30,278 research outputs found

    Manifold interpolation and model reduction

    Full text link
    One approach to parametric and adaptive model reduction is via the interpolation of orthogonal bases, subspaces or positive definite system matrices. In all these cases, the sampled inputs stem from matrix sets that feature a geometric structure and thus form so-called matrix manifolds. This work will be featured as a chapter in the upcoming Handbook on Model Order Reduction (P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W.H.A. Schilders, L.M. Silveira, eds, to appear on DE GRUYTER) and reviews the numerical treatment of the most important matrix manifolds that arise in the context of model reduction. Moreover, the principal approaches to data interpolation and Taylor-like extrapolation on matrix manifolds are outlined and complemented by algorithms in pseudo-code.Comment: 37 pages, 4 figures, featured chapter of upcoming "Handbook on Model Order Reduction

    Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion

    Full text link
    We present a class of spline finite element methods for time-domain wave propagation which are particularly amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the mass matrix inverse. This approximation restores a tensor product structure while retaining provable high order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than equivalent piecewise continuous or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot positions. Numerical experiments confirm the accuracy and stability of the proposed methods

    A Tractable State-Space Model for Symmetric Positive-Definite Matrices

    Get PDF
    Bayesian analysis of state-space models includes computing the posterior distribution of the system's parameters as well as filtering, smoothing, and predicting the system's latent states. When the latent states wander around Rn\mathbb{R}^n there are several well-known modeling components and computational tools that may be profitably combined to achieve these tasks. However, there are scenarios, like tracking an object in a video or tracking a covariance matrix of financial assets returns, when the latent states are restricted to a curve within Rn\mathbb{R}^n and these models and tools do not immediately apply. Within this constrained setting, most work has focused on filtering and less attention has been paid to the other aspects of Bayesian state-space inference, which tend to be more challenging. To that end, we present a state-space model whose latent states take values on the manifold of symmetric positive-definite matrices and for which one may easily compute the posterior distribution of the latent states and the system's parameters, in addition to filtered distributions and one-step ahead predictions. Deploying the model within the context of finance, we show how one can use realized covariance matrices as data to predict latent time-varying covariance matrices. This approach out-performs factor stochastic volatility.Comment: 22 pages: 16 pages main manuscript, 4 pages appendix, 2 pages reference

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    Non-Gaussian Geostatistical Modeling using (skew) t Processes

    Get PDF
    We propose a new model for regression and dependence analysis when addressing spatial data with possibly heavy tails and an asymmetric marginal distribution. We first propose a stationary process with tt marginals obtained through scale mixing of a Gaussian process with an inverse square root process with Gamma marginals. We then generalize this construction by considering a skew-Gaussian process, thus obtaining a process with skew-t marginal distributions. For the proposed (skew) tt process we study the second-order and geometrical properties and in the tt case, we provide analytic expressions for the bivariate distribution. In an extensive simulation study, we investigate the use of the weighted pairwise likelihood as a method of estimation for the tt process. Moreover we compare the performance of the optimal linear predictor of the tt process versus the optimal Gaussian predictor. Finally, the effectiveness of our methodology is illustrated by analyzing a georeferenced dataset on maximum temperatures in Australi

    Computing Optimal Designs of multiresponse Experiments reduces to Second-Order Cone Programming

    Full text link
    Elfving's Theorem is a major result in the theory of optimal experimental design, which gives a geometrical characterization of cc-optimality. In this paper, we extend this theorem to the case of multiresponse experiments, and we show that when the number of experiments is finite, c,A,Tc-,A-,T- and DD-optimal design of multiresponse experiments can be computed by Second-Order Cone Programming (SOCP). Moreover, our SOCP approach can deal with design problems in which the variable is subject to several linear constraints. We give two proofs of this generalization of Elfving's theorem. One is based on Lagrangian dualization techniques and relies on the fact that the semidefinite programming (SDP) formulation of the multiresponse cc-optimal design always has a solution which is a matrix of rank 11. Therefore, the complexity of this problem fades. We also investigate a \emph{model robust} generalization of cc-optimality, for which an Elfving-type theorem was established by Dette (1993). We show with the same Lagrangian approach that these model robust designs can be computed efficiently by minimizing a geometric mean under some norm constraints. Moreover, we show that the optimality conditions of this geometric programming problem yield an extension of Dette's theorem to the case of multiresponse experiments. When the number of unknown parameters is small, or when the number of linear functions of the parameters to be estimated is small, we show by numerical examples that our approach can be between 10 and 1000 times faster than the classic, state-of-the-art algorithms

    Graph Kernels

    Get PDF
    We present a unified framework to study graph kernels, special cases of which include the random walk (Gärtner et al., 2003; Borgwardt et al., 2005) and marginalized (Kashima et al., 2003, 2004; Mahé et al., 2004) graph kernels. Through reduction to a Sylvester equation we improve the time complexity of kernel computation between unlabeled graphs with n vertices from O(n^6) to O(n^3). We find a spectral decomposition approach even more efficient when computing entire kernel matrices. For labeled graphs we develop conjugate gradient and fixed-point methods that take O(dn^3) time per iteration, where d is the size of the label set. By extending the necessary linear algebra to Reproducing Kernel Hilbert Spaces (RKHS) we obtain the same result for d-dimensional edge kernels, and O(n^4) in the infinite-dimensional case; on sparse graphs these algorithms only take O(n^2) time per iteration in all cases. Experiments on graphs from bioinformatics and other application domains show that these techniques can speed up computation of the kernel by an order of magnitude or more. We also show that certain rational kernels (Cortes et al., 2002, 2003, 2004) when specialized to graphs reduce to our random walk graph kernel. Finally, we relate our framework to R-convolution kernels (Haussler, 1999) and provide a kernel that is close to the optimal assignment kernel of Fröhlich et al. (2006) yet provably positive semi-definite
    corecore