
DECOMPOSITION METHODS IN COLUMN GENERATION AND
DATA-DRIVEN STOCHASTIC OPTIMIZATION

A Dissertation
Presented to

The Academic Faculty

By

Mohamed Ali El-Moghazi El Tonbari

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Operations Research in the
School of Industrial and Systems Engineering

Georgia Institute of Technology

December 2021

c©Mohamed Ali El-Moghazi El Tonbari 2021



DECOMPOSITION METHODS IN COLUMN GENERATION AND
DATA-DRIVEN STOCHASTIC OPTIMIZATION

Thesis committee:

Dr. George Nemhauser, Advisor
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Alejandro Toriello, Advisor
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Mathieu Dahan
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Santanu Dey
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Kibaek Kim
Mathematics and Computer Science Divi-
sion
Argonne National Laboratory

Dr. Shabbir Ahmed, Late Advisor
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Date approved: November 22, 2021



ACKNOWLEDGMENTS

I would first like to thank my late advisor, Shabbir Ahmed - a great researcher and

a great mentor who was passionate about research and cared about his students. I really

enjoyed our discussions and working through problems and proofs on the whiteboard with

you. I am grateful for all the opportunities you have given me, and for teaching me how to

be a researcher. You were one of the best teachers I’ve had the fortune to work with. Thank

you for being an amazing advisor. I would like to thank my advisor, George Nemhauser, for

always being there for me throughout my PhD. I could not have asked for a better advisor.

I admire you as a researcher and as a person. You taught me the importance of thinking

about the big picture. Thank you for all the guidance, support, and patience. I would like to

thank Natashia Boland for guiding me at the start of my last chapter, for all the advice and

the support. It was great working with you as we figured out how to frame the problem.

Last but not least, thank you, Alejandro Toriello, for being a great advisor in my last year. I

really enjoyed discussing and exploring ideas, working through the last chapter and seeing

it to the end.

I am very grateful to my supervisor during my internships at Argonne National Labo-

ratory, Kibaek Kim, and my collaborator Anirudh Subramanyam. Thank you, Kibaek, for

introducing me to the topic of Distributionally Robust Optimization. I have learned a lot

through my time working with you about computational aspects of stochastic optimization

and power systems. Thank you for your patience and support. To Anirudh, thank you for

being a great collaborator and mentor. I will always cherish the countless hours we spent

on the board working out the problems and bouncing off ideas. It was some of the most fun

I’ve had in research.

I would like to acknowledge the remaining members of my committee, Santanu Dey

and Mathieu Dahan. Thank you for your support and kindness. Thank you, Mathieu and

Pinar Keskinocak, for your valuable input at the start of our project on natural disaster

iii



management. Thank you to PACE for providing me with computing resources. Thank

you, Amanda Ford, for your patience throughout the years as you answered many of my

questions.

Thank you, Amir Ali Ahmadi, for being an incredible mentor throughout the years.

You were always there for me to answer questions and give me advice. My interest in

optimization started with your amazingly taught course. I remember the times after office

hours where you went out of your way to make sure I understood the concepts, and I am

grateful for that.

Thank you, Jana Boerger, for always being there for me, for all the support and for

the amazing times, and hope for many more trips and fun times with you. I am grateful

for the many fellow students and friends I have met along the way who have made this

a memorable journey. Thank you, Émile Trottier, Jakob Schoeffer, Devesh Kedia, Jen

Coppola, Daniel Baller. I will always cherish our times together, and hope for many more

to come. To Emma Johnson, Kirthana Hampapur, Paritosh Ramanan, Alexandre Velloso: I

will always remember our lunches, food trips, and countless interesting discussions we’ve

had. It would not have been the same without you. I would also like to thank my friends

and collegues at Georgia Tech for the fun times and interesting discussions as we worked

through the many assignments and projects: Andrew ElHabr, Ramon Auad, Adrian Rivera,

Reem Khir, Alejandro Carderera, Yuliia Lut, Lingquan Ding, Jimmy Zhang, Alex Forney,

Hassan Mortagy, Daniela Hurtado, Georgios Kotsalis, Tyler Perini, Alfredo Torrico, Adolfo

Rocco, Tony Yaacoub, Yassine Ridouane, Seyma Gurkan, Digvijay Boob, Sait Cakmak, Di

Liu, Ana Marı́a Estrada Gómez, Sebastian Perez-Salazar, Beste Basciftci. Thank you to all

of you, and anyone I am missing in this list!

Most importantly, I am deeply grateful to my amazing family, my parents and my

brother. This journey would not have been possible without your constant support. Thank

you for always believing in me.

iv



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Two-Stage Stochastic Programming . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dantzig-Wolfe Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Data-Driven Stochastic Optimization . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Distributionally Robust Optimization Under The Wasserstein Am-
biguity Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Data-Driven Two-Stage Conic Optimization with Rare High-Impact
Zero-One Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Binary Distributionally Robust Optimization Under the Wasserstein
Set: A Disaster Relief Application . . . . . . . . . . . . . . . . . . 11

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2: Consensus-Based Dantzig-Wolfe Decomposition . . . . . . . . . . . . 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

v



2.1.1 Dantzig-Wolfe Decomposition . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 ADMM Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Consensus-Based ADMM . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Convergence and Stopping Criteria . . . . . . . . . . . . . . . . . . 23

2.4 Consensus-Based Dantzig-Wolfe Algorithm . . . . . . . . . . . . . . . . . 24

2.4.1 CDWD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 ADMM Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Cutting Stock Problem . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.3 Synthetic Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.4 Parallel Efficiency and Scalability . . . . . . . . . . . . . . . . . . 51

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 3: Data-Driven Two-Stage Conic Optimization with Rare High-Impact
Zero-One Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Distributionally Robust Approach for Discrete Rare Events . . . . . . . . . 57

3.2.1 Choice of the Underlying Metric and Radius of the Wasserstein Ball 58

3.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vi



3.3 Mixed-Integer Conic Representations . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Linearized Reformulation . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.2 Penalty Reformulation . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.3 Summary and Comparison . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Lift-and-Project Approximations . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.1 Lovász-Schrijver Approximation . . . . . . . . . . . . . . . . . . . 77

3.4.2 Numerical Considerations . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Computing An Exact Penalty Parameter . . . . . . . . . . . . . . . . . . . 79

3.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6.1 Optimal Power Flow . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6.2 Multi-commodity Network Design . . . . . . . . . . . . . . . . . . 96

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 4: Binary Distributionally Robust Optimization Under the Wasserstein
Set: A Disaster Relief Application . . . . . . . . . . . . . . . . . . . . 103

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.1 Two-stage Distributionally Robust Model . . . . . . . . . . . . . . 106

4.2.2 Support Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Column-and-Constraint Generation Algorithm . . . . . . . . . . . . . . . . 112

4.3.1 Extensive Reformulation . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.2 Column & Constraint Generation . . . . . . . . . . . . . . . . . . . 114

vii



4.3.3 Separation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3.4 Fixed-Charge Network Flow . . . . . . . . . . . . . . . . . . . . . 122

4.4 Numerical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.1 Solving (RER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.2 Separation Problem Implementation . . . . . . . . . . . . . . . . . 126

4.4.3 CCG-FIB Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5.2 Synthetic Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.5.3 Case Study: Hurricane Threats in the Gulf of Mexico States . . . . 138

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Chapter 5: Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Chapter A: Data-Driven Two-Stage Conic Optimization with Rare High-Impact
Zero-One Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.1 Benders Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Chapter B: Binary Distributionally Robust Optimization Under the Wasserstein
Set: A Disaster Relief Application . . . . . . . . . . . . . . . . . . . . 156

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

viii



LIST OF TABLES

2.1 CSP Results: optimality and feasibility gaps of CDWD, and runtimes of
CDWD and DWD for various number of roll types K and number of items
P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Optimality gaps and feasibility violations of CDWD, and runtimes of CDWD
and DWD in synthetic instances with 1 linking constraint for N blocks, nv
total variables, and mn block constraints. . . . . . . . . . . . . . . . . . . . 47

2.3 Optimality gaps and feasibility violations of CDWD, and runtimes of CDWD
and DWD in synthetic instances with 2 linking constraints forN blocks, nv
total variables, and mn block constraints. . . . . . . . . . . . . . . . . . . . 48

2.4 Optimality gaps and feasibility violations of CDWD, and runtimes of CDWD
and DWD in synthetic instances with 5 linking constraints forN blocks, nv
total variables, and mn block constraints. . . . . . . . . . . . . . . . . . . . 49

2.5 Optimality gaps and feasibility violations of CDWD, and runtimes of CDWD
and DWD in synthetic instances with 10 linking constraints for N blocks,
nv total variables, and mn block constraints. . . . . . . . . . . . . . . . . . 50

3.1 Summary of the MICP representations of Zi based on the linearized and
penalty reformulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Per unit purchase cost, volume, and transportation cost per unit distance of
water, food and medical kits. . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2 Average number of scenarios across randomly generated networks for fixed
size of the set F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.3 First-stage solutions of run 20, showing the amount of pre-allocated re-
sources at each open facility (facilities with 0 pre-allocated resources are
closed), where N = 10 and U = 10 for various Wasserstein radii θ. . . . . . 147

ix



4.4 First-stage solutions of run 20, showing the amount of pre-allocated re-
sources at each open facility (facilities with 0 pre-allocated resources are
closed), where N = 50 and U = 10 for various Wasserstein radii θ. . . . . . 147

B.1 List of cities corresponding to nodes in Figure 4.6 (from [126]). . . . . . . . 156

x



LIST OF FIGURES

2.1 DWD to CDWD runtime ratios in synethetic instances for various number
of blocks N and linking constraints m. . . . . . . . . . . . . . . . . . . . . 51

2.2 Ratio of runtimes between serial and parallel implementations . . . . . . . 52

2.3 Average core utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Optimality gaps using the continuous relaxation Z0 and the heuristically
and exactly computed level-1 Lovász-Schrijver relaxations Z̃1 and Z1 as a
function of ν and N , where ε = ν

√
N−1 log(N + 1). . . . . . . . . . . . . 88

3.2 Computation times for solving formulation (3.3.3) using the continuous re-
laxation Z0, the heuristically computed and exact level-1 Lovász-Schrijver
relaxations Z̃1 and Z1, and the Benders decomposition scheme, as a func-
tion of ν and N , where ε = ν

√
N−1 log(N + 1). . . . . . . . . . . . . . . 90

3.3 Reliability of the level-1 Lovász-Schrijver relaxation Z̃1, as a function of
training sample size N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4 Relative improvement in the out-of-sample performance of the distribu-
tionally robust two-stage model (3.2.1) when compared with the sample
average approximation, as a function of sample size N . . . . . . . . . . . . 92

3.5 Relative improvement in the out-of-sample performance of the distribu-
tionally robust two-stage model (3.2.1) solved using the level-1 Lovász-
Schrijver relaxation Z̃1, when compared with the classical two-stage robust
optimization model (3.6.3), and the continuous relaxation Z0. . . . . . . . . 94

3.6 Relative improvement in the out-of-sample performance of the distribu-
tionally robust two-stage model (3.2.1) when compared with the sample
average approximation, for various values of (ψ, φ). . . . . . . . . . . . . . 95

xi



3.7 Optimality gaps using the continuous relaxation Z0 and the heuristically
computed level-1 Lovász-Schrijver relaxation Z̃1, as a function of ν and N
where ε = ν

√
N−1 log(N + 1). . . . . . . . . . . . . . . . . . . . . . . . 100

3.8 Computation times using the continuous Z0 and heuristically computed
level-1 Lovász-Schrijver relaxation Z̃1 for solving formulation (3.3.3), and
using the column-and-constraint generation scheme for solving formula-
tion (3.3.2), as a function of ν and N , where ε = ν

√
N−1 log(N + 1) . . . 100

3.9 Reliability (left plot), and relative improvements in the out-of-sample per-
formance of the level-1 Lovász-Schrijver relaxation Z̃1 when compared
with the sample average approximation (middle plot), and the continuous
relaxation Z0 (right plot), as a function of training sample size N . . . . . . 102

4.1 Example of two different angles ξa, where the landfall is New Orleans
(node 12) and the radius is 320 km. Nodes filled with both colors are nodes
affected in both scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Landfall nodes and facilities of a randomly generated network of 30 nodes. . 134

4.3 Average runtimes of CCG-FIB, CCG-FIB-0, CCG-ENUM-0, and CCG-
ENUM-1, for various sample set sizes N and Wasserstein radii θ over 10
runs, with ribbons spanning two standard deviations. . . . . . . . . . . . . 139

4.4 Cumulative distribution of runtimes in the separation step of each method,
for sample set sizes 15 and 50, and for two discretizations of F , where
|F | = 15 and |F | = 75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.5 Cumulative distribution of number of second-stage solves during the sepa-
ration step, for sample set sizes 15 and 50, and for two discretizations of F ,
where |F | = 15 and |F | = 75. . . . . . . . . . . . . . . . . . . . . . . . . 141

4.6 Map of the network with potential landfall nodes colored in yellow. . . . . . 142

4.7 Relative improvement of DRO over SAA in total out-of-sample cost and
unsatisfied demand at θ∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.8 Average unsatisfied demand as a function of the radius of the Wasserstein
ball θ for N = 10 and N = 50, averaged across all runs. . . . . . . . . . . . 146

xii



SUMMARY

In this thesis, we are focused on tackling large-scale problems arising in two-stage

stochastic optimization and the related Dantzig-Wolfe decomposition. We start with a de-

terministic setting, where we consider linear programs with a block-structure, but data

cannot be stored centrally due to privacy concerns or decentralized storage of large data

sets. The larger portion of the thesis is dedicated to the stochastic setting, where we study

two-stage distributionally robust optimization under the Wasserstein ambiguity set to tackle

problems with limited data.

Chapter 2 is joint work with Shabbir Ahmed and is based on the paper in [1]. In this

work, we propose a fully distributed Dantzig-Wolfe decomposition (DWD) algorithm us-

ing the Alternating Direction Method of Multipliers (ADMM) method. DWD is a classical

algorithm used to solve large-scale linear programs whose constraint matrix is a set of

independent blocks coupled with a set of linking rows. In a typical implementation, the

algorithm alternates between solving a master problem centrally and a set of independent

subproblems in parallel. In certain cases, solving the master problem centrally is undesir-

able or infeasible, due to privacy concerns or decentralized storage of data. In the former,

the independent blocks represent agents who desire privacy of information. In the latter,

data is stored in decentralized servers due to memory limitations, or as a protection against

attackers or failures. To this end, we develop a consensus-based Dantzig-Wolfe decom-

position algorithm, where the dual of the master problem is solved using consensus-based

ADMM at each iteration. We discuss the benefits of using ADMM over other consensus

methods and working on the dual over the primal problem, and detail the computational

and algorithmic challenges. We provide bounds on the optimality gap and feasibility vio-

lation, and perform extensive computational experiments on instances of the cutting stock

problem and synthetic instances using a Message Passing Interface (MPI) implementation,

where we obtain high-quality solutions in reasonable time. Although our main contribu-

xiii



tion is to tackle decentralized storage of data and privacy, our method also shows a potential

computational benefit for instances with a large number of variables.

In Chapter 3 and 4, we turn our focus to stochastic optimization, specifically applica-

tions where data is scarce and the underlying probability distribution is difficult to estimate.

We study two-stage distributionally robust optimization (DRO) under the Wasserstein am-

biguity set in different settings, where the Wasserstein set is a ball in the space of probability

distributions centered at an empirical distribution obtained from historical data.

Chapter 3 is joint work with Anirudh Subramanyam and Kibaek Kim and is based on

the paper in [2]. Here, we consider two-stage conic DRO under the Wasserstein set with

zero-one uncertainties. We are motivated by problems arising in network optimization,

where binary random variables represent failures of network components. We are inter-

ested in applications where such failures are rare and have a high impact, making it difficult

to estimate failure probabilities. Due to our support set being non-convex, we cannot use

typical duality tools to obtain a tractable convex program. By using ideas from bilinear

programming and penalty methods, we reformulate our two-stage DRO model by decom-

posing the inner maximization into a maximization problem for each sampled scenario

over mixed-integer conic sets. We use Lovász-Schrijver approximations to get an outer

description of the convex hulls of the inner problems which can be iteratively improved,

permitting us to dualize and obtain a model which can be solved using commercial solvers.

We illustrate the computational and out-of-sample performance of our method on the op-

timal power flow problem with random transmission line failures and a multi-commodity

network design problem with random node failures.

In Chapter 4, joint work with Alejandro Toriello and George Nemhauser, we study a

two-stage model which arises in natural disaster management applications, where the first

stage is a facility location problem, deciding where to open facilities and pre-allocate re-

sources, and the second stage is a fixed-charge transportation problem, routing resources

to affected areas after a disaster. We solve a two-stage DRO model under the Wasserstein

xiv



set to deal with the lack of available data. The presence of binary variables in the second

stage significantly complicates the problem. We develop a column-and-constraint genera-

tion algorithm, where we generate scenarios as needed, and leverage the structure of our

support set and second-stage value function to efficiently generate new scenarios. More

specifically, we show that the optimal cost of the second-stage fixed-charge transportation

problem is concave with respect to a subset of the uncertainty, leading to an efficient line

search algorithm in the scenario generation step. We show our results extend to the case

where the second stage is a fixed-charge network flow problem. We provide a detailed

discussion on our implementation, and end the chapter with computational experiments on

synthetic instances and a case study of hurricane threats on the coastal states of the United

States.

xv



CHAPTER 1

INTRODUCTION

Decision-making under uncertainty has witnessed a surge in research and interest over the

last decades in many fields, such as reinforcement learning, control theory, and operations

research. Although there are many similarities in the theory and algorithms used, the wide

variety of applications across the fields is a testament to the value of integrating uncertainty

in the decision-making process. Indeed, many methods such as dynamic programming,

multistage stochastic programming or reinforcement learning methods rely on the theory

of Markov Decision Processes and the Bellman equations, for example. Examples of ap-

plications where certain parameters are unknown include transportation problems where

travel times might be uncertain, long-term network design planning where future demands

are uncertain, and energy applications where transmission line failures or market prices are

random, to name a few.

1.1 Two-Stage Stochastic Programming

A popular approach in decision-making under uncertainty is two-stage stochastic program-

ming which is a special case of multistage stochastic programming where decisions are

made in two stages, before and after observing the uncertainty. The second-stage problem

is often referred to as the recourse problem. In this paradigm, the objective is to mini-

mize the sum of the first-stage cost and the expected value of the second-stage cost. Such

problems have the form:

min
x ∈ X

c>x+ EP [Q(x, ξ)] , (1.1.1)

1



where x corresponds to the first-stage decision vector belonging to a set X , andQ(x, ξ) is

the optimal value of the second-stage problem, defined as

Q(x, ξ) := min
y

q(ξ)>y

s.t. Wy ≥ h(ξ)− T (ξ)x.

(1.1.2)

Variable y corresponds to the second-stage decisions and ξ is a random vector belonging

to some support set Ξ with an underlying probability distribution P. Different variations of

(1.1.1) can be considered, where the uncertainty ξ might only be present in the objective,

on the right-hand side, in the matrix T (ξ), or in any combination of the three. A two-stage

model where W (ξ) = W for all ξ ∈ Ξ as in (1.1.2) is referred to as a problem with fixed

recourse.

Consider the case where the support Ξ is a finite set of scenarios {ξ1, ξ2, . . . } indexed

by s ∈ S, and assume the associated probability distribution {ps}s∈S is known. We can then

explicitly write the expectation of the second-stage value function EP [Q(x, ξ)]. Popular

methods include Benders decomposition [3], where Q(x, ξ) is represented by its epigraph

whose approximation is iteratively improved by generating cuts using dual information.

Alternatively, we can write an extensive reformulation of (1.1.1) as

min
x,y

c>x+
∑
s∈S

psq(ξs)>ys

s.t. x ∈ X,

T (ξs)x+Wys ≥ h(ξs), ∀s ∈ S

(1.1.3)

where we make a copy of the second-stage problem for each scenario. For larger sets of

scenarios, this model can be computationally challenging to solve. An important observa-

tion is the L-shaped structure of the constraints, since problem (1.1.3) is coupled by the

first-stage decision vector x. A common decomposition technique is to make a copy of

the first-stage vector for each scenario, and add the so-called non-anticipativity constraints,

2



forcing all copies of x to be equal to each other. Such a reformulation opens the door to

decomposition techniques which leverage distributed computing to more efficiently solve

(1.1.3). The Dual Decomposition method, first proposed by Carøe and Schultz in [4], re-

laxes the non-anticipativity constraints to obtain a problem which decomposes by scenario,

and solves the Lagrangian dual instead. In [5], Rockafellar and Wets propose the Progres-

sive Hedging method, which, closely related to the Alternating Direction Method of Mul-

tipliers (ADMM) algorithm, solves the augmented Lagrangian dual by adding a quadratic

penalty.

1.2 Dantzig-Wolfe Decomposition

In Chapter 2, we start with a deterministic setting, where we are interested in a related prob-

lem to the Benders decomposition algorithm. It is well known that the dual of the Benders

problem also leads to a special block structure in the constraints. Dantzig-Wolfe decompo-

sition, first proposed by Dantzig and Wolfe [6, 7], is a column generation algorithm which

leverages such structure, more specifically large-scale linear programs whose constraint

matrix involves a set of independent blocks coupled with a set of linking rows. The algo-

rithm starts with a reformulation involving a subset of the columns, and alternates between

solving a master problem centrally and a set of independent subproblems to generate new

columns.

We are specifically interested in the case where the data related to each block cannot

be centrally located, either due to privacy concerns or decentralized storage of data. In the

former, the independent blocks might represent local optimization problems of indepen-

dent agents who may not wish to share sensitive data. In the latter, data might be stored

in decentralized servers for security measures to hedge against attackers or failures, or due

to the size of the data sets. We provide examples of such applications in Chapter 2. In

both cases, the master problem cannot be solved centrally. To this end, we develop a fully

distributed Dantzig-Wolfe decomposition algorithm by solving the dual of the master prob-

3



lem using consensus-based ADMM. We discuss the benefits of using ADMM over other

consensus-based methods and working on the dual over the primal problem, and detail

the computational and algorithmic challenges. We provide bounds on the optimality and

feasibility gap resulting from solving the master in a distributed fashion, and perform ex-

tensive computational experiments on instances of the cutting stock problem and synthetic

instances.

1.3 Data-Driven Stochastic Optimization

In Chapter 3 and 4, we turn our attention back to two-stage stochastic programming. Recall

that in problem (1.1.3), we assume we know the probability distribution of the uncertainty.

In many applications, however, the distribution P is unknown and the uncertainty is only

observable through historical data. Given a set of samples, Monte Carlo based methods

such as the Sample Average Approximation (SAA) (see [8, 9]) use the obtained empir-

ical distribution to approximate the expected second-stage value function. SAA is also

commonly used for continuous support sets Ξ. SAA is known to converge to the optimal

solution of (1.1.1) as the number of samples goes to infinity under mild conditions, and

generally has nice computational performance, which accounts for its popularity [10].

An alternative paradigm in optimization under uncertainty is to minimize the worst-case

second-stage cost with respect to the uncertainty. This is known as robust optimization

(RO). RO is a distribution-free method which can be used to obtain a conservative solu-

tion, protecting the decision-maker against the worst-case scenario, or providing a solution

which is feasible for all scenarios. Generally, the maximization of the second-stage cost is

done with respect to random vectors belonging to a constructed uncertainty set. For exam-

ple, in the N − k security criterion problem in power systems, the goal is to guarantee the

system is operable even if up to k of N components fail. A budget constraining the number

of failtures to k is then added in the uncertainty set. Different uncertainty sets have been

considered in the literature to control for the level of conservatism and their tractability

4



studied [11].

There exists other methodologies in optimization under uncertainty where risk mea-

sures are incorporated, or where chance-constraints are included to ensure constraints in-

volving uncertainty are satisfied with at least a pre-defined probability. A closely related

paradigm is distributionally robust optimization (DRO) [12]. Indeed, it has been shown

that under certain conditions, risk measures admit an equivalent DRO model (see [13]). In

DRO, we seek to minimize the worst-case expected cost with respect to probability distri-

butions belonging to some ambiguity set. In the context of two-stage models, we minimize

the sum of the first-stage cost and the worst-case expected second-stage cost. Note the dis-

tinction between the uncertainty set in RO defined in the space of the uncertainty, and the

ambiguity set in DRO defined in the space of probability distributions.

1.3.1 Distributionally Robust Optimization Under The Wasserstein Ambiguity Set

Priot Work and Motivation

There is a wide variety of ambiguity sets that have been studied in the literature. Ambiguity

sets can be roughly split into one of two categories: moment-based ambiguity sets and

balls in the space of probability distributions centered at some nominal distribution. In

the former, the ambiguity sets include constraints on the moments of the distribution [14,

15, 16]. Given point estimates of the moments, the ambiguity set can include constraints

such that moments match the estimates or are some distance away from the estimates to

account for the uncertainty in the latter. In [17], the authors propose an ambiguity set

which constrains the mean and the second-order moments to lie in an ellipsoid centered

at the estimate of the mean and in the intersection of two positive semi-definite cones,

respectively. Moment-based ambiguity sets have gained popularity for their computational

benefits [18]. On the other hand, balls centered at a nominal distribution are defined using

a metric defined on probability distributions. Popular metrics include the φ-divergence [19,

20], the Kullback-Leibler divergence [21, 22], which is a special case of the φ-divergence,

5



and the Wasserstein metric [23, 18, 24, 25, 26].

The Wasserstein set is a ball in the space of probability distributions defined on the

Wasserstein metric and centered at a nominal distribution, typically an empirical distribu-

tion obtained from a set of samples. The Wasserstein ambiguity set has recently received

great attention due to its finite-sample guarantees and out-of-sample performance [23, 18,

27, 28, 24]. It has been shown that the DRO problem can be reformulated as a tractable

convex program for various classes of value functions Q(x, ξ) and support sets [18, 23].

In [29], Weijun Xie provides tractability results for zero-one uncertainty under the type-

∞ Wasserstein set. Most work has focused on one-stage problems involving continuous

random variables where the support set is a polytope. Problems where the support set is

finite generally rely on a combination of cutting plane and colum generation procedures

(e.g. [26, 30], where two-stage problems are considered).

The robust optimization literature is rich in tackling two-stage problems. A common

approximation in RO involves decision rules [31, 32]. Such methods tend to lead to a

more tractable model, and are even optimal in certain applications [33]. Examples of such

techniques are affine policies, where the second-stage variables are restricted to an affine

policy with respect to the uncertainty [33, 34].

Given a finite training data set or if data is scarce, SAA can lead to poor out-of-sample

performance [18, 10, 35]. Whereas SAA can lead to an optimistic solution in such sit-

uations, DRO hedges against overfitting the data. In [24], Daniel Kuhn et al. show that

regularization techniques in classification and regression are equivalent to estimating the

predictors using DRO under the Wasserstein ball. On the other hand, RO can lead to a very

conservative and high cost solution. Using a ball centered at the empirical distribution as

an ambiguity set leads to a nice generalization of SAA and RO. If the radius of the ball is 0,

then we get an equivalent problem to SAA as the ambiguity set is a singleton correspond-

ing to the empirical distribution, wheras if the radius is large enough, then the ball includes

all probability distributions which assign a weight of one to a scenario and zero to the rest,

6



and we thus get an equivalent RO problem. The radius of the ball provides decision-makers

with a tangible control over risk-aversness.

Finally, we note that the Wasserstein ambiguity set does not share some of the short-

comings of other sets, which makes it an attractive choice. In DRO, we want the ambiguity

set to be rich enough to include the true distribution, but not too large to exclude pathologi-

cal ones. A discussion of shortcomings of the φ-divergence metric that are not shared by the

Wasserstein metric can be found in [23], where the former can exclude the true distribution

while including pathological ones. Moreover, when using the Kullback-Leibler divergence

metrics, the worst-case distribution can only have a support on observed scenarios, thus

not protecting against unobserved scenarios. In contrast, the Wasserstein set can assign a

non-zero probability to any scenario in the support set. This is especially advantageous in

applications where we wish to protect ourselves against unobserved scenarios.

Preliminaries

We present some preliminaries for two-stage distributionally robust optimization under the

Wasserstein ambiguity set and some background which will be useful in Chapter 3 and

Chapter 4. Assume we have a set of N samples {ξ̂1, . . . , ξ̂N} indexed by n ∈ N (as in

SAA) whose empirical distribution is defined as PN = 1
N

∑
n δξ̂n , where δξ̂n is the dirac

distribution assigning unit mass to ξ̂n, i.e. each sample is assigned equal probability. The

two-stage DRO problem can be written as

min
x ∈ X

c>x+ max
P∈B(PN ,θ)

EP [Q(x, ξ)] (DRO)

where BW (PN , θ) is the Wasserstein ball of radius θ ≥ 0 centered at the empirical distribu-

tion PN . The Wasserstein ball is defined as

BW (PN , θ) = {P ∈M(Ξ) : dW (P,PN) ≤ θ}.

7



whereM(Ξ) is the set of all distributions supported on Ξ. Given a distribution P defined by

a vector {ps}s∈S and a valid metric d(·, ·) defined on Ξ, the Wasserstein distance dW (P,PN)

between P and PN corresponds to the following minimization problem:

min
π

∑
s∈S

∑
n∈N

d(ξs, ξ̂n)πsn

s.t.
∑
n∈N

πsn = ps, s ∈ S,

∑
s∈S

πsn =
1

N
, n ∈ N ,

∑
s∈S

∑
n∈N

πsn = 1,

πsn ≥ 0, s ∈ S, n ∈ N

(W)

Let qns = Nπsn be the conditional probability of ξs given that we have observed ξ̂n (the

sampled scenario). It is convenient to write (W) as:

min
q

∑
s∈S

∑
n∈N

1

N
qns d(ξs, ξ̂n)

s.t.
∑
n∈N

1

N
qns = ps, ∀s ∈ S,

∑
s∈S

qns = 1, ∀n ∈ N ,

qns ≥ 0, s ∈ S, n ∈ N

(W’)

where {ξs}s∈S is the set of all scenarios and {ξ̂n}n∈N is the set of sampled scenarios. The

following theorem presents a known extensive reformulation of (DRO) which we will use

in Chapter 3 and 4.

8



Theorem 1. Problem (DRO) is equivalent to

min
x,γ, α

c>x+ θα +
1

N

∑
n∈N

γn

s.t. γn ≥ Q(x, ξs)− α d(ξs, ξ̂n), s ∈ S, n ∈ N ,

x ∈ X,

α ≥ 0

Proof. Using (W’), the inner problem of (DRO) can be written as

max
p

∑
s∈S

psQ(x, ξs)

s.t. min
q≥0


∑
s∈S

∑
n∈N

1

N
d(ξs, ξ̂n)qns :

∑
s∈S q

n
s = 1, ∀n ∈ N∑

n∈N
1
N
qns = ps, ∀s ∈ S

 ≤ θ

which is equivalent to

max
q

∑
s∈S

∑
n∈N

1

N
qnsQ(x, ξs)

s.t.
∑
s∈S

∑
n∈N

1

N
d(ξs, ξ̂n)qns ≤ θ,

∑
s∈S

qns = 1 ∀n ∈ N ,

qns ≥ 0, ∀s ∈ S, ∀n ∈ N .

(1.3.1)

Its dual is

min
γ, α

θα +
1

N

∑
n∈N

γn

s.t. γn ≥ Q(x, ξs)− α d(ξs, ξ̂n), ∀s ∈ S, ∀n ∈ N ,

α ≥ 0.

9



We then have

min
x,γ, α

c>x+ θα +
1

N

∑
n∈N

γn

s.t. γn ≥ Q(x, ξs)− α d(ξs, ξ̂n), s ∈ S, n ∈ N ,

x ∈ X,

α ≥ 0

In the reformulated inner maximization (1.3.1), the conditional probabilities qns can be

interpreted as the hedging strategy, where we are moving weight from the sampled scenario

ξ̂n to scenario ξs, at a cost of 1
N

d(ξs, ξ̂n), and the total weight moved from sample ξ̂n to

all scenarios {ξs}s∈S has to equal one.

1.3.2 Data-Driven Two-Stage Conic Optimization with Rare High-Impact Zero-One

Uncertainties

In Chapter 3, we study two-stage distributionally robust conic optimization with zero-one

uncertainties under the Wasserstein ambiguity set. We are motivated by problems arising in

network optimization where the binary random variables represent failures of components

in the network. More specifically, we are interested in applications where failure events are

rare and have a high impact. In such applications, approximating the failure probability is

difficult. We are dealing with a very large set of scenarios which increases exponentially

in the number of network components, the failure events are unlikely to be independent

of each other due to phenomena like the cascading effect (i.e. component failures might

trigger additional failures of nearby components), and the historical data is not rich enough

to accurately estimate failure probabilities. This motivates solving a DRO model instead.

Due to our support set being a binary non-convex set, we cannot use existing refor-

10



mulation techniques which rely on a continuous, convex support set. By using ideas from

bilinear programming and penalty methods, we reformulate our problem by decomposing

the inner maximization problem into maximization problems for each sampled scenario,

where the latter is a maximization of a linear function over the convex-hull of a mixed-

integer conic set. We then use Lovász-Schrijver approximations to get outer descriptions

of the convex hulls which can be iteratively improved, permitting us to use duality and

solve the model using commercial solvers. We demonstrate the benefits of our method in

computational and out-of-sample performance compared to SAA and RO on challenging

optimal power flow problems where transmission lines are subject to random failures, and

a multi-commodity network design problem with random node failures.

1.3.3 Binary Distributionally Robust Optimization Under the Wasserstein Set: A Disaster

Relief Application

In Chapter 4, we extend our previous work to consider binary variables in both stages,

where we are dealing with a finite but large set of scenarios. We are specifically interested

in a two-stage problem arising in natural disaster management, where the first stage is a

facility location problem, deciding on where to open facilities and how much resources

to pre-allocate (e.g. medical kits or food), and the second stage is a fixed-charge trans-

portation problem, routing the resources to affected areas after a disaster. Similar to the

applications considered in Chapter 3, natural disasters are relatively rare events and have a

high impact. Thus, we cannot reliably estimate the probability distribution of the uncertain

parameters [36, 37]. The presence of binary variables in the second stage significantly com-

plicates the problem, as we cannot use duality tools to reformulate our two-stage model as

a tractable convex program without relying on approximations or relaxations. We instead

develop a column-and-constraint generation (CCG) algorithm, where we generate scenar-

ios as needed. To circumvent the computational difficulties which are typically faced in

CCG algorithms, we leverage the structure of our support set and second-stage value func-

11



tion, leading to an efficient scenario generating procedure. We also show how our results

extend to the case where the second stage is a fixed-charge network flow problem. We end

the chapter with computational experiments illustrating the strong computational perfor-

mance of our proposed method, and analyze the solutions obtained from DRO and SAA on

a case study of hurricane threats in the coastal states of the United States, along the Gulf of

Mexico and Atlantic Ocean.

1.4 Contributions

We summarize the contributions of this thesis in this section. The start of the thesis is

dedicated to a deterministic setting where we tackle large-scale linear programs with a

special structure that can be solved using Dantzig-Wolfe decomposition. More specifically,

we are motivated by problems where either privacy is of concern, or data is stored in a

decentralized fashion. In such cases, a classical Dantzig-Wolfe decomposition algorithm

cannot be used as the master problem would be solved centrally. To this end, we develop a

fully-distributed, consensus-based Dantzig-Wolfe decomposition algorithm where privacy

of information is satisfied, and data is not required to be available centrally at any time. The

only information that agents exchange are dual vectors. We provide a theoretical analysis of

our algorithm, deriving bounds on the optimality gap and feasibility violation. We perform

computational experiments to illustrate the performance of our method, where we retrieve

high quality solutions in competitive time.

Following Chapter 2, we turn our attention back to two-stage stochastic programming.

We are specifically interested in applications where data is limited, and the underlying

probability distribution is difficult to estimate.

In Chapter 3, we tackle two-stage distributionally robust conic optimization under the

Wasserstein ambiguity sets, where we are interested in applications affected by rare high-

impact zero-one uncertainties. Such applications are common in network optimization

problems. In this work, we derive tractable approximations to the two-stage distribution-

12



ally robust model which can be iteratively improved, where we exploit ideas from penalty

methods and bilinear programming to get a single global optimization problem. Using a

reformulation based on a penalty method, we are able to transform a problem with right-

hand side uncertainty to a problem with only objective uncertainty. We show that we can

exactly compute a finite penalty parameter. We then demonstrate the computational and

out-of-sample performance on the optimal power flow problem with random transmission

line failures and a multi-commodity network design problem with random node failures.

We extend our work to consider second-stage binary variables in Chapter 4, in which

case Q(x, ξ) is no longer convex. We narrow our focus to a two-stage model which often

arises in natural disaster management, where the first stage is a facility location problem and

the second stage is a fixed-charge transportation problem. We develop a support set tailored

to the application, and leverage the structure of our support set and second-stage value func-

tion Q(x, ξ) to design an efficient column-and-constraint generation algorithm. We also

provide extensions to a fixed-charge network flow second-stage problem. We demonstrate

the strong computational performance of our method over classical column-and-constraint

generation algorithms on synthetic instances, and present a case study from the literature on

hurricane threats on coastal states of the United States, analyzing the solution and out-of-

sample performance of our DRO model and SAA. We show that the distributionally robust

model outperforms SAA in out-of-sample cost in many instances, and consistently satisfies

significantly more demand on average after a disaster occurs.

13



CHAPTER 2

CONSENSUS-BASED DANTZIG-WOLFE DECOMPOSITION

2.1 Introduction

2.1.1 Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition (DWD) [7] is a classical algorithm for solving large-scale

linear programs whose constraint matrix involves a set of independent blocks coupled with

a set of linking rows. This class of problems are of the form

min
x

N∑
n=1

c>nxn

s.t.
N∑
n=1

Anxn = t,

xn ∈ Xn, n = 1, . . . , N

(P )

where N is the number of blocks, the set Xn denotes the feasible set of the n-th block

(or subproblem) with the decision vector xn, and
∑N

n=1Anxn = t denotes the system

of linking constraints. The DWD method decomposes (P ) into a master problem and a

set of N independent subproblems. Throughout this chapter, we assume that the sets Xn

are polytopes (i.e. bounded polyhedra) for all n. In this case, the master problem is a

reformulation where each vector xn is replaced by a convex combination of the extreme

14



points of Xn. From Minkowski’s theorem, the master problem can be written as

min
λ

N∑
n=1

∑
i∈In

c>nx
i
nλni

s.t.
N∑
n=1

∑
i∈In

Anx
i
nλni = t,

∑
i∈In

λni = 1, n = 1, . . . , N,

λni ≥ 0, ∀i ∈ In, n = 1, . . . , N

(2.1.1)

where {xin}i∈In and In correspond to the extreme points of Xn and their index set, re-

spectively; the variable λni is the convex multiplier associated with extreme point i of

subproblem n.

Since the number of extreme points of the subproblem polytopes can be exponentially

large, a restricted master problem (RMP) is solved instead, using only a subset of the

extreme points (or columns). Using an optimal dual solution of the RMP, each block n

solves a pricing subproblem independently to find a new extreme point ofXn with negative

reduced cost. This process (called column generation) is repeated until no columns with

negative reduced costs can be found. The optimal solution of RMP in the last iteration then

provides an optimal solution to (P ).

2.1.2 Motivation

DWD has been used to solve a variety of problems, many arising in energy and transporta-

tion, and has received great attention in solving mixed-integer programs to obtain tighter

relaxation bounds, leading to the popular branch-and-price algorithm. See [38, 39, 40, 41]

for details and applications of DWD and column generation.

