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ABSTRACT 
INTELLIGENT NOVEL METHODS FOR IDENTIFYING CRITICAL COMPONENTS 

AND THEIR COMBINATIONS FOR HYPOTHESIZED CYBER-PHYSICAL 
ATTACKS AGAINST ELECTRIC POWER GRIDS 

 

by 

  Ming Wang 

 

The University of Wisconsin-Milwaukee, 2015 
Under the Supervision of Dr. Lingfeng Wang  

 

As a revolutionary change to the traditional power grid, the smart grid is expected to 

introduce a myriad of noteworthy benefits by integrating the advanced information and 

communication technologies in terms of system costs, reliability, environmental impacts, 

operational flexibility, etc. However, the wider deployment of cyber networks in the 

power grid will bring about important issues on power system cyber security. Meanwhile, 

the power grid is becoming more vulnerable to various physical attacks due to vandalism 

and probable terrorist attacks. In an envisioned smart grid environment, attackers have 

more entry points to various parts of the power grid for launching a well-planned and 

highly destructive attack in a coordinated manner. Thus, it is important to address the 

smart grid cyber-physical security issues in order to strengthen the robustness and 

resiliency of the smart grid in the face of various adverse events. One key step of this 

research topic is to efficiently identify the vulnerable parts of the smart grid. 

In this thesis, from the perspective of smart grid cyber-physical security, three critical 

component combination identification methods are proposed to reveal the potential 

vulnerability of the smart grid. First, two performance indices based critical component 
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combination recognition methods are proposed for more effectively identifying the 

critical component combinations in the multi-component attack scenarios. The optimal 

selection of critical components is determined according to the criticality of the 

components, which can be modeled by various performance indices. Further, the space-

pruning based enumerative search strategy is investigated to comprehensively and 

effectively identify critical combinations of multiple same or different types 

of components. The pruned search space is generated based on the criticality of potential 

target component which is obtained from low-order enumeration data. Specifically, the 

combinatorial line-generator attack strategy is investigated by exploring the strategy for 

attacking multiple different types of components. Finally, an effective, novel approach is 

proposed for identifying critical component combinations, which is termed search space 

conversion and reduction strategy based intelligent search method (SCRIS). The 

conversion and reduction of the search space is achieved based on the criticality of the 

components which is obtained from an efficient sampling method. The classic intelligent 

search algorithm, Particle Swarm Optimization (PSO), is improved and deployed for 

more effectively identifying critical component combinations. 

MATLAB is used as the simulation platform in this study. The IEEE 30, 39, 118 and 

Polish 2383-bus systems are adopted for verifying the effectiveness of the proposed 

attack strategies. According to the simulation results, the proposed attack strategies turn 

out to be effective and computationally efficient. This thesis can provide some useful 

insight into vulnerability identification in a smart grid environment, and defensive 

strategies can be developed in view of this work to prevent malicious coordinated multi-

component attacks which may initiate cascading failures in a cyber-physical environment. 
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  Introduction 

1.1 Research Background  

Power grids play an increasingly important role with the rapid development of modern 

society. After decades of evolution, the highly interconnected, complex power 

systems have been built in most countries. The smart grid is an overview of the next 

generation of power system, which is characterized by the broader use of communication 

and information technologies in power generation, transmission, distribution, and 

consumption. After entering the 21st century, with the rapid development of electronic 

technologies, the latest cyber and communication equipment and devices are being more 

widely integrated into the conventional power system to build the smart grid. Even 

though the smart grid is expected to be more economical, efficient, environmentally 

friendly as compared with the traditional power grid, new cybersecurity issues along with 

the physical vulnerabilities are bringing new kinds of risks to the power grid nowadays.  

Usually, to ensure the power supply reliability of the power grid, the N-1 or even N-1-1, 

N-2 criterion is applied. For a power grid which is in compliance with the N-1 criterion, if 

one component fails, in general no further losses could be caused. If multiple components 

are compromised, the power grid is exposed to danger of cascading failures. Despite the 

fact that many preventive measures have been enforced, large-scale power outages occur 

at times. There are different causes which could result in cascading failures, such as 

defects of power system control software, overloading of transmission lines, failures of 

critical components, natural calamities and man-made sabotages, and so on. For example, 

in 2003, the well-known Northeast blackout which was partially due to a software bug in 
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the alarm system and has resulted in billions of economic losses and affected 55 million 

people [1].  In 2005 in China, the whole Hainan province suffered a blackout due to the 

powerful typhoon “DAMREY” [2]. In 2012, the India blackout which affected 6.7 billion 

people was caused by the high load demand and the failure of an EHV substation [3]. On 

February 25th, 2015, 80% citizens in Pakistan suffered a blackout caused by the loss of 

one key transmission line as the result of a militant attack [4]. Of all the reasons that can 

cause cascading failures, man-made sabotages are attracting more and more attention 

since the terrorist threat to the power grid has been escalating. For the traditional power 

grid, physical attack is the only feasible way for attackers to disrupt the power grid, 

however it is difficult to attack multiple parts of the power system at the same time. But 

in cyber attacks, attackers could be able to compromise multiple components 

simultaneously through executing elaborate attack plans. Also, the combination of cyber 

attacks and physical attacks is also a potential threat to the grid, which may cause even 

more severe disruptions. These attacks may lead to an interruption of local or regional 

area power supply; in serious cases, cascading failures could be caused. Here, some 

representative attack-related cases are discussed.  

Several cascading failures caused by physical attacks have been reported. For example, in 

April 2013 in California, a Silicon Valley power substation which supplies electric power 

to thousands of customers was destroyed by a meticulously planned attack, and it took 

the utility company almost one month to repair and restore it.  This incident served as a 

warning sign to the power companies and regulators. As a result, new guidelines for 

physical security are being implemented at the request of the FERC, including identifying 

vulnerable critical components and implementing security enhancement plans [5]. 
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During the past years, a number of cyber-related accidents have occurred in different 

power systems, which have raised concerns for the cybersecurity of the power grid in a 

smart grid environment.  

For example, a devastating virus named “Stuxnet” was first discovered in June 2010. It 

was developed to interfere with the normal operation of the Siemens industrial software 

which is deemed a severe potential threat to the proper operation of the power grid [6].  

As concluded by the Repository for Industrial Security Incidents (RISI)’s 2011 annual 

report, about 35 percent of the industrial control system (ICS) safety incidents were 

triggered remotely via the cyber network [7], [8]. Since the ICS and SCADA systems 

play a key role in ensuring the normal operation of the smart grid, more attention should 

be paid to the emerging cybersecurity issues.  

On November 4, 2006, more than 15 million people in Europe suffered a blackout which 

was primarily caused by human errors. Deficient communication systems played an 

important role in initiate and propagate this severe accident [9]. Thus, there is also 

personnel vulnerability in operating the power grid. 

Considering all these potential threats to the power system, in order to strengthen the 

power grid to resist or sustain such risks, one possible way is to study the mechanism of 

cascading failures and to identify the weak links of the power grid in order to protect and 

harden it. An effective way to study the cyber-physical-personnel vulnerability of the 

power grid is to investigate the probable attack methods against the power grid. In this 
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thesis, the term “attacks” refers to all potential cyber, physical or hybrid cyber-physical 

attacks in the contemporary power grids. Corresponding defensive schemes could be 

stipulated accordingly based on the outcomes from this study. For instance, the real-time 

statuses of critical transmission lines could be continuously monitored by the advanced 

smart grid equipment, and important power stations and substations should be regularly 

inspected by adequate field personnel.  

Some attack strategies against power grids have been proposed in the existing literature. 

For example, in [10], a flow betweenness based attack strategy against power grid was 

proposed. A new critical line identification method is proposed according to the fault 

chain theory in [11]. In [12], critical line identification methods are proposed based on 

the complex network theory. In [13], a new method for identifying the most critical 

substation in the power grid is proposed. In [14], joint line-substation attack model is 

investigated and a component interdependency graph based attack strategy is proposed.  

In recent years, the cyber-physical security issue of smart grid also has attracted much 

attention. In [15], vulnerability detection and defensive strategies are proposed for the 

cyber security of smart grid.  A novel power control system communication network 

security assessment method is proposed in [16]. In [17], a cyber-physical vulnerability 

assessment framework is proposed for the security state evaluation in a smart grid 

environment. In [18], a cyber-physical security evaluation approach is introduced for the 

purpose of assessing potential cyber-physical contingencies. In [19], a communication 

protection system is developed to enhance the reliability of smart grid. 
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In order to effectively investigate the power system security issues, a powerful cascading 

failure simulation tool is much needed. For a long time, modeling the cascading 

outages in power systems was a demanding task. In section 1.2, the development trend of 

cascading failure models as well as the deployed cascading failure simulation platform 

are discussed in detail.  

1.2 Cascading Failures in the Power Grid  

The power system is one of the most complex man-made networks. A typical power 

system mainly consists of generation, transmission and distribution parts. Electric power 

flows from generators to distribution substations through transmission lines. Represented 

by graph theory, substations can be denoted by nodes and transmission lines can be 

denoted by links [20]. In the present cascading failure simulation platforms, cascading 

failures usually occur due to the massive power flow shift especially in a high-voltage 

power grid. In the current cascading failure simulation model, the developmental process 

of cascading failures can be described in the following ways: The fault threshold of each 

transmission line in the power grid is determined by its physical properties. Kirchhoff's 

law states that if one component fails in the power grid, the load of this component will 

be transferred to its nearby components. In general no further damage would be caused 

since most modern power grids meet the N-1 contingency criterion. However, if two or 

more components are tripped, the power flow carried by these components will be 

transferred to nearby components. If the nearby lines are pushed beyond their line ratings, 

these lines will be tripped as well, and more lines would be pushed into an overload 

condition. In this way, cascading failures may propagate in the power grid. The cascading 

failure will stop if all the transmission lines are tripped or no line is overloaded. In the 



6 
 

 
 

worst condition, the entire power grid will collapse due to the cascading failure. 

