
Synchronous Boolean Finite Dynamical Systems
on Directed Graphs over XOR Functions
Mitsunori Ogihara
Department of Computer Science, University of Miami, FL, USA
m.ogihara@miami.edu

Kei Uchizawa
Graduate School of Science and Engineering, Yamagata University, Japan
uchizawa@yz.yamagata-u.ac.jp

Abstract
In this paper, we investigate the complexity of a number of computational problems defined on a
synchronous boolean finite dynamical system, where update functions are chosen from a template
set of exclusive-or and its negation. We first show that the reachability and path-intersection
problems are solvable in logarithmic space-uniform AC1 if the objects execute permutations, while
the reachability problem is known to be in P and the path-intersection problem to be in UP in
general. We also explore the case where the reachability or intersection are tested on a subset of
objects, and show that this hardens complexity of the problems: both problems become NP-complete,
and even Πp

2-complete if we further require universality of the intersection. We next consider the
exact cycle length problem, that is, determining whether there exists an initial configuration that
yields a cycle in the configuration space having exactly a given length, and show that this problem
is NP-complete. Lastly, we consider the t-predecessor and t-Garden of Eden problem, and prove
that these are solvable in polynomial time even if the value of t is also given in binary as part of
instance, and the two problems are in logarithmic space-uniform NC2 if the value of t is given in
unary as part of instance.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Computational complexity, dynamical systems, Garden of Eden, predecessor,
reachability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.76

Funding This work was supported by JSPS KAKENHI Grant Numbers JP19K11817.

Acknowledgements We thank the reviewers for their constructive criticisms and many valuable
suggestions.

1 Introduction

A discrete dynamical system is a network consisting of objects with states and state update
functions assigned to the objects. The state update function of an object receives the
states from the objects of the network, including itself, and determines the next state of
the object. In a discrete dynamical system, the updates occur in discrete time steps. After
receiving initial state values for the objects (called an initial state configuration), the system
commences its computation by applying the state update functions to the nodes according
to their update schedule, thereby generates an indefinitely long series of state configurations.

A directed graph naturally represents the direct dependencies among objects for state
updates, where the edge from an object, u, to another, v, represents that the update function
of v is dependent on the state of u. In the case where the dependencies are mutual, all
edges are bidirectional, and so an undirected graph offers a simpler representation of the
dependencies. These graphs may contain self-loops, since the state update functions may
depend on their own values. A variety of discrete dynamical systems exists depending on

© Mitsunori Ogihara and Kei Uchizawa;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 76; pp. 76:1–76:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:m.ogihara@miami.edu
mailto:uchizawa@yz.yamagata-u.ac.jp
https://doi.org/10.4230/LIPIcs.MFCS.2020.76
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

76:2 Synchronous Boolean Finite Dynamical Systems on Directed Graphs over XOR Func.

(a) (b)

1 1

0 1

1

0

1 1

0 0

0

1

Figure 1 (a) A synchronous BFDS with six objects, where inputs of an update function of an
object are the ones whose outgoing edges connected to the object; and (b) Suppose that every object
has the exclusive-or XOR as its update function. Then, a single update for the BFDS with the given
configuration depicted in the left panel yields the one in the right panel.

whether the update schedules are synchronous, whether or not the underlying graph is
undirected, the state set (e.g., binary, finite, and infinite), and the types of update functions
(e.g., boolean, symmetric, monotone). A synchronous boolean finite dynamical system
(synchronous BFDS for short) [6] is one in which each object has just one boolean value as
its state, the dependency graph is directed, and the updates are synchronous (see Fig. 1).
Because the number of objects is finite, there are finitely many possible configurations in a
BFDS (2n for an n-object system). With synchronicity, a BFDS, in a finite number of steps
(within 2n steps in the case of an n-object system), either converges to a fixed point or enters
a nontrivial simple cycle (see Fig 2).

An article by Barrett et al. [6] is the first to consider the synchronous BFDS model (they
also introduced some other models, which are not the subjects of this paper). A wide stream
of research has followed the paper studying the model from the computational complexity
perspective. There, the questions have been to pinpoint the computational complexity of
predicting the behavior of a model with or without a specific initial configuration. For
example, Kosub [10] shows that there is a dichotomy between P and NP-complete regarding
the question of whether the system possess a fixed point for any initial configuration. Kosub
and Human extend this to a dichotomy between the function classes FP and #P-complete
functions if the concern is for counting the number of initial configurations with a fixed
point [11]. Rosenkrantz et al. provide a general framework for analyzing BFDS through
subgraph embedding and show that various problems about BFDS are NP-complete, but if
the representation graph is undirected with bounded tree-width and the update functions
are r-symmetric, the computational complexity drops to P [13].

The stream of research also finds that some problems about a synchronous BFDS offer a
rich theory of computational complexity by considering the types of functions permissible for
the templates. Specifically, researchers have studied the conjunction AND, disjunction OR,
exclusive-or XOR, and the negation of exclusive-or NXOR, and their combinations as the
possible types, and asked the following three problems:

The reachability problem. The problem asks whether, given a synchronous BFDS and two
specific configurations, whether the system generates the second of the two from the first.
The path-intersection problem. A variant of the reachability problem, it asks whether the
paths of configurations starting from two initial configurations have a common element.
The cycle length problem. The problem asks if the cycle that the system enters with a
specific initial configuration has length greater than or equal to a specific value.

