
Computing Shrub-Depth Decompositions
Jakub Gajarský
Technical University Berlin, Germany
jakub.gajarsky@tu-berlin.de

Stephan Kreutzer
Technical University Berlin, Germany
stephan.kreutzer@tu-berlin.de

Abstract
Shrub-depth is a width measure of graphs which, roughly speaking, corresponds to the smallest
depth of a tree into which a graph can be encoded. It can be thought of as a low-depth variant of
clique-width (or rank-width), similarly as treedepth is a low-depth variant of treewidth. We present
an fpt algorithm for computing decompositions of graphs of bounded shrub-depth. To the best of
our knowledge, this is the first algorithm which computes the decomposition directly, without use of
rank-width decompositions and FO or MSO logic.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Math-
ematics of computing → Combinatorial algorithms

Keywords and phrases shrub-depth, tree-model, decomposition, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.56

Funding The research is supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(ERC consolidator grant DISTRUCT, agreement No. 648527).

Acknowledgements We want to thank Sang-il Oum for suggesting that our techniques may be used
to obtain the results of Section 6.

1 Introduction

Among the numerous width parameters used in graph theory and algorithmics, treewidth
and its dense counterparts clique-width and rank width are arguably the most prominent and
extensively studied. In recent years, more restrictive parameters, which could be collectively
called depth parameters, are attracting increasing attention. The best-known of these is
treedepth [10], which can be seen as a low-depth variant of treewidth. Inspired by the
usefulness of treedepth, the authors of [8] defined the notion of shrub-depth, which can be
seen as a low-depth variant of clique-width, analogously to the relation between treedepth
and treewidth.

Since shrub-depth is a more restrictive notion than clique-width, it is natural to ask
what algorithmic advantages it offers over clique-width, if any. The question whether some
problems which are parameterized intractable on graphs of bounded clique-width are fixed-
parameter tractable on graphs of bounded shrub-depth was addressed in [7], where it was
shown that the Hamiltonian path and the chromatic number problem remain hard on graph
classes of bounded shrub-depth. On the other hand, bounded shrub-depth offers certain
quantitative advantages over clique-width. For instance, a well-known result of Courcelle,
Makowski and Rotics [2] states that every MSO definable property ϕ of graphs can be solved
in time f(ϕ) · |V (G)| on any class of graphs of bounded clique-width. The price for the
generality of this result is that the function f is non-elementary, i.e. it grows like a tower of
exponentials whose height depends on the formula. But as shown in [5], on any graph class
shrub-depth d the function f is only d-fold exponential, i.e. its height does not depend on
the formula.

© Jakub Gajarský and Stephan Kreutzer;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 56; pp. 56:1–56:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jakub.gajarsky@tu-berlin.de
mailto:stephan.kreutzer@tu-berlin.de
https://doi.org/10.4230/LIPIcs.STACS.2020.56
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Computing Shrub-Depth Decompositions

Besides being interesting in their own right, shrub-depth has important consequences for
much more general graph classes. To explain this, we will first describe the analogous situation
in the case of sparse graphs and treedepth. Nešetřil and Ossona de Mendez introduced [11]
the notions of bounded expansion and nowhere denseness as a general approach to studying
sparse graphs in a unified setting. Graphs from classes of bounded expansion and nowhere
dense graph classes can be decomposed1 into several overlapping graphs each of small
treedepth. Such a decomposition has successfully been used for solving many problems on
graph classes of bounded expansion and nowhere dense graph classes efficiently. In some cases,
the problems can be reduced to solving them on the graphs of small treedepth obtained by
this decomposition, and in more complicated cases one can repeatedly perform computations
on graphs of small treedepth from the decomposition and then combine the results.

Recently a dense counterpart of the notion of bounded expansion has been studied under
the name structurally bounded expansion, and the results of [6] indicate that shrub-depth
could play a role analogous to treedepth in the sparse case: it was shown that every graph
from a class of graphs of structurally bounded expansion can be decomposed into a bounded
number of subgraphs of small shrub-depth and this decomposition can then be used for
algorithmic purposes. Given this promising application of shrub-depth in the theory of dense
but structurally simple graphs, it is very likely that a better structural understanding of
shrub-depth will be of increasing relevance in the near future.

All width and depth measures mentioned so far are defined by an associated concept
of decomposition. For shrub-depth this decomposition is called a tree-model. Unlike other
width measures, tree-models are defined in terms of two parameters, commonly denoted by d
and m. To use any of the mentioned depth or width measures algorithmically, one usually
needs to be able to compute the corresponding types of decompositions for an input graph
G. In most cases, the problem of finding an optimal decomposition of an input graph is
NP-hard, but often for fixed values of the relevant width parameters one can, in polynomial
time, either find a decomposition with the prescribed value or correctly decide that no such
decomposition exists. This is the case for treewidth [1], rank-width [9] and treedepth [12].
Algorithms like this are called parameterized algorithms and are studied in the framework of
parameterized complexity theory. We refer to [3] for an indepth introduction to parameterized
complexity and only briefly recall the concepts from parameterized complexity needed below.
A parameterized problem P is essentially a classical problem but in addition to the normal
input instance w we are given an integer k, the so-called parameter. The problem P is called
fixed-parameter tractable, or in the complexity class FPT, if there is a computable function f
and a constant c such that the problem can be solved by an algorithm whose running time
on input (w, k) is bounded by f(k) · |w|c. The class FPT can be seen as the parameterized
equivalent to the classical complexity class P as abstraction of efficiently solvable problems.

A much weaker requirement on the running time is imposed by the parameterized
complexity class XP. The problem P is in XP if there is a computable function f such
that the problem can be solved by an algorithm whose running time is bounded by |G|f(k).
Thus, a problem is in XP if it can be solved in polynomial time for every fixed value of the
parameter k.

Our contribution. We provide combinatorial and conceptually simple algorithms for com-
puting tree-models with given parameters d and m of input graphs G. To obtain our
algorithms, in Section 3 and 4, we introduce a new concept of k-modules and prove several

1 The precise meaning of this is rather technical and is not important for our purpose, so we omit the
precise definition.

J. Gajarský and S. Kreutzer 56:3

properties relating k-modules and tree-models of graphs. The structural results we obtain
provide a new and very different insight into the structure of graphs of low shrub-depth
which we believe will be of further interest. These results provide the basis for our algorithms
for computing tree-models, which we present in Section 5. Our main algorithmic result is an
fpt-algorithm for computing tree-models with prescribed parameters d and m in a graph G,
provided G has such a model. Finally, in Section 6, we present another application of our
results to forbidden induced subgraphs of graph classes of bounded shrub-depth.

Previous work. To the best of our knowledge, no papers explicitly address the problem of
computing tree-models with given parameters d and m of a given input graph. However,
there exists a folklore fpt algorithm for computing an optimal SC-decomposition of a given
graph, where SC-decomposition is a notion closely related to tree-model. This algorithm
requires computing a rank decomposition of the input graph G first and then uses a powerful
algorithmic metatheorem for MSO logic to obtain the SC-decomposition. Similarly, the
results and techniques of [5] can likely be adjusted to compute tree-models, but also in this
case one would have to rely on computing a rank decomposition first and using a logical
metatheorem.

2 Preliminaries

For n ∈ N we denote the set {1, . . . , n} by [n]. For sets A,B we denote by A∆B their
symmetric difference (A \B) ∪ (B \A).

