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Thesis summary

This thesis is a contribution to computable analysis in the tradition of Grzegor-
czyk, Lacombe, and Weihrauch. The main theorem of computable analysis as-
serts that any computable function is continuous. The solution operators for
many interesting problems encountered in practice turn out to be discontinu-
ous, however. It hence is a natural question how much partial information may
be obtained on the solutions of a problem with discontinuous solution operator
in a continuous or computable way. We formalise this idea by introducing the
notion of continuous envelopes of discontinuous functions. The envelopes of a
given function can be partially ordered in a natural way according to the amount
of information they encode. We show that for any function between computably
admissible represented spaces this partial order has a greatest element, which
we call the universal envelope. We develop some basic techniques for the cal-
culation of a suitable representation of the universal envelope in practice. We
apply the ideas we have developed to the problem of locating the fixed point set
of a continuous self-map of the unit ball in finite-dimensional Euclidean space,
and the problem of locating the fixed point set of a nonexpansive self-map of
the unit ball in infinite-dimensional separable real Hilbert space.

Keywords: Computable Analysis, Set-valued function, Hyperspace Topology, QCB-
space, Complete Lattice
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Chapter 1

Introduction

Computable analysis is an extension of the classical theory of computing from
discrete to continuous data, such as real numbers or real functions. The defini-
tion of computable real number already appears as one of the central notions in
Turing’s seminal paper [102, 103] which introduces the “machines” now named
for him. The notion of computable real function was introduced independently
by Grzegorczyk [50, 48, 49] and Lacombe [66]. Based on these ideas Kreitz and
Weihrauch [65, 105, 106] developed a general theory of computation on second-
countable T0 spaces. This theory was further extended by Schröder [87, 88] to
the Cartesian closed category of T0 quotients of countably based spaces, which
constitute, in a certain sense, the largest class of topological spaces which can
be endowed with a reasonable computability structure [88, Theorem 13]. Related
but non-equivalent models of computation include Banach-Mazur computability
[4, 71] and Markov computability [70]. A comprehensive account of the history
of the field is given in [2]. Computable analysis is closely related to constructive
analysis [6, 7] on the one hand and to rigorous numerical computation [101, 74]
on the other.

An algorithm on continuous data, as defined within computable analysis, is
ultimately a computable transformation of integer sequences and as such can in
principle be directly implemented on a digital computer. There exist a number of
libraries for practical numerical computation based on the ideas of computable
analysis [76, 75, 5, 63, 67]. This is in stark contrast to more idealised models of
continuous computation such as the Real-RAM [91] or BSS-machine [9, 8] whose
algorithms cannot be directly implemented on a physical machine. Attempts to
implement such algorithms on a digital computer are notorious for their erratic
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behaviour.
Thus, computable analysis offers itself as a rigorous mathematical founda-

tion for numerical analysis. One of the main basic results of the field is that any
computable function which operates on continuous data has to be continuous
with respect to a suitable topology [106, 87, 88]. In the language of numerical
analysis this says that only well-posed problems can be solved algorithmically.
This precludes the computation of operations on real numbers such as equality
tests and comparison which are considered basic operations in the aforemen-
tioned more idealised computational models, but lead to unpredictable behaviour
when implemented. On the other hand one is immediately confronted with the
issue that the solution operators for a great many problems of practical interest
exhibit discontinuities in general. A - naturally very incomplete - list of examples
might include the problems of solving nonlinear equations [95, 79, 3], global op-
timisation [95], solving ordinary [82] or partial [83] differential equations, finding
solutions to linear equations or finding Eigenbases for singular matrices [113],
finding the spectrum of a linear operator [51], or safety verification for hybrid
systems [28].

Hence, if one hopes to find an algorithmic solution to any such problem
the first step has to be to find a well-posed reformulation of the problem. In
view of the ubiquity of ill-posed computational problems and the fundamental
significance of finding a suitable well-posed reformulation for them it makes
sense to ask if there is a systematic way of assigning to each discontinuous
function a continuous one which - in a certain sense - reflects the properties of
the original function as closely as possible.

The aim of this thesis is to develop a systematic approach to the study of con-
tinuous reformulations of discontinuous problems and of the amount of inform-
ation such reformulations contain. In order to have a notion of computability
available we will work in the category of computably admissible represented
spaces [87, 81], which we prefer to call computable T0 spaces, as computable
admissibility can be viewed as an effective version of T0 separation, cf. the dis-
cussion in [81, Section 9].

Let f : X → Y be a potentially discontinuous function between computable
T0 spaces. We propose to define a reformulation of f as a continuous function
which encodes partial information on f . This idea can be formalised as follows:
Embed Y into a complete lattice L via a map ξL : Y → L and say that a function
F : X → L encodes partial information on f if F (x) ≤ ξL ◦ f (x) for all x ∈ X.

7



We effectivise the classical notion of complete lattice as follows: A computable
complete lattice is a computable T0 space L which admits uniformly computable
compact meets and overt joins with respect to its specialisation order. In other
words, a computable complete lattice is a computable T0 space which is simultan-
eously a K -algebra and a V -algebra with computable structure maps, where K

is the upper powerspace monad and V is the lower powerspace monad. Every
suitably represented ω-continuous lattice is a computable complete lattice. Com-
putable complete lattices turn out to have excellent closure properties: They are
closed under finite products and retracts, and form an exponential ideal in the
category of represented spaces.

This leads us to the following preliminary definition: An envelope of a func-
tion f : X → Y consists of a computable complete lattice L together with a com-
putable map ξL : Y → L called the inclusion map and a continuous map F : X → L
satisfying F (x) ≤ ξL ◦ f (x) for all x ∈ X in the specialisation order of L. We usu-
ally just write F : X → L for the envelope, letting the rest of the data be implicit.
See the end of this chapter for examples.

An envelope F : X → L induces a continuous function

F : X →P(O(Y )), F(x) =
x
{
ξ−1
L (U) ∈ O(Y ) | U ∈ O(L), F (x) ∈ U

}

where P(O(Y )) is the algebraic lattice of all sets of open subsets of Y , endowed
with its Scott topology. This function satisfies F(x) ⊆ {U ∈ O(Y ) | f (x) ∈ U} for
all x ∈ X. In this sense F can be viewed as an effective encoding of partial
topological information on f .

For each fixed inclusion map ξL : Y → L with values in a computable complete
lattice L the set of all continuous functions F : X → L with F (x) ≤ ξL ◦ f (x) for all
x ∈ X has a greatest element in the pointwise order induced by the specialisation
order on L. This result relies on L being a complete lattice. We call this F the
principal L-envelope. Similar results are quite well-known in domain theory,
cf. e.g. [40] or [36, Lemma 3.5, Theorem 3.6].

Envelopes can be ordered in a natural way according to the amount of in-
formation they contain: If F : X → L and G : X → M are envelopes of f with
inclusion maps ξL : Y → L and ξM : Y → M we say that F tightens G if there
exists a continuous map Φ: L→M with

1. Φ ◦ ξL ≤ ξM .

2. Φ ◦ F ≥ G.
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The first condition guarantees in particular that Φ ◦F : X →M is an envelope of
f with inclusion map ξM .

Note that if F tightens G, then the encoded maps F : X → P(O(Y )) and
G : X → P(O(Y )) satisfy the relation F(x) ⊇ G(x) for all x ∈ X. The function
Φ: L→M in the tightening relation can be viewed as an effective witness for this
relation. In particular, if F and G are equivalent with respect to the tightening
order, then they encode the same function of type X →P(O(Y )). In this sense
equivalent envelopes can be viewed as equivalent encodings of the same object.

In order to ensure that the tightening order is well-behaved, we have to put
further constraints on the class of lattices we admit as co-domains of envelopes.
Without further assumptions it could happen that F : X → L fails to tighten
G : X → M not because G encodes information on f that is not contained in
F , but simply because there do not exist sufficiently many continuous maps
of type L → M . This naturally leads to the requirement that the lattices we
allow as co-domains be injective in an appropriate sense. We call a computably
complete lattice L computably injective if it is an injective object in the category
of computable T0 spaces relative to the class of computable Σ-split embeddings.
The notion of Σ-split subspace was motivated and extensively studied by Taylor
[96].

A computable map e : A→ B between computable T0 spaces is called a com-
putable Σ-split embedding if the map Oe : O(B)→ O(A) has a computable section
s : O(A)→ O(B). We show that injective objects of this kind can be characterised
as those computable T0 spaces X where the natural embedding νX : X → O2(X)
has a computable left inverse (Proposition 3.18). It follows that any space which
is injective in this sense is automatically a computable complete lattice, as the
class of computable complete lattices is closed under retracts. The class of com-
putably injective lattices is again closed under finite products and retracts, and
forms an exponential ideal in the category of represented spaces.

An envelope F : X → L of f which tightens every envelope G : X → M of
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f will be called universal. In this case F can be viewed as a best continuous
approximation to f in the sense that it encodes the largest possible amount of
partial information on f . Of course, this best continuous approximation is only
unique up to equivalence with respect to the tightening preorder, but recall that
equivalent envelopes can be viewed as equivalent encodings of the same function
of type X →P(O(Y )).

To show that the universal envelope of a function f : X → Y really contains all
information that is “continuously obtainable” from f we introduce the following
concept: A continuous probe for f is a pair of continuous functions

{
α : X̃ → X
β : X̃ × Y → Z

such that for all x ∈ X̃ the point (x, α(x)) ∈ X̃ × X is a point of continuity for
the function ψ(x0, x1) = β(x0, f (x1)). If α and β are computable functions we call
(α, β) a computable probe for f . A probe can be viewed as an algorithm (relative
to some oracle) which uses f as a subroutine in a continuous way to compute
the function β(x, f ◦α(x)). It is essentially a special kind of Weihrauch reduction
[16] of f to a continuous function.

Let F : X → L be a universal envelope of f . We show in Theorem 4.34 that
any probe (α, β) where β : X̃ × Y → M takes values in a continuous lattice M
factors through F in the sense that there exists a continuous map β̃ : X̃×L→M
with

1. β̃(x, ξL(y)) ≤ β(x, y) for all y ∈ Y and all x ∈ X̃.

2. β̃(x, F (x)) = β(x, f ◦ α(x)) for all x ∈ X.

As any computably countably based space embeds into the continuous lattice ΣN,
this result applies to a fairly wide range of probes.

Informally speaking, any sufficiently well-behaved algorithm which uses f as
a subroutine in such a way that the end-result of the entire computation depends
continuously on the input data can - in a sense - use the universal envelope as
a subroutine instead. Conversely, a good description of the universal envelope
yields a good description of the probes of f .

This result immediately leads to the question how the extension β̃ can be
obtained and whether it is computable whenever β is computable. We show that
if F : X → L is an envelope whose inclusion map ξL : Y → L is a Σ-split embedding
such that the map OξL : O(L) → O(Y ) has a computable section s : O(Y ) → O(L)

10



which satisfies F (x) ∈ s(U) for all x ∈ X and all U ∈ O(Y ) such that x is contained
in the interior of f−1(U), then a certain extension β̃ : X̃×L→ Y can be computed
uniformly in β. We call an envelope F with this property uniformly Σ-complete.
We show that if the inclusion map of F is a proper embedding in the sense
of Hofmann and Lawson [54], then F is universal if and only if it is uniformly
Σ-complete (Theorem 4.18).

We show that any function f : X → Y between computable T0 spaces has a
universal envelope (Theorem 4.8). The proof is constructive in the sense that
it yields a concrete representative of the universal envelope, but this represent-
ative is not very illuminating. For instance, it only yields a rather tautological
description of the encoded function F : X →P(O(Y )) and a similarly tautological
description of the probes of f .

The situation becomes simpler for a certain class of problems if one is willing
to settle for a slightly smaller class of probes. Let f : X → Y be a function
which sends a computable T0 space to a computably countably based computable
Hausdorff space Y . If there exists a continuous function B : X → K (Y ) with
f (x) ⊆ B(x) for all x ∈ X then we can find an envelope of the form F : X → K⊥(Y )
with inclusion map κ⊥ : Y → K⊥(Y ), y 7Ï ↑y , such that any computable probe
with values in K ([0, 1]N) factors computably through F (see Theorem 4.28 for
details). Note that any probe with values in a computable metric space Z can be
made into a probe with values in K ([0, 1]N) by choosing a computable embedding
Z → [0, 1]N.

We also develop some basic techniques for finding a good description of the
universal envelope of more general problems. We introduce the notion of re-
tracts (Definition 4.40), a notion of reducibility between functions that allows us
to derive a description of the universal envelope of one function from a descrip-
tion of the universal envelope of another. The dense subset lemma (Lemma 4.43)
allows us to reduce the problem of showing universality of a given envelope to
the problem of showing universality for a restriction to a dense subset.

In Chapter 5 we illustrate and motivate the ideas we have introduced by ap-
plying them to two non-trivial computational problems in fixed point theory: the
problem of locating the fixed point set of a continuous self-map of the unit ball in
finite-dimensional Euclidean space, and the problem of locating the fixed point
set of a nonexpansive self-map of the unit ball in infinite-dimensional separable
real Hilbert space.

We show that the greatest amount of positive information that can be ob-
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tained on the fixed point set of a given continuous self-map of the unit ball
in finite-dimensional Euclidean space is the information that is contained in the
Brouwer mapping degree. The corresponding universal envelope is computable
and uniformly Σ-complete.

We show that given a nonexpansive self-map of the unit ball in separable
real Hilbert space one can compute arbitrarily good upper bounds on its fixed
point set in the upper Vietoris topology induced by the weak topology, and this
is the best one can do. The corresponding universal envelope is computable but
not uniformly Σ-complete. In fact there exist computable probes for this func-
tion which do not factor computably through the universal envelope. We can
however show that any continuous probe which is computable with respect to
the standard representation for the weak topology computably factors through
the universal envelope.

Example 1. To illustrate the basic concepts presented so far, let us consider a
very simple example. Consider the Heaviside function

H : R→ {0, 1}, H(x) =
{

0 if x < 0,
1 if x ≥ 0.

Embed {0, 1} into the lattice L = {⊥, 0, 1,>} in the obvious way. Then the best
continuous approximation of ξL ◦H is given by

H̃ : R→ L, H̃(x) =






0 if x < 0,
⊥ if x = 0,
1 if x > 0.

Let G : R→M be an arbitrary envelope of H with inclusion map ξM : {0, 1} →M .
Then G(0) ≤ ξM (0) ∧ ξM (1). It follows that the envelope H̃ tightens G via the
map Φ: L → M which sends 0 ∈ L to ξM (0) ∈ M , 1 ∈ L to ξM (1) ∈ M , ⊥ ∈ L to
ξM (0) ∧ ξM (1) ∈M , and > ∈ L to > ∈M . Hence H̃ is a universal envelope.

Let f : R → R and g : R → R be continuous functions with f (0) = g(0). Then
the function

β : R× {0, 1} → R, β(x, i) =
{
f (x) if i = 0,
g(x) if i = 1,

is a probe for H (with α : R→ R being the identity). It extends to the computable
function
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β̃ : R× L→ K⊥(R), β̃(x, `) =






∅ if ` = >,
{f (x)} if ` = 0,
{g(x)} if ` = 1,
{f (x), g(x)} if ` = ⊥,

with β̃(x, ξL(i)) = β(x, i) and β̃(x, H̃(x)) = β(x,H(x)).

Example 2. To provide a more substantial example, consider the problem of
finding positive information on the set of zeroes of a continuous real function
h : R→ R. This problem is formally captured by the function

zeroes< : C(R)→ V (R), h 7Ï {x ∈ R | h(x) = 0} .

Here, V (R) denotes the lower powerspace of R, see Definition 2.19.
Computing the zero set of a given function as an element of V (R) amounts

to verifying for a given open set U ∈ O(R) if there exists a zero in U . This
suggests to consider the lattice L = Σ(Q,Q), where (Q,Q) denotes the discrete
space of open intervals with rational endpoints, with inclusion map

ξL : V (R)→ Σ(Q,Q), ξL(A) = λ(a, b).
{
> if (a, b) ∩ A 6= ∅,
⊥ otherwise.

Thus, suppose we are given an open interval (a, b) with rational endpoints.
If h(a) · h(b) < 0 then the function h has a zero in (a, b) by the intermediate
value theorem.

The function h(x) = x2 has a unique zero at x = 0, but there exist arbitrarily
small perturbations of h without any zeroes.

The function h(x) = max (x − 1,min (x + 1, 0)) has as its zero set the interval
[−1, 1]. We can certify the existence of a zero in each open interval (a, b) ⊇
[−1, 1] by observing that h changes its sign, but if (a, b) is an interval with
(a, b) ⊆ [−1, 1] then there exist arbitrarily small perturbations of h without any
zeroes in (a, b).

These examples suggest that the best we can do is to observe the occurrence
of a sign-change. This leads us to consider the envelope

F : C(R)→ L, F (h) = λ(a, b).
{
> if h(a) · h(b) < 0,
⊥ otherwise.

Note that this is not the principal L-envelope, which - by an elementary argument
- is given by

G : C(R)→ L, G(h) = λ(a, b).
{
> if ∃(a′, b′) ⊆ (a, b). (h(a′) · h(b′) < 0),
⊥ otherwise.
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Nevertheless, F tightens G via the map

Φ: L→ L, Φ(x) = λ(a, b). sup
{
x(a′, b′) | (a′, b′) ⊆ (a, b)

}
.

In fact, F is uniformly Σ-complete and hence the universal envelope of zeroes<,
but the proof is not entirely straightforward. It essentially follows from Corol-
lary 5.5.
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Chapter 2

Background

In this chapter we will mainly collect some basic definitions and “folklore” results,
mostly without proofs, not all of which are easy to find in one place. Schröder’s
PhD thesis [87] is a very comprehensive source which includes most of the
material covered here, but can be difficult to navigate. Our point of view closely
follows that of Pauly’s recent survey [81], which is close in spirit to Escardó’s
synthetic topology [42] and, to some extent, to Taylor’s Abstract Stone Duality [97].
We will however (have to) put a greater emphasis on the connections to classical
topology. A very readable account of the topological aspects of QCB-spaces is
given in [38]. We also require some basic results and definition from the theory
of continuous lattices which we briefly recall here. A standard reference is [45].

The final section of this chapter contains some original results on the com-
mutativity of the powerspace monads on computably countably based spaces.
These results are computable analogues of topological results that were recently
obtained by de Brecht and Kawai [33].

Notational and terminological conventions

We denote the natural numbers by N = {0, 1, . . . }, the rational numbers by Q,
and the real numbers by R.

If A ⊆ X is a subset of a topological space X, we write A◦ for its interior and
cl A for its closure. We call a topological space compact if every open cover
has a finite subcover. Thus, we do not require compact spaces to be Hausdorff.
A space is locally compact if every point has a compact neighbourhood basis.
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Let X be a partially ordered set. For a subset A ⊆ X of X we denote by
↓A = {x ∈ X | ∃y ∈ A. x ≤ y} and ↑A = {x ∈ X | ∃y ∈ A. x ≥ y} the downwards
and upwards closure respectively. For a point x ∈ X we let ↓x =

y{x} and
↑x =

x{x} .
Joins in a partially order set are denoted by ∨ or sup and meets are denoted

by ∧ or inf. The greatest element of a partial order is its top >, the smallest
element its bottom ⊥.

We write f : ⊆ X → Y to indicate that f is a partial function sending X to Y .
In this case we write dom f for its domain.

Let T : C → D be a functor between categories C and D. If X is an object of
C we write T(X) for the object of D that T assigns to X. We write Tn for the
nth iterate of T . If f : X → Y is a morphism in C and T is covariant we write
Tf : T(X)→ T(Y ) for the induced map. We also write f∗ : T(X)→ T(Y ) instead of
Tf if T is clear from the context. Similarly, if T is a contravariant functor, we
write Tf : T(Y )→ T(X) or simply f∗ : T(Y )→ T(X).

2.1 Computing on Baire space

On the most basic level, computable analysis is about the study of algorithms on
integer sequences. Officially, our underlying computational model is the Turing
machine. As always, the exact details of this computational model do not matter
and there is no benefit in defining the model more formally.

Baire space, NN, is the space of natural number sequences with the product
topology. This topology is induced by the metric

d(p, q) = 2− inf{n∈N|p(n) 6=q(n)}.

In this formula we use the convention inf ∅ =∞ and 2−∞ = 0.
The familiar notion of computability of natural number functions φ : N → N

can be generalised to functions Φ: NN → NN on natural number sequences in
a straightforward manner, by feeding the input sequence as an oracle to the
algorithm.

Definition 2.1. Let f : ⊆ NN → NN be a partial function on Baire space. Let M?

be an oracle Turing machine. We say that M? computes f if for all p ∈ dom(f )
and all n ∈ N, given oracle access to p and n as its input, the machine M? halts
and outputs the number f (p)(n). We say that f is computable if there exists
some machine which computes f .
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Definition 2.2. Let Ω: N→ N be some function. Let f : ⊆ NN → NN be a partial
function on Baire space. Let M?,? be an oracle Turing machine with two oracle
tapes. We say that M?,? computes f relative to Ω if for all p ∈ dom(f ) and all
n ∈ N, given oracle access to Ω and p, and n as its input, the machine M?,? halts
and outputs the number f (p)(n). We say that f is computable relative to Ω if
there exists some machine which computes f relative to Ω.

We write MΩ,p(n) = k if M?,? halts and outputs k on input n and with oracles
Ω and p. Thus, M?,? computes f relative to Ω if and only if MΩ,p(n) = f (p)(n)
for all p ∈ dom(f ) and all n ∈ N.

The most fundamental basic observation of computable analysis is that rel-
ative computability is the same as continuity.

In order to show this, we need to introduce some notation. Let N∗ denote
the set of all finite integer sequences. Let v denote the prefix-relation on N∗.
Extend this relation to N∗ × NN in the obvious manner. For a point p ∈ NN and
a number n ∈ N write p|≤n for the finite sequence 〈p(0), . . . , p(n)〉. If (un)n is a
sequence of finite sequences un ∈ N∗ and p ∈ NN is an integer sequence, write
un → p if un v p for all n ∈ N and if for all l ∈ N there exists m ∈ N such that
un has length at least l for all n ≥m.

Theorem 2.3. Let f : ⊆ NN → NN be a partial function. Then f is continuous
if and only if it is computable relative to some oracle.

Proof. Assume that f is computable relative to some oracle Ω. Fix a machine
M which computes f relative to Ω. Let p ∈ dom(f ). Let n ∈ N. By definition the
machine M halts with oracles Ω and p for each number input k ∈ {0, . . . , n}.
Let sk ∈ N denote the number of steps that M takes for each input k and let
s = maxk≤n sk. Then for all k ≤ n, the queries that M makes to p on input k
are at most of size s. It follows that if q ∈ NN satisfies q(i) = p(i) for all i ≤ s
then MΩ,q(k) = MΩ,p(k) for all k ≤ n. As the machine computes f we have
shown that if q ∈ dom(f ) satisfies d(p, q) < 2−s then d(f (p), f (q)) < 2−n. Hence f
is continuous at p.

Conversely, assume that f is continuous. We construct an oracle Ω relative
to which f becomes computable. For each u ∈ N∗ consider the set

Au = {v ∈ N∗ | ∀p ∈ dom(f ). (u v p Ï v v f (p))} .

This set is clearly directed (with respect to the prefix-ordering) and non-empty,
so that we can define the function
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Ω: N∗ → N∗, Ω(u) = supAu.

Note that Ω is monotone by definition. We claim that for all p ∈ dom(f ) we have
Ω(p|≤k) → f (p) as k → ∞. Let n ∈ N. As f is continuous there exists m ∈ N
such that d(f (p), f (q)) < 2−n for all q with d(p, q) < 2−m. But by definition of Ω
this means that Ω(p|≤m) is a prefix of f (p) of length n. The claim follows. The
function f can be computed relative to the oracle Ω as follows: given a point
p ∈ dom(f ) and n ∈ N, evaluate Ω(p|≤k) for k = 1, 2, . . . until the result has
length ≥ n. Output the nth symbol of the result. As Ω(p|≤k) → f (p) it follows
that the algorithm halts and outputs the correct result.

2.2 Computing on represented spaces

Computability on continuous structures, such as the real numbers, is introduced
by means of representations.

Definition 2.4. A represented space is a set X together with a partial surjection
δX : ⊆ NN → X called the representation of X.

Definition 2.5. Let f : X → Y be a function between represented spaces. A
realiser for f is a partial function F : ⊆ NN → NN with domF ⊇ dom δX such
that we have

δY ◦ F (p) ∈ f ◦ δX(p)

for all p ∈ dom δX .

NN NN

X Y

δX

F

δY
f

Definition 2.6. Let f : X → Y be a function between represented spaces. Then
f is called computable if it has a computable realiser and relatively computable
if it has a continuous realiser.

It is often convenient to express the assertion that a given function f : X → Y
is computable (relative to some oracle) by saying that f (x) is uniformly comput-
able in x (relative to some oracle). For instance we could say that the sum x+y
of two real numbers x and y is uniformly computable in x and y.
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We obtain two categories of represented spaces: The category QCB where
the morphisms are the (total and single-valued) relatively computable functions
and the category QCB where the morphisms are the (total and single-valued)
computable functions. In the sequel we will only consider the category QCB
and call this “the category of represented spaces”. All the results we present
relativise to an arbitrary oracle and thus yield analogous results in the category
QCB.

Isomorphisms in our category are defined as usual:

Definition 2.7. Let X and Y be represented spaces. A computable isomorphism
is a computable map f : X → Y with a computable inverse map g : Y → X. A
computable embedding is a computable map f : X → Y which is a computable
isomorphism onto its range.

Any represented space X can be made into a topological space by endowing
it with the final topology of the representation δX . We call this the standard
topology on X or just the topology on X. Note that this topology is necessarily
sequential, as the topology on NN is sequential.

Sequential topologies play an important role in the theory of represented
spaces, so let us recall some basic definitions. A subset U of a topological space
is called sequentially open if for any convergent sequence (xn)n in X whose limit
is in U there exists an index m ∈ N such that for all n ≥ m we have xn ∈ U .
Complements of sequentially open sets are called sequentially closed. A set
A is sequentially closed if and only if the limit of every convergent sequence
in A belongs to A. Any open set is sequentially open, but not necessarily vice
versa. A topology is called sequential if all its sequentially open sets are open.
The collection of all sequentially open sets of a topology τ forms a sequential
topology, called the sequentialisation of τ.

Let X be a represented space. We call a topology τ on the set X compatible
with the topology on X if its sequentialisation coincides with the standard topo-
logy on X. In this case we also say that the topology on X is compatible with
the topology τ.

Proposition 2.8. Let X be a represented space. Let A ⊆ X be an arbitrary
subspace, represented by the co-restriction of δX to A. Then the topology on A
is the sequentialisation of the relative topology induced by X. In general the
topology on A can be strictly finer than the relative topology.
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Proof. That the topology is the sequentialisation of the relative topology follows
from Section 4.1 together with Theorem 7 in [88]. See also [87, Section 4.1.5].
An example where the topology is finer than the relative topology is given in
[43, Example 1.8].

Proposition 2.9. Let X and Y be represented spaces. Then the set-theoretic
product X × Y admits a representation making it into the product in the
category of represented spaces. The topology on X×Y is compatible with the
product topology. In general the topology on X × Y can be strictly finer than
the product topology.

Proof. For the compatibility result, see the proof of the more general Propos-
ition 2.10 below. For an example where the topology is finer than the product
topology, see [43, Example 1.11].

Proposition 2.10. Let (Xn)n be a sequence of represented spaces. Then the set-
theoretic product

∏
n∈NXn admits a representation making it into the product

in the category of represented spaces. The topology on
∏
n∈NXn is compatible

with the product topology. In general the topology on
∏
n∈NXn can be strictly

finer than the product topology.