So far, several power system cascading failure models have been proposed to investigate 

the mechanism of cascading failures, some of the representative models are the OPA 

model [21], the improved OPA model [22], the hidden failure model [23], and so on. 

Some representative cascading failure simulation platforms are summarized and their 

modeling features are listed in Table 1-1 [24]. These platforms are able to simulate the 

development of cascading failures to some degree. Each platform has its own 

characteristics, for example, the OPA model is able to reveal the influence of slow 

dynamics due to the upgrade of the power grid [25], and the hidden failure model can be 

used to simulate the hidden failures of relay protection systems in the power grid [26]. 

The TRELSS cascading model has been adopted by the industry to deal with cascading 

failures because it contains detailed built-in modules for studying AC power flow, 

voltage collapse, approximate protection functions, and operator actions [27]. 

Table 1-1 Major features of different simulation platforms 

               Platform
Function 

CFS MATCASC Manchester OPA
Hidden 
Failure

TRELSS CMU PSA

Overload √ √ √ √ √ √ √ √ 
Islanding √ √ √ √  √ √  

Under frequency 
load shed  

  √   √   

Generator 
redispatch 

√  √ √ √ √ √ √ 

Generator trip √     √   
Operator response   √   √  √ 

Blackout time 
intervals and repair

       √ 

AC network   √  √ √ √  
Voltage collapse   √   √   
Protection Group      √   
Transient stability   √      

Hidden failure     √    
Load increase and 

grid upgrade 
   √     
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In this study, all the cascading failure simulations are modeled and conducted using a 

MATLAB based cascading failure simulator (CFS) [28], which is an open source 

software tool. The main feature of this cascading failure simulation tool is that every 

stage of the cascading failure can be simulated and the loss caused by the cascading 

failure can be evaluated. The improved architecture of the CFS is shown in Figure 1-1. 

This software is mainly composed of four parts [28]:  

1) Performing power flow calculation based on DC power flow calculation model 

and obtaining power flow of each transmission line; 

2) Selecting the target components based on the proposed multiple component attack 

model; 

3) Running the main program of cascading failure simulation and  

4) Assessing the damage caused by cascading failures after cascading failures 

subside in the power grid. 

For multi-component attacks, at the beginning of the cascading failure simulation, target 

components will be disconnected from the original power grid and the updated power 

grid will be formed, then the DC power flow will be conducted for the updated power 

grid to obtain the power flow of each transmission line. The power grid will be inspected 

to see if there are any islands generated at each step of the cascading failure simulation 

process once the transmission lines are tripped from the grid. In certain instances, new 

islands will be generated because the transmission lines which connect the main power 

grid and the islands are disconnected. When the new islands are detected, generators and 

loads will be dispatched accordingly [28]:  
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1) Initially, the generators in each island will be ramped up or down trying to meet 

the load demand. The effect of the dispatch scheme is limited by the capacity of the 

generating units, the ramp rate and ramp time. 

2) Secondly, after the dispatching process in each island is finished, if the capacity 

of generators are still greater than the demand of loads, generators will be tripped in the 

following order: the smallest generator will be tripped first until the generated power is 

less than the load demand in the island, then the loads of each load substation will be 

shed. The curtailed load amount of each load substation is calculated as follows: 

                                                 1

1

(1 )
k

j j

j

m
i

g
i i k

d d n
i

d
j

P
P P

P





  



                                             (2.1) 

where ∆  is the curtailed load of the  load bus in  island,  is the capacity of the 

 generator and   is the load demand of the  load bus in the  island, m is the 

number of generators and n is the number of substations in the  island.  

3) Thirdly, after reaching the supply-demand balance in each subgrid, the DC load 

flow calculation will be executed to obtain the power flow and each transmission line will 

be checked to see if it is overloaded. 
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Figure 1-1 Flow chart of the cascading failure simulator (CFS) 

In the cascading failure simulator, overloaded transmission lines are tripped by time 

delay overcurrent relay. The time delay overcurrent relay considers various factors which 

could lead to transmission line failures such as overheating of lines and human errors [28].   

It is assumed that the power flow of line i is  and the power flow limit of line i is . 

During the cascading failure simulation, the transmission line will be tripped as soon as 

the accumulated heat exceeds the threshold value . In the simulator, the value of  is 

set to allow the transmission line to continue to run for 5 seconds in the case of 

overloading 50%. When line i is overloaded, the tolerable overloading time is calculated 

as follows [29]:  

                                               	∆
		 	

0										
                                               (2.2) 
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Once a transmission line is tripped, the power grid will be updated to see if there are any 

new islands or overloaded transmission lines until the end of the cascading failure.  

After the cascading failure subsides in each island, the consequences of cascading failure 

will be assessed. Here the index “load loss percentage ( )” is adopted. The definition of 

  is shown as follows [30]: 

                                                             0

0

d d
L

d

P P
P

P


                                                     (2.3) 

where   is the sum of initial load demand and  is the quantity of the survived load 

demand. The bigger the load loss percentage is, the more serious the consequences 

caused by the cascading failure are. 

In this thesis, some assumptions are made and several definitions are given. The 

components in the target collections are considered to be tripped from the power grid 

simultaneously. If an attack scheme can make   exceed an expected value, such an 

attack scheme will be considered as an effective scheme, and the corresponding 

component combination is regarded as a critical component combination. The expected 

value is decided by the expectation of the attackers. For instance, if the attackers want to 

cause the size of a black out as much as 50%, then the attack schemes which can cause  

higher than 0.5 will be seen as effective scenarios.   

1.3 Research Objective and Thesis Layout 

The main goal of this thesis is to develop intelligent novel methods for identifying critical 

components and their combinations to enhance the security and reliability of smart grid. 
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Throughout this thesis we will examine cascading failures caused by critical 

combinations of multiple same types and different types of component outages initiated 

by either potential cyber, physical or hybrid cyber-physical attacks in the contemporary 

power grids.                                                               

In this thesis, three critical component combination identification methods are proposed. 

In chapter 2, two performance index based critical component combination identification 

methods are proposed. In chapter 3, the space-pruning enumerative search strategy is 

investigated to comprehensively and effectively identify critical combinations 

of multiple same types and different types of components. Further, a more effective 

approach, search space conversion and reduction strategy based intelligent search method, 

is introduced in chapter 4. The conclusion are presented and the future work are 

prospected in chapter 5. 
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  Critical Component Combination Identification 

Methods based on Performance Index  

2.1 Introduction  

In modern power systems, the N-1 criterion is a basic requirement, which means it is not 

possible to cause cascading failures if a single component is compromised. However, due 

to the openness and complexity of the envisioned smart grid, it is possible for intelligent 

attackers to carry out well-coordinated cyber, physical, or cyber-physical attacks to 

initiate cascading failures in order to cause large-scale blackouts. For most attackers, they 

usually have limited attack resources; it is natural for them to select the weakest parts in a 

power grid as targets in order to achieve the most damaging outcomes with the minimum 

cost.   

From an attacker's perspective, an intuitive way is to select targets based on the criticality 

of individual components. The central idea of this strategy is to sort the components 

according to the performance index, then the components with the greatest criticality is 

chosen as the targets. Several critical component identification methods have been 

proposed, in [31] a critical node identification method based on the centrality approach is 

proposed.  In [32], a flow transferring index based critical line identification method is 

suggested.  

This chapter investigates the risk of cascading outages caused by simultaneous multi-
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component attacks. At this stage, for each attack only combinations of multiple same type 

of components will be considered, like multiple line attacks, multiple substation attacks, 

etc. Critical component combination identification methods based on performance index 

will be proposed.  

The remainder of this chapter is organized in the following way. The proposed multi- 

component attack strategies are presented in section 2.2. Case studies and results are 

presented in section 2.3. The summary of this chapter is given in section 2.4. 

2.2 Multi-Component Attack Strategies 

When allowing for man-made attacks against power grids, if the attackers only have 

limited resources to destroy at most N components, it is nature for them to try to find out 

the N most critical components based on certain strategies and then damage them to cause 

as much loss as possible. To strengthen the power grid protection, these identified critical 

components should be well protected. Therefore, it is urgent to develop an effective 

identification method to find critical components. In this section, two critical component 

combination recognition methods, namely static strategy and dynamic strategy, are 

presented. These strategies are described in detail below.  

2.2.1 Static Strategy 

The flow chart of the static strategy is given in Figure 2-1. In general, there are four steps 

to identify the top N critical components using static strategy. First, a criticality index 

should be determined. Second, the criticality index of each component should be 

calculated based on the selected criticality index. Next, all the components are assumed 
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to be ranked in descending order given by the values of criticality index. Finally, the top 

N components of the sorted component sequences are chosen as the N most critical 

components.  

 

Figure 2-1 Flow chart of the static strategy 

The criticality index plays an important role when adopting the static strategy. Thus far, 

many criticality indexes have been proposed, like the edge betweenness centrality [33], 

the flow betweenness [10], electrical node significance [34], [35], line outage distribution 

factors [36], and so on. In this study, two criticality indexes, namely the edge 

betweenness centrality and electrical node significance are implemented.  

The edge betweenness centrality is able to find out the greatest central links in an 

undirected graph. Regarding the topology of the power grid as an undirected graph, a 

transmission line can be represented by an edge and a substation can be represented by a 

node, then the edge betweenness centrality  of line l can be described as [37]:  
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where  is the number of the shortest routes between node i and node j, and  

denotes the total sum of the shortest routes roving through line l ,  is the total number 

of transmission lines.   

The function of electrical node significance index is identifying the node with the largest 

power flows. In a power grid, the electrical node significance  of node j is defined as 

follows [38]:  
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N N

j
j
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E i

P





                                                      (2.5) 

where 	 is the total amount of power flow transferred through node , and N is the sum 

of nodes in the power system. To find out the critical nodes based on the index of 

electrical node significance, the nodes with the greatest electrical node significance will 

be selected. 

To find out critical lines based on the index of electrical node significance, the node with 

the maximum electrical node significance will be selected first, then the transmission line 

with the highest load rate will be chosen as the critical line. Power flow is taken into 

consideration in this method, and the line criticality evaluation is built based on the 

electrical node significance of each node. 

