4,805 research outputs found

    공컨테이너관리 기법을 활용한 효율적인 컨테이너 공급망

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 산업공학과, 2021. 2. 문일경.Due to a remarkable surge in global trade volumes led by maritime transportation, shipping companies should make a great effort in managing their container flows especially in case of carrier-owned containers. To do so, they comprehensively implement empty container management strategies and accelerate the flows in a cost- and time-efficient manner to minimize total relevant costs while serving the maximal level of customers demands. However, many critical issues in container flows universally exist due to high uncertainty in reality and hinder the establishment of an efficient container supply chain. In this dissertation, we fully discuss such issues and provide mathematical models along with specific solution procedures. Three types of container supply chain are presented in the following: (i) a two-way four-echelon container supply chain; (ii) a laden and empty container supply chain under decentralized and centralized policies; (iii) a reliable container supply chain under disruption. These models explicitly deal with high risks embedded in a container supply chain and their computational experiments offer underlying managerial insights for the management in shipping companies. For (i), we study empty container management strategy in a two-way four-echelon container supply chain for bilateral trade between two countries. The strategy reduces high maritime transportation costs and long delivery times due to transshipment. The impact of direct shipping is investigated to determine the number of empty containers to be repositioned among selected ports, number of leased containers, and route selection to satisfy the demands for empty and laden containers for exporters and importers in two regions. A hybrid solution procedure based on accelerated particle swarm optimization and heuristic is presented, and corresponding results are compared. For (ii), we introduce the laden and empty container supply chain model based on three scenarios that differ with regard to tardiness in the return of empty containers and the decision process for the imposition of fees with the goal of determining optimal devanning times. The effectiveness of each type of policy - centralized versus decentralized - is determined through computational experiments that produce key performance measures including the on-time return ratio. Useful managerial insights on the implementation of these polices are derived from the results of sensitivity analyses and comparative studies. For (iii), we develop a reliability model based on container network flow while also taking into account expected transportation costs, including street-turn and empty container repositioning costs, in case of arc- and node-failures. Sensitivity analyses were conducted to analyze the impact of disruption on container supply chain networks, and a benchmark model was used to determine disruption costs. More importantly, some managerial insights on how to establish and maintain a reliable container network flow are also provided.해상 수송이 주도함으로써 전 세계 무역량이 급증하기 때문에 회사 소유 컨테이너는 컨테이너 흐름을 관리하는 데 많은 노력을 기울여야 한다. 이를 위해 공 컨테이너 관리 전략을 포괄적으로 구현하고 효율적인 수송 비용 및 시간 절감 방식으로 컨테이너 흐름을 원활히 하여 관련 총비용을 최소화하는 동시에 고객의 수요를 최대한 충족하게 된다. 그러나 현실에서는 높은 불확실성 때문에 컨테이너 흐름에 대한 많은 주요한 이슈가 보편적으로 존재하고 효율적인 컨테이너 공급망 구축을 방해한다. 본 논문에서는 이러한 이슈에 대해 전반적으로 논의하고 적절한 해법과 함께 수리 모형을 제공한다. 