Proof. For the compatibility result, see Section 4.3 and Theorem 7 in [88]. See
also [87, Section 4.1.4]. That the topology can be strictly finer than the product
follows from Proposition 2.9 above.

Theorem 2.11. Let X and Y be represented spaces. Then the set YX of all
relatively computable functions from X to Y admits a representation making
it into the exponential in the category of represented spaces. The topology on
YX is compatible with the compact-open topology. In general the topology on
YX can be strictly finer than the compact-open topology.

Proof. Combine Theorem 7 and Section 4.4 in [88]. See also [87, Section 4.2].
For an example where the topology is strictly finer than the compact-open

topology, choose X = Q with the euclidean topology and Y = Σ (see Definition
2.12 below). Then YX carries the Scott topology by Theorem 2.16 below. But
the Scott topology is strictly finer than the compact-open topology as was shown
in [30]. See also Definition 2.51 and the paragraph following it for a discussion
of this.
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The composition of two functions f ∈ YX and g ∈ ZY is uniformly computable
in f and g , see e.g. [81, Proposition 3].

Theorem 2.11 is the basis for certain hyperspace constructions which play a
fundamental role throughout this thesis.

Definition 2.12. Sierpinski space Σ is the represented space with underlying
set {⊥,>} and representation

δΣ : NN → Σ, δΣ(p) =
{
⊥ if p(n) = 0 for all n ∈ N,
> otherwise.

Proposition 2.13. Let X be a represented space. Then a subset U ⊆ X is open
in the topology of X if and only if its characteristic function

χU : X → Σ, (χU (x) = > ⇔ x ∈ U)

is relatively computable.

Proof. Assume that χU : X → Σ is relatively computable. Then, by definition,
the function χU ◦ δX : dom(δX) → Σ is relatively computable. It follows from
Theorem 2.3 that χU ◦ δX is continuous. It follows that the set (χU ◦ δX)−1(>) is
open. But, (χU ◦δX)−1(>) = δ−1

X (U). It follows that U is open in the final topology
induced by δX .

Assume that U ⊆ X is open. As δX is continuous, there exists an open set V ∈
O(NN) with δ−1

X (U) = V∩dom δX . It hence suffices to show that the characteristic
function of V is relatively computable. Choose a computable bijection π : N→ N∗

and let Un be the open set of all p ∈ NN having π(n) as a prefix. Then (Un)n
forms a basis of the topology of NN, so that V =

⋃
k∈NUnk for some sequence

(nk)k. Now, observe that V is computable relative to the sequence (nk)k.

Definition 2.14. Let X be a represented space. The space O(X) of opens of X
is the exponential ΣX .

Computable points of O(X) are called semi-decidable sets. Similarly one
obtains the space A (X) of closed subsets of X by identifying a closed set A ⊆ X
with its complement as an element of O(X).

Proposition 2.15. Let X and Y be represented spaces. Let f : X → Y be a relat-
ively computable function. Then f is continuous with respect to the topologies
on X and Y . The converse need not hold true.

Proof. If f : X → Y is relatively computable, then the map
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f−1 : O(Y )→ O(X), U 7Ï f−1(U)

is well-defined and relatively computable, as composition of continuous functions
is uniformly computable in the functions, and f−1(U) is the composition of the
characteristic function of U with f . It follows that f is continuous.

For an example of a continuous function that is not relatively computable,
let q : N → Q be a standard enumeration of the rational numbers. Let D ⊆ NN

denote the space of all sequences (nk)k where the sequence (q(nk))k converges
to a real number. Let R be the represented space with underlying set R and
representation δR : D → R, where δR maps a sequence (nk)k to the limit of the
sequence (q(nk))k. It easily follows from Proposition 2.13 that the final topology
of δR is the indiscrete topology. Consequently, every function f : NN → R is
continuous. The cardinality of the continuous functions of type NN → R is hence
strictly larger than that of the continuum. But since there are only countably
many Turing machines and only continuum-cardinality many oracles, there are
only continuum-cardinality many relatively computable functions.

Theorem 2.16. Let X be a represented space. Then the topology on O(X) is
the Scott topology.

Proof. Combine [38, Corollary 5.16] and [38, Theorem 7 (iii)].

For a more thorough discussion of the following definitions see [81].

Definition 2.17. Let X be a represented space. A subsetK ⊆ X is called compact
if the set

{U ∈ O(X) | K ⊆ U}

is an open subset of O(X). The space K (X) of compacts of X, also called
the upper powerspace of X, is obtained by identifying each such set with the
corresponding element of O(O(X)).

A computable point of K (X) is also called a computably compact set. A
represented space X is called computably compact if X is a computable point in
K (X). In other words, X is computably compact if and only if it is semi-decidable
for a given open set U ∈ O(X) if U is equal to X.

Proposition 2.18. Let X be a represented space. Then K ⊆ X is compact in
the sense of definition 2.17 if and only if it is a saturated compact subset of
the topological space X. The topology on K (X) is the sequentialisation of the
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upper Vietoris topology, i.e., the topology which is generated by all sets of the
form {K ∈ K (X) | K ⊆ U} , where U ∈ O(X).

Proof. See [87, Proposition 4.4.9 (1)], where this is called the “miss”-topology.

Definition 2.19. The space V (X) of overts of X, also called the lower power-
space of X, is the space of closed subsets of X, made into a represented space
by identifying each closed set A ⊆ X with the set

{U ∈ O(X) | A ∩U 6= ∅} ∈ O(O(X)).

A computable element of V (X) is also called a computably overt set.

Proposition 2.20. Let X be a represented space. Then the topology on V (X) is
the sequentialisation of the lower Vietoris topology, i.e., the topology generated
by all sets of the form {A ∈ V (X) | A ∩U 6= ∅} , where U ∈ O(X).

Proof. See [87, Proposition 4.4.5], where this is called the “lower Fell topology”.

Definition 2.21. Let X be a represented space. The space F (X) of located
subsets of X is the space of closed subsets of X, made into a represented space
by identifying each closed set A ⊆ X with the point (A,A) ∈ A (X)× V (X).

Certain separation axioms for topological spaces have computable counter-
parts. A space is Hausdorff if and only if the diagonal ∆X = {(x, x)|x ∈ X} is a
closed subset of the space X × X. This suggests the following definition:

Definition 2.22. A represented space is called computably Hausdorff or a com-
putable Hausdorff space if the diagonal ∆X ⊆ X × X is a computable point of
the space A (X × X). Equivalently, a space is computably Hausdorff if and only
if inequality of points is semi-decidable.

It should be noted that, since products in the category of qcb-spaces are in
general different from topological products (cf. Proposition 2.9), a computably
Hausdorff space need not necessarily be a Hausdorff topological space. For a
concrete example, see for instance [44, Example 6.2]. The property that the
diagonal ∆X is a closed subset of the product X × X in the category of sequen-
tial spaces is sometimes called sequential Hausdorffness. The above example
shows that it is strictly weaker than topological Hausdorffness. Of course, the
two notions coincide for countably based spaces.
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A space is T0 if a point is uniquely determined by its filter of open neigh-
bourhoods. A space is computably T0 if a point can be computably recovered
from its filter of open neighbourhoods:

Definition 2.23. A represented space is called computably T0 or a computable
T0 space if the map

νX : X → O2(X), νX(x) = {U ∈ O(X) | x ∈ U}

is a computable embedding.

Historically, the systematic study of represented spaces was initiated in order
to understand what it means for a representation to capture a given topology on
a set in the best way possible. This leads to the notion of admissible represent-
ation:

Definition 2.24 (Schröder, [88, 87]). Let X be a set. Let τ be a topology on X.
Let δX : ⊆ NN → X be a representation. We say that δX is admissible for the
topology τX if it is continuous and every partial function Φ: ⊆ NN → X which is
continuous with respect to the usual topology on NN and the topology τ factors
through δX :

NN NN

X
Φ

Φ̃

δX

We call a represented space X admissibly represented if the representation
is admissible for the topology on X. In general, a representation can be admiss-
ible for many different topologies. These can be characterised in terms of the
sequentialisation:

Proposition 2.25. Let X be an admissibly represented space. Then the repres-
entation is admissible for a topology τ on X if and only if the sequentialisation
of τ coincides with the standard topology on X.

Proof. See for instance Lemma 8 in [88].

Theorem 2.26 (Schröder, [88, Theorem 4]). Let X be a represented space and Y
be an admissibly represented space. Then a function f : X → Y is continuous
with respect to the standard topologies on X and Y if and only if it is relatively
computable.
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Theorem 2.27. Let X be a represented space. Then X is relatively computably
T0 if and only if it is admissibly represented.

Proof (Sketch). Assume that X is admissibly represented. Then by [88, Theorem
13] X is a T0 space. It follows that the map νX : X → O2(X) is injective. It hence
has a partial inverse ν−1

X : νX(X) → X. The pre-image of an open set U ∈ O(X)
under ν−1

X is evidently given by
{
U ∈ O2(X) | U ∈ U

}
∩ νX(X). As this set is

clearly open in the relative topology on νX(X), it follows from Proposition 2.8
that ν−1

X is continuous. By Theorem 2.26, the map ν−1
X is relatively computable.

For the other direction we need two facts: Firstly, that Σ is admissibly rep-
resented, which follows from Proposition 2.13. Secondly, that if Y is admiss-
ibly represented, and X is an arbitrary represented space, then YX is admiss-
ibly represented [87, Section 4.2].. Now, assume that X is relatively computably
T0. Consider a partial continuous function Φ: ⊆ NN → X. Then the function
νX ◦ Φ: ⊆ NN → O2(X) is continuous, and hence relatively computable thanks
to Theorem 2.26. By assumption, the function ν−1

X : νX(X)→ X is relatively com-
putable. As the composition of two relatively computable functions is relatively
computable, the function Φ = ν−1

X ◦ νX ◦ Φ is relatively computable as well. It
hence has a continuous realiser Φ̃ : ⊆ NN → NN, which makes the diagram in
Definition 2.24 commute.

Corollary 2.28. Let X be a represented space and Y be a computable T0

space. Then a function f : X → Y is continuous with respect to the standard
topologies on X and Y if and only if it is relatively computable.

Any T0 space X can be made into a partially ordered set by endowing it
with its specialisation order. A point x0 ∈ X is below a point x1 ∈ X in the
specialisation order, in symbols x0 ≤ x1, if every open set of X that contains x0

also contains x1. It is useful to note that compatible topologies induce the same
specialisation order:

Proposition 2.29. Let X be a computable T0 space. Let (Un)n be a sequence of
open sets that generate a compatible topology on X. Then x ≤ y with respect
to the specialisation order on X if and only if x ∈ Un implies y ∈ Un for all
n ∈ N. In particular, compatible topologies induce the same specialisation
order.

Proof. If x ≤ y in the specialisation order on X then x ∈ Un implies y ∈ Un for
all n ∈ N by definition.
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Conversely, assume that x ∈ Un implies y ∈ Un for all n ∈ N. Then the
constant sequence (y)n converges to x with respect to the topology generated
by the Un ’s. As the topology is assumed to be compatible with the topology
on X, the constant sequence (y)n converges to x in the topology on X. Hence
y ≥ x.

2.3 Computable monads and algebras

Some of the concepts that play a role in this thesis are most naturally phrased in
the language of computable monads. These are simply monads on the category
of represented spaces satisfying the following local computability condition:

Definition 2.30. Let E be a covariant endofunctor on the category of represen-
ted spaces. We say that E is locally computable if for all represented spaces X
and Y the map

YX → E(Y )E(X), f 7Ï Ef

is computable. Locally computable contravariant functors are defined analog-
ously.

Definition 2.30 is not entirely satisfactory, as the computability of E is not
uniform on the Hom-sets. It seems very difficult, however, to give such a defin-
ition, as the objects of our category form a proper class, for which we do not
have a notion of “computability structure” available. This is why we use the term
“locally computable”, to emphasize that the algorithm is allowed to depend on
the Hom-set. It is worth pointing out that all endofunctors we consider in this
thesis use “essentially the same algorithm” on each Hom-set.

The composition of two locally computable endofunctors is locally comput-
able. The powerspace construction O defines a contravariant locally computable
endofunctor. The powerspace constructions V and K define covariant locally
computable endofunctors.

Recall that a monad on a category C is an endofunctor T : C → C together
with two natural transformations: The unit ηT : idC → T and the multiplication
µT : T2 → T such that for each object X in C the following diagrams commute:
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T3(X) T2(X) T(X) T2(X)

T2(X) T(X) T2(X) T(X)

µT(X)

TµX

µX T(ηX)

ηT(X)

µX

µX µX

See Chapter VI of [69] for an introduction to monads.

Definition 2.31. Let M be a monad on the category of represented spaces with
unit ηM and multiplication µM . We say that M is a computable monad if M is a
locally computable endofunctor and ηMX and µMX : M2(X)→M(X) are computable
maps for each represented space X.

Note that the condition that ηMX and µMX be computable morphisms is redund-
ant as it is already contained in the condition that these maps be morphisms in
the category of represented spaces. We have mentioned it only for emphasis.

The composition of two computable monads is a computable monad. Both
V and K are computable monads in the category of computable represented
spaces and in the category of computable T0 spaces.

The unit of K is given by

κX : X → K (X), κ(x) = ↑x .

The multiplication is given by
⋃

: K (K (X))→ K (X), I 7Ï
⋃

K∈I
K.

The unit of V is given by

θX : X → V (X), θ (x) = ↓x .

The multiplication is given by

cl
⋃

: V (V (X))→ V (X), I 7Ï cl(
⋃

A∈I
A).

Another important example of a locally computable endofunctor which is
a computable monad on both the represented spaces and the computable T0
spaces is the functor O2, with unit

νX : X → O2(X), νX(x) = {U ∈ O(X) | x ∈ U}

and multiplication

µO2
X : O4(X)→ O2(X), µO2

X (U ) =
{
U ∈ O(X) | νO(X)(U) ∈ U

}
.

As a final example of a computable monad, consider the adjunction of a
bottom element to a represented space:
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Definition 2.32. Let X be a represented space. The space X⊥ has underly-
ing set X ∪ {⊥}, where ⊥ is some point not contained in X, and the following
representation δX⊥ : ⊆ NN → X⊥:

The domain of δX⊥ : ⊆ NN → X⊥ consists of the constant zero sequence in
NN together with those sequences (xn)n where there exists an N ∈ N such that
xn = 0 for all n ≤ N and the sequence (xn+N+1 − 1)n∈N is in the domain of δX .

The constant zero sequence is the unique name of ⊥. Every other sequence
defines a δX-name of some element x ∈ X, and δX⊥ maps each such sequence
to the corresponding x.

We obtain a locally computable endofunctor which sends a space X to X⊥
and a map f : X → Y to the map

f⊥ : X⊥ → Y⊥, f⊥(x) =
{
⊥ if x = ⊥,
f (x) otherwise.

For every X we have a natural open embedding X → X⊥ and this defines the
unit of a computable monad M .

Recall that an algebra of a monad M with multiplication µ and unit η is an
object X together with a map h : M(X)→ X called the structure map such that
the following diagrams commute:

M2(X) M(X)

M(X) X

h∗

µX h

h

X M(X)

X
idX

ηX

h

We have the following remarkable observation:

Proposition 2.33. Let X be a represented space. Then the space O(X) is both
a V -algebra and a K -algebra. The structure maps are given by

⋃
: V (O(X))→ O(X), A 7Ï

⋃

U∈A
U

and
⋂

: K (O(X))→ O(X), K 7Ï
⋂

U∈K
U

respectively.

Proof. We have

x ∈
⋃

U∈A
U ⇔ ∃U ∈ A.(x ∈ U).
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It follows that
⋃

is computable by the definition of V (O(X)).
Similarly, we have

x ∈
⋂

U∈K
U ⇔ ∀U ∈ K.(x ∈ U).

It follows that
⋂

is computable by the definition of K (O(X)).
To verify that

⋃
and

⋂
are the structure maps of O(X) as a V - and K -algebra

is a routine calculation.

Concisely put, Proposition 2.33 says that the lattice O(X) admits uniformly
computable overt joins and compact meets.

2.4 Computably countably based spaces

In certain situations, especially in Section 2.6, it will be necessary to restrict our
attention to computable T0 spaces which are countably based with a computable
basis. These can be defined as follows:

Definition 2.34. A computably countably based space is a represented space
X which computably embeds into the space O(N).

Any computably countably based space is automatically a computable T0
space, as it is computably isomorphic to a subspace of O(N). Any embedding
i : X → O(N) gives rise to the countable basis (i−1(Bn))n of the topology of X,
where Bn = {U ∈ O(N) | n ∈ U}. Conversely, if (Un)n is a countable basis for
the topology of X, we have an embedding

j : X → O(N), j(x) = {n ∈ N | x ∈ Un} .

If the map j is a computable embedding, we call (Un)n a computable basis for
X.

Note that the basis (i−1(Bn))n is a computable basis for every computable
embedding i : X → O(N). If j : X → O(N) is an embedding induced by the basis
(Un)n then j−1(Bn) = Un. Hence, we have a bijection between computable bases
of X and computable embeddings X → O(N). In particular a represented space
is computably countably based if and only if it has a computable basis.

Note that any computable basis for X is computable as a sequence in O(X).

Proposition 2.35. Let X be a countably based T0-space. Then X admits an
admissible representation which makes it into a computably countably based
space.
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Proof. Choose a countable basis (Un)n and represent x ∈ X by the representa-
tion where a name of x ∈ X is any sequence (ni)i such that for all n ∈ N we have
x ∈ Un if and only if there exists i ∈ N with ni = n. For details, see e.g. Section
2.2 in [88] and references therein.

Computably countably based spaces are essentially the same as Weihrauch’s
effective topological spaces [106] and as the effectively traceable spaces intro-
duced by Brattka and Pauly [23].

Proposition 2.36. The following are equivalent for a computable T0 space X:

1. The space X admits a computably open representation, that is, its rep-
resentation is computably equivalent to a representation δX : ⊆ NN → X
such that the function

(δX)∗ : O(NN)→ O(X)

which sends an open subset of Baire space to an open subset of X is
well-defined and computable.

2. The space X admits a computably fibre-overt representation, i.e., its rep-
resentation is computably equivalent to a representation δX : ⊆ NN → X
such that the function

δ−1
X : X → V (NN), x 7Ï cl δ−1

X ({x}).

is computable.

Any computably countably based space satisfies both conditions.

Proof. We have cl δ−1
X ({x}) ∩U 6= ∅ if and only if δ−1

X ({x}) ∩U 6= ∅ if and only if
x ∈ δX(U). This establishes the equivalence between the two items.

Assume that the topology of X has a computable countable basis. Then the
representation is equivalent to the representation where p ∈ NN is a name of x ∈
X if and only if the sequence (Up(n))n contains all basic open sets which contain
x (permitting repetition). This representation is clearly computably open.

For a computably countably based space X the powerspaces O(X), K (X),
and V (X) can be represented using sequences of (intersections and unions of)
basic open sets. These more concrete representations are useful for many
constructions. Analogous representations are introduced in [106] for subsets of
euclidean space and in [24] for subsets of general computable metric spaces.
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Definition 2.37. Let X be a computably countably based space with a computable
basis (Un)n.

1. The basis (Un)n is computably closed under finite intersections if there
exists a computable function cap : N×N→ N with Ucap(n,m) = Un ∩Um for
all n,m ∈ N.

2. The basis (Un)n is computably closed under finite unions if there exists
a computable function cup : N × N → N with Ucup(n,m) = Un ∪ Um for all
n,m ∈ N.

In the following we will prove certain results that rely on the existence of a
computable basis which is computably closed under finite unions and intersec-
tions. This is a very mild assumption, as any computable basis can be extended
to a basis which is computably closed under finite unions and intersections:

Proposition 2.38. Let X be a computably countably based space. Let (Un)n
be a computable basis for X. Then there exist a computable basis (Vn)n for X
which is computably closed under finite unions and finite intersections, and
a computable map j : N→ N with Vj(n) = Un for all n ∈ N.

Proof. Let 〈·〉 : N∗ → N be a computable bijection with computable inverse.
Let

V〈〈n0
0 ,...,n0

s0〉,...,〈nt0,...,ntst 〉〉 =
t⋃

i=0

si⋂

j=0
Unij .

Then (Vn)n is clearly closed under finite unions and intersections. We can put
j(n) = 〈〈n〉〉.

It remains to show that (Vn)n is a computable basis. Let

i : X → O(N), i(x) = {n ∈ N | x ∈ Vn} .

Then i is a computable map, as finite intersections and unions in O(X) are com-
putable by Proposition 2.33, so that the predicate x ∈ Vn is uniformly semi-
decidable in x and n. As (Un)n is a computable basis of X which can be effect-
ively recovered from (Vn)n using the map j , it follows that i is injective and its
partial inverse is computable.

Proposition 2.39. Let X be a computably countably based space with a com-
putable countable basis (Un)n which is computably closed under finite inter-
sections. Then the standard representation of O(X) is computably equivalent
to the representation where p ∈ NN is a name for U ∈ O(X) if and only if
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U =
⋃

n∈N
Up(n).

Proof. We can assume that X is represented by the representation where p ∈ NN

represents x ∈ X if and only if the sequence (Up(n))n contains all basic open sets
which contain x. Given p ∈ NN we can effectively compute

⋃
n∈NUp(n) as an

element of O(X). Conversely, a name of an open set U ∈ O(X) is a name of
a function u : NN → Σ with u(p) = u(q) whenever p and q represent the same
point. Note that we can assume u to be total as any partial computable map from
NN to Σ extends uniformly computably to a total one. There exists a function
v : N∗ → Σ which can be effectively computed from u such that for all a, b ∈ N∗,
with a being a prefix of b, we have v(a) ≤ v(b), and such that for all convergent
sequences (sn)n in N∗ we have

lim v(sn) = u(lim sn).

This function is essentially a Kleene-Kreisel associate of u. From this we can
compute the sequence of all finite strings s ∈ N∗ which are mapped by v to >.
Each such finite string represents a finite intersection of basic open subsets of
U . As the basis is assumed to be computably closed under finite intersections,
we can effectively compute the index of this intersection from the string. If
x ∈ U , then any sufficiently long prefix of any name of x is eventually mapped
to > by v. The claim follows.

Proposition 2.40. Let X be a computably countably based space with a com-
putable countable basis (Un)n which is computably closed under finite inter-
sections and unions. Then the standard representation of K (X) is computably
equivalent to the representation where p ∈ NN is a name for K ∈ K (X) if and
only if the sequence (Up(n))n contains all basic open sets which contain K.

In particular, the space K (X) is computably countably based, a comput-
able basis being given by the sequence ([Un])n, where

[Un] = {K ∈ K (X) | K ⊆ Un} .

Proof. Given a standard name of a compact set K ∈ K (X) we can clearly com-
pute a sequence of basic open sets which contains all basic open sets which
contain K.

Conversely, assume that we are given a sequence (Wn)n containing all basic
open sets which contain K. Computing a name of K in the standard repres-
entation amounts to providing an algorithm which takes as input an open set
U ∈ O(X) and halts if and only if K ⊆ U . Represent O(X) using the representa-
tion from Proposition 2.39.
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Given U ∈ O(X) as a list of basic open sets (Up(n))n with U =
⋃
n∈NUp(n),

compute the sequence Vn =
⋃
k≤n Up(k) of finite unions of the Up(n)’s. If Vn

appears somewhere in the sequence (Wn)n then halt.
As K is compact, K is contained in U if and only if it is contained in Vn for

some n ∈ N. If K is contained in Vn then Vn is contained in the sequence (Wn)n.
This shows that the algorithm halts if and only if K ⊆ U .

Proposition 2.41. Let X be a computably countably based space with a com-
putable countable basis (Un)n which is computably closed under finite inter-
sections. Then the standard representation of V (X) is computably equivalent
to the representation where p ∈ NN is a name for A ∈ V (X) if and only if the
sequence (Up(n))n contains all basic open sets which intersect A.

Proof. Given a standard name of A ∈ V (X) we can clearly compute a list of all
basic open sets which intersect A.

Suppose we are given a sequence (Wn)n of all basic open sets which intersect
A. Computing a name of A in the standard representation amounts to providing
an algorithm which takes as input an open set U ∈ O(X) and halts if and only if
A ∩U 6= ∅. Represent O(X) using the representation from Proposition 2.39.

Given a list of basic open sets (Up(n))n∈N with U =
⋃
n∈NUp(n), halt if and only

if there exists n ∈ N such that Up(n) is contained in the list (Wn)n.
The set U intersects A if and only if one of the Up(n)’s intersects A if and only

if Up(n) is contained in the list (Wn)n. This shows that the algorithm halts if and
only if U ∩ A 6= ∅.

2.5 Continuous lattices

In Chapter 3 we will introduce computable Σ-split injective lattices which play
a central role throughout this thesis. They can be viewed as natural generalisa-
tions of continuous lattices. It hence makes sense to recall some of the most
basic facts about the latter. Almost everything we present here can be found
in the standard reference [45]. Most of the concepts we discuss here make
sense for general directed complete partial orders (dcpo’s). For our purpose it
is sufficient to consider complete lattices, and we will specialise all definitions
accordingly.

Definition 2.42. A complete lattice is a partially ordered set L in which every
subset A ⊆ L has a greatest lower bound inf A and a least upper bound sup A.
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The greatest lower bound of a set A is also referred to as its meet and
alternatively denoted by

∧
x∈A x. Similarly, the least upper bound of A is called

its join and denoted by
∨
x∈A x.

Binary meets and joins are denoted by x ∧ y and x ∨ y respectively.

Definition 2.43 ([45, Definition I-1.1]). Let L be a complete lattice. Let x, y ∈ L.
Then x is said to be way below y, in symbols, x � y if for all subsets A ⊆ L
with y ≤ supA there exists a finite subset A′ ⊆ A with x ≤ supA′. An element
x ∈ L which is way below itself is called compact.

Definition 2.44. Let L be a complete lattice. The lattice L is called algebraic
(see [45, Definition I-4.2]) if every x ∈ L is the supremum of the compact points
below it. In symbols, if

x = sup {y ∈ L | y � y ≤ x}

for all x ∈ X.
The lattice L is called continuous (see [45, Definition I-1.6]) if every x ∈ L is

the supremum of the points way below it, in symbols, if

x = sup {y ∈ L | y � x} .

Any algebraic lattice is continuous but not vice versa. The way-below relation
of a continuous lattice satisfies the following interpolation property:

Theorem 2.45 ([45, Theorem I-1.9]). Let L be a continuous lattice. Let x, y ∈ L
with x � y. Then there exists a point z ∈ L with x � z� y.

Any complete lattice L can be made into a topological space by endowing it
with its Scott topology. Recall that a subset U of a lattice X is Scott open if it
is upwards closed and for all directed sets D ⊆ X whose supremum is in U we
have D ∩ U 6= ∅ [45, Definition II-1.3]. If L is a continuous lattice then its lattice
structure can be completely recovered from this topology: the specialisation
order induced by the Scott topology is the same as the original order on L [45,
Theorem II-3.8].

With respect to its Scott topology, any continuous lattice is a locally compact
sober space [45, Corollary II-1.13]. The continuous lattices with their Scott to-
pology are precisely the injective objects in the category of T0 spaces relative
to the class of topological embeddings [45, Theorem II-3.8]. Hence, the second-
countable continuous lattices are precisely the retracts of O(N).

The notion of continuous lattice can be effectivised using the concept of lattice
bases (cf. [45, Chapter III-4, p. 243]).
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Definition 2.46. Let L be a lattice. A basis for L is a subset B ⊆ L such that for
all x ∈ L we have

x = sup {y ∈ B | y � x} .

A lattice is called countably based if it has a countable basis.

A lattice has a basis if and only if it is continuous. If L is a (continuous) lattice
with a basis B then the sets (↑↑ x)x∈B where

↑↑ x = {y ∈ L | y � x}

form a basis for the Scott topology (see the proof of Theorem III-4.5 in [45]).
If L is algebraic then a basis is given by the compact elements of L and in this
case the sets (↑x )x�x form a basis for the Scott topology.

