPTER 5. CONCURRENCY CONTROL

5.1.3 Transaction management

Database systems divide transaction management into three distinct tasks: con-

currency control, contention management and scheduling. Concurrency control

is the task of ensuring correct concurrent execution by enforcing serialisability.

Contention management is the task of guaranteeing progress. Scheduling is the

task of load-balancing the execution between processors. We make a distinction

between these tasks and consider each independently. However, Transactional

Memory systems tend not to treat these aspects of transaction management as

distinct. Consequently, transaction management in Transactional Memory sys-

tems tends to be difficult to characterise.

A transaction manager ensures that concurrent execution is correct by ensur-

ing that it is equivalent to a serial execution. Determining whether a concurrent

execution is serialisable is a NP-Complete problem [Pap79]. A transaction man-

ager enforces a concurrency control protocol which ensures that all conforming

transaction schedules are serialisable.

A transaction manager applies the rules of the concurrency control protocol

to determine whether a transaction can commit or not. A concurrency control

protocol can be viewed as a set of invariants and a binary function which en-

sures them. In the Transactional Memory literature the action of this function is

referred to as validation.

A concurrency control protocol can be enforced either pessimistically, by a

scheduler which checks that each operation conforms to the invariants of the

concurrency control protocol before it is executed, or optimistically, by a certi-

fier that enforces the concurrency control protocol when a transaction commits.

The Transactional Memory literature refers to pessimistic concurrency control

as eager validation and optimistic concurrency control as lazy validation. Many

Transactional Memory systems employ mixed protocols detecting some types of

conflict eagerly and others lazily.

A concurrency control protocol considers conflicting read and write operations

acting on variables. These conflicts can be either between a read and a write

or between two writes. Different concurrency control protocols can be applied

independently to each type of conflict. A concurrency control protocol considers

conflicts between these operations without regard to the values of the variables.

Transactional Memory systems can be roughly divided into those which regard

the variables as objects and those which regard them as memory words.

5.1. DISTRIBUTED CONCURRENCY CONTROL 163

A transaction certifier requires a record of the read and write operations on

variables and the transactions that issued them. The association between vari-

ables and transactions can be maintained by placing a transaction identifier within

each affected object. It can also be maintained by associating a transaction with

a list of addresses or object identifiers representing its read and write set. A

certifier also requires meta-data, such as time stamps, relating to the operations

on each variable.

The interaction between weakly isolated transactions is complex so concur-

rency control is simplified by strong isolation. The validation process is made

simpler if it is known that all the values read by a transaction were written by

transactions that have already committed.

5.1.4 Previous work

Bernstein, Hadzilacos and Goodman describe concurrency control and transaction

management in a book entitled “Concurrency Control and Recovery in Database

Systems” [BHG87]. Özsu and Valduriez describe distributed transaction man-

agement and distributed concurrency control in database systems [ÖV99].

Kotselidis et al. develop the idea of distributing Memory Transactions across

a computing cluster [KAJ+07]. Hammond et al. describe the TCC protocol

which is a centralised broadcast based concurrency control protocol enforced by

a centralised transaction manager [HCW+04]. Kotselidis describes a centralised

broadcast concurrency control protocol based on the TCC protocol which en-

sures the serialisability of transactions both within a Chip Multi-Processor and

across the cluster. However, in a computing cluster the latency and bandwidth

restrictions of Inter-Processor Communication are more severe and the problems

created by centralised transaction management are more apparent than in a Chip

Multi-Processor. Kotselidis et al. found that the centralised nature of transaction

management made concurrent programming difficult and restricted the scalabil-

ity of the system [KAJ+08]. These problems were not easily overcome despite a

significant engineering effort.

5.1.5 Time Stamp Ordering

There are several distributed concurrency control protocols described in the liter-

ature and each can be applied independently to different types of conflict. Both

164 CHAPTER 5. CONCURRENCY CONTROL

the Time Stamp Ordering protocol and Reed’s Multi-version Time Stamp Order-

ing protocol can be implemented without blocking so a distributed transaction

manager can enforce either concurrency control protocol [BHG87] [Ree79].

Pessimistic concurrency control requires fine-grained memory serialisation and

a strongly coherent memory model. As the number of processors on a Chip

Multi-Processor increases the overhead of implementing fine-grained memory se-

rialisation in hardware increases [HP06b]. The Transactional Memory literature

therefore makes a strong case for optimistic concurrency control [HLR10].

The Time Stamp Ordering concurrency control protocol can be enforced opti-

mistically by a Time Stamp Ordering certifier which associates each transaction

with a unique monotonically increasing time stamp. The certifier maintains a

set containing the variables read and written by a transaction and also associates

each variable with the time stamp of the transaction that wrote the variable and

the highest time stamp of any transaction to have read the variable. When a

transaction commits the certifier examines the read and write time stamps of all

of the variables affected by the transaction and if the operations conform to the

protocol then the transaction can commit, otherwise it must be aborted.

5.1.6 Programmer productivity

Ease of problem diagnosis is an important contributor to overall programmer pro-

ductivity. It is often very difficult to diagnose problems in a concurrent system

where concurrency control is enforced by a locking protocol because it can be

difficult to determine which transaction wrote a particular value to a variable.

When Time Stamp Ordering is used as a concurrency control protocol transac-

tions appear to occur in the order of their starting time stamps. The order in

which transactions are executed can be recorded and this aids the diagnosis of

any problems that occur when a transactional system is executing concurrently.

The order of the memory operations at the time the problem occurred can be

determined using the read and write time stamps associated with variables so it

is possible to diagnose a problem from a core dump taken at the moment in time

that a problem occurred.

Ease of problem reproduction is an important contributor to overall program-

mer productivity. It is often very difficult to reproduce a problem in a concurrent

system where concurrency control is enforced by a locking protocol because the

serial order, to which the execution should be equivalent, may be unknown. When

5.1. DISTRIBUTED CONCURRENCY CONTROL 165

Time Stamp Ordering is used as the concurrency control protocol the serial order

is given by the order of the transaction time stamps so it is possible to reproduce

problems by executing the transactions serially in the order given by their time

stamps.

166 CHAPTER 5. CONCURRENCY CONTROL

5.2 Serialisability

A transaction manager should ensure that the effects of functions accessing an

Immutable Data Structure are equivalent to those of a serialisable execution.

Functions acting on an Immutable Data Structure can be mapped onto abstract

read and write operations on variables and a concurrency control protocol can

be enforced on these operations to ensure serialisability. The protocol permits

functions to act on an Immutable Data Structure simultaneously, although not

all of them succeed.

Functions acting concurrently on an Immutable Data Structure can be made

linearizable but enforcement of this property restricts scalability because when

two functions simultaneously act on the same data structure only one of them is

successful. To improve scalability functions should be able to act on the same

data structure simultaneously. The problem is how to ensure the serialisability

of functions that simultaneously act on a data structure?

The main contribution of this section is a technique for making functions

simultaneously acting on an Immutable Data Structure serialisable. This section

focuses on mapping these functions onto abstract read and write operations on

the variables considered by a concurrency control protocol.

5.2.1 Simultaneous access

This section considers how two functions can be permitted to act simultaneously

on an Immutable Data Structure.

When functions simultaneously access a semantically linearizable Immutable

Data Structure only one of them succeeds.

Section 5.2.3 discusses the semantics of functions concurrently accessing an

Immutable Data Structure.

The property of immutability allows the implementation of a mechanism that

permits simultaneous access while ensuring that the actions of one function ap-

pear to precede those of the other.

Section 5.2.4 discusses the semantics of functions simultaneously accessing an

Immutable Data Structure.

The problem of ensuring the serialisability of functions which simultaneously

access shared data has been successfully solved in the context of database sys-

tems. A database system ensures the correct concurrent semantics of transactions

5.2. SERIALISABILITY 167

simultaneously acting on a relational table by serialising the file operations on

the records that implement it. The file operations on these records are mapped

to abstract read and write operations and the transaction manager enforces a

concurrency control protocol on these operations to ensure that their effect is

equivalent to a serial execution. In a database system the variables on which the

concurrency control protocol acts are records and the operations that it consid-

ers are file operations. The records are, typically, the leaves of a B+tree data

structure which maintains the application data. There is a layer of abstraction

between a database table and the B+tree which implements it, so there is a com-

plex relationship between a transaction expressed in SQL and the abstract read

and write operations considered by the concurrency control protocol [GR92].

5.2.2 Implementing concurrency control

The problem of ensuring the serialisability of functions simultaneously accessing

an Immutable Data Structure is one of mapping the functions onto a concurrency

control protocol and enforcing that protocol.

A concurrency control protocol is normally expressed in terms of a history of

abstract read and write operations on a system of variables so the functions must

first be mapped to operations on a set of variables.

Section 5.2.6 describes how an Immutable Data Structure is mapped onto

variables for the purposes of concurrency control.

Section 5.2.7 describes how the functions acting on the Immutable Data Struc-

ture are mapped onto abstract read and write operations on variables.

The concurrency control protocol is enforced by a validate function that en-

sures that conflicting operations conform to the protocol. Functions which contain

non-conforming operations are rejected.

Section 5.2.8 describes how conflicting operations can be detected by a validate

function.

A concurrency control protocol can be expressed as a set of invariants on

meta-data associated with abstract read and write operations. The Time Stamp

Ordering concurrency control protocol requires that these abstract read and write

operations are associated with time stamp meta-data which the functions collect

and record.

Section 5.2.9 describes how information about the operations can be recorded

as meta-data within an Immutable Data Structure and how the Time Stamp

168 CHAPTER 5. CONCURRENCY CONTROL

Ordering concurrency control protocol can be enforced.

5.2.3 Concurrent semantics

Immutable Data Structures have the property of structural linearizability. Struc-

tural modifications take place in isolation and appear to be atomic so no matter

which functions are concurrently applied to the data structure the resulting struc-

ture is always a valid structure. However, the property of structural linearizability

does not endow the ADT presented by the data structure with any meaningful

concurrent semantics. The concurrent behaviour of a structurally linearizable

data structure is uncertain because it may not reflect the action of all of the

functions that have acted upon it.

An Immutable Data Structure can be made semantically linearizable which

ensures that concurrently executing functions appear to take place at a single

moment in time. No matter which functions are concurrently applied to the data

structure the resulting structure is equivalent to some serial execution of those

functions. The concurrent semantics of a semantically linearizable Immutable

Data Structure are intuitive because functions appear to occur in some serial

order. However, only one of the functions simultaneously accessing the Immutable

Data Structure is successful and this limits scalability.

An Immutable Data Structure that permits tardy read access to past ver-

sions while ensuring the serialisability of mutating functions has the property of

partial persistence. This ensures that mutations appear to take place at a sin-

gle moment in time but the result of non-mutating functions do not necessarily

reflect the latest version of the data structure. The concurrent semantics of a par-

tially persistent data structure are easy to understand and can be useful. Some

applications require that mutations are serialised to ensure that a data structure

eventually reflects their effects, while permitting tardy read accesses. Partial per-

sistence can improve the scalability of concurrent applications because mutating

and non-mutating functions can execute at the same time.

For example, communication routers usually map symbolic names to IP ad-

dresses using a map based data structure called a PATRICIA trie [Mor68]. The

map is read each time a message is processed, which occurs frequently, but it

is only written when new IP addresses are added, which happens rarely. If the

penalty for an incorrectly routed message is small then a partially persistent

map can be appropriate. A partially persistent map permits read-only and write

5.2. SERIALISABILITY 169

accesses to take place simultaneously, while serialising writes. It separates the

concerns about the structure of the data, which is ensured by serialising access

to the root, from both concerns about the semantic order of modifications, which

is ensured by serialising writes, and concerns about the routing of messages.

5.2.4 Simultaneous semantics

This section considers the behaviour programmers might expect from simultane-

ous accesses to an ADT.

Deque

The most desirable behaviour for a deque would be for it to permit accesses

to both ends simultaneously. This behaviour can be described in terms of the

serialisable access to two variables, each representing a different end of the queue.

For example, a Producer Consumer Queue is an application of a deque used

to communicate between concurrent processes. One process inserts elements on

one end of the queue and another process removes them from the other end. It

is desirable that processes can simultaneously insert and remove elements.

Map

The most desirable behaviour for a map would be for it to permit simultane-

ous access to different groups of elements while ensuring that the accesses to a

single group of elements are serialisable. This can be described in terms of the

serialisable access to variables.

For example, fine-grained serialisability can be ensured by associating a small

discrete group of elements with a variable and coarse-grained serialisability can

be ensured by associating a larger discrete group with a variable.

Priority queue

The most desirable behaviour for a priority queue would be for it to permit

simultaneous insertion of elements into the queue while ensuring that the highest

priority element is removed in serialisable order. The desirable behaviour can be

described in terms of the serialisable access to two variables, one representing the

highest priority element and the other representing the rest of the priority queue.

170 CHAPTER 5. CONCURRENCY CONTROL

For example, an event scheduler is an application of a priority queue used

to communicate between concurrent processes. A process requesting an event

inserts an element onto the priority queue. Another process services the queue

by removing the highest priority element from the priority queue. It is desirable

that elements can be inserted by one process while the highest priority element

is removed by another. The insertion of elements onto the priority queue should

be serialisable and the removal of the highest priority element should also be

serialisable but it is not necessary to impose a serial order on all operations.

Vector

The most desirable behaviour for a vector is semantic linearizability. A mutating

function has the potential to modify the relationship between the ordinal numbers

and values of any element in the data structure so simultaneous access cannot be

permitted. The desirable behaviour can be described in terms of the serialisable

access to a single variable representing the entire vector.

5.2.5 Previous work

The problem of permitting simultaneous access to the data structures used in

on-line gaming is commercially important and has received significant attention.

Multi-player on-line game applications are usually constructed around a massive

aggregate data structure called the game tree. The game tree contains informa-

tion about all of the objects within the game such as players and weapons and

their relationships. Actions in the game, such as a player dropping a weapon and

another player picking it up, are represented by actions on the game tree. Access

to the game tree is typically serialised by mutual exclusion. Sweeney identifies

the serial nature of actions on the game tree as a significant obstacle restricting

the performance of on-line games [Swe06]. Gajinov et al. describe how Trans-

actional Memory can be used to improve the performance of an on-line game

by allowing actions on the game tree to execute speculatively [GZU+09]. The

challenge is to ensure correctness while permitting multiple functions to access

the data structure simultaneously.

5.2. SERIALISABILITY 171

V1

c

V0

c

l rl

ll lrll rl rr

Figure 5.1: Labelling of variables in the cap of an Immutable Data Struc-
ture. The variables in the cap of an Immutable Data Structure are labelled ll,
l, lr, c, rl, r and rr. The shaded path represents new instances of the variables.
The triangles represent subtrees suspended by the cap.

5.2.6 Variables

For the purposes of concurrency control an Immutable Data Structure can be

regarded as a system of variables. A concurrency control protocol ensures the

correct concurrent semantics of abstract read and write operations acting on

these variables. The functions implemented by the Canonical Binary Tree do not

maintain any mutable state so variables must be maintained immutably within

the Immutable Data Structure itself. The relative position of a vertex to the root

can be regarded as a variable and the annotation of a vertex can be regarded as

its value. A variable can have different values in each version of the data structure

even though the vertices that implement it are immutable.

Figure 5.1 illustrates the labelling of variables within a tree. Each variable

represents a position relative to the root. The value of a variable can only be

altered by creating a new version of the tree.

For the purposes of concurrency control it is only necessary to consider the

variables represented by a subset of the relative positions in the tree that we call

the cap. A version of the Immutable Data Structure can be larger or smaller

than the cap so a vertex may or may not correspond to a variable in cap. When

the data structure is larger than the cap the variables represented by the leaves

172 CHAPTER 5. CONCURRENCY CONTROL

of the cap act as proxies for the subtrees which they suspend.

The desirable behaviour of a deque can be described in terms of the serialisable

access to three variables l, r and c. Variables l and r represent the front and back

of the deque respectively and the variable c represents the empty queue.

A map can be represented either at a fine level of granularity, or at a coarse

level of granularity. The size of the cap determines the level of granularity.

A priority queue can be represented by two variables. The variables c and l

represent the highest priority element and the rest of the priority queue respec-

tively.

A sequence can be represented by a single variable c.

5.2.7 Functions and operations

When a variable is read or written information about the operation is recorded in

the data structure. A variable in the cap is either read, written or unaffected by

a function. A function is implemented by a path copy which creates new nodes.

A node records the type of abstract read and write operations that created it,

along with the time stamp meta-data required to enforce the concurrency control

protocol.

For the purposes of concurrency control the annotation of a node corresponds

to the value of a variable. An operation is regarded as writing a variable if

the annotation associated with its relative position in the tree changes. A read

operation records an access to a variable which did not change its value. When

the annotation associated with a relative position that is not in the cap changes

a write operation is recorded as acting on the variable that corresponds to the

node’s most junior ancestor in the cap.

A query() function causes every variable on the path to be read but it is only

necessary to record reads in nodes corresponding to variables in the cap. The

nodes on the path read by the query function that correspond to variables in the

cap are copied so that read operations can be recorded.

The insert() and delete() functions also read every variable on the path but

they also cause the annotation of some of the variables on the path to change.

The variables in the cap act as proxies for the variables in the subtrees they

suspend so a change in the annotation of a node at some point on the path is

represented by a write operation on a variable within the cap.

