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ABSTRACT 

In this paper, we numerically show that the dynamics of the HIV system is sensitive to both the 

initial condition and the system parameters. These phenomena imply that the system is chaotic and 

exhibits a bifurcation behavior. To control the system, we propose to initiate an HIV therapy based on 

both the concentration of the HIV-1 viral load and the ratio of the CD4 lymphocyte population to the 

CD8 lymphocyte population. If the concentration of the HIV-1 viral load is higher than a threshold, 

then the first type of therapy will be applied. If the concentration of the HIV-1 viral load is lower than 

or equal to the threshold and the ratio of the CD4 lymphocyte population to the CD8 lymphocyte 

population is greater than another threshold, then the second type of therapy will be applied. 

Otherwise, no therapy will be applied. The advantages of the proposed control strategy are that the 

therapy can be stopped under certain conditions, while the state variables of the overall system is 

asymptotically stable with fast convergent rate, the concentration of the controlled HIV-1 viral load is 

monotonic decreasing, as well as the positivity constraint of the system states and that of the dose 

concentration is guaranteed to be satisfied. Computer numerical simulation results are presented for 

an illustration. 
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I. INTRODUCTION 

In 2005, there were about 38.6 millions of adults and children suffering from the human 

immunodeficiency virus (HIV). The total infected population is increasing year by year [8]. There are 

about twenty medications approved by the Food and Drug Administration (FDA) of the US 

government. These medications can suppress the acquired immune deficiency syndrome (AIDS). 

It was reported in [9]-[27] that the response of the CD4 lymphocyte population, the CD8 

lymphocyte population and the HIV-1 viral load can be characterized by a first order nonlinear 

differential equation. In this paper, we numerically show that the system dynamics is sensitive to both 

the initial condition and the system parameters. This implies that the system is chaotic and exhibits a 

bifurcation behavior. Moreover, the concentrations of the CD4 lymphocyte population, the CD8 

lymphocyte population, the HIV-1 viral load and the dose are required to be non-negative and 

bounded, this implies that the positivity constraint of the system states and that of the dose 

concentration is required to be satisfied [5]. Because of the chaotic nature of the system and the 

positivity constraint, the system is very difficult to be controlled. Furthermore, the system has two 

equilibrium points and one of them is unstable [1]. This implies that a very small derivation of the 

system vectors from the equilibrium point would cause the system trajectory to diverge locally. In 

order to control the concentration of the HIV-1 viral load being exactly equal to zero within a certain 

period of time, zero boundary conditions of the controlled system are required to be satisfied. 

However, it was reported in [7] that the corresponding linearized system (linearized at the unstable 

equilibrium point) is uncontrollable, so linear control methods would usually result to the loss of 

control near the equilibrium point. 

The simplest existing strategy for controlling the HIV-1 viral load is via the P control law [1], 

[2], [4], that is the dose concentration is directly proportional to the concentration of the HIV-1 viral 

load. However, this control strategy fails to satisfy the positivity constraint and in general this control 

method does not guarantee the asymptotical stability of the system. Optimal control methods [3], [6] 

are also proposed. However, all these control methods are derived based on the corresponding 
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linearized model, in which the system will lose control when the trajectory is close to the equilibrium 

point [7]. 

As the medications have strong side effects, medical professions would prefer to initiate the 

therapy only at certain situations [7]. However, there is no standard rule for the determination of the 

time instant that the therapy initiates. Also, the corresponding dose concentration is unknown. In this 

paper, we propose to initiate the therapy based on both the concentration of the HIV-1 viral load and 

the ratio of the CD4 lymphocyte population to the CD8 lymphocyte population. If the concentration 

of the HIV-1 viral load is higher than a threshold, then the first type of therapy will be applied. If the 

concentration of the HIV-1 viral load is lower than or equal to the threshold and the ratio of the CD4 

lymphocyte population to the CD8 lymphocyte population is greater than another threshold, then the 

second type of therapy will be applied. Otherwise, no therapy will be applied. The advantages of the 

proposed control strategy are that the therapy can be stopped under certain conditions, while the state 

variables of the overall system is asymptotically stable with fast convergent rate, the concentration of 

the controlled HIV-1 viral load is monotonic decreasing, as well as the positivity constraint of the 

system states and that of the dose concentration is guaranteed to be satisfied. 

