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Abstract. In this paper we study a reducibility that has been intro-
duced by Klaus Weihrauch or, more precisely, a natural extension of this
reducibility for multi-valued functions on represented spaces. We call
the corresponding equivalence classes Weihrauch degrees and we show
that the corresponding partial order induces a lower semi-lattice with
the disjoint union of multi-valued functions as greatest lower bound op-
eration. We show that parallelization is a closure operator for this semi-
lattice and the parallelized Weihrauch degrees even form a lattice with
the product of multi-valued functions as greatest lower bound opera-
tion. We show that the Medvedev lattice and hence the Turing upper
semi-lattice can both be embedded into the parallelized Weihrauch lat-
tice in a natural way. The importance of Weihrauch degrees is based on
the fact that multi-valued functions on represented spaces can be con-
sidered as realizers of mathematical theorems in a very natural way and
studying the Weihrauch reductions between theorems in this sense means
to ask which theorems can be transformed continuously or computably
into each other. This allows a new purely topological or computational
approach to metamathematics that sheds new light on the nature of the-
orems. As crucial corner points of this classification scheme we study the
limited principle of omniscience LPO, the lesser limited principle of omni-
science LLPO and their parallelizations. We show that parallelized LLPO
is equivalent to Weak Kőnig’s Lemma and hence to the Hahn-Banach
Theorem in this new and very strong sense. We call a multi-valued func-
tion weakly computable if it is reducible to the Weihrauch degree of
parallelized LLPO and we present a new proof that the class of weakly
computable operations is closed under composition. This proof is based
on a computational version of Kleene’s ternary logic. Moreover, we char-
acterize weakly computable operations on computable metric spaces as
operations that admit upper semi-computable compact-valued selectors
and we show that any single-valued weakly computable operation is al-
ready computable in the ordinary sense.
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1 Introduction

The purpose of this paper is to propose a new computational approach to meta-
mathematics that is based on the classification of mathematical theorems ac-
cording to their computational content. Such an approach started with a clas-
sification of the Weihrauch degree of the Hahn-Banach Theorem in [1] and the
intention here is to lay some careful foundations for further studies. In a following
paper [2] we analyze certain choice principles and we present a case study with
a classification on many theorems from analysis. This paper is only an extended
abstract, but a full version with all definitions and proofs is available for the
interested reader [3].

Essentially, the idea is to ask which theorems can be continuously or even
computably transferred into each other. In order to give a meaningful interpreta-
tion to this idea we consider mathematical theorems as multi-valued operations
F : X ⇒ Y that map certain input data X into certain output data Y . Such
a perspective is very natural, since many theorems in mathematics are actually
Π2 theorems, hence they have the logical form

(∀x ∈ X)(∃y ∈ Y ) (x, y) ∈ A

and one can just consider F : X ⇒ Y as a realizer or multi-valued Skolem
function for this statement.

The appropriate technical tool to study whether two such potentially partial
multi-valued functions F :⊆ X ⇒ Y and G :⊆ X ⇒ Y can be continuously
or computably transferred into each other is Weihrauch reducibility. This is a
reducibility that has been introduced by Klaus Weihrauch around 1990 in two
unpublished papers [4, 5] and since then it has been studied by several others
(see for instance [6–11, 1, 2, 12]).

Originally, this reducibility has been introduced for single-valued functions
on Baire space. Basically, the idea is to say that F is strongly Weihrauch reducible
to G, in symbols F ≤sWG, if there are computable (or alternatively continuous)
functions H and K such that

F = H ◦G ◦K.

Thus, K acts as an input modification and H acts as an output modification.
We will mainly consider the computable version of this reduction here since
the positive reduction results are stronger. For negative results the topological
version of the reduction is stronger and indeed reductions typically fail for con-
tinuity reasons. However, such topological results can usually be derived from
computational results by relativization.

It turns out that the strong version of Weihrauch reducibility is slightly too
strong for many purposes, since it distinguishes too many functions. For instance
the identity cannot be reduced to a constant function in this way, since there is
no way to feed the input through a constant function. This is the reason why
the more important reducibility is the one where we say that F is Weihrauch
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reducible to G, in symbols F ≤WG, if there are computable functions H and K
such that

F = H ◦ 〈id, G ◦K〉.

Thus, the difference is that the input is fed through to the outer function H
independently of G.