Graphs. All graphs in this paper are finite, undirected and simple. We use standard graph
theoretic notation, see e.g. [4]. Let G be a graph. If X ⊆ V (G) we denote by G[X] the
subgraph of G induced by X and by G−X the subgraph induced by V \X. If X = {v} is a
singleton set, we simply write G− v for G− {v}. We denote by NG(v) the neighbourhood
of v ∈ V (G) in G. If G is understood we omit the index and just write N(v). Let G,H
be graphs and let λ : V (G) → [m] and λ′ : V (H) → [m] be labelling functions. A label
preserving isomorphism between (G,λ) and (H,λ′) is a bijective function f : V (G)→ V (H)
such that {u, v} ∈ E(G) if, and only if, {f(u), f(v)} ∈ E(H) and λ′(f(v)) = λ(v) for all
u, v ∈ V (G).

Trees. By a tree in this paper we mean a rooted connected acyclic graph. Let T be a tree
with root r. The ancestors of t in T are the vertices on the unique path from r to t in T other
than t itself. The parent of t is the ancestor of t adjacent to t. The root r itself does not have
a parent. For t ∈ V (T) \ {r} we define the subtree Tt of T rooted at t as the component of
T − e containing t, where e is the edge incident to t and its parent. For t = r we set Tr = T .
The children of t are the neighbours of t other than the parent. The descendants of t are the
vertices in V (Tt) \ {t}.

A leaf of T is a node of degree 1 which is not the root. We denote the set of leaves of T
by leaves(T). Nodes s, t ∈ V (T) are comparable (in T) if t ∈ V (Ts) or s ∈ V (Tt). Otherwise
they are incomparable. The height of t is the maximal length of a path from t to a leaf of
Tt. Given a set X ⊆ V (T) we define the least common ancestor of X, denoted by lca(X), as
the node t ∈ V (T) of minimal height such that X ⊆ V (Tt). We also write lca(u1, . . . , ut) for
lca({u1, . . . , ut}). The distance between two nodes s, t ∈ V (T), denoted by distT (s, t), is the
length of the unique path between s and t in T .

STACS 2020

56:4 Computing Shrub-Depth Decompositions

Shrub-depth. Shrub-depth was defined by Ganian et al. in [8]. It is defined using the
following notion of tree-model.

I Definition 2.1. Let d and m be non-negative integers and let G be a graph. A tree-model of
G is a triple (T, S, λ), where T is a tree, S ⊆ [m]2× [d] is a relation, and λ : leaves(T)→ [m]
is a function, such that
i. the length of each root-to-leaf path is exactly d,
ii. the set leaves(T) of leaves is exactly V (G),
iii. (i, j, d) ∈ S if, and only, if (j, i, d) ∈ S (symmetry in the colours), and
iv. for any two vertices u, v ∈ V (G), if λ(v) = i, λ(v) = j and distT (u, v) = 2l, then
{u, v} ∈ E(G) if, and only if, (i, j, l) ∈ S.

Note that the leaves leaves(T) of T are the vertices of G. Thus, if v ∈ V (G), then
v ∈ leaves(T) and therefore λ(t) is defined. The number d in the above definition is referred
to as the depth of the tree-model. We will often speak of a (d,m)-tree-model instead of a
“tree-model of depth d with m colours”.

Note that every graph G has a tree-model of depth 1 with |V (G)| colours (each vertex
gets its own colour and the relation S is essentially E(G)). Thus it does not make sense
to ask about the smallest depth of a tree-model of a graph G. This is the reason why the
notion of shrub-depth is defined only for classes of graphs.

I Definition 2.2. The shrub-depth of a graph class C is the smallest d > 0 for which there
exists an m > 0 such that every graph G ∈ C has a (d,m)-tree-model.

We remark that even though the shrub-depth of a graph class C is defined as one number
(d in the above definition), to each class C of graphs of bounded shrub-depth there actually
correspond two numbers – d and m from the above definition. Thus, in what follows, we
usually work directly with (classes of) graphs which have a (d,m)-tree-model for some fixed
d and m.

I Definition 2.3. Let G be a graph and G′ ⊆ G be an induced subgraph of G. Let d,m > 0.
A (d,m)-tree-model (T, S, λ) of G extends a (d,m)-tree-model (T ′, S′, λ′) of G′ if T ′ ⊆ T ,
S = S′ and λ(v) = λ′(v) for all v ∈ V (G′).

We frequently use the following result from [8] which follows immediately from the
definition of shrub-depth: if (T, S, λ) is a (d,m)-tree-model of G, then we can obtain a (d,m)-
tree-model (T ′, S′, λ′) of G′ as follows: the tree T ′ is the minimal subtree of T containing
the root of T and all leaves form V (G′). Similarly, λ′ is the restriction of λ to V (G′) and
S′ = S. In particular, the tree-structure of T is preserved in the reduced tree-model T ′.

I Proposition 2.4 ([8]). Let d,m > 0. If G has a (d,m)-tree-model and G′ is an induced
subgraph of G, then G′ also has a (d,m)-tree-model.

3 Twin tuples, k-modules and outline of our approach

In this section we introduce the concepts of twin tuples and (strict) k-modules which will
be pivotal in the rest of the paper and briefly outline the key idea behind our algorithm for
finding a (d,m)-tree-model of an input graph G.

J. Gajarský and S. Kreutzer 56:5

3.1 Twin tuples and (strict) k-modules
I Definition 3.1. Let k ∈ N and let G be a graph. Two disjoint tuples (a1, . . . , ak),
(b1, . . . , bk) ∈ V (G)k are twin tuples if
1. the function f(ai) = bi, 1 ≤ i ≤ k, is an isomorphism between G[{a1, . . . , ak}] and

G[{b1, . . . , bk}],
2. {ai, bj} ∈ E(G) if, and only if, {aj , bi} ∈ E(G), for all 1 ≤ i < j ≤ k, and
3. N(ai) \ {a1, . . . , ak, b1, . . . , bk} = N(bi) \ {a1, . . . , ak, b1, . . . , bk} for all 1 ≤ i ≤ k.
For k = 1 we simply call a1 and b1 twins. A set M of pairwise disjoint k-tuples of vertices
of G is a structured k-module if all tuples in M are pairwise twin tuples.

The next definition introduces a different characterisation of k-modules which we will
use frequently in the sequel. The equivalence between the two definitions is easily seen (and
stated formally in the lemma thereafter).

I Definition 3.2. Let k ∈ N and let α, β be symmetric relations on [k]2. Let G be a graph.
A set M ⊆ V (G)k of pairwise disjoint k-tuples is an (α, β)–module if
1. for every (a1, . . . , ak) ∈M , {ai, aj} ∈ E(G) if, and only, if (i, j) ∈ α,
2. for all distinct tuples a1, . . . , ak, b1, . . . , bk ∈M , {ai, bj} ∈ E(G) if, and only, if (i, j) ∈ β,

and
3. N(ai) \ S = N(bi) \ S for all 1 ≤ i ≤ k and all (a1, . . . , ak), (b1, . . . , bk) ∈ M , where

S :=
⋃
{ai : 1 ≤ i ≤ k, (a1, . . . , ak) ∈M}.

We call k-tuples ā, b̄ ∈ V (G)k (α, β)-twins, if {ā, b̄} is an (α, β)-module in G.

I Lemma 3.3. A set M of pairwise distinct k-tuples is a structured k-module if, and only if,
there are symmetric relations α, β on [k]2 such that M is an (α, β)-module.