In particular, any countably based continuous lattice is a countably based
topological space. Conversely, if a continuous lattice is a countably based space
with respect to its Scott topology, then it has a countable basis in the sense of
Definition 2.46 (see again the proof of Theorem III-4.5 in [45]).

Any countably based continuous lattice can be endowed with a computability
structure which makes it into a computable T0 space. The following definition
is essentially a special case of [93, Definition 3.1].

Definition 2.47. A computable continuous lattice is a continuous lattice L with
a countable basis B = (xn)n, which has the additional property that any two
elements in B have an upper bound in B, such that the relation

{(m,n) ∈ N× N | xm � xn}

is a computably enumerable subset of N× N.
The standard representation of L (with respect to the basis B) is obtained

by identifying L with a subspace of O(N) under the embedding

L→ O(N), x 7Ï {n ∈ N | x � xn} .

The standard representation of a computably countably based lattice L makes
it into a computably countably based computable T0 space: As the sets of the
form ↑↑ xn with xn ∈ B form a basis for the Scott topology, the standard repres-
entation of a computable countably based lattice is a special case of the standard
representation of an effective topological space in the sense of Weihrauch [106],
and any such space is a computably countably based computable T0 space.

Another way of effectivising the notion of continuous lattice is to start with
the observation that in the category of topological spaces, the countably based
continuous lattices are precisely the retracts of O(N). The same is true in the
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category of qcb0-spaces, as was pointed out to me by Thomas Streicher and
Matthias Schröder. It was shown in [38, Corollary 6.11] that every core-compact
QCB0-space is already countably based. As every continuous lattice in QCB0 is
core-compact, it follows that the continuous lattices in QCB0 are precisely the
retracts of O(N).

From this perspective it seems natural to define computable continuous lat-
tices as the computable retracts of O(N). Let us recall the definition of comput-
able retract first:

Definition 2.48. Let A and B be computable T0 spaces. Then A is said to be
a computable retract of B if there exists a computable map s : A → B with a
computable left inverse r : B→ A, i.e., the maps s and r satisfy r ◦ s = idA.

It follows from a characterisation of effectively given domains due to Smyth
[93, Theorem 3.4] that the computable continuous lattices are indeed exactly the
computable retracts of O(N). We recall the proof in our special case here:

Proposition 2.49. Let X be a represented space. Then X is computably iso-
morphic to a computable continuous lattice if and only if X is a computable
retract of O(N).

Proof. Let X be a computable continuous based lattice with its standard rep-
resentation with respect to a chosen basis (xn)n. Then X is identified with a
subspace of O(N), so we have a computable embedding s : X → O(N). Using that
the way-below relation on basis elements is semi-decidable, define a computable
map r : O(N)→ O(N) as follows:

r(U) = {m ∈ N | ∃n ∈ U.xm � xn} .

We claim that r is a retraction onto s(X). Let U ∈ O(N). We claim that

m ∈ r(U) ⇔ xm � sup {xn | n ∈ U} .

It then follows that r(U) = s(sup {xm |m ∈ U}). If m ∈ r(U) then by definition
there exists n ∈ U with xm � xn, so that xm � sup {xn | n ∈ U}. Conversely,
if xm � sup {xn | n ∈ U} then by the interpolation property of the way-below
relation there exists x ∈ X with xm � x � sup {xn | n ∈ U}. It follows from the
definition of the way-below relation that x ≤ x1 ∨ · · · ∨ xN for some N ∈ N. As
xm � x we obtain xm � x1 ∨ · · · ∨ xN . As any two elements of the basis are
assumed to have an upper bound in the basis, it follows that there exists a basis
element xn with xm � x1 ∨ · · · ∨xN ≤ xn. Hence m ∈ r(U). Thus, r takes values
in s(X). If U = s(x) then r(U) = U , for if m ∈ N such that there exists n ∈ U
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with xm � xn then xm � xn � x so that m ∈ U by definition of s. Hence r is a
retraction onto s(X).

Conversely, assume that X is a computable retract of O(N). Then there exists
a computable map s : X → O(N) with a computable left inverse r : O(N)→ X.

We will construct a computable continuous lattice L which is isomorphic to
X. Let (Sn)n be a computable enumeration of all finite subsets of N. Define a
relation �X on N as follows:

m�X n ⇔ Sm ⊆ s ◦ r(Sn).

Note that this relation is semi-decidable.
Let L ⊆ O(N) be the space of all �X-ideals, viewed as a subspace of O(N).

More explicitly, an open set U ∈ O(N) is an element of L if and only if it satisfies

1. If n ∈ U and m�X n then m ∈ U .

2. If n,m ∈ U then there exists k ∈ U with n�X k and m�X k.

Note that L is a continuous lattice, as it is a retract of O(N). A retraction is given
by the map

R : O(N)→ L, R(U) =
{
n ∈ N | Sn ⊆ s ◦ r(

⋃

m∈U
Sm)

}
.

By definition of L we have for all U ∈ L the equation:

U =
⋃

n∈U
{m ∈ N |m� n} .

Therefore we can characterise the way-below relation in L as follows:

x � y ⇔ ∃n ∈ y.x ⊆ {m ∈ N |m�X n} .

It follows that the elements

xn = {m ∈ N |m�X n}

form a basis of L, and x � xn if and only if n ∈ x. Hence, L is a computable
continuous lattice with the standard representation induced by the basis (xn)n.

Let us show that X is isomorphic to L. Define two maps

f : X → L, f (x) = {n ∈ N | Sn ⊆ s(x)} ,

and

g : L→ X, g(y) = r
(⋃
{Sn | n ∈ y}

)
.

It is obvious that g is well-defined and computable. The map f is clearly com-
putable. To see that it is well-defined, let x ∈ X. If n ∈ f (x) and m �X n, then
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by definition we have Sn ⊆ s(x) and Sm ⊆ s ◦ r(Sn). Applying s ◦ r to the first
equation, we obtain s◦r(Sn) ⊆ s(x), and hence Sm ⊆ s(x) by the second equation.
This shows that f (x) is downwards closed with respect to �X . To see that it is
�X-directed, let n,m ∈ f (x). Then Sn ∪ Sm ⊆ s(x) by definition. We can write
s(x) =

⋃
Sk⊆s(x) Sk. Applying s ◦ r to this equation yields s(x) =

⋃
Sk⊆s(x) s ◦ r(Sk).

As Sn ∪ Sm is a compact element of O(N), it follows that there exists k ∈ N
with Sn ∪ Sm ⊆ s ◦ r(Sk) and Sk ⊆ s(x). In other words, there exists k ∈ f (x)
with n �X k and m �X k. This shows that f (x) is an �X-ideal, so that f is
well-defined.

It is easy to see that g ◦ f = idX . Let us now show that f ◦ g = idY . By
definition we have

f ◦ g(y) = f ◦ r
(⋃
{Sn | n ∈ y}

)
.

Using that y is a�X-ideal, we obtain that the set {Sn | n ∈ y} is a directed subset
of O(N). As f ◦ r is continuous, it preserves directed suprema, so that

f ◦ g(y) = sup {f ◦ r(Sn) | n ∈ y} .

Note that the supremum of a directed family in L is simply given by the union,
so that

f ◦ g(y) =
⋃
{f ◦ r(Sn) | n ∈ y} .

It follows from the definition of f that

f ◦ g(y) = {m ∈ N | ∃n ∈ y.m�X n} .

Using that y is downwards closed with respect to�X , we obtain that f ◦g(y) ⊆ y.
Using that y is upwards directed with respect to �X , we obtain that f ◦ g(y) ⊇ y.
Hence, f and g are inverses of each other, so that X is computably isomorphic
to L.

Together with Proposition 2.33 we obtain the following result on the com-
putability of joins and meets:

Theorem 2.50. Every computable continuous lattice is at the same time a
V -algebra and a K -algebra. The structure maps are given by join and meet
respectively.

Proof. Let L be a computable complete lattice. Then there exists a computable
embedding s : L → O(N) with computable left inverse r : O(N)→ L. By Proposi-
tion 2.33 the lattice O(N) is simultaneously a V -algebra and a K -algebra with

⋃

38



and
⋂

being the structure maps. It follows that L is a V -algebra whose structure
map is given by the composition of the following maps:

V (L) V (O(N)) O(N) LVs
⋃

r

Analogously L is a K -algebra with the structure map being given by the com-
position of the following maps:

K (L) K (O(N)) O(N) LKs
⋂

r

2.6 Computable commutativity of the powerspace
monads

As opposed to the rest of this chapter, this section contains original results. A
recent result due to de Brecht and Kawai [33] asserts that the lower and upper
powerspace monads V and K satisfy the following commutativity relation for
countably based consonant spaces X:

V (K (X)) ' K (V (X)) ' O(O(X)).

Here the symbol ' indicates that two topological spaces are homeomorphic.
The second equality holds true even without the assumption of consonance.
Locale-theoretic analogues of these results were proved much earlier by Vickers
[104]. In this section we prove a computable version of this result, where the
homeomorphisms are replaced with computable isomorphisms. One of the
results proved here, Proposition 2.56, will be required in two places: Firstly, it is
used in Proposition 3.24 to show that the lattice K⊥(X) is computably injective for
every computably countably based computable Hausdorff space X. Secondly, it is
used in Chapter 4 to prove Lemma 4.47 which is used to simplify the calculation
of the universal envelope of certain set-valued functions.

We first recall the definition of consonant space [35]:

Definition 2.51. A topological space X is called consonant if the Scott topology
on O(X) coincides with the compact-open topology, or equivalently, if for every
Scott-open set U ⊆ O(X) there exists a family (Ki)i∈I of compact sets such that
U ∈ U if and only if U ⊇ Ki for some i ∈ I . Sets with this property are also
called compactly generated.
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Most of the usual spaces considered in analysis are consonant. Every Polish
space [35, Theorem 4.1] and even every quasi-Polish space [34] is consonant.
Consonant spaces turn out to have rather erratic closure properties. For in-
stance there exists a pair of consonant spaces whose product is not consonant
[35, Example 7.2]. Open and closed subspaces of consonant spaces are conson-
ant [35, Proposition 4.2], but Gδ-subspaces need not be [35, Proposition 7.3]. A
concrete example of a non-consonant space is the space of rational numbers Q
with the subspace topology inherited from the space R of real numbers [30].

Proposition 2.52. Let X be a consonant computably countably based T0 space.
Then there exists a computable isomorphism

α : O(K (X))→ V (O(X))

such that for all K ∈ K (X) and all U ∈ O(K (X)) we have

K ∈ U ⇔ ∃U ∈ α(U ). (K ⊆ U) .

Proof. Let (Un)n be a computable basis of X which is computably closed under
finite intersections and unions.

Suppose we are given an open set U ∈ O(K (X)). Combining Propositions
2.39 and 2.40 we can uniformly compute in U a sequence p ∈ NN such that for
all K ∈ K (X) we have

K ∈ U ⇔ ∃n ∈ N.
(
K ⊆ Up(n)

)
. (2.1)

Let α(U ) be the closure of the sequence (Up(n))n in O(X). Then α(U ) is uniformly
computable in U as an overt set of opens. We have to show that the value
α(U ) does not depend on the choice of name of U , that α is a computable
isomorphism, and that α has the stated property. As the sequence (Up(n))n is by
definition dense in α(U ), it follows immediately from (2.1) that

K ∈ U ⇔ ∃U ∈ α(U ). (K ⊆ U) . (2.2)

It follows from (2.2) that the computable function

α−1 : V (O(X))→ O(K (X)), α−1(A) = {K ∈ K (X) | ∃U ∈ A.K ⊆ U}

is the inverse of α. Hence α is a computable isomorphism.
Finally, let us show that α is well-defined, i.e., that the value α(U ) does not

depend on the choice of name of U . We can already view α as a multi-valued
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map α : O(K (X))⇒ V (K (X)) with α−1◦α = id. It hence suffices to show that the
inverse function α−1 is injective. As α−1◦α(U ) = U it follows that α−1 is constant
on the values of α. By injectivity α is single-valued. Thus, let A,B ∈ V (O(X)).
Assume that α−1(A) = α−1(B). Then for a compact set K ∈ K (X) there exists
U ∈ A with K ⊆ U if and only if there exists V ∈ B such that K ⊆ V . In other
words if we consider sets of the form [K] = {U ∈ O(X) | K ⊆ U} with K ∈ K (X)
then [K] intersects A if and only if it intersects B. These sets form a basis
for the compact-open topology on O(X). As X is assumed to be consonant the
compact-open topology on O(X) coincides with the Scott topology. Hence A and
B intersect the same basic open sets and therefore have to be equal.

Proposition 2.53. Let X be a computably countably based consonant T0 space.
Then there exists a computable isomorphism

ι : V (K (X))→ O2(X).

If A ∈ V (K (X)) and K ∈ K (X) then

K ∈ A ⇔ ∀U ⊇ K. (U ∈ ι(A)) .

Conversely, if U ∈ O2(X) and U ∈ O(X) then

U ∈ U ⇔ ∃K ∈ ι(U ). (K ⊆ U)

Proof. Let

ι(A) = {U ∈ O(X) | ∃K ∈ A.K ⊆ U} .

The function ι is clearly computable. The space V (K (X)) can be identified with
a subspace of O2(K (X)) via the embedding

u : V (K (X))→ O2(K (X)), u(A) = {U ∈ O(K (X)) | ∃K ∈ A.K ∈ U} .

Let α : O(K (X)) → V (O(X)) be the computable isomorphism from Proposition
2.52. Let

µ̃ : O2(X)→ O2(K (X)), µ̃(U ) = {U ∈ O(K (X)) | ∃V ∈ α(U).V ∈ U } .

The function µ̃ is computable. We claim that the function µ = u−1 ◦ µ̃ is well-
defined and the inverse of ι. Let U ∈ O2(X). Using that X is consonant, let (Ki)i
be a generating family of compacts for U . We have:
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U ∈ µ̃(U )
⇔ ∃V ∈ α(U).V ∈ U

⇔ ∃V ∈ α(U).∃i.Ki ⊆ V
⇔ ∃i.Ki ∈ U.

The last equivalence uses Proposition 2.52. Thus, µ̃(U ) = u(A) where A is the
closure of the family (Ki)i in K (X). Hence the function µ = u−1 ◦ µ̃ is well-
defined. It is easy to see that µ̃ ◦ ι = u. Hence µ ◦ ι = id. Using that µ(U ) is a
generating family for U we obtain that ι ◦ µ(U ) = U . Hence µ is the inverse of
ι.

A dual result holds true for the lower powerspace. We begin with a technical
lemma.

Lemma 2.54. Let X be a computably countably based space. Let (Un)n be a
computable basis of X. Given (a name of) an open set of overts U ∈ O(V (X))
we can compute a sequence (〈U i

0, . . . , U i
ni〉)i of finite sequences of basic open

sets with

A ∈ U ⇔ ∃i ∈ N.∀k ≤ ni.
(
A ∩U i

k 6= ∅
)
.

Proof. It follows from Proposition 2.41 that V (X) is a computably countably
based space and that a computable basis for V (X) is given by the sets of the
form

[Ui1 , . . . , Uin ] = {A ∈ V (X) | ∀k ≤ n.A ∩Uik 6= ∅} .

The claim now follows from Proposition 2.38 and Proposition 2.39.

Proposition 2.55. Let X be a computably countably based space. Then the
map

β : O(V (X))→ K (O(X)), β(U ) = {U ∈ O(X) | ∀A ∈ U .A ∩U 6= ∅} .

is a computable isomorphism.

Proof. Given a name of U , compute a sequence (〈U i
0, . . . , U i

ni〉)i of finite se-
quences of basic open sets as in Lemma 2.54. We claim that β(U ) consists of all
open sets which contain an open set of the form

⋃

i∈N
U i
f (i) (2.3)
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where f : N → N is a function with f (i) ≤ ni for all i. It is clear that any such
open set is contained in β(U ). On the other hand, if U ∈ O(X) does not contain
such a set then there exists i ∈ N such that U does not contain any of the sets
U i

1. . . . , U i
ni . Hence there exist points yj ∈ U i

j with yj ∈ U i
j \U . Then {y1, . . . , yni}

is contained in U but does not intersect U . It follows that U /∈ β(U ). Now let
H ∈ O2(X). Then β(U ) is contained in H if and only if H contains all sets of
the form (2.3). We can semi-decide if β(U ) is contained in H as follows: for all
pairs (n, s) ∈ N2 run an algorithm for s steps that checks if H contains all finite
unions of the form

n⋃

i=0
U i
f (i) (2.4)

where f : N→ N is a function with f (i) ≤ ni for all i. If a pair (n, s) is found, halt
the computation, indicating that β(U ) is contained in H . Let us show that this
algorithm is correct. On the one hand, if the algorithm halts then H contains
all finite unions of the form (2.4) for some n and hence a-fortiori all infinite
unions of the form (2.3), as it is upwards closed. On the other hand assume that
the algorithm does not halt. Consider the tree consisting of all finite sequences
〈k0, . . . , kn〉 with ki ≤ ni such that H does not contain the finite union

⋃n
i=0U i

ki .
If this tree is finite then the algorithm eventually halts. It follows from our
assumption that this tree must be infinite. Hence the tree has an infinite path.
This path can be identified with a function f : N→ N with f (i) ≤ ni such that H

does not contain any of the finite unions
⋃n
i=0U i

f (i). Assume H ⊇ β(U ). Then
H contains the infinite union

⋃
n∈NU i

f (i). As H is Scott-open it already contains
some finite union

⋃n
i=0U i

f (i). This contradicts the existence of f . Hence H does
not contain β(U ). It follows that β is well-defined and computable.

Consider the computable map

β−1 : K (O(Y ))→ O(V (Y )), β−1(K) = {A ∈ V (Y ) | ∀U ∈ K.A ∩U 6= ∅}

We will show that β−1 is the inverse of β. We have

β ◦ β−1(K) = {U ∈ O(Y ) | ∀A ∈ V (Y ). ((∀V ∈ K.A ∩ V 6= ∅)Ï A ∩U 6= ∅)} .

It is obvious that β ◦ β−1(K) ⊇ K. Let U ∈ β ◦ β−1(K) and assume U /∈ K. Then,
since K is saturated,

∀V ∈ K.∃y ∈ Y.y ∈ V \U.

Let f : K → Y be a Skolem-function for this, i.e., a function satisfying
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∀V ∈ K.f (V ) ∈ V \U.

Then the set A = cl (
⋃
V∈K f (V )) intersects all V ∈ K but does not intersect U .

This contradicts the assumption that U ∈ β ◦ β−1(K). Hence U ∈ K. We have

β−1 ◦ β(U ) = {A ∈ V (Y ) | ∀U ∈ O(Y ). ((∀B ∈ U .B ∩U 6= ∅)Ï A ∩U 6= ∅)} .

Again it is clear that β−1 ◦ β(U ) ⊇ U . Let A ∈ β−1 ◦ β(U ) and assume A /∈ U .
Then, because U is upwards closed,

∀B ∈ U .∃U ∈ O(Y ).B ∩U 6= ∅ ∧ A ∩U = ∅.

Let f : U → O(Y ) be a Skolem-function for this. Then the open set
⋃
B∈U f (B)

intersects all elements of U but does not intersect A, contradicting the assump-
tion A ∈ β−1 ◦ β(U ). Hence A ∈ U . It follows that β−1 is really the inverse of
β.

Proposition 2.56. Let Y be a computably countably based space. Then the
map

γ : K (V (Y ))→ O2(Y ), γ(K) = {U ∈ O(Y ) | ∀A ∈ K.A ∩U 6= ∅}

is a computable isomorphism.
Its inverse is given by:

γ−1 : O2(Y )→ K (V (Y )), γ−1(U ) = {A ∈ V (Y ) | ∀U ∈ U .A ∩U 6= ∅} .

Proof. Clearly the map γ is computable. Consider the map

γ̃−1 : O2(Y )→ O2(V (Y )), γ̃−1(H ) = {U ∈ O(V (Y )) | β(U ) ⊆H } .

The map γ̃−1 is clearly well-defined and computable. We claim that it takes
values in range of the canonical embedding

i : K (V (Y ))→ O2(V (Y ))

so that we obtain a computable function γ−1 = i ◦ γ̃−1. More specifically, we
claim that

U ∈ γ̃−1(H ) ⇔ U ⊇ {A ∈ V (Y ) | ∀U ∈H .A ∩U 6= ∅} .

It then follows that γ−1(H ) = {A ∈ V (Y ) | ∀U ∈H .A ∩U 6= ∅} is well-defined
and computable.

First assume U ∈ γ̃−1(H ). Let A ∈ V (Y ) be a set with A ∩ U 6= ∅ for all
U ∈ H . Our goal is to show that A ∈ U . Suppose not. Then, as U is upwards
closed,

44



∀B ∈ U .∃U ∈ O(Y ). (B ∩U 6= ∅ ∧ A ∩U = ∅) .

Let f : U → O(Y ) be a Skolem function for this. Then the set U =
⋃
B∈U f (B)

intersects all elements of U and does not intersect A. By definition of γ̃−1 we
have β(U ) ⊆ H from which it follows that U ∈ H . But then by assumption
on A we have A ∩ U 6= ∅. Contradiction. It follows that A ∈ U . Now assume
that U ⊇ {A ∈ V (Y ) | ∀U ∈H .A ∩U 6= ∅}. Let U ∈ O(Y ) be an open set which
intersects all members of U . Our goal is to show that U ∈ H . Suppose not.
Then, since H is upwards closed, we have

∀V ∈H .∃y ∈ Y.y ∈ V \U.

Let f : H → Y be a Skolem-function for this. Then the set A = cl
(⋃

V∈H f (V )
)

intersects all members of H and does not intersect U . By assumption A ∈ U

and hence by assumption on U intersects U . Contradiction. It follows that
U ∈H .

Let us now show that γ−1 is really the inverse function of γ. We have

γ−1 ◦ γ(K) = {A ∈ V (Y ) | ∀U ∈ O(Y ). ((∀B ∈ K.B ∩U 6= ∅)Ï A ∩U 6= ∅)} .

If A ∈ K then clearly A ∈ γ−1 ◦γ(K). If A /∈ K then since K is saturated we have

∀B ∈ K.∃U ∈ O(Y ). (B ∩U 6= ∅ ∧ A ∩U = ∅) .

Let f : K → O(Y ) be a Skolem-function for this. Then U =
⋃
B∈K f (B) is an open

set with ∀B ∈ K.B ∩ U 6= ∅ and A ∩ U = ∅. It follows that A /∈ γ−1 ◦ γ(K). Hence
K = γ−1 ◦ γ(K). We have

γ ◦ γ−1(H ) = {U ∈ O(Y ) | ∀A ∈ V (Y ). ((∀V ∈H .A ∩ V 6= ∅)Ï A ∩U 6= ∅)} .

Again it is obvious that γ ◦γ−1(H ) ⊇H . Let U ∈ O(Y ) with U /∈H . Then, since
H is upwards closed, we have

∀V ∈H .∃y ∈ Y.(y ∈ V ∧ y /∈ U).

Let f : H → Y be a Skolem-function for this. Then cl
(⋃

V∈H f (V )
)

is an overt
set with cl

(⋃
V∈H f (V )

)
∩ U = ∅ and cl

(⋃
V∈H f (V )

)
∩ V 6= ∅ for all V ∈ H . It

follows that γ ◦ γ−1(H ) = H .
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Chapter 3

Computable complete lattices

Envelopes, the central objects of our investigation, are functions which take
values in a certain class of complete lattices, which we call computable complete
lattices. The object of this chapter is to introduce these lattices and to establish
some basic results about them. The definition is a straightforward effectivisation
of the classical definition of complete lattice:

Definition 3.1. A computable complete lattice is a computable T0 space L which
is simultaneously a K -algebra and a V -algebra in the category of computable
T0 spaces.

It is easy to see that the structure map of a K -algebra has to be the meet with
respect to the specialisation order. Dually, the structure map for a V -algebra
has to be the join with respect to the specialisation order. Thus, a computable
complete lattice is a computable T0 space L which uniformly computably admits
all compact meets and all overt joins with respect to its specialisation order.
More explicitly, the maps

inf : K (L)→ L, K 7Ï infK

and

sup: V (L)→ L, A 7Ï supA,

are required to be well-defined and computable.
Note that if L is a computable complete lattice then the points ⊥ = sup ∅ and

> = inf ∅ are automatically computable. Although Definition 3.1 only asks that
the supremum exist for all closed subsets, the following proposition shows that
any computable complete lattice admits arbitrary suprema. A computable com-
plete lattice is hence indeed a complete lattice with respect to its specialisation
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order.

Proposition 3.2. Let L be a computable complete lattice. Let A ⊆ L be an
arbitrary subset. Then supA exists and supA = sup(clA).

Proof. As clA ⊇ A we have sup(clA) ≥ ` for all ` ∈ A. Conversely, let m ∈ L
satisfy m ≥ ` for all ` ∈ A. Let ` ∈ clA. Let U ∈ O(L) be an open set that contains
`. Then U ∩ A 6= ∅, so that there exists ` ′ ∈ A ∩ U . As m ≥ ` ′ by assumption,
it follows that m ∈ U . Thus, m ≥ ` for all ` ∈ clA and hence m ≥ sup(clA). It
follows that sup(clA) is the supremum of A.

Theorem 2.50 asserts that every computable continuous lattice is a comput-
able complete lattice. More generally, it follows from the proof of Theorem
2.50 that computable retracts of computable complete lattices are computable
complete lattices (see Proposition 3.7 below for a general proof). By Proposi-
tion 2.33 the space O(X) is a computable complete lattice for every represented
space X. Hence every computable retract of a space of the form O(X) is a com-
putable complete lattice. The case of computable continuous lattices follows as
the special case where X = N. We immediately obtain examples of computable
complete lattices which are not continuous, such as O(NN). We can also see im-
mediately that every computable T0 space embeds naturally into a computable
complete lattice, as any computable T0 space X embeds naturally into the lattice
O2(X). Again, the space O2(X) fails to be a continuous lattice in general.

Another prototypical example of a computable complete lattice is the space
K⊥(X) of all compact subsets of a computable Hausdorff space X with a bottom
element added:

Proposition 3.3. Let X be a computable Hausdorff space. Then K⊥(X) is
a computable complete lattice. The specialisation order is given by reverse
inclusion. Joins and meets are given by intersection and union respectively.

Proof. Intersection, union, and subset inclusion on K (X) extend to K⊥(X) in an
obvious way. It is easy to see that the specialisation order is given by reverse
inclusion. It follows immediately that joins are given by intersection and that
meets are given by union. The semi-decidable predicate K ⊆ U with K ∈ K (X)
and U ∈ O(X) extends to a semi-decidable predicate on K⊥(X)×O(X) by letting
⊥ ⊆ U be false for all U ∈ O(X). Let I ∈ K (K⊥(X)) and let U ∈ O(X). We have
the equivalence:

⋃

K∈I
K ⊆ U ⇔ ∀K ∈ I.K ⊆ U.
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It follows that the map inf : K (K⊥(X))→ K⊥(X) is well-defined and computable.
To see that joins are computable, first observe that directed joins are computable,
for if A ∈ V (K⊥(X)) is a directed set then

⋂

K∈A
K ⊆ U ⇔ ∃K ∈ A.K ⊆ U.

Now, using that X is computably Hausdorff, binary joins in K⊥(X) are well-
defined and computable. It follows that the map

∆: V (K⊥(X))→ V (K⊥(X)), A 7Ï {K1 ∩ · · · ∩Km | Ki ∈ A}

which sends a set A to the set of all finite intersections of members of A is
computable with

⋂

K∈A
A =

⋂

K∈∆(A)

K.

As ∆(A) is always directed it follows that all overt joins are uniformly computable.

