
Object-Oriented Programming Language Facilities
for Concurrency Control

Gail E. Kaiser
Columbia University

Department of Computer Science
New York, NY 10027

April 1989

CUCS-439-89

Abstract

Concurrent object-oriented programming systems require support for concurrency control, to
enforce consistent commitment of changes and to support program-initiated rollback after
application-specific failures. We have explored three different concurrency control models -
atomic blocks, serializable transactions, and commit-serializable transactions - as part of the
MELD programming language. We present our designs, discuss certain programming problems
and implementation issues, and compare our work on MELD to other concurrent object-based
systems.

Copyright © 1989 Gail E. Kaiser

Kaiser is supported by National Science Foundation grants CCR-8858029 and CCR-8802741, by
grants from AT&T, DEC, IDM, Siemens, Sun and Xerox, by the Center for Advanced
Technology and by the Center for Telecommunications Research.

1. Introduction
Concurrent object-oriented programming systems (COOPS) require support for concurrency

control, to enforce consistent commitment of changes to collections of objects and to support

program-initiated rollback after application-specific failures involving updates to shared objects.

It is sometimes suggested that the classical transaction model, successfully applied in databases

and operating systems, be integrated directly into COOPS facilities. This is clearly desirable, but

by itself too limiting. COOPS applications require several granularities of transaction-like

facilities.

The classical transaction model [5] permits activities to be defmed as atomic and serializable

transactions: either all the operations carried out during a transaction complete and commit or

none of them do, and from the viewpoint of the objects the set of transactions committed over

the lifetime of the system appear to have been executed in some serial order. Nested transactions

[19] permit concurrency among subactivities and failure of subactivities without forcing the top-

level transaction to abort.

This model is unfortunately insufficient for many applications suitable for COOPS

implementation, and unnecessarily inefficient for others. Some applications require strict

serializability, that is, not only do transactions appear to have been executed in some serial order,

but they must appear to have been executed in exactly the serial order in which they were

initiated. This is necessary to satisfy any first-comelfirst-served policy. Some applications must

appear to have been executed in some. perhaps strict. serial order with respect to an external

device such as a printer or an external agent such as a human user, as well as with respect to the

objects within the system. Real-time applications [25] add special timing constraints and require

predictable concurrent behavior.

Some applicatiooJ are able to accept a degree of inconsistency in exchange for greater

concurrency: fix' e:Jlmple, in statistical systems, small inconsistencies may have negligible

effects on computadoas. Some applications permit forking of versions . to allow greater

concurrency, that is. multiple attempts to update the same object cause the creation of IDllltiple

copies of the object each with a distinct version identifier. In some cases the versions may

persist. while others require application-specific merge operations. Audit requirements for other

applications may make any form of version forking unthinkable.

2

To be truly general purpose, a COOPS must be able to meet the requirements of all of these

very different kinds of applications. This can be accomplished by providing only very low-level

primitives, such as semaphores, and burden the programmers with constructing the necessary

mechanisms and building on top of them. But the whole point of nrst OOPS, and then COOPS.

was to unburden the programmer from low-level details and allow him to work at a level closer

to the problem domain. So maybe COOPS cannot, or should not attempt to be, truly general

purpose. We do not intend to argue on either side of this question here. Instead, we would like

to demonstrate the application of several transaction models to the same COOPS. and describe

their advantages and disadvantages, and then discuss the problems of allowing multiple

transaction models to coexist within the same COOPS.

In the MELD programming language, we have explored three different concurrency control

models - atomic blocks, serializable transactions, and commit-serializable transactions - and

developed corresponding programming language facilities fOr each model. We use the term

"transaction" rather loosely, since two of the three concurrency control schemes explored relax

the serializability requirement Note also that we are concerned only with concurrency control

and have so far ignored crash recovery. although this is clearly necessary for persistent objects

and/or long-running applications.

Atomic blocks are critical sections with respect to a particular objec~ so they can be used to

enforce strict serializability locally, but without global consistency. Serializable transactions

follow the classical transaction model, although we are using a relatively unusual optimistic

technique for enforcing serializ.ability. One interesting aspect of our application of this

technique to a COOPS is representation of the transaction itself u an object and the create,

commit and abon operations u messages. Commit-serializable transactions are a flexible

transaction mech.njpn allowing cooperation among distinct transactions and greater

concurrency dwt wauJd otherwise be possible.

First we introduce the relevant MELD facilities necessary u backpound for transaction

processing. Then we describe each of the three COIlC\1IreDC)' control models in turn, together

with the corresponding language constructs and their semantics. We briefly describe the status of

the implementation eff~ and this is followed by a comparison to concurrency control facilities

in other COOPS. The appendix gives a small example program using atomic blocks.

3

2. Overview of MELD

MELD is a concurrent object-oriented programming language, whose primary motif is

providing a wide range of programming facilities by supporting multiple granularities of a small

number of fundamental programming concepts. MELD supports two granularities of

encapsulation and reusability [8]: classes and modules. There is actually a third granularity,

from our solution to the "multiple inheritance problem", discussed elsewhere [9]. Inheritance

would complicate the later discussion of transactions, so is ignored here.

Classes provide medium grain encap~ulation. Each class is essentially an abstract data type

that defines instance variables (private data), methods (operations), and constraints. Constraints

are statements not associated with any named operation, and are automatically executed as

needed to maintain integrity constraints among the instance variables; this is a simple fonn of

active values [26] and distinct from more general constraint programming languages [12].

Instance variables are strongly typed, where the type is a built-in class (integer, string, etc.), a

built-in constructor (array, sequence, set, table), or a programmer-defined class or union (a set of

alternative classes).