In each iteration of DWD, the subproblems can be solved independently in a distributed

manner but the RMP is solved centrally. In certain settings, solving the master problem cen-

trally is undesirable or infeasible. With increasingly large amounts of data available, we

15



are seeing an upward trend in decentralized storage of data, either as a protection against

attacks, or due to memory limitations, in which case the data is not available centrally to

solve the master problem [42]. Alternatively, if we interpret the variables of each block

as the decision variables of independent agents, then solving the RMP centrally requires

the agents to share data of their constraints, objective, and decisions, potentially violating

privacy. In such applications, agents have local constraints and a local objective function

but share common constraints (e.g. a resource), making DWD an appropriate method [43].

One example is in collaborative logistics, where companies, potentially competitors, share

routes and resources to merge loads and cut overall costs, but such collaborations might

be infeasible if corporations are unwilling to share data [43]. Privacy concerns are also

prevalent in energy, such as in smart-grid optimization, for example. In order to optimize

power generation, smart meters provide sensitive and private energy consumption data of

the household to the utility provider [44, 45]. Another example is in the healthcare industry

with Accountable Care Organizations (ACOs), where a collection of hospitals or clinics

form a group to give coordinated care to patients. To drive costs down and improve pa-

tient care, sensitive patient data would link the optimization problem, causing concerns for

privacy violations among ACOs [46, 47]. Developing a consensus-based Dantzig-Wolfe

algorithm would permit the use of DWD in such scenarios, while handling decentralized

storage of data and/or privacy concerns.

2.1.3 Contribution

In this chapter, we propose a consensus-based DWD algorithm which relies on solving

the dual of the master problem using a consensus-based Alternating Direction Method of

Multipliers (ADMM) algorithm. We address the computational challenges and theoreti-

cal questions that arise from solving the master problem in a distributed fashion. To the

best of our knowledge, a fully distributed consensus-based technique to solve the master

problem has not been studied within the context of column generation or Dantzig-Wolfe

16



decomposition where privacy is fully preserved.

We illustrate the benefits of working on the dual and using ADMM as a consensus-

based method. To reduce computation time, we dynamically adjust the tolerances, where

we first aim for inaccurate dual solutions to speed up ADMM convergence, similar to [48,

49], and lower the tolerances as the algorithm progresses. This significantly decreases

the number of times we need to solve ADMM to high accuracy, yielding computational

benefits. ADMM is known to be slow to converge to high accuracy, but requires only a

few iterations to achieve modest accuracy [42], and thus synergizes well with solving for

inaccurate duals at first. Moreover, ADMM has stronger convergence properties than sub-

gradient methods [42]. By solving the dual of (2.1.1) using ADMM, the master problem

is solved in a distributed fashion and privacy of information is guaranteed to be preserved.

Indeed, each agent need only share their dual variables with a central coordinator, as is

common in a privacy preserving setting. Moreover, we note that we circumvent primal-

recovery issues present in subgradient methods and avoid the need for ergodic sequences

[50, 51]. We show we can easily recover a primal solution to the original problem that is

close to feasible and close to optimal using the Lagrangian multiplers associated with the

constraints in the ADMM subproblems. Finally, while most stability techniques in DWD

rely on suboptimal duals, our method also handles infeasible duals, as the ADMM approach

provides ε-optimal and δ-feasible dual solutions. We prove bounds on the feasibility viola-

tion and optimality gap at the recovered primal solution.

We provide preliminary computational results for the proposed algorithm using a Mes-

sage Passing Interface (MPI) implementation on cutting stock instances from the literature

and synthetic instances where we obtain high quality solutions. Although our main con-

tribution is to tackle decentralized storage of data and privacy, our method also shows a

potential computational benefit for instances with a large number of variables and in many

of the cutting stock instances.

17



2.1.4 Prior Work

Solving the dual of RMP in a distributed manner leads to approximate dual solutions used in

the pricing subproblems, as opposed to standard DWD where exact optimal dual solutions

are readily available. Several stability techniques proposed in the literature use suboptimal

but feasible dual solutions to solve the pricing subproblems to circumvent unstable behav-

ior resulting from using optimal dual solutions [48]. One method is to add a penalty term to

reduce the variation of obtained dual solutions [52, 53]; another involves using primal-dual

interior point method to solve for suboptimal dual solutions which are well-centered, where

the optimality tolerance of the interior point method is dynamically adjusted to reduce the

computation time of solving the RMP [48, 53, 49]. In these methods, suboptimal dual so-

lutions are used to solve the pricing subproblems, where tolerances are adjusted to satisfy

a specified duality gap, but solve the RMP centrally. In the context of dual decomposition

in stochastic integer programming, Lubin et al. discuss the computational benefits of using

tailored interior-point methods such as PIPS-IPM to solve the master problem in [54]. Such

solvers leverage dual block angular structures by parallelizing the linear algebra. Closest in

spirit to our work is [55], where a consensus-based cutting-plane procedure is developed.

This work addresses a different setting where communication is asynchronous, but agents

are required to share all their cutting planes with neighbors, thus potentially violating pri-

vacy. An example application to Dantzig-Wolfe decomposition is also presented, where

the consensus-based cutting-plane procedure is applied to the dual of the problem. Besides

the potential privacy violation, although the authors consider more general convex objec-

tive functions, a final recovery step is necessary to obtain a primal solution if the objective

function is not strongly convex, where the master problem involving columns generated by

all agents is solved centrally.

In privacy-preserving optimization, common techniques include random matrix trans-

formations or perturbations. In [56], the author proposes to multiply the constraints by a

randomly generated matrix in the case of equality constraints. A similar method to handle

18



inequality constraints is proposed in [57]. In [43], the authors apply Dantzig-Wolfe de-

composition to a transformed problem to preserve privacy, where the constraint matrices

of each agent are multiplied by a random matrix, but requires all the data to be centrally

located to solve the master problem. Many other methods rely on distributed algorithms to

preserve privacy of information [45, 58].

Consensus problems and distributed optimization algorithms have been heavily studied.

A classic method is dual decomposition where the linking constraints are relaxed, and the

problem becomes separable. The algorithm alternates between solving local subproblems

independently and a central step which updates the dual variables as in dual ascent [42].

Many variants of dual decomposition have been proposed, such as using subgradients to up-

date the dual iterates when optimizing nonsmooth functions [59]. Many of the distributed

methods are optimized over a network, where agents, treated as nodes, only share limited

information with neighbors according to a transition matrix [60, 61, 62]. In [63], Nedic

and Ozdaglar give a survey on dual decomposition techniques for distributed optimization

and consensus problems. Dual decomposition is known to suffer from weak convergence

properties, which led to the augmented Lagrangian method. It provides stronger conver-

gence properties and requires fewer assumptions than dual ascent (the method behind dual

decomposition), but leads to an optimization problem that cannot be solved in a distributed

way. ADMM has been developed to leverage the decomposability of dual decomposition,

and the nice convergence properties of the augmented Lagrangian method [42]. Theoretical

results and convergence properties of ADMM have been thoroughly studied in [42, 64, 65,

66, 67]. Studies on parameter tuning have also been done, notably the penalty parameter

[68, 69].

The remainder of the chapter is organized as follows. Section 2.2 formally defines the

problem structure we are interested in and establishes the notation used throughout. In

Section 2.3, we give a brief overview of consensus-based ADMM and discuss traditionally

used stopping criteria. In Section 2.4, we describe our algorithm and prove bounds on

19



the optimality gap and feasibility violation. We include numerical results to illustrate our

method in Section 2.5.

2.2 Preliminaries

We are interested in problems of the form of (P ) where cn and Xn are the cost vector and

local constraints of block n = 1, . . . , N , and An is the constraint matrix of block n in the

linking constraints. To simplify notation, we rewrite the master problem as

min
λ

N∑
n=1

∑
i∈In

cinλni

s.t.
N∑
n=1

∑
i∈In

Ai
nλni = t,

∑
i∈In

λni = 1, n = 1, . . . , N,

λni ≥ 0, n = 1, . . . , N

(MP )

where cin = c>nx
i
n andAi

n = Axin for all i ∈ In and for all n.

We assume each Xn to be a non-empty polytope, so that there exists Ln > 0 such that∥∥xin∥∥2
≤ Ln for all extreme points xin of Xn. We further assume problem (MP ) to be

feasible and to have an optimal solution. The dual of (MP ) is

max
π,u

t>π +
N∑
n=1

un

s.t. Ai
>

n π + un ≤ cin, ∀i ∈ In, n = 1, . . . , N

where π are dual variables associated with the linking constraints and un are dual variables

associated with the convexity constraints
∑

i∈In λni = 1 for all n. We restrict the presenta-

tion of our method and analysis to the case of linking equality constraints without loss of

generality.

We refer to the optimal objective values of the master problem and its dual by z∗MP

20



and z∗DM . When considering a subset of the extreme points, we refer to the restricted

primal and dual problems as RMP and RDM, and their optimal values by z∗RMP and z∗RDM ,

respectively. Approximate solutions and their objective values are denoted by a hat. The

notations ‖·‖ and ‖·‖F refer to the `2-norm and Frobenius norm, respectively. Vectors are

printed in bold. Finally, the terms agent and block will be used interchangeably.

2.3 ADMM Overview

We give a brief overview of consensus-based ADMM. We present the algorithm and known

convergence conditions. Detailed discussion of the ADMM method and its convergence

properties can be found in [42].

2.3.1 Consensus-Based ADMM

Consensus-based ADMM is well-suited for problems of the form

max
x

N∑
n=1

fn(x)

s.t. Anx ≤ bn ∀n = 1, . . . , N

(A1)

where fn : Rd → R are convex, proper and closed functions, andA ∈ Rm×d. The objective

function and constraints are linked solely by the variable x. We can equivalently rewrite

(A1) as

max
xn,x

N∑
n=1

fn(xn)

s.t. Anxn ≤ bn n = 1, . . . , N, (2.3.1a)

xn = x n = 1, . . . , N. (2.3.1b)

Let λn ∈ Rm and αn ∈ Rd be the Lagrangian multipliers of (2.3.1a) and (2.3.1b),

21



respectively, for n = 1, . . . , N . Taking the augmented Lagrangian of (2.3.1) gives

max
xn,x

N∑
n=1

[
fn(xn) + α>n (x− xn)− ρ

2
‖x− xn‖2

]
s.t. Anxn ≤ bn n = 1, . . . , N

(AL)

where ρ > 0 is a predetermined penalty parameter. Define the objective of (AL) as

Lρ(x,x1, . . . ,xN ,α1, . . . ,αN ) =
N∑
n=1

[
fn(xn) +α>n(x− xn)− ρ

2
‖x− xn‖2

]

The ADMM method consists of alternating between maximizing the function Lρ over

(x,x1, . . . ,xN ) and minimizing over (α1, . . . ,αN), where the maximization step is done

sequentially, so that we first maximize over (x1, . . . ,xN ) before maximizing over x. This

allows to solve the former in a distributed fashion. The ADMM steps at an iteration k can

be summarized as follows:

xk+1
n ← argmax

xn

Lρ(xk,x1, . . . ,xN ,α
k
1, . . . ,α

k
N ), ∀n = 1, . . . , N (2.3.2a)

xk+1 ← argmax
x
Lρ(x,xk+1

1 , . . . ,xk+1
N ,αk1, . . . ,α

k
N ) (2.3.2b)

αk+1
n ← αkn − ρ(xk+1 − xk+1

n ), ∀n = 1, . . . , N. (2.3.2c)

Note that (2.3.2c) is a gradient step where the step size is the penalty parameter ρ and

(2.3.2b) is an unconstrained maximization problem for which there exists a closed form

solution. We have:

∇xLρ(x,xk+1
1 , . . . ,xk+1

N ,αk1, . . . ,α
k
N ) = 0⇒

N∑
n=1

[
αkn − ρ(xk+1 − xk+1

n )
]

= 0

⇒xk+1 =
1

N

N∑
n=1

xk+1
n +

1

Nρ

N∑
n=1

αkn.

22



2.3.2 Convergence and Stopping Criteria

We first note that dual feasibility in (2.3.1) is equivalent to∇xnfn(xn)−A>nλn−αn = 0.

From the optimality conditions of (AL), we have at iteration k:

∇xnfn(xk+1
n )− A>nλk+1

n −αkn + ρ(xk − xk+1
n ) = 0

⇒∇xnfn(xk+1
n )− A>nλk+1

n −αkn + ρ(xk − xk+1
n + xk+1 − xk+1) = 0

⇒∇xnfn(xk+1
n )− A>nλk+1

n −αkn + ρ(xk+1 − xk+1
n ) + ρ(xk − xk+1) = 0

⇒∇xnfn(xk+1
n )− A>nλk+1

n −αk+1
n = ρ(xk+1 − xk).

Thus, dual feasibility in (2.3.1) amounts to having ρ(xk+1 − xk) = 0.

Let α be the vertical concatenation of vectors {αn}Nn=1. As proven in [42], under the

assumption that the functions fn in (A1) are convex, proper and closed, and assuming that

L0(x,x1, ...,xN ,α), where ρ = 0, has a saddle point, then as k → ∞, we have the

following:

(i) Primal feasibility violation vanishes:
√∑N

n=1

∥∥xk+1 − xk+1
n

∥∥2 → 0, n = 1, ..., N

(ii) Dual feasibility violation vanishes: ρ
∥∥xk+1 − xk

∥∥→ 0

(iii) Optimality gap vanishes:
∥∥f(x∗)− f(xk)

∥∥→ 0

(iv) Dual vector α converges to an optimal dual solution:
∥∥αk −α∗∥∥→ 0

In (i), we define primal feasibility violation to be

∥∥∥∥∥∥∥∥∥∥
xk+1 − xk+1

1

...

xk+1 − xk+1
N

∥∥∥∥∥∥∥∥∥∥
=

√√√√ N∑
n=1

∥∥xk+1 − xk+1
n

∥∥2

This implies that we reach consensus as k →∞, i.e
∥∥xk+1 − xk+1

n

∥∥→ 0 for all n.

23



For our purposes, we also assume the functions fn to be differentiable. This assump-

tion is satisfied in our case since we are dealing with linear cost functions. As suggested

in [42], it is reasonable to terminate ADMM once we reach primal and dual feasibility

within some tolerance. Given specified tolerances εp and εd, we terminate ADMM once√∑N
n=1

∥∥xk+1 − xk+1
n

∥∥2 ≤ εp and ρ
∥∥xk+1 − xk

∥∥ ≤ εd.

2.4 Consensus-Based Dantzig-Wolfe Algorithm

We first present the consensus-based Dantzig-Wolfe decomposition (CDWD) algorithm

before deriving error bounds on the optimality gap and feasibility violation.

2.4.1 CDWD Algorithm

We define k to be the ADMM iteration counter and ` to be the Dantzig-Wolfe outer iteration

counter. To solve the restricted master problem (RMP) in a distributed fashion, we solve

a reformulation of the dual of RMP. The reformulation permits us to perform consensus-

based ADMM. We split the dual vector π associated with the linking constraints into N

copies as in (2.3.1) to get the following equivalent formulation:

max
π,πn, un

N∑
n=1

[
1

N
t>πn + un

]
s.t. Ai

n

>
πn + un ≤ cin ∀i ∈ In, n = 1, . . . , N,

πn = π n = 1, ..., N.

(DM )

If there exists linking inequality constraints, then we can simply add appropriate non-

negativity or non-positivity constraints on πn for all n, and the remaining steps of the

algorithm follow.

Note that the dual of the master problem is linked by dual variables π. Performing

ADMM on (DM ) leads to a natural consensus-based algorithm with a guaranteed conver-

gence, where the first ADMM block corresponds to solving for each πn independently, and

24



the second block corresponds to optimizing with respect to π. Indeed, performing ADMM

with more than two blocks requires additional conditions and correction steps to ensure

convergence [70, 71, 72]. As a result, working on (DM ) avoids any potential violation

of privacy, as agents need only share dual vectors with a central coordinator, and does not

require any data to be available centrally. Although one could solve (MP ) using a dual de-

composition method with subgradients while maintaining decomposability, two problems

arise. First, privacy could be violated when computing the subgradients (i.e. the residuals

of the linking constraints) [73, 74]. Second, using an averaging scheme would be necessary

to recover an approximate primal solution. Indeed, it is well-known that simply solving the

Lagrangian dual at the optimal dual solution does not necessarily return a feasible primal

solution [75, 42]. Although out of the scope of this chapter and further experiments are

required, we note that averaging schemes did not perform well for simple instances in our

setting. We show that by performing ADMM on (DM ), we circumvent primal-recovery

issues and can easily retrieve high quality primal solutions via the Lagrangian multipliers

associated with the constraints in (ARDMn) (defined below).

We denote the restricted problem of (DM ), i.e. one involving constraints corresponding

to only a subset of the columns, by RDM and its optimal value by z∗RDM . We take the

augmented Lagrangian of RDM by relaxing the copy constraints as in (AL) and get a

separable problem with respect to variables (πn, un):

max
πn, un

N∑
n=1

[
1

N
t>πn + un +α>n(π − πn)− ρ

2
‖π − πn‖2

]
s.t. Ai

n

>
πn + un ≤ cin, ∀i ∈ In, n = 1, . . . , N.

At iteration k of ADMM and using current iterates πk and αkn, each agent n solves

max
πn, un

1

N
t>πn + un +αkn

>
(πk − πn)− ρ

2

∥∥πk − πn∥∥2

s.t. Ai
n

>
πn + un ≤ cin, ∀i ∈ I`n

(ARDMn)

25



where I`n ⊆ In is the index set of extreme points of block n at outer iteration `. From

(2.3.2), the steps to solving RDM can be summarized as follows:

1. Each agent solves (ARDMn) and collects optimal solutions (πk+1
n , uk+1

n )

2. πk+1 ← 1
N

∑N
n=1(πk+1

n ) + 1
Nρ

∑N
n=1α

k
n

3. αk+1
n = αkn − ρ(πk+1 − πk+1

n ), ∀n = 1, . . . , N.

First note that Ai
n

>
πk+1
n + uk+1

n ≤ cin is satisfied for all i ∈ I`n and for all n, since

(πk+1
n , uk+1

n ) is a solution of (ARDMn). Thus, πk+1
n = πk+1 are the only violated

constraints. To avoid confusion, we refer to
√∑N

n=1

∥∥πk+1 − πk+1
n

∥∥2
as the dual fea-

sibility violation, and ρ
∥∥πk+1 − πk

∥∥ as the primal feasibility violation. Note that this is

the opposite of what is defined in Section 2.3 because we are performing ADMM on the

dual problem here. We then perform steps 1-3 until
√∑N

n=1

∥∥πk+1 − πk+1
n

∥∥2 ≤ εd and

ρ
∥∥πk+1 − πk

∥∥ ≤ εp, where εd and εp are dual and primal feasibility tolerances, respec-

tively. Each agent n then solves a pricing subproblem to look for an extreme point with

negative reduced cost:

znSEP = min
xn

{c>nxn − πk+1>Anxn − uk+1
n : xn ∈ Xn}.

Let x∗n be an optimal solution. In standard DWD, we would add x∗n as a new column

if znSEP < 0. However, the dual solution (πk+1, {uk+1
n }Nn=1) is ε-optimal and only close to

feasible for the current RMP. It is possible that we find a column whose reduced cost is neg-

ative and close to 0 when evaluated at the approximate dual solutions, but is in fact already

in the current RMP. It is also possible that at the (unavailable) optimal dual solution, the re-

duced cost is actually positive and the extreme point should not be added. To ensure a finite

algorithm, agent n only adds x∗n as a new extreme point if znSEP < −maxi∈I`n{
∥∥Ai

n

∥∥}εd .

In Lemma 1, we show that ADMM terminates with cin −Ai
n

>
πk+1 − uk+1

n ≥ −
∥∥Ai

n

∥∥εd
for all i and n. Thus, if−maxi∈I`n{

∥∥Ai
n

∥∥}εd ≤ znSEP = c>nx
∗
n−πk+1>Anx

∗
n−uk+1

n < 0,

26



then we cannot guarantee that x∗n is a necessary extreme point. In other words, we can only

trust znSEP within maxi∈I`n{
∥∥Ai

n

∥∥}εd. This is necessary for the analysis in Section 2.4.2.

Lemma 1. At outer-iteration `, if ADMM terminates with
∥∥πk+1 − πk+1

n

∥∥ ≤ εd for all n,

we have

cin −Ai
n

>
πk+1 − uk+1

n ≥ −
∥∥Ai

n

∥∥εd
for all i ∈ I`n, n = 1, ..., N .

Proof. We have

∥∥∥∥∥∥∥∥∥∥
πk+1 − πk+1

1

...

πk+1 − πk+1
N

∥∥∥∥∥∥∥∥∥∥
≤ εd ⇒

N∑
n=1

∥∥πk+1 − πk+1
n

∥∥2 ≤ ε2d

⇒
∥∥πk+1 − πk+1

n

∥∥2 ≤ ε2d, ∀n = 1, . . . , N

⇒
∥∥πk+1 − πk+1

n

∥∥ ≤ εd, ∀n = 1, . . . , N.

For any n, computing the distance between cin−Ai
n

>
πk+1− uk+1

n and cin−Ai
n

>
πk+1
n −

uk+1
n gives us

∥∥∥cin −Ai
n

>
πk+1 − uk+1

n − cin +Ai
n

>
πk+1
n + uk+1

n

∥∥∥ =
∥∥∥Ai

n

>
(πk+1 − πk+1

n )
∥∥∥ (2.4.1)

≤
∥∥Ai

n

∥∥εd, ∀i ∈ I`n
Since cin −Ai

n

>
πk+1
n − uk+1

n ≥ 0 for all i ∈ I`n, (2.4.1) implies cin −Ai
n

>
πk+1 − uk+1

n ≥

−‖Ain‖εd for all i ∈ I`n and n.

Once the columns are added to the RMP, we use the solutions of the last iterates πk+1

and αk+1
n as warm starts for π1 and α1

n for all n in the next outer iteration ` + 1. If

znSEP ≥ −maxi∈I`+1
n
{
∥∥Ai

n

∥∥}εd for all n, we terminate the algorithm and retrieve approxi-

mate primal solutions x̂n ←
∑

i∈I`+1
n

λk+1
ni x

i
n for all n = 1, ..., N , where λk+1

ni are the La-

27



grangian multipliers associated with the constraints in (ARDMn), i ∈ I`+1
n , n = 1, ..., N .

The CDWD algorithm is summarized in Algorithm 1. At each ADMM iteration, the mas-

ter (or central) node calls the BROADCAST() function to send the current estimate of π to

each processor, and the RECEIVE() function to collect each processor’s dual solution πn

obtained from solving (ARDMn).

Note that for computational benefits, we repeatedly run Algorithm 1 where we start

with loose tolerances and dynamically tighten them to achieve a desired accuracy, but omit

this discussion here for ease of exposition as it does not affect the analysis, and provide

more detail in Section 2.5.

2.4.2 Convergence

We now prove the convergence of CDWD and provide bounds on the optimality gap and

feasibility violation. The quality of the dual solutions obtained by the consensus ADMM

algorithm directly affects the quality of the recovered primal solution. We are able to reduce

the optimality gap and feasibility violation by tweaking the primal and dual infeasibility

tolerances εp and εd. Recall since we are solving the dual of (MP ) using ADMM, we

refer to the Lagrangian multipliers αn in the objective of (ARDMn) and the multipliers

λni associated with the constraints as primal variables, and π,πn and un as dual variables;

we refer to
√∑N

n=1

∥∥πk+1 − πk+1
n

∥∥2
as the dual feasibility violation and ρ

∥∥πk+1 − πk
∥∥

as the primal feasibility violation. Moreover, recall that z∗MP and z∗DM refer to the optimal

objective values of the master problem (MP ) and its dual, respectively; z∗RMP and z∗RDM

refer to the optimal values of their restrictive counterparts; objective values and solutions

resulting from the CDWD algorithm are denoted by a hat such as ẑRDM .

As shown in [42] and other sources in the literature, given tolerances ε, εp, εd > 0, we

can assume that ADMM terminates with z∗RDM − ẑRDM ≤ ε, ρ
∥∥πk+1 − πk

∥∥ ≤ εp and√∑N
n=1

∥∥πk+1 − πk+1
n

∥∥2 ≤ εd. The following lemmas will be helpful in proving the

error bounds.

28



Algorithm 1 CDWD Algorithm
1: Input: tolerances εp, εd ≥ 0, penalty parameter ρ > 0

2: Let I1
n be the initial set of columns for each block n

3: Initialize π1,α1
n for all n and `← 0

4: while I`+1
n 6= I`n for some n do

5: `← `+ 1

6: Initialize primal and dual residuals rp =∞ and rd =∞
7: /*Solve RDM using consensus-based ADMM*/
8: k ← 0

9: BROADCAST(π1)
10: while rd > εd and rp > εp do
11: k ← k + 1

12: for each agent n = 1, ..., N do
13: Solve (ARDMn)
14: Collect optimal solutions (πk+1

n , uk+1
n ) and Lagrangian multipliers λk+1

n

15: end for
16: RECEIVE({πk+1

n }Nn=1)
17: πk+1 ← 1

N

∑
n(πk+1

n ) + 1
Nρ

∑
nα

k
n

18: BROADCAST(πk+1)
19: αk+1

n ← αkn − ρ(πk+1 − πk+1
n ), ∀n = 1, . . . , N

20: rd ←
√∑N

n=1

∥∥πk+1 − πk+1
n

∥∥2

21: rp ← ρ
∥∥πk+1 − πk

∥∥
22: end while

23: /*Solve pricing subproblems*/
24: for each agent n = 1, ..., N do
25: znSEP ← minxn{c>nxn − πk+1>Anxn − uk+1

n : xn ∈ Xn}
26: Let xin be the optimal solution
27: if znSEP < −maxi∈I`n{

∥∥Ai
n

∥∥}εd then
28: Add extreme point xin: I`+1

n ← I`n ∪ {i}
29: else
30: I`+1

n ← I`n
31: end if
32: end for
33: π1 ← πk+1

34: α1
n ← αk+1

n , ∀n = 1, . . . , N

35: end while

36: /*Each agent n retrieves primal solution*/
37: x̂n ←

∑
i∈I`+1

n
λk+1
ni x

i
n, ∀n = 1, . . . , N

29



Lemma 2. After the first iteration of CDWD, the Lagrangian multipliers αkn associated

with the copy constraints are primal feasible for all n, i.e for k ≥ 0, we have
∑N

n=1α
k+1
n =

0.

Proof. From the updates, we have with k ≥ 0:

πk+1 =
1

N

N∑
n=1

πk+1
n +

1

Nρ

N∑
n=1

αkn ⇒
N∑
n=1

αkn = ρ

(
Nπk+1 −

N∑
n=1

πk+1
n

)

and

αk+1
n = αkn − ρ(πk+1 − πk+1

n ), ∀n = 1, ..., N.

Summing over n, we get

N∑
n=1

αk+1
n =

N∑
n=1

αkn − ρ
(
Nπk+1 −

N∑
n=1

πk+1
n

)

= ρ

(
Nπk+1 −

N∑
n=1

πk+1
n

)
− ρ

(
Nπk+1 −

N∑
n=1

πk+1
n

)

= 0.

Theorem 2 establishes the feasibility violation at the recovered primal solution.

Theorem 2 (Feasibility Violation). Given a primal feasibility tolerance εp > 0, CDWD

terminates with a solution x̂n =
∑

i∈I`+1
n

λk+1
ni x

i
n such that:

∥∥∥∥∥
N∑
n=1

Anx̂n − t
∥∥∥∥∥ ≤ Nεp

∑
i∈I`n

λk+1
ni = 1, ∀n

30



Proof. At outer iteration ` and iteration k of ADMM, let the Lagrangian functions of

(ARDMn) for each n be:

Qn(πn,α
k
n,π

k,λ) =
1

N
t>πn + un +αkn

>
(πk − πn)− ρ

2

∥∥πk − πn∥∥2

2

+
∑
i∈I`n

λni(c
i
n −Ai

n

>
πn − un)

where {λni}i∈I`n are the multipliers of the constraints in (ARDMn).

We have the following optimality conditions in (ARDMn):

λk+1
ni (cin −Ai

n

>
πk+1
n − uk+1

n ) = 0, ∀i ∈ I`n (Complementary Slackness)

λk+1
ni ≥ 0, ∀i ∈ I`n (Dual Feasibility)

∇πnQn =
1

N
t−αkn + ρ(πk − πk+1

n )−
∑
i∈I`n

Ai
nλ

k+1
ni = 0

∇unQn = 1−
∑
i∈I`n

λk+1
ni = 0.

(Stationarity)

Thus, the convexity constraints
∑

i∈I`n
λk+1
ni = 1 in the RMP are satisfied for all n and

λk+1
ni ≥ 0 for all n and i.

We rewrite the stationarity condition with respect to πn as

∇πnQn =
1

N
t−αkn + ρ(πk − πk+1

n )−
∑
i∈I`n

Ai
nλ

k+1
ni

=
1

N
t−αkn + ρ(πk − πk+1 + πk+1 − πk+1

n )−
∑
i∈I`n

Ai
nλ

k+1
ni

=
1

N
t−αkn + ρ(πk − πk+1) + ρ(πk+1 − πk+1

n )−
∑
i∈I`n

Ai
nλ

k+1
ni

=
1

N
t− ρ(πk+1 − πk)−

∑
i∈I`n

Ai
nλ

k+1
ni −αk+1

n (2.4.2)

where the last equality holds from αk+1
n = αkn − ρ(πk+1 − πk+1

n ).

31



Summing∇πnQn over n = 1, ..., N , we get

N∑
n=1

∇πnQn = t− ρ
N∑
n=1

(πk+1 − πk)−
N∑
n=1

∑
i∈I`n

Ai
nλ

k+1
ni −

N∑
n=1

αk+1
n

= t− ρN(πk+1 − πk)−
N∑
n=1

∑
i∈I`n

Ai
nλ

k+1
ni

= 0

where the second equality follows because
∑N

n=1α
k+1
n = 0 from Lemma 2.

Then

∥∥∥∥∥
N∑
n=1

∇πnQn

∥∥∥∥∥ = 0 ≥

∥∥∥∥∥∥t−
N∑
n=1

∑
i∈I`n

Ai
nλ

k+1
ni

∥∥∥∥∥∥−Nρ∥∥πk+1 − πk
∥∥

⇒

∥∥∥∥∥∥t−
N∑
n=1

∑
i∈I`n

Ai
nλ

k+1
ni

∥∥∥∥∥∥ ≤ Nρ
∥∥πk+1 − πk

∥∥
⇒
∥∥∥∥∥t−

N∑
n=1

Anx̂n

∥∥∥∥∥ ≤ Nεp

where x̂n =
∑

i∈I`n
λk+1
ni x

i
n =

∑
i∈I`+1

n
λk+1
ni x

i
n, since I`+1

n = I`n for all n when CDWD

terminates.

Before deriving error bounds on the optimality gap, we first introduce bounds on z∗DM−

ẑRDM and ẑRMP − ẑRDM . Adding these two will then give us bounds on ẑRMP − z∗DM , or

equivalently ẑRMP − z∗MP . The following is a known relationship between ẑRDM , z∗DM and

z∗RDM (cf. [40]).

Lemma 3. After terminating ADMM, we have ẑRDM +
∑N

n=1 min{0, znSEP} ≤ z∗DM ≤

z∗RDM .

Proof. If znSEP < 0 for some n, then we can set û′n = ûn + znSEP . Doing so for each n, we

32



get a feasible solution (π̂, {û′n}Nn=1) to (DM ) with objective value

ẑRDM +
N∑
n=1

min{0, znSEP}

which is bounded above by z∗DM . Moreover, z∗DM ≤ z∗RDM since RDM is a relaxation of

(DM ).

Proposition 1. Given that ADMM terminates with z∗RDM − ẑRDM ≤ ε and we terminate

CDWD when znSEP ≥ −maxi∈I`n{
∥∥Ai

n

∥∥}εd for all n, we have

−εd
N∑
n=1

‖An‖FLn ≤ z∗DM − ẑRDM ≤ ε

where Ln is a bound on the `2-norm of all extreme points of the set Xn, defining the local

constraints of block n.

Proof. By Lemma 3, ẑRDM +
∑N

n=1 min{0, znSEP} ≤ z∗DM ≤ z∗RDM . Since z∗RDM −

ẑRDM ≤ ε and znSEP ≥ −maxi∈I`n{
∥∥Ai

n

∥∥}εd for all n after terminating ADMM, we have:

ẑRDM +
N∑
n=1

min{0, znSEP} ≤ z∗DM ≤ z∗RDM

⇒ẑRDM − ẑRDM +
N∑
n=1

min{0, znSEP} ≤ z∗DM − ẑRDM ≤ z∗RDM − ẑRDM

⇒−
N∑
n=1

max
i∈I`n
{
∥∥Ai

n

∥∥}εd ≤ z∗DM − ẑRDM ≤ ε

⇒− εd
N∑
n=1

‖An‖FLn ≤ z∗DM − ẑRDM ≤ ε

where the last set of inequalities holds from our assumption that
∥∥xin∥∥ ≤ Ln for all extreme

points of block n:
∥∥Ai

n

∥∥ =
∥∥Anxin∥∥ ≤ ‖An‖FLn.

Since we assume that (MP ) (and thus (P )) is feasible and has an optimal solution, the

dual of (MP ) is clearly bounded and has a bounded optimal solution. Let G be a bound on

33



the absolute values of the components of π. Note that such a bound may be computed in

practice for problems with a special structure. For example, in the cutting stock problem

with multiple stock lengths and vehicle routing problem with time windows, we can drop

the convexity constraint (see [48]), in which case the dual of (MP ) only involves variables

π. In both problems, the extreme points xin are binary vectors, and vectors t and Ai
n are

non-negative. Thus, the maximum component in the cost vector c is a valid bound. Note

that G is not needed in practice, and is only needed for the purpose of the analysis.

Proposition 2. Terminating ADMM with primal and dual feasibility tolerances εp and εd,

respectively, we have at any outer iteration `

|ẑRMP − ẑRDM | ≤ εd

N∑
n=1

‖An‖FLn +mGNεp

where m is the number of linking constraints, G is an upperbound on the absolute values

of the components of π, and N is the number of blocks.

Proof. The complementary slackness conditions for RDM are

λni(c
i
n −Ai

n

>
π − u) = 0, ∀i ∈ I`n, n = 1, ..., N (2.4.3)

π>(
N∑
n=1

∑
i∈I`n

Ai
nλni − t) = 0, n = 1, ..., N (2.4.4)

un(
∑
i∈I`n

λni − 1) = 0, n = 1, ..., N. (2.4.5)

Note that λk+1
ni (cin −Ai

n

>
πk+1
n − uk+1

n ) = 0 from the optimality conditions in (ARDMn).

34



Thus, plugging πk+1, uk+1
n , λk+1

ni into (2.4.3), we get for each n:

∣∣∣λk+1
ni (cin −Ai

n

>
πk+1 − uk+1

n )
∣∣∣ =

∣∣∣λk+1
ni (cin −Ai

n

>
πk+1 − uk+1

n )

− λk+1
ni (cin −Ai

n

>
πk+1
n − uk+1

n )
∣∣∣

=
∣∣∣λk+1
ni A

i
n

>
(πk+1
n − πk+1)

∣∣∣
≤
∣∣λk+1
ni

∣∣ ∥∥Ai
n

∥∥εd, ∀i ∈ I`n.
Summing over i ∈ I`n, we get

∑
i∈I`n

∣∣∣λk+1
ni (cin −Ai

n

>
πk+1 − uk+1

n )
∣∣∣ ≤∑

i∈I`n

λk+1
ni

∥∥Ai
n

∥∥εd
≤ max

i∈I`n
{
∥∥Ai

n

∥∥}εd
≤ ‖An‖FLnεd.

The first inequality follows because
∣∣λk+1
ni

∣∣ = λk+1
ni and the second inequality holds because∑

i∈I`n
λk+1
ni = 1. Summing over n gives us

∣∣∣∣∣∣
N∑
n=1

∑
i∈I`n

cinλ
k+1
ni −

N∑
n=1

∑
i∈I`n

λk+1
ni (Ai

n

>
πk+1 + uk+1

n )

∣∣∣∣∣∣ ≤
N∑
n=1

‖An‖FLnεd

⇒

∣∣∣∣∣∣ẑRMP −
[ N∑
n=1

∑
i∈I`n

λk+1
ni (Ai

n

>
πk+1 + uk+1

n )

]∣∣∣∣∣∣ ≤
N∑
n=1

‖An‖FLnεd. (2.4.6)

Moreover, using Theorem 2, (2.4.4) becomes

∣∣∣∣∣∣πk+1>(
N∑
n=1

∑
i∈I`n

Ai
nλ

k+1
ni − t)

∣∣∣∣∣∣ ≤ ∥∥πk+1
∥∥Nεp ≤ mGNεp

35



Since uk+1
n (

∑
i∈I`n

λk+1
ni − 1) = 0 is satisfied for all n, we have

∣∣∣∣∣∣πk+1>(
N∑
n=1

∑
i∈I`n

Ai
nλ

k+1
ni − t) +

N∑
n=1

uk+1
n (

∑
i∈I`n

λk+1
ni − 1)

∣∣∣∣∣∣ ≤ mGNεp

⇒

∣∣∣∣∣∣
[ N∑
n=1

∑
i∈I`n

λk+1
ni (Ai

n

>
πk+1 + uk+1

n )

]
−
[
πk+1>t+

N∑
n=1

uk+1
n

]∣∣∣∣∣∣ ≤ mGNεp

⇒

∣∣∣∣∣∣
[ N∑
n=1

∑
i∈I`n

λk+1
ni (Ai

n

>
πk+1 + uk+1

n )

]
− ẑRDM

∣∣∣∣∣∣ ≤ mGNεp. (2.4.7)

Adding (2.4.6) and (2.4.7) gives us

|ẑRMP − ẑRDM | ≤ εd

N∑
n=1

‖An‖FLn +mGNεp.

Theorem 3 (Optimality Gap). CDWD terminates with a solution x̂ such that:

−ε− γεd −mGNεp ≤ ẑRMP − z∗MP ≤ 2γεd +mGNεp

where γ =
∑N

n=1 ‖An‖FLn.

Proof. By Proposition 1,

−ε ≤ ẑRDM − z∗DM ≤ εd

N∑
n=1

‖An‖FLn (2.4.8)

and by Proposition 2,

−εd
N∑
n=1

‖An‖FLn −mGNεp ≤ ẑRMP − ẑRDM ≤ εd

N∑
n=1

‖An‖FLn +mGNεp. (2.4.9)

36



Letting γ =
∑N

n=1 ‖An‖FLn and adding (2.4.8) and (2.4.9), we get

− ε− γεd −mGNεp ≤ ẑRMP − z∗DM ≤ 2γεd +mGNεp

⇒− ε− γεd −mGNεp ≤ ẑRMP − z∗MP ≤ 2γεd +mGNεp

where the second line of inequalities follows from strong duality, i.e z∗DM = z∗MP .

2.5 Computational Experiments

In this section, we present preliminary computational experiments where we solve cutting

stock instances from the literature and synthetic instances. CDWD and DWD are imple-

mented in Python using a Message Passing Interface (MPI) package called mpi4py [76,

77, 78] and Gurobi is used as the backbone solver. In DWD, only the subproblems are

parallelized. The quadratic programs resulting from the augmented Lagrangian (ARDMn)

are solved using the barrier method. The master problem in DWD and all subproblems

are solved using Gurobi’s concurrent method. The cutting stock instances were run on a

3.6 GHz Linux machine with 6 cores, 2 threads per core and 16 GB of RAM, and the

synthetic instances were run on a 3.00 GHz Amazon server running on Linux, with 16

cores, 2 threads per core and 8 GB of RAM. We however limit ourselves to only using

one thread per core to avoid the overhead of hyperthreading. An open-source imple-

mentation of the algorithm and data generation of the synthetic instances is available at

https://github.com/mtonbari/ddw.