M. Ogihara and K. Uchizawa 76:3

C

C'

C''

Figure 2 Example of a configuration space of a synchronous BFDS, where dots represent
configurations, and arrows do transitions through updates. The configuration C is a fixed point.
Two series of configurations from C′ and C′′ do not have a common element, but ones for C and C′′

do. A cycle obtained by starting from an initial configuration C′ has length five. The configuration
C′ has two predecessors, and one of them is a Garden of Eden.

Various complexity results exist about the problems. The reachability problem is PSPACE-
complete in general, but it is so even if the underlying graph is an undirected bounded-degree
graph and the update functions are symmetric [2], the underlying graph is undirected and
update functions are threshold functions [1], or the underlying graph is directed and the
template set is {AND,OR} [12]. These PSPACE-complete results contrast well with that
the problem is in P if the template set is one of {AND}, {OR} and {XOR,NXOR} [12].
As for the path-intersection and cycle length problems, they are PSPACE-complete too,
if the underlying graph is directed and the template set is {AND,OR}. However, the
path-intersection problem becomes solvable in UP and the cycle length problem becomes
solvable in UP ∩ coUP [12] and in BQP [8], if the template set is one of {AND}, {OR} and
{XOR,NXOR}.

Testing reversibility has been a popular topic of computational complexity theoretic
studies of synchronous BFDS [3, 4, 5, 13]. A predecessor of a given configuration is the one
which the system produces from the given configuration. A Garden of Eden of BFDS is
a configuration without predecessors. Typical problems in the reversibility of synchronous
BFDS are the following two:

The t-predecessor problem, t ≥ 1. The problem asks if a configuration in a synchronous
BFDS has a t-th predecessor, i.e., a configuration from which t successive applications of
the updates produces the given configuration.
The t-Garden of Eden problem, t ≥ 0. The problem asks if a configuration in a synchronous
BFDS has a t-th predecessor that is a Garden of Eden.

Article [4] shows that the 1-predecessor problem is in P if the underlying graph is an
undirected graph with bounded tree-width and update functions are r-symmetric, but the
problem is NP-complete if the underlying graph is an undirected star graph and the update
functions are non-symmetric. With the use of incomplete (or degenerate) basis functions as
the function types, the computational complexity of the 1-predecessor problem shows a wide
variety: the problem is NP-complete if each update function is one of the 3-input OR and
the 2-input AND, NL-complete if each update function is one of the 2-input OR and the
2-input AND, is in AC0 if each update function is either OR only or AND only [9]. As for
the case where t = 2, the t-Garden of Eden problem is Σp

2-complete if each function is either
the 3-input OR or the 2-input AND, while the problem is NP-complete if the functions are
either OR only or AND only, and is in AC0 if the functions are either exclusively 2-input
OR or exclusively 2-input AND [9].

In this paper, we investigate the computational complexity of the aforementioned problems
where the update functions are all XOR, are all NXOR, or each function is chosen from
{XOR,NXOR}. We can view a synchronous BFDS over XOR and NXOR as a linear

MFCS 2020

76:4 Synchronous Boolean Finite Dynamical Systems on Directed Graphs over XOR Func.

transformation over Z2, and this connection makes the computational complexity problem
interesting. We first consider the reachability and path intersection problems. We show
that, while the reachability problem is in P and the path-intersection problem is in UP in
general, both problems are solvable in logarithmic space-uniform AC1 if the objects execute
permutations (that is, every node in the underlying graph has in-degree 1 and out-degree 1).
We then consider a variant of the problems where the update functions are still permutations
but the reachability and path-intersection are on some subset of the objects. We show that,
with this modification, the problems become NP-complete, and even Πp

2-complete if we ask
whether the reachability or the path-intersection holds for an arbitrary initialization of some
subset of the objets. We next consider a variant of the cycle length problem, which we
call the exact cycle length problem, where the question is whether or not there is an initial
configuration that produces a simple cycle with a specific length, and we show that this
variant is NP-complete. Lastly, we consider the t-predecessor and t-Garden of Eden problems.
We prove that the problems are solvable in polynomial time even if the value of t is presented
in binary, and the two problems are in logarithmic space-uniform NC2 if the value either is
constant or given in unary.

2 Preliminaries

In this section, we formally define terms and the problems on a synchronous BFDS.

2.1 Synchronous boolean finite dynamical systems
For an integer n ≥ 1, a synchronous boolean finite dynamical system (synchronous BFDS, for
short) F of n objects, v1, . . . , vn, which respectively hold boolean variables, x1, . . . , xn, and
synchronously update their variables by evaluating boolean functions f1, . . . , fn, respectively,
where the inputs to the functions are the values of x1, . . . , xn immediately before the
update. The values stored in the objects of a synchronous n-object BFDS constitutes a
state configuration (or simply a configuration). A configuration can be represented as an
n-dimensional boolean (or 0/1) vector. A synchronous BFDS thus can be naturally viewed
as a function that maps the set of n-dimensional boolean vectors to itself. A synchronous
BFDS commences its computation with a set of values stored in the objects. This initial set
of values is called an initial state configuration (or an initial configuration).