Figure 5.2 illustrates the abstract read and write operations on variables

5.2. SERIALISABILITY 173

V3 V2

R[c]

V1

R[c]

V0

R[c]

W[l] R[l] W[l]

t usr v wqp

Figure 5.2: Operations on variables in the cap of a deque. The cap con-
tains three variables l, r and c. The function Push front(q) acts on version V0
containing {r, s, t, u, v, w} to create version V1 containing {q, r, s, t, u, v, w}. The
operations {W[l], R[c]} are recorded in the vertices corresponding to the cap.
The function Front() acts on version V1 to create version V2. The vertices cor-
responding to the cap are copied to record the operations {R[l], R[c]} performed
by this non-mutating access. The function Push front(p) acts on version V2 to
create version V3 containing {p, q, r, s, t, u, v, w}. The operations {W[l], R[c]}
are recorded in the vertices corresponding to the cap.

174 CHAPTER 5. CONCURRENCY CONTROL

Cap ADT Semantics Access
∅ All Structural linearizability Uncontrolled
{c} All Semantic linearizability Serialised
{c} All Partial persistence∗ Tardy reads
{l,c,r} Deque Serialisable Simultaneous
{l,c} Priority queue Serialisable Simultaneous
{l,c,r} Map Fine grain serialisable Simultaneous
{ll,lr,l,c, Map Coarse grain serialisable Simultaneous
rl,r,rr}

Table 5.1: Cap topology and granularity of concurrency. The topology of
the cap controls the granularity at which concurrency control is enforced. The
variables represented by the cap are listed in the first column. The third column
describes the semantics of the ADT. The permitted access is listed in the fourth
column.
(*) Partial persistence is ensured by serialising mutating functions only.

recorded in the cap of a deque. Nodes in the Immutable Data Structure record

information about the operation that created them. Read and write operations

on the right node, r, can be labelled R[r] and W[r] respectively.

Figure 5.3 illustrates the abstract read and write operations on variables

recorded in the cap of a map.

The cap can enforce serialisability at any level of granularity including making

all functions accessing the data structure linearizable. A vector can be made

linearizable by serialisable access to a single variable c.

Table 5.1 describes how the cap determines the granularity at which concur-

rency control is enforced.

The Canonical Binary Tree hides structural information from the application

making the topology of the tree independent of the functions acting on it. The

topology of a Canonical Binary Tree is not invariant because the tree may be bal-

anced at any time. During balancing the topology of the tree is modified causing

new nodes to be created. These new nodes must maintain information about

the abstract read and write operations on the variables they represent. After a

balancing rotation, information about abstract read and write operations is in

the same positions relative to the root. The skew and split balancing rotations

cause the annotation of a node to change resulting in an abstract write operation

to the corresponding variable.

5.2. SERIALISABILITY 175

V1

2

*

V0

2

*

1

2

4

*

R[c]

4

*

1

A

2

B

3

4

5

*

R[r]

5

*

3

C

4

D

*5

E

W[rr]

6

*

6

F

(a)

V0 V2

2

*

2

*

1

2

4

*

R[c]

4

*

1

A

2

B

3

4

5

*

R[r]

3

4

3

C

4

D

R[rr]

5

E

*

(b)

Figure 5.3: Operations on variables in the cap of a map. The cap contains
the variables ll,lr,l,c,rl,r and rr.
(a) The path created by the function Insert(6 7→ F) which creates version V1 is
shaded. The operations {W[rr], R[r], R[c]} are recorded in the vertices corre-
sponding to the cap. The annotation of the variable rr does not change, but it
is recorded as a write because there is a change in the subtree that it suspends.
(b) The Query(4) operation creates a new version V2 of the data structure to
record the operations {R[rl], R[r], R[c]} in the vertices corresponding to the cap.

176 CHAPTER 5. CONCURRENCY CONTROL

5.2.8 Validate function

The concurrency control protocol is enforced by the validate function that takes

as its arguments two versions of the Immutable Data Structure. It considers the

operations on variables in the caps of both versions. Operations conflict if they

act on the same variables and one of them is a write. Conflicting operations may

or may not conform to the concurrency control protocol. The validate function

determines whether the versions contain conflicting operations that violate the

protocol.

Figure 5.4 illustrates conflicting and non-conflicting operations on a deque.

A value representing the topology of the cap is passed as a parameter to the

validate function. The validate function traverses the nodes in the cap of both

versions and compares the operations acting on nodes corresponding to the same

variable. When conflicting operations are detected the time stamp meta-data

is considered. The function returns a binary value which indicates whether or

not the two versions contain conflicting operations that are not permitted by the

protocol.

5.2.9 Meta-data

The two versions of the Immutable Data Structure considered by the validate

function do not necessarily represent the application of single functions to a com-

mon ancestor version. If they did then conflict resolution would only be a matter

of detecting conflicting abstract read and write operations on the same variable.

Indeed, the paths considered by the validate function are of arbitrary complexity

as they may represent the action of multiple functions applied to a common an-

cestor version. To resolve conflicts the Time Stamp Ordering concurrency control

protocol is applied to the time stamp meta-data recorded in the nodes.

The Time Stamp Ordering protocol works by comparing the read and write

time stamps of conflicting operations to determine whether the operations appear

to occur in the order given by the time stamp of the functions. Details of the

protocol and a proof that the operations that it permits are always equivalent to

a serial execution can be found in Bernstein [BHG87].

The Time Stamp Ordering concurrency control protocol requires that a seri-

alisable system maintains a unique monotonically increasing time stamp source

and that a time stamp should be associated with all operations on variables. For

5.2. SERIALISABILITY 177

V2

R[c]

V1 V0

R[c]

R[l] W[l]

t usr v wq

(a)

V4

R[c]

V3 V0

R[c]

R[r]W[l]

utsr v wq

(b)

Figure 5.4: Conflicting and non-conflicting operations on a deque. The
cap contains three variables l, r and c.
(a) Conflicting operations. The path created by the function Push front()
records the operations {W[l], R[c]} in the nodes corresponding to the cap. The
function creates a new version V1 by path copying from version V0. The path
created by the function Front() records the operations {R[l], R[c]}. The func-
tion creates a new version V2 by path copying from version V0. The functions
conflict because they both act on variable l and one of them is a write.
(b) Non-conflicting operations. The path created by the function Push front()
records the operations {W[l], R[c]} in the nodes corresponding to the cap. The
function creates a new version V3 by path copying from version V0. The path
created by the function Back() records the operations {R[r], R[c]}. The function
creates a new version V4 by path copying from version V0.

178 CHAPTER 5. CONCURRENCY CONTROL

the purposes of concurrency control the serialisable system can be considered as

a single Immutable Data Structure so a time stamp source is maintained inde-

pendently by each data structure. A time stamp source can be implemented by

an ordinal number using an atomic increment instruction.

A unique time stamp is associated with each function call. Each node retains

the time stamp associated with the function that wrote the variable to which it

corresponds. Each node also retains the highest time stamp of any function that

reads the variable to which it corresponds.

The time stamps must be maintained in the correct positions relative to the

root and this requirement dictates the implementation of the functions of the

Canonical Binary Tree. Without this requirement the implementation of path

copy is somewhat arbitrary. For example, an element can be inserted into a tree

by creating a new root node whose children are the past version of the tree and

a leaf containing the element. The insert() operation cannot be implemented

in this way because it will alter the relative position of existing nodes. Instead,

the path to an existing leaf must be copied when an element is inserted into

the Canonical Binary Tree. The time stamps associated with each node on the

path are copied to the new node corresponding to the variable it represents. For

example, the second element in a Canonical Binary Tree must be inserted by a

leaf to root path copy operation which creates two new nodes to maintain the

relative position of time stamps.

Maintaining time stamps in the correct relative positions during balancing

is straightforward. The relative position of a node in the subtree suspended

by a pivotal node is altered by a balancing rotation. Both the skew and split

balancing rotations can be regarded as writing to the variable corresponding to

the pivotal node. It is not necessary to consider the time stamps of a node in

the subtree suspended by the pivot because this write operation will conflict with

any operation affecting a variable in this subtree.

5.3. CONFLUENCE 179

5.3 Confluence

Functions acting simultaneously on an Immutable Data Structure each create

different versions of the structure. These versions may be combined, provided

they are not the result of conflicting functions, to create a new version which is

equivalent to a serial execution of the functions. A function that combines past

versions of a data structure is called a meld function. The existence of a meld

function endows an Immutable Data Structure with the property of confluent

persistence.

The validate function can ensure that two functions acting on an Immutable

Data Structure do not contain conflicting operations and that combining the two

versions produced in isolation will result in a single version which is equivalent to

a serial execution of the functions. The problem is how to combine these versions

into a single version?

The main contribution of this section is the description of a meld function that

combines versions of an Immutable Data Structure produced in isolation. This

section focuses on techniques for making Immutable Data Structures confluently

persistent.

5.3.1 Simultaneous modifications

To make the functions of our Immutable Data Structure confluently persistent

we need a meld function that can combine two non-conflicting versions of the

Immutable Data Structure.

For example, consider two functions acting simultaneously on a deque. One

function inserts an element onto the back of the queue and a second function,

executing on another processor, simultaneously removes an element from the front

of the queue. The functions do not conflict but they do result in two different

versions of the queue which must be melded to produce a new version of the queue

which is equivalent to a version produced by a serial execution of the functions.

5.3.2 Meld Function

The meld function takes two versions of the Canonical Binary Tree and creates a

new version by full copying the nodes corresponding to variables in the cap. When

used in conjunction with a validate function that rejects conflicting operations

180 CHAPTER 5. CONCURRENCY CONTROL

V1 V0

R[c]

W[l]

t usr v wq

(a)

V0 V2

R[c]

W[r]

t u vr s w

(b)

V3

R[c]

V1

R[c]

V0 V2

R[c]

W[l] W[r]W[l] W[r]

t u vsr wq

(c)

V1 V0 V4

t u vsr wq

(d)

Figure 5.5: Making a deque confluently persistent by using a meld function
that combines versions created in isolation. The cap of a deque contains three
variables l, r and c.
(a) The function Push front(q) acts on version V0 which contains values
{r, s, t, u, v, w}. It creates version V1 which contains the values {q, r, s, t, u, v, w}.
The operations {R[c],W[l]} are recorded in the path.
(b) The function Pop back() acts on version V0 to create version V2 which con-
tains {r, s, t, u, v}. The operations {R[c],W[r]} are recorded in the path.
(c) Versions V1 and V2 meld to produce a new version V3 which contains
{q, r, s, t, u, v}. The meld selectively copies the nodes from versions V1 and V2.
(d) A serial execution of these functions would have created version V4 which
contains {q, r, s, t, u, v} and is equivalent to V3.

5.3. CONFLUENCE 181

the meld function makes an Immutable Data Structure confluently persistent.

The meld function takes references to versions of arbitrary complexity as

its parameters and returns a reference to a new version. It is specialised by

a parameter representing the topology of the cap. The meld function traverses

the nodes in the cap of both versions and compares the operations acting on nodes

corresponding to the same variable. The meld function is a full copy operation

that selectively copies nodes from the two versions using the operations and time

stamps recorded in the nodes to determine which version to copy. For each

variable in the cap a new node is created to represent it. The function returns a

reference to a root node which represents a new version.

Figure 5.5 illustrates an example of how a deque can be made confluently

persistent by a meld function that combines two versions simultaneously created

in isolation.

The two versions in this example could have been combined by creating a

new root node. However, in the general case it is necessary to copy all of the

nodes which correspond to variables in the cap to ensure that the correct time

stamps are recorded in the nodes and that the relationship between operations

and variables is maintained.

The two versions in this example could have been combined without using time

stamps because each version represents the action of a single function. However,

in the general case it is necessary to consider the time stamps associated with

each node while performing the full copy.

The deque is a particularly simple example, however all ADTs implemented by

the Canonical Binary Tree can be made confluently persistent using the technique.

The meld function is implemented by the Canonical Binary Tree, the topology

of the cap is supplied as a parameter but the operation of the meld function is

ADT agnostic.

5.3.3 Previous work

Driscoll, Sarnak, Sleator, and Tarjan describe confluently persistent data struc-

tures in detail [DSST86].

Versions of an Immutable Data Structure created by arbitrary transformations

cannot always be combined because the functions that created them may conflict.

Fiat and Kaplan consider that the problem of making a data structure confluently

persistent is intractable in the general case [FK03]. When conflicting functions

182 CHAPTER 5. CONCURRENCY CONTROL

are eliminated the problem of implementing a meld function becomes tractable,

but even functions that do not conflict can transform the topology of a data

structure in ways that are difficult to reconcile.

Version control systems for documents are well known applications of conflu-

ent persistence. Pilato, Collins-Sussman and Fitzpatrick describe a system called

Subversion which enables multiple authors to modify a document concurrently

[PCSF08]. Subversion provides a validate function that highlights any conflict-

ing modifications to a document and a meld operation which combines multiple

versions

Chapter 6

Contention Management

Concurrent programs that make strong progress guarantees are scalable but

those that require centralised transaction management to ensure progress are

not. Transactional Memory systems centralise the responsibility for scheduling

and contention management, at the expense of scalability. This chapter explains

why scalable concurrent programs should make strong progress guarantees. It

also explains how a load-balancing scheduler, intended for use with a parallel

workload, can be used to schedule Memory Transactions.

Section 6.1 identifies the choice of contention management mechanism as one

of the most significant decisions taken when designing a concurrent system.

Section 6.2 describes how Immutable Data Structures can be used to imple-

ment non-blocking algorithms.

Section 6.3 compares a non-blocking Producer Consumer Queue with its

blocking counterpart.

Section 6.4 describes how Memory Transactions can be load-balanced by a

scheduler intended for a parallel workload.

183

184 CHAPTER 6. CONTENTION MANAGEMENT

6.1 Progress and Contention Management

Concurrent applications suffer from the progress pathologies of blocking, livelock

and priority inversion. Progress pathologies can be alleviated by a contention

manager. However, centralised contention management restricts the scalability

of a concurrent system. This thesis proposes that a concurrent application should

make strong progress guarantees to alleviate the need for contention management.

A concurrent application that guarantees that all of its constituent tasks com-

plete in a finite period of time offers a progress guarantee, whereas an application

that does not can suffer from a progress pathology. A useful concurrent appli-

cation should make a strong guarantee of progress but it is difficult to write

concurrent applications that guarantee progress.

The main contribution of this section is the observation that concurrent ap-

plications that make strong progress guarantees alleviate the need for contention

management. This section focuses on guaranteeing that functions acting on an

Immutable Data Structure eventually complete.

6.1.1 Blocking

A program that executes on a Transactional Memory system either blocks or

guarantees obstruction-free progress. Obstruction-freedom is the guarantee that if

a transaction is repeatedly re-tried and eventually encounters no interference from

other transactions, it will complete. Obstruction-freedom does not guarantee that

all of the transactions that constitute a concurrent program eventually complete.

Programs that execute on a Transactional Memory system offer weak progress

guarantees and are therefore prone to progress pathologies.

Section 6.1.3 discusses progress guarantees and progress pathologies.

Transactional Memory systems can implement a contention manager to alle-

viate progress pathologies and ensure the progress of the transactions executing

in the concurrent system. The contention manager has an overview of the con-

current processing and can intervene to ensure that the application eventually

completes. However, contention management is a necessarily centralised task so

it restricts the scalability of the concurrent system.

6.1. PROGRESS AND CONTENTION MANAGEMENT 185

6.1.2 Guaranteed progress

An application should guarantee lock-free progress to alleviate the need for a

concurrent system to implement contention management. Centralised contention

management is a fundamental barrier to the scalability of a concurrent system,

whereas the difficulty of creating applications that guarantee progress is a problem

that can be overcome. This thesis focuses on making it easier to write concurrent

applications that guarantee progress.

Rajwar describes how concurrent applications based on the Time Stamp Or-

dering concurrency control protocol can be made lock-free [Raj02]. A lock-free

concurrent application guarantees system-wide progress but permits individual

operations to postpone indefinitely. A lock-free application is prone to the pathol-

ogy of livelock and priority inversion. However, it will be argued that the use of

Time Stamp Ordering and similarly sized transactions eliminates these patholo-

gies in practice. So, a concurrent application that uses these techniques and

guarantees lock-free progress does not require contention management.

Livelock can occur in lock-free applications. In practice, continual livelock is

very unlikely to occur in a system that implements the Time Stamp Ordering

concurrency control protocol. The unique monotonically increasing time stamp

assigned to each transaction acts as a priority causing a single transaction to

succeed eventually in any conflict between transactions.

Priority inversion can occur in lock-free applications. In practice, priority

inversion is very unlikely to occur in a system in which all transactions execute

for similar durations. Long running transactions do not occur when transactions

are implemented at the granularity of accesses to a data structure.

Bernstein, Hadzilacos and Goodman explain in detail why database systems

that implement Time Stamp Ordering do not require contention management

[BHG87].

6.1.3 The Dining Philosophers

The dining philosophers problem can be used as an illustration of progress guaran-

tees and progress pathologies. Five philosophers are sitting round a table dining

on bowls of rice. Five chopsticks are placed between the bowls. Each philosopher

sits in front of a bowl and can only reach the chopstick to his immediate left or

right. A philosopher must have a pair of chopsticks in order to eat. The action

186 CHAPTER 6. CONTENTION MANAGEMENT

Figure 6.1: The dining philosophers each have a rice bowl but there are
insufficient chopsticks for them all to eat at once.

of the philosophers is determined by a dining algorithm.