The outline of this paper is as follows: The HIV model is reviewed in Section II. In Section III, 

the sensitivity of the initial condition and the system parameters against the system dynamics is 

simulated. The obtained results imply that the system is chaotic and exhibits a bifurcation behavior. In 

Section IV, a control strategy is proposed. Computer numerical simulation results are also presented. 

Finally, a conclusion is drawn in Section V. 

 

II. HIV MODEL 

Denote a , b , c , d , e  and f  as the system parameters, in which all are positive. Denote ( )tx , 

( )ty  and ( )tz  as the concentrations of the CD4 lymphocyte population, the CD8 lymphocyte 

population and the HIV-1 viral load, respectively. Denote 0x  and 0y  as the normal unperturbed 
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concentrations of the CD4 and CD8 lymphocyte population, respectively, in which they are also 

positive. The response of the concentrations of the CD4 lymphocyte population, the CD8 lymphocyte 

population and the HIV-1 viral load can be characterized by the following first order nonlinear 

differential equation [9]-[27]: 

 ( ) ( )( ) ( ) ( )tztbxtxxatx −−= 0& , (1a) 

 ( ) ( )( ) ( ) ( )tztdytyycty +−= 0&  (1b) 

and 

 ( ) ( ) ( ) ( )( )tfytextztz −=& . (1c) 

It can be checked easily that the equilibrium points of the system are 

 [ ]Tyx 000  (2a) 

and 
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fyexac
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III. SENSITIVITY OF INITIAL CONDITION AND SYSTEM PARAMETERS AGAINST 

SYSTEM DYNAMICS 

Figure 1a shows the state responses of the system, while Figure 1b shows the corresponding 

state trajectory, in which 25.0=a , 50=b , 25.0=c , 10=d , 01.0=e , 006.0=f , 10000 =x , 

5500 =y , ( ) 00 xx = , ( ) 00 yy =  and ( ) 03.00 =z . It can be seen from Figure 1b that the system exhibits 

a complex behavior. Figure 2 plots the Lyapunov exponents of the system at different time instants 

with the system parameters being the same as that applied in Figure 1 and with the initial condition 

being the state vectors at the corresponding time instants. It can be seen from Figure 2 that the 

Lyapunov exponent of ( )tz  is positive during the transient moment and at 15.4=t  year. Figure 3 

plots the difference of the state responses between the following two sets of initial conditions with the 

same set of system parameters applied in Figure 1: ( ) 4420 =x , ( ) 7360 =y  and ( ) 0063.00 =z , and its 
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1% increment, that is ( ) 42.4460 =x , ( ) 36.7430 =y  and ( ) 0064.00 =z . It can be seen from Figure 3 

that the difference of the state responses between the above two sets of initial conditions are very 

large even though these two sets of initial conditions are differed only by 1%. This implies that the 

system is very sensitive to the initial condition. To investigate the sensitivity of the system parameters 

against the system dynamics, since there are six system parameters in the HIV model, namely, a , b , 

c , d , e  and f , the range of the concentrations of the CD4 lymphocyte population, CD8 lymphocyte 

population and the HIV-1 viral load are plotted with respect to these system parameters. Figure 4a, 

Figure 4b and Figure 4c plot the ranges of ( )tx , ( )ty  and ( )tz  as a  varies when 50=b , 25.0=c , 

10=d , 01.0=e , 006.0=f , 10000 =x , 5500 =y , ( ) 00 xx = , ( ) 00 yy =  and ( ) 03.00 =z . Similarly, 

Figure 5 to Figure 9 plot the corresponding ranges as the parameter b  to the parameter f vary, 

respectively. From these computer numerical simulation results, we can see that the parameters d  

and e  are the most sensitive to the system dynamics. Hence, we can conclude that the system is 

chaotic and exhibits a bifurcation phenomenon. This chaotic nature of the system causes the 

formulation of the control strategy being very challenging. 

 

IV. PROPOSED CONTROL STRATEGY 

Denote ( )tU  as the dose concentration. This corresponds to the control force of the system. 