2.2.2  Dynamic Strategy 

The flow chart of the dynamic strategy is given in Figure 2-2 and N iterations of selection 

processes are needed to identify N critical components. Firstly, a criticality index should 
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be determined. In the first iteration, components are rated based on the selected criticality 

index, then the first target is the component with the greatest criticality index value. The 

topology of the power grid will be updated considering the first critical component has 

been removed. Then, in the updated grid, the components will be ranked according to the 

criticality index and the component with the greatest index value will be selected as the 

second critical component. The process will be repeated for N times to get all the N 

critical components.  

 

Figure 2-2 Flow chart of the dynamic strategy 

2.3 Simulations and Results  

The IEEE 30-bus test system, IEEE 39-bus test system and IEEE 118-bus test system are 

adopted here for the cascading failure simulations. The IEEE 30-bus test system is a 
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simple approximate representation of the American power grid [39]. In this test system, 

there are 30 substations, 44 transmission lines and 6 generators. The IEEE 39-bus test 

system is the simplification of the well-known New-England area power grid [39]. This 

system includes 39 bus stations, 47 transmission lines and 10 generators. The IEEE 118-

bus test system represents part of the US Midwestern power grid [39]. This system 

contains 118 substations, 54 generators and 186 transmission lines. In the preliminary test, 

the data of IEEE 39 and 118-bus test system obtained from MATPOWER are found to be 

inconsistent with the N-1 criterion, so the capacity limits of several transmission lines are 

enhanced to comply with the N-1 criterion in these systems. Table 2-1 shows the number 

of components in each system, where  is the number of transmission lines,  is the 

number of substations,  is the number of load buses, and  is the number of 

generators. 

Table 2-1 The number of components in the adopted test system 

Test system    

IEEE 30- bus system 30 44 20 6 
IEEE 39-bus system 39 47 21 10 

IEEE 118- bus system 118 186 99 54 

The load rate of a power system has a measurable impact on the process of cascading 

failures. Here, the load rate is taken into consideration in the simulation, and the load 

demand changes can be calculated as: 

  ∗                                              (2.6) 

where  is the actual load demand level,  is the standard load demand level obtained 

from [39], and 	represents the load level of each simulation. 
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The performance of the proposed multi-component attack strategies is discussed in the 

following. The attacked components can be identified by the proposed two critical 

component identification methods. Transmission lines are chosen as the target component 

based on the following considerations. A modern power grid is composed of a large 

number of transmission lines, generators and substations. Typically, large-capacity 

generators and critical substations are relatively more heavily protected according to the 

safety and security measures. For transmission lines, their spanning length ranges from 

dozens of miles to hundreds of miles, and most part of the transmission lines is exposed 

to the wild environment, which makes it unrealistic to protect each portion of the 

transmission line. However, if one portion of a transmission line is disconnected, the line 

will lose its function immediately. Therefore, transmission lines are easy targets for 

attackers especially for physical attackers. The proposed multi-component attack 

strategies also apply to other power system components such as substations and 

generators. 

The simulations are conducted based on the cascading failure simulator (CFS). At the 

beginning of the simulation, to identify the initial tripped transmission lines, static 

strategy and dynamic strategy are used; meanwhile, the edge betweenness centrality and 

electrical node significance are adopted as the indices of line criticality.  
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Figure 2-3 Comparison of static strategy and dynamic strategy in IEEE 30-bus system 

 

Figure 2-4 Comparison of static strategy and dynamic strategy in IEEE 118-bus system  

Figure 2-3 and Figure 2-4 show the comparison of the results of static strategy and 

dynamic strategy, respectively; and the effectiveness of random attack is also shown here 

as a reference. Here, “Random-6” represents attacking six stochastically generated lines. 
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As can be seen from the figures, when the number of attacked lines and the line criticality 

index are the same, the consequences caused by the dynamic strategy is more serious 

than the static strategy, while both of them have led to more severe consequences than the 

random attack strategy. 

2.4 Conclusions and Future Work 

In this chapter, the cascading failures initiated by multi-component attacks are studied 

from the perspective of power system security. Static strategy and dynamic strategy are 

examined, and two criticality indices including the edge betweenness centrality and 

electrical node significance are adopted. Simulations are carried out based on the IEEE 

30-bus test system, IEEE 39-bus test system and IEEE 118-bus test system, and the 

effectiveness of the proposed strategies is studied and compared.  

This work may provide a new horizon for the prevention and mitigation of cascading 

failures caused by multi-component attacks. In practice, if the critical components are 

properly identified, then corresponding strategies could be developed and deployed to 

prevent or mitigate a cascading failure and ultimately prevent a probable large-scale 

blackout of electric power systems. 
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  Space-Pruning Enumerative Search Strategy for 

Identifying Critical Combinations of Multiple Same Types and 

Different Types of Components 

3.1 Introduction  

In chapter 2, static strategy and dynamic strategy are proposed to identify critical 

components in a power grid. The number of identified critical combinations is limited, 

which limits its ability to fully reflect the vulnerability level of the power grid. So, more 

effective methods should be developed to identify a more comprehensive set of critical 

component combinations.   

Electric power systems are comprised of a large number of different components, 

including transmission lines, substations, transformers, generators and so on. In chapter 2，

combinations of multiple same types of components are considered. Actually, the 

combination of different types of components can be targeted too. Some preliminary 

research has been conducted in this field. In [14], the joint line-substation attack scenario 

is investigated. In this chapter, the probable vulnerability by attacking multiple different 

types of components is studied.  

The most direct method to find out the most critical component combination is the 

exhaustive enumeration; however, usually it is computationally unacceptable for a large 

power system. Here let’s take the IEEE 118-bus network as an example. On average, it 
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takes about 0.1 seconds to run a cascading failure simulation using the cascading failure 

simulator on a computer with an i5-3230M processor, then it would take about fifty-six 

days to enumerate all the four-line attack results on this computing platform.  

If the search space can be reduced significantly, the enumerative search strategy can be 

implemented to identify the critical component combinations. Specifically, the criticality 

of the component can be found based on the enumeration method if the number of 

components to be searched is reduced. The calculation time of such an enumeration 

method would be feasible especially for a power system which is not very large.  

Furthermore, a space-pruning enumerative search strategy for identifying the 

critical combinations of multiple same types and different types of components will be 

proposed. The main idea of the space-pruning enumerative search strategy is to first get 

the criticality of each potential target component from low-order enumeration data, then 

the components will be sorted according to their criticality and the components with the 

greatest criticality will be selected to form a new search space; finally the enumerative 

search will be conducted in the new search space to find out critical component 

combinations.    

The remainder of this chapter is organized in the following way. The proposed search 

space pruning enumeration strategy for identifying critical combinations of multiple same 

types and different types of components are presented in the subsequent sections of 3.2 

and 3.3 respectively. Case studies and simulation results are given in section 3.4. The 

conclusions and future work of this chapter are presented in section 3.5. 
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3.2 Space-Pruning Enumerative Search Strategy for Identifying Critical 

Combinations of Multiple Components of Same Types 

In this section, the space-pruning enumerative search strategy for identifying the critical 

combinations of multiple same type of components is proposed. In general, seven steps 

are required to identify the critical components. The flow chart of the strategy is shown in 

Figure 3-1.  

LP

LP

 

Figure 3-1 The flow chart of space-pruning enumerative search strategy 

The two-component enumeration attack data of the target power network needs to be 

collected as the first step of the algorithm. Although it takes some time to get the two- 

component enumeration data, the computing time is acceptable even when the scale of 

the target system is large. Then the obtained combinations will be sorted in a descending 

order by their , and the top  combinations will be chosen and used for weight 

calculation for the components. The value of  is decided by attackers and depends on 

the size of the target grid. In general, the value of  increases with the grid size.   
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The components from the selected  combinations will be analyzed and the weight will 

be calculated. The weighted algorithm is illustrated as follows: all the selected  

combinations will be examined and any combination containing that component will be 

picked out. The weight of the component represents the number of these combinations. 

After the weight of each component is obtained, all components will be sorted in a 

descending order by their weights. 

Among the sorted components, the top  components are selected as the components to 

be enumerated, and the N-components enumerative search will be conducted among them. 

After getting the enumerated results, the combination with the highest  will be selected 

which is considered as the most effective attack combination, and the components 

forming this combination are regarded as critical components. The newly defined search 

space comprised of  selected components is termed the pruned search space. In the 

pruned search space, the enumerative computation burden is significantly reduced.  

3.3 Space-Pruning Enumerative Search Strategy for Identifying 

Critical Combinations of Multiple Different Types of Components       

In this portion of the chapter, we investigated the strategy for attacking multiple different 

types of components based on the search space pruning enumeration technique. 

Transmission lines and generators are important parts of the power system. Here, the 

combinatorial line-generator attack strategy (LGCAS) is investigated as an example of the 

attack strategy targeting multiple different types of components.     
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A line-generator combination is comprised of a collection of lines and generators. If a 

line-generator combination, which consists of m transmission lines and n generators, is 

chosen as the target, such an attack model can be denoted as . 

When a line-generator combination is attacked, the transmission lines and generators in 

the collection will be disconnected from the power grid. The attack can be initiated by 

physical attacks, cyber-attacks or a combination of both. The transmission lines and 

generators in the effective attack scheme is considered to be critical transmission lines 

and generators. 

For the attackers，the simplest way to get the effective attack schemes is to conduct a 

brute-force enumeration. For simplification, the combinatorial line-generator attack 

strategy based on brute-force enumeration is denoted by , the subscript letter 

indicates the brute-force enumeration strategy. Even though the best attack schemes can 

always be found based on the enumeration method in theory, usually it is not viable 

because the enumeration strategy is resource demanding and prohibitively costly if the 

target system is large and the number of possible combinations is massive. 