Figure 6.1 illustrates the arrangement of bowls and chopsticks.

Hoare reformulated a five computer synchronisation problem, originally posed

by Dijkstra, as the dining philosophers problem [Hoa83]. Krishnaprasad describes

how a number of synchronisation strategies can be expressed in terms of dining

algorithms [Kri03].

The following discussion considers progress guarantees made by dining algo-

rithms and the progress pathologies they are prone to.

Deadlock is a circular wait condition that occurs when each of the philosophers

reaches for a second chopstick but finds that their neighbour has already taken

it. The philosophers involved in the deadlock will starve because eating requires

a pair of chopsticks.

Mutual exclusion is a convention that relies on blocking the progress of con-

current processes to prevent simultaneous execution. Deadlock can be prevented

in a system in which mutual exclusion is enforced by serialising access to a single

entity. To prevent deadlock a dining algorithm introduces a single napkin with

the rule that only the philosopher in possession of the napkin can eat. The lack of

a napkin blocks the other philosophers from eating. The napkin is placed on the

table and all the philosophers try to possess it but only one is successful. When

the successful philosopher has finished eating he places the napkin back on the

table. A single philosopher can dominate the napkin causing the others to starve.

A non-blocking algorithm ensures that operations competing for a shared

resource never have their progress indefinitely postponed by mutual exclusion. A

non-blocking algorithm guarantees that a philosopher will not starve as a result

6.1. PROGRESS AND CONTENTION MANAGEMENT 187

of mutual exclusion.

A non-blocking algorithm is obstruction-free if it guarantees that when an

action is tried repeatedly and eventually encounters no interference from other

actions it will complete successfully but it does not guarantee that such a situation

will occur. An obstruction-free dining algorithm guarantees that a philosopher

will be able to eat when the other philosophers are not attempting to eat.

Obstruction-free algorithms can suffer from the pathology of livelock. Live-

lock occurs when two or more competing operations cause each other to restart,

preventing any of them making progress. A dining algorithm can livelock when

each of the philosophers reaches for both chopsticks simultaneously but with-

draws when he observe his neighbour behaving likewise. All of the philosophers

involved in the livelock will starve.

Obstruction-free algorithms can also suffer from the pathology of priority in-

version. Priority inversion occurs when a long running operation is preempted

by an operation of brief duration. A dining algorithm in which a philosopher

procrastinates when he has an opportunity to eat can suffer from priority in-

version. The procrastinating philosopher might starve because he is continually

interrupted by requests from other philosophers which prevent him from eating.

A non-blocking algorithm is lock-free if it guarantees that at least one action

eventually completes. A dining algorithm is lock-free if it guarantees that at least

one of the philosophers eventually eats. Lock-free algorithms can suffer from

livelock and priority inversion but these pathologies do not prevent all operations

from making progress. In practice, livelock and priority inversion are less likely to

occur in an algorithm that guarantees lock-freedom than one that only guarantees

obstruction-freedom.

A non-blocking algorithm is wait-free if it guarantees that eventually every

action completes. A wait-free dining algorithm guarantees that all of the philoso-

phers eventually get to eat. Wait-free algorithms are not prone to the pathologies

of livelock and priority inversion. All concurrent algorithms can be converted into

implementations that are wait-free but the overheads of the conversion are pro-

hibitive [Her88] [FHS04].

At a philosophy conference philosophers have a choice of tables at which dif-

ferent dining algorithms are used. The wait-free table is the best because all of

the philosophers are guaranteed to eat eventually and the blocking table is the

worst because all the philosophers may starve because of deadlock. A lock-free

188 CHAPTER 6. CONTENTION MANAGEMENT

table is preferable to an obstruction-free table because at the lock-free table at

least one philosopher does not starve. Wait-freedom is the strongest progress

guarantee and the other guarantees are progressively weaker [HS08].

6.1.4 Previous work

Applications executing on Transactional Memory systems suffer from the progress

pathologies of livelock and deadlock. In weakly isolated systems these pathologies

can occur in combination with the isolation pathology of cascading aborts. Bobba

et al. categorise Transactional Memory pathologies and describe them in detail

[BMV+07].

Many Software Transactional Memory implementations block at some point

in their execution. Blocking Software Transactional Memory systems are easier to

design than non-blocking systems. A blocking Software Transactional Memory

hides blocking from the application programmer by implementing it internally

[DDS06] [HPST06] [SATH+06].

Several Software Transactional Memory systems guarantee obstruction-freedom

[HLMS03] [SCKP07] [CRS05] [TMG+09]. These systems are based on the con-

cept of exclusive but revocable object ownership.

In an obstruction-free Software Transactional Memory system each transac-

tion is associated with a descriptor which indicates whether the transaction is

active, committed or aborted. Objects are owned by transactions and have an

associated pointer to their owner which is modified by an atomic instruction.

When a transaction reads an object it checks the pointer to determine whether

another transaction already owns it.

A transaction takes ownership of an object by modifying the pointer so that it

references the transaction’s descriptor. Once a transaction has taken ownership

of all the objects it will access it can commit its changes to those objects. This is

done by changing the transaction descriptor from live to committed. This action

will atomically commit the changes to all affected objects.

An obstruction-free Software Transactional Memory system can suffer from

progress pathologies. Concurrent transactions can prevent each other from own-

ing all of the objects they require, causing livelock. Short running transactions

can prevent long running transactions from obtaining all the objects they require,

causing priority inversion.

Exclusive object ownership is a two-phase locking protocol which requires that

6.1. PROGRESS AND CONTENTION MANAGEMENT 189

all the locks that will ever be required by a transaction are acquired before any

are released. Bernstein, Hadzilacos and Goodman describe the two-phase locking

concurrency control protocol in detail [BHG87]. Guerraoui and Kapa lka explain

that exclusive object ownership cannot provide the stronger guarantee of lock-

freedom because systems based on two-phase locking cannot guarantee that at

least one transaction will ever complete its operation, while other transactions

are active [GK08].

Ennals argues that obstruction-free Software Transactional Memory systems

are less scalable than their blocking counterparts [Enn06]. However, we believe

that the best approach to overcoming scalability restrictions is to strengthen the

progress guarantee, because a concurrent application that does not guarantee

that all of its tasks eventually complete can hardly be described as scalable.

190 CHAPTER 6. CONTENTION MANAGEMENT

6.2 Non-blocking Algorithms

The construction of non-blocking algorithms is a challenging programming task.

Non-blocking algorithms are scalable because they permit simultaneous access

to a data structure and they offer strong progress guarantees without requiring

centralised contention management. This section describes a simple technique

for constructing non-blocking algorithms. Non-blocking functions acting on Im-

mutable Data Structures are the foundation on which scalable concurrent pro-

grams can be built.

Non-blocking algorithms are scalable and relieve the programmer from having

to reason about locks. A concurrent system in which semantically linearizable

functions act concurrently on an Immutable Data Structure can guarantee lock-

free progress. In order to simplify the construction of non-blocking algorithms

concurrent systems should also ensure that serialisable functions guarantee lock-

free progress.

The main contribution of this section is a general technique for implementing

non-blocking algorithms. This section focuses on allowing simultaneous access to

Immutable Data Structures.

6.2.1 Ensuring serialisability without blocking

The enforcement of serialisability is more involved than the enforcement of lin-

earizability because conflict detection is performed by a function instead of an

atomic hardware instruction.

Semantic linearizability is enforced by recording the value of the root of the

Immutable Data Structure at the start of the execution of an access function and

checking that its value has not changed before atomically replacing the root at

the end of the execution. This replacement relies on an atomic compare-and-

swap instruction which serialises access to the root and implements a memory

barrier that ensures that the speculative path is atomically transformed into a

new shared version of the data structure.

Semantic linearizability is lock-free because it guarantees that when the pro-

gram runs for sufficiently long at least one function makes progress. An access

function can be prevented from completing only if the value of the root changes

whilst it is executing. However, if the value of the root changed then another

function successfully completed so at least one function made progress.

6.2. NON-BLOCKING ALGORITHMS 191

Semantic linearizability does not achieve the stronger condition of wait-freedom.

An algorithm is wait-free if every operation eventually completes. An access func-

tion can be prevented from completing if the value of the root changed whilst it

was executing. The function can be re-tried indefinitely but there is no guarantee

that it will eventually succeed.

The serialisability of simultaneous accesses to an Immutable Data Structure

can be enforced by a validate function that implements a concurrency control

protocol and a meld function that can combine two versions of the data structure

making it confluently persistent. The problem is to combine these actions a way

that guarantees progress.

6.2.2 Lock-free serialisability

An access function of an Immutable Data Structure includes both validate and

meld functions which implement a simple distributed transaction manager. This

transaction manager combines two forms of speculation. The first speculation

is that the access function does not conflict with any functions accessing the

data structure simultaneously. The second speculation is that the root of the

Immutable Data Structure does not change while the validate and meld functions

take place.

Figure 6.2 illustrates the execution of an access function in the presence of

concurrent mutations.

An Immutable Data Structure access function records the value of the root of

the Immutable Data Structure at the moment in time that it starts. This refer-

ence represents the starting version of the data structure. The function is applied

to this starting version to produce a path in isolation. The function records the

value of the root of the Immutable Data Structure at the moment in time that it

completes the path, we call this version the first snapshot. This reference repre-

sents a version of the data structure which might have been arbitrarily mutated

by concurrently executing functions. The validation function ensures that the

execution of the function and the first mutation do not contain conflicting op-

erations. The meld function combines the path with the first snapshot version

to produce a putative version of the data structure. Both the validate and meld

functions execute in isolation, their only inputs are the path and the first snap-

shot version. An atomic compare-and-swap instruction replaces the root with the

putative version if and only if the root has the same value as the first snapshot.

192 CHAPTER 6. CONTENTION MANAGEMENT

Access
Function

First
Mutation

Second
Mutation

Starting

Function

Starting

Path

Function

Validate
Meld

Putative

Replace
CAS

Final

Path

Validate
Meld

Putative

Replace
CAS

First
snapshot

Snapshot

Snapshot

Starting

Function

Path

Validate
Meld

Putative

Replace
CAS

Second
snapshot

Snapshot

Snapshot

Figure 6.2: The execution of an access function in the presence of con-
current mutations. Each operation takes a version of the data structure, repre-
sented by an ellipse, as its argument and produces a new version. The operations
executed by another processor are shaded.
The first mutation may successfully complete, while the access function is exe-
cuting, creating the first snapshot version. If so, the path created by the access
function is validated against this snapshot version and melded with it to create a
putative path. A second mutation may complete, while this validation is taking
place, creating the second snapshot version.

6.2. NON-BLOCKING ALGORITHMS 193

An Immutable Data Structure access function completes successfully if and

only if both speculations are successful. The first speculation is that the access

function does not conflict with the first mutation. The second speculation is that

the second mutation does not complete successfully in the period between the

first and second snapshot. In the first case a conflict is detected after the first

mutation successfully modified the root which implies that the first mutation

made progress. In the second case the value of the root only changes after the

second mutation successfully modified it which implies that the second mutation

made progress. Either the function or one of the mutations makes progress in

each case. The execution is lock-free because it guarantees that when a program

runs for sufficiently long at least one processor makes progress.

6.2.3 Previous work

Herlihy and Shavit describe the state of research into non-blocking algorithms in

a book entitled “The art of multiprocessor programming” [HS08].

Non-blocking algorithms which access mutable values are complex, difficult

to reason about and are usually regarded as the domain of expert programmers.

Given an ADT there is no general technique for constructing a non-blocking

algorithm that conforms to it.

A particularly difficult problem, the ABA problem, contributes significant

complexity to the implementation of non-blocking algorithms. Fraser and Harris

describe the ABA problem which is a pathology of the atomic compare-and-swap

instruction that occurs when addresses are re-used [FH07]. The implementation

of a non-blocking algorithm is simplified by ensuring that all the data it acts

upon is immutable and that addresses are not re-used. The immutability of the

vertices of an Immutable Data Structure ensures that the root cannot be assigned

the same value more than once so the ABA problem cannot occur.

An atomic compare-and-swap instruction cannot modify two non-contiguous

locations so non-blocking data structures with cycles, such as doubly linked lists,

are difficult to construct. The ADTs presented by non-blocking algorithms are

often similar to those presented by purely functional data structures which are

also single pointer structures.

Goetz et al. examine the performance of the non-blocking algorithms included

in java.util.concurrent library [GBB+06].

Allemany and Felten found that many non-blocking algorithms perform badly

194 CHAPTER 6. CONTENTION MANAGEMENT

11 : f(f(q,r),f(f(s,t),f(u,v)))

3 : f(q,r) 10 : f(f(s,t),f(u,v))

1 : q 2 : r 6 : f(s,t) 9 : f(u,v)

4 : s 5 : t 7 : u 8 : v

Figure 6.3: The abstract syntax tree of an expression in which each value
is associated with a tag number. The expression is f(f(q, r), f(f(s, t), f(u, v))).

on Chip Multi-Processors [AF92]. Allemany attributes this poor performance to

resources wasted by operations that fail and the cost of data copying.

Non-blocking algorithms use the atomic compare-and-swap instruction which

may take thousands of clock cycles to complete. Hennessy and Patterson provide

an introduction to the complex performance issues surrounding the use of the

atomic compare-and-swap instruction [HP06b].

6.2.4 Non-blocking evaluation

Non-blocking algorithms based on immutable data are more flexible than those

based on mutable data. The following example illustrates how a non-blocking

algorithm can be used to load-balance the evaluation of an arbitrary expression

on multiple processors.

The expression f(f(q, r), f(f(s, t), f(u, v))) can be described by an abstract

syntax tree. The problem is to load balance the evaluation of the expression

between processors. It is difficult to schedule the concurrent execution of this

expression because the execution time of each function is not known. A solution

is to schedule the execution of functions as their arguments become available

dynamically.

Figure 6.3 illustrates the abstract syntax tree of the expression.

The evaluation may be dynamically load-balanced by recording intermediate

values in an Immutable Data Structure. Initially, the data structure contains only

the arguments of the expression. The final version contains all of the arguments

6.2. NON-BLOCKING ALGORITHMS 195

and intermediate values as well as the result. The data structure maintains an

immutable record of the evaluation of the expression.

Figure 6.4 illustrates the initial and final versions of an Immutable Data Struc-

ture which represents the evaluation of the expression.

Figure 6.5 illustrates the non-blocking evaluation of the expression by multiple

processors.

In the illustration, each function’s arguments are available in the version of

the Immutable Data Structure that it starts with. If the function is unable to

find its arguments in the Immutable Data Structure then it is re-started with a

new version. Eventually, all of the functions in the expression complete and the

value of the expression can be obtained from the Immutable Data Structure.

196 CHAPTER 6. CONTENTION MANAGEMENT

V0 Evaluation

2

*

V5

6

*

1

2

5

*

1

q

2

r

4

5

7

*

4

s

5

t

7

u

8

*

8

v

*

3

6

9

*

2

3

5

6

7

9

10

*

1

2
3

f(q,r)

4

5
6

f(s,t)

8

9
10

f(f(s,t),f(u,v))

11

*

9

f(u,v)

11

f(f(q,r),f(f(s,t),f(u,v)))

Figure 6.4: An Immutable Data Structure representing the evaluation
of an expression. The Immutable Data Structure representing the evaluation
of the expression f(f(q, r), f(f(s, t), f(u, v))) is an interval tree, with a sentinel,
which maps the tag number of a value in the abstract syntax tree to a leaf. The
Immutable Data Structure contains all of the arguments and intermediate values
as well as the result. Only the initial and final versions of the Immutable Data
Structure are shown. The final version is shaded.

6.2. NON-BLOCKING ALGORITHMS 197

V0

9 : f(u,v)

Validate
Meld

6 : f(s,t)V1

Validate
Meld

3 : f(q,r) V2

Validate
Meld

10 : f(f(s,t),f(u,v))V3

Validate
Meld

V4

11 : f((q,r),f(f(s,t),f(u,v)))

Validate
Meld

V5

Figure 6.5: The non-blocking evaluation of the expression
f(f(q, r), f(f(s, t), f(u, v))) by multiple processors load-balances the work
between them. Each operation takes a version of the data structure, represented
by an ellipse, as its argument and produces a new version. The operations
executed by another processor are shaded. Only validation against the first
snapshot version is shown.

198 CHAPTER 6. CONTENTION MANAGEMENT

6.3 Producer Consumer Queue

To evaluate our technique for creating a non-blocking algorithm we compare the

ease of use of a bounded non-blocking Producer Consumer Queue with that of

a similar queue described in the literature. We also compare the performance of

our queue with that of its counterpart implemented using mutual exclusion. We

find that our queue is more flexible than the non-blocking queues described in the

literature. We also find that our queue performs similarly to a queue implemented

using mutual exclusion.

The Producer Consumer Queue is a concurrent design pattern. A bounded

Producer Consumer Queue can act as a message queue for Inter-Processor Com-

munication. Two classes of processors, the producers and the consumers, share

a common buffer which acts as a queue of messages between them. A producer

adds a message to the queue and a consumer removes it. The Producer Consumer

Queue guarantees that a producer cannot add a message onto the queue when it

is full and that a consumer cannot remove a message when it is empty and that

each message is consumed exactly once.

The main contribution of this section is an evaluation of a Producer Con-

sumer Queue implemented by an Immutable Data Structure. This section focuses

on comparing: throughput, ease of implementation, ease of use, scalability and

progress guarantees.