CLASS PrintSpooler ::-
Q: rileQueue :- rileQueue.create;
P: Printer; (* Printer manaqed by this PrintSpooler *)
L: AcctLoq; (* 1:.09 tor u.ac;e ot Printer *)

ME'l'HODS:

{* constraint *}
it (not Q.Empty(» thaD [

P.Printrile(Q.rir.t(»;
Q :- Q.a..o..rir.t();]

(* method *)
gueuerile (r: rile: 0': U.er) -->
[Q :- Q.~(r):

L.LogU Cr, O'aer): J

II:ND CLASS PrintSpoolar

Figure 2-1: Print Spooler Class

Figure 2-1 depicts part of the class definition for simple print spoolers. Comments are given

between curly braces" (...) ". There are three instance variables, Q. p and L; in each case the type

4

is another programmer-defmed class. The Q variable is initialized by sending the create

message to the FileQueue class, while the other two variables are implicitly initialized to nil.

One constraint and one method are defined. Whenever the queue is non-empty, the constraint

automatically prints the frrst element of the queue and removes it from the queue. (In a

concurrent system, the constraint would have to be an atomic block, as would the

RernoveFirst method, not shown.) The method, QueueFile, adds a fIle to the print queue

and logs the user's request for accounting purposes. (QueueFile would not have to be atomic

unless the accounting system required correct ordering of print requests; the Enter method

would have to be atomic in any case.) .

Features provide large grain encapsulation. Classes are the standard unit of reusability in

object-oriented languages, but we believe classes are too small - the cost of retrieving,

understanding and specializing the reusable unit may be larger than the cost of developing it

from scratch, and there's also the cost of organizing the library of reusable units [14]. A

practical reusable unit consists of related classes, unions and global (to the feature) objectl

bundled together to provide a coherent functionality.

MELD's feature construct is a modular unit with a public interface consisting of an export

clause and an import clause, and a private implementation. The import clause lists other features

whose exported classes, unions and global objects may be used for types of instance variables or

as superclasses. The export clause may optionally indicate for each class the subset of its

instance variables and methods available to externally defined subclasses and clients,

respectively. This supportS finer control over visibility than available in most data abstraction

languages, along the lines of TrellisOwI [22] and CommonObjects [23], where interfaces are

defined at the class granularity.

The PrintS.rver feature depicted in Figure 2-2 imports the Files feature, which

provides the Fil. ad FileOueue classes. Only the PrintSpooler class is exported, and

the Printer, AcctLog aDd other classes are internal to the implementation. No global

objects are defined COl" this feature, since distinct printer and log objects are created for each print

spooler by the In i t i ali z e meth~ not shown. The imports list could have been written

"IMPORTS Ftles[File, FileQueue1", to indicate the specific view of the feature that is imported;

similarly, the exports list could have been written "EXPORTS PrintSpooler{QueueFile1", to

make only this one method visible to external clients.

INTElU'ACB:
IMPORTS rile.;
EXPORTS PrintSpoo1er;

IMPLEMENTATION:

CLASS AcctLoq :: =

5

Figure 2-2: Print Server Feature

MELD SUppons three granularities of concurrency [10]: multiple threads, message passing.

and transactions. Multiple control threads within an object permit multiple methods to execute at

the same time. When multiple methods accessing the same instance variables execute

simultaneously, however, concurrency is maximized at the cost of nondeterminism. Atomic

blocks solve this problem by enforcing critical sections with respect to the object.

obj: cla •• ; (* declar.tiCD of object *)
name: .trinq; (* declar.tion, holda ~ of object *)

obj. :- cl •••. get(D&me); {* get. bend'. CD re.ot. or per.i.tent object *}

Figure 1-3: Referencing a Remote or Persistent Object

Objects provide medium JI'I.in concurrency. MELD supports both synchronous and

asynchronous .,....p passing among local or remote objects. The "receiver. message" notation

is used for sendlllr "'I'aes syuchronously, where the message might return a result, and the

"send message to ~ ootaDOO is used for sending messages uynchronousiy. An object can

wait for a particular message USinl the "dclayuntU message from sender", where the

"from sender" part is optional. The distinction between local and remote receiver and sender

objects is transparent at the point of message passing, but remote objects must be treated

specially to first obtain references to the objects. In particular, the same sequence of declarations

and code used to reference persistent objects is also used for remote (either transient or

6

persistent) objects, as shown in Figure 2-3.

Transactions provide large grain concurrency. A tomic blocks, serializable transactions and

commit-serializable transactions are discussed in the following three sections.

3. Atomic Blocks

An atomic block is a list of statements executed atomically with respect to the current object.

The atomic block may be the top-level of a method or nested within a method. Nesting an

atomic block within another atomic block is permitted, but meaningless.

CLASS C ::. instance variables

METHODS: constraiNs

M (arguments) -->
(body)

N (argum.eNs) -->
(body)

o (argum.elllS) -->
[body]

51 (argum.eNS) -->
[body]

END CLASS C

Fipre 3-1: Atomic Block

Consider the example in Fi~ 3-1. Atomic blocks are indicated by parentheses "(...)" and

sequential blocks (conventional compound statements) by square brackets "[...]" (alternatively,

keywords such as "beJin atomic ... end atomic" and "begin ... end" could be used, respectively).

M and N are bodlllOlDic, while 0 and P are non-atomic sequential blocks. If an object of class C

first receives I FTlIIF 0 aDd laler while 0 is still executing receives a message P, the newly

invoked method p beainJ execution even though 0 has not completed. 1be two methods can

arbitrarily read and update the same instance variables in arbitrary order determined by the race

conditions. However, if an object of class C flfSt receives a message invokin& M and later while

M is still executing receives a message invoking N (or 0), the newly invoked method bas to wait

until M completes. If instead the object first receives a message 0 and later while 0 is still

executing receives a message M, then O's sequential block is suspended while M completes its

atomic operation, and then 0 is resumed.