2.5.1 ADMM Parameters

To pick the penalty parameter ρ, we follow the guidelines provided in [42], where we

dynamically adjust ρ according to the primal and dual residuals, so that they are a factor of

µ away from each other, by either multiplying or dividing ρ by positive scalars τ inc or τ dec,

37

https://github.com/mtonbari/ddw


respectively. At the end of iteration k, we update ρ as follows:

ρk+1 ←


τ incρk if ‖rd‖ > µ‖rp‖

ρk

τdec
if ‖rp‖ > µ‖rd‖

ρk otherwise.

Intuitively, increasing ρ would put more weight on the terms ‖π − πn‖2, thus reducing dual

feasibility violation, and decreasing ρ would put more weight on dual optimality, reducing

primal feasibility violation.

We also dynamically adjust the tolerances, similar to [49]. We solve the pricing sub-

problems with increasingly accurate dual solutions, where we first solve CDWD with high

ADMM tolerances, then divide the tolerances by 10. We repeat the process until we reach

desired target tolerances. This significantly reduces computation time, as we reduce the

number of times we solve ADMM to high accuracy. We note that the threshold used to add

a new column depends on the dual tolerance εd (see Section 2.4.1 and Lemma 1). When

starting with high dual tolerances at the beginning of the algorithm, the bound derived in

Lemma 1 can be too loose, making the condition to add new columns too harsh. We found

it computationally beneficial to be more lenient in adding columns by setting the thresh-

old according to the target dual tolerance and not adapting the threshold according to the

current dual tolerance used in solving CDWD.

In our experiments, we notice achieving desired dual tolerances to be harder than re-

ducing feasibility violation. To this end, we pick τ dec < τ inc to drive ρ up more easily (thus

reducing dual feasibility violation). Moreover, feasibility violations tend to be low, so we

pick slightly higher primal feasibility tolerances.

As in classical Dantzig-Wolfe Decomposition (DWD), the RMP might be infeasible if

the starting set of extreme points is too small. We circumvent this by adding upper and

lower bounds −Gn ≤ πn ≤ Gn for each block n to ensure a bounded dual problem. As

38



discussed in Section 2.4.2, it is possible to obtain such bounds for certain applications.

Note that alternatively, one could apply CDWD to the auxiliary problem where slacks are

added to the linking constraints, and the cost is replaced by the sum of the absolute values

of the slacks. This would result in an initial set of columns such that the RMP is feasible.

Thus, setting bounds Gn is not necessary but simplifies the implementation of CDWD. In

our experiments, we set Gn to be a scalar multiple of cost vectors ‖cn‖ for simplicity. For

our DWD implementation, we first apply DWD to the aforementioned auxiliary problem

to get an initial set of columns such that the RMP is feasible.

We report the optimality gap, computed as |ẑRMP−z∗MP |
|z∗MP |

, where ẑRMP is the objective

value of the RMP evaluated at the recovered primal solution of CDWD and z∗MP is the

optimal objective value of the instance. We note that the cutting stock model can only be

solved using a column generation algorithm, and many of the larger synthetic instances

could not be solved by Gurobi as the process is killed due to the size of the problem. We

thus use the objective value obtained from DWD for z∗MP . To compute the feasibility vio-

lation, we compute the differences between the left and right-hand sides for each violated

linking constraint, normalize by the right-hand side, and report the maximum value. We

provide more details as we present the instances.

2.5.2 Cutting Stock Problem

In the cutting stock problem (CSP) with multiple stock lengths, we are given K types of

rolls of different lengths Lk and costs ck, and P pieces with demands dp and lengths `p.

Indexing the rolls of each type by {1, ..., Nk}, where Nk is an upperbound on the number

39



of stocks of type k needed, the CSP with multiple stock lengths can be modeled as:

min
x, y

K∑
k=1

Nk∑
n=1

ckykn

s.t.
K∑
k=1

Nk∑
n=1

xknp ≥ dp, p = 1, . . . , P, (2.5.1a)

P∑
p=1

`pxknp ≤ Lkykn, n = 1, . . . , Nk, k = 1, ..., K, (2.5.1b)

ykn ∈ {0, 1}, ∀n, ∀k, (2.5.1c)

xknp ∈ Z+, ∀p, ∀n, ∀k (2.5.1d)

where ykn is one if roll n ∈ {1, . . . , Nk} of type k is used, and xknp is the number of

pieces of type p cut from roll n ∈ {1, . . . , Nk} of type k. Constraints (2.5.1a) correspond

to the linking constraints, ensuring demand satisfaction. For each n ∈ {1, . . . , Nk} and

k ∈ {1, . . . , K}, constraints (2.5.1b)-(2.5.1d) correspond to a block’s constraints, ensuring

the sum of the lengths of the pieces cut from a roll do not exceed the roll’s length. There

are then
∑K

k=1 Nk blocks.

Reformulation

Given extreme points {xikn, yikn}i∈Ikn for each block (k, n), the master problem can be

written as

min
x, y

K∑
k=1

Nk∑
n=1

∑
i∈Ikn

ckλkniy
i
kn

s.t.
K∑
k=1

Nk∑
n=1

∑
i∈Ikn

λknix
i
knp ≥ dp, p = 1, . . . , P,

∑
i∈Ikn

λkni = 1, n = 1, . . . , Nk, k = 1, ..., K,

λkni ≥ 0 ∀i ∈ Ikn, ∀n, ∀k.

40



which is a relaxation of the original CSP. For a fixed stock type k, the resulting subproblems

for all n ∈ {1, ..., Nk} are the same and thus return the same column. As in [48], we ag-

gregate variables such that λki =
∑Nk

n=1 λkni for all i ∈ Ik, so that we have one subproblem

per stock type k. The resulting master problem is

min
x, y

K∑
k=1

∑
i∈Ik

ckλkiy
i
k

s.t.
K∑
k=1

∑
i∈Ik

λkix
i
kp ≥ dp, p = 1, . . . , P,

∑
i∈Ik

λki = Nk, k = 1, ..., K,

λki ≥ 0 ∀i ∈ Ik, ∀k,

(CSP )

and the resulting subproblem for block k is

min
x

ck −
P∑
p=1

π∗pxp

s.t.
P∑
p=1

`pxp ≤ Lk,

xp ∈ Z+, p = 1, . . . , P,

(CSPk)

where π∗ corresponds to the optimal dual variables associated with the linking constraints.

To add a new column, the solution yik = 1 and xikp = x∗p is added as a new extreme point

i, where x∗ is the optimal solution of (CSPk). The extreme points xik are feasible cutting

patterns of a stock of type k and variables λ are selecting patterns such that demands are

satisfied in (CSP ).

Finally, we note that since the solution xp = 0 for all p is feasible in (CSPk) and

has cost zero, we can relax the convexity constraints to
∑

i∈Ik λki ≤ Nk and since Nk

is an upperbound on the number of stocks of type k needed, we can omit the convexity

constraints in (CSP ) (see [48] for more details). This omission is accounted for in (CSPk).

41



Table 2.1: CSP Results: optimality and feasibility gaps of CDWD, and runtimes of CDWD
and DWD for various number of roll types K and number of items P .

P
Range

K
Optimality

Gap
Feasibility

Gap

CDWD
Time -

GM (sec)

DWD
Time -

GM (sec)

CDWD
Time -
Median

(sec)

DWD
Time -
Median

(sec)

[38, 40] 5 1.00e-02 2.46e-04 1.3 2.19 1.15 2.23
[146, 150] 4 1.00e-02 8.85e-03 12.63 17.53 11.39 19.06
[194, 200] 4 1.00e-02 8.90e-03 22.32 29.99 21.21 31.36
[289, 299] 4 9.60e-03 9.43e-03 64.52 58.23 58.66 60.84
[385, 395] 4 1.03e-02 9.38e-03 138.83 101.5 116.03 103.26

Computational Results

We solve CSP instances with multiple stock lengths obtained from the CaPaD library

[79](http://www.math.tu-dresden.de/∼capad/). We solve up to 50 instances with 4 and 5

stock lengths, and approximately 40, 150, 200, 300, and 400 items. For a set of instances

with P items and K stock lengths, certain instances had fewer than K stock types. We

ignore such instances resulting in fewer than 50 instances solved for certain combinations

of P and K. The number of items also slightly vary around P throughout the instances.

We solve instances with P ≈ 40 and K = 5, with P ≈ 150 and K = 4, with P ≈ 200

and K = 4, with P ≈ 300 and K = 4, and with P ≈ 400 and K = 4. For the ADMM

parameters, we pick µ = 50, τ inc = 2, τ dec = 1.5 and ρ0 = 100. For tolerances, we start at

εp = 5 and εd = 50, and end at target tolerances εp = 5× 10−2 and εd = 5× 10−3.

In Table 2.1, we include the range of the number of items P across the instances, the

number of stock lengths K, the geometric means (GM) of the optimality gaps, the fea-

sibility violations and the runtimes, and the medians of the runtimes. Given a recovered

solution x̂, the feasibility violation is computed as

max
p

{
dp −

∑K
k=1 x̂kp
dp

, 0

}
.

42

http://www.math.tu-dresden.de/~capad/


CDWD recovers high quality solutions with low optimality gaps and low feasibility

violations. The geometric mean of optimality gaps is consistently at about 10−2 and the ge-

ometric mean of feasibility violations is close to 10−4 for P = 40 and about 10−2 for the re-

maining sets of experiments. We note that CDWD runs faster than DWD in most instances

in the first three sets of experiments, with the geometric means of CDWD’s runtimes be-

ing about 40%, 28% and 26% lower than DWD’s geometric means, and the medians of

CDWD’s runtimes being about 48%, 40%, 32% lower than DWD’s medians, respectively.

For instances with about 200 items, the geometric means are close, with DWD’s being

slightly lower, but CDWD runs faster in over 50% of the instances. With about 400 items,

DWD runs faster in most instances, with a geometric mean that is about 27% lower and a

median that is about 11% lower. As we increase the number of items, the difference be-

tween the runtimes decreases, where DWD eventually runs faster in most instances with

P close to 400. We note that the number of linking constraints is equal to the number of

items, thus increasing linearly as the CSP instances get larger. As the number of linking

constraints gets larger, ADMM convergence starts to slow down, explaining our observa-

tions. To this end, we turn to synthetic instances to more easily perform sensitivity analysis

with respect to the number of blocks, variables and linking constraints.

43



2.5.3 Synthetic Instances

Instance Generation

The synthetic instances are of the form

min
N∑
n=1

c>nxn

s.t.
N∑
n=1

Anxn ≥ t

Bnxn ≤ bn, ∀n = 1, ..., N

0 ≤ xn ≤ un, ∀n = 1, ..., N

where the coefficients of the matrices An and Bn are from the discrete uniform distribution

U{−10, 20}, and the components of the cost vector are from U{−10, 30}. Let `i be the

sum of the entries in row i of the linking constraints, i.e `i =
∑

n,j(An)ij , where (An)ij

is component (i, j) of An; similarly let βni be the sum of the entries of row i of Bn. The

vectors t and bn were generated according to the sum of each row of the constraint matrix.

We construct component i of t as follows:


ti ∼ U{2`i, 3`i}, if `i > 0

ti ∼ U{3`i, 2`i}, if `i < 0

ti = 0, if `i = 0

i = 1, ...,m

44



where m is the number of linking constraints. Similarly, component i of bn is constructed

as 
(bn)i ∼ U{2βni , 3βni } if βni > 0

(bn)i ∼ U{3βni , 2βni }, if βni < 0

(bn)i = 0, if βni = 0

i = 1, ...,mn

where mn is the number of constraints in block n. Moreover, to ensure a bounded region,

we add upper and lower bounds to the variables, where un = 30 for all n.

Computational Results

We perform four sets of experiments, each set involving 1, 2, 5, and 10 linking constraints.

For each set of experiment, we vary the number of blocksN ∈ {2, 4, 8, 10, 15} and the total

number of variables across all blocks nv ∈ {100, 1000, 5000, 10000, 20000, 25000, 50000,

100000}. The results for nv >= 10000 are reported in Tables 2.2-2.5. We define mn

to be the number of block constraints. For simplicity, each block has approximately the

same number of variables. We limit the number of blocks to 15 to avoid the overhead of

hyperthreading. We note that we have also solved the instances as a single LP using Gurobi

but omit the results, as Gurobi’s runtimes, although lower for the smaller instances, quickly

become greater than CDWD and DWD as the instances get larger. Moreover, Gurobi failed

to solve instances with nv ≥ 50000. The feasibility violations are computed as

max
i

{
ti −

∑
n,j(An)ij(x̂n)j

|ti|
, 0

}
.

For the ADMM parameters, we pick µ = 100, τ inc = 2, τ dec = 1.5 and ρ0 = 100. For

tolerances, we start at εp = 50 and εd = 50, and end at target tolerances εp = 5× 10−2 and

εd = 5× 10−3.

Across all instances, feasibility violations are very close to 0, with the largest violation

45



being in the order of 10−4; optimality gaps are also very low, with most instances hovering

between the order of 10−6 and 10−2, with only eight instances reaching optimality gaps as

high as 10−2.

For smaller instances, DWD runs faster than CDWD. For a fixed number of linking

constraints and blocks, the gap between the runtimes closes as the number of variables

increases, with CDWD eventually running faster in many instances with 25000 variables or

more, especially for smaller values of m and N . For example, with five linking constraints

and ten blocks, DWD is over an order of magnitude faster for nv = 100 and nv = 1000, and

is about 50% faster for nv = 5000; the runtimes are almost identical for larger values of

nv, until CDWD becomes faster at 100000 total variables. We observe this overall trend in

many cases, but note that the gap between the runtimes levels out, and further experiments

may be required to confirm it. We plot the ratios of DWD to CDWD runtimes in Figure

2.1 (a value under 1 means DWD is faster). The ratios approach one fast as we increase nv

to 25000, after which CDWD runs faster in more and more instances. Fixing nv to 10000,

20000, 25000 and 50000, we observe that CDWD runs faster in 15%, 30%, 25%, and 50%

of all instances, respectively. Between 50000 and 100000 variables, the ratios either stay

close to one, slightly decrease in some cases or slightly increase in others, with 70% of the

instances having a ratio greater than 0.95 when nv = 100000. The ratio also approaches

one at a slower rate as we increaseN and, to some extent, the number of linking constraints.

This is expected as increasing the number of blocks and linking constraints slows down the

convergence of ADMM, thus requiring larger instances in terms of number of variables for

CDWD to catch up to DWD and potentially run faster.

Although our main focus is dealing with privacy issues and data that cannot be stored

in a central location, either for security reasons or physical limitations, we show that the

computational price of handling these concerns approaches zero as the number of variables

increases, and even see a potential computational benefit in many cases, while sacrificing

very little in terms of solution quality.

46



Table 2.2: Optimality gaps and feasibility violations of CDWD, and runtimes of CDWD
and DWD in synthetic instances with 1 linking constraint for N blocks, nv total variables,
and mn block constraints.

N nv mn
Optimality

Gap
Feasibility

Gap

CDWD
Time
(sec)

DWD
Time
(sec)

2

10000 2500 2.89e-02 0 57.6 71.6
20000 2500 1.07e-02 0 123.2 159.3
25000 2500 5.86e-03 0 155.3 206.7
50000 2500 9.87e-03 0 357.6 512.0

100000 2500 2.41e-02 0 801.4 1132.9

4

10000 2500 1.16e-06 1.11e-07 37.6 34.8
20000 2500 4.60e-06 0 82.3 82.9
25000 2500 2.75e-02 0 82.9 104.1
50000 2500 2.17e-02 0 173.7 230.2

100000 2500 1.05e-05 0 531.2 516.9

8

10000 1250 2.89e-05 0 9.99 9.04
20000 2500 1.57e-05 8.13e-09 50.1 50.0
25000 2500 7.96e-06 0 69.8 65.1
50000 2500 5.76e-06 0 148.7 144.2

100000 2500 1.30e-05 1.92e-07 316.6 311.6

10

10000 1000 9.41e-06 3.32e-06 9.32 7.51
20000 2000 4.75e-06 0 43.4 43.4
25000 2500 1.48e-05 7.61e-08 75.3 76.9
50000 2500 1.97e-05 0 164.6 162.4

100000 2500 1.31e-05 0 370.6 356.0

15

10000 666 4.05e-06 0 3.96 3.02
20000 1333 9.40e-06 0 19.4 17.0
25000 1666 9.55e-06 5.28e-07 31.0 29.4
50000 2500 9.55e-06 0 120.2 118.2

100000 2500 5.08e-06 0 265.8 255.2

47



Table 2.3: Optimality gaps and feasibility violations of CDWD, and runtimes of CDWD
and DWD in synthetic instances with 2 linking constraints for N blocks, nv total variables,
and mn block constraints.

N nv mn
Optimality

Gap
Feasibility

Gap

CDWD
Time
(sec)

DWD
Time
(sec)

2

10000 2500 1.66e-04 0 89.5 90.6
20000 2500 3.37e-02 0 105.1 219.8
25000 2500 5.45e-06 5.07e-09 276.1 298.5
50000 2500 3.69e-05 8.52e-09 690.2 758.5

100000 2500 3.03e-02 0 841.6 1791.3

4

10000 2500 2.47e-05 0 47.0 45.2
20000 2500 6.06e-06 0 102.4 78.9
25000 2500 2.66e-04 1.33e-07 141.5 139.1
50000 2500 4.16e-05 1.60e-07 317.0 325.0

100000 2500 3.64e-05 6.39e-08 793.9 804.0

8

10000 1250 6.34e-06 9.05e-07 13.1 11.9
20000 2500 2.30e-05 1.97e-07 74.1 67.7
25000 2500 6.61e-06 3.54e-07 100.2 94.9
50000 2500 2.32e-05 0 205.6 218.3

100000 2500 1.22e-05 6.43e-08 447.8 447.7

10

10000 1000 1.37e-05 1.44e-06 9.85 8.37
20000 2000 9.50e-06 0 57.6 57.5
25000 2500 2.73e-05 6.04e-07 102.1 99.7
50000 2500 4.82e-06 0 251.2 223.9

100000 2500 5.69e-06 0 528.5 510.2

15

10000 666 1.38e-05 0 4.36 3.77
20000 1333 1.47e-05 1.16e-06 24.5 22.4
25000 1666 8.19e-06 1.05e-06 40.4 40.0
50000 2500 4.75e-06 0 141.6 143.7

100000 2500 3.31e-06 4.27e-08 411.9 347.0

48



Table 2.4: Optimality gaps and feasibility violations of CDWD, and runtimes of CDWD
and DWD in synthetic instances with 5 linking constraints for N blocks, nv total variables,
and mn block constraints.

N nv mn
Optimality

Gap
Feasibility

Gap

CDWD
Time
(sec)

DWD
Time
(sec)

2

10000 2500 1.69e-05 1.36e-08 238.1 232.1
20000 2500 3.46e-05 2.58e-07 572.6 566.3
25000 2500 1.97e-05 7.51e-08 766.0 809.1
50000 2500 5.35e-05 6.67e-08 2040.1 1862.4

100000 2500 3.45e-05 7.14e-09 3202.5 3323.3

4

10000 2500 3.23e-05 6.96e-07 100.4 100.6
20000 2500 4.65e-06 4.45e-07 213.6 244.9
25000 2500 3.08e-05 2.61e-07 331.3 289.5
50000 2500 2.59e-05 4.69e-08 876.7 929.3

100000 2500 1.52e-05 9.98e-11 2564.8 2434.8

8

10000 1250 5.31e-05 2.46e-06 28.2 24.2
20000 2500 1.40e-05 8.65e-08 127.9 151.0
25000 2500 3.43e-05 6.57e-08 193.8 178.4
50000 2500 9.62e-06 1.55e-08 416.0 404.2

100000 2500 1.20e-05 7.08e-08 1029.3 1018.3

10

10000 1000 4.91e-06 1.05e-07 21.4 19.4
20000 2000 1.38e-05 1.49e-06 121.2 108.6
25000 2500 1.59e-05 4.81e-07 222.7 217.3
50000 2500 7.98e-06 1.14e-07 430.4 416.6

100000 2500 4.02e-05 0 948.9 978.0

15

10000 666 2.08e-05 1.34e-06 11.1 6.88
20000 1333 1.00e-05 1.53e-06 42.8 30.5
25000 1666 9.55e-06 5.05e-07 85.5 74.5
50000 2500 7.55e-06 2.49e-07 300.6 333.9

100000 2500 7.63e-06 7.41e-08 813.5 820.9

49



Table 2.5: Optimality gaps and feasibility violations of CDWD, and runtimes of CDWD
and DWD in synthetic instances with 10 linking constraints forN blocks, nv total variables,
and mn block constraints.

N nv mn
Optimality

Gap
Feasibility

Gap

CDWD
Time
(sec)

DWD
Time
(sec)

2

10000 2500 4.23e-05 3.54e-07 568.5 482.1
20000 2500 2.11e-05 6.73e-08 1339.1 1332.4
25000 2500 2.05e-05 2.14e-07 2334.7 1895.1
50000 2500 2.74e-05 8.39e-09 5412.5 5122.9

100000 2500 4.91e-05 5.20e-09 15681.6 14124.8

4

10000 2500 3.45e-05 8.81e-07 359.1 348.8
20000 2500 1.60e-05 2.18e-07 631.4 664.2
25000 2500 9.95e-06 8.11e-08 879.6 856.4
50000 2500 1.98e-05 1.50e-07 1820.5 2118.9

100000 2500 1.61e-05 5.15e-08 5044.7 4836.2

8

10000 1250 1.38e-05 1.16e-06 50.2 46.7
20000 2500 1.67e-05 4.49e-07 329.8 302.4
25000 2500 3.14e-05 2.60e-07 372.9 353.1
50000 2500 1.20e-05 3.54e-08 867.2 913.8

100000 2500 9.61e-06 1.11e-07 2659.3 2149.4

10

10000 1000 1.61e-05 1.49e-06 44.1 28.9
20000 2000 2.27e-05 6.12e-07 209.1 175.7
25000 2500 1.19e-05 3.32e-07 412.5 381.5
50000 2500 6.69e-06 2.76e-07 845.3 795.6

100000 2500 7.34e-06 4.53e-08 2601.6 2215.6

15

10000 666 1.78e-05 9.22e-07 22.3 10.2
20000 1333 2.12e-05 1.27e-06 99.4 73.3
25000 1666 1.63e-05 3.63e-07 163.9 128.4
50000 2500 9.94e-06 7.10e-07 559.7 532.5

100000 2500 7.16e-06 5.97e-08 1176.1 1088.9

50



0 20000 40000 60000 80000 100000
nv

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ru
nt
im

e 
Ra

tio
s

N = 2
N = 4
N = 8
N = 10
N = 15

(a) m = 1

0 20000 40000 60000 80000 100000
nv

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ru
nt
im

e 
Ra

tio
s

N = 2
N = 4
N = 8
N = 10
N = 15

(b) m = 2

0 20000 40000 60000 80000 100000
nv

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ru
nt
im

e 
Ra

tio
s

N = 2
N = 4
N = 8
N = 10
N = 15

(c) m = 5

0 20000 40000 60000 80000 100000
nv

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ru
nt
im

e 
Ra

tio
s

N = 2
N = 4
N = 8
N = 10
N = 15

(d) m = 10

Figure 2.1: DWD to CDWD runtime ratios in synethetic instances for various number of
blocks N and linking constraints m.

2.5.4 Parallel Efficiency and Scalability

To measure how our Python implementation scales as we increase the number of blocks and

available cores, we use two common metrics as in [80]. The first one measures the speedup

gained by using the available cores. The second metric measures core utilization and time

lost in communication and synchronization. We compute the two metrics for instances with

9000, 18000 and 36000 total variables. For each set of instances, we experiment with 5,

10, 20, 36 and 72 blocks. As before, each block contains the same number of variables.

Note that in these experiments, we potentially pay the price of hyperthreading. The main

objective is to showcase the slowdowns that can be caused by idle cores, indicating poten-

51



Figure 2.2: Ratio of runtimes between serial and parallel implementations

tial benefits in an asynchronous implementation of our algorithm.

Parallel Speedup Let tp be the time it takes for CDWD to terminate using p cores. We

compute the ratio tp
t1

for each experiment and report results in Figure 2.2. We observe

similar trends for different number of total variables. The computational gain from paral-

lelizing decreases as we increase the number of blocks. This is mainly due to cores sitting

idle, waiting on other processes to finish, as well as communication overhead increasing

with the number of cores used. This is confirmed by our analysis on core utilization.

Core Utilization To estimate core utilization, we measure total time spent doing useful

computations, communication time, and synchronization time where a core is sitting idle

waiting on others to finish their computations. For each core, if we define these three val-

ues as Tu, Tc and Ts, respectively, then core utilization can be estimated as Tu
Tu+Tc+Ts

[80].

52



Figure 2.3: Average core utilization

Figure 2.3 reports average core utilization for each instance. We again see diminishing re-

turns where average utilization decreases as the number of blocks and cores used increases.

However, it seems that the average utilization is slightly better as we increase the number

of total variables.

2.6 Conclusions

In this chapter, we proposed a consensus-based Dantzig-Wolfe decomposition algorithm

for loosely coupled large-scale linear programs. As opposed to the standard Dantzig-Wolfe

algorithm, we solve the master problem using consensus-based ADMM in a distributed

fashion, thus handling circumstances where data is not available centrally and preserving

privacy of information of the blocks, and addressed the resulting computational and the-

oretical challenges. We proved convergence of the algorithm and provided error bounds

on the feasibility and optimality gaps. We illustrated our method using an MPI implemen-

53



tation on cutting stock and synthetic instances, and showed that we are able to achieve

high accuracy in reasonable time. Although the main objective of our method is to handle

decentralized storage of data and privacy concerns, we illustrated potential computational

benefits for instances with a large number of variables and in many of the cutting stock

instances. To further improve computation time, it is possible to use other algorithms or

more sophisticated versions of ADMM to solve the consensus problem. As the difficulty

and size of the problems for each block increases, the cost per ADMM iteration can be-

come prohibitive. Certain workarounds involve linearizing the objective of the augmented

Lagrangian, yielding computational benefits [42]. Other interesting consensus algorithms

include a distributed interior point method which might converge faster than first-order

distributed methods [81]. Finally, as suggested by our experiments, an asynchronous im-

plementation of CDWD has the potential to improve computation times.

54



CHAPTER 3

DATA-DRIVEN TWO-STAGE CONIC OPTIMIZATION WITH RARE

HIGH-IMPACT ZERO-ONE UNCERTAINTIES

3.1 Motivation

In this chapter, we are motivated by problems arising in network optimization affected by

zero-one uncertainties. In such applications, binary random variables represent failures of

network components such as edges or nodes. We are interested in the case where failure

events are rare but have a high impact. In particular, we are motivated by applications in

which the decision-relevant random events consist of high-dimensional binary outcomes.

For example, in electric power networks, random node and edge failures have been used

to model losses of physical components such as substations, transmission lines, genera-

tors, and transformers [82, 83]. Similarly, random zero-one vectors can represent failures

of compressors and gas pipelines in natural gas [84], antennas in wireless communica-

tion [85], and road links in transportation networks [86].

The challenges in modeling and solving such uncertainty-affected optimization prob-

lems are threefold. First, the number of scenarios grows exponentially as the number of

network components increases, up to 2n scenarios for n components. Second, we are fo-

cused on applications where network failures are rare but critical, and historical records are

often not rich enough to include observations for every possible failure state. Third, failures

of individual network elements are unlikely to be independent of each other. For example,

transmission line failures in electric power systems often have a cascading effect which

triggers the failure of other transmission lines. As a result, the true underlying distribution

of the random parameters is often unknown and difficult to reliably estimate given limited

data.

55



In this high-dimensional context, we focus on two-stage stochastic programming. Let

ξ̃ ∈ Ξ be a random zero-one vector of dimension M , where Ξ ⊆ {0, 1}M is the support

set. Recall that if the distribution P is known, then the two-stage problem takes the form

min
x∈X

c(x) + EP

[
Q(x, ξ̃)

]
,

where x represents the first-stage decisions that must be made before the realization of the

random parameters, X ⊆ RN1 is a convex compact set of feasible first-stage decisions,

c : X 7→ R is a convex function representing the deterministic cost associated with x, and

Q(x, ξ) is the optimal value of the second-stage problem given first-stage decision vector

x and a fixed realization ξ ∈ Ξ. We assume that the second-stage problem is a convex

conic problem which can be written as

Q(x, ξ) = inf
y∈Y

{
q(ξ)>y : W (ξ)y ≥ T (x)ξ + h(x)

}
, (3.1.1)

where y denotes the second-stage decisions made after observing ξ; Y ⊆ RN2 is a proper

(closed, convex, pointed, and full-dimensional) cone; q : Ξ 7→ RN2 and W : Ξ 7→ RL×N2

are vector- and matrix-valued affine functions respectively, and h : X 7→ RL and T : X 7→

RL×M are componentwise closed, proper, convex vector- and matrix-valued functions, re-

spectively. We allow uncertainty to affect only the affine constraints of the problem and,

similarly, the first- and second-stage decisions to interact only via the affine part.

Since the true underlying distribution P is unknown, this two-stage optimization for-

mulation is ill-posed. Nevertheless, P is typically observable through a finite amount of

historical data. We assume that we have access to N such independent and identically dis-

tributed observations, which we denote by {ξ̂1, . . . , ξ̂N}. We also assume that generating

additional data (e.g., via Monte Carlo computer simulations) is either costly or impossible.

A popular approach to approximate E [Q(x, ξ)] is the Sample Average Approximation

(SAA) [87]. This approach replaces the true distribution with the empirical distribution

56



PN = 1
N

∑N
i=1 δξ̂i , where δξ̂i denotes the Dirac distribution at ξ̂i. In the context of rare

events, however, obtaining accurate estimates of the true distribution and, hence, the op-

timal solution of the true two-stage problem may require unrealistically large amounts of

data. Indeed, given limited data, SAA is known to lead to an optimistic solution which

generalizes poorly to unobserved data, leading to poor out-of-sample performance [18].

3.2 Distributionally Robust Approach for Discrete Rare Events

The high dimensionality and rare occurrence of failure events make estimating the under-

lying failure probabilities difficult. To this end, we adopt a distributionally robust approach

and construct an ambiguity set P of possible distributions that are consistent with the ob-

served data. We then minimize the worst-case expected costs over all distributions in the

ambiguity set. Specifically, we consider two-stage conic distributionally robust optimiza-

tion problems of the form

min
x∈X

c(x) + sup
P∈P

EP

[
Q(x, ξ̃)

]
. (3.2.1)

The ambiguity set P must be chosen such that it contains the true distribution with high

confidence or, at the very least, distributions that assign nonzero probability to the rare

events. We focus on the Wasserstein ambiguity set, i.e. P = BW (PN , θ). Recall that the

Wasserstein set is a ball in the space of probability distributions centered at the empirical

one PN and is defined as

BW (PN , θ) =
{
P ∈M(Ξ) : dW (P, P̂N) ≤ θ

}
, (3.2.2)

whereM(Ξ) denotes the set of all distributions supported on Ξ, θ ≥ 0 is the radius of the

Wasserstein ball. Given a valid metric d(·, ·) on the support set Ξ, the Wasserstein distance

57



dW (P,P′) between two distributions P,P′ is

dW (P,P′) = min
Π∈M(Ξ×Ξ)

{∑
ξ∈Ξ

∑
ξ′∈Ξ

d(ξ, ξ′)Π(ξ, ξ′) : Π is a coupling of P and P′
}
.

We discuss the choice of the metric d(·, ·) and the radius θ of the Wasserstein ball in Sec-

tion 3.2.1.

3.2.1 Choice of the Underlying Metric and Radius of the Wasserstein Ball

In the definition of the Wasserstein ambiguity set, the choice of the underlying metric d(·, ·)

of the support set can play an important role from both a modeling and algorithmic perspec-

tive. Although we take advantage of this observation in Chapter 4, we assume throughout

this chapter that the metric d(·, ·) is an arbitrary norm. We note, however, that our results

also apply when d(·, ·) is any mixed-integer conic-programming-representable metric.

For a given choice of the underlying metric, the radius θ of the ambiguity set allows us

to control the level of risk-aversness. Specifically, given a confidence level β ∈ (0, 1), one

can choose the radius as a function of β and the number of observations N such that the

true distribution P is contained in the ambiguity set with high probability:

P [dW (P,PN) ≤ θN(β)] ≥ 1− β. (3.2.3)

It was shown in [18] that (3.2.3) holds if we select θN(β) = c0 (N−1 log β−1)
1/M , where c0

is a problem-dependent constant. Since this choice can lead to unnecessarily large values

for the radius, the authors suggest solving the two-stage problem (3.2.1) for several fixed

choices of θ and then using k-fold cross-validation to select a radius. In this technique,

the data set is split into k folds, where k − 1 of the folds are used as the training set, and

the remaining one as the test set. This process is repeated k times and the average of the

radii obtained from each of the k runs is used as the final radius (see [18]). However,

this approach is not expected to work well when addressing rare event uncertainties as the

58



training and testing data sets used for cross-validation are likely to be unbalanced in such

cases (e.g., the testing data set may not contain any rare events leading to a trivial value

of θ = 0). Although one can circumvent this issue by using techniques such as stratified

cross validation, doing so would require solving the two-stage problem (3.2.1) repeatedly

for various choices of θ, which can become computationally expensive. Instead, we use

the following theorem to guide our choice of the radius θ which provides tighter values by

exploiting the finiteness of the support Ξ.

Theorem 4 (Finite sample guarantee). For every fixed sample size N > 0, and confidence

level β ∈ (0, 1), the probabilistic guarantee (3.2.3) holds whenever

θN(β) ≥ D
√

(2N)−1 (|Ξ| log(N + 1) + log β−1), (3.2.4)

where D := maxξ,ξ′∈Ξ d(ξ, ξ′) is the diameter of Ξ with respect to the metric d.

Proof. We refer the reader to [2] for the proof.

The right-hand side of (3.2.4) indicates that for a choice of a confidence level β, θN(β)

is roughly proportional to
√
N−1 log(N + 1). For such choices, the optimal value of the

corresponding two-stage distributionally robust problem (3.2.1) can be expected to provide

an upper bound on the true (unknown) out-of-sample cost. We empirically verify this upper

bound in Section 3.6, where we vary θ = ν
√
N−1 log(N + 1) as a function of a scalar ν.

Theorem 4 also indicates that θN(β)→ 0 as the sample size becomes large (N →∞), and

that θN(β)→∞ if we are overly conservative (β → 0). This is in line with our statement

that DRO under the Wasserstein ambiguity set is a generalization of stochastic and robust

optimization.

Remark 1 (Reduction to two-stage stochastic and robust optimization). The two-stage dis-

tributionally robust problem (3.2.1) reduces to the classical sample average approximation

whenever the radius of the ambiguity set θ = 0, since BW (PN , θ) = {P̂N} reduces to a

59



singleton in this case. Similarly, it reduces to a classical two-stage robust optimization

problem whenever θ ≥ maxξ,ξ′∈Ξ d(ξ, ξ′) since Ξ is compact and BW (PN , θ) contains all

Dirac distributions δξ, ξ ∈ Ξ, in this case. Therefore, the worst-case expectation in (3.2.1)

reduces to maxξ∈ΞQ(x, ξ).

3.2.2 Contributions

This chapter addresses the relatively unexplored topic of rare high-impact uncertainties

through the lens of data-driven distributionally robust optimization. Existing methods for

addressing rare high-impact uncertainties [88, 89] are few, and they are all based on variants

of Monte Carlo methods (e.g., importance sampling), which require the existence of a

probability distribution that can be sampled to generate additional observations.

In this chapter, we extend the state of the art in data-driven optimization by studying

two-stage conic programs with a particular focus on high-dimensional zero-one uncertain-

ties. This is crucial because existing reformulations and algorithms for distributionally

robust optimization with finitely supported distributions [90, 19, 27, 26] scale with the size

of the support set |Ξ|, which can grow exponentially large in such cases. We circumvent

this exponential growth by utilizing tractable conservative approximations inspired by lift-

and-project convexification techniques in global optimization [91, 92, 93].

Closest in spirit to our work are the papers of [94, 95, 96] who consider the case

where the second-stage value function Q(x, ξ) is the optimal value of a linear program

with uncertain right-hand sides and the support set Ξ is a polytope. In this setting, the

authors in [94, 95] reformulate (3.2.1) as a copositive cone program which they approxi-

mate using semidefinite programming, whereas [96] provide approximations by leveraging

reformulation-linearization techniques from bilinear programming. Although some exten-

sions of these approaches to the case of zero-one support sets Ξ have been made [97,

98], problems where Q(x, ξ) is the optimal value of a conic program have not been ad-

dressed. This is partly because such extensions lead to so-called generalized copositive

60



programs or set-semidefinite programs (e.g., see [99, 100]), and relatively little is known

about their tractable approximations. In contrast, generalizations of lift-and-project tech-

niques to mixed zero-one conic problems are fairly well known (e.g., see [101, 102]), and

we exploit these to derive tractable approximations for distributionally robust optimization.

The relationship between convexification hierarchies based on copositive programming and

lift-and-project techniques (for specific problem classes) has been explored in [103, 104].

We highlight the following main contributions:

1. By exploiting ideas from penalty methods and bilinear programming, we develop re-

formulations of the two-stage distributional robust problem (3.2.1) under the Wasser-

stein set, reducing its solution to optimization problems over the convex hulls of

mixed-integer conic representable sets.

2. We prove the existence of a finite penalty parameter such that the two-stage distri-

butionally robust problem (3.2.1) with right-hand side uncertainty is equivalent to a

two-stage problem with objective uncertainty using a penalty method reformulation.

This significantly reduces the size of the resulting reformulations compared to using

McCormick inequalities.

3. By using lift-and-project hierarchies to approximate the convex hull of the mixed-

integer conic representable sets, we derive tractable conservative approximations of

the distributionally robust two-stage problem (3.2.1), and we provide practical guide-

lines to compute them efficiently. The approximations are tractable, and they become

exact as the Wasserstein radius θ shrinks to zero.

4. We demonstrate the practical viability of our method and its out-of-sample perfor-

mance on challenging nonlinear optimal power flow and multi-commodity network

design problems that are affected by rare network contingencies, and we study its

behavior as a function of the rarity and impact of these contingencies, illustrating

61



improvements over classical sample average and two-stage robust optimization for-

mulations.

The rest of the chapter is organized as follows. Section 3.3 derives the mixed-integer

conic programming representation of interest, Section 3.4 derives their lift-and-project ap-

proximations, and Section 3.6 reports numerical results.

Notation. Vectors and matrices are printed in bold lowercase and bold uppercase letters,

respectively, while scalars are printed in regular font. The set of non-negative integers and

reals are denoted by Z+ and R+, respectively. For any positive integer N , we define [N ] as

the index set {1, . . . , N}. We use ek to denote the kth unit basis vector, e to denote the vec-

tor of ones, I to denote the identity matrix, and 0 to denote the vector or matrix of zeros, re-

spectively; their dimensions will be clear from the context. For a matrixA, we use vec(A)

to denote the vector obtained by stacking the columns ofA in order. The inner product be-

tween two matricesA,B ∈ Rm×n is denoted by 〈A,B〉 :=
∑

i∈[m]

∑
j∈[n] AijBij . We use

Cn = {(x, t) ∈ Rn−1 × R : ‖x‖ ≤ t} to denote the norm cone associated with the norm

‖·‖. For a logical expression E , we define I[E ] as the indicator function which takes a

value of 1 if E is true and 0 otherwise. Throughout the chapter, we refer to an optimization

problem as tractable if it can be solved in polynomial time in the size of its input data, and

intractable if it is NP-hard.

3.3 Mixed-Integer Conic Representations

We assume that the two-stage distributionally robust problem (3.2.1) satisfies the assump-

tions of complete and sufficiently expensive recourse.

(A1) For every realization ξ ∈ Ξ, there exists y+ ∈ int(Y) such thatW (ξ)y+ > 0.

(A2) For every first-stage decision x ∈ X and every realization ξ ∈ Ξ, the second-stage

loss function Q(x, ξ) is bounded.

