6,409 research outputs found

    Study on the performance indicators for smart grids: a comprehensive review

    Get PDF
    This paper presents a detailed review on performance indicators for smart grid (SG) such as voltage stability enhancement, reliability evaluation, vulnerability assessment, Supervisory Control and Data Acquisition (SCADA) and communication systems. Smart grids reliability assessment can be performed by analytically or by simulation. Analytical method utilizes the load point assessment techniques, whereas the simulation technique uses the Monte Carlo simulation (MCS) technique. The reliability index evaluations will consider the presence or absence of energy storage elements using the simulation technologies such as MCS, and the analytical methods such as systems average interruption frequency index (SAIFI), and other load point indices. This paper also presents the difference between SCADA and substation automation, and the fact that substation automation, though it uses the basic concepts of SCADA, is far more advanced in nature

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users

    Structural Vulnerability Analysis of Electric Power Distribution Grids

    Full text link
    Power grid outages cause huge economical and societal costs. Disruptions in the power distribution grid are responsible for a significant fraction of electric power unavailability to customers. The impact of extreme weather conditions, continuously increasing demand, and the over-ageing of assets in the grid, deteriorates the safety of electric power delivery in the near future. It is this dependence on electric power that necessitates further research in the power distribution grid security assessment. Thus measures to analyze the robustness characteristics and to identify vulnerabilities as they exist in the grid are of utmost importance. This research investigates exactly those concepts- the vulnerability and robustness of power distribution grids from a topological point of view, and proposes a metric to quantify them with respect to assets in a distribution grid. Real-world data is used to demonstrate the applicability of the proposed metric as a tool to assess the criticality of assets in a distribution grid

    Cyber-Physical Power System (CPPS): A Review on Modelling, Simulation, and Analysis with Cyber Security Applications

    Get PDF
    Cyber-Physical System (CPS) is a new kind of digital technology that increases its attention across academia, government, and industry sectors and covers a wide range of applications like agriculture, energy, medical, transportation, etc. The traditional power systems with physical equipment as a core element are more integrated with information and communication technology, which evolves into the Cyber-Physical Power System (CPPS). The CPPS consists of a physical system tightly integrated with cyber systems (control, computing, and communication functions) and allows the two-way flows of electricity and information for enabling smart grid technologies. Even though the digital technologies monitoring and controlling the electric power grid more efficiently and reliably, the power grid is vulnerable to cybersecurity risk and involves the complex interdependency between cyber and physical systems. Analyzing and resolving the problems in CPPS needs the modelling methods and systematic investigation of a complex interaction between cyber and physical systems. The conventional way of modelling, simulation, and analysis involves the separation of physical domain and cyber domain, which is not suitable for the modern CPPS. Therefore, an integrated framework needed to analyze the practical scenario of the unification of physical and cyber systems. A comprehensive review of different modelling, simulation, and analysis methods and different types of cyber-attacks, cybersecurity measures for modern CPPS is explored in this paper. A review of different types of cyber-attack detection and mitigation control schemes for the practical power system is presented in this paper. The status of the research in CPPS around the world and a new path for recommendations and research directions for the researchers working in the CPPS are finally presented.publishedVersio

    Comprehensive Survey and Taxonomies of False Injection Attacks in Smart Grid: Attack Models, Targets, and Impacts

    Full text link
    Smart Grid has rapidly transformed the centrally controlled power system into a massively interconnected cyber-physical system that benefits from the revolutions happening in the communications (e.g. 5G) and the growing proliferation of the Internet of Things devices (such as smart metres and intelligent electronic devices). While the convergence of a significant number of cyber-physical elements has enabled the Smart Grid to be far more efficient and competitive in addressing the growing global energy challenges, it has also introduced a large number of vulnerabilities culminating in violations of data availability, integrity, and confidentiality. Recently, false data injection (FDI) has become one of the most critical cyberattacks, and appears to be a focal point of interest for both research and industry. To this end, this paper presents a comprehensive review in the recent advances of the FDI attacks, with particular emphasis on 1) adversarial models, 2) attack targets, and 3) impacts in the Smart Grid infrastructure. This review paper aims to provide a thorough understanding of the incumbent threats affecting the entire spectrum of the Smart Grid. Related literature are analysed and compared in terms of their theoretical and practical implications to the Smart Grid cybersecurity. In conclusion, a range of technical limitations of existing false data attack research is identified, and a number of future research directions is recommended.Comment: Double-column of 24 pages, prepared based on IEEE Transaction articl

    Intelligent Novel Methods for Identifying Critical Components and Their Combinations for Hypothesized Cyber-physical Attacks Against Electric Power Grids

    Get PDF
    As a revolutionary change to the traditional power grid, the smart grid is expected to introduce a myriad of noteworthy benefits by integrating the advanced information and communication technologies in terms of system costs, reliability, environmental impacts, operational flexibility, etc. However, the wider deployment of cyber networks in the power grid will bring about important issues on power system cyber security. Meanwhile, the power grid is becoming more vulnerable to various physical attacks due to vandalism and probable terrorist attacks. In an envisioned smart grid environment, attackers have more entry points to various parts of the power grid for launching a well-planned and highly destructive attack in a coordinated manner. Thus, it is important to address the smart grid cyber-physical security issues in order to strengthen the robustness and resiliency of the smart grid in the face of various adverse events. One key step of this research topic is to efficiently identify the vulnerable parts of the smart grid. In this thesis, from the perspective of smart grid cyber-physical security, three critical component combination identification methods are proposed to reveal the potential vulnerability of the smart grid. First, two performance indices based critical component combination recognition methods are proposed for more effectively identifying the critical component combinations in the multi-component attack scenarios. The optimal selection of critical components is determined according to the criticality of the components, which can be modeled by various performance indices. Further, the space-pruning based enumerative search strategy is investigated to comprehensively and effectively identify critical combinations of multiple same or different types of components. The pruned search space is generated based on the criticality of potential target component which is obtained from low-order enumeration data. Specifically, the combinatorial line-generator attack strategy is investigated by exploring the strategy for attacking multiple different types of components. Finally, an effective, novel approach is proposed for identifying critical component combinations, which is termed search space conversion and reduction strategy based intelligent search method (SCRIS). The conversion and reduction of the search space is achieved based on the criticality of the components which is obtained from an efficient sampling method. The classic intelligent search algorithm, Particle Swarm Optimization (PSO), is improved and deployed for more effectively identifying critical component combinations. MATLAB is used as the simulation platform in this study. The IEEE 30, 39, 118 and Polish 2383-bus systems are adopted for verifying the effectiveness of the proposed attack strategies. According to the simulation results, the proposed attack strategies turn out to be effective and computationally efficient. This thesis can provide some useful insight into vulnerability identification in a smart grid environment, and defensive strategies can be developed in view of this work to prevent malicious coordinated multi-component attacks which may initiate cascading failures in a cyber-physical environment
    • …
    corecore