6.3.1 Experiment

Our experiment compares the performance of a lock-free bounded Producer Con-

sumer Queue implemented by an Immutable Data Structure with that of a block-

ing bounded Producer Consumer Queue implemented using mutual exclusion.

Section 6.3.3 describes the experimental set up.

We call a Producer Consumer Queue that transmits messages in a buffer a

Mailbox Queue and a queue that transmits references to messages a Messaging

Queue. We are primarily interested in transmitting messages between physical

processors so each end of the queue is accessed by thread of execution on a

different physical processor.

Figure 6.6 illustrates the Producer Consumer Queue design pattern.

The production and consumption of messages by an application affects the

performance of the queue by introducing latency. Our experiment examines how

6.3. PRODUCER CONSUMER QUEUE 199

Producer
1

msg msg msg msg msg msgProducer
2

Consumer
1

Consumer
2

Consumer
n

Producer
n

(a) Mailbox Queue

Producer
1

item item item item item itemProducer
2

Consumer
1

Consumer
2

msg msg msg msg msg msg Consumer
n

Producer
n

(b) Messaging Queue

Figure 6.6: The Producer Consumer Queue design pattern.
(a) A Mailbox Queue acts as a buffer for fixed sized messages sent between pro-
ducers and consumers.
(b) A Messaging Queue transmits messages referenced by items in the buffer
between producers and consumers.

the throughput of the Messaging Queue varies depending upon this latency.

A Producer Consumer Queue based on a deque implemented by the Canonical

Binary Tree is unbounded and it does not return any memory. Mechanisms are

required to bound the queue and reclaim memory.

Section 6.3.4 describes the implementation of the Producer Consumer Queue.

A message workload is simulated so that the performance of the queues can

be evaluated.

Section 6.3.5 describes a simulated message workload.

We examine whether our lock-free Producer Consumer Queue is easier to

implement than a similar non-blocking queue. We also compare the ease of use,

the scalability and the progress guarantees offered by our queue with those of

other blocking and non-blocking queues.

6.3.2 Results

This thesis does not make any claims about the absolute performance of Trans-

actional Data Structures. However, the results of our experiment show that the

performance of the non-blocking Producer Consumer Queue was broadly similar

to that of a queue implemented using mutual exclusion.

Maximum throughput of the Mailbox Queue

The maximum throughput of a Mailbox Queue implemented by the non-blocking

Producer Consumer Queue is compared with that of blocking queues from the

200 CHAPTER 6. CONTENTION MANAGEMENT

Algorithm Elapsed time (s)
Non-blocking Producer Consumer Queue 0.24
boost bounded circular buffer 0.28
boost bounded space optimised circular buffer 0.30
boost bounded std::deque container 0.25
boost bounded std::list container 0.85

Table 6.1: The maximum throughput of a Mailbox Queue. The elapsed
time taken to transmit one million mailbox messages between two processors for
various queue types is listed. The experiment determines the maximum through-
put of a Mailbox Queue with a capacity of one thousand 8 byte messages. Figures
given are the mean of 10 observations.

Boost C++ library [Kar05].

Table 6.1 lists the elapsed time taken to transmit messages between two pro-

cessors for various queue types.

Our non-blocking Producer Consumer Queue has the lowest overall execution

time. The implementation based on a deque from the standard library has the

lowest elapsed execution time of the blocking implementations.

Section 6.3.7 discusses the performance of the Mailbox Queue in detail.

We conclude that the maximum throughput of our mailbox Producer Con-

sumer Queue is similar to that of its blocking counterpart.

Maximum throughput of the Messaging Queue

The maximum throughput of a Messaging Queue implemented by the non-blocking

Producer Consumer Queue is compared with that of a blocking queue from the

Boost C++ library.

Figure 6.7 and figure 6.8 illustrate the elapsed time taken to transmit messages

between processors while varying the latency of production and consumption.

The blocking queue has a lower elapsed time than the non-blocking queue,

regardless of the latency incurred by either the producer or the consumer. The

difference between the throughput of the queues becomes more pronounced as

the latency increases. When there is an imbalance between the latency of the

producer and that of the consumer the elapsed time taken by the non-blocking

queue is significantly longer than that taken by the blocking queue.

Section 6.3.8 discusses the performance of the Messaging Queue in detail.

6.3. PRODUCER CONSUMER QUEUE 201

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20

E
la

p
s
e

d
 t
im

e
 (

s
e
c
o

n
d
s
)

Mean cache misses per message

Figure 6.7: The maximum throughput of a non-blocking bounded Mes-
saging Queue implemented by a confluently persistent Immutable Data
Structure. The elapsed time taken to transmit one million messages between
two processors is plotted against a varying number of forced cache misses incurred
while: producing (p), consuming (u) and both producing and consuming the
messages (+).
Figures given are the mean of 10 observations. Bars indicate the range of elapsed
times observed.

202 CHAPTER 6. CONTENTION MANAGEMENT

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20

E
la

p
s
e

d
 t
im

e
 (

s
e
c
o

n
d
s
)

Mean cache misses per message

Figure 6.8: The maximum throughput of a blocking Producer Consumer
Queue from the Boost library, implemented by the std::deque con-
tainer. The elapsed time taken to transmit one million messages between two
processors is plotted against a varying number of forced cache misses incurred
while: producing (p), consuming (u) and both producing and consuming the
messages (+).
Figures given are the mean of 10 observations. Bars indicate the range of elapsed
times observed.

6.3. PRODUCER CONSUMER QUEUE 203

We conclude that the maximum throughput of our messaging Producer Con-

sumer Queue is lower than that of its blocking counterpart.

Ease of implementation

The Canonical Binary Tree on which our Producer Consumer Queue is based is

a general solution to problems in concurrency, whereas a non-blocking algorithm

is typically a specialised solution to a particular problem.

Section 6.3.9 compares the ease of implementing our queue with that of other

queues.

We conclude that our Producer Consumer Queue implementation is more

flexible than either its blocking or non-blocking counterparts.

Ease of use

This thesis claims that Transactional Data Structures make concurrent programs

easier to write.

From the prospective of an application programmer our Producer Consumer

Queue is as easy to use as either a blocking queue or the non-blocking Producer

Consumer Queue developed by Scherer [SLS09].

Section 6.3.10 compares the ease of use of our queue with that of other queues.

We conclude that our Producer Consumer Queue implementation is as easy

to use as either its blocking or non-blocking counterparts.

Scalability

This thesis claims that Transactional Data Structures facilitate the development

of scalable concurrent programs.

We found that the throughput of both our queue and a queue implemented

using mutual exclusion were unaffected by the number of processors concurrently

accessing them.

Section 6.3.11 compares the scalability of our queue with that of other queues.

We conclude that our Producer Consumer Queue implementation is as scalable

as either its blocking or non-blocking counterparts.

204 CHAPTER 6. CONTENTION MANAGEMENT

Progress guarantees

This thesis claims that concurrent programs that use Transactional Data Struc-

tures can guarantee progress.

A Producer Consumer Queue implemented by mutual exclusion makes no

progress guarantees, whereas our non-blocking Producer Consumer Queue guar-

antees lock-free progress.

Section 6.3.12 compares the progress guarantees offered by our queue with

those offered by other queues.

We conclude that our Producer Consumer Queue implementation is preferable

to its blocking counterpart because it offers a progress guarantee.

6.3.3 Method

Experiments are performed using a PC with an Intel Core i7 860 processor oper-

ating at 2.8GHz with 8 MB of cache and 4GB of DDR3 SDRAM running at 1333

MHz. The examples are compiled using the Intel 64 bit C++ compiler with the

maximum optimisation level.

We use a bounded non-blocking Producer Consumer Queue based on a deque

implemented by the Canonical Binary Tree. The Canonical Binary Tree is bal-

anced but none of the optimisations, suggested in section 3.6.5 are implemented.

We compare the performance of our queue with that of the bounded blocking

Producer Consumer Queue coding example from the Boost C++ library [Kar05].

The calls to the Boost Thread library are replaced by the corresponding calls to

the Threading Building Blocks library and the scalable memory allocator from

that library is used.

The queueing applications we compare behave differently because the access

function of the blocking queue waits when the queue is empty, whereas the access

function of the non-blocking queue may fail and must be re-tried. However, both

applications transmit messages as fast as their queues allow.

6.3.4 Implementation

Data structures implemented by the Canonical Binary Tree are unbounded, so a

non-blocking Producer Consumer Queue based on a deque implemented by the

Canonical Binary Tree is also unbounded. To bound the queue a count of the

number of items it contains can be associated with each version. To maintain this

6.3. PRODUCER CONSUMER QUEUE 205

association without blocking the count is incorporated into the data structure. An

immutable management block containing the count is linked between the version

root and the root node. Functions that create a new path in the Immutable Data

Structure also create a new version of the immutable management block with an

adjusted count.

The management block contains a count of the items in a version of the

queue. When an item is pushed onto the queue a new management block with

an increased count is created. Push functions fail when the count of items in the

queue exceeds the bound. When items are pushed onto the queue concurrently

each push function increases the same counter value but the validate operation

ensures that only one succeeds. When items are pushed onto and popped from the

queue concurrently the count is adjusted during the meld operation to indicate

that the queue length is unaffected by the combined operations.

The data structures implemented by the Canonical Binary Tree do not return

any memory. To implement a useful Producer Consumer Queue it is necessary

to reclaim the memory occupied by unreachable vertices without introducing

blocking. The memory reclamation process visits versions that cannot be reached

by the data structure access functions. To achieve this, past versions are linked

to the current version to form a version chain.

The root at the time an access function starts is the address of the most

recently committed management block and this address is recorded in the new

version of the management block created by the function. It links the manage-

ment blocks created by functions that successfully update the root and forms a

chain linking the root to all past versions of the Immutable Data Structure.

Memory is returned by a periodic reclamation process. This process follows

the version chain examining past versions. It returns the memory occupied by

unreachable vertices without blocking the progress of the access functions.

The management block contains additional immutable values used to con-

trol memory reclamation. These include the address of the last management

block returned by the previous memory reclamation, which indicates where mem-

ory reclamation should stop, and a cyclic counter which indicates when memory

reclamation should take place.

In our implementation memory reclamation relies on the observation that

when the queue is empty all vertices in all past versions are unreachable. The

reclamation process follows the version chain until it encounters a management

206 CHAPTER 6. CONTENTION MANAGEMENT

block with an item count of zero. It continues following the version chain re-

leasing the memory occupied by past versions. This technique is sufficient for

inter-processor queues which are frequently empty and is adequate for our exper-

iments. However, there is no guarantee that the queue will ever be empty while

in operation. A more robust solution to the memory management problem is

required before our Producer Consumer Queue can be used in production.

6.3.5 Workload simulation

Inter-processor traffic is more difficult to characterise than network traffic. Stan-

dard protocols and benchmarks aid the evaluation of algorithms related to net-

work traffic, whereas Inter-Processor Communication is generally based on be-

spoke protocols. Concurrent applications use a mixture of message sizes and

perform varying amounts of work when preparing and processing messages.

The producer writes a message to memory and this write is cached. The

atomic compare-and-swap instruction in both the blocking and non-blocking im-

plementations forces an outstanding write operation buffered by the processor to

be written to memory, so when the consumer reads the message from memory

the operation is a cache miss. The elapsed time taken to transmit messages is

dominated by the latency of these cache misses.

We simulate the work done during the production and consumption of mes-

sages by inducing cache misses, but it is not sufficient to assume that a fixed

number of cache misses is associated with each message. Messages are created

by applications which do a varying amount of work during the production and

consumption of messages and this behaviour must also be simulated.

We assume that the program issues memory operations that result in a cache

miss at random intervals and that the latency of these operations dominates

the production and consumption of the message. The number of cache misses

per message is modelled by a Poisson distribution. A Poisson distribution is a

discrete probability distribution that expresses the probability of a number of

independent events occurring in a fixed period of time. A cache miss can be

induced by accessing an array much larger than the processor cache.

6.3. PRODUCER CONSUMER QUEUE 207

6.3.6 Previous work

The C programming language does not specify a memory model so a concurrent

application written in C relies on the memory model implemented by the un-

derlying hardware architecture, but memory models implemented by hardware

architectures differ. Adve and Gharachorloo provide a comprehensive tutorial

on shared memory consistency models [AG95]. Non-blocking structures imple-

mented in C tend not to be portable between different hardware architectures

because the memory models implemented by these architectures are different.

For example, The Intel architecture software developer’s manual describes how

the memory models implemented by Intel IA-32 and Intel 64 bit processors differ

[Int07]. It is difficult to construct a Non-blocking algorithm in C that is portable

between the IA-32 and Intel 64 bit platforms.

Marginean describes a simple lock-free Producer Consumer Queue, imple-

mented in C, in the mainstream magazine Dr Dobb’s journal [Mar08]. This queue

suffers from several problems including a misplaced memory barrier and false as-

sumptions about the effect of atomic instructions on the iterators implemented

by the Microsoft template library. The magazine published a revised version of

the download code the following month but this too contained errors. Shutter

described a working version of the queue, albeit with a restricted interface, four

months after publication of the initial article [Shu08].

Non-blocking algorithms described in the literature may appear simple but

getting them right is very difficult. Herlihy’s book “The art of Multiprocessor

Programming” unintentionally illustrates the difficulty of finding errors in non-

blocking algorithms. This book has an extensive on-line errata, even though

it was clearly written and reviewed by experts [HS08]. Erroneous non-blocking

algorithms, such as double-checked locking, have even appeared in peer reviewed

conference publications [BBB+06].

The Java programming language has a clearly defined memory model. Man-

son, Pugh and Adve describe the Java memory model in detail [MPA05]. The

Java virtual machine for a particular hardware architecture implements memory

barriers to ensure the correctness of functions in the Java libraries. Lea describes

how portable concurrent programs can be constructed using the Java language

[Lea06].

Scherer, Lea and Scott describe a lock-free unbounded Producer Consumer

208 CHAPTER 6. CONTENTION MANAGEMENT

Queue which is called a scalable synchronous queue [SLS09]. This queue outper-

formed the queue included in the Java SE 5.0 version of the java.util.concurrent

library and was subsequently included in Java 6. This queue does not contain

messages in the way that our Messaging Queue does. Instead, it queues instances

of the producers and matches them to available consumers to allow the handover

of a single message. Scherer’s thesis lists the program code which implements the

queue and describes its operation in detail [Sch06]. The program code required

to implement this queue is much shorter than that of our Canonical Binary Tree

implementation but this belies its complexity.

6.3.7 Mailbox Queue performance

The throughput of a Mailbox Queue implemented by mutual exclusion is depen-

dent on the standard library data structure that implements it. The std::list

container is implemented by nodes with both forward and backward pointers,

whereas the std::deque is implemented in managed blocks of storage. The size

of an element in a std::list is larger than that of the std::deque. A single atomic

compare-and-swap instruction is performed by each operation and the amount of

memory written by the synchronisation depends upon the implementation of the

data structure. The memory written by the synchronisation results in coherency

cache misses when it is read by the consumer. The latency of cache misses dom-

inates the execution time so the throughput of Mailbox Queue is dependent on

the size of the elements of the underlying data structure.

Each message is written to memory by the producer and then read by the

consumer. We estimate that this operation takes 800 cycles to complete so with

a processor speed of 2.8GHz one million operations take about (1000000∗800/2.8∗
109) = 0.29 seconds to complete.

The throughput of both our Mailbox Queue and the blocking queue is similar

because they are both bounded by the latency of a similar number of coherency

cache misses per message. To verify this we increased the size of the node in our

Canonical Binary Tree and found that the throughput of the mailbox queue was

reduced.

We did not expect the node size to make such a large difference to the perfor-

mance of Transactional Data Structures. This observation motivated the search

for ways of optimising the performance of the Canonical Binary Tree by reducing

both the size of the node and the number of nodes accessed. These optimisations

6.3. PRODUCER CONSUMER QUEUE 209

are described in section 3.6.5.

6.3.8 Messaging Queue performance

The throughput of the Messaging Queue is, like the Mailbox Queue, bounded by

the latency of cache misses. However, some misses are a result of the simulated

processing of the messages.

When the production and consumption of messages is balanced the through-

put of the blocking and non-blocking Messaging Queues are broadly similar.

However, when the production and consumption of messages is imbalanced the

throughput of the blocking queue is higher than that of the non-blocking queue.

When rate of production of messages is higher than the rate of consumption

the instantaneous size of the queue is larger and consequently the path in the

Canonical Binary Tree is longer.

The number of coherency cache misses incurred by each message processed by

the non-blocking queue is dependent on the length of the path in the Canonical

Binary Tree, whereas the number of coherency cache misses incurred by the block-

ing queue is independent of the size of the queue. Consequently the throughput

of the non-blocking queue is dependent on the balance between the producer and

the consumer, but the throughput of the blocking queue is not.

6.3.9 Ease of implementation

Both the non-blocking Producer Consumer Queue of Scherer and our Canonical

Binary Tree took a similar amount of time to develop, so our non-blocking Pro-

ducer Consumer Queue is no easier to implement from scratch than a comparable

non-blocking queue [SLS09]. However, it is difficult to modify the ADT presented

by the queue of Scherer without affecting its progress guarantee, whereas our

queue can easily be tailored to the requirements of a particular application.

For example, a work stealing scheduler may be used to load-balance work

among multiple consumers. A work stealing scheduler associates a unique Pro-

ducer Consumer Queue with each consumer and it permits an idle consumer to

remove messages from the back of a queue associated with a busy consumer to

balance the work between consumers. Our Producer Consumer Queue can easily

be adapted to permit equal access to both ends. It is more difficult to adapt the

queue of Scherer to permit equal access to both ends.