Thus, in a structured k-module M , the relation α determines the adjacency within each
tuple ā ∈M , or the isomorphism type of the subgraphs of G induced by the tuples in the
module and the relation β fixes the adjacency between different tuples from M . Furthermore,
any two vertices at the same position within their respective tuples have the same adjacency
to the vertices outside the module. The notion of k-module is illustrated on Figure 1.

Given α, β as above, we say that the structured k-module M is determined or induced by
α, β. Also, if ā and b̄ are twin tuples such that the adjacency within ā and b̄ and between ā
and b̄ is determined by relations α and β, we say that ā and b̄ are (α, β)-twin tuples. The
following simple fact will be used often in the sequel.

I Lemma 3.4. Let ā, b̄, c̄ ∈ V (G)k be tuples such that ā is an (α, β)-twin tuple of b̄ and b̄ is
an (α, β)-twin tuple of c̄. Then ā is an (α, β)-twin tuple of c̄. In other words, for any fixed α
and β the relation of being (α, β)-twin tuples is transitive.

The next lemma captures the intuition behind k-modules and their connection to tree-
models.

I Lemma 3.5. Let (T, S, λ) be a tree-model of a graph G and let u ∈ V (T) be a node
with L ≥ 2 children {1, . . . , L} such that for any pair i, j of its children there exists a label
preserving isomorphism ιij between Ti and Tj. Then G contains a k-module with L tuples,
where k = |leaves(T1)|.

Proof. Fix an ordering ≤1 on leaves(T1). Then, for every j > 1, we define an order ≤j
on leaves(Tj) as follows: u ≤j v, for u, v ∈ leaves(T1), if, and only if, ιj1(u) ≤1 ιj1(v).
Each pair (leaves(Ti),≤i) can be thought of as a k-tuple, and it is easy to see that M :=
{(leaves(T1),≤1), . . . , (leaves(TL),≤L)} is a k-module with L tuples as claimed in the
statement of the lemma. J

STACS 2020

56:6 Computing Shrub-Depth Decompositions

a1

a2

a3

a4 b4

b3

b2

b1 1

2

3

4

U ∩N(a1)
=

U ∩N(b1)

U ∩N(a2)
=

U ∩N(b2)

Figure 1 An example of a 4-module M with two tuples (a1, a2, a3, a4) and (b1, b2, b3, b4).
The set U is V (G) \ {a1, a2, a3, a4, b1, b2, b3, b4}. Relations α and β are defined as follows:
α = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}, β = {(1, 3), (3, 1), (2, 3), (3, 2), (3, 4), (4, 3)}. The conflict
graph of M (Definition 3.7) is on the right. Note that M ′ = {(a1, a2, a3)(b1, b2, b3)} is also a module,
and since its conflict graph (only on vertices 1, 2, 3) is connected, it is an example of a strict module
(Definition 3.8).

3.2 Outline of our approach
We now present an outline of our approach for computing tree-models. By Lemma 3.5, if
a tree-model of a graph G contains several isomorphic subtrees with common parent, then
these subtrees induce a k-module in G. If the converse statement

(∗) if ā, b̄, c̄, . . . , form a module M of G, then in every tree-model T of G the vertices
of tuples ā, b̄, c̄, . . . are the leaves of distinct but isomorphic subtrees T a, T b, T c, . . .
with a common parent u

was also true, then this could be used to compute tree-models as follows: compute a module
M = {ā, b̄, c̄} in the input graph G and remove c̄ from G to obtain G′ with moduleM ′ = {ā, b̄}.
Then it would be enough to find any (d,m)-tree-model T ′ of G′ which then can easily be
extended to a tree-model T of G – by (∗) the tree-model T ′ contains different isomorphic
subtrees T a and T b (representing ā and b̄) with a common parent u, and so we can create
a copy Tc of Ta and add it as a child of u to create a tree-model T of G. This essentially
means that by finding a module M in G we can, by deleting a tuple from M , reduce the
problem of computing a tree-model with parameters d and m of G to a problem of finding a
tree-model T ′ with the same parameters but for a smaller graph G′.

We will essentially follow this idea but use a weaker statement than (∗) instead. It turns
out that even less than having isomorphic subtrees is enough to make the above idea work –
it is enough to have a tree-model T ′ of G′ in which two tuples ā and b̄ are in a “good position”
with respect to each other, as shown in the following lemma, proved below, which is the
basis of our approach.

I Lemma 3.6. Let G be a graph and let {(a1, . . . , ak), (b1, . . . , bk), (c1, . . . , ck)} be a k-module
in G. Let G′ = G − {c1, . . . , ck} and let (T ′, S′, λ′) be a (d,m)-tree-model of G′, for some
d,m > 0, st.

J. Gajarský and S. Kreutzer 56:7

1. lca({a1, . . . , ak}) and lca({b1, . . . , bk}) are incomparable in T ′ and
2. for all i ∈ [k] the labels λ′(ai) and λ′(bi) are the same in T ′.
Then (T ′, S′, λ′) can be extended to a (d,m)-tree-model (T, S, λ) of G.

Unfortunately, the statement (∗) does not hold and neither does the following weaker
statement (∗∗) which would still be strong enough for our purpose: if M is a k-module in a
graph G, then in any tree model T of G there are at least two tuples (a1, . . . , ak), (b1, . . . , bk) ∈
M which satisfy the requirements of Lemma 3.6 with respect to T . In general, if ā and b̄
are twin tuples of graph G, the vertices (a1, . . . , ak) and (b1, . . . , bk) can be placed almost
arbitrarily “badly” in a tree-model T of G. In order to be able prove a variant of (∗∗), we
will have to restrict ourselves to a more structured notion of module, which we call a strict
module. Strict modules are modules in which the vertices in each tuple are forced to “stick
together” – we want to avoid the situation when it is possible to exchange ai for bi between
two tuples (a1, . . . , ak) and (b1, . . . , bk) without violating α or β. More generally, we want it
to be impossible for any non-empty subset I of [k] to exchange {ai}i∈I for {bi}i∈I between
two tuples (a1, . . . , ak) and (b1, . . . , bk) without violating α and β. This will be accomplished
using the notions of conflict and conflict graph.

I Definition 3.7. Let M be a k-module of a graph G induced by relations α, β. We say that
positions i, j ∈ [k] with i 6= j are in conflict if (i, j) ∈ α but (i, j) 6∈ β or vice versa. The
conflict graph C(M) of M is the graph with vertex set [k] and an edge between i and j if,
and only if, the positions i and j are in conflict.

I Definition 3.8. An (α, β)-module M is a strict k-module if its conflict graph is connected.

The definition of strict k-modules will allow us to prove Lemma 4.1, which can be seen
as a variant of (∗∗). Informally it says that if G is a graph with a large strict k-module M ,
then in any (d,m)-tree-model T of G there are two tuples in a “good” mutual position in T
(i.e. in the position required in Lemma 3.6). With Lemma 4.1 at hand, it remains to bound
the value k in terms of d and m and to show that sufficiently large strict k-modules always
exist in graphs which have (d,m)-tree-models (Corollary 4.6). Finally, we need to design
algorithms for computing large strict k-modules in an input graph G (Section 5).

We close this section by proving Lemma 3.6 and a corollary, which will be used in
Section 5.

Proof of Lemma 3.6. Let va, vb be the least common ancestors of {a1, . . . , ak} and
{b1, . . . , bk}, resp., and let v = lca(va, vb). Let Ta be the minimal subtree of Tv containing
va and {a1, . . . , ak}. Thus, Ta has exactly k leaves a1, . . . , ak. Let Td be an isomorphic copy
of Ta. Let d1, . . . , dk be the leaves of Td such that di is the copy of ai, for all 1 ≤ i ≤ k.