Weihrauch [4, 5] has already studied an extended version of his reducibility
to sets F and G of functions on Baire space and F is called Weihrauch reducible
to G, in symbols F ≤W G, if there are computable functions H and K such that

(∀G ∈ G)(∃F ∈ F) F = H〈id, GK〉.

Here 〈 〉 : NN × NN → NN denotes a computable standard pairing function [13].
That is, any function G ∈ G computes some function F ∈ F and the computation
is performed uniformly with two fixed computable H and K. This extension of
Weihrauch reducibility is related to ordinary Weihrauch reducibility exactly as
Medvedev reducibility is related to Turing reducibility.

We use this concept to extend Weihrauch reducibility even further to multi-
valued operations f :⊆ X ⇒ Y on represented spaces X and Y . Roughly speak-
ing, such an f is Weihrauch reducible to an analogous g, in symbols f ≤W g,
if the set of realizers of f is reducible to the set of realizers of g in the above
mentioned sense of Weihrauch reducibility for sets, i.e.

{F : F ` f}≤W{G : G ` g}.

Here a single-valued F on Baire space is called a realizer of f , in symbols F ` f ,
if F computes a name F (p) of some output value in f(x), given some name p of
x. This generalization of Weihrauch reducibility was introduced for single-valued
functions in [10] and for multi-valued functions in [1]. We call the corresponding
equivalence classes Weihrauch degrees.

Compared to strong Weihrauch reducibility, the ordinary version of Weih-
rauch reducibility has exactly the right degree of precision, it distinguishes ex-
actly what should be distinguished computationally, but not more. Among all
functions (with at least one computable point in the domain) the computable
ones form the least degree. For the continuous version of Weihrauch reducibility
exactly the continuous functions form the least degree (among all functions with
non-empty domain).

2 Products, sums and parallelization

In this section we briefly summarize some of our results on some basic properties
of Weihrauch reducibility and of Weihrauch degrees. In particular we investigate
the product operation f × g and the direct sum f ⊕ g of multi-valued operations
and we show that both operations are monotone with respect to Weihrauch
reducibility. While the product preserves single-valuedness, the disjoint union
does not and hence it requires multi-valuedness in order to be meaningful. Among
other things the partial order on Weihrauch degrees induces a lower semi-lattice
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with direct sums as greatest lower bounds. While the product operation is just
the ordinary product operation of multi-valued functions, we define the direct
sum as follows. For any two sets Y,Z we define the direct sum or disjoint union
by Y ⊕ Z := ({0} × Y ) ∪ ({1} × Z).

Definition 1 (Direct sum). Let f :⊆ X ⇒ Y and g :⊆ U ⇒ V be multi-
valued maps on represented spaces. Then the direct sum of these maps f ⊕ g :⊆
X ×U ⇒ Y ⊕ V is defined by (f ⊕ g)(x, u) := ({0}× f(x))∪ ({1}× g(u)) for all
(x, u) ∈ dom(f ⊕ g) := dom(f)× dom(g).

The first observation is that product and sum are both monotone operations
in the sense that

– f ≤W g and f ′≤W g′ =⇒ f × f ′≤W g × g′ and f ⊕ f ′≤W g ⊕ g′.

This monotonicity result guarantees that we can safely extend the product
and direct sum operation to Weihrauch degrees. Other common properties of
products and sums are that they are both associative and commutative on de-
grees. The identity is a neutral element with respect to products. An important
difference between product and sum is that functions are not necessarily idem-
potent with respect to products, i.e. there are f such that f 6≡W f × f , while
idempotency is always given for sums. A crucial property of sums is that they
yield the greatest lower bound with respect to Weihrauch reducibility.

Proposition 1 (Greatest lower bound). Let f and g be multi-valued func-
tions on represented spaces. Then f ⊕ g is the greatest lower bound of f and
g with respect to Weihrauch reducibility ≤W and strong Weihrauch reducibility
≤sW.

Is there any multi-valued map that plays the role of a neutral element with
respect to the sum operation? Naturally, this would have to be a multi-valued
function with an empty set of realizers. One should note that this is not the
nowhere defined function f :⊆ X ⇒ Y , since {F : F ` f} is the set of all
function F :⊆ NN → NN. If we accept the Axiom of Choice, then clearly, a
function without realizers does not exist and hence we add an extra object 0 to
our structure with {F : F ` 0} = ∅. Weihrauch reducibility can straightforwardly
be extended to multi-valued functions enriched by 0, just by using ∅ as the set
of realizers of 0. We denote the Weihrauch degree of 0 by 0. We assume that
we have a fixed underlying set of represented spaces R and we also assume that
this set includes (NN, id) and that R is closed under products and direct sums.