Given a configuration C and a variable x (which is stored in some unique object of the
system), C[x] is used to represent the value of x in the configuration x. The action of F
on a state configuration C is given by F(C) = (f1(C), f2(C), . . . , fn(C)). In other words, for
all i, 1 ≤ i ≤ n, F(C)[xi] = fi(C). Given an initial state configuration Cini, the synchronous
BFDS generates a sequence of state configurations by iterative applications of F : For all
t ≥ 0, the t-th element in the configuration sequence starting from Cini (we count from 0
with 0 representing the “initial”) is given by C = F t(Cini).

The update functions of a BFDS can depend only on part of the configurations, and thus,
can be expressed as a function of a smaller input dimension. In some literature, each update
function, fi, is expected to always depend on xi, but in the present paper, this restriction is
removed: fi is allowed not to depend on xi. The dependency among the objects of a BFDS
can be represented as a directed graph whose nodes are the objects of the system, and each
directed edge (u, v) represents that the function at v is dependent on the value at u.

Let B be a family of boolean functions. We say that a BFDS has template set B if the
function of each object comes from the family B. In this paper, we mainly consider the cases
where B is either {XOR} or {NXOR}, but in some places, the additional bases of {AND}
and {OR}.

M. Ogihara and K. Uchizawa 76:5

It is known and not hard to see that computing F t(Cini), given F , Cini, and t, is in P if B
is one of {AND}, {OR}, {XOR}, {NXOR}, and {XOR,NXOR} [12]:

I Lemma 1. If B is one of {AND}, {OR} and {XOR,NXOR}, we can compute F t(a) in
time polynomial in n+ log t.

2.2 The reachability and path-intersection problems of synchronous
boolean finite dynamical systems

We are concerned with two general properties of synchronous BFDS: the reachability problem
between two configurations in BFDS and the path-intersection problem generated from two
distinct initial configurations.

I Definition 2. Let B be a template set. The reachability problem for B asks, given a
synchronous BFDS F with template set B, a configuration Cini, and a configuration Cfin,
whether there exists t ≥ 0 such that F t(Cini) = Cfin.

I Definition 3. Let B be a template set. The path-intersection problem for B asks, given a
synchronous BFDS F with template set B, and configurations C1 and C2, whether there exist
s ≥ 0 and t ≥ 0 such that Fs(C1) = F t(C2).

We consider a variant of the above problems, where the equality between two configurations
is tested using a subset of objects. Let F be a synchronous BFDS, and R a subset of objects
in F . We say that D is a sub-configuration of C on R if D is obtained from C retaining only
those objects in R, and we say that C is a completion of D. We use the notation C|R to mean
that this is a vector constructed by selecting only those variables corresponding to R.

I Definition 4. Let B be a template set. The projection reachability problem for B asks, given
a synchronous BFDS F with template set B, a subset R of the objects of F , a configuration
Cini, and a configuration Cfin, whether there exists t ≥ 0 such that F t(Cini)|R = Cfin|R.

I Definition 5. Let B be a template set. The projection path-intersection problem for B
asks, given a synchronous BFDS F with template set B, a subset R of the objects of F , and
configurations C1 and C2, whether there exist s ≥ 0 and t ≥ 0 such that Fs(C1)|R = F t(C2)|R.

In addition to the above, we consider the universal projection reachability problem and
the universal projection path-intersection problem by considering the question of whether the
reachability or the path-intersection property holds for all possible initial value assignments
to a specified set of objects.

I Definition 6. The universal projection reachability problem is the problem of deciding,
given a BFDS F , an initial sub-configuration C of F , a final configuration D, and a projection
P , whether for all completions C′ of C, there exists some t such that F t(C′)|P = D|P .

I Definition 7. The universal projection path-intersection problem is the problem of deciding,
given a BFDS F , two initial sub-configurations C1 and C2 of F , projection P , whether for all
completions C′1 and C′2 of C1 and C2, there exist s and t such that Fs(C′1)|P = F t(C′2)|P .

2.3 The exact cycle length problem
Given a synchronous BFDS F and a configuration C of F , we say that there exists a cycle of
length l starting from C if Fk(C) 6= C for each 1 ≤ k < l and F l(C) = C. We denote by LF (C)
the length l of the cycle. We consider a variant of the cycle length problem as follows;

MFCS 2020

76:6 Synchronous Boolean Finite Dynamical Systems on Directed Graphs over XOR Func.

I Definition 8. Let B be a template set. The exact cycle length problem for B asks, given a
synchronous BFDS F with template set B, a sub-configuration Dini, and an integer l, whether
there exists a completion Eini of Dini such that LF (Eini) = l.

