543 research outputs found

    Cross-Layer Resiliency Modeling and Optimization: A Device to Circuit Approach

    Get PDF
    The never ending demand for higher performance and lower power consumption pushes the VLSI industry to further scale the technology down. However, further downscaling of technology at nano-scale leads to major challenges. Reduced reliability is one of them, arising from multiple sources e.g. runtime variations, process variation, and transient errors. The objective of this thesis is to tackle unreliability with a cross layer approach from device up to circuit level

    Cmos Rf Cituits Sic] Variability And Reliability Resilient Design, Modeling, And Simulation

    Get PDF
    The work presents a novel voltage biasing design that helps the CMOS RF circuits resilient to variability and reliability. The biasing scheme provides resilience through the threshold voltage (VT) adjustment, and at the mean time it does not degrade the PA performance. Analytical equations are established for sensitivity of the resilient biasing under various scenarios. Power Amplifier (PA) and Low Noise Amplifier (LNA) are investigated case by case through modeling and experiment. PTM 65nm technology is adopted in modeling the transistors within these RF blocks. A traditional class-AB PA with resilient design is compared the same PA without such design in PTM 65nm technology. Analytical equations are established for sensitivity of the resilient biasing under various scenarios. A traditional class-AB PA with resilient design is compared the same PA without such design in PTM 65nm technology. The results show that the biasing design helps improve the robustness of the PA in terms of linear gain, P1dB, Psat, and power added efficiency (PAE). Except for post-fabrication calibration capability, the design reduces the majority performance sensitivity of PA by 50% when subjected to threshold voltage (VT) shift and 25% to electron mobility (ÎĽn) degradation. The impact of degradation mismatches is also investigated. It is observed that the accelerated aging of MOS transistor in the biasing circuit will further reduce the sensitivity of PA. In the study of LNA, a 24 GHz narrow band cascade LNA with adaptive biasing scheme under various aging rate is compared to LNA without such biasing scheme. The modeling and simulation results show that the adaptive substrate biasing reduces the sensitivity of noise figure and minimum noise figure subject to process variation and iii device aging such as threshold voltage shift and electron mobility degradation. Simulation of different aging rate also shows that the sensitivity of LNA is further reduced with the accelerated aging of the biasing circuit. Thus, for majority RF transceiver circuits, the adaptive body biasing scheme provides overall performance resilience to the device reliability induced degradation. Also the tuning ability designed in RF PA and LNA provides the circuit post-process calibration capability

    Identification and Rejuvenation of NBTI-Critical Logic Paths in Nanoscale Circuits

    Get PDF
    The Negative Bias Temperature Instability (NBTI) phenomenon is agreed to be one of the main reliability concerns in nanoscale circuits. It increases the threshold voltage of pMOS transistors, thus, slows down signal propagation along logic paths between flip-flops. NBTI may cause intermittent faults and, ultimately, the circuit’s permanent functional failures. In this paper, we propose an innovative NBTI mitigation approach by rejuvenating the nanoscale logic along NBTI-critical paths. The method is based on hierarchical identification of NBTI-critical paths and the generation of rejuvenation stimuli using an Evolutionary Algorithm. A new, fast, yet accurate model for computation of NBTI-induced delays at gate-level is developed. This model is based on intensive SPICE simulations of individual gates. The generated rejuvenation stimuli are used to drive those pMOS transistors to the recovery phase, which are the most critical for the NBTI-induced path delay. It is intended to apply the rejuvenation procedure to the circuit, as an execution overhead, periodically. Experimental results performed on a set of designs demonstrate reduction of NBTI-induced delays by up to two times with an execution overhead of 0.1 % or less. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics

    Hot-carrier reliability assessment in CMOS digital integrated circuits

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references.by Wenjie Jiang.Ph.D

    Fiabilisation de convertisseurs analogique-numérique à modulation Sigma-Delta

    Get PDF
    This thesis concentrates on reliability-aware methodology development, reliability analysis based on simulation as well as failure prediction of CMOS 65nm analog and mixed signal (AMS) ICs. Sigma-Delta modulators are concerned as the object of reliability study at system level. A hierarchical statistical approach for reliability is proposed to analysis the performance of Sigma-Delta modulators under ageing effects and process variations. Statistical methods are combined into this analysis flow.Ce travail de thèse a porté sur des problèmes de fiabilité de circuits intégrés en technologie CMOS 65 nm, en particulier sur la conception en vue de la fiabilité, la simulation et l'amélioration de la fiabilité. Les mécanismes dominants de vieillissement HCI et NBTI ainsi que la variation du processus ont été étudiés et évalués quantitativement au niveau du circuit et au niveau du système. Ces méthodes ont été appliquées aux modulateurs Sigma-Delta afin de déterminer la fiabilité de ce type de composant qui est très utilisé

