3,494 research outputs found

    Multiple imputation approach for interval-censored time to HIV RNA viral rebound within a mixed effects Cox model

    Get PDF
    This is the peer reviewed version of the following article: “Alarcón-Soto, Y, Langohr K., Fehér, C., García, F., and Gómez, G. (2018) Multiple imputation approach for interval-censored time to HIV RNA viral rebound within a mixed effects Cox Model.Biometrical journal, December 13th ”which has been published in final form at [doi: 10.1002/bimj.201700291]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.We present a method to fit a mixed effects Cox model with interval-censored data. Our proposal is based on a multiple imputation approach that uses the truncated Weibull distribution to replace the interval-censored data by imputed survival times and then uses established mixed effects Cox methods for right-censored data. Interval-censored data were encountered in a database corresponding to a recompilation of retrospective data from eight analytical treatment interruption (ATI) studies in 158 human immunodeficiency virus (HIV) positive combination antiretroviral treatment (cART) suppressed individuals. The main variable of interest is the time to viral rebound, which is defined as the increase of serum viral load (VL) to detectable levels in a patient with previously undetectable VL, as a consequence of the interruption of cART. Another aspect of interest of the analysis is to consider the fact that the data come from different studies based on different grounds and that we have several assessments on the same patient. In order to handle this extra variability, we frame the problem into a mixed effects Cox model that considers a random intercept per subject as well as correlated random intercept and slope for pre-cART VL per study. Our procedure has been implemented in R using two packages: truncdist and coxme, and can be applied to any data set that presents both interval-censored survival times and a grouped data structure that could be treated as a random effect in a regression model. The properties of the parameter estimators obtained with our proposed method are addressed through a simulation study.Peer ReviewedPostprint (author's final draft

    HIV Reservoirs and Immune Surveillance Evasion Cause the Failure of Structured Treatment Interruptions: A Computational Study

    Get PDF
    Continuous antiretroviral therapy is currently the most effective way to treat HIV infection. Unstructured interruptions are quite common due to side effects and toxicity, among others, and cannot be prevented. Several attempts to structure these interruptions failed due to an increased morbidity compared to continuous treatment. The cause of this failure is poorly understood and often attributed to drug resistance. Here we show that structured treatment interruptions would fail regardless of the emergence of drug resistance. Our computational model of the HIV infection dynamics in lymphoid tissue inside lymph nodes, demonstrates that HIV reservoirs and evasion from immune surveillance themselves are sufficient to cause the failure of structured interruptions. We validate our model with data from a clinical trial and show that it is possible to optimize the schedule of interruptions to perform as well as the continuous treatment in the absence of drug resistance. Our methodology enables studying the problem of treatment optimization without having impact on human beings. We anticipate that it is feasible to steer new clinical trials using computational models

    Immune control of HIV-1 infection after therapy interruption: immediate versus deferred antiretroviral therapy

    Get PDF
    Abstract Background The optimal stage for initiating antiretroviral therapies in HIV-1 bearing patients is still a matter of debate. Methods We present computer simulations of HIV-1 infection aimed at identifying the pro et contra of immediate as compared to deferred Highly Active Antiretroviral Therapy (HAART). Results Our simulations highlight that a prompt specific CD8+ cytotoxic T lymphocytes response is detected when therapy is delayed. Compared to very early initiation of HAART, in deferred treated patients CD8+ T cells manage to mediate the decline of viremia in a shorter time and, at interruption of therapy, the virus experiences a stronger immune pressure. We also observe, however, that the immunological effects of the therapy fade with time in both therapeutic regimens. Thus, within one year from discontinuation, viral burden recovers to the value at which it would level off in the absence of therapy. In summary, simulations show that immediate therapy does not prolong the disease-free period and does not confer a survival benefit when compared to treatment started during the chronic infection phase. Conclusion Our conclusion is that, since there is no therapy to date that guarantees life-long protection, deferral of therapy should be preferred in order to minimize the risk of adverse effects, the occurrence of drug resistances and the costs of treatment.</p

    An in-silico analysis of the SMART study of HIV infection

    Get PDF
    A mathematical model is developed to further examine the dynamic interaction of uninfected T cells with Human Immunodeficiency Virus (HIV) mutations. We study how the dynamics are affected by immune response to infected cells under intermittent antiretroviral therapy. Our goal is to analyze the SMART (Strategies for Management of Anti-RetroviralTherapy) study outcomes and based on that try to identify possible causes of its failure. We mathematically describe the HIV infection and perform numerical simulation to approach the course of the disease. Preliminary results suggest that the scheduling of follow-up visits and working range of CD4+ T cells count used during the SMART study could explain the observed adverse outcomes in that trial