Let T be the tree obtained from T ′ ∪ Td by identifying the root of Td with v, i.e. T is the
tree T ′ ∪ S1 ∪ . . . ∪ Sl plus the edges {v, si}, for 1 ≤ i ≤ l, where S1, . . . , Sl are the subtrees
of Td rooted at the children s1, . . . , sl of the root of Td. We set S = S′ and define a labelling
function λ on the leaves of T by setting λ(t) = λ′(t), if t 6∈ {d1, . . . , dk} and λ(di) = λ′(ai).

Then (T, S, λ) is a tree-model of the same height as (T ′, S′, λ′) using the same set of
labels.

It remains to verify that the graph GT defined by T is isomorphic to G. By construction,
V (GT) = V (G) \ {c1, . . . , ck} ∪ {d1, . . . , dk}. Let π : V (GT) → V (G) be the function with
π(u) = u for all u ∈ V (G) \ {d1, . . . , dk} and π(di) = ci, for 1 ≤ i ≤ k. We claim that π is
an isomorphism between GT and G.

STACS 2020

56:8 Computing Shrub-Depth Decompositions

As π is bijective by construction, it suffices to show that {u,w} ∈ E(GT) if, and only if,
{π(u), π(w)} ∈ E(G). If u,w ∈ V (G) \ {c1, . . . , ck} there is nothing to show as the adjacency
of all vertices within G′ = G− {c1, . . . , ck} remains unchanged by attaching S1, . . . , Sl to T ′.

Now suppose u = di and w = dj , for some 1 ≤ i 6= j ≤ k. Then λ(di) = λ(ai) and
λ(dj) = λ(aj) and the distance 2l between di and dj in T is the same as the distance between
ai and aj . Thus

{di, dj} ∈ E(GT)⇔ (λ(di), λ(dj), l) ∈ S ⇔ {ai, aj} ∈ E(GT)⇔ {ai, aj} ∈ E(G),

as argued above. As {{a1, . . . , ak}, {c1, . . . , ck}} is a k-module in G, {ci, cj} ∈ E(G) if, and
only if, {ai, aj} ∈ E(G). Thus, the restriction of π to {d1, . . . , dk} is an isomorphism between
the subgraphs G[{c1, . . . , ck}] and GT [{d1, . . . , dk}].

The last case to consider is when u = di, for some 1 ≤ i ≤ k, and w 6∈ {d1, . . . , dk}.
Suppose first that w 6∈ V (Tv), where v = lca(va, vb). Then the distance between w and ai in
T is the same as between w and di and therefore

{di, w} ∈ E(GT)⇔ {ai, w} ∈ E(GT)⇔ {ai, w} ∈ E(G)⇔ {ci, w} ∈ E(G).

Finally, suppose w ∈ V (Tv). In this case either the path between w and ui contains v
and therefore the distance between w and ui is the same as the distance between w and ai,
or the path between w and ui does not contain v and the distance between w and ui is the
same as the distance between w and bi. As the adjacency between w, ai, w, bi and w, ci is
the same in G, this implies that {w, di} ∈ E(G) if, and only if, {w, ci} ∈ E(G). J

The next result follows easily by induction on |M \ {ā, b̄}| using Lemma 3.6.

I Corollary 3.9. Let d ≥ 0 and k,m ≥ 1. Let G be a graph and let M be a k-module in
G. Let ā, b̄ ∈ M and let G′ = G −

⋃
{c̄ : c̄ ∈ M \ {ā, b̄}}. If there is a (d,m)-tree-model

(T ′, S′, λ′) of G′ such that lca({a1, . . . , ak}) and lca({b1, . . . , bk}) are incomparable in T ′

and λ′(ai) = λ′(bi) for all i ∈ [k], then G has a (d,m)-tree-model (T, S, λ) which extends
(T ′, S′, λ′).

4 Strict modules in graphs of low shrub-depth

In this section we prove several results about strict k-modules and their relation to tree-
models. We start with Lemma 4.1 which states that if G contains a sufficiently large strict
k-module M , then in every tree-model T of G there are two tuples of M in a mutual position
which allows us to apply Lemma 3.6 and Corollary 3.9. We then establish Lemma 4.4, which
is an analogue of Lemma 3.5 and which establishes the connection between tuples in strict
k-modules and groups of isomorphic subtrees of unsplittable tree-models. Finally, we prove
the technical Lemma 4.5 and Corollary 4.6 which establish that for each d and m there exist
bounded values of k such that sufficiently large strict modules exist in large enough graphs
which have (d,m)-tree-models.

I Lemma 4.1. There exists a function L : N3 → N such that for all d,m, k > 0 the following
holds: if G is a graph and M is a strict k-module in G of size |M | ≥ L(m, d, k), then in any
(d,m)-tree-model (T, S, λ) of G there are at least two tuples (a1, . . . , ak) and (b1, . . . , bk) in
M such that
1. lcaT ({a1, . . . , ak}) and lcaT ({b1, . . . , bk}) are incomparable and
2. λ(ai) = λ(bi) for all i ∈ [k].

J. Gajarský and S. Kreutzer 56:9

Proof. Let T be a (d,m)-tree-model of G. Fix a linear order <ρ of the leaves of T such that
for any three leaves u, v, w of T the following holds: if u <ρ v <ρ w then v is a descendant of
lcaT (u,w) or v = lcaT (u, v). It is easy to see that such order exists – for example if we run
the DFS algorithm from the root T , then the order in which the leaves of T are visited by
the algorithm has this property. For any tuple ā = (a1, . . . , ak) let T ā denote the smallest
subtree of T which contains a1, . . . , ak and lcaT (a1, . . . , ak). We say that two tuples ā, b̄ are
(T, ρ)-similar if T ā and T b̄ are isomorphic, where we require that the isomorphism maps
ai to bi and respects the colors of leaves and also the order <ρ. It is easy to see that the
(T, ρ)-similarity relation is an equivalence with finitely many classes; let γ(m, d, k) denote
the number of equivalence classes. We set L(m, d, k) := (d+ 1)γ(m, d, k). Assume now that
a strict k-module M of G has size at least L(m, d, k). Then there are at least d+ 1 tuples in
M which are (T, ρ)-similar; let us denote this set of tuples by S. We claim that there exists
a pair of tuples ā = (a1, . . . , ak) and b̄ = (b1, . . . , bk) in S such that lcaT ({a1, . . . , ak}) and
lcaT ({b1, . . . , bk}) are incomparable, in which case we are done. Assume for contradiction
that there is no such pair. In this case there have to be two tuples ā = (a1, . . . , ak) and
b̄ = (b1, . . . , bk) in S such that lcaT (a1, . . . , ak) = lcaT (b1, . . . , bk), because the least common
ancestors of all tuples in S are comparable and |S| ≥ d+ 1. In the remainder of the proof
we show that there exist i, j with 1 ≤ i, j ≤ k such that i, j is a conflict pair in M but the
adjacency between ai, aj , bi, bj in G does not lead to a conflict, which is a contradiction.
Set v := lcaT (a1, . . . , ak) = lcaT (b1, . . . , bk). We take as the pair i, j any conflicting pair of
M such that lcaT (ai, ak) = v. To see that such pair exists, partition {a1, . . . , ak} into sets
A1, A2, . . . according to the following rule: two vertices of {a1, . . . , ak} are in the same set if
their least common ancestor is not v (note that in this case the least common ancestor is a
descendant of v as v = lcaT (a1, . . . , ak)). It is easily seen that this is an equivalence. Since
the conflict graph of M is connected, there have to be vertices ai ∈ A1 and aj ∈ A2 such
that i, j is a conflict pair. Since they are in different sets, it has to hold that lcaT (ai, ak) = v.
Without loss of generality we may assume that i = 1 and j = 2.