2.4 The predecessor problems
Given a synchronous BFDS F and a final configuration Cfin of F , we say that a configuration
C is a t-th predecessor of Cfin, t ≥ 1, if F t(C) = Cfin. Note that if F(Cfin) = Cfin, we have
F t(Cfin) = Cfin for any t ≥ 1. We will omit the word first in the case where t = 1. By
convention, we define the 0-th predecessor of Cfin to be Cfin itself. We say that a configuration C
is a Garden of Eden if C has no predecessor. We consider the predecessor and Garden-of-Eden
problem defined in the paper [9] as follows:

IDefinition 9. Let B be a template set. The t-PRED Problem for B asks, given a synchronous
BFDS F with template set B, a configuration Cfin, and an integer t, whether Cfin has a t-th
predecessor.

IDefinition 10. Let B be a template set. The t-GOE Problem for B asks, given a synchronous
BFDS F with template set B, a configuration Cfin, and an integer t, whether Cfin has a t-th
Garden of Eden, i.e., a t-th predecessor that is a Garden of Eden.

In the paper [9], the computational complexity of t-PRED and t-GOE are extensively studied
over various degenerative (i.e., insufficient to express all boolean functions) bases, where t is
a fixed constant or appears in unary as part of input. Note that in the above definitions, t is
given in binary and so the problems are more flexible than the ones defined in [9].

3 Reachability and Path-intersection Problems

In this section, we study the complexity of reachability and path-intersection problems of
synchronous BFDS. We start with a special case of synchronous BFDS in which the objects
execute permutations. In such systems, the nodes in the directed graphs representing the
system updates have in-degree 1 and out-degree 1.

3.1 Reachability and path-intersection in permutation systems
I Theorem 11. The reachability problem of permutational BFDS can be solved in polynomial
time.

Proof. Let F be a permutational BFDS with n objects. Let Cini be an initial configuration,
and Cfin a final configuration. The reachability problem asks whether there exists some integer
t ≥ 0 such that F t(Cini) = Cfin. Let MF be the matrix that represents this permutation.
The permutation that F executes is decomposed as the disjoint union of independent cycles.
Let r, 1 ≤ r ≤ n, be the number of the disjoint cycles of F . Let O1, O2, . . . , Or be the r
cycles. For each k, 1 ≤ k ≤ r, let ok be |Ok|, the length of Ok. Obviously, for all k, 1 ≤ k ≤ r,
1 ≤ ok ≤ n. Let G be the least common multiple of o1, . . . , or. There exists some t such that
F t(Cini) = Cfin if and only if
(*) there exists some t, 0 ≤ t ≤ G− 1, such that for each k, 1 ≤ k ≤ r, F t mod ok (Cini)|Ok

=
Cfin|Ok

.
Below, we will show a method for testing (*).

For each k, 1 ≤ k ≤ r, let Qk = {t mod ok | F t(Cini)|Ok
= Cfin|Ok

}. The set Qk is a
subset of [ok − 1] for all k, 1 ≤ k ≤ r. The question (*) is equivalent to whether there exists

M. Ogihara and K. Uchizawa 76:7

some value for t, 0 ≤ t ≤ G− 1, such that for all k, 1 ≤ k ≤ r, t mod ok is a member of Qk.
In other words, whether there is a solution to the system of modular equations:

(∀k, 1 ≤ k ≤ r)(∃a ∈ Qk) [t ≡ a (mod ok)] (1)

The reason that we use the existential quantifier in Eq. (1) is that the cardinality of Qk is not
necessarily 0 or 1. Obviously, if Qk has cardinality 0, then Eq. (1) has no solution, and so Cfin
is unreachable from Cini. If Qk has cardinality greater than 1, we can reduce Qk to a smaller
set so there is only one element in it as follows: Suppose Qk has more than one element. Let a
and b, a < b, be two members of Qk. Because both Fa(Cini) and Fb(Cini) are identical to Cfin
on Ok, Fb−a(Cfin) is equal to Cfin on Ok. Thus, for all a, b, c ∈ Qk, a+ |b− c| mod ok ∈ Qk.
This means that there is some divisor of ok, d, and some a, 0 ≤ a ≤ d− 1, such that Qk is
the set of all integers i, 0 ≤ i ≤ ok − 1, such that i ≡ a (mod d). For each k, 1 ≤ k ≤ r, such
that Qk has more than one element, let dk be the value of d and ak thus defined; for each
k, 1 ≤ k ≤ r, such that Qk has only one element, let dk = ok and ak be the unique element
in Qk.

Now Eq. (1) is equivalent to whether there is a solution to the system of modular equations:

(∀k, 1 ≤ k ≤ r)[t ≡ ak (mod dk)] (2)

Whether this system has a solution or not can be checked by testing whether for each pair
(k, k′), the equation for k is consistent with the equation for k′. The consistency between k
and k′ holds if and only if for the greatest common divisor s of dk and dk′ , whether ak ≡ ak′

(mod s).
Based upon the observation, we develop the following algorithm for testing the reachability.

