94 research outputs found

    A Research Perspective on Data Management Techniques for Federated Cloud Environment

    Get PDF
    Cloud computing has given a large scope of improvement in processing, storage and retrieval of data that is generated in huge amount from devices and users. Heterogenous devices and users generates the multidisciplinary data that needs to take care for easy and efficient storage and fast retrieval by maintaining quality and service level agreements. By just storing the data in cloud will not full fill the user requirements, the data management techniques has to be applied so that data adaptiveness and proactiveness characteristics are upheld. To manage the effectiveness of entire eco system a middleware must be there in between users and cloud service providers. Middleware has set of events and trigger based policies that will act on generated data to intermediate users and cloud service providers. For cloud service providers to deliver an efficient utilization of resources is one of the major issues and has scope of improvement in the federation of cloud service providers to fulfill user’s dynamic demands. Along with providing adaptiveness of data management in the middleware layer is challenging. In this paper, the policies of middleware for adaptive data management have been reviewed extensively. The main objectives of middleware are also discussed to accomplish high throughput of cloud service providers by means of federation and qualitative data management by means of adaptiveness and proactiveness. The cloud federation techniques have been studied thoroughly along with the pros and cons of it. Also, the strategies to do management of data has been exponentially explored

    Sla Management in a Collaborative Network Of Federated Clouds: The Cloudland

    Get PDF
    Cloud services have always promised to be available, flexible, and speedy. However, not a single Cloud provider can deliver such promises to their distinctly demanding customers. Cloud providers have a constrained geographical presence, and are willing to invest in infrastructure only when it is profitable to them. Cloud federation is a concept that collectively combines segregated Cloud services to create an extended pool of resources for Clouds to competently deliver their promised level of services. This dissertation is concerned with studying the governing aspects related to the federation of Clouds through collaborative networking. The main objective of this dissertation is to define a framework for a Cloud network that considers balancing the trade-offs among customers’ various quality of service (QoS) requirements, as well as providers\u27 resources utilization. We propose a network of federated Clouds, CloudLend, that creates a platform for Cloud providers to collaborate, and for customers to expand their service selections. We also define and specify a service level agreement (SLA) management model in order to govern and administer the relationships established between different Cloud services in CloudLend. We define a multi-level SLA specification model to annotate and describe QoS terms, in addition to a game theory-based automated SLA negotiation model that supports both customers and providers in negotiating SLA terms, and guiding them towards signing a contract. We also define an adaptive agent-based SLA monitoring model which identifies the root causes of SLA violations, and impartially distributes any updates and changes in established SLAs to all relevant entities. Formal verification proved that our proposed framework assures customers with maximum optimized guarantees to their QoS requirements, in addition to supporting Cloud providers to make informed resource utilization decisions. Additionally, simulation results demonstrate the effectiveness of our SLA management model. Our proposed Cloud Lend network and its SLA management model paves the way to resource sharing among different Cloud providers, which allows for the providers’ lock-in constraints to be broken, allowing effortless migration of customers’ applications across different providers whenever is needed

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions

    Optimal Selection Techniques for Cloud Service Providers

    Get PDF
    Nowadays Cloud computing permeates almost every domain in Information and Communications Technology (ICT) and, increasingly, most of the action is shifting from large, dominant players toward independent, heterogeneous, private/hybrid deployments, in line with an ever wider range of business models and stakeholders. The rapid growth in the numbers and diversity of small and medium Cloud providers is bringing new challenges in the as-a-Services space. Indeed, significant hurdles for smaller Cloud service providers in being competitive with the incumbent market leaders induce some innovative players to "federate" deployments in order to pool a larger, virtually limitless, set of resources across the federation, and stand to gain in terms of economies of scale and resource usage efficiency. Several are the challenges that need to be addressed in building and managing a federated environment, that may go under the "Security", "Interoperability", "Versatility", "Automatic Selection" and "Scalability" labels. The aim of this paper is to present a survey about the approaches and challenges belonging to the "Automatic Selection" category. This work provides a literature review of different approaches adopted in the "Automatic and Optimal Cloud Service Provider Selection", also covering "Federated and Multi-Cloud" environments

    SLA Violation Detection Model and SLA Assured Service Brokering (SLaB) in Multi-Cloud Architecture

    Get PDF
    Cloud brokering facilitates CSUs to find cloud services according to their requirements. In the current practice, CSUs or Cloud Service Brokers (CSBs) select cloud services according to SLA committed by CSPs in their website. In our observation, it is found that most of the CSPs do not fulfill the service commitment mentioned in the SLA agreement. Verified cloud service performances against their SLA commitment of CSPs provide an additional trust on CSBs to recommend services to the CSUs. In this thesis work, we propose a SLA assured service-brokering framework, which considers both committed and delivered SLA by CSPs in cloud service recommendation to the users. For the evaluation of the performance of CSPs, two evaluation techniques: Heat Map and IFL are proposed, which include both directly measurable and non-measurable parameters in the performance evaluation CSPs. These two techniques are implemented using real data measured from CSPs. The result shows that Heat Map technique is more transparent and consistent in CSP performance evaluation than IFL technique. In this work, regulatory compliance of the CSPs is also analyzed and visualized in performance heat map table to provide legal status of CSPs. Moreover, missing points in their terms of service and SLA document are analyzed and recommended to add in the contract document. In the revised European GPDR, DPIA is going to be mandatory for all organizations/tools. The decision recommendation tool developed using above mentioned evaluation techniques may cause potential harm to individuals in assessing data from multiple CSPs. So, DPIA is carried out to assess the potential harm/risks to individuals due to our tool and necessary precaution to be taken in the tool to minimize possible data privacy risks. It also analyzes the service pattern and future performance behavior of CSPs to help CSUs in decision making to select appropriate CSP
    corecore