이를 위해 세 가지 유형의 컨테이너 공급망을 다룬다. 먼저 (i) 양방향 네 단계 컨테이너 공급망, (ii) 분권화 및 중앙 집중화 정책에 따른 적∙공 컨테이너 공급망; 그리고 (iii) disruption 상황 속에서 신뢰성을 고려하는 컨테이너 공급망이다. 본 논문에서 제시한 세 가지 모형은 컨테이너 공급망에 내재 된 높은 위험을 직접 다루며 계산 실험은 해운 회사의 경영진이나 관계자를 위해 주요한 관리 인사이트를 제공한다. (i)의 경우, 두 지역 간 양자 무역을 위한 양방향 네 단계 컨테이너 공급망에서 공 컨테이너 관리 전략을 연구한다. 이 전략은 환적으로 인한 높은 해상 운송 비용과 긴 배송 시간을 줄일 수 있다. 또한, 직항 수송의 영향을 조사하여 선택된 항구 중 재배치 할 공 컨테이너 수, 임대 컨테이너 수, 두 지역의 수출업자와 수입업자의 적∙공 컨테이너 대한 수요를 만족하기 위한 경로 선택을 결정하게 된다. APSO 및 휴리스틱을 기반으로 하는 하이브리드 해법을 제시하며 비교 실험을 하였다. (ii)의 경우 최적 devanning time 결정을 목표로 공 컨테이너의 반환 지연과 해당 수수료 부과 결정 프로세스와 관련하여 서로 다른 세 가지 시나리오를 기반으로 적∙공 컨테이너 공급망 모형을 제시한다. 각 유형의 정책적(분권화 및 중앙 집중화) 효과는 정시 반환율을 포함한 주요 성능 측정을 고려하는 계산 실험을 통해 결정된다. 이러한 정책 실행에 대한 유용한 관리 인사이트는 민감도 분석 및 비교 연구의 결과에서 도출한다. (iii)의 경우, 본 논문은 컨테이너 네트워크 흐름을 기반으로 하는 신뢰성 모형을 개발하는 동시에 아크 및 노드 failure가 있을 때 street-turn 및 공 컨테이너 재배치 비용을 포함한 기대 총 비용을 구한다. 중단이 컨테이너 공급망 네트워크에 미치는 영향을 분석하기 위해 민감도 분석을 수행했으며 disruption 비용을 결정하기 위해 벤치마크 모형을 활용한다. 더불어 신뢰성을 고려한 컨테이너 네트워크 흐름을 구축하고 신뢰성을 유지하는 방법에 대한 관리적 인사이트도 제공한다.Abstract i Contents ii List of Tables vi List of Figures viii 1. Introduction 1 1.1 Empty Container Repositioning Problem 1 1.2 Reliability Problem 3 1.3 Research Motivation and Contributions 4 1.4 Outline of the Dissertation 7 2. Two-Way Four-Echelon Container Supply Chain 8 2.1 Problem Description and Literature Review 8 2.2 Mathematical Model for the TFESC 15 2.2.1 Overview and Assumptions 15 2.2.2 Notation and Formulation 19 2.3 Solution Procedure for the TFESC 25 2.3.1 Pseudo-Function-based Optimization Problem 25 2.3.2 Objective Function Evaluation 28 2.3.3 Heuristics for Reducing the Number of Leased Containers 32 2.3.4 Accelerated Particle Swarm Optimization 34 2.4 Computational Experiments 37 2.4.1 Heuristic Performances 39 2.4.2 Senstivity Analysis of Varying Periods 42 2.4.3 Senstivity Analysis of Varying Number of Echelons 45 2.5 Summary 48 3. Laden and Empty Container Supply Chain under Decentralized and Centralized Policies 50 3.1 Problem Description and Literature Review 50 3.2 Scenario-based Model for the LESC-DC 57 3.3 Model Development for the LESC-DC 61 3.3.1 Centralized Policy 65 3.3.2 Decentralized Policies (Policies I and II) 67 3.4 Computational Experiments 70 3.4.1 Numerical Exmpale 70 3.4.2 Sensitivity Analysis of Varying Degree of Risk in Container Return 72 3.4.3 Sensitivity Analysis of Increasing L_0 74 3.4.4 Sensitivity Analysis of Increasing t_r 76 3.4.5 Sensitivity Analysis of Decreasing es and Increasing e_f 77 3.4.6 Sensitivity Analysis of Discounting 〖pn〗_{f1} and 〖pn〗_{f2} 78 3.4.7 Sensitivity Analysis of Different Container Fleet Sizes 79 3.5 Managerial Insights 81 3.6 Summary 83 4. Reliable Container Supply Chain under Disruption 84 4.1 Problem Description and Literature Review 84 4.2 Mathematical Model for the RCNF 90 4.3 Reliability Model under Disruption 95 4.3.1 Designing the Patterns of q and s 95 4.3.2 Objective Function for the RCNF Model 98 4.4 Computational Experiments 103 4.4.1 Sensitivity Analysis of Expected Failure Costs 106 4.4.2 Sensitivity Analysis of Different Network Structures 109 4.4.3 Sensitivity Analysis of Demand-Supply Variation 112 4.4.4 Managerial Insights 115 4.5 Summary 116 5. Conclusions and Future Research 117 Appendices 120 A Proof of Proposition 3.1 121 B Proof of Proposition 3.2 124 C Proof of Proposition 3.3 126 D Sensitivity Analyses for Results 129 E Data for Sensitivity Analyses 142 Bibliography 146 국문초록 157 감사의 글 160Docto