62



A natural way to ensure these assumptions hold is to add slack variables in the formulation

of the second-stage problem Q(x, ξ) and penalize them in the objective function. When-

ever the assumptions are satisfied, they imply that (i)Q(x, ξ) is always strictly feasible and

bounded, (ii) the dual ofQ(x, ξ), given in the following, is always feasible, and (iii) strong

conic duality holds between the second-stage problem and its dual, Q(x, ξ) = Qd(x, ξ),

where

Qd(x, ξ) := sup
λ∈RL+

{
[T (ξ)x+ h(x)]> λ : q(ξ)−W (ξ)>λ ∈ Y∗

}
. (3.3.1)

Here, Y∗ denotes the dual cone of Y . We assume that the uncertain vectors and matrices

in (3.1.1) are affine and can be represented as q(ξ) = q0 + Qξ and W (ξ) = W0 +∑
j∈[M ] ξjWj,whereQ ∈ RN2×M , and for each j ∈ {0, 1, . . . ,M}, we haveWj ∈ RL×N2 .

A consequence of the above assumptions is the following lemma, which states that

computing the worst-case expectation in the two-stage problem (3.2.1) is equivalent to

averaging N worst-case values of the loss function Q(x, ξ) over ξ ∈ Ξ, each regularized

by one of the training samples.

Lemma 4. The distributionally robust two-stage problem (3.2.1) admits the following re-

formulation:

min
x∈X,α≥0

c(x) + αθ +
1

N

N∑
i=1

max
ξ∈Ξ

{
Q(x, ξ)− α d(ξ, ξ̂(i))

}
. (3.3.2)

Proof. The proof directly follows from Theorem 1.

The remainder of this section establishes that the inner maximization in (3.3.2) is equiv-

alent to optimizing a linear function over the convex hull of the feasible region of a mixed-

integer conic program (MICP). The following theorem is key to establishing this result.

Theorem 5 (Convex hull reformulation). The distributionally robust two-stage problem

63



(3.2.1) admits the following convex hull reformulation:

min
x∈X,α≥0

c(x) + αθ +
1

N

N∑
i=1

Zi(x, α), (3.3.3)

where, for each i ∈ [N ], we define the function Zi : X×R+ 7→ R and the setZi as follows:

Zi(x, α) = max
(ξ,λ,Λ,τ)∈cl conv(Zi)

{
〈T (x),Λ〉+ h(x)>λ− ατ

}
(3.3.4a)

Zi =


(ξ,λ) ∈ Ξ× RL

+,

(Λ, τ) ∈ RL×M × R+

:

Λ = λξ>, (ξ − ξ̂i, τ) ∈ CM+1

q0 +Qξ −W>
0 λ−

∑
j∈[M ]

W>
j Λej ∈ Y∗

 .

(3.3.4b)

Proof. See Appendix A.2.

The inner optimization problem (3.3.4a) is over the closed convex hull of the set Zi,

which couples the binary uncertain parameters ξ with the continuous dual variables λ via

the bilinear equation Λ = λξ>. The sets Zi are thus not the feasible regions of MICPs. We

propose two approaches to ensure MICP representability. In Section 3.3.1, we linearize the

bilinear equation Λ = λξ> using McCormick inequalities, which requires knowledge of

upper bounds on the dual variables λ. In Section 3.3.2, we reformulate the value function

Q(x, ξ) using ideas from penalty methods so that the uncertainty ξ appears only in the

objective function, which circumvents any bilinear terms. We compare the two approaches

and summarize their merits in Section 3.3.3.

3.3.1 Linearized Reformulation

The decision variables λ of the dual problem Qd(x, ξ) must be necessarily bounded for

any fixed value of x ∈ X and ξ ∈ Ξ. Indeed, under assumptions (A1) and (A2), the

value of Qd(x, ξ) is bounded for any fixed x ∈ X and ξ ∈ Ξ; and since X and Ξ are

64



compact sets, the variables λ must also be necessarily bounded. Suppose that λ̄ ∈ RL
+

are known upper bounds (independent of x and ξ) on these variables. Such bounds may

be analytically known whenever we explicitly add slack variables to ensure feasibility of

the second-stage problem or if the latter has some structure (e.g., see [105]). Whenever

such bounds are known, we can exactly linearize the bilinear equation Λ = λξ> using

McCormick inequalities since ξ is binary-valued (e.g., see [106]), and reformulate the set

Zi in (3.3.4b) as the feasible region of an MICP:

Zi =


(ξ,λ) ∈ Ξ× RL

+,

(Λ, τ) ∈ RL×M
+ × R+

:

(ξ − ξ̂i, τ) ∈ CM+1

Λ− λe> + λ̄(e− ξ)> ∈ RL×M
+

λe> −Λ ∈ RL×M
+ , λ̄ξ> −Λ ∈ RL×M

+

q0 +Qξ −W>
0 λ−

∑
j∈[M ]

W>
j Λej ∈ Y∗


.

(3.3.4b-`)

The MICP representation (3.3.4b-`) adds O(ML) variables and constraints for each Zi,

i ∈ [N ], which can be prohibitively large. Moreover, analytical upper bounds λ̄ ∈ RL
+ on

the dual variables, which are independent of (and valid for all) x and ξ, may be unavailable.

We circumvent this by using a penalty reformulation.

3.3.2 Penalty Reformulation

We now show that we can avoid adding McCormick inequalities to linearize the bilinear

terms by considering a penalty reformulation, where the uncertainty in the second-stage

problem is moved to the objective. By doing so, we immediately get a MICP in the inner

optimization problem (3.3.4a), thus significantly reducing the number of additional con-

straints and variables, and the need to estimate bounds on the dual variables when using

McCormick inequalities. In the following corollary to Theorem 5, we re-write the resulting

MICPs when uncertainty is only present in the objective of Q(x, ξ).

Corollary 1 (Convex hull reformulation for objective uncertainty). Suppose that only the

65



objective function of the second-stage problem Q(x, ξ) is uncertain: W (ξ) = W0 and

T (x) = 0. Then the distributionally robust two-stage problem (3.2.1) admits reformula-

tion (3.3.3) where, for each i ∈ [N ], we define the function Zi : X × R+ 7→ R and the

MICP-representable set Zi as follows:

Zi(x, α) = max
(ξ,λ,τ)∈cl conv(Zi)

{
h(x)>λ− ατ

}
(3.3.5a)

Zi =
{

(ξ,λ, τ) ∈ Ξ× RL
+ × R+ : (ξ − ξ̂i, τ) ∈ CM+1, q0 +Qξ −W>

0 λ ∈ Y∗
}
.

(3.3.5b)

For the remainder of the chapter, we make the following additional assumption of fixed

recourse which will be key to achieving our goal.

(A3) For every realization ξ ∈ Ξ and every first-stage decision x ∈ X , we have W (ξ) =

W0 and T (x) = T0, respectively.

Under this additional assumption, the following theorem states that the second-stage prob-

lem Q(x, ξ) with constraint uncertainty can be equivalently reformulated as one with ob-

jective uncertainty.

Theorem 6 (Penalty reformulation of the loss function). There exists a sufficiently large,

yet finite, penalty parameter ρ > 0 such that the second-stage value function Q(x, ξ)

in (3.1.1) is equivalent to

Qρ(x, ξ) := inf
y∈Y,z∈[0,1]M

{
q(ξ)>y + ρ

(
(e− 2ξ)>z + e>ξ

)
: W0y ≥ T0z + h(x)

}
.

(3.3.6)

Proof. The z variable in Qρ(x, ξ) is an auxiliary variable representing ξ. The idea is to

66



penalize any components of zi not matching ξi by ρ. First note that:

‖z − ξ‖1 ≤ 0 ⇐⇒
∑
i∈[M ]

|zi − ξi| ≤ 0

⇐⇒
∑
i∈[M ]

[ξi(1− zi) + (1− ξi)zi] ≤ 0

⇐⇒ (e− 2ξ)>z + e>ξ ≤ 0,

where the second equivalence holds because ξ ∈ {0, 1}M and z ∈ [0, 1]M . Thus, enforcing

(e − 2ξ)>z + e>ξ ≤ 0 is equivalent to ensuring z = ξ. We then have that Q(x, ξ) is

equivalent to

Q(x, ξ) = inf
y∈Y,z∈[0,1]M

{
q(ξ)>y : W0y ≥ T0z + h(x), (e− 2ξ)>z + e>ξ ≤ 0

}
.

(3.3.7)

Let ρ be the Lagrangian multiplier associated with the added inequality, and letQρ(x, ξ) be

the resulting Lagrangian function after relaxing the added inequality. Note that the second-

stage problem is convex, and under Assumption (A1) and Assumption (A2), Q(x, ξ) is

bounded and feasible. Thus, we have strong duality:

Q(x, ξ) = sup
ρ≥0
Qρ(x, ξ).

It suffices to pick ρ to be the optimal Lagrangian multiplier associated with (e− 2ξ)>z +

e>ξ ≤ 0 in (3.3.7), and the result follows. In fact, since Qρ(x, ξ) is concave and non-

decreasing with respect to ρ (since (e − 2ξ)>z + e>ξ ≥ 0 whenever z ∈ [0, 1]M and

ξ ∈ {0, 1}M ), for a fixed choice of x ∈ X and ξ ∈ Ξ, it suffices to choose any value of

ρ that is greater than or equal to the optimal Lagrangian multiplier of the last constraint

in (3.3.7).

In conjunction with Corollary 1, Theorem 6 implies that the two-stage distributionally

67



robust problem (3.2.1) admits a convex hull reformulation of the form (3.3.3), where the

function Zi : X × R+ 7→ R and the MICP-representable set Zi for each i ∈ [N ] are given

as follows:

Zi(x, α) = max
(ξ,λ,µ,τ)∈cl conv(Zi)

{
h(x)>λ+ ρ(e>ξ)− e>µ− ατ

}
(3.3.4a-ρ)

Zi =

(ξ,λ,µ, τ) ∈ Ξ× RL
+ × RM

+ × R+ :

(ξ − ξ̂(i), τ) ∈ CM+1

q0 +Qξ −W>
0 λ ∈ Y∗

ρ(e− 2ξ) + T>0 λ+ µ ∈ RM
+

 .

(3.3.4b-ρ)

In contrast to the linearized reformulation (3.3.4b-`), the MICP representation (3.3.4b-ρ)

adds only O(M + L) variables and constraints for each Zi, i ∈ [N ].

The reformulation (3.3.6) is motivated by penalty methods in nonlinear programming.

However, in contrast to the latter, which suffers from numerical issues because the penalty

parameter ρ must be driven to ∞, a finite value for ρ can be precomputed in our case.

Indeed, Theorem 6 shows that a finite ρ exists. We devise a method to obtain an approxi-

mate value of ρ, and later present a procedure to compute an exact penalty parameter. The

following proposition will guide our choice of ρ.

Proposition 3. The optimal value of the distributionally robust two-stage problem (3.2.1)

where we replace the second-stage value function Q(x, ξ) with its penalty reformulation

Qρ(x, ξ) as defined in (3.3.6) is equivalent to

max
ρ≥0

min
x∈X,α≥0

c(x) + αθ +
1

N

∑
i∈[N ]

max
ξ∈Ξ

{
Qρ(x, ξ)− α

∥∥∥ξ − ξ̂i∥∥∥}

The proof of Proposition 3 relies on the following technical lemma.

Lemma 5. For each i ∈ [N ], let fi : R+ 7→ R be a non-decreasing function such that the

68



supremum supρ≥0 fi(ρ) is achieved for some finite ρ. Then, the following equality holds:

∑
i∈[N ]

max
ρ≥0

fi(ρ) = max
ρ≥0

∑
i∈[N ]

fi(ρ). (3.3.8)

Proof. We have that
∑

i∈[N ] maxρ≥0 fi(ρ) ≥ maxρ≥0

∑
i∈[N ] fi(ρ) is clearly true. To show

the other direction, we use the fact that the functions fi are monotone non-decreasing.

Let ρ∗ ∈ arg maxρ≥0

∑
i∈[N ] fi(ρ). Assume that

∑
i∈[N ] maxρ≥0 fi(ρ) <

∑
i∈[N ] fi(ρ

∗).

Then we must have ρ∗ /∈ arg maxρ≥0 fi′(ρ) for some i′ ∈ [N ], and there exists ρ̂ > ρ∗

such that fi′(ρ̂) > fi′(ρ
∗). It follows from their monotonicity that fj(ρ̂) ≥ fj(ρ

∗) for all

j ∈ [N ] \ {i′}. This implies that
∑

i∈[N ] fi(ρ̂) >
∑

i∈[N ] fi(ρ
∗), contradicting that ρ∗ is a

maximizer of the right-hand side.

We now prove Proposition 3.

Proof. From Theorem 6, we have

min
x∈X,α≥0

c(x) + αθ +
1

N

∑
i∈[N ]

max
ξ∈Ξ

{
max
ρ≥0
Qρ(x, ξ)− α

∥∥∥ξ − ξ̂i∥∥∥}
= min
x∈X,α≥0

c(x) + αθ + max
ρ≥0

1

N

∑
i∈[N ]

max
ξ∈Ξ

{
Qρ(x, ξ)− α

∥∥∥ξ − ξ̂i∥∥∥}
= min
x∈X,α≥0

max
ρ≥0

c(x) + αθ +
1

N

∑
i∈[N ]

max
ξ∈Ξ

{
Qρ(x, ξ)− α

∥∥∥ξ − ξ̂i∥∥∥}

where we assume the infimum and the suprema over ρ and Ξ are attained. The second

equality holds because, with respect to ρ,Qρ(x, ξ) is monotone non-decreasing, and there-

fore, maxξ∈Ξ

{
Qρ(x, ξ)− α

∥∥∥ξ − ξ̂i∥∥∥} is also monotone non-decreasing. Thus, Lemma 5

applies. Using the fact that X is convex and compact, and the objective is convex in (x, α)

69



and quasi-concave in ρ, we apply Sion’s minimax theorem to get:

min
x∈X,α≥0

max
ρ≥0

c(x) + αθ +
1

N

∑
i∈[N ]

max
ξ∈Ξ

{
Qρ(x, ξ)− α

∥∥∥ξ − ξ̂i∥∥∥}
= max

ρ≥0
min

x∈X,α≥0
c(x) + αθ +

1

N

∑
i∈[N ]

max
ξ∈Ξ

{
Qρ(x, ξ)− α

∥∥∥ξ − ξ̂i∥∥∥} (3.3.9)

We note that for any θ ≥ 0, the inner minimization in (3.3.9) is bounded above by the

optimal value of the classical robust optimization problem for any support set Ξ0 ⊇ Ξ. In

fact, we have the following relationship

max
ρ≥0

min
x∈X

c(x) + max
ξ∈Ξ0
Qρ(x, ξ) (3.3.10)

≥max
ρ≥0

min
x∈X,α≥0

c(x) + αθ +
1

N

∑
i∈[N ]

max
ξ∈Ξ

{
Qρ(x, ξ)− α

∥∥∥ξ − ξ̂i∥∥∥} ∀θ ≥ 0.

(3.3.11)

Let L(θ, ρ) be the optimal cost of the inner minimization of (3.3.11) for a fixed ρ and

θ. Note that a maximizer ρr of (3.3.10), the classical robust problem over Ξ0, does not

necessarily maximize (3.3.11), but we expect ρr to be a reliable upper bound to the true

optimal ρθ of the distributionally robust problem. First note that given an optimal penalty

parameter ρθ for the distributionally robust problem, we can pick any ρ ≥ ρθ to get an

equivalent problem since L(θ, ρ) is non-decreasing in ρ. Moreover, we intuitively expect

that for the robust problem, a high value of ρ is needed to compensate for the high costs

incurred in the worst-case scenario to ensure z = ξ, i.e. we expect ρr to be greater than

ρθ. The benefit of using ρr as an approximation is its computation only requires solving

a tractable deterministic problem in many real-world applications. We first detail how to

practically compute ρr. In Section 3.5, we present a procedure to check whether ρr is

indeed large enough for the distributionally robust problem for a radius θ, and a simple

70



iterative procedure to update it if not optimal.

Computing ρr

This process only requires solving the classical robust optimization formulation over any

support Ξ0 ⊇ Ξ such that the robust optimization problem is “easy” to solve. More

specifically, to compute a finite ρ, we solve the robust optimization problem over a sup-

port set Ξ0 ⊇ Ξ and record an optimal first-stage solution xr. We then compute ξr ∈

arg maxξ∈Ξ0 Q(xr, ξ), and solve the second-stage problem Q(xr, ξr) given by (3.3.7).

We then set ρr to be the optimal Lagrangian multiplier of the last inequality in (3.3.7).

The robust optimization problem is tractable if we choose Ξ0 = {0, 1}M and Q(x, ξ)

exhibits a down-monotone (or up-monotone) property with respect to the random parame-

ters ξ; that is, Q(x, ξ′) ≥ Q(x, ξ) whenever ξ′ ≥ ξ. Indeed, in many applications in net-

work optimization, removing network components is never advantageous. In such cases,

the robust optimization problem reduces to a deterministic one and becomes tractable. For

example, consider a problem where a set of edges are subject to random failures. The

worst-case realization is then to disrupt all edges. In other words, ξr corresponds to the

vector of all ones. Given ξr, we formulate and solve the following deterministic problem:

min
x,y, z

c(x) + q(ξr)>y

s.t. x ∈ X,

y ∈ Y ,

z ∈ [0, 1]M ,

W0y ≥ T0z + h(x),

(e− 2ξr)>z + e>ξr ≤ 0.

(3.3.12)

We then set ρr to be the optimal Lagrangian multiplier of the last constraint in (3.3.12). We

generalize this observation in the following proposition.

71



Proposition 4. Assume without loss of generality that Y ⊆ RN2
+ . Suppose also that for

all j ∈ [M ], we have either T0ej,Qej ∈ RL
+ or −T0ej,−Qej ∈ RL

+. Then, the classical

robust optimization problem minx∈X

{
c(x) + maxξ∈{0,1}M Q(x, ξ)

}
reduces to a deter-

ministic problem minx∈X {c(x) +Q(x, ξr)}, where for each j ∈ [M ] we have ξrj = 1 if

T0ej,Qej ∈ RL
+ and ξrj = 0 otherwise.

Proof. See Appendix A.2.

Penalty reformulation for indicator constraints

We note that we can avoid introducing the auxiliary variable z ∈ [0, 1]M in the penalty re-

formulation Qρ(x, ξ) in (3.3.6) by exploiting a common structure in network optimization

problems. In many applications, the binary random variables represent on and off switches

such as fj(y) ≤ f̄j(1 − ξj), where fj : Y 7→ R is an affine function for j ∈ [M ] and f̄j

is an appropriate upper bound of fj(y). For example, in a network, ξj = 1 might indicate

that link j has failed and the corresponding flow fj(y) = yj on this link must be set to 0.

Such a second-stage problem can be written as

Qind(x, ξ) = inf
y∈Y

q(ξ)>y :

W0y ≥ h(x)

fj(y) ≤ f̄j(1− ξj), j ∈ [M ]

fj(y) ≥ 0, j ∈ [M ]

 , (3.3.13)

In such cases, we need only penalize nonzero values of fj(y) if ξj = 1. To move the

uncertainty to the objective, we add penalty terms ρξjfj(y) for each j ∈ [M ] in the ob-

jective, remove the associated constraints fj(y) ≤ f̄j(1− ξj), and keep the non-negativity

constraints fj(y) ≥ 0. For large enough values of ρ, the penalty term drives fj(y) to 0 if

ξj = 1. With this transformation, we avoid introducing M auxiliary variables zj and avoid

having to estimate upper bounds f̄j . Obtaining tight estimates on f̄j may be non-trivial and

lead to numerical issues if the estimates are too large.

72



Corollary 2 (Penalty reformulation of the loss function with indicator constraints). There

exists a sufficiently large, yet finite, penalty parameter ρ > 0 such that the second-stage

value function Qind(x, ξ) in (3.3.13) is equivalent to

Qρind(x, ξ) = inf
y∈Y

{
q(ξ)>y + ρξ>f(y) : W0y ≥ h(x), f(y) ≥ 0

}
. (3.3.14)

Our previous results continue to be valid as long as we replace each occurrence of

the penalty term (e − 2ξ)>z + e>ξ that multiplies ρ in the objective function of (3.3.6)

with this modification. For example, suppose that f(y) = f0 + Fy. Then, Corollaries 1

and 2 imply that the two-stage distributionally robust problem (3.2.1) admits a convex hull

reformulation of the form (3.3.3), where the function Zi : X × R+ 7→ R and the MICP-

representable set Zi for each i ∈ [N ] are given as follows:

Zi(x, α) = maximize
(ξ,λ,µ,τ)∈cl conv(Zi)

{
h(x)>λ+ ρf>0 ξ − f>0 µ− ατ

}
Zi =

 (ξ,λ) ∈ Ξ× RL
+,

(µ, τ) ∈ RM
+ × R+

:
(ξ − ξ̂i, τ) ∈ CM+1

q0 +Qξ + ρF>ξ −W>
0 λ− F>µ ∈ Y∗

 .

The procedure to compute ρr is exactly the same, except we replace the constraint (e −

2ξr)>z + e>ξ ≤ 0 with (ξr)>f(y) ≤ 0 in (3.3.7). Equivalently, if ξr is easily known

as in Proposition 4, then we replace the former constraint with the latter in the robust

optimization problem (3.3.12).

3.3.3 Summary and Comparison

Table 3.1 summarizes the main differences between the linearized and penalty-based MICP

reformulations of the sets Zi, i ∈ [N ] appearing in the convex hull reformulation (3.3.4a)–

(3.3.4b). Notably, the penalty reformulation adds far fewer variables and constraints. How-

ever, it also requires additional assumptions and computations. In particular, it requires

computing a value for the penalty parameter ρ, which may further entail the solution of

73



a classical robust optimization problem. We do not expect this to be a limitation, how-

ever, because the latter will likely reduce to a deterministic optimization problem for most

practical applications.

Table 3.1: Summary of the MICP representations of Zi based on the linearized and penalty
reformulations.

Reformulation Size W (ξ) T (x) Requirements

Linearized (3.3.4b-`) O(ML) affine convex a priori bounds on λ in
Qd(x, ξ)

Penalty (3.3.4b-ρ) O(M + L)∗ constant constant computation of penalty
parameter†

∗Can be further reduced; see Corollary 2
†Approximate penalty parameter can be practically computed; see Proposition 4 and preceding discussion.

3.4 Lift-and-Project Approximations

The key challenge in solving the convex hull reformulation (3.3.3) is the inner optimiza-

tion (3.3.4a) over the convex hull of the MICP-representable setZi, i ∈ [N ]. Therefore, Ap-

pendix A.1 presents a Benders scheme, similar to the ones proposed in [107, 108], to tackle

the convex hull constraints. This scheme iteratively refines an inner approximation of the

MICP representation of Zi. An alternative to solving the convex hull reformulation (3.3.3)

is direct solution of the original reformulation (3.3.2) using a column-and-constraint gener-

ation scheme [109]. In contrast to the Benders scheme, the latter models the second-stage

problem Q(x, ξ) via explicit second-stage variables and constraints by implicitly enumer-

ating ξ ∈ Ξ. In both schemes, however, each iteration requires the solution of N global

MICP problems and therefore, can become computationally prohibitive. Moreover, inter-

mediate solutions obtained from early termination provide no guarantees since they bound

the optimal value of the distributionally robust problem (3.2.1) from below, which itself is

an upper bound on the true (unknown) optimal value.

These observations motivate the development of tractable outer approximations of the

convex hulls of Zi, i ∈ [N ], that provide not only (i) upper bounds on the optimal value

74



of (3.2.1) but also (ii) guarantees of polynomial time solvability. Our approximations are

based on the following key observations. First, if we suppose that Ξ = {ξ ∈ ZM+ : Eξ ≤

f} has a given outer description, then Section 3.3 establishes that each of the sets Zi,

i ∈ [N ], can be represented as the feasible region of an MICP as follows:

Z = {z ∈ Rn : Az − b ∈ K, zj ∈ {0, 1} j ∈ [M ]} , (3.4.1)

where, for ease of exposition, we have dropped the subscript i and included the bounds,

z ≥ 0 and 1 ≥ zj := ξj , j ∈ [M ] in Az − b ∈ K. For example, in case of (3.3.4b-`),

we have z = (ξ,λ, vec(Λ), τ), n = M + L + ML + 1, K = K̃ × Rn
+, where K̃ =

RF
+ ×3

i=1 RLM
+ × CM+1 × Y∗ and F is the dimension of f ∈ RF , and A = [Ã> I]> and

b = [b̃> 0>]> model the right-hand half of (3.3.4b-`). Similarly, in case of (3.3.4b-ρ), we

have z = (ξ,λ,µ, τ), n = 2M +L+1, K = K̃×Rn
+, where K̃ = RF

+×RM
+ ×CM+1×Y∗,

andA = [Ã> I]>, b = [b̃> 0>]> for suitable matrices Ã and b̃.

Second, given an MICP representation such as the above, its convex hull can be ap-

proximated by a hierarchy of increasingly tight convex relaxations,

Z0 ⊇ Z1 ⊇ . . . ⊇ ZM = cl conv(Z),

that converge to the convex hull in M iterations. Here, Z0 := {z ∈ Rn : Az − b ∈ K}

is the continuous relaxation of Z . Several such sequential convexification hierarchies are

known, the most popular ones being those of [91, 110, 92, 93]. They are based on the

concept of lift-and-project and represent cl conv(Z) as the projection of another convex

set lying in a higher-dimensional space. These hierarchies were originally proposed for

(pure or mixed-) integer linear sets and later extended to mixed-integer convex sets in [101,

102]. Our proposal is to use an intermediate relaxation Z t of any such hierarchy to outer

approximate cl conv(Z), which results in an outer approximation of the convex hull re-

formulation (3.3.3) and, hence, a conservative approximation of the distributionally robust

75



two-stage problem (3.2.1). The approximation can be refined, if desired, by using higher

values of t.

Third, the approximation of cl conv(Z) when used in the convex hull reformulation

allows us to dualize the inner optimization in (3.3.4a) using conic duality. The result

is a single-stage convex conic optimization model that can be solved using off-the-shelf

solvers. Notably, we can prove that the resulting approximations of the distributionally

robust two-stage problem (3.2.1), obtained by replacing cl conv(Z) with any of the relax-

ationsZ0, . . . ,ZM , become exact if the radius ε of the Wasserstein ambiguity setP shrinks

to zero with increasing sample size N .

Theorem 7 (Lift-and-project approximation quality). Suppose that NεN → 0 as N →∞.

Then, the optimal value of the distributionally robust two-stage problem (3.2.1) coincides

with that of the convex hull reformulation (3.3.3) even if we approximate each cl conv(Zi),

i ∈ [N ], with Z0
i in (3.3.4a), i.e. the continuous relaxation.

Proof. See proof in [2].

We emphasize that our method is not tied to any particular convexification technique.

This feature is important because each technique has its advantages and disadvantages. For

example, in the linear case (i.e., K = Rn′
+ ), it is known [111] that the approximations in

order of decreasing tightness are those of [93], [92], [91], and [110]; however, this ranking

is reversed when they are ordered based on increasing computational complexity. For its

simplicity and tradeoff between tightness and tractability, we focus on the Lovász-Schrijver

approximation [91] in the remainder of this section. We show how it can be used to obtain

a single-stage approximation of the distributionally robust two-stage problem (3.2.1), and

we provide practical guidelines for its efficient computation.

76



3.4.1 Lovász-Schrijver Approximation

The level-1 Lovász-Schrijver approximation Z1 is defined as a set-valued mapping, and

the level-t approximation Z t is defined as an iterated application of this mapping. For

any u ∈ R+ and any conic representable set such as the continuous relaxation Z0 =

{z ∈ Rn : Az − b ∈ K}, we denote by Z0(u) = {z ∈ Rn : Az − bu ∈ K} to be the ho-

mogenization of Z0 with respect to u. Next, we define the following lifted set:

L(Z0) =



z ∈ Rn,

{zj0}j∈[M ] ∈ Rn,

{zj1}j∈[M ] ∈ Rn

:

∃uj0, uj1 ≥ 0, uj0 + uj1 = 1, j ∈ [M ]

zj0 ∈ Z0(uj0), zj1 ∈ Z0(uj1), j ∈ [M ]

z = zj0 + zj1, j ∈ [M ]

zj0j = 0, zj1j = uj1, j ∈ [M ]

zj1k = zk1
j , k ∈ [M ] : k > j, j ∈ [M ]


. (3.4.2)

Consider now the following set-valued map, which is the projection of L(Z0) onto Rn:

P(Z0) =
{
z ∈ Rn : ∃zj0, zj1, j ∈ [M ] such that

(
z, {zj0}j∈[M ], {zj1}j∈[M ]

)
∈ L(Z0)

}
.

(3.4.3)

One can easily verify that P(Z0) is a convex relaxation of cl conv(Z). In fact, we have the

following relationship [102, Theorem 1]:

cl conv(Z) ⊆ P(Z0) ⊆
⋂
j∈[M ]

cl conv(
{
z ∈ Z0 : zj ∈ {0, 1}

}
) ⊆ Z0.

The set P(Z0) corresponds to the level-1 relaxations of the Lovász-Schrijver hierarchy.

For any t ≥ 1, the level-t relaxation is given by Z t = P(Z t−1), and one can show that

ZM = cl conv(Z). This is known as the linear Lovász-Schrijver hierarchy.

For a given MICP representation of Zi and any t ≥ 1, we can use the level-t Lovász-

Schrijver relaxation to approximate cl conv(Zi) in (3.3.4a)–(3.3.4b). We can then dualize

the inner maximization (3.3.4a) to obtain one global problem.

77



Remark 2 (Relationship to approximations obtained by relaxing the support). An alterna-

tive outer approximation of the distributionally robust two-stage problem (3.2.1) can be ob-

tained by simply relaxing the zero-one constraints on the support in reformulation (3.3.2);

i.e., by replacing Ξ = {ξ ∈ ZM+ : Eξ ≤ f} in (3.3.2) with its continuous relaxation

{ξ ∈ RM
+ : Eξ ≤ f}. The resulting approximation is intractable in general, unless the

uncertainty ξ appears only in the objective of Q(x, ξ) (see discussion in Section 3.3). In

the latter case, it can be easily seen that the resulting approximation coincides precisely

with that obtained by replacing cl conv(Zi) in (3.3.5a)–(3.3.5b) with the continuous re-

laxation Z0
i . Therefore, our lift-and-project approximation technique can be viewed as a

generalization of this approach. Unlike the former, however, a crucial difference is that this

approach provides no formal mechanism to improve the quality of the final approximation;

we illustrate this empirically in Section 3.6.

3.4.2 Numerical Considerations

We note that the level-t Lovász-Schrijver approximation becomes difficult to solve for even

small values of t. In fact, we observe in our experiments that even the level-1 Lovász-

Schrijver approximation is computationally challenging. We can reduce the size of the

level-1 approximation by removing the last set of constraints in (3.4.2) zj1k = zk1j . This

results in only a minor loss in approximation quality. The resulting relaxation is still equal

to
⋂
j∈[M ] cl conv({z ∈ Z0

i : zj ∈ {0, 1}}). In fact, given an optimal solution of the maxi-

mization over Z1, the relaxation is equal to
⋂
j∈Ji cl conv({z ∈ Z0

i : zj ∈ {0, 1}}), where

Ji ⊆ [M ] is the index set of binary parameters whose optimal values are fractional. From

Theorem 7, we expect |Ji| to be small for smaller values of θ, and thus the optimal value ξ

to be close to being binary.

This motivates the following iterative heuristic to identify the index sets Ji. Note that

this procedure is independent of the MICP representation used for eachZi. We define Z̃1
i to

be the resulting approximation of
⋂
j∈Ji cl conv({z ∈ Z0

i : zj ∈ {0, 1}}) in the following

78



procedure.

1. Select tol ∈ (0, 0.5), niter ∈ Z+. Set iter ← 1. For each i ∈ [N ], set

Z̃1
i ← Z0

i and Ji ← ∅.

2. For each i ∈ [N ], replace cl conv(Zi) with its current approximation Z̃1
i and dual-

ize the corresponding problem (3.3.4a). Solve the resulting convex hull approxima-

tion (3.3.3).

3. For each i ∈ [N ], let ξ̄[i] be the optimal value of ξ in (3.3.4a), recovered as scaled dual

multipliers. For each j ∈ [M ] \ Ji, if ξ̄[i]
j ∈ [tol, 1 − tol], update Ji ← Ji ∪ {j}

and Z̃1
i as follows:

Z̃1
i ←


z ∈ Rn :

∃uj0, uj1 ≥ 0, uj0 + uj1 = 1, j ∈ Ji
∃zj0 ∈ Z0

i (uj0), zj1 ∈ Z0
i (uj1), j ∈ Ji

z = zj0 + zj1, j ∈ Ji
zj0j = 0, zj1j = uj1, j ∈ Ji


.

4. If none of the index sets J1, . . . ,JN were updated or if iter ≥ niter, stop.

Otherwise, update iter← iter + 1 and go to Step 2.

Note that the successive optimizations in Step 2 can benefit from an efficient initialization

of their variables by using the optimal solution from the previous solve. Moreover, the size

of these problems can be controlled by using smaller values of niter and larger values

of tol, since they directly influence the size of Ji and Z̃1
i . In our implementation, we

found that a setting of iterlim = 5 and tol = 10−2 achieved a good tradeoff between

approximation quality and computational effort.

3.5 Computing An Exact Penalty Parameter

We now present a procedure to check whether ρr, the penalty parameter resulting from

solving a classical robust problem counterpart (see Section 3.3.2), is large enough for the

79



distributionally robust problem for a radius θ, and a simple iterative procedure to update

it if not optimal. Given a penalty parameter ρ, we assume the distributionally robust op-

timization problem where Q(x, ξ) is replaced with Qρ(x, ξ) is solved using any of the

approximations developed in Section 3.4.

1. Start with ρ̂← ρr. Pick a > 1.

2. Solve

min
x∈X,α≥0

c(x) + αθ +
1

N

∑
i∈[N ]

max
ξ∈Ξ

{
Qρ̂(x, ξ)− α

∥∥∥ξ − ξ̂i∥∥∥} (3.5.1)

using any of the lift-and-project approximations described in Section 3.4. Record

solutions (x̂, α̂), and let ẑi = maxξ∈Ξ

{
Qρ̂(x̂, ξ)− α̂

∥∥∥ξ − ξ̂i∥∥∥} for i ∈ [N ].

3. For each i ∈ [N ], solve

max
ξ,β, ρ

h(x̂)>λ+ e>β − e>µ− α̂
∥∥∥ξ − ξ̂i∥∥∥

s.t. q0 +Qξ −W>
0 λ ∈ Y∗,

ρe− 2β + T>0 λ+ µ ∈ RM
+ ,

ξ ∈ Ξ,

ξj = 0⇒ βj = 0, ∀j ∈ [M ],

ξj = 1⇒ βj = ρ, ∀j ∈ [M ],

ρ,λ,µ ≥ 0.

(3.5.2)

Let ẑ′i be the optimal value for each i ∈ [N ].

4. If ẑi 6= ẑ′i for some i, set ρ̂← aρ̂ and go to step 2. Otherwise, exit.

In step 3, (3.5.2) corresponds to the inner maximization over Ξ in (3.5.1) where ρ is also

a decision variable. Here, the second-stage problem Qρ(x, ξ) is dualized (recall Y∗ is

80



the dual cone of Y), and the bilinear terms resulting from ρξ are handled via additional

variables β and indicator constraints. Note that if ẑi = ẑ′i for all i ∈ [N ] in step 3, then

ρ̂ is large enough and we can exit. Otherwise, we pick aρ̂ as a new candidate, where

a > 1. We obtain a penalty parameter ρ̂ in O
(

loga

(
ρ̂
ρr

))
iterations. This procedure

ensures that ρ̂ is large enough for the convexified distributionally robust problem, and thus

ensures the approximations are an upper-bound on the true optimal value of (3.2.1). This

can similarly be applied for the case where we have indicator constraints in the second

stage as in Corollary 2.

This procedure might not be practical, however, as it requires the solution of 2N MICPs

at each iteration. To this end, we simply use ρr as a practical approximate penalty parameter

in our experiments. As noted in Section 3.3.2, ρr can be efficiently computed by solving

a deterministic problem (see Proposition 4 and preceding discussion). In our experiments,

ρr is indeed an exact penalty parameter in all instances where we performed the above test,

i.e. ρr is large enough such that the penalty reformulation is exact.

3.6 Computational Experiments

We illustrate the applicability of our method to operational problems in electric power

systems in Section 3.6.1, and to design problems in multi-commodity flow networks in

Section 3.6.2. Our goals are to: (i) study the lift-and-project approximations Z0 and Z1

in terms of their computational effort and ability to approximate cl conv(Z); (ii) compare

their out-of-sample performance with the standard sample average approximation and with

classical two-stage robust optimization; and, (iii) elucidate the effect of two key parameters

on the relative benefits of the two-stage distributionally robust problem (3.2.1) over these

classical formulations: the “rareness” of network failures and the relative magnitude of

“impact” when failures occur.

Our code was implemented in Julia 1.5.3, using JuMP 0.21.4. We used Mosek 9.2 for

solving our lift-and-project approximations, and Gurobi 9.1.1 as the solver for the Ben-

81



ders and column-and-constraint generation schemes (which we compare in Sections 3.6.1

and 3.6.2 respectively), since the latter performed better than the former in solving the

mixed-integer subproblems in those schemes; whereas Mosek performed better in solving

the conic programming relaxations. All runs were conducted on an Intel Xeon 2.3 GHz

computer, with a limit of four cores per run.

3.6.1 Optimal Power Flow

We use our method to address the security-constrained optimal power flow problem that

is fundamental to the secure operation of electric power grids and solved every fifteen

minutes or so by grid operators (e.g.,see [112, 113]). The goal is to determine voltages

and generation levels of available generators so as to satisfy power demand in the network,

while adhering to various physical and engineering constraints. For example, electric power

between network nodes (also known as buses) can flow only along capacitated edges or

transmission lines. As such, the latter are failure prone, and transmission line outages can

lead to an unstable power network or even complete system failure, resulting in costly

blackouts. However, such high-impact failure events are rare. For example, between the

years 2000 and 2014, fewer than 1,500 power outages have occurred that affected 50,000

or more residents in the entire United States, which is fewer than 100 events per year [114].

This rarity complicates the accurate estimation of their underlying distribution.

Because electric power is governed by complex physical laws, optimal power flow

is a highly nonlinear optimization problem. Nevertheless, the underlying physics can

be approximated well by using second-order cone or semidefinite programming relax-

ations [115]. Although our method generalizes to any convex cone relaxation, we focus

on the standard second-order cone relaxation [116], where X is second-order cone repre-

sentable and Q(x, ξ) is the optimal value of a second-order cone program.

Our presentation of the first-stage model closely follows [116], whereas the second-

stage model is inspired by [117]. Conceptually, the first-stage problem determines mini-

82



mum cost power generation levels assuming no line outages. Upon line failure, the second-

stage model seeks to adjust the power generation levels subject to physical constraints

where failed lines cannot be used, with a goal of minimizing the total penalty cost of vio-

lating power balances. This model satisfies assumptions (A1), (A2), and (A3) and allows

the use of the penalty reformulation (3.3.4b-ρ), which also has the advantage of using fewer

variables and constraints compared with the linearized reformulation (see Section 3.3.3).

The operational state of transmission lines is modeled as a random binary vector ξ

with support Ξ = {0, 1}M , where ξl = 1 indicates that line l has failed. In particular,

since ξ represent on/off switches, we can use Corollary 2 to get not only a smaller MICP

formulation but also tighter values of the penalty parameter ρ = ρr. The latter is computed

by solving the classical robust counterpart as discussed in Section 3.3.2, which reduces to

a deterministic problem (see Proposition 4); indeed, the second stage trivially attains its

worst-case value when each component of ξ is one, that is, when all transmission lines fail.

