
Generalized Predecessor Existence Problems for
Boolean Finite Dynamical Systems
Akinori Kawachi1, Mitsunori Ogihara2, and Kei Uchizawa3

1 Graduate School of Engineering, Osaka University, Osaka, Japan
2 Department of Computer Science, University of Miami, Coral Gables, FL, USA
3 Graduate School of Science and Engineering, Yamagata University, Yamagata,

Japan

Abstract
A Boolean Finite Synchronous Dynamical System (BFDS, for short) consists of a finite number of
objects that each maintains a boolean state, where after individually receiving state assignments,
the objects update their state with respect to object-specific time-independent boolean functions
synchronously in discrete time steps. The present paper studies the computational complexity
of determining, given a boolean finite synchronous dynamical system, a configuration, which is
a boolean vector representing the states of the objects, and a positive integer t, whether there
exists another configuration from which the given configuration can be reached in t steps. It was
previously shown that this problem, which we call the t-Predecessor Problem, is NP-complete
even for t = 1 if the update function of an object is either the conjunction of arbitrary fan-in or
the disjunction of arbitrary fan-in.

This paper studies the computational complexity of the t-Predecessor Problem for a variety
of sets of permissible update functions as well as for polynomially bounded t. It also studies
the t-Garden-Of-Eden Problem, a variant of the t-Predecessor Problem that asks whether a
configuration has a t-predecessor, which itself has no predecessor. The paper obtains complexity
theoretical characterizations of all but one of these problems.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Computational complexity, dynamical systems, Garden of Eden, prede-
cessor

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.8

1 Introduction

A dynamical system is a time-dependent network of objects that models evolution, where
each object holds a state value that is an element of a state set. The configuration of the
system is the collective state of the objects and is the vector that assembles the states of
all the objects in a certain order. Given an initial configuration, the system evolves over
time through state update, where the state of an object is updated by a function that takes
as input state values of some nodes, possibly its own state value. Variants of dynamical
systems can be defined by considering the state set (binary, discrete, countably infinite, and
uncountable), the types of permissible update functions, whether the number of states is
fixed, and the order in which the updates are performed (either in a fixed order or all at the
same time).

The simplest dynamical systems are those with the boolean state set, a fixed finite number
of objects, and synchronous updates, where the state update function does not depend on
the time distance from the start. These systems are called boolean finite dynamical systems

© Akinori Kawachi, Mitsunori Ogihara, and Kei Uchizawa;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/141727362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

Figure 1 Configuration space with a loop, a fixed point, and flows into them. Dots represent
configurations, and arrows do transitions. A node of in-degree 0 represents a Garden of Eden.

(BFDS) [1]. Quite often, the BFDS model is further simplified by assuming that the update
functions are chosen from a collection of templates, such as the exclusive-or, the negation,
the conjunction, and the disjunction.

Given a BFDS F of n objects, the number of possible configurations of the system is 2n.
Due to the assumptions that the updates are synchronized and that the update function
does not change over time, the imposed finiteness of the system configuration space leads to
important facts: for each initial configuration a, the system starting from a either converges
to a fixed point or enters some loop having length ≥ 2 and that the convergence or the
entrance to a loop takes place within 2n steps from departure (see Figure 1). These facts
mean that the dichonomical fate of an initial configuration in a BFDS can be tested in the
linear space. In fact, the fate-determination problem (or the convergence problem) as well
as its variant, the reachability problem (whether a configuration be reached from another
configuration with respect to a given BFDS), is PSPACE-complete if a complete boolean
basis is available for building update functions and the complexity is lower for both problems
otherwise [3]. The BDFS offers a rich theory not only in terms of fixed points, reachability,
and cycles, but also in terms of the reversal, that is, the action of going back in time starting
from a given configuration. Since the system changes two distinct configurations the same
configuration with a single update, so a given configuration may have multiple predecessors.
Also, there may exist configurations without predecessors. We call such a configuration
Garden of Eden (GOE) (see Figure 1).

If the update functions are each polynomial time computable, which is indeed the case
where the functions are chosen from a predetermined set of templates, testing whether a
given configuration of a BFDS has a predecessor can be answered in NP, and thus, whether
the configuration is a GOE can be answered in coNP. In fact, it is NP-complete to decide
whether a configuration is not a GOE [2]. This paper makes a deeper investigation into this
problem by asking how much simplification can be given the template set for update functions
to retain this completeness. We show: if the templates are either only conjunction or only
disjunction the GOE problem is in AC0; if the templates are the two-fan-in conjunction
and the two-fan-in disjunction, then the GOE problem is NL-complete; if the templates are
either the combination of the two-fan-in conjunction and the three-fan-in disjunction or the
combination of the two-fan-in disjunction and the three-fan-in conjunction, then the GOE
problem is coNP-complete.