1. Obtain the cycles, O1, . . . , Or, of the permutation represented by F .
2. Compute Q1, . . . , Qr.
3. Check if all of Q1, . . . , Qr are nonempty. If the check fails, reject the input immediately.
4. For each k such that Qk has only one element, compute dk and ak for the remaining

values for k as the unique element in Qk and ok.
5. For each k such that Qk has more than one element, compute ak as the smallest number

in Qk and dk as the difference between the first and the second smallest numbers in Qk.
6. For each pair (k, k′), 1 ≤ k < k′ ≤ r, compute s = gcd(dk, dk′), and test if ak ≡ ak′

(mod s). If the test passes for all (k, k′), accept; otherwise, reject.
It is easy to see that all these steps can be carried out in time polynomial in n. This proves
the theorem. J

It is possible to carry out the algorithm stated in the proof in logarithmic space and
with logarithmic-space uniform AC1. To simplify the computation, instead of counting the
number of distinct orbits, r, we will let each index j, 1 ≤ j ≤ n, represent the orbit starting
from j. In this manner, an orbit having multiple elements will be represented as many times
as there are elements in the orbit. However, for two elements appearing in the same orbit,
the sets Q are same, and so the overall solvability of the system of congruences is unchanged.

So, assume that with the possible redundancy, the number of the orbits, r, is equal to n, and
for all k, 1 ≤ k ≤ n, Ok is the orbit starting from k. Let Q denote the permutation represented
by F . For an arbitrary index j, 1 ≤ j ≤ n, consider an index sequence j,Q1(j),Q2(j),
Starting from j, the elements of this sequence can be generated one after another. In the
case of logarithmic-space computation, the generation can be carried by scanning the matrix
F . The smallest index m at which Qm(j) = j is the length of the orbit, oj , and the values

MFCS 2020

76:8 Synchronous Boolean Finite Dynamical Systems on Directed Graphs over XOR Func.

that appear as the elements are the members of the orbit. Thus, for each j, the number
of elements in the orbit containing j, for each j and for each h, whether h is a member
of the orbit containing j, and for each j, for each h, and for each s, whether h is the s-th
element of the orbit starting from j can be answered in logarithmic space. Since the iterative
permutation and the elements of the orbit can be generated iteratively, in logarithmic space
it is possible to answer whether a ∈ Qk for each a and for each k. Thus, it is possible to
compute, in logarithmic space, ak and dk. For each pair, (k, k′), of indexes, we then compute
ak and dk as well as ak′ and dk′ in binary, and then compute the greatest common divisor, s,
of dk and dk′ , and check whether ak ≡ ak′ (mod s). Since the binary numbers have O(logn)
bits, the test can be carried out in logarithmic space. Hence, the reachability problem is
solvable in logarithmic space.

To show that the circuit complexity of the reachability problem is logarithmic space-
uniform AC1, first note that the matrix multiplication of the permutation matrix can be
computed in AC0, and so their powers up to the n-th power can be computed in AC1 via
repeated squaring. Once these permutation matrices have been computed, Step 1 of the
algorithm (obtaining the orbits) can be executed by multiplying these matrices by 0/1-vectors
with only one 1 appearing in them. The circuit may use an n-bit sequence to represent the
membership for each orbit (therefore, n2 bits). Since these multiplications can be carried
out in parallel, this step requires AC0. For Step 2, by multiplying the matrices by Cini and
comparing the results with Cfin on the orbits, Qk can be obtained in parallel. Again, the
representation can be an n-bit sequence for each orbit (a total of n2 bits) and the computation
requires AC0. After this, if for some k, Qk is empty, then the circuit produces the output of
0; otherwise, ak and dk can be computed by first checking whether Qk has only one element
and then if more than one element exists, as the first element and the difference between the
second and the first. Again, this can be carried out in AC0. Compatibility testing is the final
step of the algorithm. We imagine that the circuit is equipped with a module for all possible
compatibility tests. There are only O(n4) possible combinations of two residue-modulus
pairs. Given two integers d and d′ represented in binary, their greatest common divisor can
be computed in O(logn) space using Euclid’s algorithm, and so precomputing the tests for n
requires O(logn) space. It is not hard to see that the other components of the circuit can be
computed in O(logn) space as well. Hence, the problem is in logarithmic space-uniform AC1.

We have thus proven:

I Theorem 12. The reachability problem of permutational BFDS belongs to logarithmic
space and the logarithmic space-uniform AC1.

Since permutations are reversible, the question of whether the paths starting from two
initial configurations intersect on a permutational BFDS is equivalent to the question of
whether the path starting from one of the two initial configurations reaches the other initial
configuration. Thus, we have the following corollary:

I Corollary 13. The path-intersection problem of permutational BFDS belongs to P, the
logarithmic space, and the logarithmic space-uniform AC1.

3.2 The reachability and path-intersection problems with projection
and universality

In this section, we consider the variants of the reachability and path-intersection problems,
and show their hardness. The proofs are omitted.

M. Ogihara and K. Uchizawa 76:9

I Theorem 14. The projection reachability problem of synchronous BFDS with XOR as
template is NP-complete.

We can show that the above proposition holds with OR in place of XOR. Then, by
exchanging the role between 0 and 1 in the proof for OR, we obtain that the proof holds for
AND.

Also, returning to the XOR proof, consider adding two new objects, a and b, whose values
are initially 1, whose update functions are NXOR of a and b, and changing all the other
update functions of the form XOR(u1, . . . , uk) to NXOR(u1, . . . , uk, a), we obtain that the
result holds for NXOR.