Formulation

Let G,B, andM be the set of generators, buses, and transmission lines, respectively, and

let Gi be the set of generators associated with bus i ∈ B. We define δ(i) := {j ∈ B :

(i, j) ∈M or (j, i) ∈M} to be the set of neighbors of bus i ∈ B. Let pgk and qgk be the real

and reactive power output of generator k ∈ G, respectively, with lower and upper bounds

denoted by pmin
k , pmax

k and qmin
k , q maxk . We assume a linear cost ck of power generation

for generator k ∈ G. Real load and reactive load at bus i ∈ B are denoted by pdi and qdi ,

respectively, and are known data. Let pFij and qFij be the real and reactive power flow on

line (i, j), respectively, defined for (i, j) ∈ M and (j, i) ∈ M, with line rating limit fmax
ij

(note that fmax
ij = fmax

ji ). Let Y be the |B| × |B| complex-valued nodal admittance matrix,

whose components are Yij = Gij +iBij , where i =
√
−1 is the unit imaginery number, and

where Gij and Bij are the conductance and susceptance of line (i, j) ∈ M, respectively

(see [118] for details on computing Y ). We denote the real and imaginary parts of the

83



complex voltage by ei and fi, respectively. As in [116], we define new variables such that

cii = e2
i + f 2

i , cij = eiej + fifj and sij = eifj − ejfi. We define ξ̃ to be a random binary

vector with support Ξ = {0, 1}|M|, where ξ̃ij = 1 if line (i, j) ∈ M fails and 0 otherwise.

We have

x =
(
pg, qg, pF , qF , c, s, σp+, σp−, σq+, σq−

)
as first-stage variables and

y =
(
δ̃, p̃g, q̃g, p̃F , q̃F , c̃, s̃, σ̃p+, σ̃p−, σ̃q+, σ̃q−, σ̃pF , σ̃qF

)

as second-stage variables. The two-stage model can be written as follows:

min
x

∑
k∈G

ckp
g
k +

∑
i∈B

gi
(
σp+i + σp−i + σq+i + σq−i

)
+ EP

[
Q(pg, ξ̃)

]
s.t.

∑
k∈Gi

pgk − pdi + σp+i − σp−i = giicii +
∑
j∈δ(i)

pFij, ∀i ∈ B, (3.6.1a)

∑
k∈Gi

qgk − qdi + σq+i − σq−i = −biicii +
∑
j∈δ(i)

qFij , ∀i ∈ B, (3.6.1b)

pFij = −Gijcii +Gijcij +Bijsij, ∀(i, j), (j, i) ∈M,

(3.6.1c)

qFij = Bijcii −Bijcij +Gijsij, ∀(i, j), (j, i) ∈M,

(3.6.1d)

cij = cji, sij = −sji, ∀(i, j) ∈M,

(3.6.1e)

c2
ij + s2

ij +

(
cii − cjj

2

)2

≤
(
cii + cjj

2

)2

, ∀(i, j) ∈M,

(3.6.1f)

V 2
i ≤ cii ≤ V̄ 2

i , ∀i ∈ B, (3.6.1g)

84



pmin
k ≤ pgk ≤ pmax

k , ∀k ∈ G, (3.6.1h)

qmin
k ≤ qgk ≤ qmax

k , ∀k ∈ G, (3.6.1i)

(pFij)
2 + (qFij)

2 ≤ (fmax
ij )2, ∀(i, j), (j, i) ∈M,

(3.6.1j)

σp+i , σp−i , σq+i , σq−i ≥ 0, ∀i ∈ B, (3.6.1k)

where Q(pg, ξ̃) is the optimal value of

min
y

∑
i∈B

gi
(
σ̃p+i + σ̃p−i + σ̃q+i + σ̃q−i

)
s.t. p̃gk = pgk + ∆kδ̃ ∀k ∈ G, (3.6.2a)∑

k∈Gi

p̃gk − pdi + σ̃p+i − σ̃p−i = giic̃ii +
∑
j∈δ(i)

p̃Fij, ∀i ∈ B, (3.6.2b)

∑
k∈Gi

q̃gk − qdi + σ̃q+i − σ̃q−i = −biic̃ii +
∑
j∈δ(i)

q̃Fij , ∀i ∈ B, (3.6.2c)

p̃Fij = −Gij c̃ii +Gij c̃ij +Bij s̃ij + σ̃pFij , ∀(i, j), (j, i) ∈M, (3.6.2d)

q̃Fij = Bij c̃ii −Bij c̃ij +Gij s̃ij + σ̃qFij , ∀(i, j), (j, i) ∈M, (3.6.2e)

c̃ij = c̃ji, s̃ij = −s̃ji, ∀(i, j) ∈M,

c̃2
ij + s̃2

ij +

(
c̃ii − c̃jj

2

)2

≤
(
c̃ii + c̃jj

2

)2

, ∀(i, j) ∈M,

V 2
i ≤ c̃ii ≤ V̄ 2

i , ∀i ∈ B,

pmin
k ≤ p̃gk ≤ pmax

k , ∀k ∈ G,

qmin
k ≤ q̃gk ≤ qmax

k , ∀k ∈ G,

(p̃Fij)
2 + (q̃Fij)

2 ≤ (fmax
ij )2, ∀(i, j), (j, i) ∈M,

ξ̃ij = 1 =⇒
[
p̃Fij = 0, q̃Fij = 0

]
, ∀(i, j), (j, i) ∈M, (3.6.2f)

ξ̃ij = 0 =⇒
[
σ̃pFij = 0, σ̃qFij = 0

]
, ∀(i, j), (j, i) ∈M, (3.6.2g)

σ̃p+i , σ̃p−i , σ̃q+i , σ̃q−i ≥ 0, ∀i ∈ B.

85



Constraints (3.6.1a) and (3.6.1b) are the real and reactive power balance equations, respec-

tively. Constraints (3.6.1c) and (3.6.1d) define the real and reactive power flow in both

directions of all lines, respectively. Constraints (3.6.1e) and (3.6.1f) model the change of

variables (see [116] for details), where the latter is the result of convexifying the original

constraint c2
ij + s2

ij = ciicjj . Constraints (3.6.1g), (3.6.1h) and (3.6.1i) enforce bounds on

the voltage magnitude, and the real and reactive power generation, respectively. In the first

stage, each generator k ∈ G has an associated generation cost ck, and we penalize violating

constraints (3.6.1a) and (3.6.1b) by gi.

The second stage involves the same constraints with a few modifications. Namely,

constraint (3.6.2a) adjusts the first-stage real power generation, where all generators are

adjusted by a constant δ̃, scaled by their predefined automatic generation control participa-

tion factor ∆k, also known as the droop control policy. We set participation factors ∆k to

be proportional to the generation capacity for each generator k ∈ G. Constraints (3.6.2f)

ensure that no power can flow through lines under contingency (ξij = 1). Note that if line

(i, j) fails, then we must have p̃Fij = p̃Fji = 0 and q̃Fij = q̃Fji = 0, but variables c̃ii, c̃ij and

s̃ij should not be affected. Thus, unlike in the first stage, slacks σ̃pFij and σ̃qFij are added

in constraints (3.6.2d) and (3.6.2e), respectively, so that (3.6.2d) and (3.6.2e) become re-

dundant for (i, j) and (j, i) if line (i, j) has failed. These slacks are active only if ξij = 1,

enforced by constraints (3.6.2g). As in the first stage, the absolute values of the real and

reactive power balance violation σ̃p+i + σ̃p−i and σ̃q+i + σ̃q−i for bus i ∈ B, respectively, are

penalized by gi. Note that there is no cost on power generation in the second stage. We set

the cost gi of violating the balance equations to be φ ·maxk∈G ck.

Test Instances

We conduct our experiments on the standard IEEE 14-, 30- and 118-bus test cases from

the PGLib-OPF library [119]. Note that the choise of φ depends on the economic cost of

failure to meet power demand. Since loss of power and blackouts tend to be costly and

86



the associated penalty costs much larger than the cost of generation, we set φ = 100 in

Sections 3.6.1 and 3.6.1 and analyze its sensitivity in Section 3.6.1.

We generate empirical data using a Bernoulli model. Specifically, we model each com-

ponent of ξ̃ as independent and identically distributed Bernoulli random variables with pa-

rameter ψM−1, where M denotes the number of transmission lines. Note that this choice

reflects the rare nature of line failures; in particular, it implies that only ψ ·100% of training

samples record a line failure. We set ψ = 0.1 in Sections 3.6.1 and 3.6.1 and analyze its

impact in Section 3.6.1.

In all our experiments, for a fixed sample size N and radius ε, we report average results

using 100 statistically independent sets of training samples, and we estimate the variance

by reporting the standard deviation over these 100 runs. In Sections 3.6.1 and 3.6.1, the out-

of-sample performances of a candidate solution are estimated by using 1,000 statistically

independent sets of testing samples.

Approximation Quality and Computational Effort

To study the quality of our lift-and-project approximations, we compute the following

quantities for each sample size N ∈ {10, 100, 1000} and radius ε = ν
√
N−1 log(N + 1),

where ν ∈ {0, 10−3, 10−2, 10−1}: (i) the optimal value v? of the convex hull reformu-

lation (3.3.3) using the Benders scheme described in Appendix A.1, and (ii) the optimal

values v0, ṽ1 and v1 of formulation (3.3.3) when the convex hulls cl conv(Zi) in (3.3.4a)–

(3.3.4b) are approximated by using the continuous relaxation Z0 and heuristically and

exactly computed level-1 Lovász-Schrijver relaxations Z̃1 and Z1, respectively (see Sec-

tion 3.4.2). The choice of the radius ε = ν
√
N−1 log(N + 1) is motivated from Theorem 4,

and we elaborate on it further in the next subsection.

Figure 3.1 reports the average (line plot) and standard deviation (error bar) of the opti-

mality gaps, defined as (v − v?) /v? × 100%, where v ∈ {v0, ṽ1, v1}, based on 100 statis-

tically independent sets of training samples. We make the following observations.

87



• The exact level-1 relaxationZ1 is near optimal, with optimality gaps never exceeding

10%, whereas the continuous relaxationZ0 is less accurate, especially for larger radii

(e.g., 50% gap for ν = 0.1). The heuristically computed level-1 relaxation Z̃1 is also

near optimal for small and large radii but performs relatively poorly for intermediate

values of ν.

• For a fixed sample size N and decreasing radius ν, the optimality gaps of all approx-

imations decrease to 0. For increasing ν, the gaps of the level-1 relaxations increase

far less rapidly than that of the continuous relaxation.

• For a fixed radius ν and increasing sample size N , the gaps of all approximations

decrease.

0 0.001 0.01 0.1
0

15

30

45

60

75

ν

O
pt

im
al

ity
ga

p
(%

) Z0

Z̃1
Z1 (exact)

(a) 14-bus, N = 10

0 0.001 0.01 0.1
0

15

30

45

60

75

ν

O
pt

im
al

ity
ga

p
(%

) Z0

Z̃1
Z1 (exact)

(b) 14-bus, N = 100

0 0.001 0.01 0.1
0

15

30

45

60

75

ν

O
pt

im
al

ity
ga

p
(%

) Z0

Z̃1
Z1 (exact)

(c) 14-bus, N = 1000

0 0.001 0.01 0.1
0

10

20

30

40

50

ν

O
pt

im
al

ity
ga

p
(%

) Z0

Z̃1
Z1 (exact)

(d) 30-bus, N = 10

0 0.001 0.01 0.1
0

10

20

30

40

50

ν

O
pt

im
al

ity
ga

p
(%

) Z0

Z̃1
Z1 (exact)

(e) 30-bus, N = 100

0 0.001 0.01 0.1
0

10

20

30

40

50

ν

O
pt

im
al

ity
ga

p
(%

) Z0

Z̃1
Z1 (exact)

(f) 30-bus, N = 1000

Figure 3.1: Optimality gaps using the continuous relaxation Z0 and the heuristically and
exactly computed level-1 Lovász-Schrijver relaxations Z̃1 and Z1 as a function of ν and
N , where ε = ν

√
N−1 log(N + 1).

Figure 3.2 reports the average computation time to solve the various approximations

and compares them with that of the Benders decomposition scheme. We observe the fol-

lowing.

88



• The continuous relaxationZ0 and heuristically computed level-1 relaxations Z̃1 have

the smallest computation times, with the former being faster for larger values of N

and ν and, in particular, for the larger 118-bus case where it is more than 10 times

faster. When compared with the Benders scheme, the relative difference in their

computation times is minor for small sample sizes N but increases significantly for

large sample sizes. For N = 1000, both approximations run 10 times faster than the

Benders scheme for the 14-bus case, while Z̃1 runs 4 times faster and Z0 runs almost

100 times faster for the 30-bus case.

• The exact level-1 relaxation Z1 and the Benders scheme appear to be the most dif-

ficult to solve. Although not shown, for the 30-bus case the former took about 1,

2 and 10 minutes for N = 10, 100, and 1, 000, respectively, whereas for the larger

118-bus case neither scheme terminated within 10 minutes forN = 10, 100 or within

1 hour for N = 1000. Moreover, some of the MICP subproblems within the Benders

scheme can cause slow convergence (e.g., due to search tree enumeration). This is

evidenced by the fact that about 1% of the Benders runs did not terminate within

10 minutes even for the smaller 14-bus and 30-bus cases, respectively.

• In conjunction with Figure 3.2, the heuristically computed level-1 relaxation Z̃1 ap-

pears to offer the best tradeoff in terms of approximation quality and computational

effort.

• The run times of all approximations, and in particular Z̃1, can be significantly im-

proved by using an efficient initialization of their variables (see Section 3.4.2), which

we did not implement.

Out-of-sample Performance and Finite Sample Guarantee

To understand the potential benefits of a distributionally robust approach, we evaluate its

out-of-sample performance. For a given training data set of size N and a given choice of ν,

89



0 0.001 0.01 0.1
0

20

40

60

80

100

ν

Ti
m

e
(s

ec
on

ds
)

Z0

Z̃1
Z1 (exact)
Benders

(a) 14-bus, N = 10

0 0.001 0.01 0.1
0

20

40

60

80

100

ν

Ti
m

e
(s

ec
on

ds
)

Z0

Z̃1
Z1 (exact)
Benders

(b) 14-bus, N = 100

0 0.001 0.01 0.1
0

20

40

60

80

100

ν

Ti
m

e
(s

ec
on

ds
)

Z0

Z̃1
Z1 (exact)
Benders

(c) 14-bus, N = 1000

0 0.001 0.01 0.1
0

40

80

120

160

200

ν

Ti
m

e
(s

ec
on

ds
)

Z0

Z̃1
Benders

(d) 30-bus, N = 10

0 0.001 0.01 0.1
0

40

80

120

160

200

ν
Ti

m
e

(s
ec

on
ds

)

Z0

Z̃1
Benders

(e) 30-bus, N = 100

0 0.001 0.01 0.1
0

40

80

120

160

200

ν

Ti
m

e
(s

ec
on

ds
)

Z0

Z̃1
Benders

(f) 30-bus, N = 1000

0 0.001 0.01 0.1
0

120

240

360

480

600

ν

Ti
m

e
(s

ec
on

ds
)

Z0

Z̃1

(g) 118-bus, N = 10

0 0.001 0.01 0.1
0

120

240

360

480

600

ν

Ti
m

e
(s

ec
on

ds
)

Z0

Z̃1

(h) 118-bus, N = 100

0 0.001 0.01 0.1
0

480

960

1440

1920

2400

ν

Ti
m

e
(s

ec
on

ds
)

Z0

Z̃1

(i) 118-bus, N = 1000

Figure 3.2: Computation times for solving formulation (3.3.3) using the continuous re-
laxation Z0, the heuristically computed and exact level-1 Lovász-Schrijver relaxations
Z̃1 and Z1, and the Benders decomposition scheme, as a function of ν and N , where
ε = ν

√
N−1 log(N + 1).

we obtain a candidate first-stage solution xν by solving formulation (3.3.3) with the level-1

Lovász-Schrijver relaxation Z̃1 and Wasserstein radius ε = ν
√
N−1 log(N + 1). We then

estimate the out-of-sample performance of xν by recording

zν = c(xν) + 1000−1

1000∑
i=1

Q(xν , ξ̂i),

where ξ̂1, . . . , ξ̂1000 are 1, 000 independently generated testing samples. This entire process

is repeated 100 times for statistically independent sets of N training samples and 1,000

testing samples.

We first justify the choice of the radius ε = ν
√
N−1 log(N + 1) as a function of

90



the training sample size N . This dependence is motivated by inequality (3.2.4) in Theo-

rem 4. However, the latter inequality can be loose, especially when accounting for problem-

dependent constants such as the size and diameter of the support Ξ. Therefore, we empiri-

cally verify the finite sample guarantee of the first-stage solutions xν under the tighter pa-

rameterization ε = ν
√
N−1 log(N + 1) for several choices of the coefficient ν ∈ {0, 10−3,

10−2, 10−1}. Figure 3.3 reports the reliability of xν , which we define as the empirical

probability (over the 100 sets of training samples) that the optimal value ṽ1 of the level-1

Lovász-Schrijver relaxation Z̃1 is an upper bound on the out-of-sample cost zν .

Figure 3.3 shows that, for fixed values of N , the reliability of xν increases with in-

creasing values of ν, and this can be used to guide the choice of ν. For example, depending

on their risk level, decision-makers can select the smallest value of ν with sufficiently

high reliability. In particular, for training data sets with small sample size N , observe that

ν = 10−2 yields an upper bound on the out-of-sample cost with probability more than 0.5,

whereas ν = 10−1 yields an upper bound with probability 1.0. However, note that we can-

not always access the true out-of-sample cost (and hence, the true reliability). Nevertheless,

one could estimate the out-of-sample cost by using cross validation or the holdout method

(e.g, see [18, 98]), and then select a value for the coefficient ν that offers a good trade-off

between low out-of-sample cost and high reliability.

10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

Sample size N

Re
lia

bi
lit

y

ν = 0
ν = 10−3

ν = 10−2

ν = 10−1

(a) 14-bus

10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

Sample size N

Re
lia

bi
lit

y

ν = 0
ν = 10−3

ν = 10−2

ν = 10−1

(b) 30-bus

10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

Sample size N

Re
lia

bi
lit

y ν = 0
ν = 10−3

ν = 10−2

ν = 10−1

(c) 118-bus

Figure 3.3: Reliability of the level-1 Lovász-Schrijver relaxation Z̃1, as a function of train-
ing sample size N .

We now evaluate the benefits of our distributionally robust model over the sample av-

erage approximation, by computing the relative improvement in out-of-sample cost, which

91



we define as (z0 − zν)/z0 × 100%. Figure 3.4 reports the mean (solid line) and standard

deviation (shaded ribbon) of the relative improvement over the 100 independent sets of

training samples. We make the following observations from Figure 3.4.

• The distributionally robust model (3.2.1) consistently outperforms the sample aver-

age approximation, particularly for small sample sizes N . The magnitude of the

relative improvement is instance dependent (roughly 15%, 10%, and 5% for the 14-,

30-, and 118-bus cases, respectively) but consistently decreases for large values of N

as expected. The magnitude of the radius that leads to the best possible improvement

also is instance dependent.

• The larger variances in improvement for smaller N and for larger instances can be

partially explained by the combinatorial growth in the number of truly distinct train-

ing data sets of size N (i.e., those that lead to distinct first-stage solutions) that are

possible under the rare event model of line outages. The large variances for ν = 10−1

can also be similarly explained by the larger number of truly distinct first-stage solu-

tions that can result from slight variations in the training data set.

10 100 1000

0

5

10

15

20

25

Sample size N

Im
pr

ov
em

en
t(

%
)

ν = 10−3

ν = 10−2

ν = 10−1

(a) 14-bus

10 100 1000

0

3

6

9

12

15

Sample size N

Im
pr

ov
em

en
t(

%
)

ν = 10−3

ν = 10−2

ν = 10−1

(b) 30-bus

10 100 1000

−4

−2

0

2

4

6

Sample size N

Im
pr

ov
em

en
t(

%
)

ν = 10−3

ν = 10−2

ν = 10−1

(c) 118-bus

Figure 3.4: Relative improvement in the out-of-sample performance of the distributionally
robust two-stage model (3.2.1) when compared with the sample average approximation, as
a function of sample size N .

We now compare the out-of-sample performance of the level-1 Lovász-Schrijver relax-

ation Z̃1 corresponding to the best choice of ν (which is 10−1 for the 14- and 30-bus cases,

and 10−2 for the 118-bus case) with (i) the continuous relaxation Z0 for the same ν, and

92



(ii) a classical two-stage robust optimization model of the following form:

min
x∈X

c(x) + max
ξ∈ΞK

Q(x, ξ), (3.6.3)

where ΞK = {ξ ∈ {0, 1}M : ξ1 + . . . + ξM ≤ K} is the uncertainty set with K being

the budget of uncertainty. In particular, for each instance, we let K ∈ {0, 1, 2, 5, 10} and

obtain optimal first-stage solutions xK of problem (3.6.3) with the Benders decomposition

scheme. As before, we estimate the out-of-sample performance of xK as zK = c(xK) +

1000−1
∑1000

i=1 Q(xK , ξ̂i), where ξ̂1, . . . , ξ̂1000 are the same 1, 000 testing samples used to

estimate zν . We then record the best possible K yielding the lowest zK , and compute the

relative improvement in out-of-sample cost, which we define as (zK−zν)/zν×100%. Fig-

ure 3.5 reports the mean (solid line) and standard deviation (shaded ribbon) of the relative

improvement over the 100 independent sets of training samples. We make the following

observations from Figure 3.5.

• The distributionally robust model strongly outperforms its classical robust counter-

part, across all instances, with relative improvements of 5%, 1% and 15% for the

14-, 30- and 118-bus cases, respectively. In contrast to Figure 3.4, the relative im-

provements increase with increasing values of N ; this is expected since the classical

robust model (3.6.3) ignores all sample data and therefore, it becomes overly conser-

vative in the presence of a moderate amount of data. Thus, we observe that for small

to moderate values of N , the distributionally robust model improves upon both the

sample average approximation and classical robust optimization. Finally, although

not shown, solving the classical robust model with the Benders scheme took longer

than solving the level-1 relaxation, especially for the larger 118-bus case.

• The relative improvement of the level-1 relaxation Z̃1 over the continuous relaxation

Z0 is smaller, but can be as high as 4% as seen in the 14-bus case. It should be

noted that these quantities are necessarily upper bounded by the improvements over

93



the sample average approximations reported in Figure 3.4, and can be significant for

applications including optimal power flow, which are executed several times each day

of the year. Finally, we note that the tradeoff between tighter in-sample optimality

gaps (see Figure 3.1) and hence stronger finite sample reliability guarantees (see

Figure 3.3) offered by the level-1 relaxation Z̃1, with the faster computation times

for solving the continuous relaxation Z0 (see Figure 3.2), can guide the design of an

algorithmic scheme.

10 100 1000
0

2

4

6

8

10

Sample size N

Im
pr

ov
em

en
t(

%
)

Z̃1 vs classical two-stage R.O.
Z̃1 vs Z0

(a) 14-bus

10 100 1000
−0.5

0.0

0.5

1.0

1.5

2.0

Sample size N

Im
pr

ov
em

en
t(

%
)

Z̃1 vs classical two-stage R.O.
Z̃1 vs Z0

(b) 30-bus

10 100 1000
0

5

10

15

20

25

Sample size N

Im
pr

ov
em

en
t(

%
)

Z̃1 vs classical two-stage R.O.
Z̃1 vs Z0

(c) 118-bus

Figure 3.5: Relative improvement in the out-of-sample performance of the distributionally
robust two-stage model (3.2.1) solved using the level-1 Lovász-Schrijver relaxation Z̃1,
when compared with the classical two-stage robust optimization model (3.6.3), and the
continuous relaxation Z0.

Sensitivity Analysis

The instance-dependent behavior of the out-of-sample performance from the previous sub-

section suggests that it might also be influenced by other parameters. Here, we investigate

the effect of the “rareness” ψ of transmission line failures and the relative magnitude φ of

“impact” when failures occur. Recall from Section 3.6.1 that higher values of ψ increase

the probability of line failures, whereas higher values of φ increase the penalty cost for

failing to satisfy power demand due to transmission line failures. Figure 3.6 shows the rel-

ative improvement of the distributionally robust two-stage model (3.2.1) over the sample

average approximation for various choices of ψ and φ. For brevity, we report results only

for the 30-bus instance; the high-level insights do not change for other instances. We make

the following observations from Figure 3.6.

94



• For fixed values of the line failure probability ψ, Figures 3.6a–3.6c show that as the

impact due to failure φ increases, the relative benefits of a distributionally robust

approach strongly increase. In other words, benefits increase with higher impacts of

failures. Interestingly, Figure 3.6a also shows that if failures are rare but low impact,

then ignoring them (as in the sample average approximation) may not incur high

out-of-sample costs, even for small values of N .

• For fixed values of the magnitude of impact φ, Figures 3.6d–3.6f show that as the

probability of failures ψ increases, the relative benefits of a distributionally robust

approach increases. However, observe that this does not necessarily imply that the

relative benefits are small when line failure probabilities are small. Indeed, we ob-

serve that the relative benefits remain as high as 10% even when individual line fail-

ure probabilities are less than 0.05M−1.

10 100 1000

0

5

10

15

20

25

30

Sample size N

Im
pr

ov
em

en
t(

%
)

ν = 10−2

ν = 10−1

(a) (ψ, φ) = (0.1, 50)

10 100 1000

0

5

10

15

20

25

30

Sample size N

Im
pr

ov
em

en
t(

%
)

ν = 10−2

ν = 10−1

(b) (ψ, φ) = (0.1, 100)

10 100 1000

0

5

10

15

20

25

30

Sample size N

Im
pr

ov
em

en
t(

%
)

ν = 10−2

ν = 10−1

(c) (ψ, φ) = (0.1, 200)

10 100 1000

0

5

10

15

20

25

30

Sample size N

Im
pr

ov
em

en
t(

%
)

ν = 10−2

ν = 10−1

(d) (ψ, φ) = (0.05, 200)

10 100 1000

0

5

10

15

20

25

30

Sample size N

Im
pr

ov
em

en
t(

%
)

ν = 10−2

ν = 10−1

(e) (ψ, φ) = (0.1, 200)

10 100 1000

0

5

10

15

20

25

30

Sample size N

Im
pr

ov
em

en
t(

%
)

ν = 10−2

ν = 10−1

(f) (ψ, φ) = (0.2, 200)

Figure 3.6: Relative improvement in the out-of-sample performance of the distributionally
robust two-stage model (3.2.1) when compared with the sample average approximation, for
various values of (ψ, φ).

95



3.6.2 Multi-commodity Network Design

We now consider multi-commodity network design problems that have applications in

telecommunications, transportation, logistics and production planning, among others (e.g.,

see [120, 121]). In several of these applications, it is required to send flows to satisfy known

demands between multiple origin-destination pairs or commodities. The goal is to mini-

mize the total cost, which is the sum of fixed costs of installing arc capacities and variable

costs of routing flows for each commodity. As such, failures of network elements can lead

to a reduction in its available flow capacity and a subsequent failure to meet demands. This

is particularly true in telecommunication networks where the loss of even a single (typically

high-capacity) fiber-optic cable or router equipment can cause a substantial fraction of the

overall flow (e.g., internet traffic) to be lost, leading to potentially huge economic impacts

[122]. Fortunately, these networks are typically well-engineered and therefore, such high-

impact failures are rare. However, the lack of data makes estimating the underlying failure

probability difficult.

In the model we consider, the first-stage problem determines the arc capacities that can

be used for routing flows. Upon failure, the second-stage model determines the routing

of each commodity along the degraded network topology constrained by the first-stage

arc capacities, and with the objective of minimizing the sum of variable routing costs and

penalty costs for not satisfying demands.

For ease of exposition, we model only node failures, where ξ is supported on Ξ =

{0, 1}M and ξi = 1 indicates that node i has failed. Since ξ represent on/off switches,

we can employ Corollary 2, and the penalty parameter ρ = ρr can be computed as in

the optimal power flow problem, where the classical robust counterpart again reduces to a

deterministic problem, since the worst-case scenario occurs when each component fails.

96



Formulation

Our model is based on the fixed-charge multi-commodity network design problem which

has been extensively studied in the literature, such as in [123] and [121]. We are given a

directed network with nodes V , arcs A, and a set of commodities K with known demands

dk. For commodity k ∈ K, let Ok be the origin node and Dk the destination node. Each

arc (i, j) has an associated maximum capacity uij , per-unit cost of installing capacity fij

and per-unit cost of flow cij . For each node i ∈ V , we define the set of neighboring

nodes incident to outgoing and incoming arcs as V+(i) = {j | (i, j) ∈ A} and V−(i) =

{j | (j, i) ∈ A}, respectively.

In the first stage, let xij be a variable between 0 and 1 which determines the fraction

of capacity of arc (i, j) that can be used in the second stage. Note that this differs from a

typical fixed-charge multi-commodity network design model, where xij is a binary variable

determining whether arc (i, j) can be used. In the second stage, let ykij be the amount of

flow of commodity k on arc (i, j), and let σk be the unsatisfied demand of commodity k

which we penalize by gk. We consider node failures, and define ξ to be a binary vector

where ξi = 1 indicates that node i ∈ V has failed. If a node fails, all arcs incident to it

cannot be used. The model can be as written as follows:

min
x

∑
(i,j)∈A

fijxij + sup
P∈P

EP

[
Q(x, ξ̃)

]
s.t. xij ∈ [0, 1], ∀(i, j) ∈ A.

where Q(x, ξ̃) is defined as the optimal objective value of the following linear program:

min
y,σ

∑
(i,j)∈A

∑
k∈K

cijy
k
ij +

∑
k∈K

gkσk

97



s.t.
∑

j∈V+(i)

ykij −
∑

j∈V−(i)

ykji =


dk − σk, if i = Ok

−dk + σk, if i = Dk

0, otherwise

, ∀k ∈ K, ∀i ∈ V ,

(3.6.4a)∑
k∈K

ykij ≤ uijxij, ∀(i, j) ∈ A, (3.6.4b)

ykij ≤ dk(1− ξ̃i), ∀(i, j) ∈ A, ∀k ∈ K, (3.6.4c)

ykij ≤ dk(1− ξ̃j), ∀(i, j) ∈ A, ∀k ∈ K, (3.6.4d)

ykij ≥ 0 ∀(i, j) ∈ A, ∀k ∈ K,

σk ≥ 0 ∀k ∈ K.

In the second stage, constraints (3.6.4a) are typical network flow constraints, with added

non-negative variables σk which model unsatisfied demand. If we have a positive amount

σk of unsatisfied demand for commodity k, then an amount of dk − σk would leave the

origin node and enter the destination node. Note that variables σk ensure feasibility in the

second stage for any x and ξ. For each commodity k, unsatisfied demand σk is penalized

by gk. In our experiments, gk is constant and set to φ · max(i,j)∈A cij , where φ = 1000 is

a pre-defined non-negative parameter. Constraint (3.6.4b) ensures the total flow on any arc

(i, j) does not exceed the available capacity, which is determined by the first-stage decision

xij . Finally, constraints (3.6.4c) and (3.6.4d) ensure there is no flow through arcs incident

to a failed node.

Test Instances

We conduct our experiments on the (20, 230, 40, V, L) instance from the so-called Class I

set of instances in [121]. As the name indicates, the instance has 20 nodes, 230 arcs, 40

commodities, and the letters V and L indicate that fixed-costs are relatively low compared

98



to variable costs, and that the problem is loosely capacitated. We generate empirical data

by modeling each component of ξ̃ as independent and identically distributed Bernoulli

random variables with parameter ψM−1, where ψ = 0.1. As before, for a fixed sample

size N and radius ε, we report average results using 100 statistically independent sets of

training samples, and we estimate the variance by reporting the standard deviation over

these 100 runs. The out-of-sample performances of candidate solutions are estimated by

using 1,000 statistically independent sets of testing samples.

Approximation Quality and Computational Effort

Similar to Section 3.6.1, we compute the optimality gaps of the convex hull reformula-

tion (3.3.3) when the convex hulls cl conv(Zi) in (3.3.4a)–(3.3.4b) are approximated by

using the continuous relaxation Z0 and heuristically computed level-1 Lovász-Schrijver

relaxation Z̃1, for sample sizes N ∈ {10, 100, 1000} and radii ε = ν
√
N−1 log(N + 1),

ν ∈ {0, 10−3, 10−2, 10−1}. In doing so, the true optimal value of each instance is com-

puted by solving formulation (3.3.2) using the column-and-constraint generation scheme.

The mixed-integer subproblems in this scheme are solved by dualizing the second-stage

loss function as opposed to using its Karush-Kuhn-Tucker conditions, since it results in

fewer additional variables and constraints, see [109]. Any bilinear expressions involving

dual variables and uncertain parameters are reformulated using indicator constraints since

the lack of a priori known upper bounds on the dual variables prohibits direct linearization

using McCormick inequalities.

Figure 3.7 reports the average (line plot) and standard deviation (error bar) of the op-

timality gaps, whereas Figure 3.8 reports the corresponding computation times, based on

100 statistically independent sets of training samples. Figure 3.7 shows that both the con-

tinuous and level-1 relaxations provide very similar and near-optimal approximations with

optimality gaps never exceeding 3% for N = 10 and 0.5% for N ≥ 100. Interestingly,

the optimal first-stage decisions are different, and this can be seen from their out-of-sample

99



performance that we present in the next subsection.

0 0.001 0.01 0.1
0.0

0.5

1.0

1.5

2.0

2.5

ν

O
pt

im
al

ity
ga

p
(%

) Z0

Z̃1

(a) N = 10

0 0.001 0.01 0.1
0.0

0.5

1.0

1.5

2.0

2.5

ν

O
pt

im
al

ity
ga

p
(%

) Z0

Z̃1

(b) N = 100

0 0.001 0.01 0.1
0.0

0.5

1.0

1.5

2.0

2.5

ν

O
pt

im
al

ity
ga

p
(%

) Z0

Z̃1

(c) N = 1000

Figure 3.7: Optimality gaps using the continuous relaxation Z0 and the heuristically
computed level-1 Lovász-Schrijver relaxation Z̃1, as a function of ν and N where ε =
ν
√
N−1 log(N + 1).

Figure 3.8 shows that both relaxations have small computation times (< 60 seconds on

average) across all N and ν. When compared with the column-and-constraint generation

scheme, the relative difference in their computation times is minor for small sample sizes

N but increases significantly for large sample sizes, where the column-and-constraint gen-

eration method can be slower by more than a factor of 10. Similar to the Benders scheme,

the mixed-integer subproblems in the column-and-constraint generation scheme can cause

slow convergence, and roughly 3% of its runs did not terminate within 10 minutes.

0 0.001 0.01 0.1
0

100

200

300

400

500

ν

Ti
m

e
(s

ec
on

ds
)

Z0

Z̃1
CCG

(a) N = 10

0 0.001 0.01 0.1
0

100

200

300

400

500

ν

Ti
m

e
(s

ec
on

ds
)

Z0

Z̃1
CCG

(b) N = 100

0 0.001 0.01 0.1
0

100

200

300

400

500

ν

Ti
m

e
(s

ec
on

ds
)

Z0

Z̃1
CCG

(c) N = 1000

Figure 3.8: Computation times using the continuous Z0 and heuristically computed level-1
Lovász-Schrijver relaxation Z̃1 for solving formulation (3.3.3), and using the column-and-
constraint generation scheme for solving formulation (3.3.2), as a function of ν and N ,
where ε = ν

√
N−1 log(N + 1)

.

100



Out-of-sample Performance and Finite Sample Guarantee

Similar to Section 3.6.1, we estimate the out-of-sample performance of the first-stage solu-

tions of the lift-and-project and sample average approximations for different sample sizes

N and Wasserstein radii ε = ν
√
N−1 log(N + 1), where ν ∈ {0, 10−3, 10−2, 10−1}. The

results are summarized in Figure 3.9.

First, Figure 3.9a reports the reliability of the level-1 Lovász-Schrijver relaxation Z̃1,

which is the empirical probability (over the 100 sets of training samples) that its optimal

value is an upper bound on its out-of-sample cost. We observe that the reliability increases

not only with increasing values of ν (for fixed values of N ) but also with increasing values

of N (for fixed values of ν). The choice ν = 10−1 is reliable with probability 0.8 for

training data sets of small size N and this increases to > 0.9 for large values of N .

Figure 3.9b reports the relative improvement in out-of-sample cost of the distribution-

ally robust model over the sample average approximation, over the 100 independent sets of

training samples. As before, we find that the distributionally robust model consistently out-

performs the sample average approximation, particularly for small sample sizes N , where

the magnitude of the relative improvement can be as high as 7%, but decreases for large

values of N .

Finally, Figure 3.9c reports the improvement in the out-of-sample performance of the

level-1 Lovász-Schrijver relaxation Z̃1 for the best choice of ν = 10−1, relative to the

continuous relaxationZ0 for the same ν. The relative improvement of the level-1 relaxation

Z̃1 over the continuous relaxation Z0 is small yet consistently non-negative. This is not

unexpected since the latter already has tight in-sample optimality gaps, as can be seen from

Figure 3.7. Nevertheless, we expect the relative improvements to be instance-dependent

similar to optimal power flow, and even a few percentage points can result in long-term

economic benefits.

101



10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

Sample size N

Re
lia

bi
lit

y
ν = 0
ν = 10−3

ν = 10−2

ν = 10−1

(a) Reliability

10 100 1000

0

2

4

6

8

Sample size N

Im
pr

ov
em

en
t(

%
)

ν = 10−3

ν = 10−2

ν = 10−1

(b) Out-of-sample performance

10 100 1000

−0.25

0.00

0.25

0.50

0.75

Sample size N

Im
pr

ov
em

en
t(

%
)

Z̃1 vs Z0

(c) Relative improvement

Figure 3.9: Reliability (left plot), and relative improvements in the out-of-sample perfor-
mance of the level-1 Lovász-Schrijver relaxation Z̃1 when compared with the sample aver-
age approximation (middle plot), and the continuous relaxation Z0 (right plot), as a func-
tion of training sample size N .

3.7 Conclusions

In this chapter, we address applications affected by rare high impact zero-one uncertainties

common in network optimization problems. Due to the rarity of failure events, historical

data is often not rich enough to reliably estimate failure probabilities, making traditional

methods potentially lead to poor out-of-sample performance. To this end, we tackle a

two-stage distributionally robust model under the Wasserstein ambiguity set with zero-one

uncertainties, and provide means to efficiently solve it. By leveraging ideas from penalty

methods and lift-and-project techniques, we provide a simple, tractable and tight approxi-

mation that can be iteratively improved. We perform extensive computational experiments

on two important applications, notably the optimal power flow problem with random trans-

mission line failures and a multi-commodity network design problem with random node

failures. We find that the method can strongly outperform classical sample average and

robust optimization approaches, especially when failures are rare but can lead to high costs

associated with loss of electric power or commodity flows.

102



CHAPTER 4

BINARY DISTRIBUTIONALLY ROBUST OPTIMIZATION UNDER THE

WASSERSTEIN SET: A DISASTER RELIEF APPLICATION

4.1 Introduction

In this chapter, we turn our attention to two-stage distributionally robust optimization

(DRO) under the Wasserstein set where binary variables are present in both the first and

second stage. More specifically, we are motivated by a two-stage network design problem,

where the first stage is a facility location problem, and the second stage is a fixed-charge

transportation problem. Such models naturally arise in disaster relief operations, where the

first stage consists of opening facilities, and pre-allocating resources such as medical kits

or food supplies before observing a disaster, and the second stage consists of allocating

resources from facilities to affected areas after a disaster. Natural disaster events occur

relatively rarely, and the scarcity of data makes it difficult to reliably estimate the underly-

ing probability distribution of the uncertainty [36, 37], especially in developing countries

where infrastructure to collect data is limited. The great majority of the literature has been

focused on solving either a stochastic program or robust optimization model for the prob-

lem of prepositining and routing resources to affected areas after a disaster. Surveys of

recent work on disaster relief operations can be found in [124] and [125], where the lat-

ter is focused on two-stage stochastic programming solutions. A case study on hurricane

threats on the coastal states of the United States along the Gulf of Mexico and the Atlantic

Ocean is presented and solved in [126]. The same case study has been used in [36, 37,

127]. In [37], a two-stage robust model is solved. It is only very recently that attention

has been drawn to using a distributionally robust optimization paradigm. In [36], and in

[127], the authors solve a two-stage DRO model under a moment based ambiguity set, and

103



a two-stage DRO model under a box and polyderal ambiguity set.