210 CHAPTER 6. CONTENTION MANAGEMENT

6.3.10 Ease of programming

From the prospective of an application programmer our Producer Consumer

Queue is as easy to use as either a blocking queue or the non-blocking Producer

Consumer Queue of Scherer. However, Scherer’s queue is more portable than

our queue because it relies on the clearly defined Java memory model, whereas

our queue is implemented in C which relies on the model implemented by the

hardware architecture.

Our Producer Consumer Queue is more portable than other non-blocking

queues implemented in C because it relies on a single atomic compare-and-swap

instruction for synchronisation, whereas other non-blocking queues rely on sepa-

rate memory barriers which are architecture dependent [Shu08].

For example, a windowing queue allows more than one message to be added

or removed by a single operation. Our Producer Consumer Queue can easily be

adapted to support windowing by applying concurrency control to a path created

by more than one access function. However, windowing is difficult to implement

using mutual exclusion and we were unable to find an open source implementation

of a windowing queue to compare our implementation against.

Ease of programming is a vague concept but we found our Producer Consumer

Queue to be both portable and adaptable. It is at least as easy to use as either

its blocking or non-blocking counterparts.

6.3.11 Scalability

Non-blocking algorithms are preferable to blocking algorithms because they are

potentially scalable, whereas the scalability of algorithms that use mutual ex-

clusion is fundamentally limited by Amdahl’s law. Even a non-blocking algo-

rithm that performs poorly on a modern Chip Multi-Processor is preferable to its

blocking counterpart because the non-blocking algorithm is potentially scalable,

whereas a blocking algorithm has limited scalability on any future hardware.

Goetz et al. examine the scalability of the Producer Consumer Queues in

the Java library [GBB+06]. Goetz found that the throughput of the queue is

unaffected by the number of producers and consumers using it. We also found

that the number of processors accessing a queue did not make any difference to

its throughput.

6.3. PRODUCER CONSUMER QUEUE 211

6.3.12 Progress

Non-blocking algorithms are preferable to blocking algorithms because they offer a

progress guarantee, whereas blocking algorithms do not. Even a non-blocking al-

gorithm that performs less well than its blocking counterpart is preferable because

the non-blocking algorithm guarantees progress, whereas its blocking counterpart

has the potential to block indefinitely.

A lock-free queue may suffer from the progress pathology of livelock. This

occurs when two processors repeatedly prevent each other from successfully ac-

cessing the queue. In practice, our queue is unlikely to suffer from this pathology

because the Time Stamp Ordering concurrency control protocol ensures that one

or other of the conflicting access functions takes precedence.

In practice, a Producer Consumer Queue is so simple and Chip Multi-Processors

are so reliable that the lack of a progress guarantee makes little difference once the

concurrent application is tested and shown to be working. However, programmers

do not always get things right first time. During the development of a concurrent

application a strong progress guarantee often makes the difference between an

application that does not work correctly and one that requires a system restart

to resolve deadlock.

212 CHAPTER 6. CONTENTION MANAGEMENT

6.4 Distribution and Scheduling

The benefits of concurrent execution come at the cost of distributing and schedul-

ing work and detecting any conflicts. In a Transactional Memory system the

scheduler is regarded as a component of the transaction manager. This section

describes how the scheduling problem can be reduced to one of load-balancing

concurrent execution. A two-level scheduler intended for a parallel workload can

be utilised to load-balance concurrent execution.

The overhead associated with distributing parallel work on a Chip Multi-

Processor is high and for many workloads the overhead of distribution exceeds

the benefit of parallel execution. The overhead associated with distributing and

scheduling concurrent Memory Transactions is significantly higher than that as-

sociated with distributing a similar amount of parallel work because of the addi-

tional effort required to ensure correct concurrent execution.

The main contribution of this section is observation that, once isolation and

progress pathologies have been eliminated, the problem of scheduling Memory

Transactions is similar to that of distributing parallel work. This section focuses

on using an existing two-level scheduler to schedule Memory Transactions.

6.4.1 Scheduling

Transactional Memory systems implement transaction scheduling strategies that

do not make a distinction among the transaction management tasks of concur-

rency control, contention management and load-balancing.

Transactional Memory systems may try to improve the efficiency of concur-

rency control by scheduling transactions to avoid conflicts and reduce the over-

head of wasted work. These benefits should be balanced against the scalability

restrictions of centralised concurrency control.

Transactional Memory systems that make weak progress guarantees may sched-

ule transactions to avoid progress pathologies. The benefits of guaranteed progress

should be balanced against the scalability restrictions of centralised contention

management.

A Transactional Memory system should execute a workload that is known

not to contain conflicting tasks without incurring the overhead of concurrency

control.

The problem of scheduling parallel work on a Chip Multi-Processor is solved

6.4. DISTRIBUTION AND SCHEDULING 213

by using a two-level scheduler.

Section 6.4.3 describes the scheduling of parallel work on a Chip Multi-Processor.

The overhead of scheduling work on a parallel system imposes a lower limit on

the size of chunks of work that are worth scheduling and the additional overhead

of concurrency control raises this limit further.

Section 6.4.5 describes how these limits influence the design of a transactional

system.

An access function of an Immutable Data Structure is responsible for concur-

rency control, which alleviates the need for centralised concurrency control, and

it also guarantees progress, which alleviates the need for centralised contention

management. The only transaction management task that requires centralisation

is scheduling.

A solution to the scheduling problem should isolate and simplify the schedul-

ing component of transaction management and make it compatible with mecha-

nisms for distributing parallel work.

6.4.2 Load-balance

The task of scheduling transactions can be simplified to the point that it is similar

to that of load-balancing parallel work. This proposal satisfies the requirements

because it isolates the scheduling task and provides a mechanism for scheduling

tasks that are known not to conflict.

The overheads associated with scheduling concurrent work to reduce conflicts

are difficult to justify through increased speed-up because scheduling around con-

flicts requires a centralised transaction manager and this restricts scalability.

The overheads associated with scheduling concurrent work to ensure progress

are difficult to justify through increased speed-up because scheduling transactions

to ensure progress requires a centralised view of contention management and this

restricts scalability.

When these requirements are removed the problem of scheduling is reduced

to one of load-balancing. If it is known that there are no dependencies between

access functions then a parallel work scheduler can schedule them to be executed

in parallel without the overhead of concurrency control.

214 CHAPTER 6. CONTENTION MANAGEMENT

The execution of an access function may be regarded as a Memory Trans-

action. The access functions of an Immutable Data Structure implement a dis-

tributed transaction manager internally. When a conflict is detected the trans-

action manager schedules the transaction for re-execution by adding it to the

work-list of the scheduler.

The validate and meld functions are used to implement concurrency control in

a Canonical Binary Tree. These functions can be wrapped by the functions which

implement an ADT so a function acting on an Immutable Data Structure can

be regarded as a chunk of work that can be scheduled by a two-level scheduler.

If the validate function fails then the version of the Immutable Data Structure

created by the function is discarded and the function may be re-tried. Re-try is

implemented by placing the chunk of work back on the work-list.

6.4.3 Scheduling parallel work

The science of High Performance Computing focuses on the parallel execution

of programs on supercomputers. Its main application is in the simulation of

physical systems which evolve over time. Dowd provides a general introduction

to High Performance Computing [Dow93]. Kumar, Grama, Gupta, and Karypis

describe how schedules for executing parallel work can be determined statically,

by the analysis of parallel algorithms [KGGK94]. Parallel algorithms focus on

orchestrating the execution of discrete units of work which can be performed in

parallel.

The scheduling of parallel work on a Chip Multi-Processor is different from

orchestrating parallel work on a supercomputer. Chip Multi-Processors generally

have a lower number of processors than Supercomputers and each processor shares

a common cache and a common path to main memory. The effects of caching

mean that the tasks scheduled on separate execution units affect each other in

ways that are difficult to predict. Mattson, Sanders and Massingill describe

common parallel application design patterns, which are very different from those

of High Performance Computing [MSM04].

The problem of scheduling parallel work on a Chip Multi-Processor cannot

be addressed by static analysis of algorithms alone, so parallel work should be

orchestrated and load-balanced by a dynamic scheduler. A two-level scheduler

implements a dynamic scheduling algorithm for parallel work. Two-level sched-

ulers are designed to permit parallel workloads, such as the simulation of physical

6.4. DISTRIBUTION AND SCHEDULING 215

systems, to be efficiently executed by a Chip Multi-Processor.

Blumofe introduces CILK which is a two-level scheduling system for parallel

workloads [BJK+96]. CILK implements a run-time scheduler which frees the

programmer from static scheduling considerations. The programmer specifies

chunks of work which can be performed in parallel by describing them using the

CILK programming language. The chunks are assigned to processors by the high-

level scheduler. The low-level scheduler orchestrates the chunks to be performed

by a particular processor.

The CILK scheduler implements a scheduling policy called work stealing. The

low-level scheduler maintains a queue of chunks to be executed. It removes a

chunk of work from the front of the queue and executes it. When the queue

is exhausted the low-level scheduler steals chunks from the back of a queue be-

longing to another thread. This makes the scheduling task scalable, because the

centralised high-level scheduler is only involved in the initial assignment of the

chunks to the queues of each processor.

Intel’s Threading Building Blocks product [Int09] is a parallel programming

solution for Chip Multi-Processors. Threading Building Blocks applications are

written in the C++ programming language and the Threading Building Blocks

product is implemented as a library which is linked with the application. The

product includes a two-level work stealing scheduler which dynamically schedules

chunks of work provided to it on a work-list. This scheduler is similar to that

provided by CILK. However, Threading Building Blocks frees the programmer

from having to learn a new programming language in order to make use of a

two-level scheduler. Reinders provides an accessible introduction to the features

of the Threading Building Blocks product [Rei07].

6.4.4 Previous work

Ansari et al. propose a scheduling technique called Dynamic Transactional Re-

ordering [ALK+09]. This technique reduces wasted work by re-trying conflicting

transactions serially so that they do not repeatedly conflict. It also attempts

to avoid both isolation and progress pathologies by implementing a transaction

aware work stealing scheduler.

Ansari et al. propose a scheduling technique based on using information

obtained by profiling transactional applications [AJK+09]. Profiling information

can be used as input to a scheduler which anticipates conflicting transactions and

216 CHAPTER 6. CONTENTION MANAGEMENT

schedules them to execute serially. Ansari notes that the speed-up obtained by

reducing wasted work does not always overcome the scheduling overheads.

The high overhead associated with the distribution and scheduling of parallel

work can be contrasted with the low overhead of scheduling Memory Transactions

assumed in the Transactional Memory literature. Warg and Stenström describe

how the overhead of thread creation prevents fine grained speculative execution

on a Chip Multi-Processor from being worthwhile [WS01]. However, some studies

of speculative execution assume that the time required to create and schedule a

thread is lower than the access time to the second level cache. Quiñones et

al. describe an infrastructure for speculative execution which assumes a thread

creation time of ten clock cycles [QnMS+05]

6.4.5 Transaction granularity

The overhead of scheduling concurrent work places a lower bound on the gran-

ularity of transactions that are worth scheduling. Transaction granularity influ-

ences many aspects of Transactional Memory system design. Assumptions about

transaction granularity influence the style of transactional programming a system

permits. For example, at a fine level of transaction granularity it is possible for a

compiler to analyse the instructions within a Memory Transaction, whereas at a

coarser level of granularity the compiler is less able to reason about the execution.

At a fine level of transaction granularity the amount of speculative state pro-

duced by a Memory Transaction is small and the probability that transactions

conflict is small, so the amount of work wasted when a conflict is detected is

small and the likelihood of work being wasted is low. However, at a coarse level

of transaction granularity large amounts of speculative state are produced and

the probability of conflict is high, so the amount of work wasted when a conflict

is detected is large and the likelihood of work being wasted is high.

To make use of a two-level scheduler the programmer divides an application

into chunks of work that are large enough to be worth scheduling. If the chunks

are too small then the overheads associated with scheduling each chunk can out-

weigh the benefits of executing it in parallel with other chunks. If the chunks

are too large then the scheduler may not be able to load-balance the work evenly

among processors. In practice, it is often difficult to divide an application into

suitably sized chunks because it is the expected execution time that determines

chunk size. The execution time of the chunks is typically dominated by the

6.4. DISTRIBUTION AND SCHEDULING 217

latency of cache misses, which are difficult to predict.

The overhead of scheduling concurrent work is high. Threading Building

Blocks requires that a chunk of work should contain at least 10,000 instructions

[Int09]. The documentation does not define an instruction in this context but

assuming that an instruction completes each cycle, a chunk of work should have

an elapsed execution time of at least 10,000 clock cycles to be worth scheduling.

In practice, it is difficult to divide an application into transactions which take at

least 10,000 clock cycles to execute.

The number of clock cycles required to perform a data structure access is

normally dominated by the latency of cache misses. Jacob found that the latency

of a single cache miss is around 200 clock cycles and that the latency of consecutive

cache misses to dis-contiguous locations is considerably longer [Jac09]. A function

acting on a large memory resident data structure may require thousands of clock

cycles to execute so functions that access a data structure are potentially worth

scheduling for concurrent execution.

Chapter 7

Conclusion

7.1 The flow of time

The concurrency problem makes it difficult to write a program that executes

efficiently on a Chip Multi-Processor. This problem arises because information

cannot pass instantly between the processors so each has a different view of the

flow of time. Multi-Processor Systems that treat the flow of time as a global

phenomenon are difficult to program, prone to pathologies and do not scale well,

whereas those that treat time as a local phenomenon have intuitive concurrent

semantics, freedom from progress pathologies and few barriers to scalability.

Our commonsense notion of time is that it flows and that some changes are

simultaneous while others form an ordered sequence and it is a global phenomenon

experienced everywhere in the same way. In this section we consider whether it

is necessary or desirable to enforce this commonsense notion of the flow of time

on a concurrent system.

7.1.1 The notion of the flow of time as a global phe-

nomenon

Concurrent systems attempt to impose a global view of the flow of time by en-

forcing a global ordering on state transitions and by preventing simultaneity.

Speculation about global state transitions

As time passes, events that were once in the future occur in the present moment

and are then relegated to the past. The present moment is the temporal boundary

218

7.1. THE FLOW OF TIME 219

between the uncertain future and the fixed past. This notion is referred to as the

passage of time.

In a uni-processor system the present moment in time is represented by the

state of memory. However, there is no global present moment in a Multi-Processor

System because information cannot pass instantly between processors.

In a Transactional Memory system speculation centres on the future state of

shared memory. The speculation is that a putative future state created in isolation

does not conflict with any other putative state created by another processor.

Transactional Memory systems weaken isolation to facilitate value sharing and

transactional composition and this blurs the boundary between speculative and

committed state making it difficult to impose a global present moment.

The difficulty of imposing a global temporal boundary between speculative

and shared state is the source of the complex semantics of concurrent systems.

Preventing simultaneity

Simultaneous state transformations must appear simultaneous to all observers.

This notion is referred to as absolute simultaneity.

In a uni-processor system the lack of coherence between components in the

memory hierarchy goes unnoticed by the application. However, in a Multi-

Processor System it is difficult to guarantee that state transformations, that may

appear simultaneous to an application executing on some processors, appear si-

multaneous to all processors.

Mutual exclusion prevents processors from simultaneously accessing the same

memory location by blocking the execution of some processors, but this obstructs

progress and is the source of progress pathologies.

A Transactional Memory system prevents processors from simultaneously ac-

cessing the same memory location by ensuring that only one of the conflicting

transactions succeeds. To achieve this the system must maintain both the specu-

lative and a committed version of the same memory location which increases the

effective memory bandwidth of the application.

The difficulty of imposing absolute simultaneity is a source of both the progress

pathologies and the high memory bandwidth requirement of concurrent applica-

tions.

220 CHAPTER 7. CONCLUSION

Enforcing a global ordering on state transitions

Events form a uni-directional sequence in time which is a consequence of the

second law of thermodynamics. The arrow of time denotes an asymmetry between

the future and the past that imposes a global ordering on state transformations.

In a uni-processor system successive states of memory form a uni-directional

sequence, so execution can be seen as an ordered sequence of state transitions.

However, there is no global ordering of state transformations in a Multi-Processor

System because information cannot pass instantly between its components.

A Transactional Memory system implements a concurrency control protocol

to impose a global order on state transitions so that their effect on shared state

is equivalent to a serial execution. A centralised transaction manager is required

to impose a global ordering and this restricts scalability.

The difficulty of imposing a global ordering on state transitions is the source

of the scaling restrictions on concurrent systems.

Memory Transactions are not like database transactions

Modern Chip Multi-Processors impose neither the concept of a global present

moment nor the concept of absolute simultaneity, except when processing in-

structions with associated memory barriers. Weakly consistent memory models,

such as total store ordering, remove the need to impose a global ordering of events

[AG95]. However, most database systems implement strong consistency models

and many people in the database community believe that a global ordering of

events is essential for programmers to write concurrent programs. Imposing a

global view of the flow of time is the primary purpose of the transaction manager

in a database system [GR92].

Transactional Memory has inherited the idea that a framework for speculative

execution must impose a commonsense notion of the flow of time. The idea is so

pervasive that few have questioned it. The conclusion of this thesis is that it is

neither necessary nor desirable to enforce a global view of the flow of time on a

concurrent system.