Note that if X is not a Hausdorff space then K⊥(X) still admits all directed
joins, but it is not a computable complete lattice in general, as it lacks binary
joins. For instance, if X = N∪{∞1}∪{∞2} is the space of natural numbers with
two distinct points at infinity adjoined, then N∪{∞1} and N∪{∞2} are compact
sets in X which do not admit a join in K⊥(N), as their intersection is no longer
compact.

For every computable Hausdorff space X we have a natural embedding into
K⊥(X), which is the unit of a monad K⊥.

The class of computable complete lattices has excellent closure properties: it
admits finite products, forms an exponential ideal in the category of computable
represented spaces, and is closed under retracts.

Proposition 3.4. Let L be a computable complete lattice. Let M ⊆ L be a
subspace which is closed under compact meets and overt joins. Then M is a
computable complete lattice.

Proposition 3.5. Let L and M be computable complete lattices. Then the
product space L × M is a computable complete lattice as well. Joins and
meets are given component-wise.

Proof. Let πL : L×M → L and πM : L×M →M denote the canonical projections.
Let p, q ∈ L×M be points. We claim that p ≤ q if and only if πL(p) ≤ πL(q) and
πM (p) ≤ πM (q). For the one direction observe that πM and πL are monotone
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since they are continuous. For the other direction recall that the topology on
L ×M is the sequentialisation of the product topology and that a basis for the
product topology is given by open sets of the form U × V where U ∈ O(L) and
V ∈ O(M). Thus, assume that πL(p) ≤ πL(q) and πM (p) ≤ πM (q). Then for each
basic open set U ×V with p ∈ U ×V it follows that q ∈ U ×V and thus p ≤ q by
Proposition 2.29.

To show that L ×M admits computable compact meets, let K ∈ K (L ×M).
Let

p = (inf πL(K), inf πM (K)) ∈ L ×M.

By assumption p is uniformly computable in K. Our goal is to show p = infK.
If q ∈ K then by definition πL(p) ≤ πL(q) and πM (p) ≤ πM (q) and hence p ≤ q.
If r ∈ L ×M with r ≤ q for all q ∈ K then πL(r) ≤ πL(q) and πM (r) ≤ πM (q) for
all q ∈ K and thus πL(r) ≤ πL(p) and πM (r) ≤ πM (p) and hence r ≤ p.

To show that L ×M admits computable overt joins, let A ∈ V (L ×M). Let

p = (sup(clπL(A)), sup(clπM (A))) ∈ L ×M.

Then p is uniformly computable in A. By Proposition 3.2 we have

p = (supπL(A), supπM (A)) ∈ L ×M.

It then follows that p = supA with the same arguments as for compact infima.

Our observation that O(X) = ΣX is a computable complete lattice for every
represented space X can be generalised from Σ to arbitrary computable com-
plete L. In other words, computable complete lattices form an exponential ideal
in the category of represented spaces.

Proposition 3.6. Let X be a represented space. Let L be a computable com-
plete lattice. Then the function space LX is a computable complete lattice.
Overt joins and compact meets are given point-wise.

Proof. Let α : X → L and β : X → L be functions. We first show that α ≥ β if and
only if α(x) ≥ β(x). As function evaluation is continuous and hence monotone,
the “only if”-part is clear. For the other direction recall that the topology on LX
is the sequentialisation of the compact-open topology. It follows that α ≥ β if
and only if β ∈ [K,U] implies α ∈ [K,U] for all sets of the form

[K,U] = {γ : X → L | γ(K) ⊆ U}

where K ∈ K (X) and U ∈ O(L). Now assume that α(x) ≥ β(x) for all x ∈ X.
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Let β ∈ [K,U]. Then for all x ∈ K we have β(x) ∈ U . It follows that α(x) ∈ U
for all x ∈ K. Hence α ∈ [K,U].

Let us now construct joins and meets in LX . The computable map

eval : LX × X → L

admits computable extensions

Keval : K (LX)× X → K (L), (K,x) 7Ï {γ(x) | γ ∈ K}

and

Veval : V (LX)× X → V (L), (A, x) 7Ï cl {γ(x) | γ ∈ A}.

If K ∈ K (LX) is a compact set we obtain

inf K = λx. inf(Keval(K,x)).

If A ∈ V (LX) is an overt set we obtain

sup A = λx. sup(Veval(A, x)).

The proof that this really defines supremum and infimum is analogous to Pro-
position 3.5.

Proposition 3.6 is an analogue to a well-known result for continuous lattices
going back to Isbell [56, 57]. Note that in general it is not true that the pointwise
infimum of a family of continuous functions is again continuous. It is hence
somewhat remarkable that this is always true for compact families. In the con-
text of continuous lattices this observation goes back to Keimel and Gierz [60].

As we have mentioned already, computable complete lattices are closed under
computable retracts. We give a proof for the sake of completeness:

Proposition 3.7. Let L be a computable complete lattice. Let X be a comput-
able retract of L. Then X is a computable complete lattice.

Proof. Let s : X → L be a computable map with a computable left inverse
r : L → X. Consider the computable map σ : V (X) → X which is given by the
composition of the following maps:

V (X) V (L) L X.s∗ sup r

We claim that σ (A) = supA for all A ∈ V (X). Let x ∈ A. Then s(x) ∈ s∗(A) so
that s(x) ≤ sup s∗(A). It follows that x = r ◦ s(x) ≤ r(sup s∗(A)) = σ (A). Hence
σ (A) is an upper bound for A. Assume that b ≥ x for all x ∈ A. Then s(b) ≥ s(x)
for all x ∈ A and hence s(b) ≥ sup s∗(A).
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It follows that

b = r ◦ s(b) ≥ r(sup s∗(A)) = σ (A).

Hence σ (A) is the supremum of A.
For compact meets, consider the map ι : K (X) → X which is given by the

composition of the following maps:

K (X) K (L) L X.s∗ inf r

Then ι(K) = infK by an analogous argument.

The topology on a computable complete lattice is always weaker than (or
equal to) the Scott topology induced by its specialisation order. To prove this we
need an auxiliary result:

Proposition 3.8. Let L be a computable complete lattice. Then the map

sup: LN → L, (`n)n 7Ï sup {`n | n ∈ N}

is well-defined and computable.

Proof. The map

LN 7Ï V (L), (`n)n 7Ï cl {`n | n ∈ N}

is computable. By Proposition 3.2 the supremum of cl {`n | n ∈ N} coincides with
the supremum of the sequence (`n)n. As L is a computable complete lattice the
supremum of cl {`n | n ∈ N} is uniformly computable. The result follows.

Proposition 3.9. Let L be a computable complete lattice. Then the topology of
L is weaker than (or equal to) the Scott topology induced by the specialisation
order on L.

Proof. Let D ⊆ L be a directed set. We need to show that for all U ∈ O(L) we
have:

∨
D ∈ U ⇔ ∃d ∈ D. d ∈ U.

If ∃d ∈ D. d ∈ U then clearly
∨
D ∈ U .

To show the other direction, let d =
∨
D. Let U ∈ O(L) be an open set with

d ∈ U . Fix an algorithm which computes sup: LN → L. Fix an algorithm which
takes as input a name of a point ` ∈ L and halts - relative to some oracle - if and
only if ` ∈ U . Choose a dense sequence (dn)n in D. Apply the composition of the
two algorithms to (dn)n. As d ∈ U , the composed algorithm will eventually halt.
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Upon halting, the algorithm has only read a finite initial segment of the name
of (dn)n. In particular, there exists N ∈ N such that the algorithm will halt on
input d1, d2, . . . , dN , dN , . . . . It follows that sup{d1, . . . , dN} ∈ U . As D is assumed
to be directed, we have sup{d1, . . . , dN} ∈ D. This proves the claim.

Corollary 3.10. Let L be a computable complete lattice. Then every closed
ideal in L is principal.

Proof. Let I ⊆ L be an ideal in L. Then I is downwards closed and directed.
Hence its supremum is contained in I by Proposition 3.9.

If X is a computable Hausdorff space then the predicate x0 6= x1 where
x0, x1 ∈ X is uniformly semi-decidable in x0 and x1. This predicate extends to
the semi-decidable predicate K0 ∩K1 = ∅ on K⊥(X). Thus, K⊥(X) itself behaves
somewhat like a Hausdorff space. This motivates the following definition:

Definition 3.11. Let L be a computable complete lattice. Then L is called com-
putably separated if the singleton {>} is semi-decidable.

If L is a computably separated computable complete lattice then the relation
`0 ∨ `1 = > is uniformly semi-decidable in `0 and `1. In particular, the space of
maximal elements of L \ {>} is a computable Hausdorff space. Note that the
space of maximal elements of L \ {>} is non-empty, as {>} is open, so that any
x ∈ L \ {>} is below a maximal element of L \ {>}. This uses that L \ {>} is
Scott-closed, by Proposition 3.9.

Taking the exponential LX of a computable complete lattice L with a rep-
resented space X need not preserve separatedness: The lattice Σ is computably
separated but ΣN is not. Observe that for a represented space X the lattice O(X)
is computably separated if and only if the singleton {X} ⊆ O(X) is semi-decidable,
i.e., if and only if X is computably compact. This is true for general L:

Proposition 3.12. Let L be a computably separated computable complete lat-
tice with more than one point. Let X be represented space. Then LX is
computably separated if and only if X is computably compact.

Proof. The top element of LX is given by the constant function (λx.>). Thus the
problem of semi-deciding if a given point ` ∈ LX is the top element is equivalent
to semi-deciding if `(x) = > for all x ∈ X. On the one hand, if X is computably
compact and L is computably separated then this is possible. On the other hand
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we can embed Σ into L by sending > ∈ Σ to > ∈ L and ⊥ ∈ Σ to ⊥ ∈ L. This
yields a computable embedding i : O(X) → LX . Now observe that semi-deciding
if i(U) is equal to > is equivalent to semi-deciding if U = X.

3.1 Injectivity

Recall from the introduction that an envelope F : X → L tightens another en-
velope G : X → M if there exists a continuous map Φ: L → M which satisfies
certain properties. The intended meaning of this relation is that F encodes more
information than G. However, without further constraints on the lattice M , the
envelope F could fail to tighten G not because G contains information that is
not contained in F , but because there aren’t sufficiently many continuous maps
taking L to M . In order to ensure the existence of sufficiently many continuous
maps we require all envelopes to take values in lattices which are injective in
an appropriate sense.

We recall the definition first:

Definition 3.13. Let C be a category. Let J be a class of morphisms in C. We
say that an object X in C is J-injective if for all morphisms j : A→ B in J and all
morphisms f : A→ X of C there exists a morphism f̄ : B→ X with f̄ ◦ j = f .

It is well known that in the category of T0 topological spaces, the injective ob-
jects relative to the class of topological embeddings are precisely the continuous
lattices with their Scott topology.

As a topological embedding is a continuous map i : X → Y with a continu-
ous partial inverse i−1 : i(X) ⊆ Y → X, one could naively define a computable
embedding to be a computable map i : X → Y with a computable partial inverse
i−1 : i(X) ⊆ Y → X. The problem with this definition is that an embedding in this
sense is not a topological embedding, as subspaces in the category of computable
T0 spaces are not the same as subspaces in the category of topological spaces:
the topology of a subspace A of a computable T0 space X is the sequentialisation
of the relative topology, which can be strictly finer than the relative topology
itself. Consequently, not even Sierpinski space is injective relative to this class
of embeddings.

In order to ensure that Σ become injective one should at least ask that an
embedding e : X → Y be a map such that the map Oe : O(Y )→ O(X) be surjective.
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The resulting class of injective object turns out to be too restrictive for our
purpose:

Proposition 3.14. Consider the class of all computable functions of the form
e : A → B where A and B are computable T0 spaces, such that the map
Oe : O(B)→ O(A) is surjective. Let X be a computably countably based space.
If X is computably injective relative to this class of functions then X is a
computable continuous lattice.

Proof. As X is computably countably based there exists a computable embedding
i : X → O(N). As O(N) is countably based it is hereditarily sequential. Hence X
embeds as a topological subspace of O(N). In other words, the topology on X is
the relative topology induced by O(N). It follows that the map O i : O2(N)→ O(X)
is surjective. By injectivity of X it follows that X is a computable retract of O(N).
Hence X is a computable continuous lattice.

We have observed that every computable T0 space embeds naturally into the
computable complete lattice O2(X). This property is lost if we restrict ourselves
to lattices which are injective in the above sense. The lattice O2(NN) is countably
based but not locally compact, and hence not a continuous lattice. Proposition
3.14 shows that it cannot be injective in the above sense.

It would be interesting to find a complete characterisation of this class of in-
jective spaces. It seems plausible that any such space is already second countable
and hence a continuous lattice, but I have been unable to prove this.

In order to get a larger class of injective objects which includes spaces of the
form O2(X) for every computable T0 space X we have to further restrict the class
of morphisms relative to which we require injectivity. A natural strengthening of
the requirement that Oe be surjective is that the surjectivity of Oe : O(Y )→ O(X)
be witnessed by a computable single-valued map s : O(X)→ O(Y ):

Definition 3.15. Let A and B be computable T0 spaces. Then a map e : A → B
is called a computable Σ-split embedding if the map Oe : O(B) → O(A) has a
computable section s : O(A)→ O(B)

Proposition 3.16. Let X and Y be computable T0 spaces. Let e : X → Y be a
computable Σ-split embedding. Then the partial inverse e−1 : e(X) ⊆ Y → X is
well-defined and computable.
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Proof. Consider the function e∗ : O(Y )→ O(X). Let s : O(X) → O(Y ) be a com-
putable section for e∗. Then s induces a map s∗ : O2(Y ) → O2(X). Define the
map

e−1 : e(X) ⊆ Y → X, e−1(y) = ν−1
X ◦ s∗ ◦ νY (y).

Then e−1 is well-defined, computable, and satisfies e−1(e(x)) = x.

Definition 3.17. Let X be a computable T0 space. We call X computably Σ-split
injective, or simply computably injective for short, if it is an injective object in
the category of computable T0 spaces relative to the class of computable Σ-split
embeddings.

Proposition 3.18. Let X be a computable T0 space. Then X is computably
injective if and only if the natural embedding νX : X → O2(X) admits a com-
putable left inverse ρX : O2(X)→ X.

Proof. Assume that νX : X → O2(X) has a left inverse ρX : O2(X)→ X.
Let j : A → B be a Σ-split embedding. Let s : O(A)→ O(B) be a section of j∗.

Let f : A → X be a map. Let s̄ = s∗ ◦ νB : B → O2(A). We claim that s̄ ◦ j = νA.
Indeed, we calculate:

s̄ ◦ j(a) = s∗ ◦ νB ◦ j = s∗ ◦ j∗∗ ◦ νA = (j∗ ◦ s)∗ ◦ νA = id∗O(A) ◦νA = idO2(A) ◦νA = νA.

Now an extension f̄ : B→ X is given by the top row of the following diagram:

B O2(A) O2(X) X

A X

s̄ f∗∗ ρX

f

νA
j

νX
idX

Conversely, assume that X is computably injective. Consider the embedding
νX : X → O2(X). Then a section for ν∗X : O3(X) → O(X) is given by the map
νO(X) : O(X)→ O3(X), so that νX is a Σ-split embedding.

Indeed, we have:

ν∗X ◦ νO(X)(U) = ν∗X
({

U ∈ O2(X) | U ∈ U
})

= {x ∈ X | U ∈ νX(x)}
= {x ∈ X | x ∈ U}
= U.
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It follows from the computable injectivity of X that the identity on X extends
along νX to a map ρX : O2(X)→ X.

Corollary 3.19. Every computably injective space is a computable complete
lattice.

Proof. By Proposition 3.18 any computably injective space is a computable re-
tract of a computable complete lattice. By Proposition 3.7 the class of computable
complete lattices is closed under retracts.

By virtue of Corollary 3.19 and Proposition 3.18 we can use the terms “com-
putably injective space” and “computably injective lattice” interchangeably. In-
deed, by Corollary 3.19 any computably injective space is a computably com-
plete lattice. Conversely, any computably complete lattice L which is an injective
object in the category of computably complete lattices with computable maps as
morphisms is a retract of O2(L) (since O2(L) is a computably complete lattice)
by the proof of the converse direction of Proposition 3.18. It then follows from
the other direction of Proposition 3.18 that L is still computably injective in the
larger category of computable T0 spaces. To emphasise the lattice structure on
these spaces we generally prefer the second term.

Proposition 3.20. Every computable continuous lattice is computably inject-
ive.

Proof. Let L be a computable continuous lattice, effectively given via the basis
(xn)n. Then there exists a computable retraction r : O(N) → L. Consider the
embedding νL : L→ O2(L). Let

f : O2(L)→ O(N), f (U ) =
{
n ∈ N |↑↑ xn ∈ U

}
.

Then r ◦ f is a left inverse of νL.

The class of computably injective lattices enjoys the same closure properties
as the class of computable complete lattices:

Proposition 3.21. Let X and Y be computably injective lattices. Then X × Y
is a computably injective lattice.

Proof. The projections πX : X × Y → X and πY : X × Y → Y induce maps

(πX)∗ : O2(X × Y )→ O2(X)

and
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(πY )∗ : O2(X × Y )→ O2(Y ).

As X and Y are computably injective, it follows from Proposition 3.18 that the
natural embeddings νX : X → O2(X) and νY : Y → O2(Y ) have computable left
inverses ρX : O2(X) → X and ρY : O2(Y ) → Y . We then obtain a computable
retraction O2(X × Y )→ X × Y by composing the following maps:

O2(X × Y ) O2(X)× O2(Y ) X × Y〈(πX)∗,(πY )∗〉 ρX×ρY

Proposition 3.22. Let L be a computably injective computable complete lat-
tice. Let X be a represented space. Then LX is again a computably injective
computable complete lattice.

Proof. Consider the map

eval : YX × X → Y.

This map extends to a map

(eval)∗∗ : O2(YX)× X → O2(Y ).

Currying yields:

λ(eval)∗∗ : O2(YX)→ O2(Y )X.

The retraction ρY : O2(Y )→ Y induces a map (ρY )∗ : O2(Y )X → YX . We can then
define a retraction as the composition of the following maps:

O2(YX) O2(Y )X YX.λ(eval)∗∗ (ρY )∗

Proposition 3.23. Every retract of a computably injective lattice is computably
injective.

It follows from Proposition 3.22 that any space of the form O(X), where X
is a represented space, is a computably injective lattice. By Proposition 3.23 any
retract of such a space is again a computably injective lattice. On the other
hand, any computably injective lattice L is by definition a computable retract
of O2(L), so that the computably injective lattices are precisely the computable
retracts of O(X) where X is some represented space. In this sense they are
natural generalisations of computable continuous lattices, as these are precisely
the retracts of O(N).
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In particular, the space O2(X) is computably injective for every represented
space X, so that any computable T0 space embeds naturally into a computably
injective lattice.

Proposition 2.56 guarantees that the lattice K⊥(X) is computably injective for
computably countably based computable Hausdorff spaces X:

Proposition 3.24. Let X be a computably countably based computable Haus-
dorff space. Then the lattice K⊥(X) of compact subsets of X with a bottom
element added is computably injective.

Proof. As X is computably countably based it follows from Proposition 2.40 that
the space K (X) is again computably countably based. It is easy to see that for
every computably countably based space Z, the space Z⊥ is again computably
countably based. We may hence apply Proposition 2.56 to K⊥(X). This yields a
well-defined computable isomorphism

γ−1 : O2(K⊥(X))→ K (V (K⊥(X))),
γ−1(U ) = {A ∈ V (K⊥(X)) | ∀U ∈ U .A ∩U 6= ∅} .

Consider the computable map ρK⊥(X) : O2(K⊥(X))→ K⊥(X) which is defined
as follows:

O2(K⊥(X)) K⊥(X)

K (V (K⊥(X))) K (K⊥(X))

γ−1

ρK⊥(X)

Ksup

⋃

More explicitly, we have:

ρK⊥(X)(U ) =
⋃
{
⋂

K∈A
K | A ∈ V (K⊥(X)) ∧ ∀U ∈ U .A ∩U 6= ∅

}
.

We claim that ρK⊥(X) is a left inverse of νK⊥(X). Let K ∈ K⊥(X). Then the overt set
↓K ∈ V (K⊥(X)) satisfies ∀U ∈ νK⊥(X). ↓K ∩ U 6= ∅. It follows from the definition
of ρK⊥(X) that ρK⊥(X) ◦ νK⊥(X)(K) ⊇ K.

Conversely, let V ∈ O(X) be an open set with K ⊆ V . Consider the set
[V ] = {H ∈ K⊥(X) | H ⊆ V}. Then [V ] ∈ νK⊥(X)(K). Let A ∈ V (K⊥(X)) such that
∀U ∈ νK⊥(X)(K).A ∩ U 6= ∅. Then there exists H ∈ A with H ∈ [V ]. Hence
⋂
H∈AH ⊆ V . It follows from the definition of ρK⊥(X) that ρK⊥(X) ◦ νK⊥(X)(K) ⊆ V .

Hence ρK⊥(X) ◦ νK⊥(X)(K) ⊆ K.
In total we obtain ρK⊥(X) ◦ νK⊥(X)(K) = K and the claim is shown.
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It follows from the constructive proof of Proposition 3.18 that if f : A→ L is
a continuous function which takes values in a computably injective lattice L and
e : A→ B is a computable Σ-split embedding, then the extension f = ρL◦f∗∗◦s∗◦νB
of f to B is uniformly computable in f . Of course, this extension depends on
the choice of s. The map e∗ : O(Y ) → O(X) could have many different sections,
each yielding a potentially different extension. On the other hand, the map
e∗ preserves arbitrary joins and therefore (see e.g. [45, Corollary O-3.5]) has
an upper adjoint, that is, there exists a - not necessarily continuous - function
s : O(X)→ O(Y ) such that for all U ∈ O(Y ) and all V ∈ O(X) we have

e∗(U) ⊆ V ⇔ U ⊆ s∗(V ).

See [45, Section O-3] for an introduction to adjunctions. If this upper adjoint is
computable it constitutes a canonical choice for the section of e∗. This situation
hence deserves special attention.

Finding a good name for maps with this property turns out to be a somewhat
non-trivial task. Maps f with the property that the upper adjoint of Of is Scott-
continuous are called proper in [54]. This is justified by the observation that
for maps between sober spaces this is equivalent to the classical topological
definition of proper map [54, Proposition 3.3]. The requirement of sobriety is
not an essential restriction, as sober spaces form a full reflective subcategory
of the category of topological spaces. The situation is quite different for QCB0-
spaces as these are not closed under sobrification [47].

Thus, in order to avoid confusion, we choose a different name, which was
suggested by Escardó for entirely different reasons [40]:

Definition 3.25. Let X and Y be computable T0 spaces. A computable map
f : X → Y is called computably finitary if the upper adjoint of f∗ : O(Y )→ O(X)
is computable.

We will reserve the term “proper map” for a slightly different concept, which
is a more direct effectivisation of the classical topological definition:

Definition 3.26. A computable map f : X → Y is called computably proper if
the map

f−1 : K (Y )→ K (X), f−1(K) = {x ∈ X | f (x) ∈ K}

is well-defined and computable.

Recall from the paragraph after Definition 2.14 that the space A (X) is the
space of closed subsets of X where a closed set A ⊆ X is identified with its
complement AC ∈ O(X).
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Computably proper maps behave as one would expect (cf. [37, Theorem 6.1]):

Proposition 3.27. Let f : X → Y be a computable map between computable T0

spaces. Then the following are equivalent:

1. f is computably proper.

2. The map

f−1(↑· ) : Y → K (X), f−1(↑y ) = {x ∈ X | f (x) ≥ y}

is well-defined and computable.

3. For every computable T0 space Z, the map

↓(idZ ×f [·]) : A (Z × X)→ A (Z × Y ),
↓(idZ ×f [A]) = {(z, y) ∈ Z × Y | ∃x ∈ A. f (x) ≥ y}

is well-defined and computable.

4. The map

↓f [·] : A (X)→ A (Y ), ↓f [A] = {y ∈ Y | ∃x ∈ A. f (x) ≥ y}

is well-defined and computable.

Proof. Clearly, if f is computably proper then the map f−1(↑· ) = f−1 ◦ κY is
well-defined and computable.

Assume that the map

f−1(↑· ) : Y → K (X), f−1(↑y ) = {x ∈ X | f (x) ≥ y}

is well-defined and computable. Let Z be a computable T0 space. Let

h : A (Z × X)→ A (Z × Y ), h(A) =
{

(z, y) ∈ Z × Y | {z} × f−1(↑y ) ∩ A 6= ∅
}
.

It is easy to see that h is computable and that h(A) = ↓(idZ ×f [A]) .
Taking Z = {∗}, we see that the above implies that the map

↓f [·] : A (X)→ A (Y ), ↓f [A] = {y ∈ Y | ∃x ∈ A. f (x) ≥ y}

is well-defined and computable.
Assume that the map

↓f [·] : A (X)→ A (Y ), ↓f [A] = {y ∈ Y | ∃x ∈ A. f (x) ≥ y}

is well-defined and computable.
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Let

h : K (Y )→ O2(X), h(K) =
{
U ∈ O(X) |

yf
[
UC
]
∩K = ∅

}
.

We claim that h(K) = i ◦ f−1(K), where i : K (X) → O2(X) is the natural embed-
ding. We have to show that for every open set U ∈ O(X) we have U ⊇ f−1(K) if
and only if

yf
[
UC] ∩K = ∅.

On the one hand, if
yf
[
UC] ∩K = ∅, then

f (UC ∩ f−1(K)) = f (UC) ∩ f (f−1(K)) ⊆
yf
[
UC
]
∩K = ∅.

It follows that UC ∩ f−1(K) = ∅.
On the other hand, if UC ∩ f−1(K) = ∅ then

∅ = f (UC ∩ f−1(K)) = f (UC) ∩ f (f−1(K)) = f (UC) ∩K ∩ f (X) = f (UC) ∩K.

As K is upwards closed it follows that
yf
[
UC] ∩K = ∅.

Any computably proper map is computably finitary and, following the obser-
vation by Hofmann and Lawson [54], the two notions agree for maps between
sober spaces.

Proposition 3.28. Let f : X → Y be a computable map. If f is computably
proper then the upper adjoint of Of is computable. If X is sober then the
converse holds true as well.

Proof. Assume that f is computably proper. Let

h : O(X)→ O(Y ), h(U) =
{
y ∈ Y | f−1(↑y ) ⊆ U

}
.

An easy calculation shows that f∗ ◦ h ≤ idO(X) and h ◦ f∗ ≥ idO(Y ). It follows that
h is the upper adjoint of f∗.

Now assume that X is sober and that the upper adjoint s : O(X)→ O(Y ) of f∗
is computable. Let

h : K (Y )→ O2(X), h(K) = {U ∈ O(X) | s(U) ⊇ K} .

Let i : K (X)→ O2(X) be the natural embedding. We claim that h(K) = i ◦ f−1(K)
for all K ∈ K (Y ). The set h(K) is an open filter of open sets and hence defines
a compact set by the Hofmann-Mislove theorem. Its intersection is easily seen
to be equal to f−1(K). The claim follows.
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3.2 Right Kan extensions and best continuous approx-
imations

We have seen that extensions of a map f : A → L with values in a computably
injective lattice along a map e : A → B are only guaranteed to exist under the
rather strong assumption that e be a Σ-split embedding. On the other hand, if L
is an arbitrary computable complete lattice and e is an arbitrary continuous map,
then there always exists a continuous function f̄ : B → L which is, in a certain
sense, the closest thing to a continuous extension one can hope to obtain:

Proposition 3.29. Let L be a computable complete lattice. Let f : A → L and
i : A→ B be continuous maps. Then the set of all g : B→ L with g ◦ i ≤ f has
a greatest element.