Assume that ( )tU  is applying directly to ( )tz , that is: 

( ) ( )( ) ( ) ( )tztbxtxxatx −−= 0& , (3a) 

( ) ( )( ) ( ) ( )tztdytyycty +−= 0&  (3b) 

and 

( ) ( ) ( ) ( )( ) ( )tUtfytextztz −−=& . (3c) 

Consider the following control force 

( ) ( )( ) ( )
( )tfy

tztxetU
4

22

=  (4) 

and define 
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( ) ( )( )2tztV = . (5) 

It can be easily seen that ( ) 0>tV  for ( ) 0≠tz , and 

( ) ( ) ( ) ( )( )
( )tfy

tfytextztz
4

2 2−
−=& . (6) 

Consequently, we have 

( ) ( )( ) ( ) ( )( )
( )tfy

tfytextztV
2

2 22 −
−=& . (7) 

As 

( ) ( )( ) ( ) ( )tztbxtxxatx −−= 0& , (8) 

we have 

( )
( )( )

( )( ) ⎟
⎠
⎞⎜

⎝
⎛ +

⎟
⎠
⎞⎜

⎝
⎛ +
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∫

∫ ∫
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∞− ∞−
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Similarly, as 

( ) ( )( ) ( ) ( )tztdytyycty +−= 0& , (10) 

we have 

( )
( )( )

( )( ) ⎟
⎠
⎞⎜

⎝
⎛ −

⎟
⎠
⎞⎜

⎝
⎛ −

=
∫

∫ ∫

∞−

∞− ∞−

t

t
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ξ

exp

exp0
. (11) 

Since a , c , 0x  and 0y  are positive, from (9) and (11), we can conclude that ( ) 0>tx  and ( ) 0>ty  

0≥∀t . By putting ( ) 0>ty  and 0>f  to (7), we can conclude that ( ) 0<tV&  0≥∀t . Since we 

assume that ( ) 00 >z , we have ( ) 0<tz&  0≥∀t , ( ) 0>tz  0≥∀t  and ( ) 0lim =
+∞→

tz
t

. By putting 0>f , 

( ) 0>ty  and ( ) 0>tz  to (4), we have ( ) 0>tU  0≥∀t . When ( ) 0≈tz  Tt ≥∀ , where T  is a positive 

real number, from (9) and (11), we have 

( ) ( )( ) ( )( )tTaxTxxtx −−+≈ exp00  (12) 

and 

( ) ( )( ) ( )( )tTcyTyyty −−+≈ exp00  Tt ≥∀ . (13) 
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Since a  and c  are positive, we have 

( ) 0lim xtx
t

≈
+∞→

 (14) 

and 

( ) 0lim yty
t

≈
+∞→

. (15) 

Consequently, both ( )tx  and ( )ty  are bounded and converge to the corresponding equilibrium values. 

Hence, this control strategy can guarantee the asymptotical stability of the system, the monotonic 

decrement of the concentration of the HIV-1 viral load, as well as the satisfaction of the positivity 

constraint of the system states and that of the dose concentration. 

Although this control strategy guarantees that the system states will converge to the equilibrium 

point, the convergent rate is slow because ( )tV  is independent of both ( )tx  and ( )ty . Now, consider 

another control force as follows: 

( ) ( )( ) ( )
( ) ( )

3

2
01

2
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3

2
22

424 k
bxkyty

k
dk

tfy
tztxetU +⎟

⎠
⎞
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⎝
⎛ −+=  (16) 

and define 

( ) ( )( ) ( )( ) ( )( )23
2

02
2

01 tzktyyktxxktV +−+−= , (17) 

where 1k  and 2k  are non-negative constants as well as 3k  is a positive constant. Obviously, the 

previous control strategy is a particular case of this control strategy. Now, we have 

( ) ( ) ( ) ( )( )
( ) ( )

3

2
01

2
0

3

2
2

424
2

k
bxkyty

k
dk

tfy
tfytextztz −⎟

⎠
⎞

⎜
⎝
⎛ −−

−
−=&  (18) 

and 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( ) ( )

22
222

2
2 2

02
2

0
1

2
01

2
02

22
3 ytdzkxtxtbzktxxaktyyck

tfy
tfytextzktV −⎟

⎠
⎞

⎜
⎝
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−=& .(19) 

It can be checked easily that ( ) 0>tV  for ( ) ( ) ( )( ) ( )0,,,, 00 yxtztytx ≠ . Similarly, from (9) and (11), we 

have ( ) 0>tx  and ( ) 0>ty  0≥∀t . If ( ) 0>tz  0≥∀t , then ( ) 0>tU , ( ) 0<tV&  and ( ) 0<tz&  0≥∀t . 