    OPTIMIZATION MODELS AND METHODOLOGIES TO SUPPORT EMERGENCY PREPAREDNESS AND POST-DISASTER RESPONSE

    Get PDF
    This dissertation addresses three important optimization problems arising during the phases of pre-disaster emergency preparedness and post-disaster response in time-dependent, stochastic and dynamic environments. The first problem studied is the building evacuation problem with shared information (BEPSI), which seeks a set of evacuation routes and the assignment of evacuees to these routes with the minimum total evacuation time. The BEPSI incorporates the constraints of shared information in providing on-line instructions to evacuees and ensures that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. A mixed-integer linear program is formulated for the BEPSI and an exact technique based on Benders decomposition is proposed for its solution. Numerical experiments conducted on a mid-sized real-world example demonstrate the effectiveness of the proposed algorithm. The second problem addressed is the network resilience problem (NRP), involving an indicator of network resilience proposed to quantify the ability of a network to recover from randomly arising disruptions resulting from a disaster event. A stochastic, mixed integer program is proposed for quantifying network resilience and identifying the optimal post-event course of action to take. A solution technique based on concepts of Benders decomposition, column generation and Monte Carlo simulation is proposed. Experiments were conducted to illustrate the resilience concept and procedure for its measurement, and to assess the role of network topology in its magnitude. The last problem addressed is the urban search and rescue team deployment problem (USAR-TDP). The USAR-TDP seeks an optimal deployment of USAR teams to disaster sites, including the order of site visits, with the ultimate goal of maximizing the expected number of saved lives over the search and rescue period. A multistage stochastic program is proposed to capture problem uncertainty and dynamics. The solution technique involves the solution of a sequence of interrelated two-stage stochastic programs with recourse. A column generation-based technique is proposed for the solution of each problem instance arising as the start of each decision epoch over a time horizon. Numerical experiments conducted on an example of the 2010 Haiti earthquake are presented to illustrate the effectiveness of the proposed approach

    Effects of fuel cost uncertainty on optimal energy flows in U.S.

    Get PDF
    The research is motivated by the need for economic efficiency and risk management in the national electric system. Stochastic costs of natural gas are introduced in a generalized network flow model of the integrated power energy system to explore the effects of uncertain fuel costs on the optimal energy flows in U.S. The fuel costs are modeled as discretely distributed random variables and a rolling two-stage approach is applied to solve the stochastic recourse problem. All the data are derived from publicly available information for the year 2002. The natural gas price forecasts by the Energy Information Administration are adapted to generate scenarios that are considered in the stochastic problem. Compared to the expected value solution from the deterministic model, the recourse problem solution obtained from the stochastic model has higher total cost, lower natural gas consumption and less subregional power trade but a flow mix which is closer to the 2002 real data. Surprisingly, increasing the uncertainty level of the scenarios leads to a recourse problem solution with slightly lower total cost but this effect may be distributed to the inaccuracy of the forecasts. The comparison demonstrates the stochastic model\u27s capability of forecasting energy flows. The stochastic model assists decision makers to better understand how the uncertain fuel costs would affect future flows within the national electric energy system