We now examine the adjacency of a1, a2, b1, b2 in G. To disprove that (1, 2) is a conflict
pair in M , it is enough to show that (i) the adjacency between a1 and a2 is the same as
the adjacency between a1 and b2 or (ii) the adjacency between b1 and b2 is the same as
the adjacency between b1 and a2 Without loss of generality assume that a1 <ρ a2 (which
also means that b1 <ρ b2 because ā and b̄ are isomorphic) and that a1 < b1 (otherwise
we just swap ā and b̄). There are two cases to consider. First, if a2 <ρ b1, then we have
a1 <ρ a2 <ρ b1 <ρ b2. In this case, since lcaT (a1, a2) = v we also have to have lcaT (a1, b2) = v

(this follows from the definition of <ρ), which means that the distance between a1 and a2 is
the same as the distance between a1 and b2. Since λ(a2) = λ(b2) (again, because ā and b̄
are isomorphic), we have {a1, a2} ∈ E(G)⇔ {a1, b2} ∈ E(G) and we have shown (i) above.
The second case to consider is when b1 <ρ a2. Then we have either a1 <ρ b1 <ρ a2 <ρ b2
or a1 <ρ b1 <ρ b2 <ρ a2. In the first situation we argue as in the previous case, and in the
second situation we know that since lcaT (b1, b2) = v it also has to hold lcaT (b1, a2) = v, and
we get that {b1, b2} ∈ E(G)⇔ {b1, a2} ∈ E(G), which is the situation (ii) above. J

Let T be a tree and A a subset of leaves of T . We define TA to be the smallest subtree
of T which contains the root of T and all vertices from A.

I Definition 4.2. A tree-model T is splittable if there exists a node u such that the leaves of
the tree Tu can be partitioned into two sets A and B such that if we remove Tu from T and
replace it by attaching TAu and TBu to the parent of u, then the resulting tree-model defines
the same graph as T . If T is not splittable, it is unsplittable.

STACS 2020

56:10 Computing Shrub-Depth Decompositions

I Lemma 4.3. Every graph which has a (d,m)-tree-model has an unsplittable (d,m)-tree-
model.

Proof. Let T be a (d,m)-tree-model of G. If T is splittable, we keep splitting it (as in the
Definition 4.2) as long as possible. Each splitting increases the number of internal nodes in
T , and since there are at most |V (G)| · (d− 1) + 1 internal nodes in any tree-model of depth
d of G, the process has to stop. J

The next lemma captures the connection between unsplittable tree-models and strict
modules.

I Lemma 4.4. Let (T, S, λ) be an unsplittable tree-model of a graph G and let u be a node
of T with L ≥ 2 children {1, . . . , L} such that for any two of its children i and j there exists
a label preserving isomorphism ιij between Ti and Tj. Then G contains a strict k-module
with L tuples, where k is the number of leaves in T1.

Proof. Let Wi denote the set of leaves of Ti. Fix any ordering on W1 and for every j > 1 use
ιij to define the corresponding ordering on Wj , i.e. define ≤j on Wj by setting u ≤j v if, and
only if, ιj1(u) ≤1 ιj1(v). Each pair (Wi,≤i) can be thought of as an ordered k-tuple, and we
claim that M := {(W1,≤1), . . . , (WL,≤L)} is a strict k-module with L tuples claimed in the
statement of the lemma.

The fact that M is a k-module in G with L tuples is clear from its definition, and so it
remains to argue that M is in fact strict. For the sake of contradiction assume that M is not
strict, which means that its conflict graph C(M) on the vertex set [k] is not connected. Let C
be a connected component of C(M) on p < k vertices, and without loss of generality assume
that V (C) = [p]. We will prove that T is splittable, which is the contradiction with our
assumption on T . To simplify the notation in the rest of the proof, we will from now on denote
the tuples of M by the usual ā, b̄, . . . instead of (W1,≤1), (W2,≤2), Let ā be a tuple of
M . Let A := {a1, . . . , ap} be the set of the first p vertices in ā and let A′ = {a1, . . . , ak} \A.
We remove T1 from T and replace it by attaching to u the trees TAu and TA′

u to obtain a new
tree-model (T ′, S, λ) (the relation S and labeling function λ are the same as in T). We claim
that (T ′, S, λ) is a tree-model of G. Since the transformation of T into T ′ does not change
any labels, the only change in the adjacency defined by T ′ compared to T can come from a
change of distance between two leaves. The only situation when distT (v, w) 6= distT ′(v, w)
is when v ∈ A and w ∈ A′ or vice versa – in this case it holds that distT ′(v, w) = 2l, where
l is the height of u in T (and also in T ′). We now argue that in this case the adjacency
between u and u remains unchanged, i.e. {v, w} ∈ E(GT)⇔ {v, w} ∈ E(GT ′). Since v ∈ A
and w ∈ A′ we have that v = ai for some i ≤ p and w = aj for some j > p. Assume that
{ai, aj} ∈ E(GT). We need to show that {ai, aj} ∈ E(GT ′), which is the case exactly when
(λ(ai), λ(aj), 2l) ∈ S. Let α and β be the relations of M . Since ai and aj are in the same
tuple of M , it holds that {i, j} ∈ α. Since i and j are in different connected components
of the conflict graph C(M), it also holds that {i, j} ∈ β. Let b̄ := (b1, . . . , bk) be a tuple of
M different from ā. Since {i, j} ∈ β, there is an edge between ai and bj in G. Because the
distance between ai and bj in T is 2l, this means that (λ(ai), λ(bj), 2l) ∈ S. Because M is a
module, λ(aj) = λ(bj), and so (λ(ai), λ(aj), 2l) ∈ S, which means that {ai, aj} ∈ E(GT ′) as
desired. The other direction is proved analogously. J

I Lemma 4.5. For every d,m ≥ 1 and every sequence 0 < L1 ≤ L2 ≤ . . . there exist K
and N such that every graph which has a (d,m)-tree-model and has more than N vertices
contains, for some k ≤ K, a strict k-module with more than Lk tuples.

J. Gajarský and S. Kreutzer 56:11

Proof. For a tree-model T we say that two nodes u, v of T are T -isomorphic if they have
the same parent and there is a label preserving isomorphism between Tu and Tv.

We will prove by induction on d the following statement, which implies the lemma by
means of Lemma 4.4. For every d and m there exist numbers K(d,m) and N(d,m) such
that the following holds: In every (d,m)-tree-model with at least N(d,m) leaves there is a
node which, for some k ≤ K(d,m), has more than Lk pairwise T -isomorphic children each of
which has k leaves.

For d = 1 we set k(1,m) := 1 and N(1,m) := mL1. Let G be a graph on more than
N(1,m) vertices and let T be its tree-model of height 1. Then T has more than N(1,m)
leaves and for at least one label there are more than L1 leaves having this label, which means
that they form a set of more than L1 pairwise T -isomorphic children of the root.