7.1.2 The notion of the flow of time as a local phenomenon

This thesis proposes that a Multi-Processor System should treat the flow of time

as a local phenomenon because information cannot pass instantly from one place

7.1. THE FLOW OF TIME 221

to another. A local notion of time does not invoke the concept of a global present

moment and only requires that simultaneity is relative and that events and ob-

servations are only ordered in relation to each other.

Davies provides an accessible introduction to the distinction between a local

and a global concept of the flow of time [Dav02].

Speculation about events and observations

If we accept that the passage of time is a local phenomenon affecting events

and observations rather than states then there is no global present moment and

speculation can be restricted to events and their observation.

This thesis describes a concurrent system in which there is no concept of a

global present moment separating the past from the future. When this concept

is removed speculation can centre on events and their observation, rather than

about states. The speculation is that an event does not change an observation

that has already been made. When speculation is restricted to events it is not

necessary to impose a global temporal boundary between speculative and shared

state.

The access functions of a Transactional Data Structure execute speculatively

and the speculation is that the execution of the access function does not affect

any value that has already been returned to the application. The concurrent

semantics of the access functions of a Transactional Data Structure are intuitive

because the functions acting on the Transactional Data Structure are strongly

isolated from each other and their effects on the structure are strictly serialisable.

By speculating about events and observations affecting a single object con-

current systems with intuitive concurrent semantics can be constructed.

Permitting simultaneity

If we accept that simultaneity is relative, and that events that occur at the same

moment in time when observed from one frame of reference may occur at different

moments if viewed from another, then there is no requirement to either restrict

simultaneity or to enforce it.

This thesis describes a concurrent system in which simultaneity is relative and

this differs from a system that restricts or enforces simultaneous state transitions.

When simultaneity is relative it is neither necessary to ensure that a mutation is

222 CHAPTER 7. CONCLUSION

observed simultaneously by all processors nor prevent multiple processors from

simultaneously accessing the same object.

The access functions of a Transactional Data Structure permit simultaneous

access to data because that data is immutable. Immutable data is timeless and

it can be simultaneously accessed by multiple processors safely. Immutable data

is written just once so speculation does not increase the memory bandwidth of

the application. The access functions of a Transactional Data Structure do not

restrict simultaneous events by blocking the progress of other processors.

By accepting that simultaneity is relative it is possible to construct a concur-

rent program that does not have an increased memory bandwidth requirement

when executing on multiple processors and that is able to guarantee the lock-free

progress of the processors participating in the concurrent execution.

Speculation about a local order of events

If we accept that the arrow of time is a local phenomenon referring to the rela-

tionship between an event and its observation then there is no concept of a global

ordering of events so order can be enforced locally.

This thesis describes a concurrent system which imposes a local ordering on

the events affecting a particular object and this differs from the imposition of

a global ordering on state transitions. A locally serialisable ordering of events

affecting a particular object can be ensured by making that object linearizable.

The access functions of a Transactional Data Structure enforce an ordering

on the events that affect the data structure. A concurrent system that does not

impose a global ordering of events lends itself to a distributed implementation

and permits scalability.

By implementing distributed concurrency control it is possible to construct a

scalable concurrent system.

7.2. FUTURE WORK 223

7.2 Future work

Transactional Memory designs are based on a common set of priorities, such as

the support for atomic sections, and approaches, such as centralised transaction

management. We identified seven design decisions that are dependent on these

priorities and examined alternative approaches.

How to interact with entities outside the concurrent system?

A useful concurrent application should be able to interact with external enti-

ties. This thesis explores the idea that the interface to shared state should be

presented to the application as an ADT so that an application program can ex-

ecute inevitably. We have found that developing concurrent applications using

our interface is easier than using atomic sections. However, we did not have the

opportunity to evaluate whether our proposal facilitates external communication

in concurrent systems.

Heterogeneous systems are constructed from communicating components so a

programming model for them must support interaction. Message passing is the

predominant concurrent programming model for embedded systems and in this

model processors do not share state.

We suggest that the use of Transactional Data Structures as a state sharing

mechanism for heterogeneous embedded systems should be investigated.

This thesis originated as an investigation into the use of Transactional Mem-

ory as a state sharing mechanism for embedded Chip Multi-Processors without

coherent caches. The original proposal was that shared state could be maintained

in tightly coupled memory and that distributed concurrency control could be used

to ensure its correctness.

We now suggest that Transactional Data Structures can be used to main-

tain shared state in Chip Multi-Processors without coherent caches and that dis-

tributed concurrency control can be used as an alternative to a cache coherence

protocol.

We suggest that Transactional Memory systems should support database type

transactions in memory rather than atomic sections. However, the choice of

programming interface is fundamental to Transactional Memory design, so we

are not optimistic that there is an evolutionary development path from existing

Transactional Memory systems to concurrent systems that permit an application

224 CHAPTER 7. CONCLUSION

to interact freely with external entities.

How to maintain shared state and support speculative execution?

A scalable concurrent system should maintain both shared state and isolated

speculative state without increasing the memory bandwidth requirement of the

application. This thesis explores the idea that both shared state and isolated

speculative state can be maintained in an Immutable Data Structure and that

doing so does not increase the memory bandwidth requirement of the application

because immutable values are written only once. There are many ways to imple-

ment Immutable Data Structures and many optimisations that can be applied to

improve their performance, but we were only able to explore a single approach in

any depth.

The Immutable Data Structure infrastructure developed to support the eval-

uation is both original and interesting. The purpose of the infrastructure is to

support Concurrent Memory Transactions without requiring a centralised trans-

action manager. However, a system that supports Immutable Data Structures

in an imperative programming environment can have uses outside the area of

concurrent programming. For example, data structures that permit backtracking

have many useful applications in combinatorics.

We suggest that the use of Immutable Data Structures in an imperative pro-

gramming environment is a fruitful area of research.

The Canonical Binary Tree permits a separation of the concerns of the data

structure from those of the ADT so that the performance of the data structure

can be optimised independent of the ADT that it implements. The performance

of the access functions of Immutable Data Structures can be improved by using

shallower trees with more children per node. The techniques used to develop the

Canonical Binary Tree could be applied to trees with fast merge functions, such

as binomial heaps, to improve the performance of the meld function.

Section 3.6.5 describes how the Canonical Binary Tree may be optimised by

both reducing the size of the node and reducing the number of nodes accessed by

common operations. We have not had opportunity to implement these optimisa-

tions.

We suggest that the performance of the Canonical Binary Tree implementation

can easily be improved.

It is not necessary to enforce a cache coherency protocol on immutable data.

7.2. FUTURE WORK 225

However, current Chip Multi-Processor hardware ensures that the entire address

space is cache coherent. When an immutable value is written a cache invalidate

message is sent to all processors unnecessarily. These messages increase the ef-

fective memory bandwidth of the application. Hardware designed specifically to

realise the benefits of immutability might partition memory into non-coherent

regions suitable for maintaining local and immutable data and cache coherent

regions suitable for maintaining the roots of Immutable Data Structures.

We suggest that hardware designed specifically to realise the benefits of im-

mutability can improve the performance of concurrent systems.

Immutable Data Structures consume the memory address space very quickly.

The memory occupied by a leaf of an Immutable Data Structure cannot be re-

claimed immediately when it is deleted by the application. Instead, it can be re-

claimed only when it becomes unreachable. The vertices that cannot be reached

from the root are potential candidates for reclamation but some of these vertices

cannot be reclaimed because they are reachable by tardy functions.

We suggest that the management of immutable memory needs to be improved

before Immutable Data Structure can be used in production software.

We suggest that the use of immutable data in existing Transactional Mem-

ory systems should be investigated. However, the choice of the mechanism for

maintaining shared and speculative state is fundamental to a Transactional Mem-

ory design, so we are not optimistic that there is an evolutionary development

path from existing Transactional Memory systems to concurrent systems that

support speculation without increasing the effective memory bandwidth of the

application.

How to provide access to shared state with intuitive concurrent seman-

tics?

Shared state should present an intuitive interface to an application to make con-

current programming easier. This thesis explores the idea that shared state can be

encapsulated by linearizable objects and that Immutable Data Structures can be

composed by Entanglement. We evaluated this idea by implementing a concurrent

algorithm to determine the minimum spanning tree of a graph. We concluded

that the intuitive concurrent semantics of linearizable objects and Immutable

Data Structures have the potential to make the process of developing concurrent

226 CHAPTER 7. CONCLUSION

applications easier. We were able to investigate some of the properties of conflu-

ently persistent data structures during our evaluation of a minimum spanning tree

algorithm, but we did not have opportunity the investigate partially persistent

data structures.

We suggest that the properties of partially persistent Transactional Data

Structures should be investigated.

How to implement concurrency control to guarantee correct concurrent

execution?

A scalable concurrent system should implement distributed concurrency control.

This thesis explored the idea that the Time Stamp Ordering concurrency control

protocol can ensure the serialisability of functions acting simultaneously on an

Immutable Data Structure. We were only able to investigate one of the many

ways of imposing a distributed concurrency control protocol on Memory Trans-

actions. We found that implementing concurrency control locally by serialising

simultaneous accesses to a single object is much easier than implementing cen-

tralised concurrency control.

We suggest that the use of distributed concurrency control in existing Trans-

actional Memory systems should be investigated. However, the choice of the con-

currency control mechanism is fundamental to a Transactional Memory design,

so we are not optimistic that there is an evolutionary development path from

existing Transactional Memory systems to concurrent systems that implement

scalable distributed concurrency control.

How to implement contention management to eliminate progress patholo-

gies?

Strong progress guarantees alleviate the need for centralised contention manage-

ment. This thesis explored the idea that functions acting on an Immutable Data

Structure can guarantee lock-free progress. We evaluated an implementation of a

non-blocking Producer Consumer Queue and we found that progress pathologies

were eliminated and that centralised contention management was unnecessary.

A scalable concurrent application must make a strong progress guarantee be-

cause centralised contention management is not scalable, but non-blocking algo-

rithms that rely on mutable shared data are difficult to write. We found that the

7.2. FUTURE WORK 227

development of non-blocking algorithms is made easier by requiring that shared

data is immutable.

We suggest that non-blocking algorithms that focus on immutable data should

be investigated.

How to orchestrate work and schedule concurrent execution?

A scalable concurrent system has few scheduling requirements. This thesis ex-

plores the idea that the responsibility of the scheduler should be restricted exclu-

sively to that of load-balancing concurrent work and that a scheduler intended

for a parallel workload can be used to schedule Memory Transactions. During

our evaluation of a Producer Consumer Queue we used a parallel scheduler and

found that it was both easy to use and effective.

A system which makes the distinction between a parallel workload, in which

conflicts are statically known not to occur, and a concurrent workload, in which

conflicts are detected dynamically, is not generally useful as both types of work-

load occur in a typical application. A concurrent programming solution should

be capable of scheduling an application containing both parallel and concurrent

work.

We suggest that schedulers intended for parallel work should be used to permit

workload flexibility in concurrent systems.

Functional programming permits concurrent execution because it supports

both parallelism and speculation. However, the problem of dynamically load-

balancing parallel execution remains to be solved. Immutable Data Structures in

the form of purely functional data structures are widely used in the expression of

a functional program but they could also be used to maintain the abstract syntax

tree of a functional program during its execution.

We suggest that the use of Immutable Data Structures as a potential solution

to the dynamic load-balancing problem in functional programming should be

investigated.

How to integrate a concurrent programming solution into the software

development cycle?

A concurrent programming solution should make it economically viable to develop

concurrent applications. This thesis explores the idea that concurrent applica-

tions can be developed using conventional imperative languages, compilers and

228 CHAPTER 7. CONCLUSION

tools so as to minimise the impact on existing software and methodologies. We

found that, by focusing on the shared state interface and developing concurrent

applications, rather than transactional systems, we were able to restrict the lo-

cality of changes to those routines that benefit most from concurrent execution.

We suggest that a C++ STL compatible user interface for Immutable Data

Structures should be developed so that programmers can easily integrate these

structures into existing concurrent applications.

7.3. SUMMARY 229

7.3 Summary

“The overarching goal [of parallel programming research] should be to make

it easy to write programs that execute efficiently on highly parallel computing

systems” [ABC+06].

We observed that a concurrent program must execute inevitably in order to

communicate, so speculative execution must be restricted to the interface with

shared state. Neither coherent caches nor strong models of memory consistency

scale, so shared state must be immutable. Centralised concurrency control re-

stricts scalability, so a scalable concurrent program must implement distributed

concurrency control, and centralised contention management restricts scalability,

so a scalable concurrent program must guarantee progress.

These observations indicate that scalable concurrent programs are confined to

sharing only immutable data and that scalable concurrent systems are bound to

ensure the correctness of concurrent execution on a per object basis.

We conjectured that a concurrent program that shares only immutable data

and which executes in a system which implements distributed concurrency control

will be both easier to write and more scalable than an equivalent program that

uses mutual exclusion.

We proposed Transactional Data Structures which are an interface to shared

state that permit strongly isolated speculation while allowing programs to exe-

cute inevitably. Transactional Data Structures do not rely on coherent caches

or strong memory consistency models, they are compatible with existing soft-

ware and software development processes, they require only localised changes to

performance critical regions of existing programs and they facilitate the sharing

of immutable data while ensuring correct concurrent execution and guaranteeing

progress.

We evaluated our proposal and concluded that the use of Transactional Data

Structures facilitates both the development of scalable checkpointing algorithms

and the construction of simple non-blocking algorithms.

Further research is required before we can determine whether Transactional

Data Structures will make it easy to write programs that execute efficiently on

highly parallel computing systems, but the work we have done so far seems to

indicate that they will.

Glossary

AA-tree An AA-tree is a self balancing binary B-tree of order three. 112

ADT Abstract Data Type. 17

amortised analysis Amortised analysis is a method of analysing the perfor-

mance of a function acting on a data structure. The idea is that costly

operations occur rarely and that their effect on performance is offset by the

occurrence of cheaper, more frequent operations. 120

annotation The annotation of a vertex is a value used to navigate a path through

a tree. An annotation is distinct from a key, which is an argument to a

function of the data structure. 80

API Application Programming Interface. 33

atomic section An atomic section is a section of program code that appears to

be performed atomically and in isolation as a transaction [CCG08]. 33

blocking A section of program code is said to block when a delay in its execution

can delay the execution of other sections. 18

cascading aborts A transaction schedule in which a transaction is permitted

to read uncommitted values can suffer from cascading aborts. Cascading

aborts are an isolation pathology that causes unpredictable run-time be-

haviour. 130

composable Sections of program code are composable if they can be combined

without examining or altering their implementation. 18

230

Glossary 231

concurrency problem We regard the concurrency problem as the problem of

obtaining speed-up from the parallel execution of tasks from a single pro-

gram on a Chip Multi-Processor when task dependencies are unknown until

their execution is complete. 19

concurrent execution Concurrent execution refers to the execution of tasks

that have the potential to execute simultaneously. In this thesis we are con-

cerned with internal concurrency which is the potential to execute related

tasks, which may interact through memory and which are part of a single

program, simultaneously. We do not consider external concurrency which

occurs when a program, such as an operating system, needs to perform

several possibly unrelated tasks at the same time. 19

confluently persistent A data structure is confluently persistent if it is fully

persistent and has a meld operation which combines more than one version.

137

critical section A critical section is a section of program code that is protected

from simultaneous execution by mutual exclusion. 15

deadlock Deadlock is a progress pathology of transactional systems that occurs

when each transaction in a set of transactions is blocked waiting for another

transaction in the set, and therefore none will become unblocked unless

there is external intervention. 186

dirty read A dirty read is an access to the uncommitted state of another trans-

action. 128

Entanglement Entanglement is the composition of multiple Immutable Data

Structure into one Immutable Data Structure through a process of adding

links. Entanglement is achieved by referencing the root address of one Im-

mutable Data Structure from the leaf of another Immutable Data Structure.

141

fat node Fat node is a technique for creating new versions of a persistent data

structure. 68

full copying Full copying is a technique for creating new versions of an Im-

mutable Data Structure. 65

232 Glossary

fully persistent A data structure is said to be fully persistent if every past

version can be both accessed and modified. 135

immutable Immutable memory locations are unreachable before they have been

written and can be accessed but not modified after they have been written.

Immutable memory locations are distinct from singly assigned locations

which are reachable before they have been written. 43

Immutable Data Structure A data structure is called an immutable data

structure if all of the memory locations within it are immutable and it

is called a mutable data structure otherwise. 43

IO Input and Output. 30

isolation Transactional isolation is a guarantee relating only to the actions oc-

curring within transactions. “The system guarantees that for every pair of

transactions Ti and Tj, it appears to Ti that either Tj finished execution

before Ti started, or Tj started its execution after Ti finished. Thus, each

transaction is unaware of other transactions executing concurrently in the

system [SK86]”. 125

isolation pathology Isolation pathologies arise when scheduling is applied to

enforce reasonable behaviour on weakly isolated transactions. 130

leaf to root path copy A leaf to root path copy operation is a type of path

copy operation that preserves the position of existing nodes relative to the

root node. 77

linearizability Linearizability is a correctness condition that characterises the

concurrent behaviour of an object. Informally, an object is said to be lin-

earizable if all of its fields are private and the execution of each of its meth-

ods appear to take place atomically, at a single moment in time, between

their invocation and response [Her08]. 126

livelock Livelock is a progress pathology of transactional systems that occurs

when two or more competing operations cause each other to restart, pre-

venting any of them making progress. 187

Glossary 233

lock-free A non-blocking algorithm is lock-free if it guarantees that at least one

action completes eventually. “A concurrent object implementation is lock-

free if it guarantees that infinitely often some method call finishes in a finite

number of steps [HS08]”. 187

marshall Work assigned to a particular processor under direct application con-

trol is described as being marshalled. 38

meld function A function that combines past versions of a data structure is

called a meld function. 179

mutual exclusion Mutual exclusion is a coordination protocol that ensures that

only one thread executes within a section of program code at a time. The

protocol is said to protect a section of code which we call a critical section.

