2,145 research outputs found

    Computational Methods for the Alignment and Score-Informed Transcription of Piano Music

    Get PDF
    PhDThis thesis is concerned with computational methods for alignment and score-informed transcription of piano music. Firstly, several methods are proposed to improve the alignment robustness and accuracywhen various versions of one piece of music showcomplex differences with respect to acoustic conditions or musical interpretation. Secondly, score to performance alignment is applied to enable score-informed transcription. Although music alignment methods have considerably improved in accuracy in recent years, the task remains challenging. The research in this thesis aims to improve the robustness for some cases where there are substantial differences between versions and state-of-the-art methods may fail in identifying a correct alignment. This thesis first exploits the availability of multiple versions of the piece to be aligned. By processing these jointly, the alignment process can be stabilised by exploiting additional examples of how a section might be interpreted or which acoustic conditions may arise. Two methods are proposed, progressive alignment and profile HMM, both adapted from the multiple biological sequence alignment task. Experiments demonstrate that these methods can indeed improve the alignment accuracy and robustness over comparable pairwise methods. Secondly, this thesis presents a score to performance alignment method that can improve the robustness in cases where some musical voices, such as the melody, are played asynchronously to others – a stylistic device used in musical expression. The asynchronies between the melody and the accompaniment are handled by treating the voices as separate timelines in a multi-dimensional variant of dynamic time warping (DTW). The method measurably improves the alignment accuracy for pieces with asynchronous voices and preserves the accuracy otherwise. Once an accurate alignment between a score and an audio recording is available, the score information can be exploited as prior knowledge in automatic music transcription (AMT), for scenarios where score is available, such as music tutoring. Score-informed dictionary learning is used to learn the spectral pattern of each pitch that describes the energy distribution of the associated notes in the recording. More precisely, the dictionary learning process in non-negative matrix factorization (NMF) is constrained using the aligned score. This way, by adapting the dictionary to a given recording, the proposed method improves the accuracy over the state-of-the-art.China Scholarship Council

    Multimodal music information processing and retrieval: survey and future challenges

    Full text link
    Towards improving the performance in various music information processing tasks, recent studies exploit different modalities able to capture diverse aspects of music. Such modalities include audio recordings, symbolic music scores, mid-level representations, motion, and gestural data, video recordings, editorial or cultural tags, lyrics and album cover arts. This paper critically reviews the various approaches adopted in Music Information Processing and Retrieval and highlights how multimodal algorithms can help Music Computing applications. First, we categorize the related literature based on the application they address. Subsequently, we analyze existing information fusion approaches, and we conclude with the set of challenges that Music Information Retrieval and Sound and Music Computing research communities should focus in the next years

    Automatic music transcription: challenges and future directions

    Get PDF
    Automatic music transcription is considered by many to be a key enabling technology in music signal processing. However, the performance of transcription systems is still significantly below that of a human expert, and accuracies reported in recent years seem to have reached a limit, although the field is still very active. In this paper we analyse limitations of current methods and identify promising directions for future research. Current transcription methods use general purpose models which are unable to capture the rich diversity found in music signals. One way to overcome the limited performance of transcription systems is to tailor algorithms to specific use-cases. Semi-automatic approaches are another way of achieving a more reliable transcription. Also, the wealth of musical scores and corresponding audio data now available are a rich potential source of training data, via forced alignment of audio to scores, but large scale utilisation of such data has yet to be attempted. Other promising approaches include the integration of information from multiple algorithms and different musical aspects

    Identifying Missing and Extra Notes in Piano Recordings Using Score-Informed Dictionary Learning

    Get PDF

    Automatic transcription of polyphonic music exploiting temporal evolution

    Get PDF
    PhDAutomatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving transcription performance. Subsequent approaches propose transcription models based on shift-invariant probabilistic latent component analysis (SI-PLCA), modeling the temporal evolution of notes in a multiple-instrument case and supporting frequency modulations in produced notes. Datasets and annotations for transcription research have also been created during this work. Proposed systems have been privately as well as publicly evaluated within the Music Information Retrieval Evaluation eXchange (MIREX) framework. Proposed systems have been shown to outperform several state-of-the-art transcription approaches. Developed techniques have also been employed for other tasks related to music technology, such as for key modulation detection, temperament estimation, and automatic piano tutoring. Finally, proposed music transcription models have also been utilized in a wider context, namely for modeling acoustic scenes

    Score-Informed Source Separation for Music Signals

    Get PDF
    In recent years, the processing of audio recordings by exploiting additional musical knowledge has turned out to be a promising research direction. In particular, additional note information as specified by a musical score or a MIDI file has been employed to support various audio processing tasks such as source separation, audio parameterization, performance analysis, or instrument equalization. In this contribution, we provide an overview of approaches for score-informed source separation and illustrate their potential by discussing innovative applications and interfaces. Additionally, to illustrate some basic principles behind these approaches, we demonstrate how score information can be integrated into the well-known non-negative matrix factorization (NMF) framework. Finally, we compare this approach to advanced methods based on parametric models

    From heuristics-based to data-driven audio melody extraction

    Get PDF
    The identification of the melody from a music recording is a relatively easy task for humans, but very challenging for computational systems. This task is known as "audio melody extraction", more formally defined as the automatic estimation of the pitch sequence of the melody directly from the audio signal of a polyphonic music recording. This thesis investigates the benefits of exploiting knowledge automatically derived from data for audio melody extraction, by combining digital signal processing and machine learning methods. We extend the scope of melody extraction research by working with a varied dataset and multiple definitions of melody. We first present an overview of the state of the art, and perform an evaluation focused on a novel symphonic music dataset. We then propose melody extraction methods based on a source-filter model and pitch contour characterisation and evaluate them on a wide range of music genres. Finally, we explore novel timbre, tonal and spatial features for contour characterisation, and propose a method for estimating multiple melodic lines. The combination of supervised and unsupervised approaches leads to advancements on melody extraction and shows a promising path for future research and applications
    corecore