Definition 2 (Set of Weihrauch degrees). Let W denote the set that con-
tains the degree 0 and all Weihrauch degrees of all multi-valued operations
f :⊆ X ⇒ Y with at least one computable point in dom(f) and with repre-
sented spaces X,Y ∈ R. By 1 we denote the degree of the computable functions
in W.

In the following theorem we collect all the structural properties of Weihrauch
degrees that we have studied so far.
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Theorem 1 (Weihrauch degrees). The space (W,≤W) of Weihrauch degrees
is a lower semi-lattice with least element 1 and greatest element 0 and with ⊕
as the greatest lower bound operation. In particular, (W,⊕) is an idempotent
monoid with neutral element 0. Moreover, (W,×) is a monoid with neutral ele-
ment 1.

An important operation on functions is parallelization f̂ , which means to
take countably many copies of the function f in parallel, i.e.

f̂(x0, x1, x2, ...) := f(x0)× f(x1)× f(x2)× ...

This operation forms a closure operator with respect to Weihrauch reducibility.

Proposition 2 (Parallelization). Let f and g be multi-valued functions on
represented spaces. Then

1. f ≤W f̂ (extensive)

2. f ≤W g =⇒ f̂ ≤W ĝ (increasing)

3. f̂ ≡W
̂̂
f (idempotent)

An analogous result holds for strong Weihrauch reducibility.

The fact that Weihrauch reducibility is a closure operator allows us to define
a parallelized version of Weihrauch reducibility.

Definition 3 (Parallel reducibility). Let f and g be multi-valued operations
on represented spaces. Then we say that f is parallely Weihrauch reducible to g,
in symbols f ≤

Ŵ
g, if f̂ ≤W ĝ. We say that f is parallely Weihrauch equivalent

to g, in symbols f ≡
Ŵ
g, if f ≤

Ŵ
g and g≤

Ŵ
f holds. We call the corresponding

equivalence classes parallel Weihrauch degrees.

Parallel reducibility is compatible with products and sums in the following
sense:

– f̂ × g≡sW f̂ × ĝ and f̂ ⊕ g≤sW
̂̂
f ⊕ ĝ≡sW f̂ ⊕ ĝ.

Moreover, parallel Weihrauch degrees are idempotent with respect to products,
i.e. f̂ ≡sW f̂ × f̂ . The idempotency of parallel Weihrauch degrees has the conse-
quence that the product actually is the least upper bound operation for parallel
Weihrauch degrees3.

Proposition 3 (Least upper bound). Let f and g be multi-valued functions
on represented spaces. Then f×g is the least upper bound of f and g with respect
to parallel Weihrauch reducibility ≤

Ŵ
.

3 Independently, Arno Pauly [12] has recently proved that another operation on func-
tions that takes direct sums on the input and output side yields a supremum even
in the non-parallelized case. He has also proved that the corresponding upper semi-
lattice is distributive.
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The parallelized Weihrauch degrees together with their partial order even
form a lattice with the product as least upper bound operation. By Ŵ we denote
the set of parallel Weihrauch degrees, which is defined as W but using parallel
Weihrauch reducibility. As a corollary of our results we obtain that the parallel
Weihrauch degrees of multi-valued functions form a lattice.

Theorem 2 (Parallel Weihrauch degrees). The space (Ŵ,≤
Ŵ

) of parallel
Weihrauch degrees is a lattice with least element 1 and greatest element 0, with
⊕ as the greatest lower bound operation and with × as the least upper bound
operation. In particular, (Ŵ,⊕) and (Ŵ,×) are idempotent monoids with neutral
elements 0 and 1, respectively.

3 Embedding of Turing degrees and Medvedev degrees

Now we mention that the Medvedev lattice can be embedded into the Weihrauch
lattice such that least upper bounds and greatest lower bounds are preserved.
This embedding only requires total and continuous multi-valued operations on
Baire space. As a consequence, we obtain that Turing degrees can be embedded
such that least upper bounds are preserved and this embedding only requires
total and continuous single-valued functions on Baire space.

We recall that a set A ⊆ NN is said to be Medvedev reducible to B ⊆ NN, in
symbols A ≤M B, if there exists a computable F :⊆ NN → NN with B ⊆ dom(F )
and F (B) ⊆ A. In fact, Turing reducibility is a special case, since p ∈ NN is said
to be Turing reducible to q ∈ NN, in symbols p≤T q, if {p} ≤M {q} (see [14]).