This problem is very prominent even in a power system which is not big. Take IEEE 118-

bus system as an example, on average it takes about 0.1 seconds to run a cascading 

failure simulation on a computer with an i5-3230M CPU, so it would take about sixty-six 

days to collect all the  simulation results to identify the effective attack 

schemes. Hence, enumeration strategy is not practical for this problem, not to mention the 

fact that the actual power grid may be far greater than the IEEE 118-bus system. 
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3.3.1 Joint Line-Generator Attack Approach based on Reduced Search Space  

A joint line-generator attack strategy based on the pruned search space can be proposed 

in this section. Such a strategy is termed , the subscript “RE” means reduced 

search space. When adopting  to identify effective attack combinations, several 

steps are required. The procedures of  are shown in Figure 3-2. 

For the attackers, they usually have some expectation on the attack consequence before 

launching an attack. For instance, if the attackers want to make the whole power grid lose 

power, the expected value of  is one. 

1 1
ELGCAS 

LP

 

Figure 3-2 Procedure of 
RELGCAS  

At the beginning of the procedure, the results of  need to be collected. The 

computational burden of this step is tolerable. Next, the combinations of  are 

sorted in a descending order by , and the best N combinations are extracted. The value 

of N is set by attackers based on the scale of the power grid. In general, the value of N 

grows as the target grid size increases. 
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Among the N combinations, the transmission lines and generators will be identified and 

weighted. The weight of a transmission line is calculated as follows: For each identified 

line, all the combinations which contain the line will be examined in the N schemes, and 

the weight of this line is the sum of  in the identified scenarios. The meaning of the 

weight contains the number of occurrences in the chosen top N schemes along with its 

impact. Then the lines are sorted in a descending order by their weights. Calculating the 

weight of the generators follows the same procedure. 

After the weights are obtained and the components are sorted, the top  sorted 

transmission lines and top  sorted generators are chosen independently. Since a 

generator with a larger capacity has higher potential to result in an effective attack, the 

credibility of critical generators is higher than the critical transmission lines. Thus the 

size of generator collections can be somewhat reduced to save the computing time. 

The values of   and  need to be increased with the expansion of the grid size. While 

the generators in the power plants are generally well protected, transmission lines expand 

as wide as hundreds of miles with most of them being exposed to the wild, which makes 

transmission lines more vulnerable to attacks. Considering the attack difficulty, a 

 scenario, which consists of more lines or equal number of generators, will be 

considered. Different  simulations can be carried out simultaneously. For 

instance, to identify at least one attack scheme which can lead to the value of  above 

0.7, , , , , etc. can be implemented 

simultaneously with a search space of reasonable size on a number of computers.  
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For a certain , search is conducted only among the selected  lines and  

generators to identify the effective combinations. The search space formed by the   

transmission lines and  generators is known as the reduced search space. In the 

reduced search space, the  computational time can be reduced significantly 

while a comprehensive set of the critical combinations can be obtained. 

The   search can be further accelerated by dividing the sorted  lines and  

generators into two symmetrical parts. The first part is composed of the lines and 

generators with higher weights, and the second part is composed of the lines and 

generators with lower weights. The higher weight lines collection is indicated by  

and the lower weight lines collection is indicated by . Similarly,  represents the 

group of higher weight generators and  represents the group of lower weight 

generators. The search space which is comprised of  and  is termed higher 

weight search space.  

The higher weight search space will be explored first in the reduced search space during 

the process of   search. All the results will be recorded and processed. If one 

combination is found to satisfy the expectation, the simulation will be terminated and the 

qualified combination will be displayed.  

If satisfactory results cannot be found in the higher weight search space,  search 

will be performed in the whole reduced search space except for the higher weight search 

space which has been searched. If critical combinations still cannot be found in the 
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reduced search space, the search process will end and this  is seen as a void 

scenario. 

It is worth noting that some critical combinations may be omitted based on this method; 

however, the result is still meaningful especially for attackers. In the actual case, since it 

is more difficult to attack a generator than a transmission line, an attack scheme 

composed of more lines and fewer generators could be a more effective option. 

3.4 Simulations Results 

The performance of the space-pruning enumerative search strategy is studied here. The 

space-pruning enumerative search strategy for both the same and different types 

of component attacks are simulated on IEEE 30, 39 and 118-bus systems. 

3.4.1 A Case Study on Identifying Critical Combinations of Multiple Same Types of 

Components based on Enumerative Search  

To demonstrate the space-pruning enumerative search strategy for identifying critical 

combinations of multiple components of the same type, in this section the enumerative 

search method is performed on the IEEE 30-bus benchmark. The case of multi-line attack 

is studied here, and all the results of three-line and four-line attacks are presented and 

discussed. For conducting further analysis, the collected data need to be appropriately 

processed. The procedure of data preprocessing is illustrated as follows.  

At first, all the combinations of three-line and four-line will be sorted in a descending 

order by their  separately. Then, the top 30 schemes are extracted from the two kinds of 
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combinations; the lines in the top 30 schemes will be picked out from the two kinds of 

combinations separately and the occurrence frequency ( ) of each line will be 

calculated. Finally, the lines will be sorted in a descending order by their occurrence 

frequencies. The top twenty lines are shown in Table 3-1.  

It can be observed that some lines occur frequently in both the top 30 three-line and four-

line combinations. For example, the occurrence frequency of line 6 is 8 and 13 in the top 

30 three-line and four-line combinations individually. It can be seen that the line 

criticality is not greatly impacted by the number of the target lines. 

Table 3-1 The statistical data of the top 30 three/four-line combinations 

Line 
number 

three-line 
 

Line 
number

three-line 
 

Line 
number

four-line 
 

Line 
number 

four-
line 

21 14 20 3 7 21 15 3 

16 10 19 3 20 16 11 3 

7 10 18 2 39 15 44 2 

6 8 17 2 6 13 24 2 

34 7 8 2 19 9 23 2 

24 7 5 2 21 7 22 2 

15 5 39 1 8 6 10 2 

25 4 33 1 5 6 34 1 

11 4 31 1 30 4 33 1 

23 3 9 1 16 3 31 1 

3.4.2 Effectiveness of the Space-Pruning Enumerative Search Strategy for Multiple 

Homogeneous Components Outages 

During the section, the proposed dynamic strategy is adopted for comparison. To 

compare the effectiveness of the space-pruning enumerative search strategy and dynamic 

strategy, the case of multi-line attack is studied. Simulations are conducted based on the 
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IEEE 39-bus system with the fixed base load profile. The simulation results are shown in 

Figure 3-4. The pruned search space  for attacking different lines is listed in Table 3-2. 

Table 3-2 Pruned search space for attacking different lines in IEEE 39-bus system 

Total line number 47
Attacked lines 3 4 5 6 

Pruned search space 10 15 15 15 

In order to verify the effectiveness of the above attack strategies, the best results chosen 

from the results of the enumeration strategy are also shown. The results in Figure 3-3 

clearly show that the performance of the space-pruning enumerative search strategy is 

better than the dynamic strategy. More notable observation is that the performance of 

space-pruning enumerative search strategy is highly close to the optimal results obtained 

from the enumerative search. This observation proves the validity of the space-pruning 

enumerative search strategy.  

 

Figure 3-3 Comparison of the space-pruning enumerative search and dynamic strategies in the IEEE 39-bus system, the 
load level is fixed as 1.  

Additionally, the space-pruning enumerative search strategy and the dynamic attack 

strategy adopt different criticality indices of lines for further testing. The test platform is 

the IEEE 118-bus system and the performances of two strategies are shown in Figure 3-4. 

The pruned search space  is listed in Table 3-3.  
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Table 3-3 Pruned search space for attacking different lines in IEEE 118-bus system 

Total line number 186

Attacked lines 3 6

Pruned search space 10 20

Considering it would take too long time to get the enumeration results, the enumerative 

search strategy is not implemented.    

 

Figure 3-4 Comparison of the space-pruning enumerative search and dynamic strategies in IEEE 118-bus system, 
where the load level ranges from 0.5 to 1.5. 

The results of Figure 3-4 prove that both edge betweenness centrality and electrical node 

significance are effective criticality indices when the power system operates at the rated 

state with a fixed base load profile. It can be seen that the performance of the space-

pruning enumerative search strategy will surpass the dynamic attack strategy when the 

number of the target lines is large enough.  

Also, it is clear that the power grid will become more vulnerable with the increase of load 

level, so that under the same attack mode, more serious damage could be caused. With 

the increase of power load level，more attention should be paid to the monitoring and 

protection function of the power system. For example, if the load level of a power system 
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is high in a hot summer afternoon, power dispatchers should concentrate on the real-time 

state of the grid, and a contingency response plan for such a situation should be 

developed.  

3.4.3 A Case Study of Multiple Different Types of Components Combinations based 

on Enumerative Search 

To demonstrate the space-pruning enumerative search strategy for identifying the 

critical combinations of multiple different types of components, here the brute force 

search is conducted based on the IEEE 39-bus test system. The results of	 , 

,  and  are gathered and processed, and the flow of this 

process can be illustrated in Figure 3-5.  

2 1
ELGCAS  1 2

ELGCAS 

1 1
ELGCAS 

3 1
ELGCAS 

2 1
ELGCAS  1 2

ELGCAS  3 1
ELGCAS 

1 1
ELGCAS 

2 1
ELGCAS  1 2

ELGCAS  3 1
ELGCAS 

LP

LP

LP

FO

 

Figure 3-5 Method for processing the enumerated data 

The main steps of the process procedure are illustrated as follows: At the beginning all 

the combinations in  , and  are sorted in a descending 

order by their  respectively; then for each 	  the best 15 schemes are chosen. 

Table 3-4 shows the results.  
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Some observations can be made by analyzing this data. First, the transmission lines and 

generators occur in the high  value  attack scenarios also have high 

occurrence frequencies in the effective ,  and attack 

schemes.  

Furthermore, in general, if a line or a generator occurs frequently in the top  

scenarios, it is more likely to appear in the top  ,  and  

scenarios. For instance, among all the lines which appear in the top 31  

schemes, the lines with the highest occurrence frequency is line 36 and line 39. It can also 

be seen that line36 and line39 appear repeatedly in the top   ,  and 

 schemes. It can be inferred from the observation that if the lines and 

generators do result in effective  schemes, they are likely to constitute 

effective attack schemes when they are incorporated in the following  attack 

Table 3-4 Case study of the enumerative search strategy 

 
No. 