We generalize the GOE Problem further in two ways. First, for an integer t ≥ 1, we
ask whether we can go back from a given configuration successively t times, by cleverly
choosing at each time one of the possible predecessors, if any at all. We call this problem the
t-Predecessor Existence Problem (the t-PRED Problem, for short). Second, for an integer

A. Kawachi, M. Ogihara, and K. Uchizawa 8:3

t ≥ 0, we ask whether we can go back from a given configuration successively t times and
arrive at a GOE, by cleverly choosing at each time one of the possible predecessors, if any at
all. We call this problem the t-Garden Of Eden Existence Problem (the t-GOE Problem,
for short). The GOE Problem we mentioned earlier is indeed the 0-GOE Problem in this
extension. It is easy to see that the 1-PRED Problem is exactly complementary to the 0-GOE
Problem; but, for t ≥ 2, the t-PRED is not necessarily complementary to the (t− 1)-GOE
Problem.

In this paper we ask the complexity of these two extensions with the functions restricted
to be disjunction and conjunction. Except for the 1-GOE Problem with 2-fan-in disjunction
and 2-fan-in conjunction, we obtain complete characterization of the constant-bounded as
well as the polynomial-bounded t-PRED Problem and t-GOE Problem for all the templates
consisting of conjunction and disjunction (see Table 1 in Section 2).

We note here that the papers [5, 6] show that the problem of computing fixed points
in a BFDS exhibits a curious dichotomy between P and #P-complete and that [8] studies
the problem of calculating the length of a cycle that an initial configuration is eventually
taken to, and shows that the problem is polynomial-time solvable for some template sets,
computable in UP for some, and PSPACE-complete for some. Along with these prior papers,
our paper shows BFDS offers a rich theory of computational complexity.

This paper is organized as follows: In the next section we go over the definitions and
prove some useful lemmas and propositions. We then show the results on the predecessor
existence problems in Section 3 and the results on the Garden of Eden problems in Section 4.
We will conclude the paper in Section 5.

2 Preliminaries

For an integer n ≥ 1, a synchronous boolean finite dynamical system (synchronous BFDS, for
short) F of n objects consists of n variables x1, . . . , xn and n boolean functions (f1, f2, . . . , fn)
such that for each i, 1 ≤ i ≤ n, fi is a boolean function that takes input from x1, . . . , xn. A
state configuration a (or simply a configuration) of F is an n-dimensional boolean vector
and for each variable x, a[x] ∈ {0, 1} represents the component of a corresponding to x.
The action of F on an state configuration x is defined by: F(x) = (f1(x), f2(x), . . . , fn(x)).
In other words, the elements of F(x) are obtained by applying the n boolean functions
f1, . . . , fn concurrently on the variables x1, . . . , xn.

In the remainder of the paper, boolean dynamical systems are defined without giving an
explicit ordering among the objects. We will use the notation F [x] to mean the function of
the dynamical system F for the object x.

Given an initial state configuration x0, the synchronous BFDS generates a sequence
of state configurations by iterative applications of F : For all t ≥ 0, xt+1 = F(xt), where
xt = (xt

1, x
t
2, . . . , x

t
n). In other words, for all t ≥ 0, xt = F t(x0).

Although we use the notation to mean that all the n variables are fed to each fi, in reality
some fi may depend on a proper subset of the variables. Let g be a boolean function possibly
with arity less than n. We say that fi has template g to mean that fi is equivalent to g with
input variables properly chosen from x1, . . . , xn. Given a collection of boolean functions, we
say that F has template set B if each function in F has template in B. We are interested in
the following functions as template:

id: this is the identity function with only one input that outputs the value of its input
without changing it;
ANDk, k ≥ 1: this is the conjunction of arity k;
ORk, k ≥ 1: this is the disjunction of arity k.

MFCS 2017

8:4 Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

Note that for all k ≥ 2 and m < k ANDk (ORk, respectively) can be used as a template for
ANDm (ORm, respectively) by repeating some of the inputs. Note also that both AND1 and
OR1 are identical to id.

We are interested in the following template sets:
Bid = {id},
B2OR = {OR2} and B2AND = {AND2},
BOR = {ORk | k ≥ 1} and BAND = {ANDk | k ≥ 1},
B2OR,2AND = {OR2,AND2},
B3OR,2AND = {OR3,AND2} and B2OR,3AND = {OR2,AND3}.

Given a synchronous BFDS F and a configuration a of F , we say that another configura-
tion b is the t-th predecessor of a, t ≥ 1, if F t(b) = a. We will omit the word first in the
case where t = 1. By convention, we define the 0-th predecessor of a to be a itself. We say
that a is a Garden of Eden if a has no predecessor. We then consider the following problems.

Let t, t ≥ 1, be a fixed constant. Given a synchronous BFDS F with template set B and
a configuration a, the t-PRED Problem for B asks whether a has a t-th predecessor.
Let t, t ≥ 0, be a fixed constant. Given a synchronous BFDS F with template set B, a
configuration a, the t-GOE Problem for B asks whether a has a t-th Garden of Eden,
i.e., a t-th predecessor that is a Garden of Eden.