Now we associate to any q ∈ NN the constant function cq : NN → NN, p 7→ q
for all p ∈ NN. In the next step we associate a multi-valued function to any
non-empty A ⊆ NN by cA : NN ⇒ NN, p 7→ A for all p ∈ NN. Then cA has
a computable realizer if and only if A contains a computable member. To the
empty set ∅ ⊆ NN we associate c∅ := 0, the special “multi-valued function”
without realizer. We note that the function cA is parallelizable, i.e. cA≡W ĉA.
Our main result of this section is now the following theorem.

Theorem 3 (Embedding of Medvedev degrees). Let A,B ⊆ NN. Then
A≤M B ⇐⇒ cA≤W cB.

It is clear that a corresponding embedding of Turing degrees follows, i.e.
p≤T q ⇐⇒ cp≤W cq. Now we want to show that our embedding of the
Medvedev lattice preserves also greatest lower and least upper bounds. For sets
A,B ⊆ NN one usually defines A ⊕ B := {〈p, q〉 : p ∈ A and q ∈ B} and
A ⊗ B := 0A ∪ 1B. The reader should note that product and sum are just
swapped compared to the way we use these operations. Now one can easily show
the following result.

Proposition 4. Let A,B ⊆ NN. Then cA⊕B ≡sW cA×cB and cA⊗B ≡sW cA⊕cB.

We mention that this result implies that our embedding of the Medvedev
lattice preserves least upper bounds and greatest lower bounds.
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Corollary 1 (Embedding of the Medvedev lattice). The Medvedev lattice
is embeddable into the parallel Weihrauch lattice (restricted to total and con-
tinuous multi-valued functions on Baire space and 0) with an embedding that
preserves least upper bounds and greatest lower bounds.

We also formulate the analogous result for Turing degrees.

Corollary 2 (Embedding of the Turing upper semi-lattice). The upper
semi-lattice of Turing degrees is embeddable into the parallel Weihrauch lattice
(restricted to total and continuous single-valued functions on Baire space) with
an embedding that preserves least upper bounds.

Using these results some structural properties of the parallel Weihrauch lat-
tice can be transferred from the Turing uppers semi-lattice and the Medvedev
lattice. This observation also gives raise to plenty of further research questions.

4 Omniscience principles

In this section we study the the limited principle of omniscience LPO and
the lesser limited principle of omniscience LLPO in the upper semi-lattice of
Weihrauch reducibility. Such a study has also already been initiated by Weihrauch
[5]. The principles themselves have originally been introduced by Brouwer and
Bishop in constructive mathematics [15, 16]. Roughly speaking, LPO corresponds
to the law of the excluded middle (A ∨ ¬A) and LLPO to de Morgan’s law
¬(A ∧ B) ⇐⇒ (¬A ∨ ¬B), both restricted to simple existential statements.
More precisely, they are stated as follows:

Definition 4 (Omniscience principles). We define:

– LPO : NN → N, LPO(p) =

{
0 if (∃n ∈ N) p(n) = 0
1 otherwise

,

– LLPO :⊆ NN ⇒ N, LLPO(p) 3
{

0 if (∀n ∈ N) p(2n) = 0
1 if (∀n ∈ N) p(2n+ 1) = 0

,

where dom(LLPO) := {p ∈ NN : p(k) 6= 0 for at most one k}.

One should notice that the definition of LLPO implies that LLPO(0N) =
{0, 1}. The two principles LPO and LLPO have already been studied in com-
putable analysis [4–7]. For instance, it is well-known that LPO is reducible to
any other discontinuous single-valued function on Baire space (see Lemma 8.2.6
in [13]).

Proposition 5. Let F :⊆ NN → NN be discontinuous. Then we obtain LPO≤sW F ,
relatively to some oracle.

While LPO is the “simplest” single-valued discontinuous function, its par-

allelization L̂PO is at the other end of the spectrum, it is complete among all
Σ0

2–measurable functions with respect to the Borel hierarchy.
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Similarly, as L̂PO is complete for the class of limit computable operations,

we will show that L̂LPO is also complete for a very natural class of operations

that we will call weakly computable. For technical simplicity by L̂LPO we actually
mean

L̂LPO〈p0, p1, ...〉(k) 3
{

0 if (∀n) pk(2n) = 0
1 if (∀n) pk(2n+ 1) = 0

One benefit of this understanding of L̂LPO is that it is composable with itself

and the next observation is that the composition of L̂LPO with itself is strongly
below itself. Roughly speaking this is because LLPO is defined only in terms of
universal quantifiers and two consecutive universal quantifiers can be absorbed
in one.