    

line FO  generat
or FO

 
schemes LP  schemes LP  schemes LP

1 1 1 31 3 35, 39-33 0.8328 39-33, 34 0.8328 35, 38, 40-33 1 

2 11 1 32 3 34, 39-34 0.8328 36-33, 34 0.8316 34, 38, 40-34 1 

3 12 1 33 3 35, 36-33 0.8316 39-31, 32 0.8241 34, 36, 39-34 1 

4 14 1 34 1 34, 36-33 0.8316 36-31, 32 0.8241 23, 39, 43-32 1 
5 16 1 35 1 20, 39-31 0.8241 23-35, 36 0.6858 23, 36, 43-32 1 

6 17 1 36 1 20, 36-31 0.8241 1-35, 39 0.6714 23, 36, 43-31 1 

7 20 1 37 2 14, 39-32 0.8241 1-36, 39 0.6543 17, 23, 36-38 1 

8 32 1 38 3 14, 36-32 0.8241 20-31, 39 0.6476 17, 23, 39-38 1 

9 34 1 39 14 2, 39-39 0.7642 14-32, 39 0.6476 14, 20, 36-38 1 

10 36 6  2, 36-39 0.7642 39-31, 33 0.6270 14, 20, 39-38 1 

11 38 1 1, 39-39 0.7642 36-31, 33 0.6270 11, 12, 36-38 1 

12 39 7 1, 36-39 0.7642 41-35, 38 0.6230 11, 12, 39-38 1 

13 40 1 9, 10-39 0.7519 39-32, 33 0.6230 4, 14, 36-32 1 

14 42 1 3, 39-33 0.7429 36-32, 33 0.6230 1, 13, 39-32 1 

15 43 5 10, 12-35 0.7314 17-32, 35 0.6115 18, 36, 43-32 1 
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schemes. Equally noteworthy are the low occurrence frequency lines in the top 31 

 schemes. They also have low frequency of occurrence in the top  , 

and  schemes.         

These observations also apply to the generators with more obvious observations. In 

general, the occurrence frequency in the effective attack schemes of a generator is 

proportional to its generation capacity.  

3.4.4 Demonstration of the Attack Strategy for Combinations of Multiple Different 

Types of Components  

In this section, the performance of the multiple different types of components attack 

strategy is tested in the IEEE 30 and 118-bus test systems. The joint lines-generator 

attack is adopted as an example for illustrating the attack strategy targeting 

multiple different types of components.  

The proposed  is tested. The simulation results and observations are shown in 

detail. The performance of the node attack strategy is also presented for comparison. The 

node attack strategy adopted here is based on the electrical node significance which 

reflects the criticality of the nodes for cascading failures in a power system [34], [35]. 

When attacking  nodes using the electrical node significance strategy, the electrical 

node significance of each node in the power grid needs to be calculated, then the nodes 

will be sorted in a descending order according to the electrical node significance. The top 

 nodes are selected as the targets.  
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In this part, a transmission line, a generator or a node is called a component. Specifically, 

when conducting , a component represents a transmission line or a generator, 

while a component means a node when referring to the node attack strategy. 

Figure 3-6 shows the performance comparison of the two attack strategies. The reduced 

search space adopted here is 15  and 5 . The range of the attacked node 

number is 2 to 6 for the electrical node significance based node attack strategy. The 

corresponding results of the  are attained from , , 

,  and  respectively. 

 

Figure 3-6 Comparison of 
RELGCAS  and the electrical node significance based node attack strategy and in IEEE 30-

bus system  

Figure 3-6 demonstrates that  outperforms the adopted node attack strategy in 

this case. For instance,  has salient advantages over the node attack strategy 

based on electrical node significance when the numbers of attacked components are same. 
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Since it is more difficult for the attackers to attack a node than to attack a single 

transmission line or a generator,  is a more effective method for the attackers. The 

attackers need to carry out  to find effective LGCAS attack schemes. 

3.4.5 Effectiveness of the Search Space Reduction Algorithm for LGCAS Attack 

Schemes 

In this part, the capabilities of the  will be tested in the IEEE 118-bus test 

system. Initially, all the simulation results of  are saved and processed for 

comparison. The required simulation time is 9.27 hours. Though the simulation time 

appears long, it is tolerable for such a complex problem. After obtaining the enumerated 

outcomes, all the combinations will be sorted in a descending order by the value of . It 

can be seen from the enumeration data that there are 11 attack scenarios where  values 

are larger than or equal to 0.3090. These  values are depicted in Table 3-5.  

Considering that among the enumeration results of  the best value of  is 

0.429, the threshold here is set as 0.42 for .  is then implemented to 

identify an effective combinatorial attack strategy made up of one transmission line and 

two generators.  

The top 100 sorted  combinations are chosen as the sampling space. The value 

differences of ,  are also considered. Table 3-6 shows the values of  which are 

above or equal to 0.309.  In the following , the attack scenarios whose  values 

are above or equal to 0.309 are defined as effective scenarios.  
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When  is implemented and the reduced search space is 10 and 5, 

three effective attack schemes can be found in the higher weight search space whose 

elapsed time is 1.53 seconds. When the search space is 40  and 10 , six 

effective scenarios can be identified in the higher weight search space. The simulation 

time is about 18.68 seconds. This phenomenon shows that with the increase of the 

reduced search space, more effective attack scenarios can be identified. 

Table 3-5 The processed data of 1 2
ELGCAS   

Strategy 
 

No.  Elapsed time 

 
 
 
 

 

1 0.4279  
 
 

 
9 hours and 16 

minutes 

2 0.3900
3 0.3669
4 0.3669
5 0.3621
6 0.3423
7 0.3284
8 0.3250
9 0.3200
10 0.3116
11 0.3090

 

Table 3-6 The processed data of 1 2
RELGCAS   with different search spaces 

Strategy No.  Elapsed time

10 
5 

1 0.4290
1.53 seconds2 0.3899

3 0.3200

Strategy No.  Elapsed time

 

40 
10 

1 0.4290

18.48 
seconds 

2 0.3899
3 0.3250
4 0.3200
5 0.3116
6 0.3090

It should be noted that all the identified effective   results are found in the 

higher weight search space. The validity of higher weight search space can be verified 

through this observation.  
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Given that the enumerative search in the higher weight search space will stop if effective 

attack schemes can be identified, it is reasonable to believe that compared with the higher 

weight search space, more critical combinations can be identified in the reduced search 

space while the consumed time is not significantly increased.  

3.5 Conclusions and Future Work 

Concluding this chapter, a study of the attack strategy for multiple same types or different 

types of components based on the space-pruning enumerative search strategy has been 

carried out.   

The IEEE 30-bus, 39-bus and 118-bus test systems are used for the simulation studies. In 

these test systems, the proposed attack strategy along with the reduced search space 

algorithm has turned out to be effective. The case of multi-line attacks is studied as an 

example of the space-pruning enumerative search strategy based attack strategy targeting 

the same types of components. The combinatorial line-generator attack strategy (LGCAS) 

is investigated as an example of the attack strategy targeting the multiple different types 

of components. To identify an effective joint line-generator attack strategy, the search 

space reduction based combinatorial line-generator attack strategy is proposed. This 

strategy can also be extended to identify other critical combinations of multiple different 

types of components.   

 In future studies, the space pruning method will be further improved. Prevention and 

mitigation methods can be developed based on this work to reduce the impact of multi-

component attacks which may initiate disastrous cascading failures.  



40 
 

 
 

 

 Search Space Conversion and Reduction Strategy 

based Intelligent Search Method    

4.1 Introduction 

As previously stated, it is essential to identify critical component combinations on power 

system vulnerability analysis. Several methods can be adopted to identify critical 

component combinations. The simplest way is the brute-force enumeration method. 

Theoretically, all the critical combinations can be identified based on this method with 

the disadvantage of a heavy computational burden which is impractical especially for a 

large-scale power grid. As introduced in the previous two chapters, static strategy, 

dynamic strategy and space pruning enumerative search strategy produce the critical 

component combination identification method which can also be adopted to identify 

critical component combinations.   

For the target problem, a power grid can be regarded as a black box in some sense. All 

possible target component combinations are the inputs and the critical component 

combinations can be seen as optimal solutions. The goal of critical components 

combination identification is to find out a few key combinations from a huge, high 

dimensional and nonlinear search space which makes it difficult for traditional 

identification methods to swiftly and comprehensively obtain critical combinations. The 

intelligent search algorithm is an effective approach to this problem. Reasonable 

solutions can be identified quickly in a large search space by using an intelligent search 
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algorithm. Therefore, an intelligent algorithm is a good choice to identify the critical line 

combinations. Specially, an improved PSO algorithm is proposed for critical component 

combination identification in this chapter. 

In order to further enhance the efficiency of intelligent search, a space conversion and 

reduction strategy based intelligent search method (SCRIS) is proposed. This strategy 

includes the following aspects: first the criticality of each component is obtained from the 

sampling results, then the components will be sorted according to their criticality and the 

components with the greatest criticality will be selected to form a new component space; 

finally intelligent search will be conducted in the new search space to identify critical 

component combinations.  

The remainder of this chapter is organized in the following way. Section 4.2 introduces 

the effective component combination sampling method, and section 4.3 describes the 

weight calculation and new search space generation approach. Case studies and results 

are presented in section 4.4. The conclusions and future work of this chapter are given in 

section 4.5.  

4.2 Effective Component Combination Sampling Method 

A practical power grid is usually composed of thousands of substations and transmission 

lines. Let’s assume there are  substations in a real-world power grid. For the binary 

encoding based intelligent search algorithms, in order to find critical node combinations, 

the size of the search space is 2 , which would be an astronomical figure when  is 

large. Such a search space is too large for the traditional intelligent search algorithms. 
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The irregular distribution of critical component combinations in the search space makes 

the situation even worse. Limited by the performance of the traditional intelligent search 

algorithm, it is difficult for them to find the critical component combinations efficiently 

and effectively within an acceptable time scale.  