Assume now that d > 1 and the statement holds for d− 1. Set K(d,m) := N(d− 1,m)
and N(d,m) := N(d − 1,m) · LK(d,m) · γ(d − 1,m), where γ(d − 1,m) is the number of
non-isomorphic (d − 1,m)-tree-models with at most N(d − 1,m) leaves, and where it is
understood that the isomorphisms are label preserving. Let T be a (d,m)-tree-model with
more than N(d,m) leaves. We distinguish two cases:
1. There is a child u of the root of T such that Tu has more than N(d− 1,m) leaves. Then

by the inductive assumption there is a node in Tu which, for some k ≤ K(d − 1,m),
has more than Lk pairwise T -isomorphic children each of which has k leaves. Since
K(d− 1,m) < K(d,m) we are done.

2. For every child u of the root r of T it holds that Tu has at most N(d − 1,m) leaves.
In this case r has more than N(d,m)

N(d−1,m) = LK(d,m) · γ(d − 1,m) children, each of which
corresponds to a subtree Tu of T with at most N(d− 1,m) leaves. We group the subtrees
of T determined by the children of r into groups C1, . . . , Cγ(d−1,m) according to their
labeled isomorphism type. Because there are more than LK(d,m) · γ(d− 1,m) of these
trees, at least one group Ci has more than LK(d,m) trees in it. All these trees are pairwise
isomorphic and have at most N(d− 1,m) = K(d,m) leaves; let us denote this number of
leaves by k. Since k ≤ K(d,m), we have Lk ≤ LK(d,m) and therefore Ci has more than
Lk trees, as desired. J

I Corollary 4.6. For every d,m ≥ 1 there exist K and N such that every graph which has a
(d,m)-tree-model and has more than N vertices contains, for some k ≤ K, a strict k-module
with more than L(m, d, k) tuples, where L(m, d, k) is the function from Lemma 4.1.

Proof. For every k set Lk to be the L(m, d, k) from Lemma 4.1 (where it is easily seen that
L(m, d, k − 1) ≤ L(m, d, k) for each k) and apply Lemma 4.5. J

5 Algorithms

In this section we use the results from the previous section to obtain two algorithms for
computing tree-models of graphs.

The results obtained in the previous section suggest the following strategy to compute,
given a graph G and d,m > 0 as input, a (d,m)-tree-model of G, provided such a tree-model
of G exists.

The main algorithmic strategy. Let G be a graph and d,m > 0 be integers.
Step 1. Given d,m, let K and N be the numbers stated in Corollary 4.6.
Step 2. As long as |G| > N , repeat the following steps.

a. find, for some k < K, a strict k-module M in G of size |M | > L(m, d, k)
b. choose a set M∗ ⊆M of order exactly L(m, d, k) and delete all elements of all tuples

in M \M∗. Remember the sets M and M∗ for each such step.

STACS 2020

56:12 Computing Shrub-Depth Decompositions

Step 3. Let G′ be the remaining graph of order |G′| ≤ N . Compute a (d,m)-tree-model
(T ′, S′, λ′) of G′ by brute force.

Step 4. In reverse order of their creation, for each module M and set M∗ ⊆M constructed
in the iterations of Step 2
a. find tuples ā, b̄ in T ′ satisfying the requirements of Corollary 3.9.
b. Extend (T ′, S′, λ′) by adding the vertices in M \M∗ as described in Corollary 3.9.

The correctness of this approach follows from the results in Section 4. By Corollary 4.6,
given d and m, the numbers K and N used in Step 1 depending only on d and m but not on
G exist such that if |G| > N , then G contains a strict k-module M of size > L = L(m, d, k),
for some k < K. Here and below L(m, d, k) is the function defined in Lemma 4.1.

In Step 2 we iteratively reduce the size of G until its size is bounded by a function of
the parameters d and m. This creates a sequence G = G0 ⊃i G1 ⊃i . . . ⊃r= G′ of graphs,
where r is the number of iterations in Step 2. Notice that in each iteration, when we remove
M \M∗ from Gi to obtain Gi+1, we keep in Gi+1 enough tuples of M to be able to construct
a (d,m)-tree-model T i of Gi from a (d,m)-tree-model T i+1 of Gi+1. To see this, notice
that M∗ (which was not removed and is a strict k-module of Gi+1) has L(m, d, k) tuples,
and so by of Lemma 4.1 there are tuples (a1, . . . , ak) and (b1, . . . , bk) in M∗ such that the
vertices {a1, . . . , ak, b1, . . . , bk} are placed in T i+1 in accordance with the assumptions of
Corollary 3.9, the application of which allows us to put all tuples from M \M∗ into T i+1 to
obtain T i.

After completing Step 2 we are left with an induced subgraph G′ of G of size |G′| ≤ N .
In Step 3 we compute a (d,m)-tree-model (T ′, S′, λ′) of G′. As N only depends on the
parameters d and m we can compute T ′ by brute-force. If no such (d,m)-tree-model of G′
exists, then G does not have a (d,m)-tree-model as G′ is an induced subgraph of G and the
existance of tree-models is preserved by taking induced subgraphs.

Otherwise, if we find a (d,m)-tree-model (T ′, S′, λ′) of G′ we extend it to a (d,m)-tree-
model of the input graph G in Step 4. For this, we iterate again over all modules M and
subsets M∗ constructed in the iterations of Step 2 and apply Corollary 3.9 to extend T ′ so
that it contains the vertices in M \M∗.

This proves the general correctness of the algorithmic approach described above. In
the remainder of this section we show how the various steps in the algorithm above can be
implemented to eventually yield an fpt-algorithm for comptuting tree-models.

As a first step towards this goal we present a simple XP-algorithm implementing the
approach described above. The methods we use for this algorithm for the Steps 3 and 4 but
not for Step 2 are already good enough for an fpt-algorithm. What remains to be done is to
improve Step 2.

As a second step, we present an improved XP-algorithm with a better algorithm for Step
2. Finally we show how this new strategy for Step 2 can be implemented in a way to yield
an fpt-algorithm as required.

The XP algorithms. The first algorithmic step we prove is the following lemma, which is
an easy consequence of Lemma 3.6 and 4.1. The lemma essentially states that once we have
found a tree-model T ′ for the reduced graph G′ obtained from G by removing some tuples of
a k-module, the tree-model of G can be computed efficiently from T .

I Lemma 5.1. Let G be a graph which has a (d,m)-tree-model and let M be a strict k-module
containing more than L = L(m, d, k) tuples. Let Q ⊆ M be such that |M \Q| = L and let
G′ be the graph obtained from G by deleting all vertices contained in tuples in Q. Then any
(d,m)-tree-model T ′ of G′ can be extended in linear time to a (d,m)-tree-model T of G.

J. Gajarský and S. Kreutzer 56:13

Proof. Let (T ′, S′, λ′) be a (d,m)-tree-model of G′. SinceM \Q is a strict k-module in G′ con-
taining L = L(m, d, k) tuples, Lemma 4.1 guarantees that there are tuples ā := (a1, . . . , ak),
b̄ := (b1, . . . , bk) ∈ M \ Q in G such that lcaT ′({a1, . . . , ak}) and lcaT ′({b1, . . . , bk}) are
incomparable in T ′ and λ′(ai) = λ′(bi) for all i ∈ [k]. By Corollary 3.9, (T ′, S′, λ′) can be
extended to a (d,m)-tree-model (T, S, λ) of G. It is straight forward to verify that the proof
of 3.9 can be made algorithmic and can be implemented in linear time. Note that when we
delete the tuples in Q, we will store with Q also the tuples ā, b̄, as we need them to add the
elements of Q to the tree-model T ′. J

The previous lemma shows how Step 4 above can be implemented. Step 3 can be done
by brute-force, so all that remains is to provide an algorithm for Step 2.