We also consider the polynomial version of the two problems.
Given a synchronous BFDS F with template set B, a configuration a, and p presented in
unary as 1p, the Poly-PRED Problem for B asks whether a has a p-th predecessor.
Given a synchronous BFDS F with template set B, a configuration a, and p presented in
unary as 1p, the Poly-GOE Problem for B asks whether a has a p-th Garden of Eden.

Note that as long as the predecessor existence and Garden of Eden problems go, by exchanging
simultaneously between AND and OR and between true and false, any complexity result
with respect to BAND holds with respect to BOR. The same relation holds between B2AND
and B2OR and between B2OR,3AND and B3OR,2AND.

The 1-PRED and 0-GOE are generally called the Predecessor Existence Problem and
the Garden-of-Eden Problem, respectively, and have been well studied. We note here that
the synchronous BFDS often assumes that for each object its update function takes its state
as part of the input; that is, xi is one of the inputs to fi. In this paper we remove that
restriction, since if for all i it holds that fi is either disjunction or conjunction whose inputs
include xi, the system F is monotone and converges within n steps, which gives little room
for exploration.

For GOE Problem, in [2] it is shown that for the sequential dynamical systems (that
is, the systems in which updates are performed one variable at a time with respect to a
predetermined order), t-PRED is NP-complete even if the template set consists of AND’s
and OR’s of any arity. The proof of this result does not directly imply the same result for
the synchronous dynamical system.

In the case of sequential and synchronous dynamical systems, we have the following:

I Proposition 1 ([2]). The Poly-PRED Problem is solvable in polynomial time if B is one
of the following: (i) ANDs of any fan-in and their negation, (ii) ORs of any fan-in and their
negation, and (iii) XORs of any fan-in and their negation.

For GOE Problem, the following is known:

I Proposition 2 ([2]). 0-GOE Problem is coNP-complete in general, but is solvable in
polynomial time if 1-PRED Problem is solvable in polynomial time.

A. Kawachi, M. Ogihara, and K. Uchizawa 8:5

Table 1 The results from this paper. The left panel is for the PRED Problems and the right
panel is for the GOE problems. For “?” it is only known that the problem is NL-hard and in NP.
The “-C” stands for “-complete”.

PRED t

1 ≥ 2 poly
Bid

AC0
DL-C

B2OR, B2AND NL-C
BOR, BAND

B2OR,2AND NL-C
NP-CB2OR,3AND

B3OR,2AND

GOE t

0 1 ≥ 2 poly
Bid AC0 DL-C

B2OR, B2AND NL-C
BOR, BAND NP-C
B2OR,2AND NL-C ?
B2OR,3AND coNP-C Σp

2-CB3OR,2AND

Table 1 summarizes the results shown in this paper.
We prove the following lemma, which will be useful in proving results on BOR and B2OR.

I Definition 3. Let F be an n-variable synchronous BFDS, let a be a configuration of F ,
and let t ≥ 1 be an integer. Define a directed graph G[F ,a, t] = (V,E) with V partitioned
into two groups K and L as follows:

V = V0 ∪ . . . ∪ Vt and for each i, 0 ≤ i ≤ t, Vi = {vi,1, · · · , vi,n};
E = {(vi,p, vi+1,q) | 0 ≤ i ≤ t− 1 and the function for xp takes input from xq }.
L = L0∪ . . .∪Lt, where L0 = {v0,j | the value of xj in a is false } and for each i, 1 ≤ i ≤ t,
Li is the set of all nodes in Vi that are reachable from L0.
K = K0 ∪ . . . ∪Kt and for each i, 0 ≤ i ≤ t, Ki = Vi − Li; specifically, K0 = {v0,j | the
value of xj in a is true }.

I Lemma 4. Let F be an n-variable synchronous BFDS whose template set is the OR
function. Let t ≥ 1 and a a configuration of F . Let G = (V,E) = G[F ,a, t] be as defined in
the above and (K,L) be the partition of V . Then
1. a has a t-th predecessor if and only if for each u ∈ K0 there is a path to a node in Kt

that does not visit any node in L.
2. a has a t-th Garden-of-Eden predecessor if and only if there exist some

M = {vt,j1 , . . . , vt,jm} ⊆ Vt and vt,j0 ∈ Kt\M(= Vt − (Lt ∪M)) such that:
1. for each u ∈ K0 there is a path to a node in Kt \M that does not visit any node in

L ∪M ,
2. each input of the function for xj0 is an input of the function for one of xj1 , · · · , xjm

,
and

3. the cardinality of M is no greater than the arity of the function for xj0 .