Hence, the success of this control strategy highly depends whether ( ) 0>tz  0≥∀t  or not. However, 

in general it is not guaranteed that ( ) 0>tz  0≥∀t  is satisfied even though this control strategy could 

achieve a fast convergent rate because ( )tV  depends on both ( )tx  and ( )ty . 
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Now, consider an uncontrolled case, that is: 

( ) 0=tU . (20) 

Define 

( ) ( )( )2tztV = , (21) 

then we have 

( ) ( ) ( ) ( )( )tfytextztz −=&  (22) 

and 

( ) ( )( ) ( ) ( )( )tfytextztV −= 22& . (23) 

It can be checked easily that ( ) 0>tV  for ( ) 0≠tz . Similarly, from (9) and (11), we have ( ) 0>tx  and 

( ) 0>ty  0≥∀t . If ( ) ( ) 0<− tfytex , then ( ) 0<tV& . Since we assume that ( ) 00 >z , we have ( ) 0<tz&  

0≥∀t , ( ) 0>tz  0≥∀t  and ( ) 0lim =
+∞→

tz
t

. Similarly, we have ( ) 0lim xtx
t

≈
+∞→

 and ( ) 0lim yty
t

≈
+∞→

. Hence, 

the success of the uncontrolled strategy highly depends whether ( ) ( ) 0<− tfytex  or not. However, in 

general it is not guaranteed that ( ) ( ) 0<− tfytex  is satisfied even though the uncontrolled strategy 

does not require patients taking medications and patients do not need to tolerate the side effects of the 

medications. 

Now, consider the following control strategy: 

Theorem 1 

Assume that ( ) ( ) ( ) 00,0,0,,,,,,,,,,, 32100 >zyxkkkyxfedcba . Denote α  as a positive constant. 

Case I: If ( ) α>tz , then 

( ) ( )( ) ( )
( ) ( )

3

2
01

2
0

3

2
22

424 k
bxkyty

k
dk

tfy
tztxetU +⎟

⎠
⎞

⎜
⎝
⎛ −+= . 

Case II: If ( ) 0>≥ tzα  and ( ) ( ) 0≥− tfytex , then 

( ) ( )( ) ( )
( )tfy

tztxetU
4

22

= . 

Case III: If ( ) 0>≥ tzα  and ( ) ( ) 0<− tfytex , then 

( ) 0=tU . 
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The overall controlled system is asymptotically stable, the concentration of the HIV-1 viral load is 

monotonic decreasing, as well as the positivity constraint of the system states and that of the dose 

concentration is guaranteed to be satisfied. 

Proof: 

Since ( ) 0<tz&  for all these three cases and ( ) 00 >z , the system can only switch from Case I to 

either Case II or Case III, but not vice versa. If ( ) α≤0z , then the system can only operate in Case II 

and Case III. If ( ) α>0z , as ( ) 0<tz& , ( )tz  is decreasing until it reaches the value α  and then switches 

to either Case II or Case III. Hence, the objective of the control strategy defined by Case I is to 

accelerate the transient response. Once the system is operating under the control strategy defined by 

either Case II or Case III, as ( ) 0<tV& , ( ) 0<tz& , ( ) 0>tx , ( ) 0>ty , ( ) 0>tz  and ( ) 0≥tU  0≥∀t  as well 

as ( ) 0lim xtx
t

≈
+∞→

, ( ) 0lim yty
t

≈
+∞→

 and ( ) 0lim =
+∞→

tz
t

 for both Case II and Case III, the positivity constraint 

of the system states and that of the dose concentration will be satisfied, the concentration of the HIV-1 

viral load will be monotonic decreasing, as well as the asymptotical stability of the overall system 

will be guaranteed. This completes the proof. ▄ 

There are four parameters in the controlled system, namely, α , 1k , 2k  and 3k . Actually 

Theorem 1 is valid 0,,, 321 >∀ kkkα . To design the value of α , since α  is the concentration of the 

HIV-1 viral load in which the control strategy is switched from Case I to either Case II or Case III, and 

the rate of the change of the concentration of the HIV-1 viral load under the control strategy defined 

by Case I is faster than that defined by Case II and Case III, α  should be small so that the 

concentration of the HIV-1 viral load will decrease at a faster rate. However, as ( ) 0≠tz&  when 