I Corollary 15. The projection reachability problem of BFDS is NP-complete with any of
OR, AND, and NXOR as the basis.

As before, the above results hold for path-intersection as well.

I Corollary 16. The projection path-intersection problem of synchronous BFDS is NP-
complete with one of XOR, OR, AND, and NXOR as the basis.

We can show that the universal projection reachability problem is Πp
2-complete.

I Theorem 17. The universal projection reachability problem is Πp
2-complete with the basis

of XOR.

As before, the reachability problem can be viewed as a special case of path intersection
problem.

I Corollary 18. For synchronous BFDS with template chosen from {XOR}, {NXOR}, {OR},
and {AND}, both the universal projection reachability problem and the universal projection
path-intersection problem are Πp

2-complete.

4 Cycle Length Problems

In this section, we show that, while the cycle length problem is known to be in UP ∩ coUP
and in BQP, the exact cycle length problem is NP-complete.

I Theorem 19. The exact cycle length problem is NP-complete if B = {XOR,NXOR}.

Proof. We reduce 3-occurrence 3SAT to the problem. Let φ be a given 3CNF formula,
where the number of appearances of each variable is limited to three. Suppose φ consists
of n variables x1, x2, . . . , xn and m clauses C1, C2, . . . Cm, each of which has at most three
literals (either lj,1 and lj,2 or lj,1, lj,2 and lj,3). We say that a literal lj,k is the first and
second positive (resp., negative) literal of xi.

We first construct the desired BFDS F , Dini and integer l such that F has a l-cycle
starting from Eini if and only if φ is satisfiable.
[Construction of F , P , Dini and l]

For each j ∈ [m], we denote by pj the jth odd prime. By the Prime Number Theorem
(see, e.g., [7]), pn = O(n logn) = o(n2), and so |pn| = O(logn). Thus, using the trial division,
p1, . . . , pn can be found in polynomial time. For j ∈ [m] and k ∈ [3], we construct a BFDS
Mj,k as follows: Mj,k has pj objects xj,k,0, xj,k,1 . . . , xj,k,pj−1 computing XORs, and compose
a cycle:

F [xj,k,h] = xj,k,h−1 mod pj
. (3)

MFCS 2020

76:10 Synchronous Boolean Finite Dynamical Systems on Directed Graphs over XOR Func.

We construct F by combining these Mj,k as follows. For each i ∈ [n], if there are either
two positive literals or two negative literals of xi, denoted by lj,k and lj′,k′ , we add an object
yi computing XOR such that

F [yi] = yi ⊕
pj−1⊕
h=0

xj,k,h ⊕
pj′−1⊕
h=0

xj′,k′,h. (4)

In addition, for a pair of the first positive literal lj,k of xi and the first negative literal lj′,k′

of xi, we add an object zi computing NXOR such that

F [zi] =

zi ⊕
pj−1⊕
h=0

xj,k,h ⊕
pj′−1⊕
h=0

xj′,k′,h

. (5)

This completes the construction of F . We define P as a set of all the objects in F other than
xj,k,0 for every 1 ≤ j ≤ m and 1 ≤ k ≤ 3. We set all the values in P to zeros. Thus, for any
extension Eini of Dini, it holds that for any j ∈ [m], k ∈ [3] and t ≥ 1,

pj−1∑
h=0
F t(Eini)[xj,k,h] = Eini[xj,k,0] ∈ {0, 1}. (6)

We finally define l =
∏m

j=1 pj .
Since Mj,k’s are disjoint cycles and do not interact with each other, we have the following

claim.

B Claim 20. Let S(Eini) = {j | ∃k, Eini[xj,k,0] = 1}. If there exists i such that either
F(Eini)[yi] = 1 or F(Eini)[zi] = 1 holds, then LF (Eini) is even; and, otherwise, LF (Eini) =∏

j∈S(Eini) pj .

Proof. Suppose there exists i ∈ [n] such that F(Eini)[yi] = 1 holds. Then Eq. (4) implies
that Eini[xj,k,0] 6= Eini[xj′,k′,0], where j, j′, k, k′ are the ones specified in Eq. (4). Thus, Eq. (6)
implies that F t(Eini)[yi] = 1 for odd t while F t(Eini)[yi] = 0 for even t. Therefore, LF (Eini)
is even. We can similarly verify the claim for the case where F(Eini)[zi] = 1.

Suppose F(Eini)[yi] = F(Eini)[zi] = 0 for every i ∈ [n]. Then Eqs. (4)-(6) imply that
F t(Eini)[yi] = F t(Eini)[zi] = 0 for any i ∈ [n] and any positive integer t. Moreover, for every
j ∈ [m]\S(Eini), we have F t(Eini)[xj,k,0] = F(Eini)[xj,k,1] = · · · = F(Eini)[xj,k,pj−1] = 0 for
every k ∈ [3]. Thus, LF (Eini) is determined by Mj,ks for j ∈ S(Eini). Since Mj,k are disjoint
cycles of different primes, we have LF (Eini) =

∏
j∈S(Eini) pj . J

[⇐] We here prove that if φ is satisfiable, then there exists an extension Eini of Dini such that
LF (Eini) =

∏
j∈[m] pj .