    Learning-Based Matheuristic Solution Methods for Stochastic Network Design

    Full text link
    Cette dissertation consiste en trois études, chacune constituant un article de recherche. Dans tous les trois articles, nous considérons le problème de conception de réseaux multiproduits, avec coût fixe, capacité et des demandes stochastiques en tant que programmes stochastiques en deux étapes. Dans un tel contexte, les décisions de conception sont prises dans la première étape avant que la demande réelle ne soit réalisée, tandis que les décisions de flux de la deuxième étape ajustent la solution de la première étape à la réalisation de la demande observée. Nous considérons l’incertitude de la demande comme un nombre fini de scénarios discrets, ce qui est une approche courante dans la littérature. En utilisant l’ensemble de scénarios, le problème mixte en nombre entier (MIP) résultant, appelé formulation étendue (FE), est extrêmement difficile à résoudre, sauf dans des cas triviaux. Cette thèse vise à faire progresser le corpus de connaissances en développant des algorithmes efficaces intégrant des mécanismes d’apprentissage en matheuristique, capables de traiter efficacement des problèmes stochastiques de conception pour des réseaux de grande taille. Le premier article, s’intitulé "A Learning-Based Matheuristc for Stochastic Multicommodity Network Design". Nous introduisons et décrivons formellement un nouveau mécanisme d’apprentissage basé sur l’optimisation pour extraire des informations concernant la structure de la solution du problème stochastique à partir de solutions obtenues avec des combinaisons particulières de scénarios. Nous proposons ensuite une matheuristique "Learn&Optimize", qui utilise les méthodes d’apprentissage pour déduire un ensemble de variables de conception prometteuses, en conjonction avec un solveur MIP de pointe pour résoudre un problème réduit. Le deuxième article, s’intitulé "A Reduced-Cost-Based Restriction and Refinement Matheuristic for Stochastic Network Design". Nous étudions comment concevoir efficacement des mécanismes d’apprentissage basés sur l’information duale afin de guider la détermination des variables dans le contexte de la conception de réseaux stochastiques. Ce travail examine les coûts réduits associés aux variables hors base dans les solutions déterministes pour guider la sélection des variables dans la formulation stochastique. Nous proposons plusieurs stratégies pour extraire des informations sur les coûts réduits afin de fixer un ensemble approprié de variables dans le modèle restreint. Nous proposons ensuite une approche matheuristique utilisant des techniques itératives de réduction des problèmes. Le troisième article, s’intitulé "An Integrated Learning and Progressive Hedging Method to Solve Stochastic Network Design". Ici, notre objectif principal est de concevoir une méthode de résolution capable de gérer un grand nombre de scénarios. Nous nous appuyons sur l’algorithme Progressive Hedging (PHA), ou les scénarios sont regroupés en sous-problèmes. Nous intégrons des methodes d’apprentissage au sein de PHA pour traiter une grand nombre de scénarios. Dans notre approche, les mécanismes d’apprentissage developpés dans le premier article de cette thèse sont adaptés pour résoudre les sous-problèmes multi-scénarios. Nous introduisons une nouvelle solution de référence à chaque étape d’agrégation de notre ILPH en exploitant les informations collectées à partir des sous problèmes et nous utilisons ces informations pour mettre à jour les pénalités dans PHA. Par conséquent, PHA est guidé par les informations locales fournies par la procédure d’apprentissage, résultant en une approche intégrée capable de traiter des instances complexes et de grande taille. Dans les trois articles, nous montrons, au moyen de campagnes expérimentales approfondies, l’intérêt des approches proposées en termes de temps de calcul et de qualité des solutions produites, en particulier pour traiter des cas très difficiles avec un grand nombre de scénarios.This dissertation consists of three studies, each of which constitutes a self-contained research article. In all of the three articles, we consider the multi-commodity capacitated fixed-charge network design problem with uncertain demands as a two-stage stochastic program. In such setting, design decisions are made in the first stage before the actual demand is realized, while second-stage flow-routing decisions adjust the first-stage solution to the observed demand realization. We consider the demand uncertainty as a finite number of discrete scenarios, which is a common approach in the literature. By using the scenario set, the resulting large-scale mixed integer program (MIP) problem, referred to as the extensive form (EF), is extremely hard to solve exactly in all but trivial cases. This dissertation is aimed at advancing the body of knowledge by developing efficient algorithms incorporating learning mechanisms in matheuristics, which are able to handle large scale instances of stochastic network design problems efficiently. In the first article, we propose a novel Learning-Based Matheuristic for Stochastic Network Design Problems. We introduce and formally describe a new optimizationbased learning mechanism to extract information regarding the solution structure of a stochastic problem out of the solutions of particular combinations of scenarios. We subsequently propose the Learn&Optimize matheuristic, which makes use of the learning methods in inferring a set of promising design variables, in conjunction with a state-ofthe- art MIP solver to address a reduced problem. In the second article, we introduce a Reduced-Cost-Based Restriction and Refinement Matheuristic. We study on how to efficiently design learning mechanisms based on dual information as a means of guiding variable fixing in the context of stochastic network design. The present work investigates how the reduced cost associated with non-basic variables in deterministic solutions can be leveraged to guide variable selection within stochastic formulations. We specifically propose several strategies to extract reduced cost information so as to effectively identify an appropriate set of fixed variables within a restricted model. We then propose a matheuristic approach using problem reduction techniques iteratively (i.e., defining and exploring restricted region of global solutions, as guided by applicable dual information). Finally, in the third article, our main goal is to design a solution method that is able to manage a large number of scenarios. We rely on the progressive hedging algorithm (PHA) where the scenarios are grouped in subproblems. We propose a two phase integrated learning and progressive hedging (ILPH) approach to deal with a large number of scenarios. Within our proposed approach, the learning mechanisms from the first study of this dissertation have been adapted as an efficient heuristic method to address the multi-scenario subproblems within each iteration of PHA.We introduce a new reference point within each aggregation step of our proposed ILPH by exploiting the information garnered from subproblems, and using this information to update the penalties. Consequently, the ILPH is governed and guided by the local information provided by the learning procedure, resulting in an integrated approach capable of handling very large and complex instances. In all of the three mentioned articles, we show, by means of extensive experimental campaigns, the interest of the proposed approaches in terms of computation time and solution quality, especially in dealing with very difficult instances with a large number of scenarios