CLASS PCQueue ::-
0: array[l •. N] of T;
P, C: integer :- 0;
Used: inteqer : - 0;

METHODS:

Produce (X: T) -->
if (Used ~ N) then [

delay until SpaceAvailable();
$self.Produce(X);

else (
P := P % N + 1;
O[P] :- x;
Used :- Used + 1;

7

send EntryAvailable() to $.elf;

Conaume(): T -->
if (Used - 0) then [

)

delay until KntryAvailable();
return ($aelf.Conaume{»;

elae (
C :- C , M + 1;
Uaed :- Uaed - 1;
aend SpaceAvailable () to $a.lf;
return (Q[e]);

&ND CLASS PCQueue

Figure J.l: Producer/Consumer Queue

A non-atomic block can be arbitrarily corrupted. There is no notion of consistency with

respect to non-atomic blocks that can be detected or enforced by the system. An atomic block

cannot be corrupted. It exclusively locks the entire object for its duration. However. it is

possible for atomic blocks to view the partial results of non-atomic blocks. An alternative

semantics would pRVeIlt atomic blocks from viewing the partial results of other non-atomic code

as well as preveudq other code from viewing partial results of atomic blocks. This does not

seem necessary. since if the application required consistency of data updated by the non-atomic

code. the programmer should have written it as an atomic block. Figure 3-2 illustrates using

atomic blocks for the classical producer/consumer problem.

Atomic blocks have one serious flaw. Consider the example in Figure 3-3. where R is an

atomic block but P is not. and R invokes P synchronously. The programmer presumably expects

CLASS & ::.. c: integer;

ME'l'HODS:

P (a , b: inteqer): intaq.r -->
[c := a + b; ~turn c;]

Q (x: integer) -->
[c : = 2 * x;]

END CLASS &

CLASS r ::a d: &;
.: inteqer;

ME'l'HODS:

R. () --> (. :-d.P(l, 2);)

END CLASS r

8

Figure 3-3: Problem with Atomic Blocks

that e will be assigned to 3, but this need not be the case. Consider the scenario where Q is

invoked immediately after "C := a + b" executes, but before "return c" executes. The atomicity

of a method R does not imply anything about the other methods it invokes!

The problem is that an atomic block is a critical section only with respect to the current object

It locks only that object, not any of the objects to which it sends messages. There is no notion of

complex objects in MELD, in the sense that locking an object does not have the effect of locking

component objects. If complex objects were added, then messages sent to any objects reachable

via instance variable links from the original would still be effectively part of the same atomic

block. But that would not solve the problem since MELD atomic blocks could still send

messages to method arguments and global objects.

4. Serializable Transactions

Transactio,. biocu solve this problem with atomic blocks. A transaction block is a list of

statements executed u • ser1aIiuble transaction with respect to all other code ever executed by

the MELD system. A transaction block may be an entire method or nested within a method.

Nesting a transaction block within another transaction block permits nested transactions [18].

Consider the example in Figure 4-1, where R is now a tranSaction block rather than an atomic

CLASS J: ::.. c: inteqer;

METHODS:
P (., b: int~r): integer -->
[c := a + b; return c;]

Q (z: integer) -->
[C ::11 2 * z;]

END CLASS J:

CLASS r ::= d: B;
a: intaqar;

METHODS:

R () -->« e :- d.P(l, 2); »

END CLASS r

9

Figure 4-1: Transaction Block

block. Transaction blocks appear between double angle brackets "<<»", although begin

transaction, end transaction keywords could be substituted; we do not do so for sequential and

atomic blocks as well as transaction blocks, even though we realize the examples would be much

easier to read. to make clear the distinction between transaction blocks and the free-form Create

and Commit operations described later. P and Q are still sequential blocks. R invokes P

synchronously, and Q is invoked immediately after "c := a + bIt executes, but before "return cIt.

In this case, P is considered part of the R transaction and cannot be corrupted. so e is guaranteed

to be set to 3.

Transaction blocks are implemented in MELD using a distributed optimistic concurrency

control mechanism based on multiple versions developed by Agrawal et ai. [2]. This scheme

permits read-only traDIICtiona to commit with no concurrency control overhead. Initiating a

transaction creaIII a uCOCJI'dinaatt object, a remote "cohort" object is created each time a

t.h.read from thiJ trIIIUCtioo first executes on another machine to keep track of the ReadSet and

WriteSet of the translCtion with respect to that machine, and a two-phase commit protocol is

employed. In the example above, serializability would be enforced by rolling back the

transaction initiated by R and restarting it after Q terminated. This scheme can unfortunately lead

to starvation, since repeated calls to Q can effectively prevent R from ever committing.

This is not quite as severe a problem as it may seem, because the serializability is enforced at

CLASS B :: - c: integer;
d: integer;

METHODS:

P (a, b: integer): int.ger -->
[c :a a + b; return c;]

Q (z: integer) -->
[d := 2 * z;]

END CLASS B

CLASS r ::- d: B; .: integer;

METHODS:

R () -->« • :- d.P(l, 2); »

END CLASS r

10

Figure 4-2: Enforcing Seria1izability On Instance Variables

the granularity of individual instance variables rather than entire objects. Figure 4-2 shoWi

essentially the same example, but here Q updates a new instance variable d rather than the

conflicting instance variable c. In this case, Q and R can proceed conclll'l'ently with no conflict

and R commits.

1'D'l'ORJ: Bank
INTKRrAa: .•.
IMP LDCBN'l'AU C»f :

CLASS tell.r ::-
account : Sa.1DgaaccOUAt:

NKTB(x)S:

(* ConatraiAta *,
account :- ~t.getObjectldR ... (accOUAtJI ...):
if (8CO= • - aLl) tbeD

.aDd -&aaaQDt IIot AYa11abl.' '" to htdout:

(* *thoda *)
(* « ... » !'rua.aactiOD 810eb *)

"withdraw td, ,." (cae: IDteg'er, aCCOWltJI ... : StriD9) -->
«
if (account <> Ail) then
(

.aDd withdra.(ca.h) to accOUAt:

.aDd "pla._ wait, your trua.aactioD i. beiD9 proce •• ed" to $atdout;

11

»

