643,731 research outputs found

    Ubic: Bridging the gap between digital cryptography and the physical world

    Full text link
    Advances in computing technology increasingly blur the boundary between the digital domain and the physical world. Although the research community has developed a large number of cryptographic primitives and has demonstrated their usability in all-digital communication, many of them have not yet made their way into the real world due to usability aspects. We aim to make another step towards a tighter integration of digital cryptography into real world interactions. We describe Ubic, a framework that allows users to bridge the gap between digital cryptography and the physical world. Ubic relies on head-mounted displays, like Google Glass, resource-friendly computer vision techniques as well as mathematically sound cryptographic primitives to provide users with better security and privacy guarantees. The framework covers key cryptographic primitives, such as secure identification, document verification using a novel secure physical document format, as well as content hiding. To make a contribution of practical value, we focused on making Ubic as simple, easily deployable, and user friendly as possible.Comment: In ESORICS 2014, volume 8712 of Lecture Notes in Computer Science, pp. 56-75, Wroclaw, Poland, September 7-11, 2014. Springer, Berlin, German

    Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences

    Get PDF
    To ensure sustainable software maintenance and evolution, a diverse set of activities and concepts like metrics, change impact analysis, or antipattern detection can be used. Special maintainability assurance techniques have been proposed for service- and microservice-based systems, but it is difficult to get a comprehensive overview of this publication landscape. We therefore conducted a systematic literature review (SLR) to collect and categorize maintainability assurance approaches for service-oriented architecture (SOA) and microservices. Our search strategy led to the selection of 223 primary studies from 2007 to 2018 which we categorized with a threefold taxonomy: a) architectural (SOA, microservices, both), b) methodical (method or contribution of the study), and c) thematic (maintainability assurance subfield). We discuss the distribution among these categories and present different research directions as well as exemplary studies per thematic category. The primary finding of our SLR is that, while very few approaches have been suggested for microservices so far (24 of 223, ?11%), we identified several thematic categories where existing SOA techniques could be adapted for the maintainability assurance of microservices

    Faster Geometric Algorithms via Dynamic Determinant Computation

    Full text link
    The computation of determinants or their signs is the core procedure in many important geometric algorithms, such as convex hull, volume and point location. As the dimension of the computation space grows, a higher percentage of the total computation time is consumed by these computations. In this paper we study the sequences of determinants that appear in geometric algorithms. The computation of a single determinant is accelerated by using the information from the previous computations in that sequence. We propose two dynamic determinant algorithms with quadratic arithmetic complexity when employed in convex hull and volume computations, and with linear arithmetic complexity when used in point location problems. We implement the proposed algorithms and perform an extensive experimental analysis. On one hand, our analysis serves as a performance study of state-of-the-art determinant algorithms and implementations. On the other hand, we demonstrate the supremacy of our methods over state-of-the-art implementations of determinant and geometric algorithms. Our experimental results include a 20 and 78 times speed-up in volume and point location computations in dimension 6 and 11 respectively.Comment: 29 pages, 8 figures, 3 table

    Benchmarks for Parity Games (extended version)

    Full text link
    We propose a benchmark suite for parity games that includes all benchmarks that have been used in the literature, and make it available online. We give an overview of the parity games, including a description of how they have been generated. We also describe structural properties of parity games, and using these properties we show that our benchmarks are representative. With this work we provide a starting point for further experimentation with parity games.Comment: The corresponding tool and benchmarks are available from https://github.com/jkeiren/paritygame-generator. This is an extended version of the paper that has been accepted for FSEN 201

    Computing Shrub-Depth Decompositions

    Get PDF
    Shrub-depth is a width measure of graphs which, roughly speaking, corresponds to the smallest depth of a tree into which a graph can be encoded. It can be thought of as a low-depth variant of clique-width (or rank-width), similarly as treedepth is a low-depth variant of treewidth. We present an fpt algorithm for computing decompositions of graphs of bounded shrub-depth. To the best of our knowledge, this is the first algorithm which computes the decomposition directly, without use of rank-width decompositions and FO or MSO logic
    • …
    corecore