2 research outputs found

    HIV Reservoirs and Immune Surveillance Evasion Cause the Failure of Structured Treatment Interruptions: A Computational Study

    Get PDF
    Continuous antiretroviral therapy is currently the most effective way to treat HIV infection. Unstructured interruptions are quite common due to side effects and toxicity, among others, and cannot be prevented. Several attempts to structure these interruptions failed due to an increased morbidity compared to continuous treatment. The cause of this failure is poorly understood and often attributed to drug resistance. Here we show that structured treatment interruptions would fail regardless of the emergence of drug resistance. Our computational model of the HIV infection dynamics in lymphoid tissue inside lymph nodes, demonstrates that HIV reservoirs and evasion from immune surveillance themselves are sufficient to cause the failure of structured interruptions. We validate our model with data from a clinical trial and show that it is possible to optimize the schedule of interruptions to perform as well as the continuous treatment in the absence of drug resistance. Our methodology enables studying the problem of treatment optimization without having impact on human beings. We anticipate that it is feasible to steer new clinical trials using computational models

    Predicting the outcomes of HIV treatment interruptions using computational modelling

    Get PDF
    In the past 30 years, HIV infection made a transition from fatal to chronic disease due to the emergence of potent treatment largely suppressing viral replication. However, this medication must be administered life-long on a regular basis to maintain viral suppression and is not always well tolerated. Any interruption of treatment causes residual virus to be reactivated and infection to progress, where the underlying processes occurring and consequences for the immune system are still poorly understood. Nonetheless, treatment interruptions are common due to adherence issues or limited access to antiretroviral drugs. Early clinical studies, aiming at application of treatment interruptions in a structured way, gave contradictory results concerning patient safety, discouraging further trials. In-silico models potentially add to knowledge but a review of the Literature indicates most current models used for studying treatment interruptions (equation-based), neglect recent clinical findings of collagen formation in lymphatic tissue due to HIV and its crucial role in immune system stability and efficacy. The aim of this research is the construction and application of so-called ‘Bottom-Up’ models to allow improved assessment of these processes in relation to HIV treatment interruptions. In this regard, a novel computational model based on 2D Cellular Automata for lymphatic tissue depletion and associated damage to the immune system was developed. Hence, (i) using this model, the influence of spatial distribution of collagen formation on HIV infection progression speed was evaluated while discussing aspects of computational performance. Further, (ii) direct Monte Carlo simulations were employed to explore the accumulation of tissue impairment due to repeated treatment interruptions and consequences for long-term prognosis. Finally, (iii) an inverse Monte Carlo approach was used to reconstruct yet unknown characteristics of patient groups. This is based on sparse data from past clinical studies on treatment interruptions with the aim of explaining their contradictory results
    corecore