Let α = (α1, α2, . . . , αn) ∈ {0, 1}n be a satisfying assignment for φ. We define Eini
as follows: For every j ∈ [m], and k ∈ [3], Eini[xj,k,0] = 1 if either “lj,k is a positive
literal of xi and αi = 1” or “lj,k is a negative literal of xi and αi = 0,” and otherwise,
Eini[xj,k,0] = 0. Eqs. (4)-(6) imply that F(Eini)[yi] = F(Eini)[zi] = 0 for every i ∈ [n], and
hence LF (Eini) =

∏
j∈[m] pj , as desired.

[⇒] We prove that if there exists an extension Eini of Dini such that LF (Eini) = l then φ is
satisfiable.

M. Ogihara and K. Uchizawa 76:11

Since LF (Eini) = l, the claim implies that S(Eini) = {p1, p2, . . . , pm}, and hence, for
every j, 1 ≤ j ≤ m, there exists kj , 1 ≤ kj ≤ 3, such that Eini[xj,kj ,0] = 1. We thus define
α = (α1, α2, . . . , αn) ∈ {0, 1}n as follows: For each i, 1 ≤ i ≤ n,

αi =
{

1 if lj,k is a positive literal and Eini[xj,kj ,0] = 1;
0 if lj,k is a negative literal and Eini[xj,kj ,0] = 1.

Since l is not even, the claim implies that F(Eini)[yi] = F(Eini)[zi] = 0 for every i ∈ [n], and
hence we can set αi without any confliction. Since αi = 1 if lj,kj is a positive literal, and
αi = 0 if lj,kj

is a negative literal, α clearly satisfies the literal lj,kj
for every j ∈ [m]. J

5 Predecessor Problems

In this section, we show that the t-predecessor problem and the t-Garden of Eden problem
can be answered in polynomial time.

I Theorem 21. The t-predecessor problem and the t-Garden of Eden problem are solvable in
polynomial time if the basis B is {XOR,NXOR}, where the value of t can be given in binary
as part of the instance.

Proof. We first describe our algorithms for the two problems where the basis contains only
XOR. Suppose we are given a synchronous BFDS F of n objects x1, x2, . . . xn, a configuration
Cfin, and an integer t.

We can think of F as an n× n 0/1 incidence matrix MF whose i-th row corresponds to
the update function fi in such a manner that the j-th entry of the row is 1 if and only if
fi takes xj as one of its inputs. By viewing a configuration as an 0/1 column vector, the
application of the system for one step can be viewed as multiplying MF by the vector from
right, with the arithmetic carried out in Z2. The t-predecessor problem can be restated as
the question of whether the linear system of equations:

M t
FD = Cfin (7)

has a solution, where D is a column vector of length n. This needs a bit of explanation. Given
a solution D to the system of linear equations, we have that [D,MF (D),M2

F (D), . . . ,M t
F (D)]

is a sequence of configurations that takes D to Cfin in t steps, and so D is a t-th predecessor of
Cfin. Conversely, given a t-th predecessor, E , of Cfin, there is a sequence [Cfin, E1, E2, . . . , Et−1, E]
that takes Cfin back to E , where applying MF to an element excluding Cfin in the sequence
produces the element immediately to the left in the sequence. This means that E , after
applying MF t times consecutively, becomes Cfin, and so E is a solution to the system.

To answer the question of whether the system has a solution, we first compute M t
F by the

iterative squaring method. The calculation can be done in polynomial time (in the length of
the input) even if t is given in binary.

We then check the solvability of the system by converting the system so that the matrix
is in a row echelon form; if a row is not all 0, at the position of its leading 0, all the other
rows have 0. This conversion can be carried out using the Gaussian Elimination method. By
concurrently applying the operation on the vector, we obtain the equivalent system:

HD = C′ (8)

where H is in a row echelon form. Checking whether this system has a solution is simple:
the system has a solution if and only if the column vector C′ has a 0 for each all-0 row of the

MFCS 2020

76:12 Synchronous Boolean Finite Dynamical Systems on Directed Graphs over XOR Func.

matrix H. Since Gaussian Elimination can be carried out in polynomial time, this implies
that the t-predecessor problem is solvable in polynomial time.

The t-Garden of Eden problem asks whether there is a solution of Eq. (7), S, such that
MFx = S does not have a solution. Since Eq. (8) is an equivalent system to Eq. (7), we can
instead ask whether there is a solution, S, of the equivalent system for which MFx = S has
no solution. Clearly, t-th Garden of Eden exists only if t-th predecessor exists. Thus, the
instance in which Eq. (7) has no solution can be outright asserted not have a t-th Garden
of Eden. If the equation has a solution, each solution can be described as a vector whose
elements are either constants or linear functions as follows:
Group 1 If a row r of H has a leading 1 at position i and the remainder of the row is all 0,

xi = bi, where bi is the i-th element of the vector C′.
Group 2 If a row r of H has a leading 1 at position i and the remainder of the row is not all

0, xi = xj1 + · · ·+ xjk
+ bi, where j1, . . . , jk are the positions of 1’s on row r other than i

and bi is the i-th element of the vector C.
Group 3 If xi does not receive an assignment through either of the above, i.e., no rows of

the echelon form has leading 0 at position i, then xi remains as an independent variable;
i.e., xi = xi.