( ) 0=tz , too small value of α  would cause a rapid change of the state trajectory near the equilibrium 

point. Consequently, patients cannot stop the therapy. To obtain a balance between these two factors, 

we choose α  to be a value equal to 59.5140% of ( )0z  in our computer numerical simulation, that is 

0.0179. For the values of 1k , 2k  and 3k , from (16), we see that ( )tU  is small if 1k  and 2k  are small 

and 3k  is large. In the practical situation, ( )tU  should be small so that the side effects of the 
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medications are negligible. However, we can see from (18) that the rate of change of the 

concentration of the HIV-1 viral load is large if 1k  and 2k  are large and 3k  is small. As a fast response 

is preferred, there is a tradeoff between the strength of the side effects and the convergent rate of the 

system. To obtain a balance between these two factors, we propose to solve the problem via an 

optimization approach as follows: 

For the control strategy defined by Case I, since 

( ) ( ) ( ) ( )( ) ( )
( )( )

( ) ( ) ( ) ( )( ) ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
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⎦
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⎢
⎣
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⎠
⎞

⎜
⎝
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tztxtxtztx
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k
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2
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3

2 2
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2  (24) 

and ( ) 0<tz&  0≥∀t , if ( ) 0<tx& , ( ) 0>ty&  and 

( ) ( )( ) ( )
( )( )2

22
0

3

2

42
2

tyf
tztxeyty

k
dk

<⎟
⎠
⎞

⎜
⎝
⎛ −  ( ) α>∀ tz , 

then we have ( ) 0<tU&  ( ) α>∀ tz . This implies that the maximum value of ( )tU  will occur at 0=t  if 

the above conditions are satisfied. Define an acceptable bound on the dose concentration as maxU . 

Then 1k , 2k  and 3k  are designed such that ( ) maxUtU <  ( ) α>∀ tz . That is: 

( )( ) ( )
( ) ( ) max

3

2
01

2
0

3

2
22

42
0

04
00 U

k
bxkyy

k
dk

fy
zxe

<+⎟
⎠
⎞

⎜
⎝
⎛ −+ . (25) 

Similarly, we define an acceptable bound on the rate of change of the concentration of the HIV-1 viral 

load and on the rate of change of ( )tV  at 0=t  as maxz&  and maxV& , respectively. From (18) and (19), we 

have 

( )
( ) ( ) ( )( ) ( ) max

3

2
01

2
0

3

22

42
0020

04
0 z

k
bxkyy

k
dkfyex

fy
z

&<−⎟
⎠
⎞

⎜
⎝
⎛ −−−−  (26) 

and 

( )( )
( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )

max

2
02

2
0

1
2

01
2

02
2

2
3

2
0

2
0020202020

02
0 Vydzkxxbzkxxakyyckfyex

fy
zk &<−⎟

⎠
⎞

⎜
⎝
⎛ −−−−−−−− .(27) 

(25)-(27), as well as 1k , 2k  and 3k  being positive, forms a linear matrix inequality constraint on  1k , 

2k  and 3k . For most of patients, maxU  should be set around 0.37. Hence, we choose maxU  accordingly. 

In order to have a fast response, maxz&  and maxV&  should be as small as possible, hence we choose maxz&  
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and maxV&  as -0.15 and -0.0095, respectively. 

Due to the tradeoff between the strength of the side effects and the convergent rate of the system, 

we formulate the following optimization problem as follows: 

Problem (P) 

( )321 ,,
min

kkk
 321 kkk ++ , (28a) 

subject to (25)-(27)  (28b) 

and 1k , 2k  and 3k  are positive. (28c) 

Problem P is a standard linear programming problem, many existing solvers, such as Matlab 

optimization toolbox, can be employed for solving the problem. Moreover, as this optimization 

problem is convex, the obtained solution will be globally optimal if the feasible set is nonempty. 

Figure 10 plots the controlled state responses with the system parameters and the initial 

condition being the same as those applied in Figure 1, where α , 1k , 2k  and 3k  are determined based 

on the above discussion. It can be seen from the figure that the concentration of the HIV-1 viral load is 

monotonic decreasing, the system states asymptotically converge to the equilibrium point, as well as 

the concentrations of the CD4 lymphocyte population, the CD8 lymphocyte population and the HIV-1 

viral load are non-negative and bounded. Hence, the proposed control strategy satisfies the positivity 

constraint. Figure 11 shows the corresponding dose concentration. It can be seen from the figure that 

the maximum dose concentration within the first 4 weeks is 0.37, which satisfies the specification. 