To ensure correctness the protocol does not permit tasks with possible de-

pendencies to execute in overlapping periods of time. 15

node copying Node copying is a technique for creating new versions of a per-

sistent data structure. 70

non-blocking algorithm A non-blocking algorithm ensures that operations com-

peting for a shared resource never have their progress indefinitely postponed

by mutual exclusion. 186

non-recoverable A transaction schedule in which a transaction may commit

before a transaction that wrote a variable that it has read is called non-

recoverable. Non-recoverability is an isolation pathology of transactional

systems that leads to inconsistent results. 130

non-repeatable read A non-repeatable read is an access to a shared variable

that can be modified by another transaction. 129

obstruction-free A non-blocking algorithm is obstruction-free if it guarantees

that when an action is tried repeatedly and eventually encounters no in-

terference from other actions it will complete successfully but it does not

guarantee that such a situation will occur. 187

orchestrate Work that is automatically assigned to a particular processor out-

side the control of the application is described as being orchestrated. 37

234 Glossary

parallel execution Parallel execution refers to the simultaneous execution of

tasks on different hardware processors. 19

partially persistent A data structure is said to be partially persistent if all

past versions can be accessed but only the most recent can be modified.

135

path A path is a set of vertices within an Immutable Data Structure that link

the root to at least one leaf. A function can modify an Immutable Data

Structure by creating a new path using the path copying technique. 65

path copying Path copying is a technique for creating new versions of an Im-

mutable Data Structure. 68

persistent data structure A data structure is a called a persistent data struc-

ture if it permits access to past versions and it is called an ephemeral data

structure otherwise. 135

phantom read A phantom read is an inconsistent access to shared state. 129

priority inversion Priority inversion is a progress pathology of transactional

systems that occurs when a long running operation is preempted by an

operation of brief duration. 187

progress pathology A concurrent application that guarantees that all of its

constituent tasks complete in a finite period of time offers a progress guar-

antee, whereas an application that does not can suffer from a progress

pathology. 184

pure function A function is said to be pure if its evaluation does not cause any

observable effects other than the production of its result. 42

purely functional data structure In a functional programming language im-

mutable values are maintained in purely functional data structures. 78

referentially transparent An expression is said to be referentially transparent

if it can be replaced with its value without changing the behaviour of the

program containing it. 42

Glossary 235

root The top most vertex in a tree is called the root node. The root of an

Immutable Data Structure is a mutable memory location that maintains

the address of the root node. 65

semi-persistent “A semi-persistent data structure permits access only to those

past versions that are ancestors of the most recent version [CF08]”. 144

sentinel “A sentinel leaf is a specifically designated leaf used with a tree data

structure as the path terminator. A sentinel leaf does not hold a reference

to any data managed by the data structure [Wir85]”. In the context of

serial execution a sentinel is a programming convenience. However, in a

concurrent execution environment a sentinel leaf can be used to make the

distinction between an empty data structure and one that has yet to be

created. 81

serialisable A transaction schedule in which all transactions appear to execute

in isolation is said to be serialisable. A serialisable transaction schedule in

which the order of conflicting operations matches the order in which the

transactions commit is said to be strict. 130

speculative execution The effects of a task that is executed speculatively are

tentative and may be discarded, in which case they cannot be observed

by other tasks executing in the system. A transaction that is executed

speculatively makes tentative changes to objects. If it completes without

encountering a synchronisation conflict then it can commit, in which case

the tentative changes become permanent otherwise it aborts, in which case

the tentative changes are discarded. 16

SQL Structured Query Language. 29

STL Standard Template Library. 83

strong isolation Strong isolation is a guarantee relating to all actions in a sys-

tem. Strongly isolated transactions are isolated from both other transac-

tions and concurrent non-transactional accesses [DS09]. 125

tardy reader A tardy reader is a function that accesses a past version of a

persistent data structure which was the most recent version at the moment

the function started its execution. 138

236 Glossary

Transactional Data Structure A data structure is a called a Transactional

Data Structure if it permits access to past versions, although not all accesses

are successful. 138

validate function A validate function ensures that conflicting operations con-

form to a concurrency control protocol. 176

wait-free A non-blocking algorithm is wait-free if it guarantees that every action

completes eventually. “A concurrent object implementation is wait-free if

each method call finishes in a finite number of steps [HS08]”. 187

weak isolation A weakly isolated transactional system is one in which successful

transactional execution may be affected by other transactions or by non-

transactional execution taking place concurrently. Our definition differs

from the one used by some authors who refer to a weakly isolated Trans-

actional Memory system as one in which successful transactional execution

may be affected by non-transactional execution but not by transactional

execution taking place concurrently [DS09]. 125

Bibliography

[ABC+06] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,

Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A. Pat-

terson, William Lester Plishker, John Shalf, Samuel Webb Williams,

and Katherine A. Yelick. The landscape of parallel computing re-

search: A view from berkeley. Technical Report UCB/EECS-2006-

183, EECS Department, University of California, Berkeley, Decem-

ber 2006.

[AF92] Juan Allemany and Ed Felten. Performance issues in non-blocking

synchronization on shared-memory multiprocessors. In Proceedings

of the 11th ACM Symposium on Principles of Distributed Comput-

ing, pages 125–134. ACM Press, August 1992.

[AFS08] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested par-

allelism in transactional memory. In PPoPP ’08: Proceedings of

the 13th ACM SIGPLAN Symposium on Principles and practice of

parallel programming, pages 163–174, New York, NY, USA, 2008.

ACM.

[AG95] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consis-

tency models: A tutorial. IEEE Computer, 29:66–76, 1995.

[AJK+09] Mohammad Ansari, Kim Jarvis, Christos Kotselidis, Mikel Luján,

Chris Kirkham, and Ian Watson. Profiling transactional memory

applications. In PDP ’09: Proceedings of the 17th Euromicro In-

ternational Conference on Parallel, Distributed, and Network-based

Processing. IEEE Computer Society Press, February 2009.

[ALK+09] Mohammad Ansari, Mikel Luján, Christos Kotselidis, Kim Jarvis,

Chris C. Kirkham, and Ian Watson. Steal-on-abort: Improving

237

238 BIBLIOGRAPHY

transactional memory performance through dynamic transaction re-

ordering. In High Performance Embedded Architectures and Com-

pilers, Fourth International Conference, pages 4–18, 2009.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to

achieving large scale computing capabilities. In AFIPS ’67 (Spring):

Proceedings of the April 18-20, 1967, spring joint computer confer-

ence, pages 483–485, New York, NY, USA, 1967. ACM.

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Net-

work flows: theory, algorithms, and applications. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1993.

[AN95] Arne Andersson and Stefan Nilsson. Efficient implementation of

suffix trees. Softw. Pract. Exper., 25:129–141, February 1995.

[And93] Arne Andersson. Balanced search trees made simple. In WADS

’93: Proceedings of the Third Workshop on Algorithms and Data

Structures, pages 60–71, London, UK, 1993. Springer-Verlag.

[And09] Mark Anderson. Sun can kill rock, but not its memory tech. IEEE

Spectr., June 2009.

[Arm07] Joe Armstrong. Programming Erlang: Software for a Concurrent

World. Pragmatic Bookshelf, 2007.

[ART08] Adl-Tabatabai Ali-Reza and Xinmin Tian. The intel software trans-

actional memory compiler.

http://software.intel.com/file/8097, November 2008.

[Bag01] Phil Bagwell. Ideal Hash Trees. PhD thesis, Department of Com-

puter Science, Ecole Polytechnique Federale de Lausanne, 2001.

[BBB+06] David Bacon, Joshua Bloch, Jeff Bogda, Cliff Click, Paul Haahr,

Doug Lea, Tom May, Jan-Willem Maessen, Jeremy Manson,

John D. Mitchell, Kelvin Nilsen, Bill Pugh, and Emin Gun Sirer.

The ”double-checked locking is broken” declaration.

http://www.cs.umd.edu/~pugh/java/memoryModel/

DoubleCheckedLocking.html, 2006.

BIBLIOGRAPHY 239

[BBG+95] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth

O’Neil, and Patrick O’Neil. A critique of ANSI SQL isolation levels.

SIGMOD Rec., 24:1–10, May 1995.

[BGH+06] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.

Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,

A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and

B. Wiedermann. The DaCapo benchmarks: Java benchmarking de-

velopment and analysis. In OOPSLA ’06: Proceedings of the 21st

annual ACM SIGPLAN conference on Object-Oriented Programing,

Systems, Languages, and Applications, pages 169–190, New York,

NY, USA, October 2006. ACM Press.

[BH01] Cuneyt F. Bazlamacci and Khalil S. Hindi. Minimum-weight span-

ning tree algorithms a survey and empirical study. Computers &

Operations Research, 28(8):767 – 785, 2001.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman.

Concurrency Control and Recovery in Database Systems. Addison-

Wesley, 1987.

[BJK+96] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,

Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an

efficient multithreaded runtime system. J. Parallel Distrib. Comput.,

37(1):55–69, 1996.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and main-

tenance of large ordered indexes. Acta Informatica, 1(3):173–189,

February 1972.

[BMT+07] Woongki Baek, Chi Cao Minh, Martin Trautmann, Christos

Kozyrakis, and Kunle Olukotun. The openTM Transactional Appli-

cation Programming Interface. In Proceedings of the 16th Interna-

tional Conference on Parallel Architecture and Compilation Tech-

niques, PACT ’07, pages 376–387, Washington, DC, USA, 2007.

IEEE Computer Society.

240 BIBLIOGRAPHY

[BMV+07] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D.

Hill, Michael M. Swift, and David A. Wood. Performance patholo-

gies in hardware transactional memory. In Proceedings of the 34rd

Annual International Symposium on Computer Architecture. Inter-

national Symposium on Computer Architecture, pages 81–91, 2007.

[CBM+08] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain,

Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software

Transactional Memory: Why is it only a research toy? Communi-

cations of the ACM, 51(11):40–46, November 2008.

[CCE+09] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin

Karlsson, Anders Landin, Sherman Yip, H̊akan Zeffer, and Marc

Tremblay. Rock: A high-performance Sparc CMT processor. IEEE

Micro, 29(2):6–16, 2009.

[CCG08] Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring

locks for atomic sections. In Proceedings of the 2008 ACM SIGPLAN

conference on Programming language design and implementation,

PLDI ’08, pages 304–315, New York, NY, USA, 2008. ACM.

[CF08] Sylvain Conchon and Jean-Christophe Filliâtre. Semi-persistent

data structures. In Proceedings of the Theory and practice of soft-

ware, 17th European conference on Programming languages and sys-

tems, ESOP’08/ETAPS’08, pages 322–336, Berlin, Heidelberg, 2008.

Springer-Verlag.

[CGE08] Dave Cunningham, Khilan Gudka, and Susan Eisenbach. Keep off

the grass: Locking the right path for atomicity. In CC ’08: Proc.

International Conference on Compiler Construction, pages 276–290,

March 2008.

[Cha00] Bernard Chazelle. A minimum spanning tree algorithm with inverse-

ackermann type complexity. J. ACM, 47(6):1028–1047, 2000.

[CMCKO08] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle

Olukotun. STAMP: Stanford transactional applications for multi-

processing. In IISWC ’08: Proceedings of The IEEE International

Symposium on Workload Characterization, September 2008.

BIBLIOGRAPHY 241

[Col86] Richard Cole. Searching and storing similar lists. J. Algorithms,

7(2):202–220, 1986.

[CRS05] Joao Cachopo and Antonio Rito-Silva. Versioned boxes as the basis

for memory transactions. In OOPSLA 2005 Workshop on Synchro-

nization and Concurrency in Object-Oriented Languages (SCOOL),

October 2005.

[Dav02] Paul Davies. That mysterious flow. Scientific American, pages 40–

47, September 2002.

[DDS06] O. Shalev D. Dice and N. Shavit. Transactional locking ii. In Proc. of

the 20th International Symposium on Distributed Computing (DISC

2006), pages 194–208, 2006.

[DGJe09] Camil Demetrescu, Andrew V. Goldberg, and David S. John-

son (eds.). The Shortest Path Problem: Ninth DIMACS Implemen-

tation Challenge. American Mathematical Society, 2009. DIMACS

Series in Discrete Mathematics and Theoretical Computer Science.

[DHM+06] Anthony Discolo, Tim Harris, Simon Marlow, Simon Jones, and

Satnam Singh. Lock free data structures using STM in Haskell. In

Eighth International Symposium on Functional and Logic Program-

ming, April 2006.

[DL09] Jack Dongarra and Alexey L. Lastovetsky. High Performance Het-

erogeneous Computing. Wiley-Interscience, New York, NY, USA,

2009.

[DLMN09] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early

experience with a commercial hardware transactional memory im-

plementation. In ASPLOS ’09: Proceeding of the 14th international

conference on Architectural support for programming languages and

operating systems, pages 157–168. ACM, March 2009.

[Dow93] Kevin Dowd. High performance computing. O’Reilly & Associates,

Inc., Sebastopol, CA, USA, 1993.

242 BIBLIOGRAPHY

[DS09] Luke Dalessandro and Michael L. Scott. Strong isolation is a weak

idea. In TRANSACT ’09: 4th Workshop on Transactional Comput-

ing, February 2009.

[DSST86] J R Driscoll, N Sarnak, D D Sleator, and R E Tarjan. Making data

structures persistent. In STOC ’86: Proceedings of the eighteenth

annual ACM symposium on Theory of computing, pages 109–121,

New York, NY, USA, 1986. ACM.

[DT92] Dorit Dor and Michael Tarsi. Graph decomposition is npc - a com-

plete proof of holyer’s conjecture. In STOC ’92: Proceedings of

the twenty-fourth annual ACM symposium on Theory of computing,

pages 252–263, New York, NY, USA, 1992. ACM.

[Duf10] Joe Duffy. A (brief) retrospective on tranasactional memory.

http://www.bluebytesoftware.com, January 2010.

[Enn06] Robert Ennals. Software transactional memory should not be

obstruction-free. Technical Report IRC-TR-06-052, Intel Research

Cambridge Tech Report, January 2006.

[FH07] Keir Fraser and Tim Harris. Concurrent programming without locks.

ACM Trans. Comput. Syst., 25, May 2007.

[FHS04] Faith Fich, Danny Hendler, and Nir Shavit. On the inherent weak-

ness of conditional synchronization primitives. In Proceedings of the

23rd Annual ACM Symposium on Principles of Distributed Comput-

ing, pages 80–87. ACM Press, 2004.

[FK03] Amos Fiat and Haim Kaplan. Making data structures confluently

persistent. J. Algorithms, 48(1):16–58, 2003.

[GBB+06] Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David

Holmes, and Tim Peierls. Java Concurrency in Practice. Addison-

Wesley Longman, Amsterdam, 2006.

[GK08] Rachid Guerraoui and Micha l Kapa lka. On obstruction-free trans-

actions. In SPAA ’08: Proc. twentieth annual symposium on Paral-

lelism in algorithms and architectures, pages 304–313, June 2008.

BIBLIOGRAPHY 243

[GR92] Jim Gray and Andreas Reuter. Transaction Processing: Concepts

and Techniques. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1992.

[Gra02] Steve Graves. In-memory database systems. Linux J., 2002:10–,

September 2002.

[GS78] Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework

for balanced trees. In FOCS, pages 8–21. IEEE, 1978.

[GT09] Michael T. Goodrich and Roberto Tamassia. Algorithm Design:

Foundations, Analysis and Internet Examples. John Wiley & Sons,

Inc., New York, NY, USA, 2nd edition, 2009.

[GZU+09] Vladimir Gajinov, Ferad Zyulkyarov, Osman S. Unsal, Adrian

Cristal, Eduard Ayguade, Tim Harris, and Mateo Valero. Quaketm:

parallelizing a complex sequential application using transactional

memory. In ICS ’09: Proceedings of the 23rd international confer-

ence on Supercomputing, pages 126–135, New York, NY, USA, 2009.

ACM.

[HCW+04] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben Hertzberg,

Mike Chen, Christos Kozyrakis, and Kunle Olukotun. Programming

with transactional coherence and consistency (tcc). In ASPLOS-

XI: Proceedings of the 11th international conference on Architectural

support for programming languages and operating systems, pages 1–

13. ACM Press, October 2004.

[Her88] Maurice P. Herlihy. Impossibility and universality results for wait-

free synchronization. In PODC ’88: Proceedings of the seventh an-

nual ACM Symposium on Principles of distributed computing, pages

276–290, New York, NY, USA, 1988. ACM.

[Her08] Maurice Herlihy. Linearizability. In Encyclopedia of Algorithms.

Springer, 2008.

[Hic11] Rich Hickey. Clojure concurrency (video). http://blip.tv/file/

812787, January 2011.

244 BIBLIOGRAPHY

[HK08] Maurice Herlihy and Eric Koskinen. Checkpoints and continuations

instead of nested transactions. In TRANSACT ’08: 3rd Workshop

on Transactional Computing, February 2008.