Proof. Let I = {g : B→ L | g ◦ i ≤ f}. This set is nonempty, as it contains the
constant function with value ⊥. As LB is a complete lattice by Proposition 3.6,
the set I has a supremum f̄ : B → L. Now, I is clearly closed, directed, and
downwards closed, and thus a closed ideal in LB. By Corollary 3.10 it follows
that f̄ ∈ I .

Proposition 3.29 essentially goes back to Scott [90]. Escardó [40] observed
that the function f̄ from Proposition 3.29 is the right Kan extension of the map
f along i in the poset-enriched category of computable T0 spaces.

In general the function

R : LA → LB, f 7Ï f̄

which maps a continuous function to its right Kan extension along i : A → B
need not be continuous and hence a fortiori not computable. In [40] it is shown
that this function is Scott-continuous for continuous lattices L with more than
one point if and only if i is a finitary map in the sense that the upper adjoint of
i∗ : O(B)→ O(A) is continuous.

Escardó’s proof easily generalises to our situation:

Proposition 3.30. Let i : A→ B be a computable map. Let L be a computable
complete lattice. Consider the function

R : LA → LB, f 7Ï f

which sends a function to its right Kan extension along i. Then the following
hold true:
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1. If i is computably proper or L is the one-point lattice then R is comput-
able.

2. If L is computably injective and i is computably finitary then R is com-
putable.

3. If R is computable then L is the one-point lattice or i is computably
finitary.

In particular, if L is computably injective or A is a sober space then R is
computable if and only if L is the one-point lattice or i is computably finitary.

Proof. The function is clearly computable if L is the one-point lattice. Assume
that i is computably proper. Then the map

i−1(↑· ) : B→ K (Y ), i−1(↑b ) = {a ∈ A | i(a) ≥ b}

is well-defined and computable.
Suppose we are given a function f : A→ L. We can then compute the function

f (b) = inf f∗(i−1(↑b ))

uniformly in f . We claim that f is the right Kan extension of f along i. We have

f ◦ i(a) = inf f∗(i−1(
xi(a) )) ≤ f (a).

If h : B → L satisfies h ◦ i ≤ f then h(b) ≤ f (a) for every a with i(a) ≥ b and
hence

h(b) ≤ inf {f (a) | i(a) ≥ b} = f (b).

Now assume that L is computably injective and that i is computably finitary.
Let s : O(A) → O(B) be the upper adjoint of i. By assumption, the map s is
computable. Suppose we are given a function f : A→ L. Compute the extension
f : B → L of f as in the proof of Proposition 3.18, i.e., let f = ρL ◦ f∗∗ ◦ s∗ ◦ νB.
We claim that f is the right Kan extension of f along i. Assume that h : B → L
satisfies h ◦ i ≤ f . Then

ρL ◦ (h ◦ i)∗∗ ◦ s∗ ◦ νB ≤ ρL ◦ f∗∗ ◦ s∗ ◦ νB = f.

Since s is the upper adjoint of i∗ we have s ◦ i∗ ≥ idO(B). Using this we calculate:

ρL ◦ (h ◦ i)∗∗ ◦ s∗ ◦ νB = ρL ◦ h∗∗ ◦ i∗∗ ◦ s∗ ◦ νB
= ρL ◦ h∗∗ ◦ (s ◦ i∗)∗νB
≥ ρL ◦ h∗∗ ◦ νB
= ρL ◦ νL ◦ h
= h.

63



Hence f ≥ h and the claim follows.
Assume that L contains at least two points. Embed Σ into L by sending ⊥ ∈ Σ

to ⊥ ∈ L and > ∈ Σ to > ∈ L. Call this embedding e : Σ→ L. This embedding is
computably Σ-split: A section of e∗ is given by the map s : O(Σ) → O(L) which
sends ∅ to ∅, Σ to L, and {>} to some open set which contains > ∈ L but does
not contain ⊥ ∈ L. It follows that there exists a computable retraction L→ Σ.

Therefore the map

ΣA → ΣB

which sends a function to its right Kan extension along i is uniformly comput-
able. But this map is just the upper adjoint of i.

Finally, let us prove the claim in the last sentence: If R is computable and L
is not the one-point lattice then i is computably finitary by (3).

Conversely, if L is computably injective it follows from (2) that if i is com-
putably finitary then R is computable.

Similarly, if A is a sober space and i is computably finitary then i is even
computably proper by Proposition 3.28. It follows from (1) that R is computable.

Recall that if i : A → B is a Σ-split embedding and f : A → L is a continuous
function with values in a Σ-split injective lattice L then some extension f̄ : B→ L
of f along i can be computed uniformly in f , but this extension depends on
the choice of section for i∗. The upper adjoint of i∗, should it be computable,
constitutes a canonical choice. This canonical choice of section corresponds to
a canonical choice of extension, namely the right Kan extension.

It will be useful to fix a notation for the different kinds of extensions we have
introduced so far.

Definition 3.31. Let i : A→ B be a computable Σ-split embedding. Let f : A→ L
be a continuous function with values in a computably injective lattice L.

A section of O i will be called a Σ-section of i. The upper adjoint of O i will
be called the upper Σ-adjoint of i.

Let s : O(A)→ O(B) be a computable Σ-section of i. Let

f/
( s
i
)

= ρL ◦ f∗∗ ◦ s∗ ◦ νB

denote the extension of f along i “using” s (cf. the proof of Proposition 3.18).
If i : A→ B is a computably finitary map, let

f/i = f/
( s
i
)
,
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where s : O(A)→ O(B) is the upper Σ-adjoint of i.

Proposition 3.29 is a special case of a more general result which is of inde-
pendent interest and in fact constitutes the starting point for our investigation
of continuous envelopes:

Proposition 3.32. Let f : X → L be a function which takes a computable T0

space X to a computable complete lattice L. Then the set of all continuous
functions F : X → L with F (x) ≤ f (x) for all x ∈ X has a greatest element G. If
L is a computably continuous lattice then G coincides with f in all points of
continuity of f .

Proof. Let

S = {F : X → L | F is continuous and ∀x ∈ X. (F (x) ≤ f (x))} .

Let

G(x) = sup (cl {F (x) | F ∈ S}) .

If a continuous map F : X → L satisfies F (x) ≤ f (x) then by construction F ≤ G.
We claim that G ∈ S. Since any closed set is computably overt relative to some
oracle, so is the set cl (S). Relative to an oracle which makes cl (S) computably
overt we can compute G(x) as follows: Compute the range of cl (S) under the
function

eval(·, x) : LX → L.

This yields the set

cl {F (x) | F ∈ cl (S)} ∈ V (L).

whose supremum is equal to G(x). It follows that G is continuous.
Let x ∈ X and U ∈ O(L) with G(x) ∈ U . As the set S is clearly directed, it

follows from Proposition 3.9 that F (x) ∈ U for some F ∈ S. By definition of S
this implies f (x) ∈ U . Hence G(x) ≤ f (x).

Now let L be computably continuous. Then there exists a computable map
s : L → O(N) with computable left inverse r : O(N) → L. Consider the best
continuous approximation G of the function s ◦ f : X → O(N). Let x ∈ X be a
point of continuity of f . Then x is a point of continuity of s ◦ f . Let n ∈ s ◦ f (x).
Then s ◦ f (x) is contained in the open set [n] = {U ∈ O(N) | n ∈ U}. As s ◦ f is
continuous in x there exists an open set W ∈ O(X) with x ∈ W ⊆ (s ◦ f )−1(n).
Put

F : X → O(N), F (z) =
{
{n} if z ∈W ,
∅ otherwise.
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By construction we have F (z) ≤ s ◦ f (z) for all z ∈ X and F (x) ∈ [n]. It follows
that G(x) ∈ [n] or in other words that n ∈ G(x). As n was an arbitrary element
of s ◦ f (x) it follows that G(x) = s ◦ f (x).

It follows that r◦G(x) = r◦s◦f (x) = f (x) for all points of continuity x ∈ X of f .
As r ◦G(x) ≤ f (x) for all x ∈ X it follows that the best continuous approximation
of f coincides with f in all points of continuity.

Proposition 3.29 follows as a special case from Proposition 3.32 as the map
f̄ can be defined as the greatest continuous approximation of the map

b 7Ï inf {f (a) | i(a) ≥ b} .

This observation is again due to Escardó [40].
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Chapter 4

Envelopes

We are now ready to define the main subjects of our investigation: envelopes,
the tightening relation, and universality.

We show in Theorem 4.8 that every function f : X → Y between computable
T0 spaces has a universal envelope. While the proof yields a concrete represent-
ative of the universal envelope, this representative turns out to be unsatisfactory
in many ways.

The next three sections are dedicated to the problem of finding a better
description of the universal envelope in certain situations. In Section 4.3 we
establish a universality criterion for envelopes with Σ-split inclusion map. This
allows us to verify for a candidate envelope if it is universal. In this case we
also obtain a good description of how this envelope tightens all other envelopes.
A similar description of the tightening relation can be obtained for arbitrary
envelopes, as will be discussed in Section 4.4.

Theorem 4.28 shows that for functions with values in a computably countably
based computable Hausdorff space which can be “enclosed” by an upper-semi-
continuous functions with compact values, we have a good description of an
envelope that is universal among the class of envelopes F : X → L where L is a
separated computably injective lattice and the inclusion map ξL : Y → L sends Y
to the maximal elements of L.

In Section 4.6 we make the claim precise that the universal envelope encodes
all “continuously obtainable” information on a given function f , by showing that
every relativised algorithm which “uses f as a subroutine in a continuous way”
factors through the universal envelope.

The last three sections are mainly concerned with further techniques for
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finding a good description of the universal envelope of a given problem. In
Section 4.7 we introduce a notion of reduction between functions that allows
us to translate the universal envelope of one function to the universal envelope
of another. In Section 4.8 we develop a criterion that allows us to extend a
universal envelope on a dense subset to a universal envelope on the whole
space. In the final section of this chapter we discuss how to model set-valued
valued functions within our framework. We establish a sufficient condition for
the universality of envelopes of functions with values in a lower powerspace,
similar to the one in Section 4.3. We also show that the universal envelope of an
upper semicontinuous function with compact values generically coincides with
the function itself.

4.1 Basic definitions and observations

Definition 4.1. Let Y be a computable T0 space. An approximation lattice for
Y consists of a computably injective lattice L together with a computable map
ξL : Y → L called the inclusion map.

The approximation lattice L is called computably separated if the lattice L is
computably separated and the inclusion map sends Y to the maximal elements
of L \ {>}.

Definition 4.2. Let f : X → Y be a function between computable T0 spaces. An
envelope of f consists of an approximation lattice L for Y with inclusion map
ξL : Y → L and a continuous map F : X → L such that F (x) ≤ ξL ◦ f (x) for all
x ∈ X. If the map F is computable we call F a computable envelope. An envelope
is called computably separated if L is a computably separated approximation
lattice.

As an immediate corollary to Proposition 3.32 we obtain:

Proposition 4.3. Let f : X → Y be a function between computable T0 spaces.
Let L be an approximation lattice for Y . Then the set of all continuous func-
tions G : X → L with G(x) ≤ ξL ◦ f (x) for all x ∈ X has a greatest element
F : X → L. If L is computably continuous then F coincides with ξL ◦ f in all its
points of continuity.

We call the function F from Proposition 4.3 the principal L-envelope of f .
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Definition 4.4. Let f : X → Y be a function between computable T0 spaces. Let
F : X → L and G : X →M be envelopes of f . We say that F topologically tightens
G if there exists a continuous map Φ: L→M such that

Φ ◦ ξL(y) ≤ ξM (y)

for all y ∈ Y and

Φ ◦ F (x) ≥ G(x)

for all x ∈ X. If the map Φ can be chosen to be computable we say that F
computably tightens G.

L

X Y

M

Φ

F

f

G

ξL

ξM

It is easy to see that the tightening relation is reflexive and transitive and
hence a preorder on the class of all envelopes.

We will usually drop the adverb “topologically” or “computably” and just say
that “F tightens G” if it is either clear from the context or it does not matter
up to relativisation which relation we mean. We call two envelopes equivalent
if they are equivalent with respect to the equivalence relation induced by the
tightening order.

Definition 4.5. Let f : X → Y be a function between computable T0 spaces. Let
F : X → L be an envelope of f . The envelope F is called (separated-) universal if
it (is separated and) topologically tightens every continuous (separated) envelope
of f .

Example 4.6. Our notion of envelope generalises the following well-known con-
struction in analysis: Let f : X → R be an arbitrary real-valued function on a
topological space X. It is well-known (see e.g. [60]) that there exists a largest
lower semicontinuous function f− : X → R pointwise below f , and a smallest
upper semicontinuous function f+ : X → R pointwise above f . These are often
referred to as the lower and upper semicontinuous envelope of f respectively.
The lower semicontinuous envelope is for instance used in [59] to prove a Hahn-
Banach type “sandwich” theorem in semitopological cones.

69



One can join f− and f+ to obtain a best continuous approximation to f with
values in the interval domain over R, i.e., the lattice of (possibly degenerate) real
intervals, ordered by reverse inclusion. This map agrees with f in all points
of continuity (see [39, Theorem 8.8]). This is used in [39] to model Riemann-
integrable functions by interval functions, see [39, Theorem 13.9]. A similar idea
is used in [41] to embed a function space into a compact function space with
larger co-domain.

The above are examples of envelopes in our sense. Assume now that X is
a computable T0 space. Consider the complete lattice L = [−∞,+∞]≤ of real
numbers with a point at positive and negative infinity added, ordered with the
usual ordering. This can be made into a computable T0 space by endowing it
with its Scott topology. In fact, it then becomes a computably injective lattice. A
retraction ρ : O2(L)→ L is given by

ρ(U ) = sup {x ∈ [−∞,+∞] | (x,+∞] ∈ U } .

A function f : X → R is lower semicontinuous if and only if it is continuous as a
function f : X → L. The lower semicontinuous envelope of a function f : X → R
is hence the universal L-envelope with inclusion map ξL : R→ L, ξL(x) = x. The
upper semicontinuous envelope of f : X → R is the universal envelope in the dual
lattice [−∞,+∞]≥. The join of these two envelopes is the principal envelope
in the interval lattice I(R), which is obtained as the subspace of K ([−∞,+∞])
consisting of all (potentially degenerate) intervals, together with the empty set.

As one might expect, the principal envelope in the interval lattice can fail to
be universal, already for very simple examples. Consider again the Heaviside
function (cf. Example 1 in the introduction), this time taking the real numbers
as its co-domain:

H : R→ R, H(x) =
{

0 if x < 0,
1 if x ≥ 0.

Then the principal envelope in the interval lattice is the map:

G : R→ I(R), G(x) =






[0, 0] if x < 0,
[0, 1] if x = 0,
[1, 1] if x > 0.

The universal envelope is easily seen to be:

F : R→ K⊥(R), F (x) =






{0} if x < 0,
{0, 1} if x = 0,
{1} if x > 0.

We claim that G does not tighten F . Assume the contrary. Then there exists a
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continuous map Φ: I(R)→ K (R) satisfying:

1. Φ([x, x]) ⊇ {x} for all x ∈ R.

2. Φ ◦G(x) ⊆ F (x) for all x ∈ R.

In particular, we have

{1
2} ⊆ Φ([ 1

2 ,
1
2 ]) ⊆ Φ([0, 1]) = Φ ◦G(0) ⊆ F (0) = {0, 1}.

Contradiction.

Envelopes can be viewed as encodings of partial topological information on
a function. This idea can be made precise as follows:

Let f : X → Y be a function between computable T0 spaces. Let E be a
distributive computably complete lattice and let c : E → O(Y ) be a computable
map which preserves overt joins and compact meets. We should think of c as an
effective cover of a subspace of O(Y ), i.e., an encoding of observable information
of elements of Y . This yields a Scott-continuous map

c∗ : O(E)→P(O(Y )), c∗(U) =
x{c(e) | e ∈ U} .

In other words, open sets of E represent collections of open sets of Y .
Let F : X → O(E) be a continuous function. Then F and c encode a continuous

function F : X →P(O(Y )):

O(E)

X P(O(Y ))

c∗

F

F̃

Let

j : Y →P(O(Y )), j(y) = {U ∈ O(Y ) | y ∈ U} .

Call a pair (F, c) a co-envelope of f if c∗ ◦ F (x) ⊆ j ◦ f (x) for all x ∈ X.
In other words, a co-envelope of f is an effective encoding of a function

F : X → P(O(Y )) with the property that all elements U ∈ F(x) are “observable
properties” of f (x).

If F : X →P(O(Y )) and G : X →P(O(Y )) are co-envelopes given by effective
encodings (F, cF ) and (G, cG) then F contains more information than G if F(x) ⊇
G(x) for all x ∈ X. Beyond this, we should ask that this relation be witnessed
by a continuous map, so that the information encoded in G can be “effectively
retrieved” from the information encoded in F. Thus, we should ask that there
be a continuous Skolem-function for the predicate ∀x ∈ X.F(x) ⊇ G(x) which
can be formally written as
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∀x ∈ X.∀e ∈ EG .∃e′ ∈ EF .
(
cF (e′) ⊆ cG(e) ∧

(
e ∈ G(x)Ï e′ ∈ F (x)

))
.

In other words, there should exist a map t : EG → EF such that for all x ∈ X and
all e ∈ EG we have that e ∈ G(x) implies t(e) ∈ F (x) and cF ◦ t(e) ⊆ cG(e) for all
e ∈ EG . If such a map t exists, we say that F tightens G.

In order to make this notion well-behaved we should require that there be
sufficiently many continuous maps of type EG → EF . This naturally leads to the
requirement that EF and EG be computably injective lattices.

With this additional assumption the notions of “envelope” and “co-envelope”
become - in a sense - dually equivalent:

An envelope F : X → L with inclusion map ξL : Y → L can be sent to the
co-envelope F∗∗ ◦ νX : X → O2(L) with encoding ξ∗L : O(L) → O(Y ). If an en-
velope F : X → L tightens another envelope G : X → M via a map Φ then
the corresponding co-envelope F∗∗ tightens the co-envelope G∗∗ via the map
Φ∗ : O(M)→ O(L).

Conversely, if F : X → O(E) is a co-envelope with encoding c : E → O(Y )
then F defines the envelope F : X → O(E) with inclusion map c∗ ◦ νY : Y → O(E).
If the co-envelope F : X → O(E) tightens the co-envelope G : X → O(D) via a
map t : D → E, then the corresponding envelope F tightens the corresponding
envelope G via the map t∗ : O(E)→ O(D).

If we start with an envelope F : X → L and apply both functors in succession
then we end up with the envelope F∗∗ : X → O2(L) whose inclusion map is given
by ξ∗∗L ◦ νY : Y → O2(L). This envelope is equivalent to F thanks to the injectivity
of L. A similar observation applies to co-envelopes.

In this sense we can view envelopes as effective encodings of continuous
maps of type X → P(O(Y )). Explicitly, an envelope F : X → L with inclusion
map ξL : Y → L encodes the continuous function

F : X →P(O(Y )), F(x) =
x
{
ξ−1
L (U) ∈ O(Y ) | F (x) ∈ U

}

Note in particular that equivalent envelopes encode the same function of type
X → P(O(Y )). Equivalent envelopes can hence be viewed as equivalent encod-
ings of the same object.

Since P(O(Y )) is an algebraic lattice it follows that j ◦ f has a best continuous
approximation which is given explicitly by the function

F(x) =
{
U ∈ O(L) | f−1(U) is a neighbourhood of x

}
. (4.1)
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Indeed, a basis for the Scott topology on P(O(Y )) is given by the sets of the form
↑U = {A ∈P(O(Y )) | U ∈ A} where U ∈ O(Y ). By definition we have F(x) ∈ ↑U
if and only if f−1(U) is a neighbourhood of x. It follows that F−1(↑U ) is an open
set for every U ∈ O(Y ). Hence F is continuous.

Let G be a continuous approximation of j ◦ f . Let U ∈ G(x). Then G(x) ∈ ↑U ,
so that G−1(↑U ) is a neighbourhood of x. By assumption we have the inclusion
(j ◦ f )−1(↑U ) ⊇ G−1(↑U ), so that f−1(U) is a neighbourhood of x. It follows that
G(x) ⊆ F(x).

We will show in Theorem 4.8 that a universal envelope always exists. It fol-
lows from Proposition 4.13 that this envelope encodes the function F in (4.1). Of
course the explicit description of the universal envelope given in (4.1) is some-
what tautological and not very informative. We will dedicate a lot of attention to
the problem of finding more interesting descriptions of the universal envelope
in concrete situations.

Definition 4.7. Let f : X → Y be a function between computable T0 spaces. Let
F : X → L be an envelope of f . Let x ∈ X. A filter basis for F at x is a basis of
the filter

F(x) =
x
{
ξ−1
L (U) | F (x) ∈ U

}
,

i.e., a downwards directed set of open subsets of Y whose upwards closure in
O(Y ) is equal to F(x).

4.2 Existence of universal envelopes

Theorem 4.8. Let f : X → Y be a function between computable T0 spaces.
Then f has a universal envelope.

Proof. Let

A =
{

(U,V ) ∈ O(X)× O(Y ) | U ⊆ f−1(V )
}
.

Let

L = O(A).

By Proposition 3.22 the lattice L is computably injective. Let

ξL : Y → L, ξL(y) = {(U,V ) ∈ A | y ∈ V} .

Then L is an approximation lattice for Y . Let

F : X → L, F (x) = {(U,V ) ∈ A | x ∈ U} .
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Evidently, F is computable. We have

ξL ◦ f (x) = {(U,V ) ∈ A | f (x) ∈ V} .

By definition of A if (U,V ) ∈ A satisfies x ∈ U then f (x) ∈ V so that

F (x) ≤ ξL ◦ f (x).

It follows that F is an envelope of f .
We claim that F is universal. Let G : X → M be another envelope of f .

Consider the map

Φ̃ : L→ O2(M), Φ̃(`) =
{
W ∈ O(M) | (G−1(W ), ξ−1

M (W )) ∈ `
}
.

As G is an envelope we have

G−1(W ) ⊆ f−1(ξ−1
M (W ))

for all W ∈ O(M), so that the map Φ̃ is well-defined and computable. As M is
computably injective there exists a computable retraction

ρM : O2(M)→M

which is a left inverse to the natural embedding

νM : M → O2(M).

Let

Φ: L→M, Φ(`) = ρM ◦ Φ̃(`).

We have

Φ ◦ ξL(y) = ρM
({
W ∈ O(M) | (G−1(W ), ξ−1

M (W )) ∈ ξL(y)
})

= ρM ({W ∈ O(M) | ξM (y) ∈W})
= ρM ◦ νM ◦ ξM (y)
= ξM (y).

Furthermore,

Φ ◦ F (x) = ρM
({
W ∈ O(M) | (G−1(W ), ξ−1

M (W )) ∈ F (x)
})

= ρM ({W ∈ O(M) | G(x) ∈W})
= ρM ◦ νM ◦G(x)
= G(x).

It follows that F tightens G via Φ. As G was chosen arbitrarily it follows that F
is universal.
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While the existence of a universal envelope of any given function is an im-
portant result in its own right, Theorem 4.8, despite giving an explicit construc-
tion, does not establish much beyond the existence itself. For instance, it does not
yield a non-tautological description of the filter basis for F at any point. Further-
more, a practical implementation of the representative of the universal envelope
constructed in Theorem 4.8 would be quite useless. The function F : X → O(A)
is, by means of currying, equivalent to the function G : X × A → Σ, where A is
the space of all open sets (U,V ) with U ⊆ f−1(V ). The function G answers the
trivial question if a given x ∈ X is contained in U . The interesting problem is to
generate valid inputs for the function G but this is, so to speak, “left to the user”.

4.3 Finitary and Σ-split envelopes

In view of the fact that we require all lattices to be injective relative to the class
of Σ-split embeddings, it is natural to consider approximation lattices L whose
inclusion map ξL : Y → L is a Σ-split embedding. In view of the results on
the right Kan extension in Section 3.2 it is natural to consider approximation
domains whose inclusion map is even finitary.

Definition 4.9. Let Y be a computable T0 space. An approximation lattice L
for Y is called Σ-split if ξL is a computable Σ-split embedding. Accordingly, an
envelope F : X → L with values in a Σ-split approximation domain is called a
Σ-split envelope.

An approximation lattice L for Y is called finitary if its inclusion map is
computably finitary, i.e., if the upper adjoint of the map (ξL)∗ : O(L) → O(Y ) is
computable.

Accordingly, an envelope F : X → L with values in a finitary approximation
lattice is called a finitary envelope.

For example the approximation lattice O2(Y ) is Σ-split for each computable
T0 space Y . A computable section is given by the map νO(Y ) : O(Y )→ O3(Y ).

If Y is computably compact computable Hausdorff space then K (Y ) is a
finitary approximation lattice for Y . Note that if Y has any finitary approximation
lattice then Y is necessarily compact.

Finitary approximation lattices are particularly well-behaved, as any continu-
ous function f : Y → M with values in a computably injective lattice M has a
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canonical extension (f/ξL) : L→M to L along ξL which is uniformly computable
in f . Finitarity is a strong restriction, however, as the following result shows:

Proposition 4.10. Let f : X → Y be a function between computable T0-spaces.
Let F : X → L be a finitary envelope of f . Then F is computably tightened by
the principal O2(Y )-envelope of f .

Proof. By assumption the upper adjoint s : O(Y ) → O(L) of ξ∗L is computable.
Consider the map

G : X → O2(Y ), G(x) = s∗ ◦ νL ◦ F (x).

Then

G(x) = s∗ ◦ νL ◦ F (x)
≤ s∗ ◦ νL ◦ ξL ◦ f (x)
= s∗ ◦ ξ∗∗L ◦ νY ◦ f (x)
= (ξ∗L ◦ s)∗ ◦ νY ◦ f (x)
≤ νY ◦ f (x).

Hence G is an O2(Y )-envelope of f .
We claim that G tightens F via the map ρL ◦ ξ∗∗L : O2(Y )→ L. We have

ρL ◦ ξ∗∗L ◦ νY = ρL ◦ νL ◦ ξL = ξL
and

ρL ◦ ξ∗∗L ◦G(x) = ρL ◦ ξ∗∗L ◦ s∗ ◦ νL ◦ F (x)
= ρL ◦ (s ◦ ξ∗L)∗ ◦ νL ◦ F (x)
≥ ρL ◦ νL ◦ F (x)
= F (x).

Hence G computably tightens F . Since G is an O2(Y )-envelope, the principal
O2(Y )-envelope computably tightens F .

If F : X → L and G : X → M are envelopes then F tightens G if and only if
F tightens G via the map (ξM/ξL). In the case where F is finitary this map is
uniformly computable in ξM . This suggests the following generalisation:

Definition 4.11. Let f : X → Y be a function between computable T0 spaces. Let
F : X → L be a Σ-split envelope of f . A Σ-section s : O(Y )→ O(L) of ξL is called
generating if any envelope G : X → M of f is tightened by F via the extension
ξM/( sξL ).
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The existence of generating Σ-sections can be determined with the help of
the following notion:

Definition 4.12. Let f : X → Y be a function between computable T0 spaces. An
open set U ∈ O(Y ) is called a robust property of f at x, or by abuse of notation
a robust property of f (x), if the preimage f−1(U) is a neighbourhood of x.

If F : X → L is an envelope of f and U ∈ O(Y ) is a robust property of f (x) we
say that F witnesses U at x if there exists an open set V ∈ O(L) with F (x) ∈ V and
ξ−1
L (V ) ⊆ U . If F witnesses all robust properties of f we say that F is Σ-complete.

Proposition 4.13. Let f : X → Y be a function between computable T0 spaces.
Let F : X → L be a universal envelope of f . Then F is Σ-complete.

Proof. Let U ∈ O(Y ) be a robust property of f (x0). By assumption there exists
an open set V ∈ O(X) with x0 ∈ V ⊆ f−1(U). Consider the functions

G : X → Σ, G(x) =
{
> if x ∈ V
⊥ otherwise

and

h : Y → Σ, h(y) =
{
> if y ∈ U
⊥ otherwise.