Proof. (The Predecessor Case) Suppose the condition in the lemma is satisfied. For
each u ∈ K0 choose one L-free path to some node in Kt. For each i, 0 ≤ i ≤ t, define
Bi = {vi,j | vi,j appears on one of the chosen paths }. Then Bi ⊆ Ki for all i. For each
i, 0 ≤ i ≤ t, define configuration bi by setting the value of a variable xj true if vi,j ∈ Bi

and false otherwise. Then b0 = a and for all i, 0 ≤ i ≤ t− 1, F(bi+1) = bi. Thus, bt is a
t-th predecessor. On the other hand, suppose a has a t-th predecessor. Let b0 = a. Select
configurations b1, . . . ,bt so that for each i, 0 ≤ i ≤ t − 1, bi+1 is a predecessor of bi. For
each i, 0 ≤ i ≤ t, let Si = {vi,j | bi assigns true to xi,j }. Then S0 = K0. Because of the
predecessor relations, for each i, 1 ≤ i ≤ t, Si ⊆ Ki and each node u ∈ Si has at least one
incoming edge from Si−1. Thus, the property holds for F , a, and t.

MFCS 2017

8:6 Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

(The Garden Of Eden Case) Suppose that the conditions stated in the lemma hold. As
before for each u ∈ K0 choose a path that is free on M ∪ L but ensure that one of the paths
arrive at some node in Kt \M . Then, following the argument as before, the configurations
induced by the path nodes form a series of t configurations arriving at a. For bt, the value
of xj0 is true and the values of xj1 , . . . , xjm

are false. Each input of xj0 is also an input of
one of xj1 , . . . , xjm . Any predecessor of bt must assign true to one of the inputs of xj0 and
must assign false to all of the inputs of xj1 , . . . , xjm

, but that is not possible. Thus, there is
no predecessor of bt.

On the other hand, suppose that there is a t-th predecessor of a that is a Garden of Eden.
Select such one and define b0, . . . ,bt and S0, . . . , St as before. We have, as we have observed
previously, for all i, 0 ≤ i ≤ t, Si ⊆ Ki, and each node in S0 ∪ · · · ∪ St is along an L-free
path from K0 (which is equal to S0) to St. Let R be the variables that supply input to the
variables corresponding to the nodes in Vt − St. In any predecessor of bt, the value of each
variable in R must be false while each variable in X −R can be set to true if needed. Then,
that bt is a Garden of Eden implies that there is some variable u ∈ St all of whose input
belong to R. Select one such u and for each input h of u, select a variable R that takes input
from h. Construct M by placing the chosen variables from R. Then u and M satisfy the
property in question. J

We have straightforward upper bounds on the predecessor and Garden-Of-Eden problems.

I Proposition 5 ([2]). Suppose the template set B consists only of polynomial-time computable
boolean functions. Then the Poly-PRED Problem is in NP.

I Proposition 6. Suppose the template set B consists only of polynomial-time computable
boolean functions. Then the Poly-GOE Problem is in Σp

2.

The following proposition is useful to reduce the predecessor problems to Garden-Of-Eden
problems.

I Proposition 7. Given a synchronous BFDS F , its configuration a, and t ≥ 1, we can add
t+ 2 variables to F and a to create a new BFDS F ′ and a′ so that:

if a has a t-th predecessor in F , then a′ has a t-th predecessor in F ′ and none of its t-th
predecessors have a predecessor; and
if a does not have a t-th predecessor in F , then a′ does not have a t-th predecessor in F ′.

Proof. Let F , a, and t be given. Introduce t + 2 variables e0, . . . , et+1. We define the
function of e0 to be id(e0) and the function for ei, 1 ≤ i ≤ t+ 1, to be id(ei−1). This is F ′.
We then add to a the values of ei as all false except et+1. Then, for each i, 1 ≤ i ≤ t, the i-th
predecessor of the additional part has false for e0, . . . , et−i and true for et−i+1. Specifically
we have that the t-th predecessor on this part has false for e0 and true for e1. Since e0 and
e1 take input from e0 and is the identify function, clearly, such a t-th predecessor cannot
have a predecessor. Since the new variables and functions are disjoint with those in the
original, the new part does not affect the invertibility of the original part. This proves the
proposition. J

The last general result we present in this section shows that if a predecessor problem with
a certain template set (respectively, a GOE problem with a certain template set) for some t
is hard a problem H, then the problem is hard for t+ 1. We omit the proof of this lemma.

I Lemma 8. Let B be a template set containing the two-fan-in OR. Suppose there is a
many-one reduction g from a problem H to the t-predecessor problem with t ≥ 1 (respectively,

A. Kawachi, M. Ogihara, and K. Uchizawa 8:7

the t-GOE problem with t ≥ 0). Then there is a many-one reduction g′ from H to the
(t + 1)-predecessor problem (respectively, the (t + 1)-GOE problem). Furthermore, if g is
logspace computable (polynomial-time computable) using B as the oracle, then so is g′.

3 The Complexity of Predecessor Problems

We first consider the case of B2OR,3AND and B3OR,2AND, and prove that the problems are
NP-complete.

I Theorem 9. For B2OR,3AND and B3OR,2AND, the t-PRED Problem is NP-complete for all
constants t ≥ 1.