Considering the number of the components in a power grid is assigned randomly, to 

reduce the difficulty of performing intelligent search, the number of components can be 

reassigned according to their criticality. In this way, a new search space will be generated 

in which the distribution of critical points is more concentrated as compared with the 

original search space. The performance of intelligent search algorithm could be improved 

by creating such a search space. It is worth pointing out that the criticality of the 

components does not need to be strictly precise, and the function of the converted space 

is to gather critical particles in a relatively concentrated area.  

Although the sorted space is beneficial to improving the search performance, the search 

space is too large to identify critical component combinations for a large scale power grid. 

As mentioned before, in the resorted search space which is composed of the ranked 

components, there are reasons to think that the components with low weights play an 

insignificant role in the critical component combinations. Therefore, these components 

can be removed from the search space. As a result, in the search space composed of high 

weight components, the density of critical component combinations is much greater than 

that in the original search space.  
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As mentioned above, the validity of reordered search space is largely dependent on the 

criticality of the components. To obtain an “ideal” search space, the key issue is to find 

an effective way to sort the components so that the target combination can be restricted 

within a relatively small region that is close to the coordinate origin. 

There are two major critical component sorting methods. One method is sorting the 

components according to the criticality index. In the case of line sorting, static strategy 

and dynamic strategy that are based on different criticality indices, like edge betweenness 

centrality, electrical node significance, and so on, can be adopted as sorting methods. The 

problem with this method is that the criticality of components may vary with the change 

of the simulation platforms. 

Another way to get the criticality of each component is to analyze the sampling results. 

The characteristics of the simulation platform and the target power system have been 

taken into account during the sampling process. Several sampling methods are applicable 

to this problem, including random sampling, Monte Carlo sampling [40], Latin hypercube 

sampling [41] and Random Chemistry sampling [28], and so on. While there are multiple 

possible sampling methods to obtain the criticality of each component, the random 

chemistry method is the most powerful stochastic approach which is developed in [28] 

for quickly identifying the critical component combinations that will lead to cascading 

failures. Here, the Random Chemistry algorithm is adopted as the sampling tool.   
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Random chemistry algorithm 

The random chemistry algorithm was originally proposed by Kauffman [42] in the 

applications of chemistry, and was further deployed by Eppstein and Hines [28] as a 

powerful stochastic tool for identifying critical component combinations in a power 

system. The main idea of this algorithm is to test the large randomly created component 

collection to find one combination that can initiate cascading failures, then to 

continuously reduce the size of the discovered critical combination by random search 

until a satisfactory combination is identified. The procedure of the Random Chemistry 

Algorithm can be described in the following steps [28].  

Step1. Identify a large set of  that can initiate cascading failures by testing 
randomly generated combinations from the target grid.    

The set of potential target components in the target grid is denoted as set , and the 

size of  is . The set of initially selected target components in the power grid is 

denoted as set , and the size of  is S. Before an attack is launched, attackers 

usually have an expected attack effect. Here a components combination which may 

cause consequences above a certain threshold value  is considered a critical 

combination which can initiate a cascading failure. At the beginning of the algorithm, 

S components will be randomly sampled from the  target components. The 

obtained set  will be tested to see if it can initiate cascading failure. If set  can 

cause cascading failures, it will be saved for step 2. If cascading failures cannot be 

initiated by set , the sampling process will be repeated for at most  times. If the 

desired set  still cannot be found, the size of S will be doubled (the upper bound 
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of S is ) and the above procedure will be repeated until a qualified set  can be 

identified.       

Step2. Reduce the selected set  to set  with smaller size   by randomly 
sampling.  

In this step, the size of the selected set  will be further reduced to   based on the 

reduction factor .  is a small real number greater than one. In the space 

reduction process, a subset  of set  which contains | |/  (if | |/ is a 

decimal,	| |/  is manipulated as an integer) components, will be tested to see if it 

could initiate a cascading failure. If a qualified subset  is identified, then the set 

 will be replaced by  and the above process will be repeated until the size of set 

 reaches  , where  is a small positive integer which limits the minimal size of 

set . In any iteration, if attempts exceed  times, this RC trial will be considered 

to be invalid and another trial will start to identify the qualified combination.      

Step3. Test possible subsets of  until the minimal critical combination is 
identified. 

The size of set  obtained from step 2 is . In this step, all the possible ( -1) 

component combinations from set  will be tested unless an ( -1) subset could 

cause cascading failure. This ( -1) subset will be used to find all the possible ( -2) 

combinations. This procedure will continue until an ( -2) combination produces a 

cascading failure. This step will be repeated until no smaller combinations could 

cause a cascading failure.   
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It should be noted that the performance of the RC algorithm is influenced by the specific 

type of power grids and the associated parameters [28].  

When adopting a RC algorithm as the sampling tool, the sampling process can be 

introduced as follows: RC trials will be conducted for a reasonable number of times to 

obtain the critical component combinations. To find out a critical combination, the CFS 

simulation times vary in different RC trials. For purposes of conducting comparisons at 

the same scale, the sampling time is measured by the run times of the CFS, which is 

termed as .  If the attackers have the ability to attack at most  components, the RC 

algorithm  will be set as . The obtained sampling results may include  component 

combinations,	 1 component combinations, and until 2-component combinations.  

4.3 Weight Calculation and New Search Space Generation Approach 

Component Weight Calculation 

The weight of each component will be calculated in the following way after the sample is 

obtained. Among the obtained samples, the combinations which can cause consequences 

above a certain threshold will be selected for weight calculation. The components occur 

in these combinations are weighted according to the following method:  

For each of the components that appear in the selected combinations, all the combinations 

will be examined and any combination containing that component will be extracted. The 

weight of the component represents the number of combinations. After the weight of each 

component has been obtained, all components will be sorted in a descending order by 

their weights. Since it is possible that each component will not occur in the sampled 
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combinations, the components which don't appear in the sampled combinations will be 

sorted according to their original index, and then appended to the ranked components. 

After the weight of each component has been obtained, all components will be sorted in a 

descending order by their weights. A new search space will be generated based on the 

sorted components.  

Component Space Pruning Strategy    

The search performance can be enhanced in the sorted search space; however, in a large 

scale power grid, the search space is still too huge and the performance of the intelligent 

search algorithm is limited by such a vast search space. As mentioned before, in the 

resorted search space which is composed of the ranked components, there are reasons to 

believe that the components with low weights play an insignificant role in the critical 

component combinations. Instead, in the search space composed of high weight 

components, the density of critical component combinations is much greater than that in 

the original search space. Assume that the number of the original components is , the 

number of the selected components with top weights is . Most critical component 

combinations will be included in the search space comprised of  components with 

moderate size. The component space pruning index  is defined here:  

                                                                                                        (4.1) 

The reasonable value of  can be determined by the conclusion in [28], that is, the 

critical components make up only a small portion of the overall components. When 

considering five or less component combinations, desirable results can be achieved when 
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the value of  is 10%. This value also takes the inaccuracies of component sorting into 

consideration. The search space will shrink dramatically based on the pruned components. 

 Improved PSO Algorithm 

After the converted and reduced space has been obtained, intelligent search algorithms 

can be implemented in the new search space to identify critical component combinations, 

including the taboo search algorithm [43], particle swarm optimization (PSO) algorithm, 

genetic algorithm, simulated annealing algorithm, and so on. Here, an improved particle 

swarm optimization (PSO) algorithm is adopted due to its efficient search ability. 

The Particle Swarm Optimization (PSO) algorithm is a well-known evolutionary 

algorithm which was proposed by James Kennedy and Russell C. Eberhart in 1995. The 

algorithm was inspired by the movement mechanism of a group of birds that are seeking 

food. The main idea of this algorithm is to generate a certain number of particles and to 

define an objective function first, then in each iteration, the fitness of the particles will be 

calculated and compared to generate the best local and global particle. The movements of 

these particles are guided by the position of the best local and global particles, 

respectively. The performance of this method is heavily dependent on associated 

parameters (e.g., iteration time, group size, inertia weight, etc.) and the design of the 

fitness function.  

Derived from the basic particle swarm optimization algorithm, an improved PSO 

algorithm is developed for identifying critical component combinations more effectively. 

The following procedure describes the improved PSO algorithm:  
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Step1. Algorithm initialization 

In this approach, the dimension of each particle is determined by the number of 

target components, each dimension corresponding to one target component. For 

example, if the attackers want to attack J transmission lines, then the particle’s 

dimension is J. For each dimension, the searching range is determined by the number 

of potential target components. Assuming there are P potential target components in 

the power grid, the virtual distance of each dimension is [1, P] with interval 1. In the 

improved PSO algorithm, the search space has been greatly reduced. If the number 

of target components is J, the total search space is . The speed of the particles are 

initiated randomly between	 	, , where  and  are the upper and 

lower bounds of the speed.    

Step2. Fitness calculation and the best local and global position update 

The position of each particle represents a target component combination. After 

initialization for each particle, the position will be sent to the cascading failure 

simulator as target components. The fitness function can be a different system failure 

definition, which is obtained from the simulation results of the CFS, like network-

separation rate [28], net-ability drop percentage [44], load loss percentage ( ), and 

so on. The goal of the particles is to find out the maximum fitness value. After 

obtaining the fitness value of each particle, the best local particle and the best global 

particle of this iteration will be determined. Here  is adopted as the fitness function. 

Step3. Velocity and position update 
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The velocity and position of each particle are determined by the following formula 

[45]: 
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                    (4.2) 

where w is the inertia weight, 	  is the cognitive parameter and  is the social 

parameter. M is the number of particles in the swarm and D is the dimension of a 

particle.  and  are random numbers between 0 and 1. v is the particle velocity and 

x is  the particle position.  is the position of the best local particle and  is the 

position of the best global particle. The superscript n indicates the number of 

iterations. The subscript “k-d” represents the d-th dimension of the k-th particle, “b-d” 

represents the d-th dimension of the best local particle and “g-d” denotes the d-th 

dimension of the best global particle. During the iterations, if the particle's position 

exceeds the upper or the lower bound, the particle's position will be generated 

randomly. If the particle's velocity exceeds the upper or the lower bound, the speed 

will be maintained at the upper or lower bound. 

