36 research outputs found

    Infinite time Turing machines and an application to the hierarchy of equivalence relations on the reals

    Full text link
    We describe the basic theory of infinite time Turing machines and some recent developments, including the infinite time degree theory, infinite time complexity theory, and infinite time computable model theory. We focus particularly on the application of infinite time Turing machines to the analysis of the hierarchy of equivalence relations on the reals, in analogy with the theory arising from Borel reducibility. We define a notion of infinite time reducibility, which lifts much of the Borel theory into the class Δ21\bm{\Delta}^1_2 in a satisfying way.Comment: Submitted to the Effective Mathematics of the Uncountable Conference, 200

    Constructive Dimension and Turing Degrees

    Full text link
    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) <= (dim_H(S) / dim_P(S)) - epsilon, for arbitrary epsilon > 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dim_H(S) / dim_P(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previously-known zero-one law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dim_H(S) = dim_P(S)) such that dim_H(S) > 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truth-table and bounded Turing reductions differ in their ability to extract dimension.Comment: The version of this paper appearing in Theory of Computing Systems, 45(4):740-755, 2009, had an error in the proof of Theorem 2.4, due to insufficient care with the choice of delta. This version modifies that proof to fix the error

    Early pioneers to reversible computation

    Get PDF
    Reversible computing is one of the most intensively developing research areas nowadays. We present a survey of less known or forgotten papers to show that a transfer of ideas between different disciplines is possible

    Computability of differential equations

    Get PDF
    In this chapter, we provide a survey of results concerning the computability and computational complexity of differential equations. In particular, we study the conditions which ensure computability of the solution to an initial value problem for an ordinary differential equation (ODE) and analyze the computational complexity of a computable solution. We also present computability results concerning the asymptotic behaviors of ODEs as well as several classically important partial differential equations.info:eu-repo/semantics/acceptedVersio

    Weihrauch Degrees, Omniscience Principles and Weak Computability

    Get PDF

    Effective Choice and Boundedness Principles in Computable Analysis

    Full text link
    In this paper we study a new approach to classify mathematical theorems according to their computational content. Basically, we are asking the question which theorems can be continuously or computably transferred into each other? For this purpose theorems are considered via their realizers which are operations with certain input and output data. The technical tool to express continuous or computable relations between such operations is Weihrauch reducibility and the partially ordered degree structure induced by it. We have identified certain choice principles which are cornerstones among Weihrauch degrees and it turns out that certain core theorems in analysis can be classified naturally in this structure. In particular, we study theorems such as the Intermediate Value Theorem, the Baire Category Theorem, the Banach Inverse Mapping Theorem and others. We also explore how existing classifications of the Hahn-Banach Theorem and Weak K"onig's Lemma fit into this picture. We compare the results of our classification with existing classifications in constructive and reverse mathematics and we claim that in a certain sense our classification is finer and sheds some new light on the computational content of the respective theorems. We develop a number of separation techniques based on a new parallelization principle, on certain invariance properties of Weihrauch reducibility, on the Low Basis Theorem of Jockusch and Soare and based on the Baire Category Theorem. Finally, we present a number of metatheorems that allow to derive upper bounds for the classification of the Weihrauch degree of many theorems and we discuss the Brouwer Fixed Point Theorem as an example

    Universal envelopes of discontinuous functions

    Get PDF
    This thesis is a contribution to computable analysis in the tradition of Grzegorczyk, Lacombe, and Weihrauch. The main theorem of computable analysis asserts that any computable function is continuous. The solution operators for many interesting problems encountered in practice turn out to be discontinuous, however. It hence is a natural question how much partial information may be obtained on the solutions of a problem with discontinuous solution operator in a continuous or computable way. We formalise this idea by introducing the notion of continuous envelopes of discontinuous functions. The envelopes of a given function can be partially ordered in a natural way according to the amount of information they encode. We show that for any function between computably admissible represented spaces this partial order has a greatest element, which we call the universal envelope. We develop some basic techniques for the calculation of a suitable representation of the universal envelope in practice. We apply the ideas we have developed to the problem of locating the fixed point set of a continuous self-map of the unit ball in finite-dimensional Euclidean space, and the problem of locating the fixed point set of a nonexpansive self-map of the unit ball in infinite-dimensional separable real Hilbert space
    corecore