    Decomposition Methods in Column Generation and Data-Driven Stochastic Optimization

    Get PDF
    In this thesis, we are focused on tackling large-scale problems arising in two-stage stochastic optimization and the related Dantzig-Wolfe decomposition. We start with a deterministic setting, where we consider linear programs with a block-structure, but data cannot be stored centrally due to privacy concerns or decentralized storage of large datasets. The larger portion of the thesis is dedicated to the stochastic setting, where we study two-stage distributionally robust optimization under the Wasserstein ambiguity set to tackle problems with limited data. In Chapter 2, joint work with Shabbir Ahmed, we propose a fully distributed Dantzig-Wolfe decomposition (DWD) algorithm using the Alternating Direction Method of Multipliers (ADMM) method. DWD is a classical algorithm used to solve large-scale linear programs whose constraint matrix is a set of independent blocks coupled with a set of linking rows but requires to solve a master problem centrally, which can be undesirable or infeasible in certain cases due to privacy concerns or decentralized storage of data. To this end, we develop a consensus-based Dantzig-Wolfe decomposition algorithm where the master problem is solved in a distributed fashion. We detail the computational and algorithmic challenges of our method, provide bounds on the optimality gap and feasibility violation, and perform extensive computational experiments on instances of the cutting stock problem and synthetic instances using a Message Passing Interface (MPI) implementation, where we obtain high-quality solutions in reasonable time. In Chapter 3 and 4, we turn our focus to stochastic optimization, specifically applications where data is scarce and the underlying probability distribution is difficult to estimate. Chapter 3 is joint work with Anirudh Subramanyam and Kibaek Kim. Here, we consider two-stage conic DRO under the Wasserstein ambiguity set with zero-one uncertainties. We are motivated by problems arising in network optimization, where binary random variables represent failures of network components. We are interested in applications where such failures are rare and have a high impact, making it difficult to estimate failure probabilities. By using ideas from bilinear programming and penalty methods, we provide tractable approximations of our two-stage DRO model which can be iteratively improved using lift-and-project techniques. We illustrate the computational and out-of-sample performance of our method on the optimal power flow problem with random transmission line failures and a multi-commodity network design problem with random node failures. In Chapter 4, joint work with Alejandro Toriello and George Nemhauser, we study a two-stage model which arises in natural disaster management applications, where the first stage is a facility location problem, deciding where to open facilities and pre-allocate resources, and the second stage is a fixed-charge transportation problem, routing resources to affected areas after a disaster. We solve a two-stage DRO model under the Wasserstein set to deal with the lack of available data. The presence of binary variables in the second stage significantly complicates the problem. We develop an efficient column-and-constraint generation algorithm by leveraging the structure of our support set and second-stage value function, and show our results extend to the case where the second stage is a fixed-charge network flow problem. We provide a detailed discussion on our implementation, and end the chapter with computational experiments on synthetic instances and a case study of hurricane threats on the coastal states of the United States. We end the thesis with concluding remarks and potential directions for future research.Ph.D