    An in-silico analysis of the SMART study of HIV infection

    Get PDF
    A mathematical model is developed to further examine the dynamic interaction of uninfected T cells with Human Immunodeficiency Virus (HIV) mutations. We study how the dynamics are affected by immune response to infected cells under intermittent antiretroviral therapy. Our goal is to analyze the SMART (Strategies for Management of anti-retroviral Therapy) study outcomes and based on that try to identify possible causes of its failure. We mathematically describe the HIV infection and perform numerical simulation to approach the course of the disease. Preliminary results suggest that the scheduling of follow-up visits and working range of CD4+ T cells count used during the SMART study could explain the observed adverse outcomes in that trial

    On the role of resonance in drug failure under HIV treatment interruption

    No full text

    Initiation of HIV therapy

    Get PDF
    In this paper, we numerically show that the dynamics of the HIV system is sensitive to both the initial condition and the system parameters. These phenomena imply that the system is chaotic and exhibits a bifurcation behavior. To control the system, we propose to initiate an HIV therapy based on both the concentration of the HIV-1 viral load and the ratio of the CD4 lymphocyte population to the CD8 lymphocyte population. If the concentration of the HIV-1 viral load is higher than a threshold, then the first type of therapy will be applied. If the concentration of the HIV-1 viral load is lower than or equal to the threshold and the ratio of the CD4 lymphocyte population to the CD8 lymphocyte population is greater than another threshold, then the second type of therapy will be applied. Otherwise, no therapy will be applied. The advantages of the proposed control strategy are that the therapy can be stopped under certain conditions, while the state variables of the overall system is asymptotically stable with fast convergent rate, the concentration of the controlled HIV-1 viral load is monotonic decreasing, as well as the positivity constraint of the system states and that of the dose concentration is guaranteed to be satisfied. Computer numerical simulation results are presented for an illustration

    WHO 2010 Guidelines for Prevention of Mother-to-Child HIV Transmission in Zimbabwe: Modeling Clinical Outcomes in Infants and Mothers

    Get PDF
    The Zimbabwean national prevention of mother-to-child HIV transmission (PMTCT) program provided primarily single-dose nevirapine (sdNVP) from 2002-2009 and is currently replacing sdNVP with more effective antiretroviral (ARV) regimens.Published HIV and PMTCT models, with local trial and programmatic data, were used to simulate a cohort of HIV-infected, pregnant/breastfeeding women in Zimbabwe (mean age 24.0 years, mean CD4 451 cells/µL). We compared five PMTCT regimens at a fixed level of PMTCT medication uptake: 1) no antenatal ARVs (comparator); 2) sdNVP; 3) WHO 2010 guidelines using "Option A" (zidovudine during pregnancy/infant NVP during breastfeeding for women without advanced HIV disease; lifelong 3-drug antiretroviral therapy (ART) for women with advanced disease); 4) WHO "Option B" (ART during pregnancy/breastfeeding without advanced disease; lifelong ART with advanced disease); and 5) "Option B+:" lifelong ART for all pregnant/breastfeeding, HIV-infected women. Pediatric (4-6 week and 18-month infection risk, 2-year survival) and maternal (2- and 5-year survival, life expectancy from delivery) outcomes were projected.Eighteen-month pediatric infection risks ranged from 25.8% (no antenatal ARVs) to 10.9% (Options B/B+). Although maternal short-term outcomes (2- and 5-year survival) varied only slightly by regimen, maternal life expectancy was reduced after receipt of sdNVP (13.8 years) or Option B (13.9 years) compared to no antenatal ARVs (14.0 years), Option A (14.0 years), or Option B+ (14.5 years).Replacement of sdNVP with currently recommended regimens for PMTCT (WHO Options A, B, or B+) is necessary to reduce infant HIV infection risk in Zimbabwe. The planned transition to Option A may also improve both pediatric and maternal outcomes

    Modelling Multiple Dosing with Drug Holiday in Antiretroviral Treatment on HIV-1 Infection

    Get PDF
    A within-host mathematical model to describe the dynamics of target cells and viral load in early HIV-1 infection was developed, which incorporates a combination of RTI and PI treatments by using a pharmacokinetics model. The local stability of uninfected steady state for the model was determined using an alternative threshold. The pharmacokinetics model was employed to estimate drug efficacy in multiple drug dosing. The effect of periodic drug efficacy of pharmacokinetic type on outcome of HIV-1 infection was explored under various treatment interruptions. The effectiveness of treatment interruption was determined according to the time period of the drug holidays. The results showed that long drug holidays lead to therapy failure. Under interruption of treatments combining RTI and PI therapy, effectiveness of the treatment requires a short duration of the drug holiday.
    corecore