Step4. Determining whether the algorithm should be halted. 

The process of the algorithm will be terminated if one of the following termination 

conditions is satisfied: 

1) The maximum number of iterations has been reached 

2) No new critical combinations can be identified in 50 iterations 



51 
 

 
 

Before fulfilling any termination criterion, step 2 and step 3 will be repeated.  

4.4 Simulation Results 

In this section, the performance of the proposed space conversion and reduction strategy 

based intelligent search method (SCRIS) is test on IEEE 118 and 2383-bus systems based 

on MATLAB, the CFS is adopted as the cascading failure simulation tool. The main 

simulation results and conclusions are presented in the following subsections. 

4.4.1 An Example of Space Conversion 

Here is a simple example to demonstrate the effectiveness of the reordered search space.  

 

Figure 4-1 The comparison between original search space and converted search space 
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Figure 4-1 shows the comparison between original search space and converted search 

space. The top 40 three-line combinations extracted from the enumeration results are 

displayed in the two search spaces. It can be seen that the distribution of the top 40 

particles in the resorted search space is obviously more concentrated, which means it is 

easier for the intelligent search algorithm to identify the critical particles. It can be 

expected that this advantage will be more evident for a large power grid considering 

multi-component combinations.   

4.4.2 Search Space Comparison 

In this part, the search spaces of the binary encoding method and the virtual distance 

encoding method are compared.  

Search  Space  Comparison  between  the  Binary  Encoding  Method  and  Virtual  Distance 

Encoding method in the IEEE 118‐bus system  

The case of the line combinations attack is studied here. The search space of the binary 

encoding method and the 10-line combination virtual distance encoding method is listed 

in Table 4-1.  

Table 4-1 Search space comparison between the binary encoding method and virtual distance encoding method on 
IEEE 118 bus system considering different numbers of target components  

 The number of target   
elements  

Encoding method 
3 5 10 

Binary encoding search 
space 

186 552  9.8*10  

Virtual distance encoding 
search space 

3 6186 6.4*10 5 11186 = 2.2*10  10 22186 4.9*10  

It can be seen from Table 4-1 that in the IEEE 118-bus system, the search space of the 

virtual distance encoding method is much smaller than that of the binary encoding 
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method. For the binary encoding method, the search space is fixed for a specific system. 

In a power system, if the number of potential target components is , the size of the 

search space is 2 , which is an astronomical figure even for a not-so-large power system 

like the IEEE 118-bus system. As for the virtual distance encoding method, the search 

space grows as the number of target components increases; the growth rate is the number 

of potential target components. For example, when identifying effective 4-line 

combinations in the IEEE 118-bus system, the search space of the virtual distance 

encoding method is 118 , while the search space is 118  when identifying effective 5-

line combinations.  In practice, a small portion of critical components can lead to serious 

consequences. Take IEEE 118-bus system as an example, serious damage could be 

caused if ten transmission lines are compromised. Considering this fact，the number of 

target components is usually a single digit, so that the search space of the virtual distance 

encoding method is limited to a very small range compared with the binary encoding 

method.  

Comparison of Search Space Considering Attack Five Nodes in IEEE 30, 39, 118, 2383 bus 

systems  

Table 4-2 shows the search space comparison between the binary encoding method and 

the virtual distance encoding method in different power systems. The case for searching 

effective five-line combinations is studied here. Practically, in IEEE 2383-bus system if 

five critical lines are compromised, over 90% of load shedding could be caused.  Here, 

the space reduction ratio ( ) is defined as the ratio of the binary encoding search space 

and the virtual distance encoding search space.    
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It can be seen from Table 4-2 that even in the small IEEE 30-bus test system, the space 

reduction ratio is about 44, which means the virtual distance encoding search space is 

about 1/44 of the binary encoding search space. With the increase of power grid size, the 

space reduction ratio grows significantly. The virtual distance encoding search space is 

compressed drastically compared with the binary search space especially in a large-scale 

power grid, which is very favorable for conducting efficient intelligent search.  

Table 4-2 Comparison of search spaces considering attack five nodes on IEEE 30, 39, 118, 2383-bus systems 

Test System IEEE 30 bus test 
system 

IEEE 57 bus test 
system 

IEEE 118 bus test 
system 

IEEE 2383 bus 
test system 

Binary Search Space  302  572  1182  23832  
Virtual distance 

encoding Search Space 
530  557  5118  52383  

  44.2 82.4 *10  251.5 *10  7002 .9 *10  

4.4.3 Performance of Space Conversion and Reduction Strategy  

In this section, the performance of space conversion and reduction strategy is tested in the 

IEEE 118-bus system. The case of the line combinations attack is studied here. The 

random sampling method is adopted here as an example. 10,000 five-line combinations 

are stochastically sampled out of 1.76 ∗ 10 , the sampling rate is 5.7 ∗

10  which is obviously a very small rate. Among the sampled combinations, the 

combinations that can cause  above 0.5 are selected for line weight calculations. After 

obtaining the weight of each line, the top 50 lines are selected to form a new component 

space, . . While the last 50 lines are selected to form another component 

space . , the component space which is comprised of all the ranked 186 

lines is . . The improved PSO is implemented 50,000 times in 

. , .  and .  respectively to search for effective 5-
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line combinations. The parameters of the improved PSO is w 1 , 1 , 1 , 

10 , 10 , nop 100 . Figure 4-2 shows the search results. The 

horizontal coordinate represents the attack effect. For example, 0.5-0.6 represents the 

attack effect’s range: 0.5 0.6; the vertical coordinate represents the number of 

combinations in each attack effect’s range.    

It can be seen clearly that in . , no 5-line combination can be found to cause 

 above 0.1. Actually, among the 50,000 results obtained from . , the 

highest  is 0.0165. The statistical data of search results obtained from .  is 

shown in Table 4-3. This phenomenon indicates that in . , almost no 5-line 

combinations has threatened the power grid. In other words, the transmission lines in 

.  are not critical lines.   

Table 4-3 Statistical data of search results obtained from 118 50
10000 0.5L RS 

  
 

LP  0-0.0165 0 

Amount 4041 45959 

The obvious comparison is the search results in . . The number of 

combinations in each attack effect’s range in .  is far beyond the 

corresponding results in . . It suggests that in . , most critical 

combinations are included. It is worth pointing out that the space conversion and 

reduction strategy is effective even in the case of random sampling with a small number 

of samples. The performance of the proposed space conversion and reduction strategy 

can be improved if a more effective sampling method is adopted and more samples are 

collected.    
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118 50
10000 0.5PSO in T RS 

  

118 186
10000 0.5PSO in F RS 

  

118 50
10000PSO in L RS 

 

 

Figure 4-2 Search results of PSO in 118 50
10000 0.5T RS 

   , 118 50
10000 0.5L RS 

   and 118 186
10000 0.5F RS 

    

4.4.4 Performance Comparison between the Random Sampling Method and RC 

Sampling Method    

In this section, the performance of the two sampling methods, that is, the random 

sampling method and RC sampling method, is tested on the IEEE 118-bus system and the 

2383-bus system. The case of searching for effective five-line combinations is studied 

here.   

 Performance  Comparison  between  the  Random  Sampling  Method  and  RC  Sampling 

Method in IEEE 118 bus system 

The random sampling method and RC sampling method are tested based on the IEEE 

118-bus system. For the random sampling method, 20,000 five-line combinations are 
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stochastically sampled. Among the 20,000 sampled combinations, the combinations that 

can cause  above 0.5 are selected for line weight calculations. For the RC sampling 

method,  is set as 0.5.      

Table 4-4 The top 50 sorted lines obtained from random sampling and RC sampling 

Random sampling RC sampling 
No. Line No. Line No. Line No. Line 

1 8 26 39 1 7 26 34 
2 36 27 102 2 9 27 37 
3 33 28 42 3 8 28 80 
4 38 29 70 4 36 29 160 
5 104 30 83 5 31 30 55 
6 9 31 32 6 33 31 140 
7 21 32 29 7 19 32 50 
8 7 33 11 8 21 33 174 
9 96 34 3 9 96 34 61 

10 107 35 73 10 38 35 74 
11 31 36 152 11 32 36 172 
12 97 37 120 12 17 37 143 
13 51 38 61 13 51 38 89 
14 93 39 90 14 54 39 15 
15 37 40 62 15 22 40 138 
16 17 41 48 16 141 41 18 
17 5 42 88 17 16 42 121 
18 18 43 67 18 76 43 117 
19 127 44 50 19 48 44 120 
20 141 45 82 20 183 45 90 
21 131 46 69 21 110 46 62 
22 126 47 26 22 109 47 108 
23 154 48 179 23 178 48 27 
24 142 49 54 24 142 49 30 
25 95 50 89 25 105 50 99 
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118 50
20000 0.5PSO in T RCS 

  

118 50
20000 0.5PSO in T RS 

  

118 186
20000 0.5PSO in F RS 

  

 

Figure 4-3 Search results of PSO in 118 50
20000 0.5T RS 

  
, 118 50

20000 0.5T RCS 
  

 and 118 186
20000 0.5F RS 

  
 

After obtaining the weight of each line from the two sampling methods, the top 50 lines 

are selected respectively to form new component spaces, which are denoted as 

.  and . . Table 4-4 shows the results of the top 50 sorted 

lines and the corresponding number obtained from the two sampling methods 

respectively. The component space consisting of all the ranked 186 lines obtained from 

the random sampling results is termed as . .    