Proof. The inclusion in NP follows from Proposition 5.
We consider B3OR,2AND for NP-hardness and provide a polynomial-time many-one re-

duction from 3SAT to the 1-PRED Problem. Let ϕ be a 3CNF formula with n vari-
ables and m clauses. We introduce variables w, c1, . . . , cm, y1,0, y1,1, . . . , yn,0, yn,1, and
z1,0, z1,1, . . . , zn,0, zn,1. We associate yi,1 with the positive literal of the i-th variable of y and
yi,0 with the negative literal of the i-th variable. We define the functions for these variables
as follows:

w, yi,0, yi,1: the function is id(w).
zi,0: OR(yi,0, yi,1).
zi,1: AND(yi,0, yi,1).
cj : Let the three literals of Cj be yp,b, yq,c, and yr,d. Then the function is
OR(yp,b, yq,c, yr,d).

We set the values of the variables in a to true for w, yi,0, yi,1, and zi,0 and false for zi,1.
Suppose a has a predecessor b. Then for all i, since zi,0 is true and zi,1 is false in

a, in b exactly one of yi,0 and yi,1 is true and the values of y’s in b can be viewed as a
truth-assignment to the n variables of ϕ. Then, for all j, cj is true in a and the inputs to the
function for cj correspond to the literals of Cj , it must be the case that the truth-assignment
as represented by the y’s in b form a satisfying assignment of ϕ. This means that ϕ is
satisfiable.

On the other hand, suppose that ϕ is satisfiable. We take one satisfying assignment α of
ϕ and build b by setting the values to y’s according to α, true to w, and an arbitrary value
to z’s. Then F(b) = a and so a has a predecessor.

Clearly, this reduction can be computed in polynomial time, and so the theorem holds
for t = 1. By combining this with Lemma 8, we obtain the proof for t ≥ 2. J

We then consider the case of B2OR,2AND. In this case, the problem is tractable only when
t = 1.

I Theorem 10. For B2OR,2AND, the 1-PRED Problem is NL-complete and for all constants
t ≥ 2 the problem is NP-complete.

Proof. It is easy to see that the above proof can be carried out for 2SAT with a logspace
computable many-one reduction and so the 1-PRED Problem with B2OR,2AND is NL-hard.
To show that the problem is in NL, note that in the case of B2OR,2AND, given a configuration
a, the value assignments to its predecessor can be written as a 2CNF formula with possible
single-literal clauses; e.g., OR(x, y) = true can be expressed as x ∨ y.

For the 2-PRED Problem, the main idea is to break the computation of three-literal
ORs into the OR to two two-variable ORs. We introduce alternating variables w1 and w2
whose functions are id(w2) and id(w1), respectively, and set their values in a to be true

MFCS 2017

8:8 Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

and false, respectively. Then for any predecessor of a, their values should be false and true,
respectively, and for any second predecessor of a, their values should be true and false,
respectively. We use variables yi,0, yi,1, zi,0, zi,1 as in the case of B3OR,2AND and add ui,0, ui,1.
For each j, we introduce three variables cj , dj , and ej and define their functions to be
OR(dj , ej), OR(yp,c, yq,d), and OR(yp,c, yr,e) where yp,c, yq,d, and yr,e are the three literals
of Cj . We define the functions for yi,b to be OR(yi,b, w1) for each b ∈ {0, 1}, the functions
for ui,b to be id(zi,b), the functions for zi,0 to be OR(yi,0, yi,1), and the functions for zi,1 to
be AND(yi,0, yi,1).

In a we set the value of w2 and all ui,1 to false and set everything else to true. Assume a
has a predecessor a′ and a′ has a predecessor a′′. The values of yi,0 and yi,1 in a′′ are OR-ed
and AND-ed and stored in zi,0 and zi,1, respectively, in a′ and then preserved in ui,0 and
ui,1, respectively, in a. So, it must be the case that exactly one of yi,0 and yi,1 is true in a′′
and thus we can view these as truth-assignments to the variables of ϕ. For each clause Cj ,
the first and the second literals of Cj as appearing in a′′ are OR-ed and stored in a′ as dj as
well as the first and the second literals as ej . These two are then joined by an OR in a as cj .
Thus, for a′′ to exist the y’s in a′′ must represent a satisfying assignment of ϕ. Because y’s
are OR-ed with w1 and a′′ should have true for w1, y’s in a′ are all true. This means that
z’s, d’s, and e’s become all true in a. Thus, a has a second predecessor if and only if ϕ is
satisfiable.

The hardness for the case t ≥ 3 follows from Lemma 8. J

If B contains only conjunction or only disjunction, the problems are significantly easy.

I Theorem 11. For BOR and BAND, the t-PRED Problem is in AC0 for all constants t ≥ 1.

Proof. Suppose that B is BOR, and we are given F and a. Let G = (V,E) = G[F ,a, t], and
(K,L) be the partition of V as given in Definition 3. By Lemma 4, we have only to, for
each u ∈ K0, enumerate all the paths from u to Vt and then check if the reachable nodes in
Kt can be reachable from L0. Since the number of all the paths in G is O(nt), this can be
carried out using an AC0 circuit. Thus, we have done. J

We now consider Poly-PRED Problems where t is part of the input. By combining
Proposition 5 and Theorem 9, we obtain the following corollary for the case where B contains
both conjunction and disjunction.