By definition we have h ◦ f (x) ≥ G(x) for all x ∈ X. It follows that (G,h) is an
envelope of f .

As F is assumed to be universal there exists a continuous function Φ: L→ Σ
with

Φ ◦ ξL ≤ h

and

Φ ◦ F ≥ G.

In particular

F (x0) ∈ {` ∈ L | Φ(`) = >} .

We have

ξ−1
L ({` ∈ L | Φ(`) = >}) ⊆ U

by assumption. Hence U is witnessed by F .

Definition 4.14. Let f : X → Y be a function between computable T0 spaces. Let
F : X → L be a Σ-split envelope of f . We say that F is uniformly Σ-complete

77



if its inclusion map ξ∗L has a computable section s such that F (x) ∈ s(U) for all
robust properties U of f (x).

Theorem 4.15. Let f : X → Y be a function between computable T0 spaces.
Let F : X → L be a Σ-split envelope of f . A Σ-section s : O(Y ) → O(L) of the
inclusion map is generating if and only if F (x) ∈ s(U) for all robust properties
U of f (x). In particular, if F is uniformly Σ-complete then F is universal.

Proof. Assume that F (x) ∈ s(U) for all robust properties U ∈ O(Y ) of f (x). Let
G : X →M be an envelope of f . Consider the map

Φ = ξM/( sξL ) = ρM ◦ ξ∗∗M ◦ s∗ ◦ νL : L→M.

Then, as in the proof of 3.18, we have Φ ◦ ξL = ξM . As G is an envelope, any
property witnessed by G is robust. It follows that

{ξ∗M (U) ∈ O(Y ) | G(x) ∈ U} ⊆ {U ∈ O(Y ) | F (x) ∈ s(U)} .

Hence:

Φ ◦ F (x) = ρM ◦ ξ∗∗M ◦ s∗ ◦ νL ◦ F (x)
= ρM ◦ ξ∗∗M ({U ∈ O(Y ) | F (x) ∈ s(U)})
≥ ρM ◦ ξ∗∗M ({ξ∗M (U) ∈ O(Y ) | G(x) ∈ U})
= ρM ◦ νM ◦G(x)
= G(x).

Conversely, assume that the section s : O(Y ) → O(L) of OξL satisfies that
every envelope G : X →M of f is tightened by F via ξM/( sξL ). Let U be a robust
property of f (x0). Then there exists an open set V ∈ O(X) with V ⊆ f−1(U). As
in the proof of 4.13 we obtain an envelope

G(x) =
{
> if x ∈ V ,
⊥ otherwise

with inclusion map

h(y) =
{
> if y ∈ U ,
⊥ otherwise.

By assumption, F tightens G via the map

h/( sξL ) = ρΣ ◦ h∗∗ ◦ s∗ ◦ νL.

We have G(x0) = > and thus h/( sξL ) ◦ F (x0) = >. An easy calculation shows

> = h/( sξL ) ◦ F (x) = ρΣ ({U ∈ O(Σ) | F (x) ∈ s ◦ h∗(U)}) .
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It follows that {>} ∈ {U ∈ O(Σ) | F (x) ∈ s ◦ h∗(U)} and thus F (x) ∈ s(U). Hence
F is uniformly Σ-complete.

The existence of uniformly Σ-complete envelopes is quite a special property:

Proposition 4.16. Let f : X → Y be a function between computable T0 spaces.
Assume that f has a uniformly Σ-complete envelope. Then the principal O2(Y )-
envelope of f is universal.

Proof. Let F : X → L be a uniformly Σ-complete envelope. Let s : O(Y ) → O(L)
be a generating Σ-section. Consider the map s∗ : O2(L)→ O2(Y ). We obtain an
envelope

G : X → O2(Y ), G(x) = s∗ ◦ νL ◦ F (x).

This is really an envelope, as

G(x) ≤ s∗ ◦ νL ◦ ξL ◦ f (x) = s∗ ◦ ξ∗∗L ◦ νY ◦ f (x) = νY ◦ f (x).

If U ∈ O(X) is a robust property of f (x) then F (x) ∈ s(U), and so U ∈ G(x). It
follows that G is uniformly Σ-complete and hence universal.

Corollary 4.17. Let f : X → Y be a function between computable T0 spaces.
Let F : X → O2(Y ) be the principal O2(Y )-envelope of f . If for every robust
property U ∈ O(Y ) of f (x) we have U ∈ F (x) then F is universal. In this case
every envelope G : X →M of f is tightened by F via the extension ξM/

(
νO(Y )
νY

)
.

For finitary envelopes we can say more:

Theorem 4.18. Let f : X → Y be a function between computable T0 spaces.
Let F : X → L be a finitary envelope of f . Then F is Σ-complete if and only
if F is uniformly Σ-complete if and only if F is universal if and only if every
envelope G : X →M is tightened by F via the right Kan extension ξM/ξL.

Proof. It follows immediately from the definition of the right Kan extension that
if G : X →M is any envelope with inclusion map ξM : Y →M then G is tightened
by F if and only if G is tightened by F via the right Kan extension ξM/ξL.

Universality implies Σ-completeness by Proposition 4.13 and uniform Σ-com-
pleteness implies universality by Theorem 4.15.

It remains to show that Σ-completeness implies uniform Σ-completeness.
Thus, assume that F is Σ-complete. Let U ∈ O(Y ) be a robust property of f (x).
Then there exists V ∈ O(L) with ξ∗L(V ) ⊆ U and F (x) ∈ V . Let s : O(Y )→ O(L) the
upper adjoint of ξ∗L. By assumption s is computable. As s is the upper adjoint,
we have (s ◦ ξ∗L)(U) ⊇ U for all U ∈ O(L), and hence
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F (x) ∈ V ⊆ s ◦ ξ∗L(V ) ⊆ s(U).

Hence F is uniformly Σ-complete.

Corollary 4.19. Let f : X → Y be a function between a computable T0 space X
and a computably compact computable Hausdorff space Y . Let F : X → K⊥(Y )
be the principal K⊥(Y )-envelope of f . Then F is universal if and only if for
every robust property U ∈ O(Y ) of f (x) we have F (x) ⊆ U . In this case every
envelope G : X →M of f is tightened by F via the map inf ◦ (K⊥)ξM .

Unfortunately there exist functions f : X → Y which do not have a uniformly
Σ-complete envelope.

Example 4.20. Let `2 denote infinite dimensional separable real Hilbert space,
made into a computable metric space by endowing it with the metric induced by
the `2-norm and taking as a computable dense sequence the set of all rational
sequences with finitely many non-zero entries. Let (`2)′ denote the space of con-
tinuous linear functionals on `2, made into a represented space by identification
with a subspace of the exponential R(`2)′ . See e.g. [25] or [78] for details.

Consider the function idw→s
`2 : (`2)′ → `2 which sends a functional x ∈ (`2)′

to the corresponding point x ∈ `2. This problem may seem quite artificial
now, but it is closely related to the problem of locating the fixed point set of
a nonexpansive self-map of the unit ball in separable real Hilbert space, see
Lemma 5.17. By Proposition 4.16 this function has a uniformly Σ-complete
envelope if and only if its principal O2(`2)-envelope is universal.

Let F : (`2)′ → O2(`2) be the principal O2(`2)-envelope of idw→s
`2 . We claim that

F (x) = ∅ for all x ∈ (`2)′. It is shown in [25] that (`2)′ is computably isomorphic
to the partial quotient of RN under the map

q : ⊆ RN → (`2)′,

dom(q) =




(xn)n ∈ RN | x0 ≥ (
∑

n≥1
x2
n)1/2






q((xn)n) = λy.
∑

n≥1
xnyn−1.

It follows that F lifts to a computable map F̃ : dom(q)→ O2(`2) with F̃ (z) = F◦q(z)
for all z ∈ dom(q).

The space `2 is computably countably based and a computable basis is given
by the set of all balls whose radius is a rational number and whose centre is a
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sequence of rational numbers only finitely many of which are non-zero. Let us
refer to balls of this form as “rational balls” for short.

Fix a relativised algorithm computing the map G : dom(q)×O(`2)→ Σ which
is obtained by currying the map F̃ : dom(q)→ O2(`2). Assume that there exists
U ∈ O(`2) with U ∈ F (x). Then x ∈ U . In particular U is non-empty. Let ε > 0
be a rational number with ε < |x|+ 1.

By Proposition 2.39 a name of the set U is given by a sequence (Bn)n con-
taining all rational balls of radius ε whose centre is contained in U . Consider
the sequence s = (2(|x| + 1), x0, x1, . . . ) ∈ dom(q). Feed a name of s and the
sequence (Bn)n as an input to the relativised algorithm which computes the
map G : dom(q)× O(`2)→ Σ. Then after finitely many steps the algorithm out-
puts >. Up until this point the algorithm has only read a finite initial segment
(2(|x|+1), x0, . . . , xN ) of the sequence s and a finite initial segment B1, . . . , BM of
the sequence (Bn)n. It follows that if x̃ ∈ (`2)′ with |x̃| ≤ 2(|x|+1) and x̃ ·en = x ·en
for all n ≤ N then

⋃M
n=1 Bn ∈ F (x̃) and hence x̃ ∈

⋃M
n=1 Bn, as F is assumed to

be an envelope of idw→s
`2 . Hence the set of all x̃’s of this form has a finite cover

by balls of radius |x|+ 1. Contradiction! Hence F (x) = ∅ for all x ∈ (`2)′.
It follows that F cannot be Σ-complete, as for any x ∈ (`2)′, any open set of

the weak topology which contains x is a robust property of idw→s
`2 (x) and none

of these properties are witnessed by F . Hence F cannot be universal.

Example 4.21. Let f : X → Y be an arbitrary function between computable T0
spaces. Consider the universal envelope of f that was constructed in the proof
of Theorem 4.8 The inclusion map ξL : Y → L from the proof of Theorem 4.8 is
a computable Σ-split embedding. A section for OξL is given by the map

s : O(Y )→ O2(A), s(V ) = {U ∈ O(A) | (∅, V ) ∈ U } .

If G : X →M is another envelope, we can extend the inclusion map ξM : Y →M
to L along ξL using this section. The resulting extension ξM satisfies the equation
ξM ◦ F (x) = ⊥ for all x ∈ X. Thus, this section is far from generating.

4.4 Bases of an envelope

In the case where a given envelope F : X → L is uniformly Σ-complete with
generating Σ-section s we have a good description available of how it tightens
all other envelopes: If G : X →M is another envelope then F tightens G via the
map ξM/( sξL ), which is uniformly computable in ξM .
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In order to have a similar description for the tightening relation available in
more general cases, we introduce the concept of a basis of an envelope. As we
will see in the next section, bases play an important role in the description of
how the probes of a function factor through the universal envelope.

Definition 4.22. Let f : X → Y be a function between computable T0 spaces. Let
F : X → L be an envelope. A computable T0 space S is called a basis for F if
the inclusion map ξL : Y → L admits a factorisation

Y L

S
r

ξL

e

where r is a computable map and e is a computable Σ-split embedding with a
computable Σ-section s, such that all envelopes G : X → L which are tightened
by F are tightened via the map (ξM/r)/( se ).

X L

M Y S

f
G

F

ξM

ξL

r

e

ξM /r

We call s the generating Σ-section of the basis.
A basis B of F is called minimal if for every basis S of F there exists a

computable map h : B→ S such that the following diagram commutes:

L

S Y B

e

r

ξL

r0

e0

h

If F : X → L is uniformly Σ-complete and s : O(Y ) → O(L) is a generating
Σ-section for f , then Y is a minimal basis of F with factorisation ξL = ξL ◦ idY
and generating Σ-section s.

On the other hand, if F : X → L is any envelope then the lattice L is a basis
with factorisation ξL = idL ◦ξL and generating Σ-section idO(L) : O(L)→ O(L).
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Proposition 4.23. Let f : X → Y be a function between computable T0 spaces.
Let F : X → L be an envelope of f . Assume that F has a minimal basis B.
Then this minimal basis is unique up to unique isomorphism.

Proof. Assume that both S and S′ are minimal bases of F . Then by assumption
there exist computable maps h : S → S′ and h′ : S → S′ such that the following
diagram commutes:

L

S Y S′

h

e

r

ξL

r′

e′

h′

We hence have e′ ◦h = e. It follows that h = (e′)−1 ◦e. Analogously we find that
h′ = e−1 ◦ (e′)−1. Hence h and h′ are uniquely determined and inverses of each
other.

We do not require the factorisation of ξL through a basis to be an epi-mono
factorisation. If it is then the basis is necessarily minimal:

Proposition 4.24. Let f : X → Y be a function between computable T0 spaces.
Let F : X → L be an envelope of f . Assume that the inclusion map ξL : Y → L
factors through a basis S as ξL = e ◦ r where r is surjective. Then S is a
minimal basis of F .

Proof. Let S′ be another basis of F with factorisation ξL = i ◦ s. Then, since r is
surjective, we have e(x) = e ◦ r(y) = i ◦ s(y) for some y ∈ Y . It follows that the
function h = i−1 ◦ e : S → S′ is well-defined with h ◦ r = s.

Example 4.25. Returning to Example 4.20, consider again the function

idw→s
`2 : (`2)′ → `2.

Consider the envelope

F : (`2)′ → K⊥((`2)′), F (x) = {x}

with inclusion map

h : `2 → K⊥((`2)′), h(x) = κ⊥ ◦ ids→w
`2 ,

where

ids→w
`2 : `2 → (`2)′
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is the inverse function of idw→s
`2 .

This envelope is universal, for any envelope G : (`2)′ → M is tightened by F
via the map inf ◦(K⊥)G : K⊥((`2)′) → M . By definition the map h factorises as
h = κ⊥◦ids→w

`2 where κ⊥ has as Σ-section the upper adjoint s of Oκ . The envelope
F tightens G via the map G/( sκ⊥ ) and thus in particular via (ξM/ ids→w

`2 )/( sκ⊥ ). It
follows that (`2)′ is a basis for F .

As the map ids→w
`2 is surjective it follows that (`2)′ is a minimal basis of F , for

if ξL factors through a basis S as ξL = e ◦ r, then the map h = e−1 ◦ ids→w
`2 is

well-defined and computable.

Theorem 4.26. Let f : X → Y be a function between computable T0 spaces.
Let F : X → L be an envelope of f . Let S be a basis for F with factorisation
ξL = e ◦ r and generating Σ-section s. Then F is universal if and only if

1. For every envelope G : X → M of f with inclusion map ξM : Y → M the
pair (G, ξM/r) is an envelope of r ◦ f .

2. The envelope F : X → L of r ◦ f with inclusion map e : S → L is uniformly
Σ-complete with generating Σ-section s.

Proof. Assume that F is universal. Let G : X → M be an envelope of f . Then F
tightens G via the map (ξM/r)/

( s
e
)
. It follows that

G ≤ (ξM/r)/( se ) ◦ F ≤ (ξM/r)/( se ) ◦ e ◦ r ◦ f = (ξM/r) ◦ r ◦ f.

Hence G is an envelope of r ◦ f with inclusion map (ξM/r). The rest of the proof
is analogous to that of Theorem 4.15.

Let us now show the converse direction. If G : X → M is an envelope of
f then by assumption G becomes an envelope of r ◦ f if the inclusion map
is taken to be ξM/r. As F , viewed as an envelope of r ◦ f , is assumed to be
uniformly Σ-complete it follows from Theorem 4.15 that F tightens this envelope
via some map Φ: L→M which satisfies Φ ◦ e ≤ (ξM/r) and Φ ◦F ≥ G. We have
Φ ◦ e ◦ r ≤ (ξM/r) ◦ r ≤ ξM . Thus F tightens G via Φ.

Theorem 4.27. Let f : X → Y be a function between computable T0 spaces. Let
F : X → L be a universal envelope of f . Let S be a basis for F with factorisation
ξL = e ◦ r and generating Σ-section s : O(S) → O(L). Let x ∈ X. Then a filter
basis for F at x is given by

{
r−1(U) | F (x) ∈ s(U)

}
.
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Proof. A filter basis for F(x) is given by

{U ∈ O(Y ) | U is a robust property of f (x)} .

Let U ∈ O(Y ) be a robust property of f (x). Let V ∈ O(Y ) be an open set
with x ∈ V ⊆ f−1(U). Consider the characteristic function ξV : X → Σ of V
and the characteristic function ξU : Y → Σ of U . Then ξV is an envelope of
f with inclusion map ξU . It follows that F tightens ξV via the map (ξU/r)/( se ).
Let W ∈ O(S) denote the open set whose characteristic function is ξU/r. The
inequality (ξU/r)◦r ≤ ξU translates to r−1(W ) ⊆ U . As F tightens ξV via (ξU/r)/( se )
we obtain

ξV (x) = > ≤ ρΣ ◦ (h/r)∗∗ ◦ s∗ ◦ νL ◦ F (x).

This leads to F (x) ∈ s((h/r)∗({>})) = s(W ). As r−1(W ) ⊆ U we conclude that
x
{
r−1(U) | F (x) ∈ s(U)

}
⊇ {U ∈ O(Y ) | U is a robust property of f (x)} .

Hence the result is shown.

4.5 Separated-universality for compactly majorisable
functions

The following theorem gives criterion for when there is a very satisfactory de-
scription available for an envelope that is at least optimal amongst the separated
ones:

Theorem 4.28. Let f : X → Y be a function between a computable T0 space X
and a computably countably based computable Hausdorff space Y . Assume
there exists a computable map B : X → K (Y ) such that f (x) ∈ B(x) for all
x ∈ X. Then the principal K⊥(Y )-envelope of f is separated-universal and
every separated envelope G : X →M is tightened by F via the map inf ◦(K⊥)ξM .

Proof. Let F : X → K⊥(Y ) be the principal K⊥(Y )-envelope of f . Let G : X → M
be a separated envelope of f . As ξM maps Y to the maximal elements of M \{>}
we have for all m ∈ (M \ {>}):

ξM (y) /∈ ↑m ⇔ ξM (y) ∨m = >.

It follows that

ξ−1
M (↑m ) = ξ−1

M (M \
{
m′ ∈M |m′ ∨m = >

}
).

Hence the set ξ−1
M (↑m ) is closed and uniformly computable in m as an element

of A (Y ). We can hence define the computable map
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H : X → K⊥(Y ), H(x) = ξ−1
M (
xG(x) ) ∩ B(x).

We have G(x) ≤ ξM ◦ f (x) for all x ∈ X. Hence f (x) ∈ ξ−1
M (
xG(x) ) and so

f (x) ≥ H(x) for all x ∈ X. Thus H is a K⊥(Y )-envelope of f and since F is the
principal K⊥(Y )-envelope we have H ≤ F . By definition this means that

B(x) ∩ ξ−1
M (
xG(x) ) ⊇ F (x).

We have

ξM (B(x) ∩ ξ−1
M (
xG(x) )) ⊆

xG(x) .

Hence

inf ◦(K⊥)ξM ◦ F (x) ≥ inf
(
(K⊥)ξM

(
B(x) ∩ ξ−1

M (↑m )
))
≥ G(x).

Example 4.29. There is no reason for a computably separated-universal envel-
ope to be Σ-complete. Consider the function f : R→ R where

f (x) =
{
−x if x < 0,
1 if x ≥ 0.

By Theorem 4.28 the envelope F : R→ K⊥(R) where

F (x) =






{−x} if x < 0,
{0, 1} if x = 0,
{1} if x > 0

is separated-universal. It is not Σ-complete however, as the set U = (0, 2) ∈ O(R)
is a robust property of f which isn’t witnessed by F . In particular F is not
universal. The reason for this is that the filter of robust properties

{
U ∈ O(R) | 1 ∈ U ∧ ∃n ∈ N.(0, 1

n ) ⊆ U
}

is not Scott-open and hence does not correspond to a compact subset of R.

4.6 Probes

Our next aim is to obtain a better understanding of the amount of information
that is encoded in the universal envelope. To this end we introduce probes for
a function f : X → Y which can be viewed as (relativised) algorithms that use f
as a subroutine in such a way that the end result is a continuous function. We
show that if F is a universal envelope of f , then a large class of these algorithms
can use F as a subroutine instead.
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Definition 4.30. Let f : X → Y be a function between computable T0 spaces.
Let U ∈ O(X) be an open subset of X. A continuous local probe for f on U is
a continuous map φ : Y → Z, where Z is a computable T0 space, such that the
function φ ◦ f is continuous on U . If φ is computable we call φ a computable
local probe.

Theorem 4.31. Let f : X → Y be a function between computable T0 spaces.
Let F : X → L be the universal envelope. Let φ : Y →M be a continuous local
probe for f on U ∈ O(X) with values in a computably injective lattice M . Then
there exists a continuous extension

φ̃ : L→M

with

φ̃ ◦ ξL(y) ≤ φ(y)

for all y ∈ Y and

φ̃ ◦ F (x) = φ ◦ f (x)

for all x ∈ U .
If S is a basis for F with factorisation ξL = e ◦ r and generating Σ-section

s then an extension φ̃ is given by φ̃ = (φ/r)/( se ).

Proof. Consider the function

G : X →M, G(x) =
{
φ ◦ f (x) if x ∈ U,
⊥ otherwise.

As φ◦f is continuous on U the function G is continuous. It satisfies the inequality
G(x) ≤ φ ◦ f (x) for all x ∈ X. It is hence an envelope of f if we consider M to
be an approximation domain with inclusion map φ : Y →M . It follows from the
universality of F that F tightens G via a map φ̃ : L → M . It is easy to see that
the map φ̃ has the desired properties.

If S is a basis as in the statement of the theorem then it follows from the
definition of basis that we can choose φ̃ = (φ/r)/( se ).

In particular, if F : X → L is uniformly Σ-complete with generating Σ-section
s : O(Y ) → O(L), then an extension φ̃ as in Theorem 4.31 of a local probe
φ : Y → M with values in a computably injective lattice is given by the func-
tion φ/( sξL ) : L → M . This function is uniformly computable in φ. In particular,
any computable local probe has a computable extension in the sense of Theorem
4.31.
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More generally, if F : X → L is an envelope with basis S, factorisation given
by ξL = e ◦ r, and generating Σ-section s, then any local probe φ : Y → M
of f extends continuously along r to a local probe φ̃ : S → M of r ◦ f which
uniformly computably extends to the function φ̃/( se ). In particular a computable
local probe has a computable extension to L as in Theorem 4.31 if and only if it
has a computable extension to T along r.

Example 4.32. In general not every computable local probe has a computable
extension in the sense of Theorem 4.31. Consider again the function

idw→s
`2 : (`2)′ → `2.

Recall that the universal envelope is given by

κ⊥ ◦ id(`2)′ : (`2)′ → K⊥((`2)′), x 7Ï ↑x .

Any continuous linear functional `2 → R is a local probe for idw→s
`2 . However,

there exist continuous linear functionals which are computable as maps of type
`2 → R but uncomputable as maps (`2)′ → R: It is easy to construct a comput-
able sequence (xn)n ∈ Rn with a well-defined `2-norm

(∑
n∈N x2

n
)1/2 which is an

uncomputable number (see e.g. [78, Theorem 5.9]). Such a sequence defines a
point x in Hilbert space which is computable as an element of (`2)′ but not as an
element of `2. The corresponding linear functional y 7Ï x · y is computable as a
map `2 → R but not as a map (`2)′ → R. This defines a computable local probe
for idw→s

`2 which does not have a computable extension to K⊥((`2)′) in the sense
of Theorem 4.31.

Definition 4.33. Let f : X → Y be a function between computable T0 spaces.
A continuous probe for f consists of two continuous functions α : X̃ → X and
β : X̃ × Y → Z, where X̃ and Z are computable T0 spaces, such that for each
point x ∈ X̃ the point (x, α(x)) ∈ X̃ × X is a point of continuity of the function
ψ(x0, x1) = β(x0, f (x1)). If α and β are computable we call (α, β) a computable
probe for f .

Theorem 4.34. Let f : X → Y be a function between computable T0 spaces.
Let F : X → L be a universal envelope of f . Let (α, β) be a probe for f where
β : X̃ × Y → M takes values in a computably continuous lattice M . Then β
extends to a continuous map

β̃ : X̃ × L→M

with

β̃(x, ξL(y)) ≤ β(x, y)
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and

β̃(x, F ◦ α(x)) = β(x, f ◦ α(x)).

If S is a basis for F with factorisation ξL = e◦r and generating Σ-section s
then an extension β̃ is given by β̃(x, `) =

(
λt.h(x, t)/( se )

)
(`) where h : X̃×S →M

is the map given by h(x, t) = (k/r)(t)(x) with k : Y →MX̃, k(y) = λx.β(x, y).

Proof. Consider the map

ψ : X̃ × X →M, ψ(x0, x1) = β(x0, f (x1)).

By Proposition 3.32, ψ has a best continuous approximation ψ̃. As M is assumed
to be computably continuous, ψ̃ coincides with ψ in all its points of continuity.
In particular we have for all x ∈ X̃:

ψ̃(x, α(x)) = β(x, f (α(x))).

Now let

G : X →MX̃, G(x)(x̃) = ψ̃(x̃, x)

and

h : Y →MX̃, h(y)(x̃) = β(x̃, y).

We have

G(x)(x̃) = ψ̃(x̃, x) ≤ ψ(x̃, x) = β(x̃, f (x)) = (h ◦ f (x))(x̃).

Hence G is an envelope of f with inclusion map h. As F is universal, F tightens
G via a map Φ: L→MX̃ . Let β̃(x, `) = Φ(`)(x). Then

β̃(x, ξL(y)) = Φ(ξL(y))(x) ≤ h(y)(x) = β(x, y).

We further have

β̃(x, F (α(x))) = Φ(F (α(x)))(x) ≥ G(α(x))(x) = ψ̃(x, α(x)) = β(x, f ◦ α(x))

and

β̃(x, F (α(x))) ≤ β̃(x, ξL ◦ f ◦ α(x)) ≤ β(x, f ◦ α(x)).

The addendum follows from the definition of basis.

Similarly to the situation with local probes, if F : X → L is uniformly Σ-
complete with generating Σ-section s : O(Y ) → O(L) then for any probe (α, β),
with β : X̃×Y →M taking values in a computably continuous lattice, a continuous
extension β̃ as in Theorem 4.34 is uniformly computable in β. In particular any
computable probe has a computable extension.
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In general the existence of a computable extension β̃ depends on the exist-
ence of a computable map h : X×S →M to a basis for F with h(x, r(y)) ≤ β(x, y)
for all x ∈ X̃ and all y ∈ Y and h(x, r ◦ f ◦ α(x)) = β(x, f ◦ α(x)) for all x ∈ X̃.

Theorem 4.34 applies “up to embedding” to all probes which take values in
a computably countably based space. Let Z be a computably countably based T0
space. Then there exists a computable embedding j : Z → ΣN. Hence any probe
(α, β) where β : X̃ × Y → Z takes values in Z can be made into a probe (α, j ◦ β)
where

j ◦ β : X̃ × Y → ΣN

takes values in a computably continuous lattice.
Theorem 4.34 essentially characterises the probes for f as those pairs (α, β)

where β : X̃ × L → M satisfies β(x, F ◦ α(x)) = β(x, f ◦ α(x)). On the one hand
any probe “extends” to such a function by Theorem 4.34. On the other hand
any such function “restricts” to a probe:

Proposition 4.35. Let f : X → Y be a function between computable T0 spaces.
Let F : X → L be an envelope of f . Let (α, β) be a pair of continuous functions
α : X̃ → X and β : X̃ × L→ Z. Assume that β(x, F ◦ α(x)) = β(x, ξL ◦ f ◦ α(x)) for
all x ∈ X̃. Let

β′ : X̃ × Y → Z, β′(x, y) = β(x, ξL(y)).

Then (α, β′) is a probe for f .