PSO is implemented in . , . and .  respectively 

50,000 times to acquire effective 5-line combinations. The parameters of the PSO are: 

w 1 , 1 , 1 , 10 , 10 , nop 100 . Figure 4-3 shows the 

search results.    
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It can be seen clearly from Figure 4-3 that in general, the number of critical combinations 

obtained from .  are greater than that of . , especially when 

 is high, while the two above results are far better than the results obtained from 

. . This results indicate that the RC sampling method is more effective than 

the random sampling method. As a result, in . , the distribution of critical 

lines is more concentrated so that critical combinations are more easily able to be 

searched out.   

Performance Comparison of  the Random Sampling Method and RC Sampling Method  in 

IEEE 2383‐bus system 

In this section, the performance comparison between the random sampling method and 

RC sampling method is conducted in the IEEE 2383-bus system. The number of samples 

is 20,000. The sampling and weighting processes are the same as that discussed in the last 

section. 

After obtaining the weight of each line, the top 50 lines are selected to form the 

component spaces, which are denoted as .  and . .     

The PSO is implemented in .  and .  respectively 20,000 

times to obtain the effective 5-line combinations. The parameters of PSO are：	w 1, 

1 , 1 , 10 , 10 , nop 100 . Figure 4-4 shows the search 

results.     
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 It can be seen clearly from Figure 4-4 that the search results in .  have an 

evident advantage over the results in . . Compared with the results in the 

last section, in the medium-scale IEEE 118-bus system, the performance difference 

between the random sampling method and RC sampling method is not large. While in the 

larger-scale IEEE 2383-bus system, the performance of the random sampling method is 

poor in comparison with the RC sampling method. It can be concluded that, with the 

increase of the system size, the effectiveness of the random sampling method declines 

rapidly.     

2383 50
20000 0.5PSO in T RCS 

  

2383 50
20000 0.5PSO in T RS 

  

 

Figure 4-4 Search results of PSO in 2383 50
20000 0.5T RS 

  
 and 2383 50

20000 0.5T RCS 
  

 

4.4.5 Performance Comparison between the Improved PSO based SCRIS and 

Random Chemistry    

In this part, the performance comparison between the improved PSO based SCRIS and 

random chemistry is presented. The simulations are conducted in IEEE 118 and IEEE-

2383 bus systems. 
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Performance Comparison between the Improved PSO based SCRIS and Random Chemistry 

Algorithm in IEEE 118 bus system  

First the performance of the improved PSO based SCRIS and Random chemistry search 

algorithm is tested in IEEE-118 bus system. The case of searching effective five-line 

combinations is studied.      

The adopted sampling method is the RC sampling method. The RC sampling parameters 

are S 40, 20, 0.5, and 20,000. The top 50 and 100 weighted 

lines are selected to form the component search space, .  and 

. . The improved PSO is implemented twice in the 
118 50

20000 0.5T RCS 
    and 

118 100
20000 0.5T RCS 

    1,000,000 times respectively, searching for effective 5-line combinations. 

The parameters of the improved PSO are: w 1, 1, 1, 20, 

20, nop 50, and 1,020,000. The random chemistry search algorithm is also 

executed to identify effective 5-line combinations. The parameters of the random 

chemistry search algorithm are: S 40, 20, 0.5, and 1,020,000. 

 of the PSO and RC are both 1,020,000 for the purpose of comparison under the 

same time scale.    

Figure 4-5 shows the simulation results. As it can be seen clearly from the figure, the 

performance of the improved PSO based SCRIS has comprehensive advantages over the 

RC search. For further discussion, the number of identified combinations in each attack 

coincides with the range obtained from each method is listed in Table 4-5.  
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The search results obtained from PSO in .  have comprehensive 

advantages over the results attained from RC, and the performance of PSO in 

.  is similar to that of RC. For both RC and PSO in . , one 

five-line combination which can cause  above 0.8 is identified, while for PSO in 

. , no such a combination is identified. The above observations suggest 

that the search efficiency decreases with the elevation of . Also, the five-line 

combination which can cause  above 0.8 is very likely to be excluded from 

. , which indicates that the efficiency and effectiveness of SCRIS are 

sensitive to the value of . A reasonable  value can not only guarantee the search 

efficiency, but also ensures the quality of search results.        

118 50
20000 0.5PSO in T RCS 

  

118 100
20000 0.5PSO in T RCS 

  

RC

 

Figure 4-5 Performance comparison between the improved PSO based SCRIS and random chemistry algorithm in 

IEEE 118 bus system 

Table 4-5 The number of identified combinations in each attack effect’s range obtained from the improved PSO based 
SCRIS and random chemistry algorithm in IEEE 118 bus system  

       Search method 
Range of 

LP  RC  118 100
20000 0.5PSO in T RCS 

    118 50
20000 0.5PSO in T RCS 
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0.5-0.6 4557 5644 12318 
0.6-0.7 632 320 1378 
0.7-0.8 16 13 72 
0.8-0.9 1 1 0 
0.9-1.0 0 0 0 

The  Improved PSO based  SCRIS  and Random Chemistry Algorithm  in  the  IEEE  2383‐bus 

system 

In this section, the performance of the improved PSO based SCRIS and Random 

Chemistry search algorithm is tested in the IEEE-2383 bus system.   

The sampling method for SCRIS is the RC sampling. The parameters are S 80, 

20, 0.5, 50,000. The top 50 and 100 weighted lines are selected to 

form component space .  and . . Considering the cascading 

failure simulation on the IEEE 2383-bus system is time-consuming, the improved PSO is 

run for .  and .  200,000 times. The parameters of the 

improved PSO are w 1, 1, 1, 20, 20, nop 100，and 

250,000 . The random chemistry search algorithm is also executed twice to 

identify the critical 5-line combinations. The parameters of the random chemistry search 

algorithm are S 80, 20, 0.5, and 550,000.    

The simulation results are shown in Figure 4-6, and the number of identified 

combinations for each attack effect’s range obtained from each method is listed in Table 

4-5. It can be seen from the simulation results that there are comprehensive performance 

advantages of the improved PSO based SCRIS with 250,000 times CFS simulations over 

that of RC search with 550,000 CFS simulations. The search efficiency of PSO in 
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.  decreased to some extent compared with .  due to the 

increase in the search space.  

RC

2383 50
50000 0.5PSO in T RCS 

  

2383 100
50000 0.5PSO in T RCS 

  

 

Figure 4-6 Performance comparison between the improved PSO based SCRIS and random chemistry algorithm in 

IEEE 2383-bus system 

Table 4-6 The number of identified combinations for each attack effect’s range obtained from the improved PSO based 

SCRIS and random chemistry algorithm in IEEE 2383-bus system 

       Search method 
Range of 

LP  RC 2383 100
50000 0.5PSO in T RCS 

    2383 50
50000 0.5PSO in T RCS 

  
 

0.5-0.6 4083 19282 36413 
0.6-0.7 3451 21121 37361 
0.7-0.8 1209 11388 21188 
0.8-0.9 535 7029 10422 
0.9-1.0 51 1441 1822 

This observation indicates that the search efficiency and effectiveness of the improved 

PSO based SCRIS is much higher than what is obtained from the RC search algorithm in 

a large scale power grid. It can be concluded that the improved PSO based SCIRS is 

particularly suitable for quickly identifying critical component combinations in a large-

scale power system. 
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4.5 Conclusions and Future Work 

In this chapter, the space conversion and reduction strategy based intelligent search 

method (SCRIS) is proposed for efficiently and comprehensively identifying critical 

component combinations in a power grid. An improved PSO algorithm is adopted to 

further enhance the search ability.   

The IEEE 118-bus system and the Polish 2383-bus system are used for simulations. The 

case of multiple line attacks is studied as an example of the SCRIS based attack strategy 

targeting the same types of components. In these systems, the proposed SCRIS as well as 

the improved PSO algorithm are validated to be effective. Based on this work, preventive 

methods may be developed to prevent multi-component attacks which could initiate 

cascading failures. This work also has a great significance in guiding the smart grid 

planning. 

In future studies, the sampling method, weight calculation method and space reduction 

method will be improved to further enhance the performance of the SCRIS. Also, it is of 

importance to investigate the influence of  on the SCRIS search performance.  
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 Conclusion  

In this thesis, the cyber-physical vulnerability of next-generation electric power systems 

in a smart grid environment is investigated for the purpose of performing power system 

cyber-physical security analysis considering the potential malicious attacks against power 

grids. The thesis proposes novel methods for effectively and comprehensively identifying 

critical component combinations which may initiate cascading failures. Based on the 

proposed methods, a holistic methodology could be established for enabling a 

comprehensive power system vulnerability analysis, which could provide practical 

solutions for the protection, operation, and planning of large-scale smart grids.  

Based on the existing criticality indices, static strategy and dynamic strategy are here 

used to reflect the vulnerability of power systems. For different application purposes, 

more criticality indices could be developed and deployed in vulnerability evaluation.  

Considering the diversity of power system components, this thesis also covers a study on 

attack strategies targeting multiple same or different types of components based on the 

space-pruning enumerative search strategy. In particular, system vulnerability due to 

multiple different types of components of power grid is carefully studied which however 

cannot be discovered by the conventional vulnerability analysis method developed for 

assessing the same types of components.   
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The space conversion and reduction strategy based intelligent search method (SCIRS) are 

also proposed for comprehensively and effectively identifying critical component 

combinations. Through this approach, the potential components are chosen and 

manipulated by the sampling strategy and space conversion and reduction strategy so that 

the search space shrinks to a smaller range. This technique significantly decreases the 

computational burden while having the ability to identify comprehensively vulnerable 

portions in the power grid. This method has advantages over traditional intelligent search 

approaches for cascading failure analysis. The improved PSO based SCIRS is proven to 

be particularly suitable for quickly identifying critical component combinations in a 

large-scale power system.  Another significant advantage of SCRIS is that the algorithm 

is applicable to the power systems with different topologies as well as the diverse 

cascading failure simulation platforms.    

Based on the proposed methods, preventive actions and response plans can be developed 

to diminish the effect of multi-component attacks which could initiate cascading failures. 

The results of search space conversion and reduction strategy based intelligent search 

method also have a great significance for decision-making support in achieving effective 

smart grid management.  
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