I Corollary 12. Suppose B is one of B2OR,2AND, B2OR,3AND, and B3OR,2AND. Then the
Poly-PRED Problem with template set B is NP-complete.

In the case of Bid, the problem is L-complete, and in the case of BOR and BAND, the
problem is NL-complete. The proofs are omitted due to the page limitation.

I Theorem 13. The Poly-PRED Problem with template set Bid is L-complete under logspace-
uniform AC0-reductions.

I Theorem 14. Suppose B is either BOR or BAND. Then the Poly-PRED Problem with
template set B is NL-complete under logspace-uniform AC0-reductions.

4 The Complexity of Garden-of-Eden Problems

In this section we prove our results on the Garden of Eden problems. In the previous section
we prove our hardness results by producing a many-one reduction from a language L to a
synchronous BFDS and a so that there is a t-th predecessor if the input is a member of L
and so that there is a (t − 1)-st predecessor but no t-th predecessor if the input is not a

A. Kawachi, M. Ogihara, and K. Uchizawa 8:9

member of L. One may think that this construction can be used to produce a many-one
reduction from the complement of L to the (t− 1)-st GOE problem with respect to the same
BFDS. Unfortunately, this is not the case because according to the construction there may
be multiple first predecessors of a and so even in the case where the input is a member of
L, not every (t− 1)-st predecessor of a has a predecessor. Thus, to prove the hardness of a
Garden of Eden problem for a language L the construction must be such that if the input is
in L, there is a (t− 1)-st predecessor that is a Garden of Eden and such that if the input is
not in L, every (t− 1)-st predecessor has a predecessor.

As mentioned earlier, unlike other t ≥ 1, 0-GOE Problem is complementary to 1-PRED
Problem. Noting that NL is closed under complementation [4, 7], we have the following
result from Theorems 9 and 10.

I Theorem 15. The 0-GOE Problem is in AC0 if the template set is one of Bid, B2OR,
B2AND, BOR, and BAND, NL-complete if the template set is B2OR,2AND, and coNP-complete
if the template set is either B2OR,3AND or B3OR,2AND.

Consider then the case where t ≥ 1. We first observe an upper bound on the problems
for the case of BOR and BAND.

I Lemma 16. The Poly-GOE Problem with template BOR or BAND is in NP.

Proof. Let F be a synchronous BFDS with template BOR with n variables x1, . . . , xn and
let a be a configuration of F . Suppose we are testing whether a is a t-th predecessor
and is a GOE in the system F and t is given as 1t as part of input. Consider a layered
digraph G = (V,E) whose variable set V has t+ 2 layers, X0, . . . , Xt, Xt+1, where for each j,
0 ≤ j ≤ t+ 1, Xj consists of n variables x1,j , . . . , xn,j . We draw a directed edge (xi,j , xi′,j′)
if 0 ≤ j ≤ t, j′ = j + 1, and xi′ is an input to the OR function for xi.

Let S be the set of all xi,0 such that the value of xi is true in a and Let S′ be the set of
all xi,0 such that the value of xi is false in a. Let R be the set of all nodes reachable from S′.
Let T ′ = R ∩Xt and T = Xt − T ′.

We claim that a has a t-th predecessor that is a GOE if and only if there exists a set
D ⊆ T such that (i) from each node in S there is a path to a node in D that does not visit R
and (ii) there is a node u in D such that every node v in Xt+1 is reached from u is reached
from some node in Xt −D.

Suppose there is such a D. Define a configuration b by setting the value of u to true if
and only if it belongs to D. Since D is reachable from S without going through the nodes in
R and D ∩R = ∅, we have F t(b) = a and so a is a t-th predecessor of a. Each predecessor
b of must have a value true for at least one of the variables v that is reachable from u, but
since b has value false for all the nodes in Xt −D, all of them must have value false. These
two requirements are conflicting with each other and cannot be satisfied at the same time.
Thus, b is a GOE.

On the other hand, suppose there is no such a D. Suppose there is no D satisfying (i), it
means that a does not have a t-th predecessor, and so, a does not have a t-th predecessor
that is a GOE. Suppose there is a D satisfying (i) but each such D fails to satisfy (ii). For
each such D we define b to be configuration that assigns true to all variables in D and false
to the rest. Also, for each such D we can select for each u ∈ D select one node v in Xt+1−R
that is reachable from u. By setting the value to true for all v’s thus selected to false for
the remainder, we obtain a configuration c. Then b is a t-th predecessor of a and c is a
predecessor of b and so every t-th predecessor of a has a predecessor.

To test the existence of a D in question, we calculate S, S′, R, T ′, T and then try all
possible combinations of D ⊆ T and u ∈ D, and so the test can be carried out in NP.

This proves the lemma. J

MFCS 2017

8:10 Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

Unlike predecessor problems, Garden-of-Eden problem is NP-complete even if B is either
BOR or BAND and t is part of the input.