In this work, due to the limited data available in natural disaster management and the

difficulty in estimating the underlying distribution, we are again focused on the Wasser-

stein ambiguity set to leverage its finite sample and theoretical out-of-sample performance

guarantees [18]. As mentioned, DRO permits us to be risk averse towards the empirical

distribution obtained from historical data. Recall that in two-stage DRO (TSDRO), we

seek to minimize the first-stage cost and the worst-case expected value of the second-stage

cost with respect to probability distributions belonging to an ambiguity set. We re-write

the definition of TSDRO and the Wasserstein ambiguity set for convenience. In this chap-

ter, we assume the support set Ξ is a finite, yet large, set of scenarios indexed by s ∈ S.

Given N samples {ξ̂n}n∈N indexed by N ⊆ S , we define the empirical distribution as

P̂n = 1
N

∑
n∈N δξ̂n , where δξ̂n is the dirac distribution assigning unit mass to ξ̂n, i.e. each

sample is assigned equal probability. The TSDRO problem can be written as

min
x ∈ X

c>x+ max
P∈B(PN ,θ)

EP [Q(x, ξ)] (DRO)

where BW (PN , θ) is the Wasserstein ball of radius θ ≥ 0 centered at the empirical distribu-

tion PN . The Wasserstein ball is defined as

BW (PN , θ) = {P ∈M(Ξ) : dW (P,PN) ≤ θ}

where dW (P,PN) is the Wasserstein distance between P and PN defined in (W) in Section

1.3.1.

Relatively limited work explore the case where integer variables are present in the sec-

ond stage for DRO under the Wasserstein set. In [108], a Benders decomposition approach

is used to solve a two-stage distributionally robust unit-commitment problem with binary

variables over a Wasserstein ball. Kibaek Kim extends the classical dual decomposition

method to DRO models under the Wasserstein set with mixed-integer variables to solve the

104



Lagrangian dual in [128]. In [26], an extension of the integer L-shaped method is proposed

to solve TSDRO models with binary first-stage decisions and mixed-binary second-stage

decisions under the Wasserstein set. In [30], the authors develop a cutting plane procedure

to solve two-stage mixed-integer conic programs under convex ambiguity sets. In two-

stage robust optimization, the K-adaptability algorithm was developed to handle second-

stage binary variables in [129] and second-stage mixed-integer variables in [130]. The

K-adaptability algorithm was extended to two-stage distributionally robust optimization

with moment-based ambiguity sets in [131].

The remaining of the chapter is organized as follows. We first summarize our contri-

butions in Section 4.1.1 and define notation in Section 4.1.2. In Section 4.2, we formally

define our two-stage model and support set Ξ. In Section 4.3, we study the structure of our

model and support set, and present a column-and-constraint generation (CCG) algorithm

and the algorithm used to generate new scenarios. In Section 4.4, we discuss the numeri-

cal implications of our method, and how to tackle computational challenges, leading to an

improved CCG algorithm. Finally, we present our computational experiments in Section

4.5.

4.1.1 Contributions

We summarize our contributions as follows:

· To the best of our knowledge, this is the first work to consider a Wasserstein ball in a

two-stage DRO formulation with binary variables in the second stage for disaster relief

operations, providing greater modeling power and handling a richer ambiguity set. By

using a Wasserstein ambiguity set, we do not need to make any assumptions on the un-

derlying distribution of the random parameters or need to estimate moments.

· By constructing a support set and defining an underlying distance metric of the support

that is tailored to disaster management, we develop an efficient column-and-constraint

105



generation algorithm, where we leverage the structure of our support set and second-

stage value function.

· We show the conditions under which the second-stage value function is concave with

respect to a subset of the uncertainty, leading to an efficient line search scheme to generate

scenarios, and how these results extend to the case of a fixed-charge network flow second-

stage problem.

· We perform extensive computational experiments, showing the computational efficiency

of our method on synthetic instances with very large sets of scenarios, and illustrate our

methods on the case study of hurricane threats on the Gulf of Mexico states, analyzing

the solutions obtained from DRO and SAA.

Although our methods and results are not specific to hurricane disasters, we present our

work in the context of hurricane threats.

4.1.2 Notation

Vectors are printed in bold to differentiate them from scalars. Given a finite support set of

scenarios Ξ with an associated index set S, we equivalently refer to both ξ ∈ Ξ and s ∈ S

as scenarios. Similarly, for a set of samples of {ξ̂n}n∈N ⊆ Ξ indexed by N ⊆ S , we refer

to n ∈ N and ξ̂n as samples. To differentiate between a random vector ξ and historical

data, we denote samples by a hat as in ξ̂n. For a support set Ξ, we defineM(Ξ) to be the

set of all probability distributions supported on Ξ and d(·, ·) to be a valid underlying metric

of Ξ.

4.2 Formulation

4.2.1 Two-stage Distributionally Robust Model

Given a network with nodes V , let I ⊆ V be the set of possible facility locations, let J ⊆ V

be the set of possible demand nodes, and let K be the set of commodities. In the first stage,

106



binary variable oi is 1 if facility i ∈ I is opened at a cost of hi, and continous variables zik

represent the amount of commodity k ∈ K pre-allocated to facility i at a unit cost of gk.

Each facility i ∈ I has a known capacity of Ci, and a unit of commodity k ∈ K requires a

capacity of vk.

In scenario s ∈ S of the second stage, let wsij be the fixed-charge cost incurred if link

(i, j) is used, let cskij be the per-unit cost of transportation of commodity k on (i, j), and

let dskj be the demand of commodity k at node j ∈ J , for any facility i ∈ I and demand

node j ∈ J . We define the random vector ξs to be the concatenation of vectors ws, cs

and ds. We have binary variables σij determining whether facility i ∈ I is serving demand

node j ∈ J and non-negative variables tkij which represent the amount of commodity k

transported from facility i to demand node j. Any unmet demand is stored in u and is

penalized by U . This ensures that the second-stage problem is feasible for any first-stage

decision and any realization of the uncertainty. Moreover, we assume we know upper

bounds Mij on the amount that can be transported from facility i to demand node j. For

example, Mij could be the population at demand node j ∈ J .

Finally, we include a feasible region B in the first stage which can incorporate addi-

tional constraints such as available budget, or the maximum number of facilities that can

be opened; in the second stage, C can include additional valid inequalities. B and C can

be chosen to be empty. The TSDRO model is defined as

min
o, z

∑
i∈I

[
hioi +

∑
k∈K

gkzik

]
+ max

p∈BW (PN ,θ)

∑
s∈S

psQ(o, z, ξs)

s.t.
∑
k∈K

vkzik ≤ Cioi, ∀i ∈ I, (4.2.1a)

zik ≥ 0, ∀i ∈ I, ∀k ∈ K,

oi ∈ {0, 1}, ∀i ∈ I,

(o, z) ∈ B

107



where the second-stage cost Q(o, z, ξs) is

min
σ, t,u

∑
i∈I

∑
j∈J

[
wsijσij +

∑
k∈K

cskijt
k
ij

]
+ U

∑
j∈J

∑
k∈K

ukj

s.t.
∑
j∈J

tkij ≤ zik, ∀i ∈ I, ∀k ∈ K, (4.2.2a)

∑
i∈I

tkij + ukj ≥ dskj, ∀j ∈ J, ∀k ∈ K, (4.2.2b)

tkij ≤Mijσij, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, (4.2.2c)

tkij ≥ 0, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K,

σij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J,

ukj ≥ 0, ∀j ∈ J, ∀k ∈ K,

(σ, t,u) ∈ C.

If B includes a budget constraint, then B = {(o, z) :
∑

i∈I
[
oixi +

∑
k∈K gkzik

]
≤ b},

where b is a pre-defined budget in the first stage. The set B could also include a limit on

the number of facilties that can be built in the first stage. We include valid inequalities

σij ≤ oi in C for all i ∈ I and j ∈ J .

Constraint (4.2.1a) ensures we do not exceed the capacity of each facility i. Constraint

(4.2.2a) ensures we can only transport what is available from facility i, constraint (4.2.2b)

ensures demand satisfaction with additional variables ukj to keep track of unmet demand,

and constraint (4.2.2c) ensures we only use open links (i, j). We note that the second-stage

problem is always feasible for all first-stage decisions (o, z) and random vectors ξ.

Throughout the rest of the chapter, we assume uncertainty is only present in the con-

straints, such that ws = w and cs = c for all s ∈ S.

108



4.2.2 Support Set

To construct the finite support set Ξ, we need to define a set of demand scenarios. Since the

objective of DRO is to protect the decision-maker against potentially unobserved events,

constructing a set of scenarios using historical data is undesirable, especially when data

is limited. On the other hand, constructing an overly complicated support set could lead

to unrealistic disaster scenarios. To this end, we define a set of scenarios such that they

are descriptive of the disaster, and lead to a manageable support set. Constructing such a

support set has modeling and algorithmic benefits as we will show.

Each scenario is defined by components which determine which nodes are affected and

have a positive demand, and others which determine the intensity of the disaster. More

specifically, we redefine our random vector ξ to be comprised of four components: the

landfall of the disaster, the radius of impact, the path of the disaster, and the fraction of the

population that is affected at the landfall node. Here, the first three components determine

which nodes are affected by the disaster, and the last component determines the demand

and thus the intensity at the landfall node. In any scenario, we assume that there can only be

one landfall. Conditioned on the demand at the landfall node, we assume that the demands

at the remaining affected nodes are deterministic, where the fraction of the population

affected decreases the farther the node is from the landfall.

Let L be the set of landfalls, R be the set of radii of impact, A be the set of paths

represented by angles, and let F be the set of possible fractions that can affect a population

(i.e. demand). A scenario is constructed in a hierarchical fashion, where we first observe

a two-dimensional vector ξ` representing the longitude and latitude of the landfall node,

followed by a radius of impact ξr ∈ R around the landfall. Although ξ` is a vector of the

landfall nodes’s coordinates, we shall mostly refer to ξ` as a node in V for simplicity. The

angle ξa ∈ A determines the portion of nodes within the radius ξr which are affected by the

disaster. ξa can, for example, represent the slice of the circle that is affected. Finally, we

observe the fraction of the population affected ξf ∈ F at the landfall node, which in turn

109



determines the demand at the other affected nodes. More specifically, let J(ξ`, ξr, ξa) =

{ξ`, j1, j2, ...} ⊆ J be the set of affected nodes as determined by the landfall ξ`, the radius

of impact ξr and angle ξa, and assume nodes are in increasing order of distance from the

landfall. Note that the landfall ξ` is included in the set. We define functions Πk
j : L ×

R×A× F → [0, 1] which map the fraction of the population affected at the landfall node

ξf to the fraction of the population needing commodity k ∈ K at nodes j ∈ J(ξ`, ξr, ξa),

such that Πk
ξ`

(ξ`, ξr, ξa, ξf ) ≥ Πk
j1

(ξ`, ξr, ξa, ξf ) ≥ Πk
j2

(ξ`, ξr, ξa, ξf ) ≥ . . . for all k. We

allow the functions Πk
j to be constant for all or any subset of the first three components.

Note that conditioned on ξf , the demands at the affected nodes that are not the landfall are

deterministic, and how they are determined is a modeling question. We give more specific

details in Section 4.3.3.

We then have ξ = (ξ`, ξr, ξa, ξf ) as a random vector. Given a scenario ξ, we implicitly

have an associated demand vector d that is fed to model (4.2.2), and thus, only d appears

in the constraints. We give an example of two scenarios with the same landfall and radius

of impact but with different angles in Figure 4.1. This network was used in a case study of

hurricane threats in the Gulf of Mexico states in [126] and is the case study on which we

illustrate our method in Section 4.5.3.

In TSDRO under the Wasserstein ambiguity set, the model hedges against scenarios

by transporting weights from the scenarios in the sample set to other scenarios, possibly

not in the sample set (i.e. unobserved scenarios) at a cost proportional to the distance

between them defined by d(·, ·), subject to a budget θ, the radius of the Wasserstein ball (see

discussion in Section 1.3.1). Our support set permits us to better measure dissimilarities

between two scenarios by defining an underlying metric d(·, ·) of Ξ that is tailored to the

application. We define the distance between two scenarios ξ1 and ξ2 as the sum of squared

deviations between the components of ξ:

d(ξ1, ξ2) = ||ξ1
` − ξ2

` ||22 + (ξ1
r − ξ2

r )
2 + (ξ1

a − ξ2
a)

2 + (ξ1
f − ξ2

f )
2 (4.2.3)

110



0

1

2

3

4

5
6

78

9 10
11

12
13 14

15

16

17 18

19

21
22

23 24 25

26
27

28

29

Landfall
Scenario 1
Scenario 2

Figure 4.1: Example of two different angles ξa, where the landfall is New Orleans (node
12) and the radius is 320 km. Nodes filled with both colors are nodes affected in both
scenarios.

Recall ξ` is a two-dimensional vector representation of the coordinates, while the other

components are scalars.

Consider the case where the support set is a set of demand vectors. Such random vectors

can do a poor job at measuring dissimilarity between scenarios. As an example, consider

the following hypothetical three scenarios in the network of Figure 4.1, where in the first

scenario ξ1, node 29 has a demand of 1000, in the second scenario ξ2 node 28 has a demand

of 1000, and node 12 has a demand of 1000 in the third scenario ξ3, while all other nodes

have a demand of 0. In this case, the distance between ξ1 and ξ2 is equal to the distance

between ξ1 and ξ3, even though it is clear that we should have d(ξ1, ξ3) > d(ξ1, ξ2). This

is because nodes 28 and 29 are close to each other while node 12 is farther away. By using

the metric defined in (4.2.3), the model considers disaster scenarios hitting landfalls that

are close to each other or having similar characteristics (radius, path and intensity) to be

similar scenarios.

111



4.3 Column-and-Constraint Generation Algorithm

In this section, we present our column-and-constraint generation algorithm (CCG). We

first present a known extensive reformulation of (4.2.1), then describe how we leverage the

structure of our support set and second-stage value function.

4.3.1 Extensive Reformulation

To simplify notation, we concatenate all first-stage variables under the vector x, and all

second-stage variables under the vector y. Let X be the feasible region of the first stage

and let Y (x, ξ) be the feasible region of the second stage given x and random vector ξ.

More specifically, we work with (DRO), where Q(x, ξ) = miny
{
q>y : y ∈ Y (x, ξ)

}
.

From Theorem 1, we have that (4.2.1) is equivalent to

min c>x+ θα +
1

N

∑
n∈N

γn

s.t. γn ≥ q>ys − α d(ξs, ξ̂n), s ∈ S, n ∈ N ,

ys ∈ Y (x, ξs), s ∈ S,

x ∈ X,

α ≥ 0.

(ER)

Due to the hierarchical nature of the scenarios, there is an obvious ordering of the scenarios

with respect to the second-stage cost. For example, for the same landfall and direction,

increasing the radius and/or intensity at the landfall leads to a greater second-stage cost.

We can reduce the number of scenarios to consider in the model and get an equivalent

problem as follows. First, we define the following set for each sample:

Ξ̄n = {ξ ∈ Ξ : (ξf < ξ̂f , ξr < ξ̂r) or (ξf = ξ̂f , ξr < ξ̂r) or (ξf < ξ̂f , ξr = ξ̂r).}

112



We then define sets of scenarios Ξn for each sample ξ̂n = (ξ̂n` , ξ̂
n
r , ξ̂

n
a , ξ̂

n
f ) as:

Ξn = Ξ \ Ξ̄n.

The sets Ξn exclude scenarios where both intensity and radius are strictly smaller than the

sample in question, and scenarios where one of the two is strictly smaller and the other

is the same. For each Ξn, we define an associated index set Sn and define the set of all

scenarios as SN =
⋃
n∈N Sn.

Theorem 8. (ER) is equivalent to

min c>x+ θα +
1

N

∑
n∈N

γn

s.t. γn ≥ q>ys − α d(ξs, ξ̂n), s ∈ Sn, n ∈ N , (c1),

ys ∈ Y (x, ξs), s ∈ SN , (c2),

x ∈ X,

α ≥ 0.

(ER’)

The sets Ξn exclude dominated scenarios which need not be included in the model. For

a sample ξ̂n, each scenario ξ ∈ Ξ̄n has a corresponding scenario ξ′ ∈ Ξn which dominates

ξ, where d(ξ̂, ξ′) < d(ξ̂, ξ) and Q(x, ξ′) ≥ Q(x, ξ). In other words, moving weight to

ξ′ would lead to a greater cost in the inner maximization of (4.2.1) while using less of the

available budget θ in the Wasserstein ambiguity set. Note that the reduction in the number

of scenarios included in the model directly depends on the sample set. We prove Theorem

8.

113



Proof. Recall from the proof of Theorem 1, we can write the inner maximization as

max
q

∑
s∈S

∑
n∈N

1

N
qnsQ(x, ξs)

s.t.
∑
s∈S

∑
n∈N

1

N
d(ξs, ξ̂n)qns ≤ θ,

∑
s∈S

qns = 1 ∀n ∈ N ,

qns ≥ 0, ∀s ∈ S, ∀n ∈ N .

(4.3.1)

where qns is the conditional probability of scenario ξs given we have observed ξ̂n, the

sampled scenario.

In (4.3.1), we are moving weight qns from a sample ξ̂n to a scenario ξs for all s and n,

with the objective of maximizing the expected cost of the second stage. Consider a sample

ξ̂n and a scenario ξ ∈ Ξ̄n. We show that there exists a scenario ξ′ which dominates ξ, in

the sense that d(ξ̂, ξ′) < d(ξ̂, ξ) and Q(x, ξ′) ≥ Q(x, ξ). Let ξ′ = (ξ`, ξ̂
n
r , ξa, ξ̂

n
f ). Then

we have Q(x, ξ′) ≥ Q(x, ξ) for all x ∈ X , since ξf ≤ ξ̂nf and ξr ≤ ξ̂nr , where at least

one of the two inequalities holds strictly, and ξ` = ξ′` and ξa = ξ′a. Moreover, we have

d(ξ̂n, ξ′) < d(ξ̂n, ξ) since:

d(ξ̂n, ξ′) = ||ξ̂n` − ξ`||22 + (ξa − ξa)2

d(ξ̂n, ξ) = ||ξ̂n` − ξ`||22 + (ξ̂nr − ξr)2 + (ξ̂na − ξa)2 + (ξ̂nf − ξf )2

where one of (ξ̂nr − ξr)2 or (ξ̂nf − ξf )2 must be non-zero because ξ ∈ Ξ̄n.

4.3.2 Column & Constraint Generation

Since the number of scenarios |SN | can be very large, solving (ER’) is computationally

infeasible. As in typical CCG algorithms, we start with a subset of scenarios Ŝn ⊆ Sn
for each sample n, solve a restricted model which we denote as (RER) and record optimal

114



solutions x̂, γ̂ and α̂. For each sample n ∈ N , we then search for a new scenario s ∈ Sn\Ŝn
such that γ̂n < Q(x̂, ξs)− α̂ d(ξs, ξ̂n), whereQ(x̂, ξs) is obtained by solving the second-

stage problem given first-stage decision x̂ and random vector ξs. Note that we can generate

multiple scenarios per iteration. We repeat the process until we can no longer find such

a scenario for any sample. We refer to the process of generating new scenarios as the

separation problem. With a slight abuse of language, for some sample n, we say that a

scenario s violates (c1) if constraint (c1) is violated at scenario s.

We summarize a vanilla CCG algorithm in Algorithm 2. The function SEPARA-

TION(ξ̂n, x̂, γ̂n, α̂) returns a set Vn ∈ Sn \ Ŝn of new scenarios which violate γ̂n ≥

Q(x̂, ξs) − α̂ d(ξs, ξ̂n) for a sample n and optimal solutions x̂, γ̂ and α̂ of (RER), or an

empty set if no such scenario is found.

Algorithm 2 CCG

1: Initialize Ŝn for each n ∈ N
2: while ∪n∈NVn 6= ∅ do
3: Solve (RER) and record optimal solutions (x̂, γ̂n, α̂).
4: for each n ∈ N do
5: Vn ← SEPARATION(ξ̂n, x̂, γ̂, α̂)
6: Ŝn ← Ŝn ∪ Vn
7: end for
8: end while

4.3.3 Separation Problem

There are two main difficulties which arise in Algorithm 2. The first, more significant

one, is in the separation step, where one might have to enumerate all scenarios in Sn \ Ŝn,

which is a very large set. Recall that for each scenario, we must solve a fixed-charge

transportation problem (4.2.2). While today’s commercial solvers can typically efficiently

solve such models, the difficulty lies in repeatedly solving (4.2.2) a large number of times,

and having to do it after each solve of (RER), the restricted model of (ER’). The second

main difficulty is in solving (RER) after having generated many scenarios. After each

iteration, the number of scenarios generated, if not controlled, can be large. Consider the

115



case where each sample generates one new scenario. For each scenario s generated for

a sample n, we add the associated constraint (c1), a new set of variables ys, and a set of

second-stage constraints (c2). Depending on the number of samples, this can lead to a large

and difficult to solve master problem.

Given optimal solutions x̂ and α̂ of (RER), the separation problem consists of solving

the following problem for each sample n:

max
ξ

zn(ξ) := Q(x̂, ξ)− α̂ d(ξ, ξ̂n)

s.t. ξ ∈ Ξ

(SPn)

Let ξs∗ be the optimal solution and let z∗n be the optimal value of (SPn). If z∗n > γ̂n, then

we generate new scenario s∗; otherwise, we conclude none of the scenarios violate (c1) for

sample n.

One simple greedy approach is to enumerate the scenarios, and stop at the first one

which violates constraint (c1). We repeat this for each sample n. Such a separation method

generally leads to quickly generating new scenarios, especially in the early stages of the

algorithm, but typically leads to a greater number of outer iterations (i.e. master solves).

Moreover, as the algorithm progresses, we enumerate more and more scenarios before find-

ing one which violates (c1), and in the worst case, could end up enumerating all scenarios

for some of the samples. Alternatively, we can solve (SPn) by enumerating all scenarios

and pick the scenario with the greatest objective zn(ξ).

We instead leverage the structure of our support set Ξ and the optimal value of the

second stage Q(x, ξ) to solve (SPn). Recall that J(ξ`, ξr, ξa) is the set of affected nodes

determined by the landfall ξ`, radius of impact ξr and angle ξa, including the landfall ξ`.

We make the following two assumptions:

Assumption 1. The functions Πk
j (ξ`, ξr, ξa, ξf ) : L×R×A× F → [0, 1] determining the

fraction of the population needing commodity k at nodes j ∈ J(ξ`, ξr, ξa) are concave in

116



ξf for each landfall ξ` ∈ L, radius of impact ξr ∈ R, and angle ξa ∈ A.

Assumption 2. A facility at node i ∈ I has a limit ki on the number of nodes it can serve,

but is able to satisfy any amount of demand at nodes it is serving.

Assumption 1 ensures we have well-behaved mappings Πk
j . An example of a function

satisfying Assumption 1 is the piece-wise linear function Πk
j (ξ`, ξr, ξa, ξf ) = min{aξf , ξ̄fj}

which sets upper bounds ξ̄fj on each demand node j, where a ≤ 1 is a pre-determined pa-

rameter. The upper bounds might depend on ξ`, ξr, ξa and k ∈ K, but we drop this

dependence in ξ̄fj to simplify notation. Since the intensity of the disaster decreases as we

move farther from ξ`, upper bounds ξ̄fj also decrease the farther j is from ξ`.

Under Assumption 2, we no longer pre-allocate resources in the first stage and thus,

variables zik are removed from the model. The upper bounds ki can either be a pre-defined

parameter, or a first-stage decision replacing zik. Variables ki can be interpreted as the size

of the facility built at node i ∈ I . In the case where ki is a pre-determined parameter,

(4.2.1) becomes:

min
x

∑
i∈I

hioi + max
p∈BW (PN ,θ)

∑
s∈S

psQ(o, ξs)

s.t. oi ∈ {0, 1}, ∀i ∈ I,

o ∈ B

(4.3.2)

where the second-stage cost Q(o, ξs) is

min
σ, t,u

∑
i∈I

∑
j∈J

[
wijσij +

∑
k∈K

ckijt
k
ij

]
+ U

∑
j∈J

∑
k∈K

ukj

s.t.
∑
j∈J

σij ≤ ki, ∀i ∈ I, (4.3.3a)

∑
i∈I

tkij + ukj ≥ dskj, ∀j ∈ J, ∀k ∈ K,

tkij ≤Mijσij, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K,

σij ≤ oi ∀i ∈ I, ∀j ∈ J,

117



tkij ≥ 0, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K,

σij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J,

ukj ≥ 0, ∀j ∈ J, ∀k ∈ K,

(σ, t,u) ∈ C.

Constraint (4.3.3a) ensures each facility i ∈ I only serves at most ki demand nodes j ∈ J .

Note that if a demand node cannot be served, the unsatisfied demand is still penalized by

U .

Assumptions 1 and 2 are key to exploiting the structure of the second-stage optimal

cost Q(x, ξ) and lead to the following results.

Theorem 9. Under assumptions 1 and 2, for any first-stage decision vector x, Q(x, ξ) is

concave with respect to ξf for a fixed landfall ξ`, radius of impact ξr and angle ξa.

Corollary 3. Under assumptions 1 and 2, for any first-stage decision vector x and α ≥ 0,

zn(ξ) is concave with respect to ξf for a fixed landfall ξ`, radius of impact ξr and angle ξa.

Proof. We prove both Theorem 9 and Corollary 3. First note that each demand node is

served by at most one facility. Given a set of open facilities, let a = {i1, i2, . . . } be a

set of assignments from facilities to nodes with positive demand, where ij is the facility

assigned to node j, and let A be the set of all possible assignments between facilities and

demand nodes satisfying the cardinality constraints (4.3.3a). Let Ĵ be the set of demand

nodes in J(ξ`, ξr, ξa) that are not served by a facility in a set of assignments a. Let Pj be

the population at node j. Define f(ξf ) to be the objective of the separation problem zn(ξ)

as a function of ξf , where ξ`, ξr and ξa are fixed.

First note that as we increase ξf for a fixed set of assignments a ∈ A, the fixed-

charge cost component remains constant at wijj , and the transportation cost is equal to

ckijjΠ
k
j (ξ`, ξr, ξa, ξf )Pj for each served node j and commodity k ∈ K. For nodes that are

not served, the cost is UΠk
j (ξ`, ξr, ξa, ξf )Pj . The objective value of the second stage is then

118



∑
j∈J(ξ`,ξr,ξa)\Ĵ

[
wijj +

∑
k∈K

ckijjΠ
k
j (ξ`, ξr, ξa, ξf )Pj

]
+ U

∑
j∈Ĵ

Πk
j (ξ`, ξr, ξa, ξf )Pj. (4.3.4)

Note that (4.3.4) is concave with respect to ξf by Assumption 1. We then have

f(ξf ) = Q(x, ξ)− α d(ξ, ξ̂n)

= min
a∈A

{ ∑
j∈J(ξ`,ξr,ξa)\Ĵ

[
wijj +

∑
k∈K

ckijjΠ
k
j (ξ`, ξr, ξa, ξf )Pj

]

+ U
∑
j∈Ĵ

Πk
j (ξ`, ξr, ξa, ξf )Pj

}
− α d(ξ, ξ̂n),

where the first term is the minimum of concave functions and is therefore concave with

respect to ξf , and −α d(ξ, ξ̂n) is concave since α ≥ 0. We conclude that f(ξf ) is concave.

Theorem 9 and its corollary motivate performing a line search on ξf . Since F is

a discrete set, we perform a Fibonacci search on F , which is the discrete version of a

golden-section line search. More specifically, we enumerate and fix ξ`, ξr and ξa, and solve

maxξf∈F f(ξf ) using a Fibonacci search. At each step of the Fibonacci search, we compute

f(ξf ) by solving the second-stage problemQ(x, ξ). This separation scheme, which we re-

fer to as SEPARATION-FIB
(
ξ̂n, x̂, γ̂n, α̂

)
, is described in Algorithm 3. The Fibonacci

search FIBONACCI
(
F, ξ`, ξr, ξa, ξ̂

n
)

takes as arguments the set of fractions F , the values

of the fixed components of ξ and the sample ξ̂n. It is presented in Algorithm 4.

In Algorithm 3, we enumerate components (ξ`, ξr, ξa) in L×R×A. In the inner loop,

we apply Theorem 8 and only consider components ξf such that ξ ∈ Ξn, and exclude

scenarios which are already included in (RER) to get a subset F̂ ⊆ F . If F̂ is not empty,

we call the Fibonacci search function in line 12 to get the scenario ξ0 which maximizes

f(ξf ). We keep track of the greatest value of z and the maximizing scenario by z∗ and

119



ξ∗, respectively. These are updated in lines 14-17. SEPARATION-FIB either returns the

index associated with ξ∗ if that scenario violates (c1), or returns an empty set otherwise.

Details on the Fibonacci search can be found in [132]. We detail our implementation of

the Fibonacci search for self-containment. In Algorithm 4, we define Ω to be the array of

scenarios in increasing order of ξf ∈ F and an array Θ of Fibonacci numbers up to the qth

Fibonacci number, such that q ≥ |Ω| − 1. Our sequence of Fibonacci numbers starts with

0, 1 and 1. Let m = |Θ| be the size of this array. We index the ith element of Ω and Θ by Ωi

and Θi, and start the indexing at 0. In lines 4-8, we handle the corner cases where there are

only one or two scenarios in Ω, in which case it is a simple check. Throughout the search,

we keep track of three variables: `, ia and u, where ` ≤ ia ≤ u. These are indices of Ω

which represent intervals where the maximum might be. The three variables are Fibonacci

numbers and the idea is to maintain a constant ratio of the interval sizes, such that u−ia
ia−`

is close to the golden-ratio. In order to search the intervals, we define a fourth index ib

between ia and u. We then compare zn(Ωia) to zn(Ωib). If zn(Ωia) > zn(Ωib), then we

know the maximum is somewhere between ` and ib, otherwise, it is between ia and u. We

update the indices accordingly in lines 13-21. In order to maintain the same interval ratios

as the algorithm progresses, ib is also chosen to be a Fibonacci number where ib = `+u−ia.

We repeat this process until ia = ib. Note that this will find the maximum if it is not at

one of the initial endpoints (i.e. 0 or Θm−1). If either ` = 0 or u = Θm−1 after exiting the

while-loop, we must do a manual check against ia. This is done in lines 23-29.

Remark 3. SEPARATION-FIB terminates in O (log |F |) steps. Thus, to solve (SPn),

the second-stage problem is solved O (|L| × |R| × |A| × log |F |) times, as opposed to

O (|L| × |R| × |A| × |F |) times if enumerating all scenarios.

Since F is essentially the demand component of our random vector, we expect it to have

the highest cardinality compared to L, R, and A. In fact, since two-stage DRO under the

Wasserstein set aims to protect the decision-maker against unobserved scenarios, a finer

discretization of F might be desired. By using SEPARATION-FIB, the separation step

120



Algorithm 3 SEPARATION-FIB
(
ξ̂n, x̂, γ̂n, α̂

)
1: Input: sample ξ̂n and optimal solutions of (RER) x̂, γ̂n and α̂
2: V ← ∅
3: z∗ ← −∞
4: for each (ξ`, ξr, ξa) ∈ L×R× A do
5: F̂ ← ∅
6: for each ξf ∈ F do
7: ξ ← (ξ`, ξr, ξr, ξf )

8: if ξ ∈ Ξn & ξ /∈ Ŝn then
9: F̂ ← F̂ ∪ {ξf}

10: end if
11: end for
12: if F̂ 6= ∅ then ξ0 ← FIBONACCI

(
F̂ , ξ`, ξr, ξa, ξ̂

n
)

. Solve maxξf∈F̂ f(ξf )

13: // Update maximizing ξ∗ and optimal value z∗

14: if zn(ξ0) > z∗ then
15: ξ∗ ← ξ0

16: z∗ ← zn(ξ0)
17: end if
18: end for
19: Let s∗ be the index associated with ξ∗

20: if γ̂n < z∗ then
21: return {s∗}
22: else
23: return ∅
24: end if

scales logarithmically in the size of F .

We note that if we wish to solve the original model (4.2.1), in which case Assumption

2 does not hold, SEPARATION-FIB is not guaranteed to return an optimal solution to

(SPn). However, we observe in our experiments that zn(ξ) is still concave with respect

to ξf for a fixed landfall, radius and angle in the vast majority of cases, and in the few

cases where it is not concave, the solution is optimal or close to optimal. Thus, we can

perform SEPARATION-FIB as an efficient heuristic. To ensure an exact method, however,

we would have to perform a full enumeration to solve (SPn) once no scenarios can be

generated. See Section 4.5 for more details.

121



Algorithm 4 FIBONACCI
(
F, ξ`, ξr, ξa, ξ̂

n
)

Input set F in increasing order, ξ`, ξr, ξa and sample ξ̂n

1: Ω← [(ξ`, ξr, ξa, ξf )]ξf∈F
2: Θ: array of Fibonacci numbers of size m in increasing order

3: // Corner cases
4: if |Ω| = 1 then
5: returnOmega0

6: else if |Ω| = 2 then
7: return ξ∗ := arg maxξ {zn(ξ) : ξ ∈ {Ω0,Ω1}}
8: end if

9: // Initialize indices `, u, ia and ib
10: (`, ia, u)← (0,Θm−3,Θm−1)
11: ib ← `+ u− ia
12: while ia 6= ib do
13: if ib > |Ω| − 1 or zn(Ωia) > zn(Ωib) then
14: u← ib
15: ib ← ia
16: ia ← `+ u− ib
17: else
18: `← ia
19: ia ← ib
20: ib ← `+ u− ia
21: end if
22: end while
23: if ` = 0 then
24: ξ∗ ← arg maxξ {zn(ξ) : ξ ∈ {Ωia ,Ω`}}
25: else if u = Θm−1 then
26: ξ∗ ← arg maxξ {zn(ξ) : ξ ∈ {Ωia ,Ωu}}
27: else
28: ξ∗ ← Ωia

29: end if
30: return ξ∗

4.3.4 Fixed-Charge Network Flow

We show that our results extend to the case where the second-stage problem is an un-

capacitated fixed-charge network flow problem. Given a graph G = (V ,A), we define

all nodes incident to outgoing and incoming arcs as δ+(e1) = {e2 : (e1, e2) ∈ A} and

122



δ−(e2) = {e1 : (e1, e2) ∈ A}, respectively. In line with Assumption 2, we assume each

facility sends an uncapacitated vehicle to serve demand nodes, and can serve up to ki de-

mand nodes. Variable σij is 1 if facility i is serving demand node j. We introduce a new

variable β where βe1e2 is 1 if arc (e1, e2) is used. Variable tike1e2 represents the amount of

commodity k transported through arc (e1, e2) by facility i’s vehicle. Finally, let M be a

sufficiently large number. We write the second-stage problem as:

min
σ,β, t,u

∑
(e1,e2)∈A

[
we1e2βe1e2 +

∑
i∈I

∑
k∈K

cke1e2t
ik
e1e2

]
+ U

∑
j∈J

∑
k∈K

ukj (4.3.5a)

s.t.
∑
j∈J

σij ≤ ki, ∀i ∈ I, (4.3.5b)

σij ≥
1

M

∑
e1∈δ−(j)

tike1j, ∀i ∈ I, ∀j ∈ J, (4.3.5c)

∑
e2∈δ+(i)

tikie2 −
∑

e1∈δ−(i)

tike1i =
∑
j∈J

dskjσij ∀i ∈ I, ∀k ∈ K, (4.3.5d)

∑
e2∈δ+(j)

tikje2 −
∑

e1∈δ−(j)

tike1j = −dskjσij ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, (4.3.5e)

ukj ≥ dskj −M
∑
i∈I

σij ∀j ∈ J, ∀k ∈ K, (4.3.5f)

tike1e2 ≤Mβe1e2 , ∀(e1, e2) ∈ A, ∀i ∈ I, ∀k ∈ K,

(4.3.5g)

σij ≤ oi ∀i ∈ I, ∀j ∈ J, (4.3.5h)

tkij ≥ 0, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K,

σij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J,

ukj ≥ 0, ∀j ∈ J, ∀k ∈ K,

(σ, t,u) ∈ C.

Constraints (4.3.5b) ensure a facility i serves at most ki demand nodes as in (4.3.2); con-

straints (4.3.5c) set σij to 1 if facility i is serving node j; constraints (4.3.5d) are network

123



flow constraints at facility nodes, ensuring dkj units of commodiy k leaves the facility for

each demand node j it is serving; constraints (4.3.5e) ensure facility i’s vehicle delivers

dkj units of commodiy k to node j if i is serving j; constraint (4.3.5f) ensures ukj = dskj

if demand node j ∈ J is not served by any facility i ∈ I , i.e.
∑

i∈I σij = 0; constraints

(4.3.5g) ensure βe1e2 = 1 if tike1e2 > 0 for any commodity k and facility i; finally constraints

(4.3.5h) ensure facility i can serve demand node j only if facility i is open.

We have the following similar result.

Theorem 10. Under Assumption 1, if the second-stage problem corresponds to (4.3.5),

then for fixed first-stage decision vector x and α ≥ 0, Q(x, ξ) and zn(ξ) are concave with

respect to ξf for a fixed landfall ξ`, radius of impact ξr, and angle ξa.

Proof. The proof is very similar to the proof of Theorem 9 and its corollary. Let Î be the

set of open facilities. For an open facility i ∈ Î , let Ji ⊆ J(ξ`, ξr, ξa) be the set of demand

nodes it serves, and let ρi = {ρij}j∈Ji be a set of paths from facility i to nodes j ∈ Ji,

where ρij is a set of edges from facility i to demand node j. Thus, {ρi}i∈Î corresponds to

a solution to the second-stage problem, representing paths from each open facility i ∈ Î

to the demand nodes they each serve. Let ρ be the set of all possible {ρi}i∈Î satisfying

constraint (4.3.5b). Recall that Ĵ is the set of demand nodes in J(ξ`, ξr, ξa) that are not

served by any facility, and f(ξf ) corresponds to zn(ξ) as a function of ξf , where ξ`, ξr and

ξa are fixed.

For a fixed set of paths for each facility i ∈ Î , i.e. for a fixed {ρi}i∈Î , the second-stage

cost is:

∑
i∈Î

∑
j∈Ji

∑
e∈ρij

[
we1e2 +

∑
k∈K

cke1e2Π
k
j (ξ`, ξr, ξa, ξf )Pj

]
+U

∑
j∈Ĵ

Πk
j (ξ`, ξr, ξa, ξf )Pj, (4.3.6)

124



which is concave with respect to ξf . We then have

f(ξf ) = Q(x, ξ)− α d(ξ, ξ̂n)

= min
{ρi}i∈Î∈ρ

{∑
i∈Î

∑
j∈Ji

∑
e∈ρij

[
we1e2 +

∑
k∈K

cke1e2Π
k
j (ξ`, ξr, ξa, ξf )Pj

]

+ U
∑
j∈Ĵ

Πk
j (ξ`, ξr, ξa, ξf )Pj

}
− α d(ξ, ξ̂n),

and the result follows.

4.4 Numerical Considerations

In this section, we discuss the numerical implications of our method, and how it can be

improved. We first present numerical improvements in solving (RER), then discuss im-

plementation details in the separation step which can significantly improve computational

performance. Finally, we conclude with our final column-and-constraint generation algo-

rithm incorporating these changes which we name CCG-FIB.