"deposit %d, %."(cash: Integer, accountName: String)-->
«

»

if(account <> ni~) then
[

send daposit(ca.h) to account;
send "p~ea.e wait, your tranaaction is being proce.aed" to $stdout;

END CLASS te~ler

PERSISTENT CLASS SavingllAc:count ::­
ba~ance : Integer :- 0;

MEtHODS:

{* Constraints *}
send "the balance ia %d" (ba~ance) to $etdout;

{* Methode * }
{* every persistent c1a.s inherit. the following methoda: *}
{* qetObjectldByHame (s.: String); *)
(* qetNameByObjectId(objid: Object); *}
{* *}

daposit(ca.h: Integer)-->
«

balance :- balance + c •• h;
»

withdraw (ca.h: Integer)-->
«

»

it (cuh > balance) theA .eDeS "Insufficient balance" to $atdout;
e1.. balance :. balance - c •• h;

ZHD CLASS SavinqaAccount
END RATO'IlK Bank

F1pre 4-3: Bank Feature with Transaction Blocks

The example ill Flame 4-3 UteS persistent classes and I/O messages, not discussed here, as

well as trBoucdM blocks. Although multiple methods can run within a particular

SavingsAccount object. the transaction block accesses to balance are serialized.

As a supplement to the transaction block, MEl.D provides the abort statement, typically used

with a conditional. Execution of an abort statement immediately forces rollback (without restart)

of the enclosing transaction block under program control. The abort statement may appear in

this block or in some other method invoked via synchronous or asynchronous message passing.

12

If the transaction block is nested within another, then only the immediately enclosing block is

aborted.

Transaction blocks are rather limited, in that the transaction must begin and end in the same

method. Although this requirement generally supports good programming practice, there are

cases where the necessary programming may become awkward. It is desirable to add Create and

Commit operations, and allow the Commit operation as well as Abort to appear in different

methods than the matching Create operation.

FEATURE Bank
INTERFACE :

IMPORTS Transaction;

IMPLEMENTATION:

CLASS tallar ::-
account : SavinqaAccount;

METHODS:

(* COnstraint. *)
account :- S.viDqaAccount.getObjectIdHame(.ccountlfame);
if (account - nil) than

send "Account Mot Av.ilabl.!!" to $atdout;

(* Math~ *)

"withdraw'd, '."(c •• h: Integer, .ccountlfame: StriDq)-->
(t : ~ran •• ction;

t :- ~rana.ction.Cre.t.();

if(.ccount <> nil) then
(

.end withdr.w(c •• h, t) to .ccount:

.end "pl wait, your tr~.ctiOQ i. bei.Dg proce •• ed" to $atdout;
}

al •• -.Dd eo..it to t;

"d8poait td, ... (aaaIa: IDte9ar, .ccountlf_: StriD9) -->
(t : lfnaaa«iOD;

}

t :- Ifr~actiOD.Creat.();
if (.ccount <> IUl) then
(

.end depo.it(ca.h, t) to .ccount:

.end .. pl •••• wait, yoU%' tr~.ction i. beiD9 proceaaed" to $atdout:
}

al ••• end eo..it to t:

JDU) CLASS tall.r

PER.SISTZlft' CLASS SavinqaAccount ::-
balance : Inteqer :- 0;

METHODS:
(* Constrainta *)

13

sand "the balance is %d"(balance) to $atdout;
(* Methods *}

deposit (cash: Integer, td: Transaction)-->
[

balance := balance + cash:
send Commit to td;

withdraw (cash: Inteqer, td: Tranaaction)-->
[

if (caah > balance) then send "Insufficient balance" to $atdout:
alaa balance :3 balance - cash;
send Commit to td;

ZND CLASS SavinqaA.ccount
END ftAT'ORZ Bank

Figure 4-4: Bank Feature with Transaction Objects

In MELD we do this by representing transactions as objects. Create, Commit and Abort

are treated as nonnal messages, where Create is sent to the Transaction class. Figure 4-4

shows the same example as for transaction blocks, but now transaction objects are used.

One problem with our current design lies in the multi-threaded nature of MELD, since an

arbitrary number of threads may operate as pan of the same transaction (even without nesting).

Our implementation of the abort operation allows auxiliary threads to continue execution until

they are ready to terminate, and then rolls back their results if the cOlTesponding transaction has

already aborted. This is clearly non-optimal from a performance viewpoint, but it has the fewest

complications.

Adding the commit operation would require tracking down all the auxiliary threads and

waiting until all f1 them are ready to terminate. If one or more threads executed abort

operations, the traDIICtiOll would be aboned even though a commit operation had previously

been executed on behalf of the same transaction. We do not cunently synchronize the threads

associated with the same transaction; in particular, serializability is not enforced with respect to

such threads unless they are explicitly separated into subtransactions.

14

S. Commit-Serializable Transactions
Commit-serializability [21] is an extended transaction model we have developed for

open-ended activities, such as CAD/CAM, VLSI design, office automation and software

development. The name "commit-serializability" reflects that our model requires committed

transactions to be serializable but permits transactions to divide and merge in ways such that the

committed transactions may not bear any simple relationship to the initiated transactions.

Open-ended activities are characterized by long duration, uncertain developments, and

interactions with concurrent activities.. Consider, for example, our archetypical open-ended

activity, software development. A software development environment might enclose within a

single transaction all activities responding to a modification request. These activities -

including browsing and editing perhaps overlapping sets of source flles, compiling and linking,

executing test cases and generating traces, etc. - could take days or weeks and require

modifying substantial portions of the system. Existing software development tools provide some

of the needed facilities: serialized access to individual flles and the creation of parallel versions..

checkpointing, system build. and undo/redo. The crippling problem is that these mechanisms

operate on individual fUes, rather than on the complete set of resources updated during the

activity so consistency cannot be guaranteed. A few environments do publish sets of resources

as a unit but use ad hoc methods not yet developed into transaction models. On the other hand.

serializable transactions are too restrictive, for instance:

• A programmer would be prevented from editing a file simply because another
programmer had previously read the file but has not yet finished his programming
transaction.