    Optimization Approaches for Improving Mitigation and Response Operations in Disaster Management

    Get PDF
    Disasters are calamitous events that severely affect the life conditions of an entire community, being the disasters either nature-based (e.g., earthquake) or man-made (e.g., terroristic attack). Disaster-related issues are usually dealt with according to the Disaster Operations Management (DOM) framework, which is composed of four phases: mitigation and preparedness, which address pre-disaster issues, and response and recovery, which tackle problems arising after the occurrence of a disaster. The ultimate scope of this dissertation is to present novel optimization models and algorithms aimed at improving operations belonging to the mitigation and response phases of the DOM. On the mitigation side, this thesis focuses on the protection of Critical Information Infrastructures (CII), which are commonly deemed to include communication and information networks. The majority of all the other Critical Infrastructures (CI), such as electricity, fuel and water supply as well as transportation systems, are crucially dependent on CII. Therefore, problems associated with CII that disrupt the services they are able to provide (whether to a single end-user or to another CI) are of increasing interest. This dissertation reviews several issues emerging in the Critical Information Infrastructures Protection (CIIP), field such as: how to identify the most critical components of a communication network whose disruption would affect the overall system functioning; how to mitigate the consequences of such calamitous events through protection strategies; and how to design a system which is intrinsically able to hedge against disruptions. To this end, this thesis provides a description of the seminal optimization models that have been developed to address the aforementioned issues in the general field of Critical Infrastructures Protection (CIP). Models are grouped in three categories which address the aforementioned issues: survivability-oriented interdiction, resource allocation strategy, and survivable design models; existing models are reviewed and possible extensions are proposed. In fact, some models have already been developed for CII (i.e., survivability-interdiction and design models), while others have been adapted from the literature on other CI (i.e., resource allocation strategy models). The main gap emerging in the CII field is that CII protection has been quite overlooked which has led to review optimization models that have been developed for the protection of other CI. Hence, this dissertation contributes to the literature in the field by also providing a survey of the multi-level programs that have been developed for protecting supply chains, transportation systems (e.g., railway infrastructures), and utility networks (e.g., power and water supply systems), in order to adapt them for CII protection. Based on the review outcomes, this thesis proposes a novel linear bi-level program for CIIP to mitigate worst-case disruptions through protection investments entailing network design operations, namely the Critical Node Detection Problem with Fortification (CNDPF), which integrates network survivability assessment, resource allocation strategies and design operations. To the best of my knowledge, this is the first bi-level program developed for CIIP. The model is solved through a Super Valid Inequalities (SVI) decomposition approach and a Greedy Constructive and Local Search (GCLS) heuristic. Computational results are reported for real communication networks and for different levels of both disaster magnitude and protection resources. On the response side, this thesis identifies the current challenges in devising realistic and applicable optimization models in the shelter location and evacuation routing context and outlines a roadmap for future research in this topical area. A shelter is a facility where people belonging to a community hit by a disaster are provided with different kinds of services (e.g., medical assistance, food). The role of a shelter is fundamental for two categories of people: those who are unable to make arrangements to other safe places (e.g., family or friends are too far), and those who belong to special-needs populations (e.g., disabled, elderly). People move towards shelter sites, or alternative safe destinations, when they either face or are going to face perilous circumstances. The process of leaving their own houses to seek refuge in safe zones goes under the name of evacuation. Two main types of evacuation can be identified: self-evacuation (or car-based evacuation) where individuals move towards safe sites autonomously, without receiving any kind of assistance from the responder community, and supported evacuation where special-needs populations (e.g., disabled, elderly) require support from emergency services and public authorities to reach some shelter facilities. This dissertation aims at identifying the central issues that should be addressed in a comprehensive shelter location/evacuation routing model. This is achieved by a novel meta-analysis that entail: (1) analysing existing disaster management surveys, (2) reviewing optimization models tackling shelter location and evacuation routing operations, either separately or in an integrated manner, (3) performing a critical analysis of existing papers combining shelter location and evacuation routing, concurrently with the responses of their authors, and (4) comparing the findings of the analysis of the papers with the findings of the existing disaster management surveys. The thesis also provides a discussion on the emergent challenges of shelter location and evacuation routing in optimization such as the need for future optimization models to involve stakeholders, include evacuee as well as system behaviour, be application-oriented rather than theoretical or model-driven, and interdisciplinary and, eventually, outlines a roadmap for future research. Based on the identified challenges, this thesis presents a novel scenario-based mixed-integer program which integrates shelter location, self-evacuation and supported-evacuation decisions, namely the Scenario-Indexed Shelter Location and Evacuation Routing (SISLER) problem. To the best of my knowledges, this is the second model including shelter location, self-evacuation and supported-evacuation however, SISLER deals with them based on the provided meta-analysis. The model is solved through a Branch-and-Cut algorithm of an off-the-shelf software, enriched with valid inequalities adapted from the literature. Computational results are reported for both testbed instances and a realistic case study