Lemma 1. L̂LPO ◦ L̂LPO≤sW L̂LPO.

Using the NAND operation and Kleene’s ternary logic we can show another

interesting property of L̂LPO, namely that it has some quasi-continuity property
although it is discontinuous and we will exploit this property for our main result
in this section. This result can also be interpreted as a completeness result for
parallelized LLPO.

Theorem 4 (Completeness of parallelized LLPO). For any computable func-
tion F :⊆ {0, 1}N → {0, 1}N there exists a computable function G :⊆ {0, 1}N →
{0, 1}N such that F ◦ L̂LPO = L̂LPO ◦G.

If we combine the results showed so far, then we obtain that the multi-

valued operations below L̂LPO are closed under composition. This has first been
observed in [1], where it was expressed in terms of Weak Kőnig’s Lemma (see
also Corollary 3).

Proposition 6 (Composition). Let f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z be multi-
valued operations on represented spaces. Then

f ≤W L̂LPO and g≤W L̂LPO =⇒ g ◦ f ≤W L̂LPO.

The same holds true with respect to some oracle (i.e. we can replace Weihrauch
reducibility by its continuous counterpart in all occurrences here).

We believe that this result justifies to give a new name to the operations

below L̂LPO.

Definition 5 (Weakly computable). A function f :⊆ X ⇒ Y on represented

spaces X,Y is called weakly computable, if f ≤W L̂LPO. Similarly, such a function

is called weakly continuous, if f ≤W L̂LPO holds with respect to some oracle.

One main goal of this section is to show the following theorem on the om-
niscience principles. This theorem completely characterizes the relation of the
omniscience principles and their parallelizations with respect to Weihrauch re-
ducibility.
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Theorem 5 (Omniscience principles). LLPO<W LPO |W L̂LPO<W L̂PO. All
negative results also hold true with respect to some arbitrary oracle.

Note that the proof even shows the strong reduction LLPO≤sW LPO. A dif-
ferent direct proof of LPO 6≤W LLPO is presented in Theorem 4.2 in [5].

Since any discontinuous single-valued function is already above LPO, it is

clear that no such single-valued function can be below L̂LPO. In other words, the
parallel Weihrauch degree of LLPO has no single-valued member. In particular,
this means that multi-valuedness does not appear accidentally in our theory,
but in some sense it is unavoidable. Indeed we will show in Corollary 4 that any
single-valued weakly computable function is already computable in the ordinary
sense.

This has surprising algorithmic consequences. Any “algorithm” that uses
weakly computable operations such as x ≤ 0 or x ≥ 0 leads to a computable
result, as long as the result is uniquely determined, i.e. single-valued. And this is
so, although these operations are typically discontinuous and non-computable.

5 Compact choice and Weak Kőnig’s Lemma

In this section we will show that the parallel version of LLPO is equivalent to
Weak Kőnig’s Lemma. We first formalize Weak Kőnig’s Lemma for this purpose.
We recall that a binary tree is a subset T ⊆ {0, 1}∗ that is closed under the prefix
relation, i.e. if w ∈ T and v v w, then v ∈ T . We use some standard bijective
enumeration (wn)n∈N of all the binary words. By Tr we denote the set of all
binary trees and we use a representation δTr of Tr that is defined by

δTr(p) = T :⇐⇒ χT (wn) = p(n),

where χT : {0, 1}∗ → {0, 1} denotes the characteristic function of the binary
tree T . The classical statement of Kőnig’s Lemma is that any infinite binary
tree has an infinite path. An infinite path of T is a sequence p ∈ {0, 1}N, such
that p[n] ∈ T for all n ∈ N. Here p[n] = p(0)...p(n−1) is the prefix of p of length
n. By [T ] the set of infinite paths of T is denoted. Now we can formalize Weak
Kőnig’s Lemma as follows.

Definition 6 (Weak Kőnig’s Lemma). We define a multi-valued operation
WKL :⊆ Tr ⇒ {0, 1}N, T 7→ [T ] with dom(WKL) = {T ⊆ {0, 1}∗ : T is an infinite
binary tree}.

Weak Kőnig’s Lemma has already been studied in this form in [1]. Our main
result here is that the parallel version of LLPO is strongly equivalent to Weak
Kőnig’s Lemma. For the proof we use Weak Kőnig’s Lemma itself.