[HLMS03] Maurice Herlihy, Victor Luchangco, Mark Moir, and William

Scherer. Software transactional memory for dynamic-sized data

structures. In PODC ’03: Proc. 22nd ACM Symposium on Princi-

ples of Distributed Computing, pages 92–101, July 2003.

[HLR10] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Mem-

ory, 2nd edition. Synthesis Lectures on Computer Architecture.

Morgan & Claypool Publishers, 2010.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Ar-

chitectural support for lock-free data structures. In Proceedings of

the 20th Annual International Symposium on Computer Architec-

ture, pages 289–300, May 1993.

[HM97] Pieter Hartel and Henk Muller. Functional C. Addison Wesley

Longman, April 1997.

[HM08] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore

era. IEEE COMPUTER, 2008.

[HMPH05] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Her-

lihy. Composable memory transactions. In PPoPP ’05: Proceedings

of the tenth ACM SIGPLAN symposium on Principles and practice

of parallel programming, pages 48–60, New York, NY, USA, 2005.

ACM.

[Hoa83] C. A. R. Hoare. Communicating sequential processes. Commun.

ACM, 26:100–106, January 1983.

[HP05] R Hinze and R Paterson. Finger trees: a simple general-purpose

data structure. J. Funct. Prog., 16(02):197–217, 2005.

[HP06a] Tim Harris and Simon Peyton Jones. Transactional memory with

data invariants. In TRANSACT ’06: 1st Workshop on Languages,

Compilers, and Hardware Support for Transactional Computing,

June 2006.

BIBLIOGRAPHY 245

[HP06b] John L. Hennessy and David A. Patterson. Computer Architecture,

Fourth Edition: A Quantitative Approach. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2006.

[HPST06] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi.

Optimizing memory transactions. In Proceedings of the 2006 Con-

ference on Programming language design and implementation, pages

14–25. ACM Press, June 2006.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Pro-

gramming. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2008.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a cor-

rectness condition for concurrent objects. ACM Trans. Program.

Lang. Syst., 12(3):463–492, 1990.

[Int07] Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-

oper’s Manual - Volume 3B, August 2007.

[Int09] Intel. Intel Threading Building Blocks: Programming for Current

and Future Multicore Platforms. IEEE/ACM International Sympo-

sium on Code Generation and Optimization, July 2009.

[ISO92] ISO. SQL Specification. ISO, 1992.

[Jac09] Bruce L. Jacob. The Memory System: You Can’t Avoid It, You

Can’t Ignore It, You Can’t Fake It. Synthesis Lectures on Computer

Architecture. Morgan & Claypool Publishers, 2009.

[JBR10] Tim Harris Jayaram Bobba, Mark Hill and Ravi Rajwar. The

transactional memory bibliography. http://www.cs.wisc.edu/

trans-memory/biblio/index.html, June 2010.

[JL96] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for

Automatic Dynamic Memory Management. John Wiley & Sons,

1996.

[Jos99] Nicolai M. Josuttis. The C++ Standard Library: A tutorial and

reference. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1999.

246 BIBLIOGRAPHY

[KAJ+07] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján,

Chris Kirkham, and Ian Watson. Designing a distributed software

transactional memory system. In ACACES ’07: 3rd International

Summer School on Advanced Computer Architecture and Compila-

tion for Embedded Systems, July 2007.

[KAJ+08] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján,

Chris Kirkham, and Ian Watson. Distm: A software transactional

memory framework for clusters. In ICPP ’08: Proceedings of the

37th IEEE International Conference on Parallel Processing. IEEE

Computer Society Press, September 2008.

[Kap04] Haim Kaplan. Persistent data structures. In Handbook Of Data

Structures And Applications. Chapman & Hall/CRC, 2004.

[Kar05] Björn Karlsson. Beyond the C++ Standard Library, an introduction

to Boost. Addison-Wesley Professional, 2005.

[KB09] Seunghwa Kang and David A. Bader. An efficient transactional

memory algorithm for computing minimum spanning forest of sparse

graphs. In PPOPP, pages 15–24, 2009.

[KGGK94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis.

Introduction to parallel computing: design and analysis of algo-

rithms. Benjamin-Cummings Publishing Co., Inc., Redwood City,

CA, USA, 1994.

[KHLW10] Behram Khan, Matthew Horsnell, Mikel Lujan, and Ian Watson.

Scalable object-aware hardware transactional memory. In Proceed-

ings of the 16th international Euro-Par conference on Parallel pro-

cessing: Part I, EuroPar’10, pages 268–279, Berlin, Heidelberg,

2010. Springer-Verlag.

[Kri03] S. Krishnaprasad. Concurrent/Distributed programming illustrated

using the dining philosophers problem. J. Comput. Small Coll.,

18:104–110, April 2003.

[LA04] Sean Lie and Krste Asanovic. Hardware support for unbounded

transactional memory. Technical report, Masters thesis, MIT, 2004.

BIBLIOGRAPHY 247

[Lam97] Leslie Lamport. How to make a correct multiprocess program

execute correctly on a multiprocessor. IEEE Trans. Comput.,

46(7):779–782, 1997.

[Lea06] Douglas Lea. Concurrent Programming in Java(TM): Design

Principles and Patterns (3rd Edition) (Java (Addison-Wesley)).

Addison-Wesley Professional, 2006.

[Lom77] D. B. Lomet. Process structuring, synchronization, and recovery

using atomic actions. SIGPLAN Not., 12(3):128–137, 1977.

[Mar08] Petru Marginean. Lock-free Queues. Dr. Dobb’s Journal, July 2008.

[MBL06] Milo Martin, Colin Blundell, and E. Lewis. Subtleties of transac-

tional memory atomicity semantics. IEEE Comput. Archit. Lett.,

5:17–, July 2006.

[MBM+06] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D.

Hill, and David A. Wood. LogTM: Log-based Transactional Mem-

ory. In HPCA, pages 254–265, 2006.

[MH06] J. Eliot B. Moss and Antony L. Hosking. Nested transactional

memory: model and architecture sketches. Sci. Comput. Program.,

63(2):186–201, 2006.

[Mor68] Donald R. Morrison. Patricia - practical algorithm to retrieve infor-

mation coded in alphanumeric. J. ACM, 15(4):514–534, 1968.

[Mos99] Graeme E. Moss. Benchmarking purely functional data structures.

Journal of Functional Programming, 11:525–556, 1999.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. The java mem-

ory model. SIGPLAN Not., 40:378–391, January 2005.

[MSM04] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns

for parallel programming. Addison-Wesley Professional, 2004.

[NMAT+07] Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosk-

ing, Richard L. Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana

Shpeisman. Open nesting in software transactional memory. In

248 BIBLIOGRAPHY

PPoPP ’07: Proc. 12th ACM SIGPLAN symposium on Principles

and practice of parallel programming, pages 68–78, mar 2007.

[NMN01] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar

Bor̊uvka on Minimum Spanning Tree Problem, translation of both

the 1926 papers. Discrete Math., 233:3–36, April 2001.

[Oka98] Chris Okasaki. Purely functional data structures. Cambridge Uni-

versity Press, New York, NY, USA, 1998.

[Oka04] Chris Okasaki. Purely functional structures. In Handbook Of Data

Structures And Applications. Chapman & Hall/CRC, 2004.

[Olu07] Kunle Olukotun. Chip Multiprocessor Architecture: Techniques to

Improve Throughput and Latency. Morgan and Claypool Publishers,

1st edition, 2007.

[ÖV99] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed

Database Systems, Second Edition. Prentice-Hall, 1999.

[Pap79] Christos H. Papadimitriou. The serializability of concurrent

database updates. J. ACM, 26:631–653, October 1979.

[PCSF08] C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick.

Version Control with Subversion. O’Reilly Media, 2 edition, Septem-

ber 2008.

[PDC+98] Allen Parrish, Brandon Dixon, David Cordes, Susan Vrbsky, and

John Lusth. Implementing persistent data structures using C++.

Softw. Pract. Exper., 28:1559–1579, December 1998.

[Pey07] Simon Peyton Jones. Beautiful Code: Leading Programmers Explain

How They Think, chapter 24, pages 385–406. O’Reilly Media, Inc.,

2007.

[PGF96] S. L. Peyton Jones, A. Gordon, and S. Finne. Concurrent haskell.

In 23rd ACM Symposium on Principles of Programming Languages,

pages 295–308, St Petersburg Beach, Florida, January 1996. ACM.

BIBLIOGRAPHY 249

[PLMW08] Frédéric Pluquet, Stefan Langerman, Antoine Marot, and Roel

Wuyts. Implementing partial persistence in object-oriented lan-

guages. In ALENEX Algorithm Engineering and Experiments, pages

37–48, 2008.

[Pri57] R. C. Prim. Shortest connection networks and some generalizations.

Bell System Technology Journal, 36:1389–1401, 1957.

[PW93] Simon L. Peyton Jones and Philip Wadler. Imperative functional

programming. In Proceedings of the 20th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, POPL ’93,

pages 71–84, New York, NY, USA, 1993. ACM.

[PW10] Donald E. Porter and Emmett Witchel. Understanding transac-

tional memory performance. In ISPASS IEEE International Sym-

posium on Performance Analysis of Systems and Software, pages

97–108, 2010.

[QnMS+05] Carlos Garćıa Quiñones, Carlos Madriles, Jesús Sánchez, Pedro

Marcuello, Antonio González, and Dean M. Tullsen. Mitosis com-

piler: an infrastructure for speculative threading based on pre-

computation slices. In Proceedings of the 2005 ACM SIGPLAN

conference on Programming language design and implementation,

PLDI ’05, pages 269–279, New York, NY, USA, 2005. ACM.

[Raj02] Ravi Rajwar. Speculation-based techniques for transactional lock-

free execution of lock-based programs. PhD thesis, Department of

Computer Science, 2002. Supervisor-Goodman, James R.

[Ree79] David P. Reed. Implementing atomic actions on decentralized data.

In Proceedings of the seventh ACM symposium on Operating systems

principles, SOSP ’79, pages 163–, New York, NY, USA, 1979. ACM.

[Rei07] James Reinders. Intel Threading Building Blocks - Outfitting C++

for multi-core processor parallelism. O’Reilly, 2007.

[RG01] Ravi Rajwar and James R. Goodman. Speculative lock elision: en-

abling highly concurrent multithreaded execution. In Proceedings of

250 BIBLIOGRAPHY

the 34th annual ACM/IEEE international symposium on Microar-

chitecture, MICRO 34, pages 294–305, Washington, DC, USA, 2001.

IEEE Computer Society.

[RHW09] Christopher Rossbach, Owen Hofmann, and Emmett Witchel. Is

transactional memory programming actually easier? In WDDD ’09:

Proc. 8th Workshop on Duplicating, Deconstructing, and Debunking,

jun 2009.

[RTD83] Thomas W. Reps, Tim Teitelbaum, and Alan J. Demers. Incremen-

tal context-dependent analysis for language-based editors. ACM

Trans. Program. Lang. Syst., 5(3):449–477, 1983.

[RW02] Algis Rudys and Dan S. Wallach. Transactional rollback for

language-based systems. In Proceedings of the 2002 International

Conference on Dependable Systems and Networks, DSN ’02, pages

439–448, Washington, DC, USA, 2002. IEEE Computer Society.

[SATH+06] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao

Minh, and Benjamin Hertzberg. Mcrt-stm: a high performance soft-

ware transactional memory system for a multi-core runtime. In Proc.

11th ACM SIGPLAN Symp. on Principles and Practice of Parallel

Programming (PPoPP ’06), pages 187–197. ACM, March 2006.

[Sch06] William N. Scherer, III. Synchronization and concurrency in user-

level software systems. PhD thesis, Department of Computer Sci-

ence, Rochester, NY, USA, 2006. AAI3204565.

[SCKP07] Jaswanth Sreeram, Romain Cledat, Tushar Kumar, and Santosh

Pande. RSTM: A relaxed consistency software transactional memory

for multicores. In PACT ’07: Proceedings of the 16th International

Conference on Parallel Architecture and Compilation Techniques,

page 428. IEEE Computer Society, 2007.

[Sed98] Robert Sedgewick. Algorithms in C++, parts 1-4: fundamentals,

data structure, sorting, searching, third edition. Addison-Wesley

Professional, 1998.

BIBLIOGRAPHY 251

[Sed02] Robert Sedgewick. Algorithms in C++, part 5: graph algorithms.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2002.

[Shu08] Herb Shutter. Writing Lock-Free Code: A corrected queue. Dr.

Dobb’s Journal, October 2008.

[SK86] Abraham Silberschatz and Henry F. Korth. Database System Con-

cepts, 1st Edition. McGraw-Hill Book Company, 1986.

[SLL01] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost

Graph Library User Guide and Reference Manual. Addison-Wesley

Professional, December 2001.

[SLS09] William N. Scherer, Doug Lea, and Michael L. Scott. Scalable syn-

chronous queues. Commun. ACM, 52:100–111, May 2009.

[SR01] Alexandru Salcianu and Martin Rinard. Pointer and escape analysis

for multithreaded programs. SIGPLAN Not., 36:12–23, June 2001.

[SSHT93] Janice M. Stone, Harold S. Stone, Philip Heidelberger, and John

Turek. Multiple reservations and the oklahoma update. IEEE Par-

allel Distrib. Technol., 1(4):58–71, 1993.

[ST86] Neil Sarnak and Robert Endre Tarjan. Planar point location using

persistent search trees. Commun. ACM, 29(7):669–679, 1986.

[ST95] Nir Shavit and Dan Touitou. Software Transactional Memory. In

Proceedings of the 14th ACM Symposium on Principles of Dis-

tributed Computing, pages 204–213, August 1995.

[Sto06] Jon Stokes. Inside the Machine: An Illustrated Introduction to Mi-

croprocessors and Computer Architecture. No Starch Press, San

Francisco, CA, USA, 2006.

[Swe06] Tim Sweeney. The next mainstream programming language: a game

developer’s perspective. In Conference record of the 33rd ACM

SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, POPL ’06, pages 269–269, New York, NY, USA, 2006. ACM.

252 BIBLIOGRAPHY

[Tar85] Tarjan, R. E. Amortized computational complexity. SIAM J. Alg.

and Discr. Meth., 6(2):306–318, 1985.

[TMG+09] Fuad Tabba, Mark Moir, James R. Goodman, Andrew Hay, and

Cong Wang. NZTM: Nonblocking zero-indirection transactional

memory. In SPAA ’09: Proc. 21st Symposium on Parallelism in

Algorithms and Architectures, August 2009.

[Van09] Ashlee Vance. Sun is said to cancel big chip project. The New York

Times, June 2009.

[VHPN09] Vibhav Vineet, Pawan Harish, Suryakant Patidar, and P. J.

Narayanan. Fast minimum spanning tree for large graphs on the

gpu. In Proceedings of the Conference on High Performance Graph-

ics 2009, HPG ’09, pages 167–171, New York, NY, USA, 2009. ACM.

[vRV+09] Vladimir Čakarević, Petar Radojković, Javier Verdú, Alex Pajuelo,

Francisco J. Cazorla, Mario Nemirovsky, and Mateo Valero. Charac-

terizing the resource-sharing levels in the UltraSPARC T2 processor.

In Micro-42: Proceedings of the 42nd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 481–492, New York,

NY, USA, 2009. ACM.

[VTG+09] Haris Volos, Andres Jaan Tack, Neelam Goyal, Michael M. Swift,

and Adam Welc. xCalls: safe I/O in memory transactions. In

EuroSys, pages 247–260, 2009.

[WA02] Michael Widenius and Davis Axmark. MySQL Reference Manual.

O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1st edition, 2002.

[Wei93] Mark Allen Weiss. Data structures and algorithm analysis in C.

Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA,

1993.

[Wir85] Niklaus Wirth. Algorithms and data structures. Prentice Hall, 1985.

[WL83] William Weihl and Barbara Liskov. Specification and implementa-

tion of resilient, atomic data types. In SIGPLAN ’83: Proceedings

of the 1983 ACM SIGPLAN symposium on Programming language

issues in software systems, pages 53–64, jun 1983.

BIBLIOGRAPHY 253

[WM95] Wm. A. Wulf and Sally A. Mckee. Hitting the memory wall: Im-

plications of the obvious. Computer Architecture News, 23:20–24,

1995.

[WR08] Micha l Wichulski and Jacek Rokicki. Persistent data structures for

fast point location. In Roman Wyrzykowski, Jack Dongarra, Konrad

Karczewski, and Jerzy Wasniewski, editors, Parallel Processing and

Applied Mathematics, volume 4967 of Lecture Notes in Computer

Science, pages 1333–1340. Springer Berlin / Heidelberg, 2008.

[WS01] Fredrik Warg and Per Stenström. Limits on speculative module-

level parallelism in imperative and object-oriented programs on cmp

platforms. In PACT ’01: Proceedings of the 2001 International Con-

ference on Parallel Architectures and Compilation Techniques, pages

221–230, Washington, DC, USA, 2001. IEEE Computer Society.

[WS08] M. M. Waliullah and Per Stenström. Intermediate checkpointing

with conflicting access prediction in transactional memory systems.

In IPDPS, IEEE International Parallel and Distribued Processing

Symposium, pages 1–11, 2008.

[Zim81] Hubert Zimmermann. The ISO reference model for open systems

interconnection. In Kommunikation in Verteilten Systemen, pages

39–57, 1981.