Proof. Let x ∈ X̃. Let ψ(x0, x1) = β′(x0, f (x1)). Our goal is to show that (x, α(x))
is a point of continuity for ψ. Let ((xn0 , xn1 ))n be a sequence in X̃ × X which
converges to (x, α(x)). As F is continuous, the sequence β(xn0 , F (xn1 )) converges
to β(x, F (α(x))) = β(x, ξL ◦ f ◦ α(x)). We have β′(xn0 , f (xn1 )) ≥ β(xn0 , F (xn1 )) so that
the sequence (β′(xn0 , f (xn1 )))n converges to the same point.

An analogous result holds true for separated envelopes.

Definition 4.36. Let f : X → Y be a function between computable T0 spaces. A
separated probe for f is a probe (α, β) where

β : X̃ × Y →M

takes values in a computably separated computable complete lattice M and
β(x, y) is a maximal element of M \ {>} for all (x, y) ∈ X × Y .

Theorem 4.37. Let f : X → Y be a function between computable T0 spaces.
Let F : X → L be a separated-universal envelope of f . Let (α, β) be a separated
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probe for f where β : X̃ × Y → M takes values in a computably separated
computably continuous lattice. Then β extends to a continuous map

β̃ : X̃ × L→M

with

β̃(x, ξL(y)) ≤ β(x, y)

and

β̃(x, F ◦ α(x)) = β(x, f ◦ α(x)).

Theorem 4.37 applies “up to embedding” to all probes which take values in
a computable metric space. Let Z be a computable metric space. Then there
exists a computable embedding j : Z → [0, 1]N. Hence any probe φ : X × Y → Z
can be made into a separated probe

κ ◦ j ◦ φ : X × Y → K ([0, 1]N)

which takes values in a computably separated computably continuous lattice.

4.7 Retracts

We introduce a notion of reducibility between functions that allows us to reduce
the calculation of the universal envelope of one function to the calculation of
the universal envelope of another.

Definition 4.38. Let f : X → Y be a function between computable T0 spaces.

1. A half-symmetry of f is a function φ : X → V (X) with f (φ(x)) ⊆
yf (x) for

all x ∈ X.

2. Let x0, x1 ∈ X. We say that x0 reduces to x1 as an instance of f and write
x0 -f x1 if there exists a half-symmetry φ : X → V (X) of f with x0 ∈ φ(x1).
We say that x0 is equivalent to x1 as an instance of f and write x0 ∼f x1

if x0 -f x1 and x0 %f x1.

It follows immediately from the definition that we have the implication:

x0 -f x1 Ï f (x0) ≤ f (x1).

This implication still holds true if we replace f with a principal envelope:

Proposition 4.39. Let f : X → Y be a function between computable T0 spaces.
Let F : X → L be a principal envelope of f . Then F is invariant under the
half-symmetries of f in the sense that
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F (φ(x)) ⊆
yF (x)

for all half-symmetries φ of f . In particular we have the implication

x0 -f x1 Ñ F (x0) ≤ F (x1).

Proof. Let x̃ ∈ φ(x). Then since φ is a half-symmetry of f we have f (x̃) ≤ f (x).
Hence

F (x̃) ≤ ξL ◦ f (x̃) ≤ ξL ◦ f (x).

It follows that

supF (φ(x)) ≤ ξL ◦ f (x).

Hence x 7Ï supF (φ(x)) is an envelope of f and since F is the principal L-envelope
it follows that supF (φ(x)) ≤ F (x) for all x ∈ X. This shows the first claim.

Now let x0, x1 ∈ X with x0 -f x1 and let φ : X → V (X) be a half-symmetry of
f with x0 ∈ φ(x1). Then

F (x0) ≤ supF (φ(x1)) ≤ F (x1).

Definition 4.40. Let f : X0 → Y0 and g : X1 → Y1 be functions between comput-
able T0 spaces. We say that g is a retract of f if there exists a diagram

X0 Y0

X1 Y1

α0

f

β0α1

g

β1

where α0 : X0 ⇒ X1 and α1 : X1 ⇒ X0 are computable multimaps and β0 : Y0 → Y1,
and β1 : Y1 → Y0 are computable single-valued maps, such that the following
axioms are satisfied:

1. For all x1, x2 ∈ α1(x) we have x1 ∼f x2.

2. For all x1, x2 ∈ α0(x) we have x1 ∼g x2.

3. f ◦ α1 ≤ β1 ◦ g and g ◦ α0 ≤ β0 ◦ f

4. For all x0 ∈ α0 ◦ α1(x1) we have x0 %g x1.

5. β0 ◦ β1 ≤ idY1 .

Note that the first two axioms in Definition 4.40 imply that f ◦ α1 and g ◦ α0

are single-valued functions. Thus the third axiom is well-typed.
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Theorem 4.41. Let f : X0 → Y0 and g : X1 → Y1 be functions between comput-
able T0 spaces. Assume that g is a retract of f . Let F : X0 → L be a principal
universal envelope of f with inclusion map ξL : Y0 → L. Then the envelope
F ◦α1 : X1 → L with inclusion map ξL ◦β1 : Y1 → L is a universal envelope of g .

Furthermore, if T is a basis for F with factorisation ξL = e◦r and generat-
ing Σ-section s then T is a basis for F ◦α1 with factorisation ξL ◦β1 = e◦ (r ◦β1)
and the same generating Σ-section s.

Proof. By Proposition 4.39 and the first assumption of Definition 4.40 the map
F ◦ α1 is single-valued. Let x ∈ X1. We have

F ◦ α1(x) ≤ ξL ◦ f ◦ α1(x) ≤ ξL ◦ β1 ◦ g(x).

Hence F ◦ α1 is an envelope of g . Let G : X → M be a principal envelope of g .
Then by the same argument, G ◦ α0 with inclusion map ξM ◦ β0 is an envelope
of f . As F is assumed to be universal there exists a map

Φ: L→M

with

Φ ◦ ξL ≤ ξM ◦ β0

and

Φ ◦ F ≥ G ◦ α0.

This yields

Φ ◦ ξL ◦ β1 ≤ ξM ◦ β0 ◦ β1 ≤ ξM
and

Φ ◦ F ◦ α1 ≥ G ◦ α0 ◦ α1 ≥ G.

The last inequality uses Proposition 4.39.
Now assume that T is a basis for F with factorisation ξL = r◦e and generating

Σ-section s. It follows from our previous reasoning that F tightens G via the
map (ξM ◦ β0/r)/( se ). Using that β0 ◦ β1 ≤ ξM we obtain:

(ξM ◦ β0/r) ◦ r ◦ β1 ≤ ξM ◦ β0 ◦ β1 ≤ ξM .

By definition of (ξM/r ◦ β1) we conclude that

(ξM ◦ β0/r) ≤ (ξM/r ◦ β1).

In particular

(ξM/r ◦ β1)/( se ) ◦ F ≥ (ξM ◦ β0/r)/( se ) ◦ F ≥ G.

By definition we have
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(ξM/r ◦ β1)/( se ) ◦ e ◦ r ◦ β1 ≤ ξM .

Thus F ◦α1 tightens G via the map (ξM/r ◦ β1)/( se ). It follows that T is a basis of
F ◦ α1.

The property of being a retract of a function is quite strong compared
with the usual reducibility notions considered in computable analysis. A typ-
ical tool for comparing the computational strength of non-computable problems
is Weihrauch reduction [16]. Unfortunately a Weihrauch-equivalence between
functions does not induce a translation between their universal envelopes:

Example 4.42. Consider the function

zeroes : C([0, 1])→ F ([0, 1]), zeroes(f ) = {x ∈ [0, 1] | f (x) = 0}

which encodes the computational problem of locating the zero set of a function.
Consider the function

locate : A ([0, 1])→ F ([0, 1]), locate(A) = A

which encodes the computational problem of making a closed set into a located
set.

The two functions are strongly Weihrauch-equivalent due to a well-known
construction which goes back to Specker [95].

Given a function f ∈ C([0, 1]) we can compute the zero-set of f as an element
of A (C([0, 1])) and apply locate to obtain zeroes(f ). It follows that zeroes

strongly Weihrauch-reduces to locate.
By Proposition 2.39 a set A ∈ A ([0, 1]) can be represented by a list of open

rational intervals (In)n with A = (
⋃
n∈N In)C . Thus, suppose we are given a name

(In)n of A ∈ A ([0, 1]). Let In = (an, bn). Let h(x) = max(0, 1− |x|). We can then
compute the function

f (x) =
∑

n∈N
2−nh

(
2

bn−an

(
x − an+bn

2

))
.

Of course, the function f depends strongly on the name of A. However, we
always have f (x) = 0 if and only if x ∈ A. It follows that locate strongly
Weihrauch-reduces to zeroes.

The same proof establishes that locate is a retract of zeroes. However,
zeroes is not a retract of locate. In fact, the amount of information con-
tained in the respective universal envelopes is quite different. It is easy to see
that the universal envelope of locate is the identity on A ([0, 1]). This yields
the envelope H : C([0, 1]) → A ([0, 1]) of zeroes with the inclusion map being
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the identity F ([0, 1]) → A ([0, 1]). Let Z : C([0, 1]) → K (F ([0, 1])) be the prin-
cipal K (F ([0, 1]))-envelope of zeroes. Consider for example the real function
f (x) = 1− (3

2 − 5x)2. Then f has two isolated zeroes, namely 1
10 and 1

2 , and f
changes its sign in each of the zeroes. It follows that Z(f ) = {{ 1

10 ,
1
2}}, i.e., Z

coincides with zeroes in f . Hence Z contains more information on zeroes than
H .

It is instructive to note that the Weihrauch reduction from zeroes to locate

destroys information on the input f which cannot be recovered continuously
from the zero set as an element of A ([0, 1]). Translating f to its zero set as
an element of A ([0, 1]) and then translating back to a function with the same
zero set using the Weihrauch reduction from locate to zeroes leaves us with
a function with two “unstable” zeroes where no sign-change occurs.

4.8 The dense subset lemma

The following lemma allows us to reduce the problem of calculating a universal
envelope of a given function f : X → Y to the problem of calculating a universal
envelope of a restriction of f to a dense subset.

Lemma 4.43. Let f : X → Y be a function between computable T0 spaces. Let
F : X → L be an envelope of f . Assume that there exists a dense subset S ⊆ X
such that the restriction F |S is a universal envelope of the restriction f |S . Let
T be a basis for F |S with factorisation ξL = e ◦ r and generating Σ-section s.
Further assume that for all x ∈ X and all open sets U ∈ O(T) we have the
implication:

(∃W ∈ νX(x).∀x̃ ∈W ∩ S.(F (x̃) ∈ s(U)))Ï F (x) ∈ s(U).

Then F is a universal envelope of f with basis T .

Proof. Let G : X → M be an envelope of f . Then G|S is an envelope of f |S . As
F |S is universal, the assumptions of Theorem 4.26 are satisfied. It follows that
G ≤ (ξM/r) ◦ r ◦ f . Let x ∈ X. Let U ∈ O(M) be an open set with G(x) ∈ U . Then
(ξM/r)∗(U) is a robust property of r ◦ f (x̃) for all x̃ ∈ G−1(U). In particular this
is true of the points x̃ ∈ G−1(U) ∩ S. We hence have F (x̃) ∈ s((ξM/r)∗(U)) for all
x̃ ∈ G−1(U) ∩ S. By the assumption on F it follows that F (x) ∈ s((ξM/r)∗(U)).

The rest of the proof is identical to the proof of Theorem 4.15. We conclude
that

{(ξM/r)∗(U) ∈ O(T) | G(x) ∈ U} ⊆ {U ∈ O(T) | F (x) ∈ s(U)} .
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We then calculate:

(ξM/r)/( se ) ◦ F (x) = rM ◦ (ξM/r)∗∗ ◦ s∗ ◦ νL ◦ F (x)
= rM ◦ (ξM/r)∗∗ ({U ∈ O(T) | F (x) ∈ s(U)})
≥ rM ◦ (ξM/r)∗∗ ({(ξM/r)∗(U) ∈ O(T) | G(x) ∈ U})
= rM ◦ νM ◦G(x)
= G(x).

4.9 Envelopes of set-valued functions

In analysis one very frequently encounters computational problems which do
not admit a unique solution. Such problems can be modelled as multi-valued
maps which send a problem instance to the set of all possible solutions. In
computable analysis it is customary to understand the computational problem
associated with such a map to be the task of finding a particular solution for
every given problem instance in a potentially non-extensional way, i.e., given a
name of a problem instance to produce a name of a solution. Such semantics are
particularly appropriate for showing uncomputability results. For our purpose
however it seems most appropriate to model multi-valued functions as set-valued
functions which take values in a suitably chosen powerspace. In other words we
will study the problem of computing the set of all solutions to a given problem,
rather than the problem of obtaining one particular solution. In order to have a
representation for the space of sets of solutions available we restrict our attention
to set-valued functions with closed values. If f : X ⇒ Y is a set-valued function
with closed values between computable T0 spaces the question arises how to
represent the space of closed subsets. In principle there are many possible
ways of representing closed sets [24] but arguably the three most important
represented spaces of closed subsets are:

1. The upper powerspace A (Y ).

2. The lower powerspace V (Y ).

3. The joint powerspace F (Y ) = {(A,A) ∈ A (Y )× V (Y ) | A ⊆ Y closed}.

Elements of A (Y ) can be thought of as closed sets encoded with negative
information. Elements of V (Y ) can be thought of as closed sets encoded with
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positive information. Hence elements of F (Y ) encode both negative and positive
information on a closed set.

Thus we can associate three natural computational problems with any set-
valued function:

1. The upper formulation f> : X → A (Y ).

2. The lower formulation f< : X → V (Y ).

3. The joint formulation f : X → F (Y ).

The lower formulation is closely related to the usual non-deterministic se-
mantics for multi-valued functions used in computable analysis, see [19]. Any
envelope for the upper or lower formulation is an envelope for the joint for-
mulation. In particular the join of universal envelopes of the upper and lower
formulation is an envelope for the joint formulation. Note however that there is
no reason to expect that this join be a universal envelope for the joint formula-
tion.

Proposition 4.44. Let Y be a computable T0 space. Then A (Y ) is a finitary
approximation lattice for A (Y ), the inclusion map being given by the identity.

Proof. The space A (Y ) is a computable complete lattice as it is just the dual
lattice of O(Y ). By the same argument A (Y ) is a computably injective lattice.
Thus A (Y ) is an approximation lattice over A (Y ). It is obvious that the identity
is a finitary embedding.

Proposition 4.45. Let Y be a computable T0 space. Then O2(Y ) is an ap-
proximation lattice for V (Y ). The inclusion map is given by the canonical
embedding

A 7Ï {U ∈ O(Y ) | A ∩U 6= ∅} .

Proposition 4.46. Let Y be a computably countably based space. Then O2(Y )
is a finitary approximation lattice for V (Y ).

Proof. By Proposition 2.56 the map

γ : K (V (Y ))→ O2(Y ), γ(K) = {U ∈ O(Y ) | ∀A ∈ K.A ∩U 6= ∅}

is a computable isomorphism. Its inverse is given by the map

γ−1 : O2(Y )→ K (V (Y )), γ−1(U ) = {A ∈ V (Y ) | ∀U ∈ U .A ∩U 6= ∅} .
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The inclusion map ξ : V (Y )→ O2(Y ) is given by ξ(A) = {U ∈ O(Y ) | A ∩U 6= ∅}.
It follows that ξ−1(↑U ) = γ−1(U ) so that ξ is computably proper and hence
computably finitary.

It follows from Proposition 4.46 and Theorem 4.18 that if Y is computably
countably based then the principal O2(Y )-envelope F of a function f : X → V (Y ) is
universal if and only if for each robust property U of f (x) we have the inclusion
ξ−1(

xF (x) ) ⊆ U .
This criterion still requires us to reason about open sets of the space V (Y ).

Luckily, the task can be further simplified:

Lemma 4.47. Let f : X → V (Y ) be a function between a computable T0 space X
and a computably countably based space Y . Let F : X → O2(Y ) be an envelope
of f with the inclusion map ξ : V (Y )→ O2(Y ) being the natural embedding. If
for all x ∈ X the set F (x) ∈ O2(Y ) contains all U ∈ O(Y ) such that the set

f−1(U) = {z ∈ X | f (z) ∩U 6= ∅}

is a neighbourhood of x then F is uniformly Σ-complete.

Proof. By Proposition 2.52 we have a computable isomorphism

γ : K (V (Y ))→ O2(Y ).

We hence have a map

γ∗ : O(K (V (Y )))→ O3(Y ).

Consider the natural embedding

κV (Y ) : V (Y )→ K (V (Y )).

As κV (Y ) is proper, the upper adjoint α of κ∗V (Y ) is computable. We can then
compute the map

γ∗ ◦ α : O(V (Y ))→ O3(Y ).

This map is a section for ξ∗, where ξ : V (Y )→ O2(Y ) is the natural embedding.
Indeed, we have ξ = γ ◦ κV (Y ) and hence

ξ∗ ◦ γ∗ ◦ α = (γ ◦ κV (Y ))∗ ◦ γ∗ ◦ α = κ∗V (Y ) ◦ γ
∗ ◦ γ∗ ◦ α = κ∗V (Y ) ◦ α = idO(V (Y )) .

Our goal is to show that

F (x) ∈ γ∗ ◦ α(U )

for every robust property U of f (x). The claim then follows from Theorem
4.15.
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The topology of V (Y ) is generated by sets of the form

[U] = {A ∈ V (Y ) | A ∩U 6= ∅} .

By the definition of γ we have U ∈ F (x) if and only if γ−1 ◦ F (x) ⊆ [U]. Let
U ∈ O(V (Y )) be a robust property of f (x). Then we can write

U =
⋃

i∈I

(
[U i

1] ∩ · · · ∩ [U i
ni ]
)

with U i
j ∈ O(Y ). To simplify the notation let us set U i

j = U i
ni for j > n, so that we

can write

U =
⋃

i∈I

⋂

j∈N
[U i

j ].

By the axiom of choice we have:

U =
⋂

A : I→N

⋃

i∈I
[U i

A(i)].

Note that for all collections (Vj )j of open subsets of V (Y ) we have:
⋃

j∈J
[Vj ] = [

⋃

j∈J
Vj ].

It follows that

U =
⋂

A : I→N

[
⋃

i∈I
U i
A(i)].

Since U is robust in particular the property [
⋃
i∈I U i

A(i)] is robust for every func-
tion A : I → N, so that by the assumption on F we have

⋃

i∈I
U i
A(i) ∈ F (x).

Hence, by the definition of γ,

γ−1 ◦ F (x) ⊆ [
⋃

i∈I
U i
A(i)].

And thus

γ−1 ◦ F (x) ⊆
⋂

A : I→N

[
⋃

i∈I
U i
A(i)] = U .

It follows that

F (x) ∈ γ∗ ◦ α(U )

and the result is shown.

It is useful to fix a name for the special robust properties that are used in
Lemma 4.47:
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Definition 4.48. Let f : X → V (Y ) be a function where X and Y are computable
T0 spaces and Y is computably countably based. Let x ∈ X. An open set U ∈ O(Y )
such that

f−1(U) = {z ∈ X | f (z) ∩U 6= ∅}

is a neighbourhood of x is called a basic robust property of f (x).

Typically it is easier to calculate a universal envelope for the upper and
lower formulation of a set-valued map than to calculate a universal envelope for
the joint formulation. In general the join of a universal envelope of the upper
formulation and a universal envelope of the lower formulation need not be a
universal envelope for the joint formulation. We can however give a sufficient
criterion for this, which is stated in Theorem 4.52 below. We need two auxiliary
results as a preparation:

Proposition 4.49. Let Y be a computable T0 space. If Y is computably compact
then F (Y ) is computably compact.

Definition 4.50. Let X be a computable T0 space. Then X is called computably
locally compact if there exists a computable sequence (̂In)n of compact sets
În ∈ K (X) and a computable sequence (In)n of open sets In ∈ O(X) such that
In ⊆ În for all n ∈ N and (In)n and constitutes a basis for the topology of X. We
call any such pair of sequences computable basis of compact neighbourhoods
for X.

Proposition 4.51. Let Y be a computably compact and computably locally
compact computable T0 space. Then the maps

A (Y )→ K (F (Y )), A 7Ï {B ∈ F (Y ) | B ⊆ A}

and

O2(Y )→ K (F (Y )), U 7Ï {B ∈ F (Y ) | ∀U ∈ U . (B ∩U 6= ∅)}

are well-defined and computable.

Proof. By Proposition 4.49 if Y is computably compact then so is F (Y ). Hence
the identity A (F (Y )) → K (F (Y )) is well-defined and computable. Thus it suf-
fices to compute the maps with co-domain A (F (Y )). Given A ∈ A (Y ) and
B ∈ F (Y ) we can verify if B 6⊆ A by testing if there exists y ∈ B with y /∈ A.
Computability of the first map follows. Let (̂In)n be a computable basis of com-
pact neighbourhoods of Y . Given U ∈ O2(Y ) and B ∈ F (Y ) we can verify if
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there exists a finite sequence 〈n0, . . . , nk〉 ∈ N∗ such that In0 ∪ · · · ∪ Ink ∈ U but
(̂In0 ∪ · · · ∪ Înk ) ∩B = ∅. As this is the case if and only if there exists U ∈ U with
B ∩U = ∅ computability of the second map follows.

Theorem 4.52. Let f : X ⇒ Y be a multi-valued function between computable
T0 spaces. Let F> : X → A (Y ) be an A (Y )-envelope of the upper formulation
f> : X → A (Y ). Let F< : X → O2(Y ) be an O2(Y )-envelope of the lower formu-
lation f< : X → V (Y ). Consider the joint formulation f : X → F (Y ). If every
robust property of f (x) contains the set

{A ∈ F (Y ) | A ⊆ F>(x) ∧ ∀U ∈ F<(x).(A ∩U 6= ∅)} .

then F> × F< is the universal envelope of f . In this case it is uniformly Σ-
complete.

Proof. Using Proposition 4.51 we obtain the computable map

A (Y )×O2(Y )→ K (F (Y )), (A,U ) 7Ï {C ∈ F (Y ) | C ⊆ A ∧ ∀U ∈ U .(C ∩U 6= ∅)}

Composition of F> × F< with this map yields a K (F (Y ))-envelope of f . This
envelope is uniformly Σ-complete if and only if every robust property of f (x)
contains the set

{A ∈ F (Y ) | A ⊆ F>(x) ∧ ∀U ∈ F<(x).(A ∩U 6= ∅)} .

The claim follows.

A famous result due to Kuratowski asserts that upper and lower semicon-
tinuity coincide generically.

Recall that a multi-valued function f : X ⇒ Y is called lower semicontinuous
if for every open set U ∈ O(Y ) the preimage f−1(U) = {x ∈ X | f (x) ∩U 6= ∅} is
an open subset of X. The function f : X ⇒ Y is called upper semicontinuous if
for every closed set A ∈ A (Y ) the preimage f−1(A) is a closed subset of X.

A subset of a topological space X is called comeagre or a residual if it can
be expressed as a countable intersection of dense open sets. A Baire space
is a topological space in which every comeagre set is dense. A property that
holds for all points of a residual in a Baire space is also referred to as a generic
property. The Baire category theorem asserts that every complete metric space
is a Baire space.

It follows from Kuratowski’s result that the principal O2(Y )-envelope of an
upper semicontinuous function f coincides generically with the lower formula-
tion f< : X → V (Y ). As a preparation we need a result that is of independent
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interest:

Theorem 4.53. Let X be a computable T0 space. Let Y be a complete com-
putable metric space. Let f : X ⇒ Y be a multi-valued function. If there
exists a continuous function B : X → K (Y ) with f (x) ⊆ B(x) then the prin-
cipal O2(Y )-envelope of f< : X → V (Y ) coincides with f< in all points of lower
semicontinuity.

Proof. Assume that f is lower semicontinuous in x ∈ X. Let U ∈ O(Y ) with
f (x) ∩U 6= ∅. Let y ∈ f (x) ∩U . Then there exists an open set V with

y ∈ cl (V ) ⊆ U.

As f is lower semicontinuous in x the set f−1(V ) is a neighbourhood of x. Let
W ∈ O(X) be an open set with

x ∈W ⊆ f−1(V ).

Define the map

G : X → O2(Y ), G(z) =
{
{U ∈ O(Y ) | U ⊇ cl (V ) ∩ B(z)} if z ∈W,
∅ otherwise.

Then G is an O2(Y )-envelope of f with G(x)∩U 6= ∅. It follows that the principal
O2(X)-envelope of f coincides with f< in x.

For a proof of the following result see e.g. [1].

Theorem 4.54 (Kuratowski, 1958). Let f : X ⇒ Y be an upper semicontinuous
function with values in a complete separable metric space Y . Then the points
of lower semicontinuity of f are comeagre.

As an immediate corollary to the previous two results we obtain:

Theorem 4.55. Let X be a computable T0 space. Let Y be a complete com-
putable metric space. If f : X ⇒ Y is an upper semicontinuous function with
compact values then the principal O2(Y )-envelope of f< : X → V (Y ) generically
coincides with f , i.e., it coincides with f in a comeagre set.

Theorem 4.56. Let X be a computable T0 space. Let Y be a complete com-
putable metric space. If f : X ⇒ Y is an upper semicontinuous function with
compact values then the principal A (Y ) × O2(Y )-envelope of f : X → F (Y )
generically coincides with f , i.e., it coincides with f in a comeagre set.
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Chapter 5

Calculations

As an application of the theory developed so far, we will calculate the universal
envelopes of two non-trivial problems: Locating the fixed point set of a continu-
ous self-map of the unit cube in finite-dimensional euclidean space and locat-
ing the fixed point set of a nonexpansive self-map of the unit ball in infinite-
dimensional separable real Hilbert space.

It should be emphasized that the problem of “calculating” the universal en-
velope is a creative process rather than a mechanical one. In each case we will
proceed by first guessing the universal envelope and then using the techniques
developed in this thesis to verify that it is indeed universal.

The “guesses” are informed by previous computability results. In the case
of finding Brouwer fixed points, the Brouwer index yields a sufficient condition
for the existence of a fixed point. The index is computable and can be used
to compute components of the fixed point set in the upper Vietoris topology
[72, 21, 20, 29]. On any open set where the index is zero, the function can be
made fixed-point free up to a small perturbation thanks to the Hopf theorem [55].
This suggests that the greatest amount of continuously obtainable information
on the fixed point set is encoded in the Brouwer index. We will verify this using
Lemma 4.47 in conjunction with the Hopf theorem.

In the case of finding fixed points of nonexpansive maps, it was shown in
[78] that the problem finding a fixed point is Weihrauch-equivalent to a “compact
choice” operator which sends a compact set in the strong topology to a compact
set in the weak topology. We will build on this result, showing that if we restrict
to maps with unique fixed points, we obtain a retraction from the problem of
computing the identity from the weak topology to the strong topology. As the
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universal envelope of the latter is easily seen to be the identity of the unit ball
with the weak topology, we obtain a universal envelope of a restriction to the
problem to a dense subset. The dense subset lemma (Lemma 4.43) then enables
us to extend this envelope to the whole space.

5.1 Brouwer fixed points

By the famous Brouwer fixed point theorem any continuous map

f : [0, 1]n → [0, 1]n

has a fixed point. The problem

Fix : C([0, 1]n, [0, 1]n)⇒ [0, 1]n, Fix(f ) = {x ∈ [0, 1]n | f (x) = x}

of finding fixed points of a given continuous map is well-known to be uncomput-
able. Its computational content has been extensively studied within computability
theory and reverse mathematics [79, 3, 21, 92].

Note that the function

Fix> : C([0, 1]n, [0, 1]n)→ A ([0, 1]n)

is computable.
The goal of this section is to calculate a universal lower envelope for Fix,

i.e., a universal envelope of the function

Fix< : C([0, 1]n, [0, 1]n)→ V ([0, 1]n).