4.4.1 Solving (RER)

We have so far only discussed how to efficiently solve the separation problem, but have not

tackled the restricted model (RER), which might become difficult to solve as the algorithm

progresses and as we generate many scenarios, especially for larger numbers of samples.

First, to get a tighter formulation, we include valid inequalities yij ≤ oi in C in the second-

stage model (4.2.2) as mentioned in Section 4.2. Moreover, we set upper bounds Mij in

constraint (4.2.2c) to be the highest demand that can possibly occur in any scenario at

demand node j, i.e. Mij = maxξf∈F ξfPj for all i, where Pj is the population at node j.

To control the size of (RER), we avoid generating too many scenarios in an iteration

by limiting the number of scenarios that can be generated. The limit can be dynamically

125



adjusted as the algorithm progresses. There are many variations one can think of, such as

generating multiple scenarios for one sample until we hit the limit, or setting a limit for

each sample in addition to a limit across all samples. For simplicity, we ensure only one

scenario is generated per sample, and only impose a limit on the total number of scenarios

generated across all samples, which we keep constant throughout the algorithm. Finally,

we observe in our experiments that the solver spends the vast majority of the time proving

optimality, and seems to quickly find good, feasible integer solutions. To this end, we also

dynamically adjust the MIP gap tolerance when solving (RER), where we start with a loose

tolerance and tighten it as the algorithm progresses. This avoids the occasional long stalls

that happen in our experiments.

4.4.2 Separation Problem Implementation

In the separation problem, when searching for a scenario which violates constraint (c1) for

some sample n, we solve the second-stage problem to get the optimal value Q(x̂, ξ) for a

first-stage vector x̂ and candidate scenario ξ. Once the second stage is solved once at the

candidate scenario ξ, we do not need to re-compute Q(x̂, ξ) during the search for other

samples. Thus, if we solve the separation problem by enumerating all scenarios at the first

sample, we can perform a check for scenarios which violate (c1) via a quick enumeration

for the remaining samples. We are still enumerating all scenarios but only perform simple

operations for each scenario instead of solving the second-stage MIP, which can be done

very fast. This leads to the question of how beneficial it is to use Fibonacci search in the

separation step. For one fixed sample, using SEPARATION-FIB does indeed lead to far

fewer scenarios enumerated. However, it is possible that for the next sample, we cannot

always take advantage of the fact that the second-stage problem has been solved during the

search at the previous sample. In other words, depending on the scenarios visited during

the Fibonacci search for one sample and fixed components ξ`, ξr and ξa, we might still have

to solve the second-stage model for unvisited scenarios during the search at another sample

126



at the same fixed components. As the number of samples increases, it becomes more

likely that this event occurs, especially for larger sets F . We observe in our experiments

that although performing SEPARATION-FIB for each sample n ∈ N can never perform

worse than a full enumeration for each sample, the computational benefits can be further

improved.

We empirically observe that for fixed ξ`, ξr and ξa, the maxima of f(ξf ) can be close to

each other across different samples, if not the same in many instances. This motivates the

following procedure: we perform SEPARATION-FIB for the first sample in the list, then

simply consider scenarios for which the second model has been solved for the remaining

samples, where we return the scenario for which zn(ξ) is greatest. In other words, we are

assuming that for the same fixed components ξ`, ξr and ξa, the maximum always occurs at

the same ξf across the samples. In the next iteration, we call SEPARATION-FIB for the

second sample, and so on. This heuristic to solving (SPn) leads to significant computational

benefits as we see in Section 4.5.2. Note that once no scenarios can be generated, we still

have to perform a final check where we perform SEPARATION-FIB for each sample to

ensure an exact method.

4.4.3 CCG-FIB Algorithm

We formalize and present the final column-and-constraint generation algorithm CCG-FIB

in Algorithm 5. In this context, the set of samples N is interpreted as an array which

can be indexed. We refer to the scenarios at which the second-stage model has been

solved at the current first-stage decision x̂ as Ξ̂, and the process of enumerating them

as LAZY-ENUMERATION
(

Ξ̂, ξ̂n, γ̂n, α̂
)

. In general, this function can return a set of sce-

narios Vn ⊆ Ξ̂ violating (c1), but we limit it to returning at most one sceanrio whose

objective value zn(ξ) is the greatest. Recall that for a sample n, LAZY-ENUMERATION

only considers scenarios that are in Ξ̂ and that are not in the current model (i.e. scenarios in

Sn\Ŝn). We keep track of a boolean final check, which is initialized to False. When

127



False, we perform SEPARATION-FIB for one sample, and LAZY-ENUMERATION for

the remaining samples. Thus, during this phase, we break out of the while-loop (line 9)

at the end of the first iteration and jump to line 13, where we enumerate scenarios Ξ̂, i.e.

scenarios for which the second-stage problem has been solved at the current iteration. We

then increment the sample index i in line 17, where the index loops back to 0 after reaching

the end of the array. This ensures we rotate through the samples for which we fully solve

maxξ zn(ξ). Once no scenarios are generated, final check becomes True (line 22).

During this phase, we perform SEPARATION-FIB for each sample, and reset the sample

index i to 0 in line 19. If no scenarios are generated, we reset final check to False

(line 24) and the algorithm exits the outer while-loop to terminate.

Finally, we note that we have omitted the changes to solving (RER) in Algorithm 5

for ease of exposition, specifically the limit on the number of scenarios generated and

the adjustement of the MIP tolerance of (RER). By definition of SEPARATION-FIB and

LAZY-ENUMERATION, we have that |Vn| = 1, i.e. we generate at most one scenario per

sample, and given a limit on the total number of scenarios that can be generated, we either

exit the inner while-loop (5-11) or the for-loop in lines 13-16 once the number of generated

scenarios hits the limit. Moreover, given an array of MIP tolerances, we decrease the

tolerance when solving (RER) once no scenarios can be generated during the phase where

final check is false. In other words, instead of setting final check to True in

line 22, we decrease the MIP tolerance and restart the process. Once we get to the lowest

(tightest) desired tolerance, we proceed as normal where we enter the final check phase

once no scenarios can be generated during the first phase.

4.5 Computational Experiments

We perform extensive computational experiments to illustrate our method. We perform a

series of experiments on randomly generated networks to test the computational benefits

of our proposed method and perform experiments on a case study of hurricane threats on

128



Algorithm 5 CCG-FIB

1: Initialize Ŝn for each n ∈ N
2: i← 0
3: while ∪n∈NVn 6= ∅ or not final check do
4: Solve (RER) and record optimal solutions (x̂, γ̂, α̂)
5: while i ≤ |N | − 1 do
6: n← Ni
7: Vn ← SEPARATION-FIB(ξ̂n, x̂, γ̂n, α̂)
8: Ŝn ← Ŝn ∪ Vn
9: if not final check then break

10: i← i+ 1
11: end while
12: if not final check then
13: for each n′ ∈ N , n′ 6= n do
14: Vn′ ← LAZY-ENUMERATION

(
Ξ̂, ξ̂n

′
, γ̂n′ , α̂

)
15: Ŝn′ ← Ŝn′ ∪ Vn′
16: end for
17: i← i+ 1 (mod |N |)
18: else
19: i← 0
20: end if
21: if ∪n∈NVn = ∅ & not final check then . Start final check
22: final check← True
23: else if ∪n∈NVn = ∅ & final check then . Algorithm terminates
24: final check← False
25: end if
26: end while

the coastal states of the United States along the Gulf of Mexico and the Atlantic Ocean

presented in [126] and further studied in [36], analyzing the solutions obtained by the

DRO model under the Wasserstein radius and by SAA. All experiments were performed

on compute nodes running Intel Xeon Gold 6226 “Cascade Lake” at 2.7 Ghz. We limit our

resources to 8 GB of RAM and 5 processors. We use GUROBI 9.1.0 as the solver for all

models.

We first give a brief description of the data and other details that are common to the

synthetic instances and the case study. We then discuss how we construct the synthetic

instances and results, before tackling the case study.

129



Table 4.1: Per unit purchase cost, volume, and transportation cost per unit distance of water,
food and medical kits.

Commodity
Unit Purchase Cost

($)
Volume (ft3)

Transportation
Cost ($)

Water (1000 galons) 647.7 144.6 0.3
Food (1000 kits) 5420 83.33 0.04

Medicine Kit (serves 4) 140 1.16 5.8e-4

4.5.1 Data

Commodity data

We consider only one commodity for simplicity, which can be interpreted as a bundle

containing a medical kit, food and water. To calculate the per-unit cost of the bundle, we

take the sum of the cost of each commodity adjusted to the needs of one person. More

specifically, as in [126], we assume the average person needs three meals and two snacks

per day, and one gallon per day. We further assume that a disaster lasts five days. Data

related to water, food, and medical kits from [126] is given in Table 4.1. Thus, 1000 gallons

of water costing $647.7 to purchase and $0.3 per unit of distance to transport translates to

a cost of approximately $3.24 to purchase and $0.0015 to transport per person. Similarly,

meal kits cost $135.5 to purchase and $0.001 per unit of distance to transport per person,

and a medical kit costs $35 to purchase and $1.45e-4 to transport. We then have that a

bundle costs about $173.74 to purchase and $0.0026 per unit of distance to transport.

Facility data

In both the synthetic instances and the case study, we assume we can open one type of

facility of capacity 408,200 ft3 at a cost of $188,400 as in [36] (equivalent to the medium

facility in [126]). Following a similar process as with the costs, a bundle occupies about 3.1

ft3. Thus, we assume the facility has a capacity of about 131,837, and the bundle occupies

a space of one unit.

130



Support Set

The construction of our support set is heavily influenced by the Hurricane Database (HUR-

DAT) provided by the National Oceanic and Atmospheric Administration (NOAA) [133],

which logs the paths and intensities of more than 150 years of hurricanes, as well as by

the constructed scenarios in [126]. A visualization tool of the HURDAT data is available

at https://coast.noaa.gov/hurricanes. Note that although the network of nodes is randomly

generated in the synthetic instances, we assume the shores are to the east and south, rep-

resenting the Atlantic Ocean and the Gulf of Mexico, respectively, so that the following

applies to both the synthetic instances and the case study.

We assume there can only be one landfall node ξ` per scenario, and that landfalls are

close to shore. The landfall determines the remaining affected nodes depending on the

radius of impact and angle (or path) of the hurricane. We define the set of radii as R =

{ξr = 100i, i = 0, 1, . . . , 5} in kilometers and the set of angles as A = {0, −π
4
, −π

2
, π

4
, π

2
}

in radians. Note that depending on the network, the set of nodes hit by a disaster can be the

same for two different radii, leading to the same scenario. We exclude redundant scenarios

from our support.

We observe in the HURDAT data that hurricanes hitting the coastal states of the United

States along the Gulf of Mexico and the Atlantic Ocean tend to take a curved path, generally

starting from the south-east and curving towards the north-east and decreasing in intensity

as the hurricane advances in-land. Thus, given a landfall and radius of impact, we assume

only nodes within the northern half-circle are affected, where the half-circle is rotated by

the angle ξa. For example, if ξ = 0, then the base of the half-circle is horizontal, and nodes

that are north of the base and within the half-circle are affected. A positive angle rotates

the base of the half-circle counter-clockwise and a negative angle rotates it clockwise. In

the example given in Figure 4.1, scenario 1 is obtained with ξa = π
4

and scenario 2 with

ξa = −π
4

. Moreover, we choose functions Πj(ξ`, ξr, ξa, ξf ) = min{ξf , ξ̄fj} for all j, ξ`,

ξr and ξa. Upper bounds ξ̄fj (and thus the functions Πj) are independent of ξr and only

131

https://coast.noaa.gov/hurricanes


depend on ξ` and ξa. Given a landfall and angle, we determine the upper bound ξ̄fj as

follows. We look at all the nodes that can be affected at the maximum radius. If node j is

the ith furthest affected node from the landfall, then ξ̄fj is set to the ith largest value in F ,

or to the smallest value in F if i > |F |. This is to also satisfy the fact that the intensity

of the hurricane decreases as it travels in-land (i.e. the fraction of the population affected

decreases as we move farther away from the landfall) and to satisfy Assumption 1.

Although we do not know the true distribution in practice, we construct a probability

distribution associated with each scenario to simulate and test our methods. We use this

distribution to get the sample set N and simulate the out-of-sample performance. It is

unlikely that the components of our random vector are truly independent, but we assume

independence for simplicity as in [36]. As such, the probability of a scenario (ξ`, ξr, ξa, ξf )

is the product of the probabilities of each component. For the radii, we assume a skew-

normal distribution with the median ofR, standard deviation and -1 as parameter values for

the location, scale and shape, respectively. This is a normal distribution that is slightly left

skewed. For the angles, we assume P [ξa = 0] = 4
15

, P
[
ξa = −π

4

]
= 5

15
, P
[
ξa = −π

2

]
= 3

15
,

P
[
ξa = π

4

]
= 2

15
, P
[
ξa = π

2

]
= 1

15
. The idea is that it is more likely for a hurricane to be

pathing east (negative angles have a higher probability) and more likely to be pathing north

than at a very steep angle (P [ξa = 0] > P
[
ξa = −π

2

]
). We note that these probabilities

were obtained in an ad-hoc manner for illustration purposes based on observations of the

HURDAT data.

Finally, the probability distribution of ξf is determined based on the number of hurri-

canes by category that have hit the coastal states between 1851 and 2004. Hurricanes are

classified in catagories from 1 to 5, with a higher catagory indicating a more major hurri-

cane. These catagories are based on the SAFFIR-SIMPSON scale which is a rating deter-

mined by the hurricane’s wind speeds. For example, Hurricane Katrina was a catagory 5

hurricane which hit the New Orleans area in 2005. According to [126] and [134], the num-

ber of hurricanes that have hit the coastal states between 1851 and 2004 at each catagory

132



from 1 to 5 is 113, 74, 76, 18 and 3, respectively. Given a set F of possible values for ξf ,

we order F in increasing order, assign equal intervals of F to each catagory and assign the

same weight to each value in the interval based on the number of historical hurricanes at

each catagory. For example, if F = {0.1, 0.2, 0.3, . . . , 1}, then ξf ∈ {0.1, . . . , 0.2} would

be considered category 1 hurricanes and each value in the interval is assigned a weight of

113; ξf ∈ [0.21, 0.4] would be category 2 hurricanes and each value is assigned a weight

of 74, and so on. We then normalize so that the probabilities sum to one.

We give details on the probability distribution of ξ`, the landfall node, in the following

sections, as it is different for the synthetic instances and the case study.

4.5.2 Synthetic Instances

Instance Generation

To create the synthetic instances, we randomly generate a set of nodes on a grid by uni-

formly picking x and y coordinates between 0 and 20. To avoid generating nodes that are

too close to each other, we set a minimum threshold such that any two nodes are at least

a Euclidean distance of 2 away from each other. We assume the coast is on the right and

bottom sides of the grid as in the case study, and assume nodes within a threshold distance

of the coast can be a potential landfall node. Figure 4.2 is an example of a randomly gen-

erated network, where yellow nodes are potential landfall nodes, blue nodes are potential

facility nodes, and orange nodes are both. We then generate random populations for each

node, where we sample from a uniform distribution on the interval [1e-5, 2e-6].

Recall that we use a cost of $173.74 to purchase and $0.0026 per unit of distance to

transport a unit of commodity. Thus, we set the per-unit cost of transportation from facility

i to demand node j to be cij = 0.0026 dij , where dij is the `2-norm between node i and j in

our grid. Note that we scale the distances up so that the order of magnitude of the distances

is similar to that of the case study. We do this so that the balance between the first- and

second-stage costs is reasonable and comparable to the case study. We set the fixed-charge

133



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Landfall
Facility
Landfall + Facility

Figure 4.2: Landfall nodes and facilities of a randomly generated network of 30 nodes.

cost to be a multiple of the cost of transportation, so that wij = φcij . In our experiments,

we set φ = 5000 and the penalty for unmet demand U = 10.

Finally, we construct a probability distribution for the landfall nodes that is inversely

proportial to the sum of distances to the closest eastern and southern points, such that the

closer a node is to the coast, the higher the likelihood of it being a landfall.

Experiment Setup

We perform four sets of experiments for different combinations of sample set sizes N and

radii θ of the Wasserstein set, where we run tests for a sample size of 10 and 50, and a

radius of 1e-2 and 1e-3 for the Wasserstein ball. For each set of experiment, we test how

our methods perform as the discretization of F becomes finer, where we pick 15, 30, 50

and 75 equi-distant values between 0.001 and 0.3.

In these sets of experiments, we assume Assumptions 1 and 2 hold, and are thus solving

(4.3.2). In the second stage, we fix the limit on the number of demand nodes that a facility

can serve ki to 3 for all facilities i. We keep the Gurobi parameters to their default values

134



with the exception of the relative MIPGap and Threads parameter. We start with a loose

tolerance of 0.12 for the relative MIP gap to solve (RER) and adjust it to 0.01 as detailed in

Section 4.4.3. We set the limit on the number of scenarios generated per iteration to 5 when

N = 10 and to 10 when N = 50. To reduce the computational resources used, we limit the

number of threads that Gurobi can use to 1 when the tolerance is 0.12, and increase it to 5

when the tolerance is 0.01. Finally, we set a time limit of 8 hours for all experiments.

We randomly generate networks of 30 nodes, where we randomly pick a set I of 15

potential facility locations; every node in the network is a potential demand node. We

compare our method to two classical CCG algorithms, where the separation step is a simple

enumeration process. In one case we stop at the first scenario violating constraint (c1), and

in the other we perform a full enumeration to pick the scenario ξ which maximizes zn(ξ) for

sample n ∈ N . We refer to the former as CCG-ENUM-0 and the latter as CCG-ENUM-

1. Note that both algorithms are the same as CCG-FIB but only differ in the separation

function called in line 7 of CCG-FIB. Thus, for both CCG-ENUM-0 and CCG-ENUM-

1, after performing an enumeration of scenarios for sample n where we are solving the

second-stage problem, we perform LAZY-ENUMERATION for samples n′ 6= n. Moreover,

we are still applying Theorem 8 but do not leverage the structure of the second-stage value

function.

We also define CCG-FIB-0, which is similar to CCG-FIB but with a slight modification

to the call to SEPARATION-FIB. Instead of performing Fibonacci search for each com-

bination of components (ξ`, ξr, ξa), we exit the outer-loop as soon as the Fibonacci search

returns a scenario which violates (c1). Note that we can go a step further and terminate

the separation step as soon as a scenario which violates (c1) is found during the Fibonacci

search, but our experiments showed it is always better to finish the Fibonacci search before

terminating the separation step, as it is relatively cheap to finish running Fibonacci search

and it might lead to a scenario ξ with a greater objective value zn(ξ). The idea behind

CCG-FIB-0 is to get the best of both CCG-ENUM-0 and CCG-FIB, where the separation

135



Table 4.2: Average number of scenarios across randomly generated networks for fixed size
of the set F .

Size of F
Avg. Number of

Scenarios

15 3070
30 6468
50 10020
75 14715

problem is solved fast in the earlier stages of the algorithm, permitting to quickly generate

scenarios, before naturally transitioning to CCG-FIB as the algorithm progresses, avoiding

enumerating close to all scenarios in the later stages as would happen in CCG-ENUM-0.

The performance of our methods depend on the sample set and the order of the samples

in the set. Thus, for each sample set size and discretization of F , we run 10 experiments

where we generate a new random network and a new random set of samples. We provide

the average number of scenarios across generated networks for each discretization of F

after removing redundant scenarios in Table 4.2.

For all experiments and computed metrics, we only consider runs where all methods

terminated within the time limit. For N = 50 and θ = 0.001, one run did not terminate for

|F | = 50 and two runs did not terminate for |F | = 75 for all four methods. These were the

same three runs for all methods. This is due to the solver stalling when solving (RER) in

certain iterations. Such stalls can be circumvented by further adjusting the MIP tolerances

or increasing the number of threads available to Gurobi. For N = 50 and θ = 0.01,

CCG-ENUM-0 did not terminate in one of the runs.

Results

In Figure 4.3, we plot the average runtimes over the 10 runs as a function of the size of

F for each sample set size N and radius of the Wasserstein ball θ. The upper and lower

limits of the ribbon are one standard deviation from the average. In general, we observe

136



that the runtimes are faster for the smaller radius. For N = 10, CCG-FIB significantly

outperforms CCG-ENUM-0 and CCG-ENUM-1, with CCG-FIB-0 being a close second.

We note, however, that CCG-FIB-0 has a greater standard deviation of runtimes than CCG-

FIB, suggesting the latter is a more stable method. For θ = 0.001, CCG-FIB is about 39%

to 40% faster on average than both CCG-ENUM-0 and CCG-ENUM-1 when |F | = 15,

and is about 69% faster on average when |F | = 75. Similarly, for θ = 0.01, CCG-FIB

is about 27% faster than CCG-ENUM-1 and 52% faster than CCG-ENUM-0 on average

when |F | = 15, and is about 66% faster than CCG-ENUM-1 and 65% faster on average

than CCG-ENUM-0 when |F | = 75. For N = 50, the gap between the methods is not

as pronounced, but CCG-FIB still outperforms the other three. The two best performing

methods are CCG-FIB and CCG-ENUM-1. For |F | = 75, on average, CCG-FIB is about

11% faster than CCG-ENUM-1 when θ = 0.001, and about 21% faster when θ = 0.01. In

general, we observe that the benefit of using CCG-FIB increases as the size of |F | increases,

which is expected as the number of scenarios enumerated is logarithmic in the size of F

for CCG-FIB but linear for CCG-ENUM-0 and CCG-ENUM-1.

As we increase the size of the sample set, solving (RER) becomes harder, and a larger

portion of time is spent solving (RER) and smaller portion solving the separation step.

This explains why the difference between CCG-FIB and CCG-ENUM-1 is not as large

when N = 50, and why CCG-ENUM-0 and CCG-FIB-0 start to fall behind. For the latter,

the separation step is solved fast (at least in the earlier stages), but (RER) is solved much

more often, increasing runtime.

To better understand the behavior of the four methods, we record the number of second-

stage problems solved during the separation step and the time spent in the separation step,

where we aggregate the values across all iterations and the 10 runs to get a distribution for

both metrics. We fix θ = 0.01, and plot the cumulative distribution (CDF) of the time spent

in the separation step in Figure 4.4 and of the number of second-stage solves in Figure 4.5.

When comparing CCG-FIB to CCG-ENUM-1, the number of second-stage solves in

137



the separation problem is significantly less for the former. We see that in over 80% of the

iterations, the number of second-stage problems solved is over 50% less in CCG-FIB than

in CCG-ENUM-1 when |F | = 15. When |F | = 75, the gap is much more significant,

with CCG-FIB consistently solving fewer than 2500 second-stage problems in over 80%

of the iterations, compared to CCG-ENUM-1 ranging between 7500 and over 15000. The

increase in the number of second-stage solves during CCG-FIB occurs in the final phase

(i.e. when final check is set to True, and SEPARATION-FIB is applied to every

sample). For |F | = 75, we see that the number of second-stage solves in CCG-FIB grad-

ually increases from about 2500 to 10000 for N = 10, and from about 2500 to 14000 for

N = 50. As discussed in Section 4.4.2, while SEPARATION-FIB does lead to signifi-

cantly fewer second-stage solves for one sample, we might end up visiting new scenarios

for which we have to compute the second-stage problem if applied to all samples. Our

experiments confirm our intuition that for larger sample sets, this is more likely to happen.

Indeed, the maximum number of second-stage solves in CCG-FIB jumps from about 10000

to 14000 when increasing the sample size from 10 to 50.

As expected, the CDF for both metrics are very similar. We note that the CDFs for

CCG-FIB-0 are always upper-bounded by the CDFs for CCG-FIB, where they start very

close to CCG-ENUM-0 and get close to CCG-FIB. This is in line with our idea behind

CCG-FIB-0. However, as seen in Figure 4.3, the increase in the number of times (RER) is

solved does not justify it. This analysis also permits us to see how long CCG-FIB spends

in the final phase (i.e. final check = True). Figures 4.5 and 4.4 show that fewer than

20% of iterations are in the final phase when looking at all iterations across the 10 runs.

4.5.3 Case Study: Hurricane Threats in the Gulf of Mexico States

We now turn our focus to the case study of hurricanes threats on the coastal states of the

United States first presented in [126]. We plot the network and the potential landfall nodes

in Figure 4.6. A list of the cities corresponding to each node is given in Table B.1. We

138



20 30 40 50 60 70
|F|

0

1000

2000

3000

4000

5000

Ru
nt

im
e 

(s
ec

)

CCG-FIB-0
CCG-FIB
CCG-ENUM-0
CCG-ENUM-1

(a) N = 10, θ = 0.001

20 30 40 50 60 70
|F|

0

1000

2000

3000

4000

5000

6000

7000

Ru
nt

im
e 

(s
ec

)

CCG-FIB-0
CCG-FIB
CCG-ENUM-0
CCG-ENUM-1

(b) N = 10, θ = 0.01

20 30 40 50 60 70
|F|

2000

0

2000

4000

6000

8000

10000

12000

Ru
nt

im
e 

(s
ec

)

CCG-FIB-0
CCG-FIB
CCG-ENUM-0
CCG-ENUM-1

(c) N = 50, θ = 0.001

20 30 40 50 60 70
|F|

0

5000

10000

15000

20000

Ru
nt

im
e 

(s
ec

)

CCG-FIB-0
CCG-FIB
CCG-ENUM-0
CCG-ENUM-1

(d) N = 50, θ = 0.01

Figure 4.3: Average runtimes of CCG-FIB, CCG-FIB-0, CCG-ENUM-0, and CCG-
ENUM-1, for various sample set sizesN and Wasserstein radii θ over 10 runs, with ribbons
spanning two standard deviations.

assume all nodes are potential facility locations and potential demand nodes. In this section,

we analyze the solutions obtained from DRO for various radii levels, and from SAA (when

θ = 0). We solve problem (4.2.1), in which case Assumption 2 no longer holds. Recall

that in this version of the model, we are opening facilities and pre-allocating resources in

the first stage. We use CCG-FIB to solve all models, where we set the MIP tolerance to

0.12 and adjust it to 1e-3 as described in Section 4.4.3. As mentioned in section 4.3.3, once

CCG-FIB terminates, we run one iteration of CCG-ENUM-1 to ensure an exact method. In

almost all runs, CCG-ENUM-1 terminates in one iteration and does not generate additional

scenarios, suggesting CCG-FIB has a strong computational performance as a heuristic even

139



0.0 0.2 0.4 0.6 0.8 1.0
Probability

0

20

40

60

80

100

120

140

Se
pa

ra
tio

n 
Ru

nt
im

e 
(s

ec
)

CCG-FIB-0
CCG-FIB
CCG-ENUM-0
CCG-ENUM-1

(a) N = 10, |F | = 15

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0

100

200

300

400

500

600

700

Se
pa

ra
tio

n 
Ru

nt
im

e 
(s

ec
)

CCG-FIB-0
CCG-FIB
CCG-ENUM-0
CCG-ENUM-1

(b) N = 10, |F | = 75

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0

20

40

60

80

100

120

140

Se
pa

ra
tio

n 
Ru

nt
im

e 
(s

ec
)

CCG-FIB-0
CCG-FIB
CCG-ENUM-0
CCG-ENUM-1

(c) N = 50, |F | = 15

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0

200

400

600

800

Se
pa

ra
tio

n 
Ru

nt
im

e 
(s

ec
)

CCG-FIB-0
CCG-FIB
CCG-ENUM-0
CCG-ENUM-1

(d) N = 50, |F | = 75

Figure 4.4: Cumulative distribution of runtimes in the separation step of each method, for
sample set sizes 15 and 50, and for two discretizations of F , where |F | = 15 and |F | = 75.

if Assumption 2 does not hold.

As in the synthetic instances, we use the data and support set described in Sections

4.5.1, 4.5.1 and 4.5.1, and fix |F | = 50 where we pick 50 equi-distant values between

0.001 and 0.3. We assume a similar cost structure for transportation costs, where the per-

unit cost of transportation from facility i to demand node j is cij = 0.0026 dij , where dij is

the haversine distance between nodes i and j. We set the fixed-charge cost to be wij = φcij

where φ = 5000. Moreover, we construct a probability distribution for the landfall nodes

by using the frequency of hurricanes by region recorded in [126] and [134].

140



0.0 0.2 0.4 0.6 0.8 1.0
Probability

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f S
ec

on
d 

St
ag

e 
So

lv
es

CCG-FIB-0
CCG-FIB
CCG-ENUM-0
CCG-ENUM-1

(a) N = 10, |F | = 15

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0

2500

5000

7500

10000

12500

15000

17500

Nu
m

be
r o

f S
ec

on
d 

St
ag

e 
So

lv
es

CCG-FIB-0
CCG-FIB
CCG-ENUM-0
CCG-ENUM-1

(b) N = 10, |F | = 75

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f S
ec

on
d 

St
ag

e 
So

lv
es

CCG-FIB-0
CCG-FIB
CCG-ENUM-0
CCG-ENUM-1

(c) N = 50, |F | = 15

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0

2500

5000

7500

10000

12500

15000

17500

Nu
m

be
r o

f S
ec

on
d 

St
ag

e 
So

lv
es

CCG-FIB-0
CCG-FIB
CCG-ENUM-0
CCG-ENUM-1

(d) N = 50, |F | = 75

Figure 4.5: Cumulative distribution of number of second-stage solves during the separation
step, for sample set sizes 15 and 50, and for two discretizations of F , where |F | = 15 and
|F | = 75.

Results

We test the out-of-sample performance of our DRO model for various Wasserstein radii

and penalty parameters U . As the radius of the Wasserstein ball increases, we are more

risk averse, leading to higher costs in the first stage as we increase the number of facilities

open and the amount of resources pre-allocated with the hope of satisfying more demand

in more scenarios. As such, there is a natural trade-off between the first-stage costs and the

penalty incurred for unsatisfied demand U . We analyze the out-of-sample performance of

DRO for U ∈ {5, 10, 100}. We run tests for N ∈ {10, 50}, and for radii θ ∈ {1e-5, 5e-5,

141



0

1

2

3

4

5
6

78

9 10
11
12

13 14

15

16

17 18

19

20

21
22

23 24 25

26
27

28

29

Landfall

Figure 4.6: Map of the network with potential landfall nodes colored in yellow.

1e-4, 5e-4, 1e-3, 5e-3, 0.01, 0.05, 0.1}.

Note on radius selection. Picking a good radius for the Wasserstein ambiguity set is not

straight forward and is the subject of research in the literature. Although there exists some

theoretical radii which give probabilistic guarantees on the out-of-sample performance (see

[18] and Section 3.2.1 in Chapter 3), such radii tend to be too large in practice and depend

on constants which might be difficult to compute. In practice, the radius selection can be

done in an ad-hoc manner through trial and error, or through k-fold cross-validation [18].

Given that we are dealing with very small sets of samples, cross-validation might be ill-

suited. To this end, we choose a wide range of radii spanning a few orders of magnitudes

for simplicity to illustrate our DRO model.

For each set of experiment, we generate N samples using the constructed probability

distribution, solve the DRO model (4.2.1) with a Wasserstein radius of θ, and record optimal

solutions (oθ, zθ). We then solve Q(oθ, zθ, ξ) for all ξ ∈ S and compute

E
[
Q(oθ, zθ, ξ)

]
=
∑
s∈S

psQ(oθ, zθ, ξs),

where {ps}s∈S is the true, constructed, underlying distribution. We repeat this process 20

times for different sets of samples. We define the out-of-sample cost of run i ∈ {1, . . . , 20}

142



for radius θ as viθ =
∑

i∈I
[
hio

θ
i + gzθi

]
+ E

[
Q(oθ, zθ, ξ)

]
, where vi0 corresponds to the

out-of-sample cost of SAA. For each run i, we record the non-zero Wasserstein radius

which leads to the lowest out-of-sample cost as θ∗ 6= 0. In Figures 4.7a and 4.7c, we plot

the improvement of DRO over SAA in the total out-of-sample cost at θ∗, i.e. we plot 1− vi
θ∗
vi0

for all values of U . In Figures 4.7b and 4.7d, we plot the relative decrease in the average

unsatisfied demand when using DRO over SAA. The average unmet demand for a fixed

first-stage solution is defined as
∑

s∈S psu
s∗, where us∗ is the unmet demand resulting

from solving Q(oθ, zθ, ξs).

For N = 10, the relative improvement in total cost increases as U increases. For

U = 5, the improvement over SAA is close to 0 for many runs, with a few runs sitting

between about 1.4% and 8% and achieves up to 10% decrease in total cost. The average

improvement over the runs is about 2%. For U = 10, DRO performs worse than SAA

in run 2 with a 3.5% increase in total out-of-sample cost, but outperforms SAA otherwise,

with decreases in out-of-sample cost of up to about 24%, with many runs achieving over 4%

decrease. The average over the improvements is about 5%. Finally, as we increaseU to 100,

the decrease in the out-of-sample cost becomes significant, achieving over 80% decrease in

one of the runs and an average decrease of 23% over all runs. We observe that even when

there is no or very little improvement in the out-of-sample cost, DRO consistently satisfies

more demand than SAA for all U . For example, for U = 10, DRO satisfies up to 66% more

demand, with an average of over 16%.

The results tell a different story for N = 50. DRO achieves a decrease in out-of-sample

cost of about 3% and 5% in two runs when U = 10 and up to 2.5% when U = 5, but the

change is close to 0% in most runs. For U = 100, we observe that DRO achieves similar

or lower costs than SAA, with up to 8% decrease, but achieves a higher cost in a few runs,

up to a 3.6% in total cost. Increasing the penalty parameter U has two potential outcomes:

1) If SAA has a high rate of unmet demand, then DRO has more potential to lead to a

decrease in total out-of-sample cost, where a higher value of U means the decrease in the

143



1 2 3 4 5 6 7 8 9 1011121314151617181920
Run #

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e 

De
cr

ea
se

 in
 T

ot
al

 C
os

t (
vs

 S
AA

)

U = 5
U = 10
U = 100

(a) Total Cost Improvement for
N = 10

1 2 3 4 5 6 7 8 9 1011121314151617181920
Run #

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

De
cr

ea
se

 in
 U

ns
at

isf
ie

d 
De

m
an

d 
(v

s S
AA

)

U = 5
U = 10
U = 100

(b) Decrease in Unsatisfied Demand for
N = 10

1 2 3 4 5 6 7 8 9 1011121314151617181920
Run #

0.04

0.02

0.00

0.02

0.04

0.06

0.08

Re
la

tiv
e 

De
cr

ea
se

 in
 T

ot
al

 C
os

t (
vs

 S
AA

)

U = 5
U = 10
U = 100

(c) Total Cost Improvement for
N = 50

1 2 3 4 5 6 7 8 9 1011121314151617181920
Run #

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e 

De
cr

ea
se

 in
 U

ns
at

isf
ie

d 
De

m
an

d 
(v

s S
AA

)

U = 5
U = 10
U = 100

(d) Decrease in Unsatisfied Demand for
N = 50

Figure 4.7: Relative improvement of DRO over SAA in total out-of-sample cost and unsat-
isfied demand at θ∗.

second-stage costs outweights the increase in the first stage; 2) If the sample set contains

one or a few scenarios with a high demand, a very high penalty forces SAA to open many

facilities and pre-allocate a very large quantity of resources at each facility, leading to an

already high cost solution and low unsatisfied demand on average across all scenarios. In

the second case, there is less opportunity for DRO to decrease the second-stage cost and

make up for any increase in the first-stage cost. We note that the second case is more likely

to happen for larger N while the first case is more likely for smaller N as seen in the set of

experiments for N = 10.

144



For N = 50 and U = 100, for run 6, the SAA solution opens 16 facilities and fills

almost all of them to full capacity, and the average unsatisfied demand is about 91 units.

At θ = 1e-5, DRO pre-allocates an additional 46,882 units across facilities with remaining

capacity, and at θ = 5e-5, DRO opens a new facility and pre-allocates an additional 73,672

units compared to θ = 1e-5 (or about 120,555 more units compared to SAA). This leads to

a significant increase in the first-stage cost, with little benefits (on average) in the second

stage. For θ = 1e-5 and θ = 5e-5, the average unmet demand is close to 80 and 64,

respectively. We observe that for a high value of U , increasing the Wasserstein radius leads

to more drastic changes in the solution. For runs 15 and 16, SAA open 5 facilities filling

them to almost full capacity. Increasing the radius to θ = 1e-5 leads to an additional opened

facility, and all six facilities at almost full capacity. This suggests that for high values of U ,

smaller incrememnts in the Wasserstein radius could yield more useful solutions. Indeed,

in Figure 4.8, we can see how the average unmet demand, averaged across the 20 runs,

quickly reaches 0 for higher values of U as we increase θ. Regardless, it seems solutions are

more unstable as evidenced by the runs where SAA opens over 10 facilities and allocating

resources to almost full capacity everywhere. One can also circumvent such solutions by

applying a budget on the number of facilities or first-stage cost in the set B in the first stage

(see model 4.2.1).

Although the improvement of DRO over SAA in total out-of-sample cost is not signifi-

cant for N = 50, we see that DRO satisfies significantly more demand in the second stage

across all runs and all values of U as seen in Figure 4.7d, similar to the sets of experiments

forN = 10. DRO satisfies up to 30% more demand when U = 5, up to 38% when U = 10,

and up to 60% when U = 100.

Finally, we report the first-stage solutions obtained for one run when N = 10 and

N = 50 in tables 4.3 and 4.4, respectively, to illustrate how solutions might evolve as the

radius of the Wasserstein ball increases. We can see how the model opens more facilities

and pre-allocate more resources as the radius increases, as expected. For N = 10, the

145



0.00 0.02 0.04 0.06 0.08 0.10
Wasserstein Radius

0

5000

10000

15000

20000

25000

30000

De
m

an
d 

Vi
ol

at
io

n

U = 5
U = 10
U = 100

(a) N = 10

0.00 0.02 0.04 0.06 0.08 0.10
Wasserstein Radius

0

5000

10000

15000

20000

25000

De
m

an
d 

Vi
ol

at
io

n

U = 5
U = 10
U = 100

(b) N = 50

Figure 4.8: Average unsatisfied demand as a function of the radius of the Wasserstein ball
θ for N = 10 and N = 50, averaged across all runs.

model initially only opens one facility in Biloxi at θ = 0 and one in Mobile at θ = 1e-5,

hedging against disasters in the Louisianna area, before opening a facility in Jacksonville

when θ = 5e-5 and Savannah when θ = 5e-4. For N = 50, the model covers similar areas

for all θ, but mostly just increases the amount pre-allocated at the facilities and opens new

facilities in the same area.

We note that in practice, θ∗ is of course unknown. However, it is generally the case

in our experiments that smaller changes in the radius and in the solution of SAA lead to

better out-of-sample cost. As we increase the radius, once there is a drastic jump in the

first-stage cost caused by a large amount of additional resources pre-allocated or additional

facilities opened, the out-of-sample cost tends to get worse (depending on U ), as the first-

stage costs incurred outweigh the decrease in the second-stage costs. The radius of the

Wasserstein ball provides a convenient lever of risk aversness to decision-makers to control

the trade-off between first-stage costs and potential second-stage costs.

4.6 Conclusions

The lack of available data in natural disaster management applications can potentially lead

to optimistic solutions and poor out-of-sample performance when using classical stochas-

146



Table 4.3: First-stage solutions of run 20, showing the amount of pre-allocated resources at
each open facility (facilities with 0 pre-allocated resources are closed), where N = 10 and
U = 10 for various Wasserstein radii θ.