I Theorem 17. The 1-GOE Problem with template BOR or BAND is NP-complete.

Proof. Because we have Lemma 16, we have only to show that the 1-GOE Problem is NP-hard.
We will reduce 3SAT to the problem. Let ϕ be a 3CNF formula of n variables and m clauses.
Our synchronous BFDS uses variables, among other, xi,0, xi,1, yi,0, yi,1, ui, zi, 1 ≤ i ≤ n,
cj , 1 ≤ j ≤ m. The idea is to use yi,0 and yi,1 to encode purported value assignments to the
negative and the positive literals of xi. These assignments are not necessarily opposite to
each other. We use the variable ui to generate yi,0 as the OR of xi,0 and ui and generate
yi,1 as the OR of xi,1 and ui. We generate zi as the OR of yi,0 and yi,1. We use the value
assignments to the literal yi,b’s to evaluate the variables cj ’s, which are corresponding to the
clauses. If ϕ is satisfiable, it is possible to choose the values for yi,b’s so that for each i, yi,0
and yi,1 are opposite to each other and so ui is false. If ϕ is not satisfiable, to make the
value of cj true for all i, we need to assign true to both yi,0 and yi,1 and so for such an i, ui

can be set to true. So, assuming that zi’s and cj ’s are all true, ϕ is satisfiable if and only if
we can choose the values for yi,b’s so that ui’s is all false.

We formalize this idea using additional variables p0, p1, p2, u0, and v0. The functions
for p0, p1, and p2 are respectively id(p2), id(p0), and id(p1); that is, they rotate the values
among them, from p0 to p1, p1 to p2, and then p2 to p0. We set the values for them in a to
be false, false, and true, and so, in each predecessor of a, if any, their values should be false,
true, false, and in each second predecessor of a, if any, their values should be true, false, false.
The function for u0 is the OR of u1, . . . , un and the function for v0 is the OR of u0 and p0.

The functions for the other variables are as follows:
ui: the OR of ui and p0;
zi: the OR of yi,0, yi,1, and p0;
yi,0: the OR of xi,0 and ui;
yi,1: the OR of xi,1 and ui;
xi,0: the OR of xi,0 and p0;
xi,1: the OR of xi,1 and p0;
cj : the OR of yk,b, yl,c, ym,d, and p0 where yk,b, yl,c, ym,d are the variables corresponding
to the three literals of the jth clause in ϕ.

Figure 2 shows how these variables interact.
The configuration a is all true except for p0 and p1. Let us speak of a hypothetical

predecessor b of a and a hypothetical predecessor c of b. As mentioned earlier, the value
of p0 is true in c and false in b. Because of this, all the variables that take p0 as part of
input must be true in b; they are p1, v0, all ui’s, all zi’s, all cj ’s, and all xi,b’s. Since these
are all true, in F(b) the value should be true for u0, all ui’s, all yi,b’s, and xi,b’s, which is
consistent with their value assignments in a. Also, since v0 has value true in a, in b the value
of u0 should be true. The only values that are not determined in b are those of yi,b’s. The
constraints are that for each i, either yi,0 or yi,1 must be true and that these assignments
satisfy all the clauses.

Suppose ϕ is satisfiable. We pick one satisfying assignment of ϕ and select the values of
yi,b accordingly. Then yi,0 and yi,1 are opposite to each other for all i, and so in c ui’s must
be all false. However, since u0 has value true in b and it is the OR of all ui’s, to make it
happen the value of at least one ui must be true in c. These two requirements are conflicting
and so c cannot exist and thus b is a GOE.

On the other hand, suppose ϕ is not satisfiable. We determine the values of yi,b’s in b so
that they turn cj ’s all true in a and for each i, at least one of yi,0 and yi,1 is true. Because ϕ

A. Kawachi, M. Ogihara, and K. Uchizawa 8:11

?

xi,b:
or(xi,b, p0)

ui:
or(ui, p0)

cj: or(p0,
Cj's literals
from y's)

yi,b:
or(ui, xi,b)

?

t,f,f

p0: id(p2),
p1: id(p0),
p2: id(p1)

f,t,f

f,f,t

?

u0:
or(u1, ..., un)

zi:
or(yi,0, yi,1, p0)

v0:
or(u0, p0)

Figure 2 The construction for the 1-GOE Problem for BOR. The top layer is a, the middle layer
is a predecessor of a, and the bottom layer is a second predecessor of a. The arrows show where the
inputs come from but inputs from pi’s are not shown. The variables in each diamond shaped are
fixed because of the use of p0. Unless specified, they are all true. The rectangles with rounded sides
show blocks of variables whose values are expected to be true. They take input from the rectangles
marked with the question mark. They are variables corresponding to the value assignments to the
literals and the ui’s.

is not satisfiable, there must be at least one i such that both yi,0 and yi,1 are true. Select s
to be such an i. In c set us to true and other ui’s to false and set the value of xi,b in c equal
to the value of yi,b in b. Also, set all the remaining variables except the pi’s false. Then this
c is indeed in a predecessor of b. This means that each predecessor b of a has a predecessor
and thus there is no predecessor that is a GOE.