Towards this aim, note that since k and Lk = L(m, d, k) depend only on d and m and
not on |V (G)|, we can simply go over all subsets X ⊆ V (G) of size |X| = k(Lk + 1) in time
|V (G)|k(Lk+1) and for each such X check whether it can be partitioned into a strict k-module.
Using this as a sub-routine for Step 2 above to obtain our first XP-algorithm for computing
tree-models.

However, this way of finding strict k-modules is highly inefficient, and in the remainder of
this section we argue that the runtime can be improved to |V (G)|3k+1 by using the following
simple greedy procedure. For every set X ⊆ V (G) of 2k vertices of G we 1) generate all
partitions of X into two disjoint sets Xa, Xb of k vertices each and 2) for each of these we
consider all possible ways to order the vertices in Xa and Xb so that we obtain ordered
k-tuples ā and b̄ and then we 3) check whether ā and b̄ are k-twin tuples. For any pair ā, b̄ of
twin tuples obtained in this way we let M := {ā, b̄} and iterate over all k-tuples c̄ of vertices
from V (G) \ V (M). For any such c̄ we check whether c̄ is a twin tuple of every tuple already
contained in M . If so, we add c̄ to M and repeat, extending M as long as possible.

Observe that this procedure is approximate in the following sense: it finds a strict
k-module with more than Lk tuples provided that a strict k-module with more than kLk
tuples exists in G. As this procedure requires G to contain a strict k-module of size kLk
instead of Lk, whenever we apply Lemma 4.5 in the general algorithm above, we use m, d
but with a different sequence L1 ≤ L2 ≤ . . . defined as Lk = kL(m, d, k) . This guarantees
that Lemma 4.5 applied to m, d and this new sequence L1 ≤ L2 ≤ . . . yields suitable K and
N that make the algorithm above work.

We show next that this revised procedure for Step 2a is correct in the sense that it indeed
produces a strict k-module of size > L(m, d, k) as required. Towards this aim, let Z be a
strict k-module of G with the maximum number of tuples (in particular note that Z has
more than kL(m, d, k) tuples).
1. At least one initial guess of ā and b̄ yields a pair of twin tuples from Z, because we go

over all sets of size 2k, all possible ways to split them into k-tuples ā and b̄. The pair ā, b̄
also determines relations α and β, which guarantees that these are the same for M and
Z.

2. Even if every tuple c̄ we find is suboptimal (i.e. c̄ is not one of the tuples in Z but
intersects several of these), it can intersect at most k tuples in Z. The remaining tuples
in Z which do not contain any vertex contained in a tuple in M are twin tuples of every
tuple in M and therefore also of c̄, as the relation of being an (α, β)-twin tuple with
respect to fixed α and β is transitive.

Item 2 implies that after the i-th iteration of adding a tuple c̄ to M there are more than
kLk − 2− ki tuples in Z left which can still be added to M . Thus, at least Lk − 1 iterations
will be performed and therefore M will have at least Lk + 1 tuples.

STACS 2020

56:14 Computing Shrub-Depth Decompositions

The FPT-algorithm. We are now ready to present the fpt-algorithm for computing (d,m)-
tree-models. The reason why the previous algorithm is only an XP-algorithm is that it
iterates over all possible sets of vertices of size 2k to find a pair of twin tuples ā, b̄ and then
later on again iterates over all sets of size k to find a suitable tuple c̄.

In this section we prove that in order to find a pair of twin tuples ā, b̄ in G it is enough
to guess a pair u, v of vertices and then check in linear time whether they can be extened to
an (α, β)-twin tuple. Similarly, given a strict k-module M of G, to find a twin k-tuple c̄ of
all tuples in M it is enough to guess one vertex u of c̄ and the check in linear time whether
it can be extended appropriately.

I Lemma 5.2. Let k ∈ N and let α and β be relations on [k] such that they determine a
connected conflict graph. Let G be a graph and u, v be vertices of G. Then the number of
twin tuples (a1, . . . , ak), (b1, . . . , bk) such that u = a1 and v = b1 is bounded by a function in
k and there is an algorithm running in time f(k) · |V (G)| which, given G, u and v as input,
computes all such pairs of twin tuples.

Proof. We will prove that for every pair
(
(A, fA), (B, fB)

)
where A and B are disjoint

subsets of V (G) with |A| = |B| = p ≤ k and fA : A → [k] and fB : B → [k] are injective
functions with the same image in [k] we can generate in time f(k) · |V (G)| all pairs

(
(Ā, fĀ),

(B̄, fB̄)
)
such that:

Ā and B̄ are disjoint, |Ā| = |B̄| = k and A ⊆ Ā, B ⊆ B̄
fĀ : Ā→ [k] and fB̄ : B̄ → [k] are injective
Ā and B̄ with the orderings induced by fĀ and fB̄ in the obvious way are (α, β)-twin-
tuples.

Moreover, the number of such pairs (Ā, fĀ), (B̄, fB̄) will be bounded in terms of k.
We prove this by induction on j = k − p. If j = 0, then there is nothing to generate and

we only need to check whether (A, fA) and (B, fB) have the adjacency prescribed by α and
β. Now assume that the statement holds for all integers less than j and let (A, fA), (B, fB)
be an instance with |A| = |B| = p where j = k − p. First, we check whether G[A] and G[B]
and all edges between A and B in G[A ∪ B] are consistent with α and β (with respect to
the ordering induced by fA and fB). If this is not the case, we can immediately say that
(A, fA), (B, fB) cannot be extended.

So we may assume that G[A], G[B], and G[A ∪ B] are consistent with α and β. To
simplify the notation, in the rest of this proof we will denote by ai the element of A such
that fA(ai) = i and by bi the element of B with fB(bi) = i. For all i in the image im(fA) of
fA (and thus also in the image im(fB) of fB), let Si := (N(ai)∆N(bi)) \ (A ∪B). That is,
Si is the set of all vertices outside of A ∪B on which ai and bi differ. Let S :=

⋃
i∈im(fA) Si.

Since the conflict graph determined by α and β is connected, for any j > 0 and any pair
(A, fA), (B, fB) which can be extended to an (α, β)-twin pair (Ā, fĀ), (B̄, fB̄) the set S
will be non-empty. Moreover, all vertices in S have to be included in all extensions (Ā, fĀ),
(B̄, fB̄) satisfying the properties above. For, otherwise there would be an i such that ai and
bi are not twins in V (G)\ Ā∪ B̄, which contradicts the definition of twin-tuples. If S is larger
than 2k − 2j we know that A and B cannot be extended as desired, because then we would
have |Ā|+ |B̄| > 2k, again a contradiction. If S has size at most 2k − 2j, then we consider
all partitions of S into sets SA and SB of equal size, set A′ := A∪ SA and B′ := B ∪ SB and
consider all injective functions fA′ : A′ → [k], fB′ : B′ → [k] which have the same image and
which agree with fA and fB on A and B, respectively. Since |A′| > |A| and |B′| > |B|, we
have that k − |A| < j and we can apply the induction hypothesis to (A′, fA′), (B′, fB′).

J. Gajarský and S. Kreutzer 56:15

Clearly in the case when we use the induction hypothesis the size of the set S is bounded
by k, and so is the number of its bipartitions into SA and SB and also the number of different
functions fA′ and fB′ . This completes the proof. J

I Lemma 5.3. Let k ∈ N and let α and β be relations on [k] such that they determine
a connected conflict graph. Let G be a graph, M be a strict (α, β)-module in G and let
v ∈ V (G) \ V (M). Then in time g(k) · |V (G)| one can find a tuple c̄ := (c1, . . . , ck) in
V (G) \ V (M) with c1 = v such that c̄ is an (α, β)-twin of all tuples in M , or determine that
no such tuple exists.

