2,215 research outputs found

    On the effects of firing memory in the dynamics of conjunctive networks

    Full text link
    Boolean networks are one of the most studied discrete models in the context of the study of gene expression. In order to define the dynamics associated to a Boolean network, there are several \emph{update schemes} that range from parallel or \emph{synchronous} to \emph{asynchronous.} However, studying each possible dynamics defined by different update schemes might not be efficient. In this context, considering some type of temporal delay in the dynamics of Boolean networks emerges as an alternative approach. In this paper, we focus in studying the effect of a particular type of delay called \emph{firing memory} in the dynamics of Boolean networks. Particularly, we focus in symmetric (non-directed) conjunctive networks and we show that there exist examples that exhibit attractors of non-polynomial period. In addition, we study the prediction problem consisting in determinate if some vertex will eventually change its state, given an initial condition. We prove that this problem is {\bf PSPACE}-complete

    Boolean networks synchronism sensitivity and XOR circulant networks convergence time

    Full text link
    In this paper are presented first results of a theoretical study on the role of non-monotone interactions in Boolean automata networks. We propose to analyse the contribution of non-monotony to the diversity and complexity in their dynamical behaviours according to two axes. The first one consists in supporting the idea that non-monotony has a peculiar influence on the sensitivity to synchronism of such networks. It leads us to the second axis that presents preliminary results and builds an understanding of the dynamical behaviours, in particular concerning convergence times, of specific non-monotone Boolean automata networks called XOR circulant networks.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system

    Full text link
    A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to neural networks. This paper presents results from an investigation into using discrete and fuzzy dynamical system representations within the XCSF learning classifier system. In particular, asynchronous random Boolean networks are used to represent the traditional condition-action production system rules in the discrete case and asynchronous fuzzy logic networks in the continuous-valued case. It is shown possible to use self-adaptive, open-ended evolution to design an ensemble of such dynamical systems within XCSF to solve a number of well-known test problems

    Synchronous Boolean Finite Dynamical Systems on Directed Graphs over XOR Functions

    Get PDF

    Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems

    Full text link
    A complete classification of the computational complexity of the fixed-point existence problem for boolean dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, is presented. For function classes F and graph classes G, an (F, G)-system is a boolean dynamical system such that all local transition functions lie in F and the underlying graph lies in G. Let F be a class of boolean functions which is closed under composition and let G be a class of graphs which is closed under taking minors. The following dichotomy theorems are shown: (1) If F contains the self-dual functions and G contains the planar graphs then the fixed-point existence problem for (F, G)-systems with local transition function given by truth-tables is NP-complete; otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions and G contains the graphs having vertex covers of size one then the fixed-point existence problem for (F, G)-systems with local transition function given by formulas or circuits is NP-complete; otherwise, it is decidable in polynomial time.Comment: 17 pages; this version corrects an error/typo in the 2008/01/24 versio

    Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

    Get PDF
    A Boolean Finite Synchronous Dynamical System (BFDS, for short) consists of a finite number of objects that each maintains a boolean state, where after individually receiving state assignments, the objects update their state with respect to object-specific time-independent boolean functions synchronously in discrete time steps. The present paper studies the computational complexity of determining, given a boolean finite synchronous dynamical system, a configuration, which is a boolean vector representing the states of the objects, and a positive integer t, whether there exists another configuration from which the given configuration can be reached in t steps. It was previously shown that this problem, which we call the t-Predecessor Problem, is NP-complete even for t = 1 if the update function of an object is either the conjunction of arbitrary fan-in or the disjunction of arbitrary fan-in. This paper studies the computational complexity of the t-Predecessor Problem for a variety of sets of permissible update functions as well as for polynomially bounded t. It also studies the t-Garden-Of-Eden Problem, a variant of the t-Predecessor Problem that asks whether a configuration has a t-predecessor, which itself has no predecessor. The paper obtains complexity theoretical characterizations of all but one of these problems
    • …
    corecore