This proves the theorem. J

From the above and Lemmas 8 and 16, we have the following corollary.

I Corollary 18. Let B be either BOR or BAND. The Poly-GOE Problem with template B
and t-GOE Problem for t ≥ 1 with template B are NP-complete.

If the arities of conjunction and disjunction are bounded by two, the problems are
tractable.

I Theorem 19. Let B be one of Bid, B2OR, and B2AND. For all constants t ≥ 0, the t-GOE
Problem with template B is in AC0.

Proof. We have only to test the conditions as stated in Lemma 4 part 2. Specifically, we need
to compute G = (V,E), the partition (K,L) of V , and then try all possible combinations
for u and M to see whether the three properties hold. The conditions can be tested in AC0

because M has cardinality at most 2. J

However, we show that the problem for Bid and that for B2OR or B2AND belong to different
complexity classes if t is part of the input.

I Theorem 20. The Poly-GOE Problem with template Bid is L-complete.

Proof. Theorem 13 shows that the Poly-PRED Problem with template Bid is L-complete.
By Proposition 7, this implies that Theorem 13 shows that the Poly-GOE Problem with
template Bid is L-hard.

To show that the problem is in L, we use Lemma 4. Since the available function template
is id, the set M in the proposition has cardinality 1. As we have seen in Theorem 13, the
reachability part of the test can be carried out in L. As for the remaining properties, we
have only to try all possible combinations of u and M . J

MFCS 2017

8:12 Generalized Predecessor Existence Problems for Boolean Finite Dynamical Systems

I Theorem 21. The Poly-GOE Problem with template B2OR or B2AND is NL-complete.

Proof. The NL-hardness follows from Theorem 14 and Proposition 7. To show that the
problem is in NL, we use Lemma 4. Since the arity of the functions is at most 2, there are
only polynomially many possibilities for the choice of z and M and so the test can be done
in NL. J

In the case where B contains both conjunction and disjunction, the complexity of problems
depends on whether B contains a function of arity more than two or not for any t ≥ 2.

I Theorem 22. The t-GOE Problem with template B2OR,2AND for t ≥ 2 and the Poly-GOE
Problem with template B2OR,2AND are NP-complete.

Proof. The hardness follows from Theorem 10, Proposition 7, and Lemma 8. The membership
in NP comes from the fact that in the case where the functions have arity 2, whether a
configuration has a predecessor can be expressed as a 2CNF formula. We have only to guess
a series of t configurations, verify the series flows into a, and the t-th predecessor in the
series does not have a predecessor. J

I Theorem 23. Let B be either B2OR,3AND or B3OR,2AND. The t-GOE Problem with template
B for t ≥ 1 and the Poly-GOE Problem with template B are Σp

2-complete.

We omit the proof of Thorem 23.

5 Conclusions

In this paper we studied the complexity of the Predecessor Existence Problem and the Garden
of Eden Problem for various orders of predecessor and for various template sets. Other than
those stating containment in AC0 and the 1-Garden of Eden Problem for B2OR,2AND, the
problems are shown to be complete for standard complexity classes and the classes that
appear are diverse: L,NL,NP, coNP, and Σp

2. An obvious next step for the paper is to
pinpoint the complexity for the remaining case. Also, it will be interesting to look at other
template sets.

References
1 C. L. Barrett, H. S. Mortveit, C. M. Reidys. Elements of a theory of simulation II: Sequential

dynamical systems. Applied Mathematics and Computation, 107(2-3):121–136, 2000.
2 C. L. Barrett, H. B.Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns

and P. T. Tosic. Gardens of Eden and Fixed Points in Sequential Dynamical Systems. In
Proceedings of Discrete Mathematics and Theoretical Computer Science, 95–110, 2001.

3 C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E.
Stearns. Complexity of reachability problems for finite discrete dynamical systems. Journal
of Computer and System Sciences, 340(3):496–513, 2005.

4 N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal
on Computing, 17:935–938, 1988.

5 S. Kosub. Dichotomy results for fixed-point existence problems for boolean dynamical
systems. Mathematics in Computer Science, 1(3):487–505, 2008.

6 S. Kosub and C. M. Homan. Dichotomy results for fixed point counting in boolean dy-
namical systems. In Proceedings of the Tenth Italian Conference on Theoretical Computer
Science, pages 163–174, 2007.

A. Kawachi, M. Ogihara, and K. Uchizawa 8:13

7 R. Szelepcsényi. The method of forcing for nondeterministic automata. Bulletin of the
EATCS, 33:96–100, 1987.

8 M. Ogihara and K. Uchizawa. Computational complexity studies of synchronous boolean
finite dynamical systems. In Proceedings of the 12th Conference on Theory and Applications
of Models of Computation, pages, 87–98, 2015.

MFCS 2017

	Introduction
	Preliminaries
	The Complexity of Predecessor Problems
	The Complexity of Garden-of-Eden Problems
	Conclusions