Proof. Let ā be a tuple of M and let G′ be obtained from G by deleting all tuples of M
with the exception of ā. Note that if c̄ exists in G, then it is an (α, β)-twin tuple of ā in G′.
We apply Lemma 5.2 to a1 and v to obtain the set of all (α, β)-twin tuples which have a1
and v on their first positions, resp. If any of these pairs of tuples contains ā, then the the
second tuple of this pair can be taken as c̄. The fact that c̄ is also an (α, β)-twin tuple of all
tuples in M in G follows from trasitivity of being (α, β)-twin tuple. J

We are now ready to prove the main algorithmic result of this section.

I Theorem 5.4. Let G be a graph which contains a strict k-module Z with more than kL
tuples. Then it is possible to find a strict k-module M with more than L tuples in time
h(k) · |V (G)|4.

Proof. The algorithm iterates over all pairs of symmetric relations α and β on [k]2 which
determine a connected conflict graph and for each such pair proceeds as follows. For every
pair u, v of vertices in G it uses the algorithm from Lemma 5.2 to generate the set S of
all pairs of (α, β)-twin tuples which have u and v on their first positions. Then, for each
pair ā, b̄ ∈ S we set M := {ā, b̄} and by repeated application of Lemma 5.3 we extend M by
finding a tuple c̄ which is an (α, β)-twin of every tuple in M and adding c̄ to M for as long
as possible.

We now argue that at least for one choice of α, β, u and v the algorithm produces a strict
k-module with more than L elements. Set α and β to be the relations of Z and let u, v be
vertices which are on the first position of tuples ā, b̄ of Z. By applying the algorithm from
Lemma 5.2 to α, β, u, v we find all pairs of (α, β)-twin tuples which have u and v on their
first position. In particular we will find ā and b̄. We then set M := {ā, b̄} and try to extend
M as much as possible using Lemma 5.3. We can argue in exactly the same way as in the
previous section that the number of successful iterations of extending M by a tuple c̄ will be
at least L− 1. Thus, together with ā and b̄, the k-module M we find will have at least L+ 1
tuples. J

Using the algorithm of Theorem 5.4 in Step 2 of the general algorithmic strategy outlined
at the beginning of this section, we obtain our main algorithmic result.

I Theorem 5.5. There is an algorithm which, given a graph G and numbers m, d > 0 as
input, in time f(d,m) · |G|c, for a computable function f and a constant c both independent
of G, d, and m, either computes a (d,m)-tree-model of G or correctly determines that no
such module exists.

6 Application for forbidden induced subgraphs

As an easy consequence of our results from Section 4 we obtain a simple proof of the following
theorem, which was originally proven in [8].

STACS 2020

56:16 Computing Shrub-Depth Decompositions

I Theorem 6.1. For every d,m there exists a finite set of graphs Fd,m such that a graph G
has a (d,m)-tree-model if, and only if, G does not have an induced subgraph isomorphic to a
member of Fd,m.

Compared to the proof of Theorem 6.1 given in [8], our proof given below has the advantage
of providing explicit bounds on the size of graphs in Fd,m and therefore being constructive.

Proof. Fix d and m. Let Fd,m be the set of all graphs H such that H does not have a
(d,m)-tree-model and every proper induced subgraph of H has a (d,m)-tree-model. It is
easy to see that for every graph G it holds that G has a (d,m)-tree-model if, and only if,
G does not have an induced subgraph isomorphic to a member of Fd,m. We will show that
there is a bound on the size of graphs in Fd,m.

Let K and N be the numbers obtained from Corollary 4.6 applied to d and m. We claim
that no graph in Fd,m has more than N vertices. Assume towards a contradiction that there
is a graph H from Fd,m which has more than N vertices. By Corollary 4.6 there is a strict
k-module M in H with more than L(d,m, k) tuples for some k ≤ K. Let H ′ be the graph
obtained from H by removing one tuple c̄ from M . Then H ′ is a proper induced subgraph of
H and has strict k-module M ′ with at least L(d,m, k) tuples. Since H ′ is a proper induced
subgraph of H, it has (d,m)-tree-model T ′. By Lemma 4.1 there are two tuples ā and b̄

in M ′ such that they are in different subtrees of T ′. By Lemma 3.6 we can extend T ′ (by
adding c̄ into it) to a (d,m)-tree-model T of H, which is a contradiction with the assumption
that H has no (d,m)-tree-model. Thus, no member of Fd,m has more than N vertices. J

References
1 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.

SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.
2 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization

problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

3 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

4 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

5 Jakub Gajarský and Petr Hlinený. Kernelizing MSO properties of trees of fixed height, and some
consequences. Logical Methods in Computer Science, 11(1), 2015. doi:10.2168/LMCS-11(1:
19)2015.

6 Jakub Gajarský, Stephan Kreutzer, Jaroslav Nesetril, Patrice Ossona de Mendez, Michal
Pilipczuk, Sebastian Siebertz, and Szymon Toru’nczyk. First-order interpretations of bounded
expansion classes. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 126:1–
126:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.
ICALP.2018.126.

7 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In Gregory Z. Gutin and Stefan Szeider, editors, Parameterized and Exact
Computation - 8th International Symposium, IPEC 2013, Sophia Antipolis, France, September
4-6, 2013, Revised Selected Papers, volume 8246 of Lecture Notes in Computer Science, pages
163–176. Springer, 2013. doi:10.1007/978-3-319-03898-8_15.

8 Robert Ganian, Petr Hlinený, Jaroslav Nešetřil, Jan Obdržálek, and Patrice Ossona de Mendez.
Shrub-depth: Capturing height of dense graphs. Logical Methods in Computer Science, 15(1),
2019. URL: https://lmcs.episciences.org/5149, doi:10.23638/LMCS-15(1:7)2019.

https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1007/s002249910009
https://doi.org/10.2168/LMCS-11(1:19)2015
https://doi.org/10.2168/LMCS-11(1:19)2015
https://doi.org/10.4230/LIPIcs.ICALP.2018.126
https://doi.org/10.4230/LIPIcs.ICALP.2018.126
https://doi.org/10.1007/978-3-319-03898-8_15
https://lmcs.episciences.org/5149
https://doi.org/10.23638/LMCS-15(1:7)2019

J. Gajarský and S. Kreutzer 56:17

9 Petr Hlinený and Sang-il Oum. Finding branch-decompositions and rank-decompositions.
SIAM J. Comput., 38(3):1012–1032, 2008. doi:10.1137/070685920.

10 Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. Eur. J. Comb., 27(6):1022–1041, 2006. doi:10.1016/j.ejc.2005.01.010.

11 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

12 Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. A faster
parameterized algorithm for treedepth. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt,
and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I,
volume 8572 of Lecture Notes in Computer Science, pages 931–942. Springer, 2014. doi:
10.1007/978-3-662-43948-7_77.

STACS 2020

https://doi.org/10.1137/070685920
https://doi.org/10.1016/j.ejc.2005.01.010
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-662-43948-7_77
https://doi.org/10.1007/978-3-662-43948-7_77

	Introduction
	Preliminaries
	Twin tuples, k-modules and outline of our approach
	Twin tuples and (strict) k-modules
	Outline of our approach

	Strict modules in graphs of low shrub-depth
	Algorithms
	Application for forbidden induced subgraphs