Let S be the vector thus determined. The vector S can be expressed as the product of an
n×(n+1) 0/1 matrix, Q and an n+1 dimensional column vector X = (x1, . . . , xn, 1)T . More
specifically, in Q, the first n columns represent the appearance of x1, . . . , xn in the solution
in the n rows and the last column represents the value of the constants bi’s. In other words,
if xi = xj1 + · · ·+ xjk

+ bi is the solution for xi, then row i of the n× (n+ 1) matrix Q has 1
at the positions j1, . . . , jk and at the last position if bi is 1. We apply Gaussian Elimination
on MF for converting it to a row echelon form and apply the operations concurrently to the
matrix Q, to obtain a new equation:

M ′D = Q′X (9)

As before, a solution to Eq. (8) can be configured so that the solution has no predecessor if
and only if there is a row index i such that the i-th row in M ′ is all 0 while the i-th row
in Q′ contains a 1. This condition can be tested once the matrix Q has been obtained and
the echelon form has been computed. Since Gaussian Elimination can be carried out in
polynomial time, we have that the t-Garden of Eden problem can be solved in polynomial
time.

For the case where B = {XOR,NXOR}, we consider F as n×(n+1) matrixM ′F consisting
of MF together with a column vector of length n whose i-th element is one if fi is NXOR;
and zero, otherwise. Let C′fin be a column vector consisting of Cfin followed by a single element
one. We then apply the above procedure based on the linear system (M ′F)tD = Cfin. This
proves the theorem. J

The problem is solvable even in logarithmic space-uniform NC2.

I Theorem 22. With the basis {XOR,NXOR}, the t-predecessor problem and the t-Garden
of Eden problem are solvable in logarithmic space-uniform NC2 if t is a constant, t is given
in unary, or M t

F is given as part of instance.

References
1 C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns.

Reachability problems for sequential dynamical systems with threshold functions. Theoretical
Computer Science, 295(1–3):41–64, 2003.

M. Ogihara and K. Uchizawa 76:13

2 C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E.
Stearns. Complexity of reachability problems for finite discrete dynamical systems. Journal of
Computer and System Sciences, 72(8):1317–1345, 2006.

3 C. L. Barrett, H. B. Hunt III, M. V. Marathe, D. J. Rosenkrantz S. S. Ravi, R. E. Stearns, and
M. Thakur. Predecessor existence problems for finite discrete dynamical systems. Theoretical
Computer Science, 386(1–2):3–37, 2007.

4 C. L. Barrett, H. B.Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E.
Stearns. Predecessor and permutation existence problems for sequential dynamical systems.
In Proceedings of Discrete Mathematics and Theoretical Computer Science, pages 69–80, 2003.

5 C. L. Barrett, H. B.Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns, and
P. T. Tosic. Gardens of eden and fixed points in sequential dynamical systems. In Proceedings
of Discrete Mathematics and Theoretical Computer Science, pages 95–110, 2001.

6 C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of simulation II:
Sequential dynamical systems. Applied Mathematics and Computation, 107(2-3):121–136,
2000.

7 G. H. Hardy and E. M. Wrigth. An Introduction to the Theory of Numbers. 6th edition. In R.
Heath-brown et al. (Eds.). Oxford University Press, 2008.

8 A. Kawachi. Personal communication, 2016.
9 A. Kawachi, M. Ogihara, and K. Uchizawa. Generalized predecessor existence problems for

boolean finite dynamical systems on directed graphs. Theoretical Computer Science, 762:25–40,
2019.

10 S. Kosub. Dichotomy results for fixed-point existence problems for boolean dynamical systems.
Mathematics in Computer Science, 1(3):487–505, 2008.

11 S. Kosub and C. M. Homan. Dichotomy results for fixed point counting in boolean dynamical
systems. In Proceedings of the Tenth Italian Conference on Theoretical Computer Science,
pages 163–174, 2007.

12 M. Ogihara and K. Uchizawa. Computational complexity studies of synchronous boolean finite
dynamical systems on directed graphs. Information and Computation, 256:226–236, 2017.

13 D. J. Rosenkrantz, M. V. Marathe, H. B. Hunt III, S. S. Ravi, and R. E. Stearns. Analysis
problems for graphical dynamical systems: A unified approach through graph predicates. In
Proceedings of the International Conference on Autonomous Agents and Multiagent Systems,
pages 1501–1509, 2015.

MFCS 2020

	Introduction
	Preliminaries
	Synchronous boolean finite dynamical systems
	The reachability and path-intersection problems of synchronous boolean finite dynamical systems
	The exact cycle length problem
	The predecessor problems

	Reachability and Path-intersection Problems
	Reachability and path-intersection in permutation systems
	The reachability and path-intersection problems with projection and universality

	Cycle Length Problems
	Predecessor Problems