• Programmers would not be able to release certain resources - so that they can be
accessed by other programmers cooperating to build the same subsystem - while
continuing to use other resources that are pan of the same activity.

Cornmit-seriaJ~uhility provides the advantages of a transaction model without the

disadvantages ~ -.ia1izability. The model is supported by two new operations, Split and loin,

in addition to the Create, Commit and Abort operations discussed in the previous section.

The Split operation divides an in-progress transaction into two new ones, each of which may

later commit or abort independently of the other. Say a user U has read modules M, N and 0 and

updated modules N and 0. He has compiled the changed N and 0, linked them together with the

old object code for M, and is in the process of debugging. The c attribute of an object represents

Transaction U 1

initiate
read(M.c)
read(N.c)
write{N.c)
read(O.c)
write(O.c)
write{N.o)
write(O.o)
read(M.o)
read(N.o)
read(O.o)

Transaction U2

corresponding notify(N.c, read)
split«M,O,resume), (N,commit»

access(M)
access(O)
commit(M,O)

initiate
commit(N)

15

Transaction V

initiate
access (X)
access(Y)
access(Z)
request read(N.c)

actual read(N.c)
write(N.o)
access (X)
access(Y)
access(Z)
commit(N.x, Y ;Z)

Figure 5-1: Example Split Schedule

its source code and the 0 attribute its object code. Another user V requests access to module N.

Since U is done making changes to N but needs to continue work on M and 0 (the issues of how

this is decided are discussed later), the transaction splits and commits a new transaction that

updates N. V then reads N, decides to use this new version rather than the old one for testing his

own changes to other IOOdules, recompiles N and tests his subsystem. Later V commits N and U

commits M and O. The corresponding schedule is depicted in Figure .5-1.

The inverse JeD operation melle! a completed transaction into an in-progress transaction.

Say a user U hu NId modulea M. N and 0 and updated IOOdulea N and O. He has compiled the

changed N and 0, linked them IOgetber with the old object code for M, and completed debugging.

Another user V is working on other changes to the same subsystem. Since U is done, his

transaction joins M, N and 0 to v's resources, so all changes to the subsystem will be published

together. U then goes on to his next tas~ as pan of a new transaction. 1be schedule for this

example is displayed in Figure 5-2.

Transaction U 1

initiate
read(M.c)
read(N.c)
write(N.c)
read(O.c)
write(O.c)
write(N.o)
write(O.o)
read(M.o)
read(N.o)
read(O.o)
join (V)

Transaction U2

initiate
access(p)
access(Q)
access(R)
commit(p ,Q,R)

16

Transaction V

initiate
access(X)
access(Y)
access(Z)

access(M)
access(X)
access(N)
access(Y)
access(O)
access(Z)
commit(M,N,O,x,Y,Z)

Figure 5-2: Example Join Schedule

MELD's Split and Join operations are illustrated in Figure 5-3. In order to later use the Split

operation, the initiating Create must be associated with a handler as shown. A handler is not

necessary to use Join, since the joined transaction can always ignore its new resources. Handlers

are explained later on.

Split (A: (AJWad.Set, Dd.t ... , AIIu.~),
B: (aa.ad.Set, _~it.8et, ge »

Join (8: 'rID)

FIpre 5-3: Split and Join Operations

When the Split operation is invoked during a transaction T. there is a TReadSet consisting of

all objects read by T but not updated and a lWriteSet consisting of all objects updated by T.

TReadSet is divided into AReadSet and BReadSe~ and lWriteSet into A WriteSet and

BWriteSet. AMessage and BMessage are sent to $ se 1 f. to indicate what to do next for each of

17

the transactions.

For example, transaction T 1 has read objects M and N and updated objects N and o. Another

transaction T2 requests access to object N. Tl 's request handler is invoked, and in this case the

handler decides that the transaction is done making changes to N, but needs to continue work on

M and o. The handler executes the Split operation and commits a transaction T 3 that updates N.

T2 then accesses N. Later T2 commits Nand Tl commits M and o.

In the special case where AMessage is the Commit operation, objects in A Write Set may also

appear in either BReadSet or BWriteSet. Objects in A WriteSet can also appear in BWriteSet if

A later commits before B. BReadSet need not be disjoint with A WriteSet, provided that A does

not update any of these objects after the split. since B is serialized after A. This can be enforced

by not allowing B to commit until after A does, and aborting B if A aborts.

The role of the handler is to detennine the arguments for the Split operation. The

HandlerMessage argument to the Create operation is a string that can be sent to an object in the

same way as input messages; this is a subterfuge, since in MELD there is no other means for

passing procedure parameters or referring to a method symbolically. The following restrictions

apply in the case where the reason for the split was the request for some object by some other

transactions, and B will immediately commit to make this object available. If the object has been

updated during the prefix of T (its history up to now), A WriteSet must contain the requested

object. If the request is to update the object. it must not be in BReadSet. If this object has only

been read during T, then it must be in AReadSet and not in BWriteSet. This assumes that B does

not keep any form of temporary copy of the object. or any value from which the object can be

derived.

When the Join opa'Uioa is invoked durina a transaction T, target transaction 5 must be

ongoing. TReadSec aDd 1WriteSet are added to SReadSet and SWriteSet. respectively, and 5

may continue or CO''''';L Far example. transaction Tl has read objects M and N and updated

objects N and O. ADOdIer translCbon T2 is making other changes to a semantically related set of

objects. When Tl is ready to commit. it executes Join to join M, N and 0 to T2's resources, so

this set of objects is committed together.

18

6. Implementation Status
MELD is translated into C and runs on 4.2 and 4.3 Berkeley Unix, on Sun 3's, MicroVax II's

and RT 125's. MELD's compiler (including a preprocessor that implements inheritance) consists

of 400 lines of Lex input, 1500 lines of Yacc input, and 4000 lines of C code. The run-time

environment including the Meld Debugger (MD) [6] has 250 lines of Lex and 650 lines of Yacc,

for the Data Path Expression debugging language for specifying high-level concurrent events

and the actions to take when such events are recognized, and 6000 lines of C.

