260 research outputs found

    Higher Dimensional Transition Systems

    No full text
    We introduce the notion of higher dimensional transition systems as a model of concurrency providing an elementary, set-theoretic formalisation of the idea of higher dimensional transition. We show an embedding of the category of higher dimensional transition systems into that of higher dimensional automata which cuts down to an equivalence when we restrict to non-degenerate automata. Moreover, we prove that the natural notion of bisimulation for such structures is a generalisation of the strong history preserving bisimulation, and provide an abstract categorical account of it via open maps. Finally, we define a notion of unfolding for higher dimensional transition systems and characterise the structures so obtained as a generalisation of event structures

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system

    Homotopy Bisimilarity for Higher-Dimensional Automata

    Get PDF
    We introduce a new category of higher-dimensional automata in which the morphisms are functional homotopy simulations, i.e. functional simulations up to concurrency of independent events. For this, we use unfoldings of higher-dimensional automata into higher-dimensional trees. Using a notion of open maps in this category, we define homotopy bisimilarity. We show that homotopy bisimilarity is equivalent to a straight-forward generalization of standard bisimilarity to higher dimensions, and that it is finer than split bisimilarity and incomparable with history-preserving bisimilarity.Comment: Heavily revised version of arXiv:1209.492

    The Spectrum of Strong Behavioral Equivalences for Nondeterministic and Probabilistic Processes

    Full text link
    We present a spectrum of trace-based, testing, and bisimulation equivalences for nondeterministic and probabilistic processes whose activities are all observable. For every equivalence under study, we examine the discriminating power of three variants stemming from three approaches that differ for the way probabilities of events are compared when nondeterministic choices are resolved via deterministic schedulers. We show that the first approach - which compares two resolutions relatively to the probability distributions of all considered events - results in a fragment of the spectrum compatible with the spectrum of behavioral equivalences for fully probabilistic processes. In contrast, the second approach - which compares the probabilities of the events of a resolution with the probabilities of the same events in possibly different resolutions - gives rise to another fragment composed of coarser equivalences that exhibits several analogies with the spectrum of behavioral equivalences for fully nondeterministic processes. Finally, the third approach - which only compares the extremal probabilities of each event stemming from the different resolutions - yields even coarser equivalences that, however, give rise to a hierarchy similar to that stemming from the second approach.Comment: In Proceedings QAPL 2013, arXiv:1306.241

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF
    • 

    corecore