    Fiabilisation de Convertisseurs Analogique-Num´erique a Modulation Sigma-Delta

    Get PDF
    Due to the continuously scaling down of CMOS technology, system-on-chips (SoCs) reliability becomes important in sub-90 nm CMOS node. Integrated circuits and systems applied to aerospace, avionic, vehicle transport and biomedicine are highly sensitive to reliability problems such as ageing mechanisms and parametric process variations. Novel SoCs with new materials and architectures of high complexity further aggravate reliability as a critical aspect of process integration. For instance, random and systematic defects as well as parametric process variations have a large influence on quality and yield of the manufactured ICs, right after production. During ICs usage time, time-dependent ageing mechanisms such as negative bias temperature instability (NBTI) and hot carrier injection (HCI) can significantly degrade ICs performance.La fiabilit´e des ICs est d´efinie ainsi : la capacit´e d’un circuit ou un syst`eme int´egr´e `amaintenir ses param`etres durant une p´eriode donn´ee sous des conditions d´efinies. Les rapportsITRS 2011 consid`ere la fiabilit´e comme un aspect critique du processus d’int´egration.Par cons´equent, il faut faire appel des m´ethodologies innovatrices prenant en comptela fiabilit´e afin d’assurer la fonctionnalit´e du SoCs et la fiabilit´e dans les technologiesCMOS `a l’´echelle nanom´etrique. Cela nous permettra de d´evelopper des m´ethodologiesind´ependantes du design et de la technologie CMOS, en revanche, sp´ecialis´ees en fiabilit´e

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    Monitor-Based In-Field Wearout Mitigation for CMOS RF Integrated Circuits

    Get PDF
    abstract: Performance failure due to aging is an increasing concern for RF circuits. While most aging studies are focused on the concept of mean-time-to-failure, for analog circuits, aging results in continuous degradation in performance before it causes catastrophic failures. In this regard, the lifetime of RF/analog circuits, which is defined as the point where at least one specification fails, is not just determined by aging at the device level, but also by the slack in the specifications, process variations, and the stress conditions on the devices. In this dissertation, firstly, a methodology for analyzing the performance degradation of RF circuits caused by aging mechanisms in MOSFET devices at design-time (pre-silicon) is presented. An algorithm to determine reliability hotspots in the circuit is proposed and design-time optimization methods to enhance the lifetime by making the most likely to fail circuit components more reliable is performed. RF circuits are used as test cases to demonstrate that the lifetime can be enhanced using the proposed design-time technique with low area and no performance impact. Secondly, in-field monitoring and recovering technique for the performance of aged RF circuits is discussed. The proposed in-field technique is based on two phases: During the design time, degradation profiles of the aged circuit are obtained through simulations. From these profiles, hotspot identification of aged RF circuits are conducted and the circuit variable that is easy to measure but highly correlated to the performance of the primary circuit is determined for a monitoring purpose. After deployment, an on-chip DC monitor is periodically activated and its results are used to monitor, and if necessary, recover the circuit performances degraded by aging mechanisms. It is also necessary to co-design the monitoring and recovery mechanism along with the primary circuit for minimal performance impact. A low noise amplifier (LNA) and LC-tank oscillators are fabricated for case studies to demonstrate that the lifetime can be enhanced using the proposed monitoring and recovery techniques in the field. Experimental results with fabricated LNA/oscillator chips show the performance degradation from the accelerated stress conditions and this loss can be recovered by the proposed mitigation scheme.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    DEEP SUBMICRON CMOS VLSI CIRCUIT RELIABILITY MODELING, SIMULATION AND DESIGN