Only atomic blocks have been fully implemented in the main-line MELD implementation,

which suppons a simple name service for sending messages to remote objects (MELD objects

currently cannot migrate) and persistent objects using B-trees. Transaction blocks have been

implemented in a diverged version, which does not in~lude some of the language facilities added

in the past year or so. The largest program attempted in MELD to date has been a toy

implementation of "Small Prolog" (which never really work~ but this was not due to a flaw in

MELD).

7. Related Work
Herlihy and Wing [1] describe a fine granularity correctness condition for COOPS,

linearizability. Linearizability requires that each operation appear to "take effect"

instantaneously and that the order of non-concurrent operations should be preserved. MELD

atomic blocks in effect implement linearizability at the level of blocks, which may encompass an

entire method.

Manin [16] describes small grain mechanisms for both aurnally s~rialiUJbI~ and semantically

verifiabk operations for COOPS. Externally serializable operations enforce serializability

among top-level operatiou but pennit non-seriaJiuble computations on subobjects.

Semantically verifltble operatiou do not enforce serializability at all, but instead consider the

semantics of IS,. .rJy contlictina operations in preventing inconsistencies from being

introduced. Weihl [27] describes a formalism analogous to semantically verifiable operations

but restricted to commutative operationl. He considers abstract data types, not specifically

object-based programming.

Argus [13] has atomic and non-atomic obj~cts, binding concurrency control to one level of

implementation. In contrast, MELD allows "free-form" concurrency control at any level, and also

19

gives the programmer the freedom to combine atomic and non-atomic actions on the same

object. Camelot [24] and Mach [7] together provide a distributed transaction facility for objects.

and Avalon [4] provides some measure of language support as an extension of C++. The Avalon

model of concurrency control was heavily influenced by Argus, and, like Argus, binds atomicity

to the object rather than allowing it at any smaller level.

In Clouds [3], concurrency control is not bound to the object level, and atomic and non-atomic

operations on an object may be mixed. Hybrid [20] has an atomic block construct that provides

atomicity across multiple objects, but blocks other code from executing within any of those

objects until the atomic block commits or aborts. MELD's atomic blocks work similarly, but on

single objects only; MELD's transactions provide atomicity across multiple objects, but permit

much more concurrency because serializability is enforced at the granularity of instance

variables.

Most other COOPS provide only one fonn of concurrency control; for example, Coral3

[17] uses only two-phase locking, and GemStone [15] uses only an optimistic approach.

8. Conclusions

We have described our experimentation with three types of transaction-like facilities as part of

the MELD programming language. Atomic blocks are easy to use, but are not sufficient for

applications requiring consistency among multiple objects. Serializ.able transactions are

somewhat more difficult to use, due to interactions with MELD's multiple threads. If

asynchronously generated threads are confined to subtransactions, then programming is easier

but overhead is increased and concurrency reduced. Commit-serializable transactions should be

no more complicated than full serializable transactions except for one crucial point: the request

handlers. It is not yet clear bow these should be structured, what parameters they should be

provided, or evea lIIICtly what they should do. We have designed a version of our commit­

serializability model for transactions in the Marvel software development environment [11], but

there we have taken the easy way out by presenting requests to the human users. This might be a

viable option for other applications supporting open-ended activities.

20

Acknowledgments
David Garlan and the author jointly developed the original, non-concurrent design of MELD.

Wenwey Hseush and Steve Popovich participated in the redesign for concurrency. Wenweyand

Shyhtsun Felix Wu worked on atomic blocks, Steve and Felix on serializable transactions, and

Calton Pu, Nonn Hutchinson and the author jointly developed the semantics of commit­

serializable transactions. The ideas discussed here were also influenced by discussions with

Nasser Barghouti, Dan Duchamp, Brent Hailpern, Maurice Herlihy, Eliot Moss, Bob Schwanke,

Soumitra Sengupta, Andrea Skarra, Peter Wegner, Bill Weihl and Stan Zdonik. Nasser and

Steve provided extensive critical comments on a draft of this paper. Nicholas Christopher,

Jeffrey Gononsky, Nanda S. Kirpekar, Marcelo Nobrega, David Staub, Seth Strump, Kok-Yung

Tan, and Jun-Shik Whang contributed to the MELD implementation effort.

References

[1] Maurice P. Herlihy and Jeannette M. Wing.
Axioms for Concurrent Objects.
In 14th Annual ACM Symposium on Principles of Programming Languages, pages 13-26.

Munich, West Germany. January. 1987.

[2] D. Agrawal. A.J. Bernstein, P. Gupta and S. Sengupta.
Distributed Optimistic Concurrency Control with Reduced Rollback.
Journal ofDistribuud Computing 2(1):4.5. April. 1987.

[3] Panha Dasgupta. Richard 1. Leblanc Jr. and William F. Appelbe.
The Clouds Distributed Operating System: Functional Description. Implementation

Details and Related Wark.
In 8th International Conference on Distribuud Computing Systems. pages 2-9. San Jose

CA. June. 1988.

[4] David Detlefs. Maurice Herlihy and Jeannette Wing.
Inheritance of Synchronization and Recovery Properties in Avalon/C++.
Compuur :57-69. December. 1988.

[.5) K. P. Eswaran.l. N. Gray, R. A. Lorie, and I. L. Traiger.
The Noac.oIConastency and Predicate Locks in a Database System.
Co""""""'" oftM ACM 19(11):624-632, November. 1976.

[6] Wenwey flreush IDd Gail E. Kaiser.
Data Path Debugging: Data-Oriented Debugging for a Concummt Programming

Language.
In ACM SIGPItvtISIGOps Worlc.shop on Para/kl and Distribuud Debugging. pages

236-246. Madison WI, May, 1988.
Special issue of SIGPlan Notices. 24(1), January 1989.