Theorem 6 (Weak Kőnig’s Lemma). WKL≡sW L̂LPO.

In [1] it has been proved that the Hahn-Banach Theorem HBT has the same

Weihrauch degree as WKL and hence the same Weihrauch degree as L̂LPO. We
formulate this as a corollary without exactly specifying HBT (the reader is re-
ferred to [1] for details).
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Corollary 3. HBT≡W WKL≡W L̂LPO.

Another equivalence that has been proved in [1] is that all the aforemen-
tioned theorems are equivalent to compact choice in rich spaces. We will use this
observation and we adapt the formulation to our context.

Definition 7 (Compact choice). Let X be a computable metric space. The
multi-valued operation CK(X) :⊆ K−(X) ⇒ X,A 7→ A with dom(CK(X)) :=
{A ⊆ X : A 6= ∅} is called compact choice of X.

Here K−(X) denotes the set of compact subsets of X, which is equipped
with the negative information representation κ− (here a name of a compact set
K is a list of all finite open rational covers of K, see [17] for details). In some
sense, WKL is compact choice for the Cantor space {0, 1}N and, in fact, in [1]
it has been proved that compact choice for a large class of computable metric
space is equivalent to CK({0,1}N)≡W WKL. Using this result we mention a slightly
different result here adapted to our operations.

Theorem 7 (Compact choice). Let X be a computable metric space. Then

CK(X)≤sW L̂LPO. If X is rich, i.e. if there is a computable embedding ι : {0, 1}N ↪→
X, then CK(X)≡sW L̂LPO.

The characterization of L̂LPO as compact choice allows us to derive a char-
acterization of weakly computable operations. Now we are prepared to show
the characterization of weakly computable operations. We say that a function
s :⊆ X → K−(Y ) is a selector of a function f :⊆ X ⇒ Y , if dom(s) = dom(f)
and s(x) ⊆ f(x) for all x ∈ dom(f). Continuous functions s :⊆ X → K−(Y ) are
also called upper semi-continuous.

Theorem 8 (Selection). Let X be a represented space and let Y be a com-
putable metric space. A function f :⊆ X ⇒ Y is weakly computable if and only
if f admits a computable selector s :⊆ X → K−(Y ).

It is known that for computable metric spaces (Y, δY ) the singleton operation
Y → K−(Y ), y 7→ {y} that maps a point to the corresponding singleton set is
(δY , κ−)–computable and it admits a (κ−, δY )–computable right inverse (see
for instance Lemma 6.4 in [18]). Thus we obtain the following corollary of the
Selection Theorem 8.

Corollary 4 (Weakly computability). Let X be a represented space and Y
a computable metric space. Any weakly computable single-valued operation f :⊆
X → Y is computable.

Similarly, it follows that any weakly continuous single-valued function is al-
ready continuous in the ordinary sense.
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6 Conclusions

In this paper we have studied Weihrauch reducibility of multi-valued functions
on represented spaces. Among other things, we have proved that Weihrauch de-
grees form a lower semi-lattice with the direct sum operation as greatest lower
bound operation. Moreover, we have studied parallelization as closure operator
and we have shown that the parallelized Weihrauch degrees even form a lattice
with the product as least upper bound operation. The Medvedev lattice and
the upper semi-lattice of Turing degrees can be embedded into the parallelized

Weihrauch lattice. Moreover, we have proved that the parallelized versions L̂PO

and L̂LPO of the limited principle of omniscience and the lesser limited prin-

ciple of omniscience, respectively, play a crucial role in our lattice. While L̂PO
is complete for the class of limit computable operations, we have shown that

L̂LPO can be used to define a meaningful class of weakly computable operations
that is closed under composition. Single-valued weakly computable operations
are already computable in the ordinary sense. This fact could be related to con-
servativeness properties of WKL0 in reverse mathematics [19, 20] and to known
uniqueness properties in constructive mathematics [21–24].

In a forthcoming paper [2] we discuss the classification of the Weihrauch de-
gree of many theorems from analysis, such as the Intermediate Value Theorem,
the Baire Category Theorem, the Banach Inverse Mapping Theorem and many
others. It turns out that certain choice principles are crucial cornerstones for that
classification and we believe that our classification sheds new light on the com-
putational properties of these theorems. In particular, our classification seems to
be in a well-defined sense finer than other known classifications in constructive
and reverse mathematics.
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