    Locating and Protecting Facilities Subject to Random Disruptions and Attacks

    Get PDF
    Recent events such as the 2011 Tohoku earthquake and tsunami in Japan have revealed the vulnerability of networks such as supply chains to disruptive events. In particular, it has become apparent that the failure of a few elements of an infrastructure system can cause a system-wide disruption. Thus, it is important to learn more about which elements of infrastructure systems are most critical and how to protect an infrastructure system from the effects of a disruption. This dissertation seeks to enhance the understanding of how to design and protect networked infrastructure systems from disruptions by developing new mathematical models and solution techniques and using them to help decision-makers by discovering new decision-making insights. Several gaps exist in the body of knowledge concerning how to design and protect networks that are subject to disruptions. First, there is a lack of insights on how to make equitable decisions related to designing networks subject to disruptions. This is important in public-sector decision-making where it is important to generate solutions that are equitable across multiple stakeholders. Second, there is a lack of models that integrate system design and system protection decisions. These models are needed so that we can understand the benefit of integrating design and protection decisions. Finally, most of the literature makes several key assumptions: 1) protection of infrastructure elements is perfect, 2) an element is either fully protected or fully unprotected, and 3) after a disruption facilities are either completely operational or completely failed. While these may be reasonable assumptions in some contexts, there may exist contexts in which these assumptions are limiting. There are several difficulties with filling these gaps in the literature. This dissertation describes the discovery of mathematical formulations needed to fill these gaps as well as the identification of appropriate solution strategies

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    The doctoral research abstracts. Vol:7 2015 / Institute of Graduate Studies, UiTM