21

[7] Michael B. Jones and Richard F. Rashid.
Mach and Matchmaker: Kernel and Language Support for Object-Oriented Distributed

Systems.
In Object-Oriented Programming Systems, Languages and Applications Conference,

pages 67-77. Portland, OR, September, 1986.
Special issue of SIGPlan Notices, 21(11), November 1986.

[8] Gail E. Kaiser and David Garlan.
Melding Software Systems from Reusable Building Blocks.
IEEE Software :17-24, July, 1987.

[9] Gail E. Kaiser and David Garlan.
MELDing Data Flow and Object-Oriented Programming.
In Object-Oriented Programming Systems, Languages and Applications Conference,

pages 254-267. Orlando FL, October, 1987.
Special issue of S!GPlan Notices, 22(12), December 1987.

[to] Gail E. Kaiser, Steven S. Popovich, Wenwey Hseush and Shyhtsun Felix Wu.
Melding Multiple Granularities of Parallelism.
In European Conference on Object-Oriemed Programming. Nottingham, UK, July,

1989.
In press.

[11] Gail E. Kaiser.
A Marvelous Extended Transaction Processing Model.
In Gerhard Ritter (editor), 11 th World Computer Conference IF!P Congress' 89.

Elsevier Science Publishers B.Y., San Francisco CA, August, 1989.
In press.

[12] Wm LeIer.
Constraim Programming Languages Their Specification and Generation.
Addison-Wesley Pub. Co., Reading MA, 1988.

[13] Barbara Liskov, Dorothy Curtis, Paul Johnson, and Robert Scheifler.
Implementation of Argus.
In 11 th ACM Symposium on Operating Systems Principlu, pages 111-122. Austin TX,

November, 1987.
Special issue of Operating Systems Review, 21(S), 1987.

[14] Yoelle S. Maarek and Gail E. Kaiser.
Using Cooceptual Oustering for Oassifying Reusable Ada Code.
In Using AtM., A.CM S/GA.tJa lnur1llJlionaJ Conference, pages 208-21S. ACM Press,

Boa_ MA. December, 1987.
Special iIIIIC ~ A.dD lEITERS, December 1987.

[15] David Maier, Jacob S~ Allen Otis, and Alan Purdy.
Development of an Object-Oriented DBMS.
In Object-Orienud Programming Systems, Languages, and Applications Conference,

pages 472-482. October, 1986.
Special issue of SIGPLAN Notices, 21(11), November 1986.

22

[16] Bruce E. Martin.
Modeling Concurrent Activities with Nested Objects.
In 7th Int~rnationaJ Conference on Distributed Computing Systems, pages 432-439.

West Berlin, West Gennany, September, 1987.

[17] Thomas Merrow and Jane Laursen.
A Pragmatic System for Shared Persistent Objects.
In Object-Oriented Programming Systems, Languages and Applications Conference

Proceedings, pages 103-110. Orlando FL, October, 1987.
Special issue of SIGP/an Notices, 22(12), December 1987.

[18] 1. Eliot B. Moss.
Nested Transactions and Reliable Distributed Computing.
In 2nd Symposium on Reliability in Distributed Software and Database Systems, pages

33-39. IEEE Computer Society Press, Pittsburgh PA, July, 1982.

[19] Michael Lesk (editor).
In/ormation Systems: Nested Transactions: An Approach to Reliab/e Distributed

Computing.
The MIT Press, Cambridge MA, 1985.
PhD Thesis, MIT LCS TR-260, April 1981.

[20] O. M. Nierstrasz.
Active Objects in Hybrid.
In Object-Ori~nted Progranrnting Systems, Languag~s and Applications Conference

Proceedings, pages 243-253. Orlando FL, October, 1987.
Special issue of SIGP/an Notic~s, 22(12), December 1987.

[21] Calton Pu, Gail E. Kaiser and Norman Hutchinson.
Split-Transactions for Open-Ended Activities.
In 14th International Confer~nc~ on Very Larg~ Data Bases. pages 26-37. Los Angeles

CA, August, 1988.

[22] Craig Schaffen, Topher Cooper. Bruce Bullis, Mike Kilian and Carrie Wilpolt.
An Introduction to Trellis/Owl.
In Object-Oriented Systems, Languages, and Applications Conference. pages 9-16.

Ponland, OR, September. 1986.
Special issue of SIGPIan Notices. 21(11). November 1986.

[23] Alan Snyder.
CommooObjects: All Overview.
In Objec~ Programming Workshop. pages 19-29. Yorktown Heights. NY, June.

1986.
Special iIme of S1GPIan Notices. 21(10). October 1986.

[24] Alfred z. Spector. Joshua J. Bloch, Dean S. Daniels. Richard P. Draves. Dan Duchamp,
Jeffrey L. Eppinger. Sherri O. Menees, Dean S. Thompson.
The Camelot Project.
Dalabas~ Engine~ring 9(4). December. 1986.

23

[25] John A. Stankovic.
Misconceptions About Real-Time Computing: A Serious Problem for Next-Generation

Systems.
Computer 21(10):10-19, October, 1988.

[26] Mark J. StefIle, Daniel G. Bobrow and Kenneth M. Kahn.
Integrating Access-Oriented Programming into a Multiparadigm Environment.
IEEE Software 3(1):11-18, January, 1986.

[27] William E. Weihl.
Commutativity-Based Concurrency Control for Abstract Data Types (Preliminary

Repon).
In Bruce D. Shriver (editor), 21st Annual Hawaii International Conference on System

Sciences, pages 205-214. IEEE Computer Society Press, Kona, HI, January, 1988.