    Get PDF
    CMOS VLSI circuit reliability modeling and simulation have attracted intense research interest in the last two decades, and as a result almost all IC Design For Reliability (DFR) tools now try to incrementally simulate device wearout mechanisms in iterative ways. These DFR tools are capable of accurately characterizing the device wearout process and predicting its impact on circuit performance. Nevertheless, excessive simulation time and tedious parameter testing process often limit popularity of these tools in product design and fabrication. This work develops a new SPICE reliability simulation method that shifts the focus of reliability analysis from device wearout to circuit functionality. A set of accelerated lifetime models and failure equivalent circuit models are proposed for the most common MOSFET intrinsic wearout mechanisms, including Hot Carrier Injection (HCI), Time Dependent Dielectric Breakdown (TDDB), and Negative Bias Temperature Instability (NBTI). The accelerated lifetime models help to identify the most degraded transistors in a circuit in terms of the device's terminal voltage and current waveforms. Then corresponding failure equivalent circuit models are incorporated into the circuit to substitute these identified transistors. Finally, SPICE simulation is performed again to check circuit functionality and analyze the impact of device wearout on circuit operation. Device wearout effects are lumped into a very limited number of failure equivalent circuit model parameters, and circuit performance degradation and functionality are determined by the magnitude of these parameters. In this new method, it is unnecessary to perform a large number of small-step SPICE simulation iterations. Therefore, simulation time is obviously shortened in comparison to other tools. In addition, a reduced set of failure equivalent circuit model parameters, rather than a large number of device SPICE model parameters, need to be accurately characterized at each interim wearout process. Thus device testing and parameter extraction work are also significantly simplified. These advantages will allow circuit designers to perform quick and efficient circuit reliability analyses and to develop practical guidelines for reliable electronic designs

    Study Of Nanoscale Cmos Device And Circuit Reliability

    Get PDF
    The development of semiconductor technology has led to the significant scaling of the transistor dimensions -The transistor gate length drops down to tens of nanometers and the gate oxide thickness to 1 nm. In the future several years, the deep submicron devices will dominate the semiconductor industry for the high transistor density and the corresponding performance enhancement. For these devices, the reliability issues are the first concern for the commercialization. The major reliability issues caused by voltage and/or temperature stress are gate oxide breakdown (BD), hot carrier effects (HCs), and negative bias temperature instability (NBTI). They become even more important for the nanoscale CMOS devices, because of the high electrical field due to the small device size and high temperature due to the high transistor densities and high-speed performances. This dissertation focuses on the study of voltage and temperature stress-induced reliability issues in nanoscale CMOS devices and circuits. The physical mechanisms for BD, HCs, and NBTI have been presented. A practical and accurate equivalent circuit model for nanoscale devices was employed to simulate the RF performance degradation in circuit level. The parameter measurement and model extraction have been addressed. Furthermore, a methodology was developed to predict the HC, TDDB, and NBTI effects on the RF circuits with the nanoscale CMOS. It provides guidance for the reliability considerations of the RF circuit design. The BD, HC, and NBTI effects on digital gates and RF building blocks with the nanoscale devices low noise amplifier, oscillator, mixer, and power amplifier, have been investigated systematically. The contributions of this dissertation include: It provides a thorough study of the reliability issues caused by voltage and/or temperature stresses on nanoscale devices from device level to circuit level; The more real voltage stress case high frequency (900 MHz) dynamic stress, has been first explored and compared with the traditional DC stress; A simple and practical analytical method to predict RF performance degradation due to voltage stress in the nanoscale devices and RF circuits was given based on the normalized parameter degradations in device models. It provides a quick way for the designers to evaluate the performance degradations; Measurement and model extraction technologies, special for the nanoscale MOSFETs with ultra-thin, ultra-leaky gate oxide, were addressed and employed for the model establishments; Using the present existing computer-aided design tools (Cadence, Agilent ADS) with the developed models for performance degradation evaluation due to voltage or/and temperature stress by simulations provides a potential way that industry could use to save tens of millions of dollars annually in testing costs. The world now stands at the threshold of the age of nanotechnology, and scientists and engineers have been exploring here for years. The reliability is the first challenge for the commercialization of the nanoscale CMOS devices, which will be further downscaling into several tens or ten nanometers. The reliability is no longer the post-design evaluation, but the pre-design consideration. The successful and fruitful results of this dissertation, from device level to circuit level, provide not only an insight on how the voltage and/or temperature stress effects on the performances, but also methods and guidance for the designers to achieve more reliable circuits with nanoscale MOSFETs in the future
    • …
    corecore