The dose concentration is monotonic decreasing within the first 4 weeks, but it drops dramatically to 

low values after the 4th week because the system switches from the control strategy defined by Case 

I to that defined by Case II. Between the 85.7th and 219.7th weeks, the dose concentration is exactly 

equal to zero. This implies that the system switches to the control strategy defined by Case III and no 

therapy is required. After the 219.7th week, the system switches back to the control strategy defined 

by Case II, so the dose concentration is non-zero and maintains at low level. To illustrate the 

effectiveness of the control strategy defined by Case I, Figure 12 plots the controlled state responses 
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of the system switched only between Case II and Case III. Figure 13 plots the corresponding dose 

concentration with the system parameters and the initial condition being the same as those applied in 

Figure 1. It can be seen from the figure that the concentration of the HIV-1 viral load decreases slowly 

while that based on the control strategy defined by Case I drops to the value equal to α  quickly (at 

the 4th week). 

 

V. CONCLUSIONS 

In this paper, we suggest to initiate the therapy based on both the concentration of the HIV-1 

viral load and the ratio of the CD4 lymphocyte population to the CD8 lymphocyte population. If the 

concentration of the HIV-1 viral load is higher than a threshold, then the first type of therapy will be 

applied. If the concentration of the HIV-1 viral load is lower than or equal to the threshold and the 

ratio of the CD4 lymphocyte population to the CD8 lymphocyte population is greater than another 

threshold, then the second type of therapy will be applied. Otherwise, no therapy will be applied. The 

advantages of the proposed control strategy are that the therapy can be stopped under certain 

conditions, while the state variables of the overall system is asymptotically stable with fast 

convergent rate, the concentration of the controlled HIV-1 viral load is monotonic decreasing, as well 

as the positivity constraint of the system states and that of the dose concentration is guaranteed to be 

satisfied. 
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Figure 1a. State responses of the system. 
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Figure 1b. The state trajectory of the system. 
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Figure 2. Lyapunov exponents of the system. 
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Figure 3. Difference of the responses of the CD4 lymphocyte population, the CD8 lymphocyte 

population and the HIV-1 viral load at different initial conditions. 
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Figure 4. Ranges of the CD4 lymphocyte population, the CD8 lymphocyte population and the HIV-1 

viral load as parameter a  varies. 
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Figure 5. Ranges of the CD4 lymphocyte population, the CD8 lymphocyte population and the HIV-1 

viral load as parameter b  varies. 
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Figure 6. Ranges of the CD4 lymphocyte population, the CD8 lymphocyte population and the HIV-1 

viral load as parameter c  varies. 
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Figure 7. Ranges of the CD4 lymphocyte population, the CD8 lymphocyte population and the HIV-1 

viral load as parameter d  varies. 
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Figure 8. Ranges of the CD4 lymphocyte population, the CD8 lymphocyte population and the HIV-1 

viral load as parameter e  varies. 



International Journal of Bifurcation and Chaos 

 20

0 0.01 0.02 0.03
100

200

300

400

500

600

700

800

900

1000

1100

Parameter f

C
D

4 
ce

lls

0 0.01 0.02 0.03
0

1000

2000

3000

4000

5000

6000

7000

8000

Parameter f

C
D

8 
ce

lls

0 0.01 0.02 0.03
-0.005

0

0.005

0.01

0.015

0.02

0.025

Parameter f

Vi
ra

l l
oa

d

 
Figure 9. Ranges of the CD4 lymphocyte population, the CD8 lymphocyte population and the HIV-1 

viral load as parameter f  varies. 
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Figure 10. State responses of the overall controlled system. 
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Figure 11. Dose concentration. 

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

Time t (years)

C
el

l p
op

ul
at

io
ns

 (/
m

m3 ) a
nd

 v
ira

l l
oa

d 
(C

op
ie

s 
x 

10
00

0/
m

l) 

Responses of the HIV system under the proposed control strategy
CD4 cells
CD8 cells
Viral load

 

Figure 12. State responses of the overall controlled system. 
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Figure 13. Dose concentration. 