24

I. Example

This program, called "dining octopi", runs on a Sun 3 workstation. It is essentially a two­

dimensional version of dining philosophers. There are eight forks and four "octopi", each with

four arms (the other four arms - not shown - are used to sit on since it would be difficult for

an octopus to use a chair). An octopus needs four forks in order to eat Access to forks wraps

around from right to left of the screen and from top to bottom. The octopi and forks are objects

and all interactions are done by message passing. The graphics hacking is done in C, not shown;

any C subroutine call is a legitimate MELD statement and simple variables can be shared between

the MELD and C code.
FEATURB diners
INTElU'ACZ :
IMPLEMENTATION:

OBJECT:
octopi: array[O .. 3] of octopua;
forks: array[O .. 7] of fork;
start: initialization :- initialization. create;

CLASS octopus ::-
left, right, up, down: fork; (* "foru" in ... arioua clirectiona *)
{* display info~tion *}
%, y: int~r:
inde%: int~r;

HZTHOOS:
dine () --> [
rightFirst, upFirst: boolean;
helf. think () ;
rightFirat :- (rand() » 16) , 2 -- 1;
upFirst :- (rand() » 16) , 2 -- 1;
it (rightFirat)
then right.pickcp('s.lf, true);

else left.pickcp($.. lf, true):
it (rightFirst)
then it (left.pickcp(... lf, fal_) - 0)
then right.putDown(): (* couldn't get left fork *)

elae [
it (uprirR)
then if .(1!p.p!cJd7p(... lf, fal ••) -- 0)
then [

]

left.pu~(); (* cou!dD't get up fork *)
rigbt.~();

elae [
if (down.pickCP($ •• lf, fal ••) - 0)
then [
left. putDown (); (. couldn't get down fork *)
right.putDown();
up. putDown () ;

]
elae [

]

]

25

$self.eat(); {* got all forka *}
left.putDown();
right.putDown();
up.putDown();
down.putDown();

]
else [

]

it (down. pickUP ($self, talse) =- 0)
then [

]

1.ft.putDown(); {* couldn't get down fork *}
right .putDown () ;

else [
if (up. pickUP ($self, falae) == 0)
then [

]

left.putDown(); {* couldn't get up fork *}
right.putDown();
down. putDown () ;

elae [

]
]

$a.lf .•• t(); {* got all fork. *}
left.putDown();
right. putDown () ;
up. putDown () ;
down. putDown () ;

.1 •• if (right.pickOp($ •• lf, fal ••) -- 0)
then 1.ft.putDown(); {* couldn't ~t right fork *} .1.. [
if (upl'ir.t)
then if (up. pickUp ($ •• lt, fal ••) -- 0)
then [

]

1.ft.putDown(): (* couldn't ~t up fork *)
right.putDown(); .la. [

g-pickup_up(iDdez):
if (down. pickUp ($.. lt, fal ••) -- 0)
then [

]

1.ft.pat.DowDO; (* couldn't ~t down fork *)
riqht.patDowD();
up. patDo.a () ;

.1.. [

]

' •• If ... t(): (* qot all tort. *)
1.ft.pvt.DowD():
riqht.putDown();
up. putDown () ;
down. putDown () ;

] .la. [
if (down.pickOp($ •• lt, tal ••) -- 0)

26

then [
1.tt.putDown(); (* couldn't get down tork *)
right. putDown () ;

]

]
.115. [
if (up.pickOp($selt, talse) -- 0)
then [

]

left.putDown(); {* couldn't get up fork *}
right.putDown();
down. putDown () ;

else [

]
]

]

$selt.eat(); {* got all torks *}
left.putDown();
right. putDown () ;
up.putDown () ;
down.putDown();

send dine() to $.elf; (* loop, whether .ucce •• ful or not *)
]
{* some methods contained only graphics code *}
think () --> [
return(O);

]
.at () --> [

return (0) ;
]
init (myIndu:: int~r) --> [
upI, downl, right I , leftl: integer;
{* !nit .c~ c1i.play *}
]I: :- myIndu: , 2;
y :- (mylndu: I 2) * 2;
l.ttl :- y * 2 + (z + 1) , 2;
l.ft :- forka[leftI);
rightI :- y * 2 + z , 2:
right :- forks[rigbtI];
upl :- «y + 3) , 4) * 2 + z;
up :- fork.[upI);
downI :- (y + 1) * 2 + z;
down : - forks [cSoWIl%) :
helf .• etIAdu (aJ'I , ;
send dineO .. faeU; (* _in p~ .. for octopu. *}

]

a.tIndu:(~~:in~r' -->
[
indez :- ~I~;

]
KND CLASS ectopu

CLASS fork ::-
whoRa.: ectopu : - ul: {* oct0pu.8 that has fork *}

MB'l'BOOS:
pickOp(wbo: ectopua: vaiUor: boolean) --> [
willwait: boolean :- fal .. :

1

(

if (whoRaa ,- nil)
than if (waitror)
then willWait :- true;

else return(O);
else [

27

{* fork i. free, go ahead and pick it up *}
whoBas := who:

]
)

return (1) ;

if (willWait)
then raturn($aelf.pickup(who, waitFor»;

putDown () --> [
whoHaa :- nil;

]
END CLASS fork

CLASS initialization ::­
METHODS:

send atartNe(O) to $.elf;
startNa(indaz: integer) --> [

forks[O] :- fork.create("fork 0");
forka[l] :- fork.create("fork 1");
forka[2] :- fork.create("fork 2");
fork.[3l :- fork. create ("fork 3");
fork. [4] :- fork.create("fork 4");
forka[5] :- fork.create("fork 5");
forka[6] :- fork.create("fork 6");
forka[7] :- fork.create("fork 7");

]

octopi [0] : - oct0pu8. create ("octopu. 0");
.end init (0) to octopi [0) ;
octopi [1] : - octopuai. create (.. oct0pu8 1");
send init (1) to octopi [1) :
octopi [2] :- octopwl.create("oct0pu8 2"):
send init(2) to octopi[2):
octopi [3] : - oct0pu8. create ("octopuai 3 It) ;
aend init (3) to octopi [3) ;

END CLASS initialization
END J'U'l'OU cU.Der.