Our calculation is mainly based on ideas by Collins [29].
The main tool will be the Brouwer mapping degree. Recall that the mapping

degree is the unique function

deg: C(Rn,Rn)× O(Rn)× Rn → Z

with domain

dom(deg) = {(f, U, y) ∈ C(Rn,Rn)× O(Rn)× Rn | U is bounded and y /∈ f (∂U)}

which satisfies the following properties:

1. TRANSLATION INVARIANCE: deg(f, U, y) = deg(f − y,U, 0).

2. NORMALISATION: deg(id, U, y) = 1 for all y ∈ U .

3. ADDITIVITY: If U1 and U2 are open disjoint subsets of U such that we have
y /∈ f (clU \ (U1 ∪U2)) then deg(f, U, y) = deg(f, U1, y) + deg(f, U2, y).
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4. HOMOTOPY INVARIANCE: If H(t, x) is a homotopy from f to g satisfying
y /∈ H(t, ∂U) for all t ∈ [0, 1] then deg(f, U, y) = deg(g,U, y).

The degree yields a sufficient condition for an equation to have a solu-
tion. If deg(f, U, y) is well-defined and non-zero, i.e., if (f, U, y) ∈ dom(deg)
and deg(f, U, y) 6= 0 then the equation f (x) = y has at least one solution in U .

Very nice and readable introductions to the mapping degree are given in [73]
and [98].

A concrete definition of the degree can be given in terms of singular ho-
mology. For our purpose it suffices to establish this for the unit sphere Sn. Let
h : Sn → Sn be a self-map of the unit sphere. Then h induces a homomorph-
ism h∗ : Hn(Sn) → Hn(Sn), where Hn is the nth singular homology group. As
Hn(Sn) ' Z this homomorphism is the action of the multiplication with a num-
ber α ∈ Z. We call α the mapping degree of h. See e.g. [52, Chapter 2.2, p.
134ff.] for more details.

This definition relates to our axiomatic definition of degree as follows: Let
f : Dn → Rn be a map on the unit disk Dn. Let y ∈ Rn \ f (Sn−1). Then we can
define the map

h : Sn−1 → Sn−1, h(x) = f (x)− y
|f (x)− y| .

The degree of h is equal to deg(f, Dn, y).
The Hopf theorem asserts that the degree is the only homotopy invariant of

self-maps of Sn. This will play an important role in our calculation.

Theorem 5.1 (Hopf, 1927 [55]). Let f, g : Sn → Sn be self-maps of the n-sphere.
Then f and g have the same mapping degree if and only if they are homotopic.

In particular if deg(f, Dn, y) = 0 then the map h(x) = f (x)−y
|f (x)−y| is homotopic to

a constant function. This is the main idea behind the proof of the key lemma
5.8 below.

It can be shown that the degree is computable when the space of open sets is
appropriately represented. This was probably first observed by Miller [72] who
showed that the degree is computable on rational cubical complexes (see also
[21, 20, 22]). The result is based on computational homology [58].

It will be convenient for our purpose to be able to compute the degree on
the set of all open sets. Let U (Rn) denote the space of open subsets of Rn which
is obtained by identifying an open set U with its two-sided distance function:

dtwo-sided(·, U) : X → R, x 7Ï
{
d(x, ∂U) if x /∈ U,
−d(x, ∂U) if x ∈ U.
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Note that the underlying representation is much stronger than the standard
representation of open sets. In particular, the space U (Rn) is a computable
Hausdorff space. Computability of the degree on this class of spaces can be
established in a similar way as for cubical complexes using computational ho-
mology. For the sake of variety we mention an arguably more elementary proof
based on the determinant formula:
Theorem 5.2. The partial map

deg: ⊆ C(Rn,Rn)×U (Rn)× Rn → Z, (f, U, y) 7Ï deg(f, U, y)

is computable with semi-decidable domain.
Proof Sketch. The degree deg(f, U, y) is defined so long as y /∈ f (∂U), and this is
uniformly semi-decidable for continuous f and U ∈ U . To compute deg(f, U, y),
compute a sufficiently good twice differentiable approximation f̃ to f and a suf-
ficiently good approximation ỹ to y, which is a regular value of f̃ . It suffices to
choose ỹ with |y − ỹ| < d (y, f (∂U)) and f̃ with

∣∣∣f − f̃
∣∣∣ < d (y, f (∂U)). The fact

that ỹ can be chosen to be a regular value follows from Sard’s theorem. Then
deg(f, U, y) can be computed using the determinant formula:

deg(f, U, y) = deg(f̃ , U, ỹ) =
∑

x∈f̃−1(y)

sgn
(
det
(
Df̃ (x)

))
.

For more details refer to the construction of the mapping degree in [98, Chapter
16].

It will further be convenient to extend the degree to the set of all bounded
open sets. From now on we write deg for the map

deg: ⊆ C(Rn)×U (Rn)× Rn → Z⊥

which extends the previous definition of deg to all triples (f, U, y) where U is a
bounded open set and is equal to ⊥ if and only if y ∈ f (∂U). Clearly this map is
computable.
Lemma 5.3. Consider the function

Fix< : C([0, 1]n, [0, 1]n)→ V ([0, 1]n), Fix<(f ) = {x ∈ [0, 1]n | f (x) = x}

which sends a continuous self-map of the unit cube to its fixed point set in
the lower Vietoris topology. Then Fix< is a computable retract of the function

F̃ix< : C(Rn, [0, 1]n)→ V (Rn), F̃ix<(f ) = {x ∈ Rn | f (x) = x} .

Proof. Let s : [0, 1]n → Rn be the subspace inclusion. Choose a computable
retraction r : Rn → [0, 1]n. Consider the diagram
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C(Rn, [0, 1]n) V (Rn)

C([0, 1]n, [0, 1]n) V ([0, 1]n)

res

F̃ix<

r∗ext

Fix<

s∗

where

res : C(Rn, [0, 1]n)→ C([0, 1]n, [0, 1]n), res(f ) = f |[0,1]n

and

ext : C([0, 1]n, [0, 1]n)→ C(Rn, [0, 1]n), ext(f ) = f ◦ r.

It is easy to see that this defines a retraction from F̃ix< to Fix<.

Theorem 5.4. Consider the function

F̃ix< : C(Rn, [0, 1]n)→ V (Rn), F̃ix<(f ) = {x ∈ Rn | f (x) = x}

A universal envelope of F̃ix< is given by the map

F̃ : C(Rn, [0, 1]n)→ O2(Rn),
F̃ (f ) = {U ∈ O(Rn) | ∃V ⊆ U. (deg(f − idRn , V, 0) /∈ ↓0)} .

This envelope is uniformly Σ-complete.

Corollary 5.5. Consider the function

Fix< : C([0, 1]n, [0, 1]n)→ V ([0, 1]n), Fix<(f ) = {x ∈ [0, 1]n | f (x) = x}

Let r : Rn → [0, 1]n be a computable retraction. A universal envelope of Fix<
is given by the map

F : C([0, 1]n, [0, 1]n)→ O2([0, 1]n),
F (f ) = {U ∈ O([0, 1]n) | ∃V ⊆ r∗(U). (deg(f ◦ r − idRn , V, 0) /∈ ↓0)} .

This envelope is uniformly Σ-complete.

Remark 5.6. Let f : [0, 1]n → [0, 1]n. Let C ⊆ Fix(f ) be a connected component
of the fixed point set of f . Call C robust if for every open neighbourhood U
of C there exists ε > 0 such that every f̃ with |f − f̃ | < ε has a fixed point in
U . Then the set of robust components of the fixed point set of f is a generating
family (see Definition 2.51) for the set F (f ). For a proof idea see [29].
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The proof of Theorem 5.4 will be split into several lemmas. We mainly have
to show that F̃ is uniformly Σ-complete. By Lemma 4.47 it suffices to show that
F̃ witnesses all basic robust properties of F̃ix<.

Lemma 5.7. The map F̃ is a computable envelope of F̃ix<.

Proof. That F̃ is computable follows almost immediately from the computability
of the degree. Given an open set U ∈ O(Rn) we can computably enumerate
the list of all finite unions of balls with rational centre and radius which are
compactly contained in U . As these finite unions of balls form a dense sequence
in U we have U ∈ F̃ (h) if and only if we can find a finite union of balls B1∪· · ·∪Bm
in this sequence with deg(h − idRn , B1 ∪ · · · ∪ Bm, 0) /∈ ↓0 .

As deg(h − idRn , B1 ∪ · · · ∪ Bm, 0) /∈ ↓0 implies that there is a solution to the
equation h(x) = y in U it follows that F̃ is an envelope.

The following two lemmas are the core of the proof. They will allow us to
characterise the robust properties of F̃ix<. As mentioned earlier, the first of
these lemmas is based on the Hopf theorem (Theorem 5.1).

Lemma 5.8. Let f : Rn → [0, 1]n be a continuous function. Let U ∈ O(Rn) be a
bounded connected open set with ∂U ∩ Fix(f ) = ∅ and deg(f − idRn , U, 0) = 0.
Let |f − idRn | < ε on U . Then there exists a 2ε-perturbation of f which agrees
with f on the complement of U and which has no fixed points in U .

Proof. Let g(x) = f (x) − x. We show that there exists a 2ε-perturbation g̃ of g
which agrees with g on the complement of U and has no zeroes in U . Then
g̃ + x is the desired perturbation of f .

Let δ > 0 be a lower bound to |g(x)| on ∂U . Choose a small perturbation g0
of g with

|g0 − g | < min{δ/4, ε/2}

on U such that deg(g0, U, 0) = deg(g,U, 0) = 0 and such that 0 is a regular value
of g0. Choose ν > 0 so small that d(x, ∂U) ≤ ν implies |g(x)| > δ/2.

Let

α : Rn → R, α(x) = min{1,max{0, 1 + dtwo-sided(x,U)/ν}}.

Let

h0(x) = α(x)g(x) + (1− α(x))g0(x).

Then h0 is equal to g outside of U and equal to g0 on the open set
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{x ∈ U | d(x, ∂U) > ν} .

If x ∈ U with d(x, ∂U) ≤ ν we have:

|h0(x)| = |α(x)g(x) + (1− α(x))g0(x)|
≥ |g0(x)| − α(x)|g(x)− g0(x)|
≥ |g(x)| − |g(x)− g0(x)| − α(x)|g(x)− g0(x)|
> δ/2− δ/4− δ/4
= 0

so that h0 has the same zeroes in U as g0. As the zero set of g0 in U is finite we
can find a neighbourhood V ⊆ U of the zero set which is homeomorphic to the
unit disk Dn. Fix a homeomorphism ψ : Dn → V . We have

deg(h0, V, 0) = deg(g0, V, 0) = 0.

It follows from the Hopf theorem that there exists a homotopy

H0 : [0, 1]× Sn−1 → Sn−1

with

H0(0, x) = h0(ψ(x))/|h0(ψ(x))|

and

H0(1, x) = c

for some constant c ∈ Sn−1. Then the function |h0(ψ(x))|H(t, x) is a homotopy
between h0 ◦ ψ and |h0(ψ(x))| · c on Sn−1. Let

ν = inf {|h0(x)| | x ∈ ∂V}

and

ξ = sup {|h0(x)| | x ∈ ∂V} .

Let

H1(t, x) = max{ν, |h0(ψ(x))|+ t(ν − ξ)}c.

Then H1 is a homotopy between |h0(ψ(x))|c and the constant function νc. It
follows that there exists a homotopy H between h0 ◦ ψ and νc on Sn−1. Let

k : Dn → Rn, k(x) =
{
H(2− 2|x|, x/|x|) if |x| ≥ 1/2,
νc if |x| ≤ 1/2.

Let h = k ◦ ψ−1. Then h(x) = h0 ◦ ψ(x) on ∂V and h has no zeroes in V . Extend
h to Rn by letting h(x) = h0(x) outside of V .
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The next lemma is somewhat more elementary but relies on similar ideas:

Lemma 5.9. Let f : Rn → [0, 1]n be a continuous function. Let U ∈ O(Rn) be a
bounded connected open set with ∂U ∩ Fix(f ) = ∅. Let x0 ∈ U . Assume that
|f (x) − x| < ε for all x ∈ U . Then there exists a 2ε-perturbation f̃ of f which
agrees with f outside of U such that x0 is the unique fixed point of f̃ in U .

Proof. We use similar arguments as in the first half of the proof of Lemma 5.8.
Let g(x) = f (x) − x. It suffices to construct a 2ε-perturbation g̃ of g which

agrees with g on the boundary of U and whose unique zero is x0.
Let δ > 0 be a lower bound to |g(x)| on ∂U . Choose a small perturbation g0

of g with

|g0 − g | < min{δ/4, ε/2}

on U such that 0 is a regular value of g0. Choose ν > 0 so small that d(x, ∂U) ≤ ν
implies |g(x)| > δ/2.

Let

α : Rn → R, α(x) = min{1,max{0, 1 + dtwo-sided(x,U)/ν}}.

Let

h0(x) = α(x)g(x) + (1− α(x))g0(x).

Then h0 is equal to g outside of U and equal to g0 on the open set

{x ∈ U | d(x, ∂U) > ν} .

As established in the proof of Lemma 5.8 the function h0 has the same zeroes in
U as g0. As the zero set of g0 in U is finite we can find a neighbourhood V ⊆ U
of the zero set which is homeomorphic to the unit disk Dn.

Fix a homeomorphism ψ : Dn → V which sends 0 to x0. Let

h(x) =
{

0 if x = 0,
|x| · g0 ◦ ψ

(
x
|x|

)
otherwise.

Then g̃ = h ◦ ψ−1 is the desired perturbation.

Hence we arrive at a characterisation of the basic robust properties of F̃ix<:

Lemma 5.10. Let U ∈ O(Rn) be a basic robust property of F̃ix<(h). Then
U ∈ F̃ (h), i.e., U contains an open set V with deg(h − idRn , 0, V ) /∈ ↓0 .

Proof. As U assumed to be robust there exists ε > 0 such that every map
h̃ : Rn → [0, 1]n which is ε-close to h has a fixed point in V . Consider the open
set
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W = {x ∈ Rn | |h(x)− x| < ε/4} .

By assumption W is non-empty. It decomposes into finitely many connected
components W1, . . . ,Wn none of which have a fixed point on their boundary.
Hence the degrees deg(h − idRn , 0,Wi) are all well-defined, i.e., different from
⊥. As U contains a fixed point of h at least one of these components needs to
intersect U . If Wi is a component which is not completely contained in U then by
Lemma 5.9 there exists a ε/2-perturbation of h which has no fixed point in Wi∩U
and agrees with h outside of Wi. As, by robustness of U , every ε-perturbation
of h needs to have a fixed point in U it follows that there exists at least one
component which is completely contained in U . If Wi ⊆ U is a component
which is contained in U with deg(h − id, 0,Wi) = 0 then by Lemma 5.8 we can
find a ε/2-perturbation of h without fixed points in Wi ∩U which agrees with h
outside of Wi. Again, since U is robust, there has to exist a component Wi ⊆ U
with deg(h − id, 0,Wi) 6= 0.

It follows that F̃< is uniformly Σ-complete and hence universal. Thus The-
orem 5.4 is proved.

5.2 Fixed points of nonexpansive mappings

As a second problem we consider the problem of locating the fixed point set of
a nonexpansive map on the unit ball in Hilbert space. A map f : X → Y between
metric spaces X and Y is called nonexpansive if it is Lipschitz-continuous with
Lipschitz constant 1, i.e., if

∀x0, x1 ∈ X. (d(f (x0), f (x1)) ≤ d(x0, x1)) .

It was shown independently by Browder, Göhde, and Kirk in 1965 that a nonex-
pansive self-map of a nonempty, closed, bounded, convex subset of a uniformly
convex Banach space has a fixed point. For the sake of simplicity we only con-
sider the special case of the unit ball in separable real Hilbert space `2 with the
usual norm

|x| =
(
∑

n∈N
x2
n

)1/2

.

Theorem 5.11 (Browder [27], Göhde [46], Kirk [61], 1965).
Let f : B`2 → B`2 be a nonexpansive map, i.e.,

|f (x)− f (y)| ≤ |x − y|
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for all x, y ∈ B`2 . Then f has a fixed point.

The goal of this section is to calculate the universal envelope of the function
which assigns to a given nonexpansive map its fixed point set.

Before we state this more formally, let us recall some of the notation from
Example 4.20. The separable real Hilbert space `2 can be made into a computable
metric space in the usual way. Its continuous dual (`2)′ can be made into a
computable T0 space by identifying it with a subspace of the exponential R(`2)′ .
Note that the topology on the represented space (`2)′ is the sequentialisation of
the weak* topology, which does not coincide with the weak* topology itself. As
`2 is self-dual we can interpret (`2)′ as `2 with the (sequentialisation of the) weak
topology. With this interpretation in mind we obtain a computable map

ids→w
`2 : `2 → (`2)′, x 7Ï x

with a discontinuous inverse

idw→s
`2 : (`2)′ → `2, x 7Ï x.

Finally, let B`2 ⊆ `2 denote the unit ball in `2 and let B(`2)′ ⊆ (`2)′ denote the unit
ball in (`2)′. Let N (B`2) denote the space of all nonexpansive self-maps of B`2 ,
made into a computable T0 space by identifying it with a subspace of BB`2`2 .

Theorem 5.12. Consider the function

Fix : N (B`2)→ F (B`2), f 7Ï {x ∈ B`2 | f (x) = x} .

The universal envelope of Fix is given by the computable map

F : N (B`2)→ K (B(`2)′), F (h) = Fix(h)

with inclusion map

ξL : F (B`2)→ K (B(`2)′), ξL(A) =
{
x ∈ (`2)′ | x ∈ A

}
.

Theorem 5.12 relies on the following result which was used in [78] as the
key step in the characterisation of the Weihrauch complexity of the Browder-
Göhde-Kirk theorem:

Theorem 5.13 ([78, Theorem 5.1]). The function

F : N (B`2)→ K (B(`2)′)

is computable, as is its multivalued right inverse

F−1 : ⊆ K (B(`2)′)⇒ N (B`2).

We will use Theorem 5.13 to show that the restriction of Fix to those functions
which have a unique fixed point is a retract of the identity B(`2)′ → B`2 . This is
the main step in the proof of theorem 5.12. We first need two auxiliary lemmas:
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Lemma 5.14. A sequence (fn)n of nonexpansive maps converges in N (B`2) to
a map f if and only if (fn)n converges to f pointwise.

Proof. Since evaluation is continuous, convergence in N (B`2) implies pointwise
convergence.

For the opposite direction, let (xn)n be a computable dense sequence in B`2 .
Consider the map

i : N (B`2)→ BN
`2 , f 7Ï (f (xn))n.

We claim that this is an isomorphism onto its image. In order to compute the
inverse function we need to compute the map

i(N (B`2))× B`2 → B`2 , (i(f ), x) 7Ï f (x).

This is achieved by the following algorithm: given ε > 0, search for a number
n ∈ N with |xn − x| < ε/2. Output an approximation of i(f )(n) with error ε/2.
Since f is nonexpansive, we have

|f (xn)− f (x)| ≤ |xn − x| < ε/2

and the correctness of the algorithm follows. Now, if fn → f pointwise then
i(fn)→ i(f ). Since i is an isomorphism it follows that fn → f in N (B`2).

Lemma 5.15 ([78, Lemma 5.4]). Let f : B`2 → `2 be a nonexpansive map. As-
sume that Fix(f ) ∩ B`2 6= ∅. Let

PB`2 : `2 → B`2

denote the metric projection onto the unit ball. Then the map

PB`2 ◦ f : B`2 → B`2

is nonexpansive as well with

Fix(PB`2 ◦ f ) = Fix(f ).

We can now prove the announced retraction result. In the following, let
U ⊆ N (B`2) denote the subspace of N (B`2) which consists of all nonexpansive
maps with a unique fixed point. The main step is the following lemma:

Lemma 5.16. Let f, g ∈ U be nonexpansive maps with the same unique fixed
point p ∈ B`2 . Then there exists a half-symmetry

φ : U → V (U )

of Fix |U with g ∈ φ(f ).

Proof. We will construct a map

φ̃ : B(`2)′ → V (U )
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with Fix(φ̃(q)) = {q} for all q ∈ B(`2)′ and g ∈ φ̃(f ). As F : U → B(`2)′ is computable
by Theorem 5.13 we can then put φ = φ̃ ◦ F to obtain a half-symmetry with the
desired properties. To construct the map φ̃ we use that B(`2)′ is computably
countably based. It therefore suffices to construct an operation

ψ : B(`2)′ × N⇒ U

which is extensional in its second argument and satisfies Fix(ψ(q, n)) = {q} and
g ∈ cl {ψ(p, n) | n ∈ N}.

For the construction of ψ let us introduce some notation. Let Pn : `2 → `2
denote the projection onto the first n coordinates, i.e.,

Pn

( ∞∑

i=1
xiei

)
=

n∑

i=1
xiei.

Let Sn : `2 → `2 denote the right-shift operator

Sn

( ∞∑

i=1
xiei

)
=
∞∑

i=1
xiei+n.

Let Ln : `2 → `2 denote the left-shift operator

Ln

( ∞∑

i=1
xiei

)
=
∞∑

i=1
xi+nei.

Now, let q ∈ B(`2)′ and n ∈ N. Let

H̃n(x) = Pn ◦ g ◦ Pn(x)− Pn ◦ g ◦ Pn(q) + Pn(q).

Then H̃n is nonexpansive and Pn(q) is a fixed point of H̃n. Let

Hn(x) = (1− 2−n)H̃n(x) + 2−nPn(q).

Then Pn(q) is a fixed point of Hn. But Hn is Lipschitz-continuous with Lipschitz
constant (1 − 2−n) < 1. Hence Pn(q) is the unique fixed point of Hn. Note that
Hn is uniformly computable in n and q. Let A ∈ N (B`2) be some nonexpansive
map with unique fixed point Ln(q). Some A with this property is computable
from n and q by Theorem 5.13. Let

Ãn(x) = (1− 2−n)x + 2−nA(x).

Let

Rn(x) = Sn ◦ Ãn ◦ Ln(x).

Then Rn is (1 − 2−n)-Lipschitz and thus has a unique fixed point. This unique
fixed point is given by Sn◦Ln(q). As Hn and Rn are nonexpansive and take values
in orthogonal subspaces the map Hn +Rn is nonexpansive as well. As the value
of Hn(x) only depends on the first n coordinates of x and the value of Rn(x) only
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depends on the remaining coordinates, it follows that q is a fixed point of Hn+Rn.
Conversely, if Hn(x) + Rn(x) = x then it follows that Hn(Pn(x)) = Pn(x), so that
Pn(x) = Pn(q) and Rn(Sn◦Ln(x)) = Sn◦Ln(x), so that Sn◦Ln(x) = Sn◦Ln(q). Hence
q is the unique fixed point ofHn+Rn. By Lemma 5.15 the map hn = PB`2 (Hn+Rn)
is nonexpansive with unique fixed point q. Let the output of ψ on input n and q
be hn. Note that this output depends on the choice of name of q.

It remains to show that if q = p is the unique fixed point of g , then ψ(q, n)
converges to g as n →∞, independent of the choice of name of q. By Lemma
5.14 it suffices to show that ψ(n, q) converges pointwise to g . But this follows
easily with standard estimates.

Lemma 5.17. Let U ⊆ N (B`2) denote the set of all nonexpansive maps which
have a unique fixed point. Then the restriction Fix |U is a retract of the
identity idw→s

B`2
: B(`2)′ → B`2 .

Proof. By Theorem 5.13 the function

F−1 : B(`2)′ ⇒ U , F−1(x) = {h ∈ U | Fix(h) = {x}}

is computable (using that the space of compact singletons of the computable T0

space B(`2)′ is computably isomorphic to the space B(`2)′ itself). By Lemma 5.16
all values of F−1 are equivalent as instances of Fix. It follows that a retraction
is given by the following diagram:

B(`2)′ B`2

U B`2

F−1

idw→s
B`2

F

Fix

We are now ready to prove Theorem 5.12.

Proof of Theorem 5.12. By Lemma 5.17 and Theorem 4.41 the restriction F |U
to the set of all nonexpansive maps with a unique fixed point is the universal
envelope of the restriction Fix |U . As U is a dense subset of N (B`2) it remains
to show that F satisfies the assumptions of Lemma 4.43.

A basis of F is given by B(`2)′ with generating Σ-section

s : O(B(`2)′)→ O(K (B(`2)′)), s(U) =
{
K ∈ K (B(`2)′) | K ⊆ U

}
.
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Let h : B`2 → B`2 be nonexpansive, let U ∈ O(B(`2)′) with F (h̃) ⊆ U for each
h̃ ∈ U ∩W where W is some small neighbourhood of h. Choose ε > 0 such
that W contains an open ε-ball around h. For each x ∈ F (h) consider the
function

h̃x(z) = εx + (1− ε)h(z).

Then h̃x ∈ W ∩ U with F (h̃x) = {x}. It follows that x ∈ U . As x was chosen
arbitrarily we conclude that F (h) ⊆ U and everything is shown.
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Chapter 6

Open problems and future work

Let us conclude with a list of open problems and directions of future work:

1. The main direction of future work is to apply the theory developed here to
further problems. Interesting and relevant discontinuous problems can be
found in almost any application domain of continuous computation, such
as computational geometry, dynamical systems, hybrid systems, partial dif-
ferential equations, optimisation, or linear functional analysis.

2. Proposition 3.32 shows that the best continuous approximation of a con-
tinuous function with values in a computably continuous lattice L coincides
with the function in all points of continuity. The question arises whether
the restriction to continuous lattices is necessary or whether this result
holds true for all computable complete lattices. A closely related question
is whether the continuity of M is required in Theorem 4.34. This theorem
would certainly be much more satisfactory without this restriction, for in
this case every probe (α, β) where β : X̃ × Y → Z takes values in an arbit-
rary computable T0 space Z factors through the universal envelope up to
naturally embedding the co-domain of β into O2(Z).

3. The subject of this thesis is the study of best continuous approximations
of arbitrary set-theoretic functions. From a purely mathematical point of
view it is certainly natural to consider generalisations of this idea, where
continuity is replaced with a weaker property, such as measurability or
topological reducibility to a given Weihrauch degree.

While continuous approximations play a special role from a computational
point of view due to the strong link between computability and continuity,
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there is a similar link between, say, Borel measurability and limit comput-
ability [11]. Various other models of “hypercomputation”, such as comput-
ability with finitely many mind-changes [109], probabilistic computability
[18], or nondeterministic computability [108, 12] can be captured by appro-
priate Weihrauch degrees.

Such models of hypercomputation can be viewed as ordinary algorithms
which satisfy weaker contracts. For instance, a finitely revising algorithm
is allowed to output a certain amount of wrong information, so long as
it eventually identifies all wrong information as incorrect and from some
point onwards produces only correct information.

In certain situations it may be appropriate, or rather inevitable, to settle
for a lower degree of reliability in order to have a greater amount of
information on the solution of a problem available.

Independent of any immediate practical considerations, the study of best
approximations below certain Weihrauch degrees could prove to be valu-
able for the study of the computational power of mathematical theorems
in the spirit of Weihrauch reducibility and reverse mathematics, since ex-
amples such as Example 4.42 seem to suggest that envelopes provide a
more fine-grained picture of the finitary computational content of a given
problem.

4. One of the aims of computable analysis is to provide a mathematically rig-
orous language for the specification of algorithms for the processing of
continuous data. As such it endeavours to serve as a foundational frame-
work for the theory of numerical computation. Our aim is to extend the
scope of this framework by allowing the treatment of discontinuous func-
tions.

From this point of view the present work constitutes only the very first
step in this direction: So far we have developed a theory for reformulat-
ing algorithmically unsolvable problems into ones that are algorithmically
solvable in principle, but at no point have we attempted to specify any actual
algorithms for the solution of the modified problems.

Thus, the study and implementation of concrete algorithms for the com-
putation of envelopes appears to be another important direction of future
research.
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