PPPPPPPPPFacility
θ 0 1e-05 5e-05 1e-4 5e-4 1e-3 5e-3 0.01

4 0 0 0 0 0 0 131837 131837
10 0 0 0 0 0 0 0 131837
12 0 0 91926 91926 91926 91926 131837 0
13 91926 0 0 0 0 0 0 0
14 0 131837 0 0 0 0 0 0
22 0 0 0 0 63543 0 0 0
25 0 0 63543 63543 0 63543 125521 125499

Table 4.4: First-stage solutions of run 20, showing the amount of pre-allocated resources at
each open facility (facilities with 0 pre-allocated resources are closed), where N = 50 and
U = 10 for various Wasserstein radii θ.

PPPPPPPPPFacility
θ 0 1e-05 5e-05 1e-4 5e-4 1e-3 5e-3 0.01

10 0 0 0 0 0 0 100942 125923
11 69438 89299 89299 0 71327 71327 0 0
13 0 0 0 90491 0 0 0 0
23 0 0 0 0 127448 127448 47420 0
24 0 0 0 0 0 0 94128 78615
25 91345 92536 92536 91345 0 0 0 88031

147



tic programming methods such as the Sample Average Approximation. In this chapter, we

tackle a two-stage distributionally robust optimization model under the Wasserstein am-

biguity set, where the first stage is a facility location problem, where we decide facility

locations and how much resources to pre-allocate, and where the second stage is a fixed-

charge transportation problem. We develop an efficient column-and-constraint generation

algorithm, where we leverage the structure of our support set and second-stage value func-

tion to efficiently solve the separation problem. Specifically, we show conditions under

which the second-stage value function is concave with respect to the demand component of

our random vector and show how our results extend to the case where the second stage is a

fixed-charge network flow problem. We also provide guidance on numerical improvements

which can significantly impact computational efficiency. Finally, we conduct extensive

computational experiments on synthetic instances, showing strong computational perfor-

mance compared to (mostly) classical column-and-constraint generation algorithms where

we are able to solve instances with a very large set of scenarios, and analyze the solutions

obtained from our DRO model on a case study of hurricane threats on the coastal states

of the United States. We show that our DRO model achieves lower out-of-sample costs

than SAA in many instances, and consistently satisfies significantly more demand after a

disaster occurs, even when the out-of-sample costs are comparable.

148



CHAPTER 5

CONCLUSIONS

It is becoming increasingly important to understand and leverage available data in decision-

making problems. With the ubiquity of uncertainty, assuming a deterministic model is

likely to lead to arbitrarily poor solutions. Although stochastic optimization comes with

a computational cost, the ability to model uncertainty in the decision-making process has

proven invaluable in applications across a wide variety of fields, such as in logistics and

supply chain, healthcare, finance, or power systems.

The second chapter of this thesis studies a closely related method to the Benders de-

composition algorithm often used in two-stage stochastic proramming. More specifically,

we address privacy concerns and decentralized storage of data in Dantzig-Wolfe decompo-

sition, i.e. the dual of Benders. We present a consensus-based solution based on applying

ADMM to the dual of the master problem at each iteration, thus preserving privacy of in-

formation and leading to a fully distributed method. We show that we can easily recover

high-quality primal solutions, and provide bounds on the optimality gap and feasibility vi-

olation. We illustrate our methods on synthetic instances and cutting stock problems from

the literature. Although our goal is to address privacy concerns and decentralized storage of

data, our experiments show that the computational price to handle such issues is negligible.

The greater portion of this thesis tackles two-stage stochastic programming in the pres-

ence of limited data, where we switch to a distributionally robust optimization (DRO)

paradigm under the Wasserstein ambiguity set. We first handle two-stage DRO with zero-

one uncertainties where both stages are allowed to be convex conic programs. We are

interested in applications where zero-one random variables represent failures in the sys-

tem which are rare but have a high impact. We provide reformulations based on bilinear

programming and penalty methods, which we then approximate using lift-and-project tech-

149



niques, and provide means to efficiently solve the resulting approximations. We demon-

strate the effectiveness of our method on the optimal power flow problem and a multi-

commodity network design problem, where we compare the out-of-sample performance of

our approximations of the two-stage DRO to SAA and robust optimization, and perform

sensitivity analysis on the rarity of failure occurences and the impact of the failures, where

we vary the probability of failure and the penalty of violating constraints in the second

stage (i.e. unsatisfied demand), respectively.

In Chapter 4, we study a two-stage DRO model under the Wasserstein set where bi-

nary variables are present in both stages. The presence of binary variables in the second

stage significantly complicates the solution of the model, where traditional techniques can

only be applied as a relaxation. We are specifically focused on a disaster relief application,

where the first stage is a facility location problem, opening facilities and pre-allocating re-

sources before observing a disaster, and the second stage is a fixed-charge transportation

problem, routing the resources to affected areas after observing the disaster. We first con-

struct a finite support set that is tailored to disaster management applications, leading to a

result that the optimal cost of the second-stage problem is concave with respect to a subset

of the uncertainty, namely the demand component which tends to have the highest cardinal-

ity. We then develop a column-and-constraint generation algorithm, where we are able to

efficiently generate new scenarios via a line search scheme. We show our results extend to

the case where the second stage is a fixed-charge network flow problem. We show that our

proposed method provides a significant computational speedup, and illustrate the benefits

of considering a DRO model under the Wasserstein set over SAA.

A drawback of using the Wasserstein ambiguity set is the selection of the radius of the

ball, θ. While our selection was somewhat guided by theory in Chapter 3, it is generally

not straightforward to determine what constitutes a good radius in practice. While cross-

validation might be a good solution as described in chapters 3 and 4, it is unclear how

well it would perform for small sample sizes, which is the original motivation of using

150



DRO. In Chapter 4, we observe, however, that one can examine the resulting solutions for

various radii levels to determine a solution which makes sense for the application. Indeed,

using DRO under the Wasserstein ambiguity set provides decision-makers with a control

over risk-aversness, permitting them to compare various solutions. This is often desired in

practice.

While radius selection, finite sample guarantees, and methodologies to efficiently solve

distributionally robust problems are the subject of many papers in the literature, a relatively

less explored area is the effect of the underlying distance metric of the support set on

the out-of-sample performance when using a Wasserstein set. While we make note of a

potential benefit from a modeling perspective in Chapter 4, the benefit on the out-of-sample

performance of using a distance metric that is tailored to the application is unclear. For

example, there exist more sophisticated distances defined on graphs which can potentially

be used as the underlying metric of the support set.

Finally, we note that many two-stage network optimization problems exhibit a special

structure with respect to the first-stage decision or random vector. For example, under cer-

tain conditions, the fixed-charge transportation problem from Chapter 4 is supermodular

with respect to the binary decision vector of opening facilities. Submodularity and super-

modularity can potentially lead to algorithmic improvements in solving the master problem,

or the development of a cutting plane procedure using submodular cuts, for example.

151



Appendices

152



APPENDIX A

DATA-DRIVEN TWO-STAGE CONIC OPTIMIZATION WITH RARE

HIGH-IMPACT ZERO-ONE UNCERTAINTIES

A.1 Benders Decomposition

The central idea in Benders decomposition is to solve the convex hull reformulation (3.3.3)

by iteratively refining an inner approximation of the value function Zi(x, α), for each i ∈

[N ]. We generically write the latter as Zi(x, α) = maxz∈Zi γ(x, α)>z. Recall that the

latter optimization problem can be formulated as an MICP, in one of two equivalent forms,

by using the linearized reformulation (see Section 3.3.1) or the penalty reformulation (see

Section 3.3.2). To present the Benders decomposition algorithm, we re-write (3.3.3) as a

semi-infinite program:

min
x∈X, α≥0

c(x) + αθ +
1

N

N∑
i=1

σi

s.t. σi ≥ γ(x, α)>z, ∀z ∈ Zi, i ∈ [N ].

Observe that, in both cases where an MICP representation is possible, γ(x, α) is compo-

nentwise convex and Zi ⊆ Rn
+; therefore, each of the semi-infinite constraints in the above

problem defines a convex feasible region (in x, α and σ). We present the algorithm next.

1. Initialize Ẑi = ∅, for each i ∈ [N ].

2. Solve the master problem:

min
x∈X, α≥0, σ∈RN

c(x) + αθ +
1

N

N∑
i=1

σi

s.t. σi ≥ max
{
Q(x, ξ̂i),γ(x, α)>z

}
, ∀z ∈ Ẑi, i ∈ [N ].

(A.1.1)

153



Let (x?, α?,σ?) denote an optimal solution.

3. For each i ∈ [N ], solve:

maximize
z∈Zi

γ(x?, α?)>z (A.1.2)

Let z?,i denote an optimal solution.

4. For each i ∈ [N ], if γ(x?, α?)>z?,i > σ?i , add z?,i to Ẑi.

If Ẑi was not updated for any i ∈ [N ], stop. Otherwise, go to Step 2.

Note that the subproblem (A.1.2) can be solved as an MICP by using either the McCormick

linearization or the penalty-based formulation from Section 3.3.

A.2 Proofs

Proof. Proof of Theorem 5. Under the stated assumptions of (A1) complete and (A2) suf-

ficiently expensive recourse, strong duality holds between Q(x, ξ) and its dual Qd(x, ξ).

Along with the fact that d(ξ, ξ̂(i)) =
∥∥∥ξ − ξ̂(i)

∥∥∥ is induced by a norm, the result from

Lemma 4 allows us to equivalently reformulate the distributionally robust two-stage prob-

lem (3.2.1) in the form (3.3.3), where

Zi(x, α) = sup
ξ∈Ξ

{
Qd(x, α)− α

∥∥∥ξ − ξ̂i∥∥∥} .
By substituting the expression for Qd(x, ξ) from (3.3.1) and introducing the epigraphical

variable τ , we obtain

Zi(x, α) = max
ξ∈Ξ,λ∈RL+,τ∈R+

[T (x)ξ + h(x)]> λ− ατ :

∥∥∥ξ − ξ̂i∥∥∥ ≤ τ,

q(ξ)−W (ξ)>λ ∈ Y∗

 .

Next, we (i) use the affinity of q andW : q(ξ) = q0+Qξ andW (ξ) = W0+
∑

j∈[M ] ξjWj ,

(ii) linearize the products λξ> by setting them equal to (the new variable) Λ, and (iii) use

154



the definition of the norm cone CM+1 =
{

(ξ, τ) ∈ RM × R : ‖ξ‖ ≤ τ
}

to obtain

Zi(x, α) = max
(ξ,λ,Λ,τ)∈Zi

{
〈T (x),Λ〉+ h(x)>λ− ατ

}
,

where Zi is defined in (3.3.4b). The objective function of this maximization problem is

linear in its decision variables. Therefore, we can equivalently replace the feasible region

with the closure of its convex hull to obtain the stated reformulation.

Proof. Proof of Proposition 4. Observe that Q(x, ξr) ≥ Q(x, ξ) for all ξ ∈ Ξ and all

x ∈ X . Indeed, the objective function of the problem on the left-hand side is greater than

that on the right-hand side: (q0 +Qξr)>y ≥ (q0 +Qξ)>y for all y ∈ Y ⊆ RN2
+ . Also,

the feasible region of the problem on the left-hand side is a superset of the one on the right:

W0y ≥ T0ξ
r + h(x) ≥ T0ξ + h(x). Therefore, ξr is a worst-case realization of the

parameters independent of the first-stage decision x ∈ X .

155



APPENDIX B

BINARY DISTRIBUTIONALLY ROBUST OPTIMIZATION UNDER THE

WASSERSTEIN SET: A DISASTER RELIEF APPLICATION

Table B.1: List of cities corresponding to nodes in Figure 4.6 (from [126]).

0 Brownsville, TX 15 Birmingham
1 Corpus Christi, TX 16 Nashville
2 San Antonio, TX 17 Atlanta, GA
3 Dallas Ft. Worth, TX 18 Columbia, SC
4 Houston, TX 19 Charlotte, NC
5 Little Rock, AR 20 Wilmington, NC
6 Memphis, TN 21 Charleston, SC
7 Jackson, MS 22 Savannah, GA
8 Monroe, LA 23 Tallahassee, FL
9 Lake Charles, LA 24 Int. I10 & I75, FL
10 Baton Rouge, LA 25 Jacksonville, FL
11 Int. I10 & I55, LA 26 Orlando, FL
12 New Orleans, LA 27 Tampa, FL
13 Biloxi, MS 28 Miami, FL
14 Mobile, AL 29 Key West, FL

156



REFERENCES

[1] M. E. Tonbari and S. Ahmed, “Consensus-based dantzig-wolfe decomposition”,
arXiv preprint arXiv:1905.03309, 2021.

[2] A. Subramanyam, M. E. Tonbari, and K. Kim, “Data-driven two-stage conic opti-
mization with rare high-impact zero-one uncertainties”, arXiv preprint
arXiv:2001.04934, 2020.

[3] J. F. Benders, “Partitioning procedures for solving mixed-variables programming
problems”, Numerische mathematik, vol. 4, no. 1, pp. 238–252, 1962.

[4] C. C. Carøe and R. Schultz, “Dual decomposition in stochastic integer program-
ming”, Operations Research Letters, vol. 24, no. 1-2, pp. 37–45, 1999.

[5] R. T. Rockafellar and R. J.-B. Wets, “Scenarios and policy aggregation in opti-
mization under uncertainty”, Mathematics of operations research, vol. 16, no. 1,
pp. 119–147, 1991.

[6] G. B. Dantzig and P. Wolfe, “The decomposition algorithm for linear programs”,
Econometrica: Journal of the Econometric Society, pp. 767–778, 1961.

[7] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs”, Oper-
ations Research, vol. 8, no. 1, pp. 101–111, 1960.

[8] B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser, and A. Shapiro, “The sample
average approximation method applied to stochastic routing problems: A compu-
tational study”, Computational Optimization and Applications, vol. 24, no. 2-3,
pp. 289–333, 2003.

[9] A. J. Kleywegt, A. Shapiro, and T. Homem-de-Mello, “The sample average ap-
proximation method for stochastic discrete optimization”, SIAM Journal on Opti-
mization, vol. 12, no. 2, pp. 479–502, 2002.

[10] D. Bertsimas, V. Gupta, and N. Kallus, “Robust sample average approximation”,
Mathematical Programming, vol. 171, no. 1, pp. 217–282, 2018.

[11] A. Ben-Tal and A. Nemirovski, “Robust optimization–methodology and applica-
tions”, Mathematical programming, vol. 92, no. 3, pp. 453–480, 2002.

[12] A. Shapiro, “Tutorial on risk neutral, distributionally robust and risk averse multi-
stage stochastic programming”, Available at Optimization Online, 2018.

157



[13] H. Rahimian and S. Mehrotra, “Distributionally robust optimization: A review”,
arXiv preprint arXiv:1908.05659, 2019.

[14] Z. Chen, M. Sim, and H. Xu, “Distributionally robust optimization with infinitely
constrained ambiguity sets”, Operations Research, vol. 67, no. 5, pp. 1328–1344,
2019.

[15] W. Wiesemann, D. Kuhn, and M. Sim, “Distributionally robust convex optimiza-
tion”, Operations Research, vol. 62, no. 6, pp. 1358–1376, 2014.

[16] X. Yu and S. Shen, “Multistage distributionally robust mixed-integer programming
with decision-dependent moment-based ambiguity sets”, Mathematical Program-
ming, pp. 1–40, 2020.

[17] E. Delage and Y. Ye, “Distributionally robust optimization under moment uncer-
tainty with application to data-driven problems”, Operations research, vol. 58,
no. 3, pp. 595–612, 2010.

[18] P. M. Esfahani and D. Kuhn, “Data-driven distributionally robust optimization us-
ing the wasserstein metric: Performance guarantees and tractable reformulations”,
Mathematical Programming, vol. 171, no. 1-2, pp. 115–166, 2018.

[19] A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen,
“Robust solutions of optimization problems affected by uncertain probabilities”,
Management Science, vol. 59, no. 2, pp. 341–357, 2013.

[20] D. Love and G. Bayraksan, “Phi-divergence constrained ambiguous stochastic pro-
grams for data-driven optimization”, Technical report, Department of Integrated
Systems Engineering, The Ohio State University, Columbus, Ohio, 2015.

[21] G. C. Calafiore, “Ambiguous risk measures and optimal robust portfolios”, SIAM
Journal on Optimization, vol. 18, no. 3, pp. 853–877, 2007.

[22] B. Kocuk, “Conic reformulations for kullback-leibler divergence constrained distri-
butionally robust optimization and applications”, arXiv preprint arXiv:2007.05966,
2020.

[23] R. Gao and A. J. Kleywegt, “Distributionally robust stochastic optimization with
wasserstein distance”, arXiv preprint arXiv:1604.02199, 2016.

[24] D. Kuhn, P. M. Esfahani, V. A. Nguyen, and S. Shafieezadeh-Abadeh, “Wasserstein
distributionally robust optimization: Theory and applications in machine learn-
ing”, in Operations Research & Management Science in the Age of Analytics, IN-
FORMS, 2019, pp. 130–166.

158



[25] D. Wozabal, “A framework for optimization under ambiguity”, Annals of Opera-
tions Research, vol. 193, no. 1, pp. 21–47, 2012.

[26] M. Bansal, K.-L. Huang, and S. Mehrotra, “Decomposition algorithms for two-
stage distributionally robust mixed binary programs”, SIAM Journal on Optimiza-
tion, vol. 28, no. 3, pp. 2360–2383, 2018.

[27] D. Bertsimas, V. Gupta, and N. Kallus, “Robust sample average approximation”,
Mathematical Programming, vol. 171, no. 1-2, pp. 217–282, 2018.

[28] J. Blanchet, Y. Kang, and K. Murthy, “Robust Wasserstein profile inference and
applications to machine learning”, Journal of Applied Probability, vol. 56, no. 3,
pp. 830–857, 2019.

[29] W. Xie, “Tractable reformulations of two-stage distributionally robust linear pro-
grams over the type-∞ wasserstein ball”, Operations Research Letters, vol. 48,
no. 4, pp. 513–523, 2020.

[30] F. Luo and S. Mehrotra, “A decomposition method for distributionally-robust two-
stage stochastic mixed-integer conic programs”, Mathematical Programming, pp. 1–
45, 2021.

[31] A. Ben-Tal, O. El Housni, and V. Goyal, “A tractable approach for designing piece-
wise affine policies in two-stage adjustable robust optimization”, Mathematical
Programming, vol. 182, no. 1, pp. 57–102, 2020.

[32] A. Georghiou, D. Kuhn, and W. Wiesemann, “The decision rule approach to opti-
mization under uncertainty: Methodology and applications”, Computational Man-
agement Science, 2018.

[33] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, “Adjustable robust
solutions of uncertain linear programs”, Mathematical Programming, vol. 99, no. 2,
pp. 351–376, 2004.

[34] D. Bertsimas and V. Goyal, “On the power and limitations of affine policies in two-
stage adaptive optimization”, Mathematical programming, vol. 134, no. 2, pp. 491–
531, 2012.

[35] D. Bertsimas, S. Shtern, and B. Sturt, “Two-stage sample robust optimization”,
Operations Research, 2021.

[36] K. S. Shehadeh and E. L. Tucker, “A distributionally robust optimization approach
for location and inventory prepositioning of disaster relief supplies”, arXiv preprint
arXiv:2012.05387, 2020.

159



[37] G. A. Velasquez, M. E. Mayorga, and O. Y. Özaltın, “Prepositioning disaster relief
supplies using robust optimization”, IISE Transactions, vol. 52, no. 10, pp. 1122–
1140, 2020.

[38] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization. Athena Scien-
tific, 1997.

[39] G. Desaulniers, J. Desrosiers, and M. M. Solomon, Column generation. Springer
Science & Business Media, 2006, vol. 5.

[40] M. E. Lübbecke and J. Desrosiers, “Selected topics in column generation”, Opera-
tions Research, vol. 53, no. 6, pp. 1007–1023, 2005.

[41] G. L. Nemhauser and L. Wolsey, Integer Programming and Combinatorial Opti-
mization. Wiley, 1988.

[42] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization
and statistical learning via the alternating direction method of multipliers”, Foun-
dations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[43] Y. Hong, J. Vaidya, and H. Lu, “Secure and efficient distributed linear program-
ming”, Journal of Computer Security, vol. 20, no. 5, pp. 583–634, 2012.

[44] S. Zeadally, A.-S. K. Pathan, C. Alcaraz, and M. Badra, “Towards privacy protec-
tion in smart grid”, Wireless personal communications, vol. 73, no. 1, pp. 23–50,
2013.

[45] F. Belletti, C. Le Floch, S. Moura, and A. M. Bayen, “Privacy-preserving dual split-
ting distributed optimization with application to load flattening in california”, in
2015 54th IEEE Conference on Decision and Control (CDC), IEEE, 2015, pp. 3355–
3360.

[46] M. DeCamp, N. J. Farber, A. M. Torke, M. George, Z. Berger, C. C. Keirns, and
L. C. Kaldjian, “Ethical challenges for accountable care organizations: A struc-
tured review”, Journal of general internal medicine, vol. 29, no. 10, pp. 1392–
1399, 2014.

[47] J. M. McWilliams, L. A. Hatfield, M. E. Chernew, B. E. Landon, and A. L. Schwartz,
“Early performance of accountable care organizations in medicare”, New England
Journal of Medicine, vol. 374, no. 24, pp. 2357–2366, 2016.

[48] J. Gondzio, P. Gonzalez-Brevis, and P. Munari, “New developments in the primal-
dual column generation technique”, European Journal of Operational Research,
vol. 224, no. 1, pp. 41–51, 2012.

160



[49] J. Gondzio and R. Sarkissian, “Column generation with a primal-dual method”,
Logilab Technical Report 96.6, University of Geneva, 1996.

[50] A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate analysis for dual
subgradient methods”, SIAM Journal on Optimization, vol. 19, no. 4, pp. 1757–
1780, 2009.

[51] E. Gustavsson, M. Patriksson, and A.-B. Strömberg, “Primal convergence from
dual subgradient methods for convex optimization”, Mathematical Programming,
vol. 150, no. 2, pp. 365–390, 2015.

[52] O. Briant, C. Lemaréchal, P. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck,
“Comparison of bundle and classical column generation”, Mathematical Program-
ming, vol. 113, no. 2, pp. 299–344, 2006.

[53] J. Gondzio, P. Gonzalez-Brevis, and P. Munari, “Large-scale optimization with the
primal-dual column generation method”, Mathematical Programming Computa-
tion, vol. 8, no. 1, pp. 47–82, 2016.

[54] M. Lubin, K. Martin, C. G. Petra, and B. Sandıkçı, “On parallelizing dual decom-
position in stochastic integer programming”, Operations Research Letters, vol. 41,
no. 3, pp. 252–258, 2013.

[55] M. Bürger, G. Notarstefano, and F. Allgöwer, “A polyhedral approximation frame-
work for convex and robust distributed optimization”, IEEE Transactions on Auto-
matic Control, vol. 59, no. 2, pp. 384–395, 2013.

[56] O. L. Mangasarian, “Privacy-preserving linear programming”, Optimization Let-
ters, vol. 5, no. 1, pp. 165–172, 2011.

[57] W. Li, H. Li, and C. Deng, “Privacy-preserving horizontally partitioned linear pro-
grams with inequality constraints”, Optimization Letters, vol. 7, no. 1, pp. 137–144,
2013.

[58] Q. Li, R. Heusdens, and M. G. Christensen, “Privacy-preserving distributed opti-
mization via subspace perturbation: A general framework”, arXiv preprint
arXiv:2004.13999, 2020.

[59] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent op-
timization”, IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61,
2009.

[60] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization
in multi-agent networks”, IEEE Transactions on Automatic Control, vol. 55, no. 4,
pp. 922–938, 2010.

161



[61] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Püschel, “Distributed optimization
with local domains: Applications in mpc and network flows”, IEEE Transactions
on Automatic Control, vol. 60, no. 7, pp. 2004–2009, 2015.

[62] C. Xi, Q. Wu, and U. A. Khan, “On the distributed optimization over directed net-
works”, Neurocomputing, vol. 267, pp. 508–515, 2017.

[63] A. Nedic and A. Ozdaglar, “Cooperative distributed multi-agent optimization”, in
Convex optimization in signal processing and communications, D. P. Palomar and
Y. C. Eldar, Eds., Cambridge university press, 2010.

[64] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating direction
method of multipliers”, Mathematical Programming, vol. 162, no. 1-2, pp. 165–
199, 2017.

[65] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I. Jordan, “A general
analysis of the convergence of ADMM”, in Proceedings of the 32Nd Interna-
tional Conference on International Conference on Machine Learning - Volume 37,
ser. ICML’15, Lille, France, 2015, pp. 343–352.

[66] X. Cai, D. Han, and X. Yuan, “On the convergence of the direct extension of
ADMM for three-block separable convex minimization models with one strongly
convex function”, Computational Optimization and Applications, vol. 66, no. 1,
pp. 39–73, 2017.

[67] A. Beck, First-Order Methods in Optimization. Philadelphia, PA: SIAM, 2017.

[68] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal parameter selec-
tion for the alternating direction method of multipliers (admm): Quadratic prob-
lems”, IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 644–658, 2015.

[69] B. Wohlberg, “Admm penalty parameter selection by residual balancing”, arXiv
preprint arXiv:1704.06209, 2017.

[70] C. Chen, B. He, Y. Ye, and X. Yuan, “The direct extension of admm for multi-
block convex minimization problems is not necessarily convergent”, Mathematical
Programming, vol. 155, no. 1-2, pp. 57–79, 2016.

[71] W. Deng, M.-J. Lai, Z. Peng, and W. Yin, “Parallel multi-block admm with o (1/k)
convergence”, Journal of Scientific Computing, vol. 71, no. 2, pp. 712–736, 2017.

[72] A. Goncalves, X. Liu, and A. Banerjee, “Two-block vs. multi-block admm: An
empirical evaluation of convergence”, arXiv preprint arXiv:1907.04524, 2019.

162



[73] Y. Lou, L. Yu, S. Wang, and P. Yi, “Privacy preservation in distributed subgra-
dient optimization algorithms”, IEEE transactions on cybernetics, vol. 48, no. 7,
pp. 2154–2165, 2017.

[74] F. Yan, S. Sundaram, S. Vishwanathan, and Y. Qi, “Distributed autonomous online
learning: Regrets and intrinsic privacy-preserving properties”, IEEE Transactions
on Knowledge and Data Engineering, vol. 25, no. 11, pp. 2483–2493, 2012.

[75] A. Frangioni, “About lagrangian methods in integer optimization”, Annals of Op-
erations Research, vol. 139, no. 1, pp. 163–193, 2005.

[76] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel distributed computing
using python”, Advances in Water Resources, vol. 34, no. 9, pp. 1124–1139, 2011.

[77] L. Dalcın, R. Paz, M. Storti, and J. D’Elıa, “MPI for python: Performance im-
provements and MPI-2 extensions”, Journal of Parallel and Distributed Comput-
ing, vol. 68, no. 5, pp. 655–662, 2008.

[78] L. Dalcı́n, R. Paz, and M. Storti, “MPI for python”, Journal of Parallel and Dis-
tributed Computing, vol. 65, no. 9, pp. 1108–1115, 2005.

[79] G. Belov and G. Scheithauer, “A cutting plane algorithm for the one-dimensional
cutting stock problem with multiple stock lengths”, European Journal of Opera-
tional Research, vol. 141, no. 2, pp. 274–294, 2002.

[80] L.-M. Munguı́a, S. Ahmed, D. A. Bader, G. L. Nemhauser, and Y. Shao, “Alter-
nating criteria search: A parallel large neighborhood search algorithm for mixed
integer programs”, Computational Optimization and Applications, vol. 69, no. 1,
pp. 1–24, 2018.

[81] A. Bitlislioğlu, I. Pejcic, and C. Jones, “Interior point decomposition for multi-
agent optimization”, IFAC-PapersOnLine, vol. 50, no. 1, pp. 233–238, 2017.

[82] D. Bienstock and A. Verma, “The N − k problem in power grids: New models,
formulations, and numerical experiments”, SIAM Journal on Optimization, vol. 20,
no. 5, pp. 2352–2380, 2010.

[83] North American Electric Reliability Corporation, “Transmission System Planning
Performance Requirements”, TPL-001-4, 2017.

[84] P. Praks, V. Kopustinskas, and M. Masera, “Monte-carlo-based reliability and vul-
nerability assessment of a natural gas transmission system due to random network
component failures”, Sustainable and Resilient Infrastructure, vol. 2, no. 3, pp. 97–
107, 2017.

163



[85] B. T. Doshi, S. Dravida, P. Harshavardhana, O. Hauser, and Y. Wang, “Optical
network design and restoration”, Bell Labs Technical Journal, vol. 4, no. 1, pp. 58–
84, 1999.

[86] B. Berche, C. Von Ferber, T. Holovatch, and Y. Holovatch, “Resilience of public
transport networks against attacks”, The European Physical Journal B, vol. 71,
no. 1, pp. 125–137, 2009.

[87] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on stochastic program-
ming: modeling and theory. SIAM, 2009.

[88] J. Barrera, T. Homem-de-Mello, E. Moreno, B. K. Pagnoncelli, and G. Canessa,
“Chance-constrained problems and rare events: An importance sampling approach”,
Mathematical Programming, vol. 157, no. 1, pp. 153–189, 2016.

[89] A. Budhiraja, S. Lu, Y. Yu, and Q. Tran-Dinh, “Minimization of a class of rare
event probabilities and buffered probabilities of exceedance”, Annals of Operations
Research, vol. 302, no. 1, pp. 49–83, 2021.

[90] K. Postek, D. den Hertog, and B. Melenberg, “Computationally tractable counter-
parts of distributionally robust constraints on risk measures”, SIAM Review, vol. 58,
no. 4, pp. 603–650, 2016.

[91] L. Lovász and A. Schrijver, “Cones of matrices and set-functions and 0–1 opti-
mization”, SIAM Journal on Optimization, vol. 1, no. 2, pp. 166–190, 1991.

[92] H. D. Sherali and W. P. Adams, “A hierarchy of relaxations between the continu-
ous and convex hull representations for zero-one programming problems”, SIAM
Journal on Discrete Mathematics, vol. 3, no. 3, pp. 411–430, 1990.

[93] J. B. Lasserre, “Global optimization with polynomials and the problem of mo-
ments”, SIAM Journal on optimization, vol. 11, no. 3, pp. 796–817, 2001.

[94] G. A. Hanasusanto and D. Kuhn, “Conic programming reformulations of two-
stage distributionally robust linear programs over Wasserstein balls”, Operations
Research, vol. 66, no. 3, pp. 849–869, 2018.

[95] G. Xu and S. Burer, “A copositive approach for two-stage adjustable robust opti-
mization with uncertain right-hand sides”, Computational Optimization and Appli-
cations, vol. 70, no. 1, pp. 33–59, 2018.

[96] A. Ardestani-Jaafari and E. Delage, “Linearized robust counterparts of two-stage
robust optimization problems with applications in operations management”, Avail-
able at Optimization Online, 2017.

164



[97] A. Mittal, C. Gokalp, and G. A. Hanasusanto, “Robust quadratic programming
with mixed-integer uncertainty”, INFORMS Journal on Computing, vol. 32, no. 2,
pp. 201–218, 2020.

[98] R. Jiang, M. Ryu, and G. Xu, “Data-driven distributionally robust appointment
scheduling over wasserstein balls”, arXiv preprint arXiv:1907.03219, 2019.

[99] S. Burer and H. Dong, “Representing quadratically constrained quadratic programs
as generalized copositive programs”, Operations Research Letters, vol. 40, no. 3,
pp. 203–206, 2012.

[100] G. Eichfelder and J. Jahn, “Set-semidefinite optimization”, Journal of Convex Anal-
ysis, vol. 15, no. 4, pp. 767–801, 2008.

[101] R. A. Stubbs and S. Mehrotra, “A branch-and-cut method for 0-1 mixed convex
programming”, Mathematical Programming, vol. 86, pp. 515–532, 1999.

[102] M. Çezik and G. Iyengar, “Cuts for mixed 0-1 conic programming”, Mathematical
Programming, vol. 104, no. 1, pp. 179–202, 2005.

[103] J. Povh and F. Rendl, “Copositive and semidefinite relaxations of the quadratic
assignment problem”, Discrete Optimization, vol. 6, no. 3, pp. 231–241, 2009.

[104] S. Burer and A. N. Letchford, “Non-convex mixed-integer nonlinear programming:
A survey”, Surveys in Operations Research and Management Science, vol. 17,
no. 2, pp. 97–106, 2012.

[105] V. Gabrel, M. Lacroix, C. Murat, and N. Remli, “Robust location transportation
problems under uncertain demands”, Discrete Applied Mathematics, vol. 164,
pp. 100–111, 2014.

[106] F. Glover, “Improved linear integer programming formulations of nonlinear integer
problems”, Management Science, vol. 22, no. 4, pp. 455–460, 1975.

[107] A. Thiele, T. Terry, and M. Epelman, “Robust linear optimization with recourse”,
Lehigh University, Bethlehem, PA, Tech. Rep., 2009.

[108] C. Zhao, “Data-driven risk-averse stochastic program and renewable energy inte-
gration”, PhD thesis, University of Florida, 2014.

[109] B. Zeng and L. Zhao, “Solving two-stage robust optimization problems using a
column-and-constraint generation method”, Operations Research Letters, vol. 41,
no. 5, pp. 457–461, 2013.

165



[110] E. Balas, S. Ceria, and G. Cornuéjols, “A lift-and-project cutting plane algorithm
for mixed 0–1 programs”, Mathematical Programming, vol. 58, no. 1-3, pp. 295–
324, 1993.

[111] M. Laurent, “A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre
relaxations for 0–1 programming”, Mathematics of Operations Research, vol. 28,
no. 3, pp. 470–496, 2003.

[112] O. Alsac and B. Stott, “Optimal load flow with steady-state security”, IEEE Trans-
actions on Power Apparatus and Systems, pp. 745–751, 1974.

[113] N. Chiang and A. Grothey, “Solving security constrained optimal power flow prob-
lems by a structure exploiting interior point method”, Optimization and Engineer-
ing, vol. 16, no. 1, pp. 49–71, 2015.

[114] U.S. Energy Information Administration, “Annual Summaries”, Electric Distur-
bance Events (OE-417), 2017, See also http://insideenergy.org/2014/08/18/data-
explore-15-years-of-power-outages/.

[115] S. H. Low, “Convex relaxation of optimal power flow—part i: Formulations and
equivalence”, IEEE Transactions on Control of Network Systems, vol. 1, no. 1,
pp. 15–27, 2014.

[116] B. Kocuk, S. S. Dey, and X. A. Sun, “Strong socp relaxations for the optimal power
flow problem”, Operations Research, vol. 64, no. 6, pp. 1177–1196, 2016.

[117] U.S. Department of Energy Advanced Research Projects Agency-Energy, “SCOPF
Problem Formulation: Challenge 1”, Grid Optimization Competition, 2019.

[118] R. D. Zimmerman and C. E. Murillo-Sánchez, “Matpower 6.0 user’s manual”,
PSERC: Tempe, AZ, USA, 2016.

[119] S. Babaeinejadsarookolaee, A. Birchfield, R. D. Christie, C. Coffrin, C. DeMarco,
R. Diao, M. Ferris, S. Fliscounakis, S. Greene, R. Huang, et al., “The power grid
library for benchmarking ac optimal power flow algorithms”, arXiv preprint
arXiv:1908.02788, 2019.

[120] M. Minoux, “Networks synthesis and optimum network design problems: Models,
solution methods and applications”, Networks, vol. 19, no. 3, pp. 313–360, 1989.

[121] T. G. Crainic, A. Frangioni, and B. Gendron, “Bundle-based relaxation methods
for multicommodity capacitated fixed charge network design”, Discrete Applied
Mathematics, vol. 112, no. 1, pp. 73–99, 2001.

166

http://insideenergy.org/2014/08/18/data-explore-15-years-of-power-outages/
http://insideenergy.org/2014/08/18/data-explore-15-years-of-power-outages/


[122] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, Y. Ganjali, and
C. Diot, “Characterization of failures in an operational ip backbone network”,
IEEE/ACM Transactions on Networking, vol. 16, no. 4, pp. 749–762, 2008.

[123] N. Boland, M. Fischetti, M. Monaci, and M. Savelsbergh, “Proximity benders: A
decomposition heuristic for stochastic programs”, Journal of Heuristics, vol. 22,
no. 2, pp. 181–198, 2016.

[124] M. Sabbaghtorkan, R. Batta, and Q. He, “Prepositioning of assets and supplies in
disaster operations management: Review and research gap identification”, Euro-
pean Journal of Operational Research, vol. 284, no. 1, pp. 1–19, 2020.

[125] E. Grass and K. Fischer, “Two-stage stochastic programming in disaster manage-
ment: A literature survey”, Surveys in Operations Research and Management Sci-
ence, vol. 21, no. 2, pp. 85–100, 2016.

[126] C. G. Rawls and M. A. Turnquist, “Pre-positioning of emergency supplies for dis-
aster response”, Transportation research part B: Methodological, vol. 44, no. 4,
pp. 521–534, 2010.

[127] W. Wang, K. Yang, L. Yang, and Z. Gao, “Two-stage distributionally robust pro-
gramming based on worst-case mean-cvar criterion and application to disaster re-
lief management”, Transportation Research Part E: Logistics and Transportation
Review, vol. 149, p. 102 332, 2021.

[128] K. Kim, “Dual decomposition of two-stage distributionally robust mixed-integer
programming under the wasserstein ambiguity set”, Preprint manuscript, 2020.

[129] G. A. Hanasusanto, D. Kuhn, and W. Wiesemann, “K-adaptability in two-stage
robust binary programming”, Operations Research, vol. 63, no. 4, pp. 877–891,
2015.

[130] A. Subramanyam, C. E. Gounaris, and W. Wiesemann, “K-adaptability in two-
stage mixed-integer robust optimization”, Mathematical Programming Computa-
tion, vol. 12, no. 2, pp. 193–224, 2020.

[131] G. A. Hanasusanto, D. Kuhn, and W. Wiesemann, “K-adaptability in two-stage
distributionally robust binary programming”, Operations Research Letters, vol. 44,
no. 1, pp. 6–11, 2016.

[132] D. E. Ferguson, “Fibonaccian searching”, Communications of the ACM, vol. 3,
no. 12, p. 648, 1960.

167



[133] C. W. Landsea and J. L. Franklin, “Atlantic hurricane database uncertainty and
presentation of a new database format”, Monthly Weather Review, vol. 141, no. 10,
pp. 3576–3592, 2013.

[134] E. S. Blake, E. N. Rappaport, J. D. Jarrell, and C. Landsea, “The deadliest, costliest,
and most intense united states tropical cyclones from 1851 to 2004 (and other fre-
quently requested hurricane facts)”, NOAA Technical Memorandum NWS TPC-4,
2007.

168


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Two-Stage Stochastic Programming
	Dantzig-Wolfe Decomposition
	Data-Driven Stochastic Optimization
	Contributions

	2 | Consensus-Based Dantzig-Wolfe Decomposition
	Introduction
	Preliminaries
	ADMM Overview
	Consensus-Based Dantzig-Wolfe Algorithm
	Computational Experiments
	Conclusions

	3 | Data-Driven Two-Stage Conic Optimization with Rare High-Impact Zero-One Uncertainties
	Motivation
	Distributionally Robust Approach for Discrete Rare Events
	Mixed-Integer Conic Representations
	Lift-and-Project Approximations
	Computing An Exact Penalty Parameter
	Computational Experiments
	Conclusions

	4 | Binary Distributionally Robust Optimization Under the Wasserstein Set: A Disaster Relief Application
	Introduction
	Formulation
	Column-and-Constraint Generation Algorithm
	Numerical Considerations
	Computational Experiments
	Conclusions

	5 | Conclusions
	Appendices
	A | Data-Driven Two-Stage Conic Optimization with Rare High-Impact Zero-One Uncertainties
	Benders Decomposition
	Proofs

	B | Binary Distributionally Robust Optimization Under the Wasserstein Set: A Disaster Relief Application
	References