    Get PDF
    Foreword: The Seventh Issue of The Doctoral Research Abstracts captures the novelty of 65 doctorates receiving their scrolls in UiTM’s 82nd Convocation in the field of Science and Technology, Business and Administration, and Social Science and Humanities. To the recipients I would like to say that you have most certainly done UiTM proud by journeying through the scholastic path with its endless challenges and impediments, and persevering right till the very end. This convocation should not be regarded as the end of your highest scholarly achievement and contribution to the body of knowledge but rather as the beginning of embarking into high impact innovative research for the community and country from knowledge gained during this academic journey. As alumni of UiTM, we will always hold you dear to our hearts. A new ‘handshake’ is about to take place between you and UiTM as joint collaborators in future research undertakings. I envisioned a strong research pact between you as our alumni and UiTM in breaking the frontier of knowledge through research. I wish you all the best in your endeavour and may I offer my congratulations to all the graduands. ‘UiTM sentiasa dihati ku’ / Tan Sri Dato’ Sri Prof Ir Dr Sahol Hamid Abu Bakar , FASc, PEng Vice Chancellor Universiti Teknologi MAR

    Intermodal Network Design and Expansion for Freight Transportation

    Get PDF
    Over the last 50 years, international trade has grown considerably, and this growth has strained the global supply chains and their underlying support infrastructures. Consequently, shippers and receivers have to look for more efficient ways to transport their goods. In recent years, intermodal transport is becoming an increasingly attractive alternative to shippers, and this trend is likely to continue as governmental agencies are considering policies to induce a freight modal shift from road to intermodal to alleviate highway congestion and emissions. Intermodal freight transport involves using more than one mode, and thus, it is a more complex transport process. The factors that affect the overall efficiency of intermodal transport include, but not limited to: 1) cost of each mode, 2) trip time of each mode, 3) transfer time to another mode, and 4) location of that transfer (intermodal terminal). One of the reasons for the inefficiencies in intermodal freight transportation is the lack of planning on where to locate intermodal facilities in the transportation network and which infrastructure to expand to accommodate growth. This dissertation focuses on the intermodal network design problem and it extends previous works in three aspects: 1) address competition among intermodal service providers, 2) incorporate uncertainty of demand and supply in the design, and 3) incorporate multi-period planning into investment decisions. The following provides an overview of the works that have been completed in this dissertation. This work formulated robust optimization models for the problem of finding near-optimal locations for new intermodal terminals and their capacities for a railroad company, which operates an intermodal network in a competitive environment with uncertain demands. To solve the robust models, a Simulated Annealing (SA) algorithm was developed. Experimental results indicated that the SA solutions (i.e. objective function values) are comparable to those obtained using GAMS, but the SA algorithm can obtain solutions faster and can solve much larger problems. Also, the results verified that solutions obtained from the robust models are more effective in dealing with uncertain demand scenarios. In a second study, a robust Mixed-Integer Linear Program (MILP) was developed to assist railroad operators with intermodal network expansion decisions. Specifically, the objective of the model was to identify critical rail links to retrofit, locations to establish new terminals, and existing terminals to expand, where the intermodal freight network is subject to demand and supply uncertainties. Addition considerations by the model included a finite overall budget for investment, limited capacities on network links and at intermodal terminals, and due dates for shipments. A hybrid genetic algorithm was developed to solve the proposed MILP. It utilized a column generation algorithm for freight flow assignment and a shortest path labeling algorithm for routing decisions. Experimental results indicated that the developed algorithm can produce optimal solutions efficiently for both small-sized and large-sized intermodal freight networks. The results also verified that the developed model outperformed the traditional network design model with no uncertainty in terms of total network cost. The last study investigated the impact of multi-period approach in intermodal network expansion and routing decisions. A multi-period network design model was proposed to find when and where to locate new terminals, expand existing terminals and retrofit weaker links of the network over an extended planning period. Unlike the traditional static model, the planning horizon was divided into multiple periods in the multi-period model with different time scales for routing and design decisions. Expansion decisions were subject to budget constraints, demand uncertainty and network disruptions. A hybrid Simulated Annealing algorithm was developed to solve this NP-hard model. Model and algorithm’s application were investigated with two numerical case studies. The results verified the superiority of the multi-period model versus the single-period one in terms of total transportation cost and capacity utilization
    corecore